WorldWideScience

Sample records for sorghum major crops

  1. Radiation balance in the sweet sorghum crop

    International Nuclear Information System (INIS)

    Assis, F.N. de; Mendez, M.E.G.; Martins, S.R.; Verona, L.A.

    1987-01-01

    The fluxes of incident solar radiation, reflected and net radiation were measured during the growing cicle of two fields of sweet sorghum (Sorghum bicolor L.), cus. BR-501 and BR-503, maintained under convenient irrigation level. Resultant data allowed to estimate the crop albedo as well as the estimates of Rn. (M.A.C.) [pt

  2. Sweet Sorghum Crop. Effect of the Compost Application

    International Nuclear Information System (INIS)

    Negro, M. J.; Solano, M. L.; Carrasco, J.; Ciria, P.

    1998-01-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs

  3. SOME CONSIDERATIONS ON THE PROSPECTS OF SORGHUM CROP

    Directory of Open Access Journals (Sweden)

    Agatha POPESCU

    2014-10-01

    Full Text Available The paper purpose was to analyze the sorghum statement at world, EU and Romania level in order to establish the main trends in the future of this crop. Sorghum is an important cereal coming on the 5th position after maize, rice, wheat and barley at world level due to its importance in human nutrition, animal feed, in producing bioethanol and green energy, and due to its good impact on environment. It is cultivated on all the continents, in the tropical, subtropical and temperate areas due to its resistance to drought, production potential, low inputs and production cost. It is an alternative to maize crop being more utilized as substituent in animal diets. The world sorghum production reached 63,811 thousand metric tons in 2014, the main producers being the USA, Mexico, Nigeria, India, Argentina, Ethiopia, Sudan and China. The world consumption of sorghum reached 63,148 thousand metric tons and it is continuously increasing. The sorghum exports accounted for 7,690 thousand metric tons in 2014, of which the USA export represents 4,600 thousand metric tons. Besides the USA, other exporting countries are Argentina, Australia, Ethiopia, India, Nigeria, Uruguay, while the main importing countries are China, Japan, Chile, Colombia, Mexico, the EU, Sudan. In 2014, the EU produced 576 thousand metric tons sorghum, imported 200 thousand metric tons, and consumed 770 thousand metric tons. The main EU producers of sorghum are France, Italy, Romania, Spain and Hungary. In 2012, Romania cultivated 20,000 ha with sorghum crop, 18 times more than in 2077. Also, in 2012, Romania produced 37.5 thousand tons of sorghum grains, by 31 times more than in 2007. The sorghum yield was 1,875 kg/ha by 66% higher in 2012 compared to 2007. Therefore, these figures show the increasing importance of sorghum crop at world level. Because Romania is situated in suitable geographical area for producing sorghum, it could increase production and become a more important supplier

  4. SOME CONSIDERATIONS ON THE PROSPECTS OF SORGHUM CROP

    OpenAIRE

    Agatha POPESCU; Reta CONDEI

    2014-01-01

    The paper purpose was to analyze the sorghum statement at world, EU and Romania level in order to establish the main trends in the future of this crop. Sorghum is an important cereal coming on the 5th position after maize, rice, wheat and barley at world level due to its importance in human nutrition, animal feed, in producing bioethanol and green energy, and due to its good impact on environment. It is cultivated on all the continents, in the tropical, subtropical and temperate areas due to ...

  5. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    Science.gov (United States)

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  6. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    Science.gov (United States)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  7. Evaluation of yield and forage quality in main and ratoon crops of different sorghum lines

    Directory of Open Access Journals (Sweden)

    K.S. Vinutha

    2017-01-01

    Full Text Available Improving the yield and quality of sorghum (Sorghum bicolor forage for livestock feeding is a major breeding objective, because of sorghum’s inherently high biomass accumulation, high productivity per unit water utilized and its ability to produce a ratoon crop after harvesting of the plant crop. Newly bred sorghum lines, including 36 lines falling in 5 different categories, i.e. 12 experimental dual-purpose lines, 6 germplasm accessions from the ICRISAT collection, 11 commercial varieties and hybrids, 6 forage varieties and 1 bmr mutant line, were evaluated in terms of fodder yield, quality and ratooning ability. The main crop produced more dry biomass (P<0.05 at 80 days after planting (mean 22.87 t DM/ha; range 17.32‒33.82 t DM/ha than the ratoon crop (mean 8.47 t DM/ha; range 3.2‒17.42 t DM/ha after a further 80 days of growth. Mean nitrogen concentration in forage did not differ greatly between main and ratoon crops (2.56 vs. 2.40%, respectively but there was wide variation between lines (2.06‒2.89%. The line N 610 recorded highest N percentage of 2.89%, followed by SSG 59 3 (2.86% and SX 17 (2.81%. Highest acid detergent fiber % was recorded by ICSV 12008 (42.1%, closely followed by CO 31 and IS 34638 (40.0%. The least acid detergent lignin % was observed in MLSH-296 Gold (3.59%, ICSV 700 (3.75% and ICSSH 28 (3.83%. Metabolizable energy concentration was highest in N 610, Phule Yashodha and SX 17 (mean 8.34 MJ/kg DM, while in vitro organic matter digestibility ranged from 52.5 to 62.6%. The main crop contained much higher mean concentrations of the cyanogenic glycoside, dhurrin, than the ratoon (639 vs. 233 ppm, respectively with ranges of 38 to 2,298 ppm and 7 to 767 ppm, respectively. There was no significant correlation between dhurrin concentration and dry biomass yield so breeding and selection for low dhurrin concentrations should not jeopardize yields. Hence, breeding for sorghum can target simultaneously both quality and

  8. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    Science.gov (United States)

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Peculiarities in covering the requirements for seed material of sorghum crops

    Directory of Open Access Journals (Sweden)

    С. І. Мельник

    2017-12-01

    Full Text Available Purpose. To assess the demand for sorghum seed material and sufficiency of domestic seeds. Results. The analysis of the State register for the period of 2002–2012 showed that there was the tendency not only towards increasing quantity of sorghum crops in general but their substitution by hybrids of foreign breeding. During the period from 2002 to 2017, 72 sorghum varieties were entered on the State register in total, among them only 12 varieties were of domestic breeding, the rest 60 was presented by foreign breeding institutions. Investigation results allowed to determine that the production of base and prebase seeds of sorghum in 2010 amounted to 1,3 t, in 2016 was 43 t. During the same period the production of sugar sorghum increased from 0,2 to 12,0 t, grass sorghum – from 4,0 to 83 t. In 2017, requirements of acreage of such crops as grass sorghum and broomcorn were completely satisfied by the amount of grown seeds. At the same time, the need for seeds of sorghum and sugar sorghum can not be covered completely at the expense of domestic varieties reproduction. In 2017, general demand for sorghum seeds was 400,5 t, among which only 42,0 t was of domestic production. The rest demand for seeds will be met at the expense of import of foreign breeding seeds into the country to be grown and prepared for sowing abroad. Conclusions. In the Register of plant varieties suitable for dissemination in Ukraine, there are 72 sorghum varieties among them only 12 varieties were of domestic breeding, that is 17%, as compared to 83% of recommended great sorghum varieties of foreign breeding. In Ukraine, the area occupied by sorghum cultivation was 22,8 thou ha in 2005, up to 2017 it increased to 89,0 thou ha, and accordingly the demand for seeds run up from 102,6 to 400,5 t. The area occupied by the sugar sorghum in 2005 amounted to only 2,6 thou ha, in 2017 – 20,0 thou ha, that accordingly determined increase of demand for seed material from 13,0 to 99

  10. Sweet sorghum as a model system for bioenergy crops.

    Science.gov (United States)

    Calviño, Martín; Messing, Joachim

    2012-06-01

    Bioenergy is the reduction of carbon via photosynthesis. Currently, this energy is harvested as liquid fuel through fermentation. A major concern, however, is input cost, in particular use of excess water and nitrogen, derived from an energy-negative process, the Haber-Bosch method. Furthermore, the shortage of arable land creates competition between uses for food and fuel, resulting in increased living expenses. This review seeks to summarize recent knowledge in genetics, genomics, and gene expression of a rising model species for bioenergy applications, sorghum. Its diploid genome has been sequenced, it has favorable low-input cost traits, and genetic crosses between different cultivars can be used to study allelic variations of genes involved in stem sugar metabolism and incremental biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    Science.gov (United States)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  12. Calibration and testing of AquaCrop for selected sorghum genotypes

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... sorghum production highly susceptible to rainfall amount and distribution. Examining yield .... explained in the materials and methods section. MATERIALS AND ... crop and soil characteristics, and management practices that define the ...... Reference Manual, Annex I – AquaCrop, Version 4.0. FAO, Rome.

  13. Effect on stone lines on soil chemical characteristics under continuous sorghum cropping in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Gnankambary, Z.; Guillobez, L.S.; Stroosnijder, L.

    2002-01-01

    In the semiarid Sahel, farmers commonly lay stone lines in fields to disperse runoff. This study was conducted in northern Burkina Faso to assess the chemical fertility of soil under a permanent, non-fertilised sorghum crop, which is the main production system in this area, 5 years after laying

  14. Evaluating shade effects on crop productivity in sorghum-legume intercropping systems using support vector machines

    Science.gov (United States)

    Sorghum-legume intercropping has the potential to improve forage productivity, resource use efficiency, and forage quality under irrigation in the Southern High Plains of the United States. Crop production is conversion of solar radiation into biomass and solar radiation is wasted early in the seaso...

  15. Sweet Sorghum crop. Effect of the Compost Application; Cultivo de Sorgo Dulce. Efecto de la Aplicacion de Compost

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M J; Solano, M L; Carrasco, J; Ciria, P

    1998-12-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs.

  16. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    Science.gov (United States)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  17. Evaluation of sweet sorghum as a potential ethanol crop in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Horton, David Scott

    2011-08-01

    Petroleum prices have made alternative fuel crops a viable option for ethanol production. Sweet sorghum [Sorghum bicolor] is a non-food crop that may produce large quantities of ethanol with minimal inputs. Eleven cultivars were planted in 2008 and 2009 as a half-season crop. Four-row plots 6.9 m by 0.5 m, were monitored bimonthly for °Brix, height, and sugar accumulation. Yield and extractable sap were taken at the end of season. Stalk yield was greatest for the cultivar Sugar Top (4945 kg ha-1) and lowest for Simon (1054 kg ha-1). Dale ranked highest ethanol output (807 L ha-1) while Simon (123 L ha-1) is the lowest. All cultivars peak Brix accumulation occurs in early October. Individual sugar concentrations indicated sucrose is the predominant sugar with glucose and fructose levels dependent on cultivar. Supplemental ethanol in fermented wort was the best preservative tested to halt degradation of sorghum wort.

  18. Granivorous birds and sorghum crop in the province of Villa Clara,Cuba

    Directory of Open Access Journals (Sweden)

    Orlando Miguel Saucedo Castillo

    2017-07-01

    Full Text Available In order to reduce the damages granivorous birds cause to sorghum (Sorghum bicolor L. Moench in the province of Villa Clara, Cuba, research based on the determination of the major endemic, migratory birds and their relationship with the distribution were made space of historical meteorological variables in the province in the seasonal behavior of birds in different climatic regions. Population to sorghum producers grouped in different forms surveys were conducted, which yielded a large database, such as the determination of the main grain-eating birds percentage damage incurred, varieties, grain color, growth stage and other indicators. Nine main species affecting sorghum grain-eating birds in our province were recorded; Passer domesticus, Lonchura malacca, Lonchura punctulata, Dives atroviolaceus, Passerina cyanea, Zonotrichia leucophrys, Columbina passerine, Zenaida macroura y Zenaida asiatica. The spatial distribution of meteorological variables and their relation to the seasonal behavior of birds in different climatic regions of the province was determined, based on record four preferential habitat areas. The results allowed us to provide companies and different forms of production in Villa Clara, the possibility of a varietal structure planting of sorghum on the basis of different preferential areas granivorous birds, together with the morphological and physiological characteristics of different genotypes introduced in agricultural production of the province and nationally.

  19. Effect of different cover crops on C and N cycling in sorghum NT systems.

    Science.gov (United States)

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  1. Effect of Nitrogen Rate on Quantitative and Qualitative Forage Yield of Maize, Pearl Millet and Sorghum in Double Cropping System

    Directory of Open Access Journals (Sweden)

    sh Khalesro

    2012-02-01

    Full Text Available Abstract In order to compare three summer forage grasses including sorghum (Sorghum bicolor cv. Speedfeed, corn (Zea mayz S.C. 704 and pearl millet (Pennisetum americanum cv. Nutrifeed for green chop forage production in double cropping system, a field experiment was conducted at research field of Tarbiat Modares University on 2006 growing season. Treatments were arranged in a split- plot design based on randomized complete blocks with four replications. In this research three forage crops as main factor and nitrogen rates (100, 200 and 300 kg N. ha-1 from the urea source as the sub- plot were studied. Results showed the positive response of crops to nitrogen increment, in such a manner that millet with 300 kg N ha-1 produced 85.8 t ha-1 fresh forage (%20.3 more than sorghum and %30.9 more than corn. Regarding to the sustainable agriculture objects, millet and sorghum with 200 kg N ha-1could be suggested. Forage yield advantages of millet and sorghum to corn was %10 and %12 respectively. They produce 72.4 and 73.5 t ha-1 fresh forage under this treatment. Finally regarding to general advantages of sorghum and millet to corn, especially in unsuitable condition like as drought and poor soil fertility, it seems that changing the corn with sorghum or pearl millet could be an appropriate option. Also decision making for recommending one of sorghum and millet need to more information like qualitative attributes in details and determining animal feeding indices (voluntary intake using in vivo methods. Keywords: Sorghum, Pearl millet, Corn, Nitrogen, Forage, Organic matter, Crud protein

  2. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.

    Science.gov (United States)

    Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian

    2017-11-01

    This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sorghums: viable biomass candidates

    Energy Technology Data Exchange (ETDEWEB)

    McClure, T A; Arthur, M F; Kresovich, S; Scantland, D A

    1980-01-01

    Agronomic studies conducted at Battelle's Columbus Division to evaluate biomass and sugar yields of sweet sorghum are described and the major findings are summarized. Development opportunities for using sorghum cultivars as a large-scale energy crop are discussed. With presently available cultivars, sweet sorghum should produce 3500 to 4000 liters ethanol per hectare from the fermentable sugars alone. Conversion of the stalk fibers into alcohol could increase production by another 1600 to 1900 liters per hectare with existing cultivars. These yields are approximately 30 to 40% greater per hectare than would be obtained from above average yields of grain and stalk fiber with corn. There is reason to believe, that with hybrid sweet sorghum, these yields could be further increased by as much as 30%. Diminishing land availability for agricultural crops necessitates that maximum yields be obtained. Over the next decade, imaginative technological innovations in sorghum harvesting, processing, and crop preservation, coupled with plant breeding research should help this crop realize its full potential as a renewable resource for energy production.

  4. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  5. Mineral composition and ash content of six major energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Andrea; Venturi, Gianpietro [Department of Agroenvironmental Science and Technologies (DiSTA), University of Bologna, Viale G. Fanin, 44, 40127 Bologna (Italy); Di Virgilio, Nicola [Institute of Biometeorology, National Research Council, Via P. Gobetti, 101 I, 40129 Bologna (Italy)

    2008-03-15

    The chemical composition of biofuels has not received adequate attention given that it is an important aspect in the introduction of energy crops. In this study, the ash content and mineral composition (C, N, Al, Ca, Cl, Fe, K, Mg, Na, P, S, Si) of stems, leaves and reproductive organs of some promising energy crops were determined and compared with the respective recommended thresholds reported in literature. Overall, cynara exhibited the highest ash and mineral contents, which indicate high slagging, fouling and corrosion tendencies. However, cynara also showed the lowest Si content, both in leaves (4.3 g kg{sup -1}) and in stems (0.9 g kg{sup -1}). Sweet sorghum and giant reed exhibited the highest N content (up to 16 g kg{sup -1}), which greatly exceeded the recommended limits in leaves. Importantly, Cl always exceeded the recommended limits (up to 18 mg kg{sup -1} in cynara), both in stems and in leaves, thus resulting in a major stumbling block for all crops. Several significant correlations among elements were found at a single plant part; conversely these correlations were generally very weak considering different plant components, with the exception of K (r=0.91**), P (r=0.94**) and ashes (r=0.64**). Generally, leaves resulted in a significant deterioration of biofuel quality when compared with stems and flower heads. Therefore, agricultural strategies aimed at reducing the leaf component (e.g. by delaying the harvest) may considerably improve the suitability of biofuels for current combustion plants. (author)

  6. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  7. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2011-02-01

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  8. SWEET SORGHUM PERFORMANCE AFFECTED BY SOIL COMPACTION AND SOWING TIME AS A SECOND CROP IN THE BRAZILIAN CERRADO

    Directory of Open Access Journals (Sweden)

    Wellingthon da Silva Guimarães Júnnyor

    2015-12-01

    Full Text Available ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna. The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction, 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03. Soil physical quality was measured through the least limiting water range (LLWR and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin as agricultural traffic increased (T0 = T1 = T2>T7>T15, and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.

  9. A weed-crop complex in sorghum: The dynamics of genetic diversity in a traditional farming system.

    Science.gov (United States)

    Barnaud, Adeline; Deu, Monique; Garine, Eric; Chantereau, Jacques; Bolteu, Justin; Koïda, Esaei Ouin; McKey, Doyle; Joly, Hélène I

    2009-10-01

    Despite the major ecological and economic impacts of gene flow between domesticated plants and their wild relatives, many aspects of the process, particularly the relative roles of natural and human selection in facilitating or constraining gene flow, are still poorly understood. We developed a multidisciplinary approach, involving both biologists and social scientists, to investigate the dynamics of genetic diversity of a sorghum weed-crop complex in a village of Duupa farmers in northern Cameroon. Farmers distinguish a gradient from weedy morphotypes (naa baa see, haariya, and genkiya) to domesticated morphotypes; haariya and genkiya have intermediate morphological traits. We investigated the pattern of diversity in this complex using both morphological and genetic data. Our biological results are interpreted in the light of data on farmers' taxonomy and practices such as spatial pattern of planting and plant selection. Both morphological and genetic data are congruent with farmers' taxonomy and confirm the introgressed status of intermediate weedy morphotypes. Farmers actively select against weedy morphotypes, but several practices unconsciously favor gene flow. Furthermore, haariya and genkiya may facilitate introgression between naa baa see and domesticated morphotypes by virtue of their intermediate flowering period and their mode of management by farmers.

  10. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  11. Measuring the economic impact of climate change on major South African field crops: a Ricardian approach

    Science.gov (United States)

    Gbetibouo, G. A.; Hassan, R. M.

    2005-07-01

    This study employed a Ricardian model to measure the impact of climate change on South Africa's field crops and analysed potential future impacts of further changes in the climate. A regression of farm net revenue on climate, soil and other socio-economic variables was conducted to capture farmer-adapted responses to climate variations. The analysis was based on agricultural data for seven field crops (maize, wheat, sorghum, sugarcane, groundnut, sunflower and soybean), climate and edaphic data across 300 districts in South Africa. Results indicate that production of field crops was sensitive to marginal changes in temperature as compared to changes in precipitation. Temperature rise positively affects net revenue whereas the effect of reduction in rainfall is negative. The study also highlights the importance of season and location in dealing with climate change showing that the spatial distribution of climate change impact and consequently needed adaptations will not be uniform across the different agro-ecological regions of South Africa. Results of simulations of climate change scenarios indicate many impacts that would induce (or require) very distinct shifts in farming practices and patterns in different regions. Those include major shifts in crop calendars and growing seasons, switching between crops to the possibility of complete disappearance of some field crops from some region.

  12. Improving selenium nutritional value of major crops

    Science.gov (United States)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  13. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Dorcus C. GEMENET

    2016-09-01

    Full Text Available West Africa (WA is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, unaffordable to resource-poor farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1 The global problem of P scarcity and how it will affect WA farmers; (2 Soil P dynamics in WA soils; (3 Plant responses to P deficiency; (4 Opportunities to breed for improved crop adaptation to P-limited conditions; (5 Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6 Systems approaches to addressing soil P-deficiency in WA.Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not however be a sustainable solution in

  14. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement.

    Science.gov (United States)

    Gemenet, Dorcus C; Leiser, Willmar L; Beggi, Francesca; Herrmann, Ludger H; Vadez, Vincent; Rattunde, Henry F W; Weltzien, Eva; Hash, Charles T; Buerkert, Andreas; Haussmann, Bettina I G

    2016-01-01

    West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable

  15. Sorghum bioenergy cropping systems: production potential and early indications of soil benefits under limited water

    Science.gov (United States)

    A two year field study was conducted to evaluate biofuel production potential of two forage sorghum cultivars differing in brown midrib trait under non-irrigated and deficit irrigation conditions in the semiarid Southern High Plains of the U.S. Cultivar SP1990 (non-bmr = conventional cell wall comp...

  16. 7 CFR 457.112 - Hybrid sorghum seed crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... test. A warm germination test performed on clean seed according to specifications of the “Rules for.... Germination of less than 80 percent of the commercial hybrid sorghum seed as determined by using a certified seed test. Insurable interest. Your share of the financial loss that occurs in the event seed...

  17. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)

    Sweet sorghum (sugar sorghum, Sorghum bicolor) is one kind of non-grain energy crops. As a novel green regenerated high-energy crop with high utility value, high yield of biomass, the sweet sorghum is widely used and developed in China. Stalk juice of sweet sorghum was used as the main substrate for ethanol ...

  18. Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects.

    Science.gov (United States)

    Schnell, Ronnie W; Vietor, Donald M; Provin, Tony L; Munster, Clyde L; Capareda, Sergio

    2012-01-01

    Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  20. Transgenic sorghum ( Sorghum bicolor L. Moench) developed by ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor (L.) Moench) is an important food and fodder crop. Fungal diseases such as anthracnose caused by Colletotrichum sublineolum reduce sorghum yields. Genetic transformation can be used to confer tolerance to plant diseases such as anthracnose. The tolerance can be developed by introducing ...

  1. Mineral content in grains of seven food-grade sorghum hybrids grown in Mediterranean environment

    Science.gov (United States)

    Sorghum is a major crop used for food, feed and industrial purposes worldwide. The objective of this study was to determine the mineral content in grains of seven white food-grade sorghum hybrids bred and adapted for growth in the central USA and grown in a Mediterranean area of Southern Italy. The ...

  2. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4.

    Science.gov (United States)

    Jun, Se-Young; Walker, Alexander M; Kim, Hoon; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-08-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p -coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum ( Sorghum bicolor ), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis ( Arabidopsis thaliana ) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p -coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Characterization of Nitrogen use efficiency in sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Dweikat, Ismail [University of Nebraska; Clemente, Thomas [University of Nebrask

    2014-09-09

    Sweet sorghum (Sorghum bicolor L. Moench) has the potential to augment the increasing demand for alternative fuels and for the production of input efficient, environmentally friendly bioenergy crops. Nitrogen (N) and water availability are considered two of the major limiting factors in crop growth. Nitrogen fertilization accounts for about 40% of the total production cost in sorghum. In cereals, including sorghum, the nitrogen use efficiency (NUE) from fertilizer is approximately 33% of the amount applied. There is therefore extensive concern in relation to the N that is not used by the plant, which is lost by leaching of nitrate, denitrification from the soil, and loss of ammonia to the atmosphere, all of which can have deleterious environmental effects. To improve the potential of sweet sorghum as a leading and cost effective bioenergy crop, the enhancement of NUE must be addressed. To this end, we have identified a sorghum line (SanChi San) that displays about 25% increase in NUE over other sorghum lines. As such, the overarching goal of this project is to employ three complementary strategies to enhance the ability of sweet sorghum to become an efficient nitrogen user. To achieve the project goal, we will pursue the following specific objectives: Objective 1: Phenotypic characterization of SanChi San/Ck60 RILs under low and moderate N-availability including biochemical profiles, vegetative growth and seed yield Objective 2: Conduct quantitative trait loci (QTL) analysis and marker identification for nitrogen use efficiency (NUE) in a grain sorghum RIL population. Objective 3: Identify novel candidate genes for NUE using proteomic and gene expression profiling comparisons of high- and low-NUE RILs. Candidate genes will be brought into the pipeline for transgenic manipulation of NUE This project will apply the latest genomics resources to discover genes controlling NUE, one of the most complex and economically important traits in cereal crops. As a result of the

  4. Agronomic and economic potential of sweet sorghum and Kenaf: Preliminary results of the California Industrial Crops Demonstration Program

    International Nuclear Information System (INIS)

    Shaffer, S.D.; Jenkins, B.M.; Brink, D.L.; Merriman, M.M.; Mouser, B.; Campbell, M.L.; Frate, C.; Schmierer, J.

    1992-01-01

    Sweet sorghum is proving to have excellent potential as a biomass energy crop for the production of fuel alcohol and/or electricity. Its advantages include high biomass and fermentables production per unit area of land, relatively low input requirements, and good suitability to a variety of California growing conditions. Average biomass yield for twelve projects involving nine growers, and eight cultivars was 7.6 bone dry tons per acre (bdt/ac) (17 t/ha) at an average cost of production of $58/bdt ($64/t), ready for harvest. With an ethanol yield of 89 gal/bdt (371 L/t), feed stock costs would be about $0.65/gal ($0.17/L). Improved crop yields at reduced costs can be expected in the future. Kenaf is a potential paper pulp and fiber feed stock which produces a long bast fiber and a short- fiber core material. About 30% of the stem material is long fiber, and the remaining 70% is short fiber. The current cost of production, given demonstration project yields of 4 bdt/ac (9t/ha) is about $222/bdt ($245/t), and available higher-value uses command prices of $300/bdt ($330/t) for long fiber for cordage and $160/bdt ($175/t) for core material as poultry litter, precluding its use directly as an energy feed stock. However, reusing the poultry litter core material for energy production may be economically feasible. This material may be obtained for about $15/bdt ($17/t), and with an ethanol yield of 34 ga/bdt (142 L/t), feed stock cost may be about $0.44/gal ($0.12/L)

  5. Sorghum bicolor L. Moench

    African Journals Online (AJOL)

    sorghum plants mitigates the negative effect of drought stress, favoring this crop cultivation in areas of low water ... It is a salt and aluminum-tolerant crop, making areas suitable for ... its growth or decrease its metabolic activity and later, when water ..... and osmoregulation, but also in stabilizing the structures and enzyme ...

  6. Finger millet: An alternative crop for the Southern High Plains

    Science.gov (United States)

    In the Southern High Plains, dairies are expanding to take advantage of favorable climatic conditions. Currently, corn (Zea mays L.) and forage sorghum [Sorghum bicolor (L.) Moench] are the two major crops grown in the region to meet silage demands for the expanding dairy industry, but they have rel...

  7. The productive potentials of sweet sorghum ethanol in China

    International Nuclear Information System (INIS)

    Zhang, Caixia; Xie, Gaodi; Li, Shimei; Ge, Liqiang; He, Tingting

    2010-01-01

    As one of the important non-grain energy crops, sweet sorghum has attracted the attention of scientific community and decision makers of the world since decades. But insufficient study has been done about the spatial suitability distribution and ethanol potential of sweet sorghum in China. This paper attempts to probe into the spatial distribution and ethanol potential of sweet sorghum in China by ArcGIS methods. Data used for the analysis include the spatial data of climate, soil, topography and land use, and literatures relevant for sweet sorghum studies. The results show that although sweet sorghum can be planted in the majority of lands in China, the suitable unused lands for large-scale planting (unit area not less than 100 hm 2 ) are only as much as 78.6 x 10 4 hm 2 ; and the productive potentials of ethanol from these lands are 157.1 x 10 4 -294.6 x 10 4 t/year, which can only meet 24.8-46.4% of current demand for E10 (gasoline mixed with 10% ethanol) in China (assumption of the energy efficiency of E10 is equivalent to that of pure petroleum). If all the common grain sorghum at present were replaced by sweet sorghum, the average ethanol yield of 244.0 x 10 4 t/year can be added, and thus the productive potentials of sweet sorghum ethanol can satisfy 63.2-84.9% of current demand for E10 of China. In general, Heilongjiang, Jilin, Inner Mongolia and Liaoning rank the highest in productive potentials of sweet sorghum ethanol, followed by Hebei, Shanxi, Sichuan, and some other provinces. It is suggested that these regions should be regarded as the priority development zones for sweet sorghum ethanol in China.

  8. Identification, Characterization and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L. Moench, a Food, Fodder and Biofuel Crop

    Directory of Open Access Journals (Sweden)

    KRISHAN MOHAN RAI

    2016-08-01

    Full Text Available Biomass based alternative fuels offer a solution to the world’s ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification. It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4. Further, 53 tandem duplication events involving 146 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publicly available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  9. Biological hydrogen production from sweet sorghum by thermophilic bacteria

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de T.; Budde, M.A.W.; Koukios, E.G.; Gylnos, A.; Reczey, K.

    2004-01-01

    Sweet sorghum cultivation was carried out in South-west Greece. The fresh biomass yield was about 126 t/ha. Stalks weight accounts for 82% of total crop weight while leaves and panicle account for 17% and 1%, respectively. The major components in variety 'Keller' stalks were, based on dry weight,

  10. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    Science.gov (United States)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  11. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    reports, agriculture consumes around 93.5percent of the groundwater withdrawals in Neyshabour basin and mostly in irrigation fields, surface water resources share in total water resource withdrawals is about 4.2percent, which means that groundwater is a primary source of fresh water for different purposes and surface water has a minor role in providing water supply services in the Neyshabour basin. To determine crop cultivation area, major crops divided into two groups. two winter crops (Wheat and Barley and two summer crops (Maize and Tomato. To accomplish land classification by using supervised method, a training area is needed, so different farms for each crop were chosen by consulting with official agricultural organization expert and multiple point read on GPS for each crop. The maximum likelihood (MLC method was selected for the land cover classification. To estimate the amount of precipitation at each 199 sub-basins, 13 station data for precipitation were collected, these stations are including 11 pluviometry stations, one climatology station and one synoptic station. Actual evapotranspiration (ETa is needed to estimate actual yield (Ya. Surface Energy Balance Algorithm for Land (SEBAL technique were applied on Landsat 8 OLI images. To calculate actual ETa, the following steps in flowchart were modeled as tool in ArcGIS 10.3 and a spreadsheet file. To estimate actual crop yield, the suggested procedure by FAO-33 and FAO-66 were followed. Financial productivity could be defined in differently according to interest. In this study several of these definition was used. These definitions are Income productivity (IP and Profit productivity (PP. To optimize crop area, linear programing technique were used. Results and discussionaverage actual evapotranspiration result for each sub-basin are shown in context. In some sub-basins which there were no evapotranspiration are shown in white. And it happens in those sub-basins which assigned as desert in land classification. In

  12. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Directory of Open Access Journals (Sweden)

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  13. Assessment of global grey water footprint of major food crops

    Science.gov (United States)

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  14. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Amin

    2015-01-01

    Full Text Available The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC and feasible generalized least square (FGLS methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops and flood (particularly Aman

  15. Morphological characteristics of BRS 501 sweet sorghum under water stress

    Directory of Open Access Journals (Sweden)

    Luciano Rezende Moreira

    2016-12-01

    Full Text Available Sorghum [Sorghum bicolor (L. Moench] crop is distinguished from other crops for its tolerance to both water deficit and excess soil moisture, under very dry and/or very hot environmental situations in which the productivity of other cereals becomes uneconomical. This work was conducted to evaluate the effects of irrigation on root conformation at the initial development phase of sweet sorghum. So, BRS 501 cv. was subjected to four irrigation levels based on 80%, 60%, 40% and 20% of the field capacity (CC. The decreased availability of water in the soil negatively affected the majority of the characteristics under evaluation except for the relationship between the root system and the aerial part (SR/PA, average root diameter (DMR and specific root area (ARE. We concluded that the growth of sweet sorghum plants under evaluation is sensible to the decrease of water in the soil, as it is affected by low water availability. This methodology, common to other crops, can be used for saccharine sorghum in order to establish hydric availabilities in new experiments to discriminate the drought-tolerant cultivars.

  16. Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants

    Science.gov (United States)

    Sorghum (Sorghum bicolor L.), with a high biomass yield and excellent tolerance to drought and low nutrition, has been recommended as one of the most competitive bioenergy crops. Brown midrib (bmr) mutant sorghum with reduced lignin content showed a high potential for the improvement of bioethanol ...

  17. Sorghum yield and associated satellite-derived meteorological ...

    African Journals Online (AJOL)

    Sorghum yield and associated satellite-derived meteorological parameters in semi-arid Botswana. ... African Crop Science Journal ... Sorghum (Sorghum bicolor) yield for five seasons (2005/6 to 2009/10) from the Botswana Department of Crop ... Key Words: Coefficient of determination, NDVI, Pearson correlation ...

  18. Genetic architecture of kernel composition in global sorghum germplasm

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland areas in the United States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and starch) between accessions can be used for crop improvement, but the genetic controls are...

  19. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Sander C.; van de Ven, Gerrie W.J.; van Ittersum, Martin K.; Giller, Ken E. [Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK Wageningen (Netherlands)

    2010-05-15

    We compared the production-ecological sustainability of biofuel production from several major crops that are also commonly used for production of food or feed, based on current production practices in major production areas. The set of nine sustainability indicators focused on resource use efficiency, soil quality, net energy production and greenhouse gas emissions, disregarding socio-economic or biodiversity aspects and land use change. Based on these nine production-ecological indicators and attributing equal importance to each indicator, biofuel produced from oil palm (South East Asia), sugarcane (Brazil) and sweet sorghum (China) appeared most sustainable: these crops make the most efficient use of land, water, nitrogen and energy resources, while pesticide applications are relatively low in relation to the net energy produced. Provided there is no land use change, greenhouse gas emissions of these three biofuels are substantially reduced compared with fossil fuels. Oil palm was most sustainable with respect to the maintenance of soil quality. Maize (USA) and wheat (Northwest Europe) as feedstock for ethanol perform poorly for nearly all indicators. Sugar beet (Northwest Europe), cassava (Thailand), rapeseed (Northwest Europe) and soybean (USA) take an intermediate position. (author)

  20. Sugarcane Aphid in Sorghum

    Science.gov (United States)

    Evers, Logan

    2018-01-01

    This article is intended for readers in the production agriculture industry who deal with grain sorghum throughout the growing season. This publication will discuss the impacts of the sugarcane aphid in various crops and the ways to manage and identify them as they continue to advance north.

  1. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  2. Potential Impacts of Climate Change on World Food Supply: Datasets from a Major Crop Modeling Study

    Data.gov (United States)

    National Aeronautics and Space Administration — Datasets from a Major Crop Modeling Study contain projected country and regional changes in grain crop yields due to global climate change. Equilibrium and transient...

  3. Co-suppression of synthesis of major x-kafirin sub-class together with y-kafirin-1 and y-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum

    CSIR Research Space (South Africa)

    Grootboom, AW

    2014-01-01

    Full Text Available Co-suppressing major kafirin sub-classes is fundamental to improved protein digestibility and nutritional value of sorghum. The improvement is linked to an irregularly invaginated phenotype of protein bodies....

  4. Fermentation characteristics of different purpose sorghum silage

    Directory of Open Access Journals (Sweden)

    Arthur Behling Neto

    2017-08-01

    Full Text Available Sorghum stands out among other plants recommended for ensiling due to its forage composition, its resistance to drought, and its planting range. New cultivars of grain and sweet sorghum that can be used for silage production are available, but there is little information regarding their ensiling characteristics. The aim of this study was to evaluate the fermentation characteristics at the ensiling of different purpose sorghum cultivars, at two crop periods. The trial was carried out at the Plant Production Department of the Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste campus, Rondônia, Brazil, and chemical analyses were performed at the Laboratory of Animal Nutrition, at the Federal University of Mato Grosso, Cuiabá campus, Mato Grosso, Brazil. The experimental design used was a randomized block, in split-plot design, with four replicates. The plot treatments consisted of six sorghum cultivars grown for different purposes (grain sorghum: BRS 308 and BRS 310; forage sorghum: BR 655 and BRS 610; sweet sorghum: BRS 506 and CMSXS 647. Split-plot treatments consisted of two cropping seasons (first crop and second crop. The grain sorghum cultivar BRS 310 was the only one that had suitable dry matter content for ensiling; however, it was also the only one that did not show ideal water soluble carbohydrate content for ensiling. Nevertheless, all treatments presented pH below than 4.2 and ammonia nitrogen lower than 12% of total N, which indicates that the fermentation inside the silo had proceeded well. For sweet sorghum cultivars, higher ethanol and butyric acid content were observed for the first crop than for the second crop. All evaluated sorghum cultivars can be used for silage production, but the use of sweet sorghum is recommended at the second crop.

  5. Estimation of in situ mating systems in wild sorghum (Sorghum ...

    Indian Academy of Sciences (India)

    The high outcrossing rates of wild/weedy sorghum populations in Ethiopia indicate a high potential for crop genes (including transgenes) to spread within the wild pool. Therefore, effective risk management strategies may be needed if the introgression of transgenes or other crop genes from improved cultivars into wild or ...

  6. Influence de la rotation culturale, de la fertilisation et du labour sur les populations de nématodes phytoparasites du sorgho (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Traoré, M.

    2012-01-01

    Full Text Available Influence of crop rotation, fertilization and tillage on populations of plant parasitic nematodes of sorghum (Sorghum bicolor (L. Moench. The soil nematodes of three long-term trials (1960, 1980 and 1990 representing the production of sorghum (Sorghum bicolor (L. Moench under different agricultural practices (rotation, tillage and fertilization in the Center West of Burkina Faso, have been explored in the wake of the harvest during the agricultural season 2007/2008. The objective was to identify these nematodes and to study the influence of agricultural practices on this nematofauna. Nematodes were extracted by the method of Seinhorst elutriator. Plant-parasitic nematodes identified are Pratylenchus brachyurus, Tylenchorhynchus martini, Helicotylenchus multicinctus, Scutellonema Caveness, Criconemoides curvatum, Telotylenchus indicus and Xiphinema sp. The first three species represent approximately 98% of individuals surveyed. On the first site, the treatments involving mineral fertilizer and recycling of sorghum straw were favorable for the control of nematodes instead of treatments involving manure. As for rotations, monoculture of sorghum was more infested by nematodes than the rotations sorghum – cowpea and sorghum – cotton. On the second site, the nitrogen has increased of infestation by the two major nematodes in comparison to treatments without nitrogen, with the exception of treatment with anaerobic compost incorporation. On the third site, deep plowing has been unfavorable to the main nematode sorghum compared to shallow tillage. The nematofauna in fallow was more diversified than in cultivated sites and P. brachyurus, the main nematode related to sorghum has fallen sharply in fallow.

  7. Identification of widely varying levels of resistance to meloidogyne incognita in sweet sorghum

    Science.gov (United States)

    Sweet sorghum (Sorghum bicolor) is a potential bioenergy crop that could be incorporated into annual cropping systems in the southern US, where it would likely be rotated with cotton. The desirability of including sweet sorghum in a cotton cropping system will be influenced by sweet sorghum’s host ...

  8. Effect of organic and inorganic supply on Al detoxification and sorghum crop yield in ferralitic soils from Burundi

    Directory of Open Access Journals (Sweden)

    Van den Berghe, C.

    1992-01-01

    Full Text Available A methodology has been tested to evaluate the agronomic effectiveness of organic fertilizers in combination or not with chemical fertilizers and lime on a ferralitic soil in Burundi. The experiments have shown that the samples obtained by weighing the mixed organic matter with water to obtain a paste are representative and the method by comparison of the regression coefficients after linear transformation of the response curve can also be applied on organic sources, when freshly applied. There were no significant differences at the 5 % level at 1 or 3 months between the sources for dry matter production of sorghum with and without fertilizer. Only when lime was applied these differences existed. For farmyard manure the effects of farmyard manure and farmyard manure * fertilizer on Al detoxification were significantly different at the 10 % level. All sources showed only differences on Al detoxification at the 5 % level when lime was applied.

  9. Mapping and characterisation of the sorghum cell suspension ...

    African Journals Online (AJOL)

    Here we reported the first secretomic study of sorghum (Sorghum bicolor), a naturally drought tolerant cereal crop. In this study, we used a gel-based proteomic approach in combination with mass spectrometry to separate and identify proteins secreted into the culture medium of sorghum cell suspensions, a first step ...

  10. Crop protection strategies for major diseases of cocoa, coffee and ...

    African Journals Online (AJOL)

    In Nigeria, crop protection measures that are cheap, simple, cost-effective and sustainable are desirable to combat Phytophthora pod rot (black pod) and cocoa swollen shoot virus diseases of cocoa, coffee leaf rust and coffee berry diseases, inflorescence blight disease of cashew in order to make farming profitable and ...

  11. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  12. Genetic diversity in sorghum transpiration efficiency

    Science.gov (United States)

    Sorghum is the fifth most important grain crop and is becoming increasingly important as a biofuel feedstock due to its superior tolerance to water deficit stress. Sorghum is commonly grown under rain-fed conditions in the Southern Plains and other semi-arid regions in the world. Thus, its product...

  13. Yield trends and yield gap analysis of major crops in the world

    NARCIS (Netherlands)

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are

  14. Evaluation of the multi-seeded (msd) mutant of sorghum for ethanol production

    Science.gov (United States)

    Grain sorghum [Sorghum bicolor (L.) Moench], a cost effective crop in semiarid regions, is an underestimated supplement to corn in starch based ethanol production. Twenty three multi-seeded (msd) mutant sorghums and one wild type sorghum BTx623 were evaluated for ethanol production and effect of che...

  15. Advances in sorghum genetic mapping with implications for sorghum improvement

    International Nuclear Information System (INIS)

    Lee, M.

    1998-01-01

    Despite the importance of the sorghum crop, comprehensive genetic characterization has been limited. Therefore, the primary goal of this research program was to develop basic genetic tools to facilitate research in the genetics and breeding of sorghum. The first phase of this project consisted of constructing a genetic map based on restriction fragment length polymorphisms (RFLPs). The ISU sorghum map was created through linkage analysis of 78 F2 plants of an intraspecific cross between inbred CK60 and accession PI229828. Subsequent mapping, efforts in several labs have enriched the sorghum map to the point where it now contains over 1,500 loci defined by RFLPs and many others defined by mutant phenotypes and QTLs. The ISU map consists of 201 loci distributed among 10 linkage groups covering 1299 cM. Comparison of sorghum and maize RFLP maps on the basis of common sets of DNA probes revealed a high degree of conservation as reflected by homology, copy number, and colinearity. Examples of conserved and rearranged locus orders were observed. The same sorghum population was used to map genetic factors (mutants and QTLS) for several traits including vegetative and reproductive morphology, maturity, insect, and disease resistance. Four QTLs for plant height, an important character for sorghum adaptation in temperate latitudes for grain production, were identified in a sample of 152 F2 plants whereas 6 QTLs were detected among their F3 progeny. These observations and assessments of other traits at 4 QTLs common to F2 plants and their F3 progeny indicate some of these regions correspond to loci (dw) previously identified on the basis of alleles with highly qualitative effects. Four of the six sorghum plant height QTLs seem to be orthologous to plant height QTLs in maize. Other possible instances of orthologous QTLs included regions for maturity and tillering. These observations suggest that the conservation of the maize and sorghum genomes encompasses sequence homology

  16. The effect of cover crop and crop rotation on soil water storage and on sorghum yield Efeito de cultura de cobertura e de rotação de cultura no armazenamento de água do solo e no rendimento de sorgo

    Directory of Open Access Journals (Sweden)

    Demóstenes Marcos Pedrosa de Azevedo

    1999-03-01

    Full Text Available Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years to investigate the effect of oat (Avena sativa L. cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.. The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.Rotação de cultura e cultura de cobertura constituem importantes meios para melhoria do rendimento de culturas em áreas de sequeiro como a região "Coastal Bend" do Estado do Texas. Um ensaio foi conduzido em 1995, como parte de um experimento de longa duração (7 anos, com o objetivo de investigar o efeito da aveia (Avena sativa L. como cultura de cobertura, e da rotação de cultura, no armazenamento da água do solo e no rendimento do sorgo (Sorghum bicolor L.. O delineamento experimental adotado foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As rotações foram alocadas nas parcelas, e a cultura de cobertura, nas subparcelas. A cultura de cobertura reduziu o rendimento do sorgo. Este efeito foi atribuído à reduzida concentração de N disponível do solo. Por atraso no extermínio e incorporação da aveia, seu resíduo, com elevada relação C/N, atuou como dreno, pela imobilização, em lugar de ser fonte

  17. PROXIMATE ANALYSIS OF SELECTED SORGHUM CULTIVARS 285

    African Journals Online (AJOL)

    pc

    purpose crop providing staple food for human consumption ... Many people in Africa and Asia depend on sorghum as the stuff of life. ... needed for rice and maize and can be grown where ... food energy 394 calories. ... They produce acute and.

  18. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

    Science.gov (United States)

    Sakamoto, Toshihiro

    2018-04-01

    Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root

  19. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.

    Science.gov (United States)

    Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

  20. Sorghum bi-color

    African Journals Online (AJOL)

    sunny

    2014-11-12

    Nov 12, 2014 ... Biomass materials require reduction and densification for the purpose of handling and space requirements. Guinea corn (Sorghum bi-color) is a major source of biomass material in the tropic regions. The densification process involves some ... a closed-end die, the temperature and the use of binder.

  1. Problems, control, and opportunity of starch in the large scale processing of sugarcane and sweet sorghum

    Science.gov (United States)

    Both sugarcane (Saccharum officinarum) and sweet sorghum (Sorghum bicolor) crops are members of the grass (Poaceae) family, and consist of stalks rich in soluble sugars. The extracted juice from both of these crops contains insoluble starch, with much greater quantities occurring in sweet sorghum. ...

  2. Genetic dissection of bioenerrgy traits in sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Vermerris, Wilfred; Kresovich, Stephen; Murray, Seth; Pedersen, Jeffery; Rooney, William; Sattler, Scott.

    2012-06-15

    project is acknowledged 1) Vermerris W, Saballos A (2012) Genetic enhancement of sorghum for biomass utilization. In Paterson, A. (Ed.) Genetics and Genomics of the Saccharinae, Springer, New York, NY. pp. 391-428. 2) Felderhoff T, Murray SC, Klein PE, Sharma A, Hamblin MT, Kresovich S, Vermerris W, Rooney, WL (2012) QTLs for energy-related traits in a sweet x grain sorghum [Sorghum bicolor (L.) Moench] mapping population. Crop Science 52: 2040-2049. 3) Sattler SE, Palmer NA, Saballos A, Greene AM, Xin Z, Sarath G, Vermerris W, Pedersen JF (2012) Identification and characterization of four missense mutations in Brown midrib12 (Bmr12), the caffeic acid O-methyltranferase (COMT) of sorghum. BioEnergy Research (in press) DOI 10.1007/s12155-012-9197-z 4) Saballos A, Sattler S, Sanchez E, Foster TP, Xin Z, Kang CH, Pedersen J, Vermerris W (2012). Brown midrib2 encodes the major 4-coumarate:CoA ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). The Plant Journal 70: 818-830. doi: 10.1111/j.1365-313X.2012.04933. 5) Vermerris, W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. Journal of Integrative Plant Biology 53: 105-119 6) Saballos A, Ejeta G, Sanchez E, Kang CH, Vermerris W (2009) A genome-wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181: 783-795. 7) Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). BioEnergy Research 2: 193-204 8) Felderhoff TJ. (2012) QTLs for energy related traits in a sweet x grain RIL sorghum [Sorghum bicolor (L.) Moench] population. M.S. Thesis, Texas A&M University. Publications in preparation (tentative titles) 9) Felderhoff T, Murray SC, Klein PE, Sharma A, Hamblin MT, Kresovich S, Vermerris W, Rooney, WL (2013) QTLs for

  3. Review of Sorghum Production Practices: Applications for Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  4. Development of Perennial Grain Sorghum

    Directory of Open Access Journals (Sweden)

    Stan Cox

    2018-01-01

    Full Text Available Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial S. bicolorn × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa. Grain yield in Kansas was not correlated with rhizomatousness in either Kansas or Uganda. Genomic regions affecting rhizome growth and development have been mapped, providing new breeding tools. The S. halepense gene pool may harbor many alleles useful for improving sorghum for a broad range of traits in addition to perenniality.

  5. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    Science.gov (United States)

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Sorghum allelopathy--from ecosystem to molecule.

    Science.gov (United States)

    Weston, Leslie A; Alsaadawi, Ibrahim S; Baerson, Scott R

    2013-02-01

    Sorghum allelopathy has been reported in a series of field experiments following sorghum establishment. In recent years, sorghum phytotoxicity and allelopathic interference also have been well-described in greenhouse and laboratory settings. Observations of allelopathy have occurred in diverse locations and with various sorghum plant parts. Phytotoxicity has been reported when sorghum was incorporated into the soil as a green manure, when residues remained on the soil surface in reduced tillage settings, or when sorghum was cultivated as a crop in managed fields. Allelochemicals present in sorghum tissues have varied with plant part, age, and cultivar evaluated. A diverse group of sorghum allelochemicals, including numerous phenolics, a cyanogenic glycoside (dhurrin), and a hydrophobic p-benzoquinone (sorgoleone) have been isolated and identified in recent years from sorghum shoots, roots, and root exudates, as our capacity to analyze and identify complex secondary products in trace quantities in the plant and in the soil rhizosphere has improved. These allelochemicals, particularly sorgoleone, have been widely investigated in terms of their mode(s) of action, specific activity and selectivity, release into the rhizosphere, and uptake and translocation into sensitive indicator species. Both genetics and environment have been shown to influence sorgoleone production and expression of genes involved in sorgoleone biosynthesis. In the soil rhizosphere, sorgoleone is released continuously by living root hairs where it accumulates in significant concentrations around its roots. Further experimentation designed to study the regulation of sorgoleone production by living sorghum root hairs may result in increased capacity to utilize sorghum cover crops more effectively for suppression of germinating weed seedlings, in a manner similar to that of soil-applied preemergent herbicides like trifluralin.

  7. Factors affecting the income from major crops in rice-wheat ecological zone

    International Nuclear Information System (INIS)

    Ashfaq, M.; Naseer, M.Z.; Hassan, S.

    2008-01-01

    Agriculture is an important sector of our economy. About twenty-two percent of national income and 44.8 percent of total employment is generated by this sector. About 66 percent of country's population is living in rural areas and is directly or indirectly linked with agriculture for their livelihood. It also supplies raw materials to industry. The rice-wheat zone of Punjab covers 1.1 million hectare, 72% of wheat is grown in rotation with rice. The main purpose of this paper was to determine the effect of different factors on the productivity and ultimately on income from of major crops (wheat, rice and sugar-cane) in rice-wheat ecological zone. The results show that for wheat crop, land preparation, use of fertilizer and chemicals, for Sugarcane crop, area under cultivation, fertilizer and chemical costs and for rice crop, applications of chemicals, irrigation and land holding were the main determinants of productivity and crop income. (author)

  8. Genetic Dissection of Bioenergy-Related Traits in Sweet Sorghum (Sorghum bicolor) under Danish Agro-Climatic Conditions

    DEFF Research Database (Denmark)

    Mocoeur, Anne Raymonde Joelle

    Sorghum (Sorghum bicolor (L.) Moench), a C4 African originated grass, ranks 5th most important crop worldwide, feeding over 500 million people in tropical regions as it withstands a wide panel of biotic and abiotic stresses. The small and simple diploid genome of sorghum was elected as the third...... plant for sequencing in 2009 promoting it as a C4 model plant. Among the very diverse genetic resources available for sorghum, sweet sorghum plants; amassing large quantities of juice-rich and sugar-rich stem, grain and vegetative biomass; have been enlightened as bioenergy crop as it can produced from...... a single plant food, feed and fuel. Sweet sorghum has gained interest in Europe to replace maize, for biogas and bioenergy productions, but this versatile crop is sensitive to chilling temperatures and little breeding efforts have been done toward its cold acclimation. The state-of-art of using...

  9. Nutritional value of sorghum silage of different purposes

    Directory of Open Access Journals (Sweden)

    Arthur Behling Neto

    Full Text Available ABSTRACT Sorghum is a crop that stands out as an alternative to corn due to lower soil fertility demand and increased tolerance to drought. Lack of information about the qualitative behaviour of sorghum hinders the recommendation of different purpose sorghum cultivars. The goal was to evaluate the chemical composition and in vitro digestibility of different purpose sorghum cultivar silages, at two cropping seasons. The trial was conducted at the Plant Production Department, Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste campus, and chemical analyses and in vitro incubation were performed at the Laboratory of Animal Nutrition, Federal University of Mato Grosso, Cuiabá campus. The experimental design was a randomized block with a split-plot arrangement and four replications. Plot treatments consisted of six different purpose sorghum cultivars (BRS 308 and BRS 310, grain sorghum; BR 655 and BRS 610, forage sorghum; and BRS 506 and CMSXS 647, sweet sorghum. Split-plot treatments consisted of two cropping periods (first crop and second crop. Forage sorghum cultivar BRS 655 demonstrated higher non-fiber carbohydrate content and lower potentially digestible fibre content than the other cultivars did. Sweet sorghum cultivars had higher levels of water soluble carbohydrates and non-protein nitrogen based on protein, lower indigestible neutral detergent fibre content at second crop, and higher in vitro dry matter digestibility than the other cultivars. The silages of sweet sorghum cultivars BRS 506 and CMSXS 647, and forage sorghum cultivar BRS 655 presented higher nutritional values.

  10. Sequencing of an Anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for Anthracnose resistance

    Science.gov (United States)

    Anthracnose, caused by the fungal pathogen Colletotrichum sublineolum Henn. ex. Sacc. and Trotter 1913, is an economically damaging disease of sorghum [Sorghum bicolor (L.) Moench] in hot and humid production regions of the world. Control of anthracnose is almost exclusively through the use of genet...

  11. Factors That Influence Technical Efficiency of Sorghum Production: A Case of Small Holder Sorghum Producers in Lower Eastern Kenya

    Directory of Open Access Journals (Sweden)

    Evaline Chepng’etich

    2015-01-01

    Full Text Available Majority of the rural households in Kenya depend on agriculture as a source of food and livelihood. Agricultural productivity has been declining due to many factors resulting in increased food insecurity in the country. Consequently, there is a renewed interest in promoting drought-tolerant crops such as sorghum which thrives in the arid and semiarid lands of the developing world. However, performance of sorghum production among the smallholder farmers has still remained low. This study was thus carried out to identify factors that influence technical efficiency of sorghum production among smallholder farmers in Machakos and Makindu districts of the lower eastern Kenya. Collected data on farm and farmer characteristics were analysed by use of descriptive statistics and Tobit model. Result highlights show that technical efficiency was influenced positively by formal education level of the household, experience in sorghum farming, membership in farmers associations, use of hired labour, production advice, and use of manure. Surprisingly household size, meant to enhance labour, had a negative influence. To increase technical efficiency, efforts should focus on improving information flows on agronomic practices. Farmers should also be encouraged to form and actively participate in various farmers associations, which enhance learning and pooling of labour resources, hence improving technical efficiency.

  12. Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States

    International Nuclear Information System (INIS)

    Linton, Joseph A.; Miller, J. Corey; Little, Randall D.; Petrolia, Daniel R.; Coble, Keith H.

    2011-01-01

    This study examines the feasibility of producing sweet sorghum (Sorghum bicolor (L.) Moench) as an ethanol feedstock in the southeastern United States through representative counties in Mississippi. We construct enterprise budgets along with estimates of transportation costs to estimate sweet sorghum producers' breakeven costs for producing and delivering sweet sorghum biomass. This breakeven cost for the sweet sorghum producer is used to estimate breakeven costs for the ethanol producer based on wholesale ethanol price, production costs, and transportation and marketing costs. Stochastic models are developed to estimate profits for sweet sorghum and competing crops in two representative counties in Mississippi, with sweet sorghum consistently yielding losses in both counties. -- Highlights: → We examine the economic feasibility of sweet sorghum as an ethanol feedstock. → We construct enterprise budgets along with estimates of transportation costs. → We estimate breakeven costs for producing and delivering sweet sorghum biomass. → Stochastic models determine profits for sweet sorghum in two Mississippi counties.

  13. An integrated model to simulate sown area changes for major crops at a global scale

    Institute of Scientific and Technical Information of China (English)

    SHIBASAKI; Ryosuke

    2008-01-01

    Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is pre- sented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users’ decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions, while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS) global land cover product in 2001. Both validation approaches indicated reliability of the model for ad- dressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally, the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline. The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.

  14. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    Science.gov (United States)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  15. The environment strongly affects estimates of heterosis in hybrid sweet sorghum

    Science.gov (United States)

    Sweet sorghum (Sorghum bicolor (L.) Moench) has potential as a biofuel feedstock but hybrid cultivars are needed to support an industry based on this crop. The purpose of this study was to compare five inbred sweet sorghum lines and 15 hybrids derived from them, and to determine the extent of envir...

  16. Biological and water-use efficiencies of sorghum-groundnut intercrop

    African Journals Online (AJOL)

    In order to compare water-use efficiency of sole crops and intercrops, 2 experiments were conducted in 2 consecutive years with sorghum (Sorghum bicolor L. Moench) and groundnut (Arachis hypogaea L.) on a loamy, Grossarenic Paleudult. In a randomized block, split-plot design, sorghum (SS), groundnut (GG), ...

  17. Diversity, users' perception and food processing of sorghum: implications for dietary iron and zinc supply

    NARCIS (Netherlands)

    Kayodé, A.P.P.

    2006-01-01

    This thesis focuses on the diversity of sorghum and its post-harvest processing into food. We studied the contribution that sorghum can make to Fe and Zn intake by poor people in Africa, using the situation in Benin as a study context. The culinary and sensory characteristics of sorghum crops and

  18. An economic analysis of sweet sorghum cultivation for ethanol production in North China

    NARCIS (Netherlands)

    Liu, H.; Ren, L.; Spiertz, J.H.J.; Zhu, Y.; Xie, G.H.

    2015-01-01

    Sweet sorghum [Sorghum bicolor (L.) Moench] is a promising non-food energy crop. The objective of this study was to determine the economic costs and input sensitivity of sweet sorghum compared to cotton, maize, and sunflower, at two saline-alkali sites in Shandong (Wudi County) and Inner Mongolia

  19. Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus Sorghum.

    Science.gov (United States)

    Hawkins, Jennifer S; Ramachandran, Dhanushya; Henderson, Ashley; Freeman, Jasmine; Carlise, Michael; Harris, Alex; Willison-Headley, Zachary

    2015-08-01

    Sorghum is an essential grain crop whose evolutionary placement within the Andropogoneae has been the subject of scrutiny for decades. Early studies using cytogenetic and morphological data point to a poly- or paraphyletic origin of the genus; however, acceptance of poly- or paraphyly has been met with resistance. This study aimed to address the species relationships within Sorghum, in addition to the placement of Sorghum within the tribe, using a phylogenetic approach and employing broad taxon sampling. From 16 diverse Sorghum species, eight low-copy nuclear loci were sequenced that are known to play a role in morphological diversity and have been previously used to study evolutionary relationships in grasses. Further, the data for four of these loci were combined with those from 57 members of the Andropogoneae in order to determine the placement of Sorghum within the tribe. Both maximum likelihood and Bayesian analyses were performed on multilocus concatenated data matrices. The Sorghum-specific topology provides strong support for two major lineages, in alignment with earlier studies employing chloroplast and internal transcribed spacer (ITS) markers. Clade I is composed of the Eu-, Chaeto- and Heterosorghum, while clade II contains the Stipo- and Parasorghum. When combined with data from the Andropogoneae, Clade II resolves as sister to a clade containing Miscanthus and Saccharum with high posterior probability and bootstrap support, and to the exclusion of Clade I. The results provide compelling evidence for a two-lineage polyphyletic ancestry of Sorghum within the larger Andropogoneae, i.e. the derivation of the two major Sorghum clades from a unique common ancestor. Rejection of monophyly in previous molecular studies is probably due to limited taxon sampling outside of the genus. The clade consisting of Para- and Stiposorghum resolves as sister to Miscanthus and Saccharum with strong node support. © The Author 2015. Published by Oxford University Press on

  20. An integrated model to simulate sown area changes for major crops at a global scale

    Institute of Scientific and Technical Information of China (English)

    WU WenBin; YANG Peng; MENG ChaoYing; SHIBASAKI Ryosuke; ZHOU QingBo; TANG HuaJun; SHI Yun

    2008-01-01

    Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is presented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users' decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions,while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS)global land cover product in 2001. Both validation approaches indicated reliability of the model for addressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally,the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline.The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.

  1. Review of genetic basis of protein digestibility in Grain sorghum

    Science.gov (United States)

    Sorghum, an ancient crop of the semiarid tropics, plays a key role in food and nutritional security for over half-a-billion people in Africa and Asia. In industrialized nations, sorghum is cultivated as animal feed and more recently as a feedstock for biofuel production and as health food alternativ...

  2. Performance evaluation of biomass sorghum in Hawaii and Texas

    Science.gov (United States)

    Although biomass sorghum [Sorghum bicolor (L.) Moench] has been identified as a high yielding bioenergy feedstock crop on the continental USA, there is lack of conclusive data on its performance in HI. The objective of this study was to (i) determine the adaptability and productivity of two biomass...

  3. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    Science.gov (United States)

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  4. The diversity of local sorghum (Sorghum bicolor L. Moench) in Nusa Tenggara Timur province

    Science.gov (United States)

    Mukkun, L.; Lalel, H. J. D.; Richana, N.; Pabendon, M. B.; Kleden, S. R.

    2018-04-01

    Sorghum (Sorghum bicolor L. Moench) is an important food crop in the dry land including Nusa Tenggara Timur (NTT) Province. This plant has a high adaptability to drought, can produce on marginal land, and is relatively resistant to pests and diseases. The study aims to collect and identify the species of local sorghum being cultivated by farmers, and the purposes of cultivation. In addition, this study will preserve germ plasm of local sorghum by providing bank seeds for the next growing season. A collection of local sorghum samples was conducted in 7 districts using survey and observation method. A total of 53 species of sorghum were collected, with various characteristics and different local names. Based on the skin color of the seeds, the accessions were grouped into white groups (26.42%), light yellow (15.09%), black (20.75%), brown (24.52%), and red (13.20 %). Sorghum is used for complementary food for rice, consumption in times of food insecurity, fodder, and as a fence for corn and rice. It is necessary to characterize the type of local sorghum that has the potential to be developed for food, industrial raw materials, and for functional food.

  5. Maturation curves of sweet sorghum genotypes

    Directory of Open Access Journals (Sweden)

    Renan Silva e Souza

    2016-02-01

    Full Text Available ABSTRACT Sweet sorghum [Sorghum bicolor (L. Moench] stands out as a complementary crop to sugarcane Saccharum spp. for the production of ethanol, since it has juicy stems with directly fermentable sugars. Due to this fact, there is a need for the analysis of sweet sorghum properties in order to meet the agro-industry demand. This work aimed to develop and study the maturation curves of seven sweet sorghum cultivars in ten harvest dates. The results showed a significant difference between cultivars and harvest dates for all parameters analysed (p≤0.01. Regarding the sugar content, the cultivars BRS508, XBWS80147 and CMSX629 showed the highest means for the total reducing sugars (TRS and recoverable sugar (RS. In the production of ethanol per tonne of biomass (EP, the cultivars BRS508 and CMSX629 presented the best results.

  6. SILAGE QUALITY OF CORN AND SORGHUM ADDED WITH FORAGE PEANUTS

    Directory of Open Access Journals (Sweden)

    WALKÍRIA GUIMARÃES CARVALHO

    2016-01-01

    Full Text Available Corn and sorghum are standard silage crops because of their fermentative characteristics. While corn and sorghum silages have lower crude protein (CP contents than other crops, intercropping with legumes can increase CP content. Furthermore, one way to increase CP content is the addition of legumes to silage. Consequently, the research objective was to evaluate the fermentative and bromatological characteristics of corn (Zea mays and sorghum (Sorghum bicolor silages added with forage peanuts (Arachis pintoi. The experimental design was completely randomized with four replicates. The treatments consisted of corn silage, sorghum silage, forage peanut silage, corn silage with 30% forage peanut, and sorghum silage with 30% forage peanut. The results showed that the corn and sorghum added with peanut helped to improve the silage fermentative and bromatological characteristics, proving to be an efficient technique for silage quality. The forage peanut silage had lower fermentative characteristics than the corn and sorghum silages. However, the forage peanut silage had a greater CP content, which increased the protein contents of the corn and sorghum silages when intercropped with forage peanuts.

  7. Baseline survey on factors affecting sorghum production and use in ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development ... Sorghum, which is closely related to maize in utilization, therefore, could be an alternative staple food crop in arid areas ...

  8. Food system consequences of a fungal disease epidemic in a major crop.

    Science.gov (United States)

    Godfray, H Charles J; Mason-D'Croz, Daniel; Robinson, Sherman

    2016-12-05

    Fungal diseases are major threats to the most important crops upon which humanity depends. Were there to be a major epidemic that severely reduced yields, its effects would spread throughout the globalized food system. To explore these ramifications, we use a partial equilibrium economic model of the global food system (IMPACT) to study a hypothetical severe but short-lived epidemic that reduces rice yields in the countries affected by 80%. We modelled a succession of epidemic scenarios of increasing severity, starting with the disease in a single country in southeast Asia and ending with the pathogen present in most of eastern Asia. The epidemic and subsequent crop losses led to substantially increased global rice prices. However, as long as global commodity trade was unrestricted and able to respond fast enough, the effects on individual calorie consumption were, to a large part, mitigated. Some of the worse effects were projected to be experienced by poor net-rice importing countries in sub-Saharan Africa, which were not affected directly by the disease but suffered because of higher rice prices. We critique the assumptions of our models and explore political economic pressures to restrict trade at times of crisis. We finish by arguing for the importance of 'stress-testing' the resilience of the global food system to crop disease and other shocks.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  9. (cucurbita pepo) and sorghum

    African Journals Online (AJOL)

    big timmy

    ... properties of pumpkin (Cucurbita pepo) and sorghum (Sorghum bicolor) flour blends fermented with pure strains of Lactobacillus ... good storage characteristics and affordable cost. (Akinrele ... (MRS), Nutrient agar (NA) and Potato dextrose.

  10. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L. Moench and related model species.

    Directory of Open Access Journals (Sweden)

    Adugna Abdi Woldesemayat

    Full Text Available Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations.In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO, Trait Ontology (TO, Plant Ontology (PO, Growth Ontology (GRO and Environment Ontology (EO were used to semantically integrate drought related information.Target genes linked to Quantitative Trait Loci (QTLs controlling yield and stress tolerance in sorghum (Sorghum bicolor (L. Moench and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%, salt (32%, cold (20%, heat (8% and oxidative stress (25% were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs

  11. N fixation and transfer in Maize/Cowpea and Sorghum/Cowpea inter cropping systems as determined by N-15 isotope dilution technique

    International Nuclear Information System (INIS)

    Dayatilake, G.A.; Subasinghe, S.; Senaratne, R.

    2000-01-01

    N fixation and transfer in maize/cowpea and sorghum/cowpea intercropping systems, as determined by N-15 dilution technique was studied in two field trials conducted at Bata-atha, in the dry zone of Sri Lanka. Two cvs. of cowpea i.e; Bombay and MI-35 were used in maize/cowpea intercropping system, with following combinations of treatments; maize/Bombay, maize/MI-35, Bombay (monocrop), MI-35 (monocrop) and maize (monocrop). A similar set of treatments was used in sorghum/cowpea intercropping system also. The N-15 atom excess, percentage Ndfa, total amount of N fixed, N yield and the total dry matter production were estimated. Maize/cowpea intercropping resulted in an increase in total dry matter production and total N yield compared to monocrop treatment. However the percentage Ndfa and total N fixed showed a decrease compared to monocrop stand. The percentage Ndfa was 60-65 percent monocrop while the same was 45-50 percent in intercropped treatments

  12. Potensi penggunaan beberapa varietas sorgum manis (Sorghum bicolor (L. Moench sebagai tanaman pakan

    Directory of Open Access Journals (Sweden)

    Mustikoweni Purnomohadi

    2012-02-01

    Full Text Available Sweet sorghum is a versatile crop that can be used as grain crop, sugar alcohol production and even as forage crop. The aim of this study was to evaluate the potential use of sweet sorghum either as grain crop or forage crop. The experiment used four varieties of sweet sorghum: Rio, Cawley, Keller and Wray, which were planted in polybag with six replication using Completely Randomized Design. The result of the research showed that Keller and Wray had longer vegetative growth, and good quality of chemical composition for forage than Rio and Cawley.

  13. Variation of Transpiration Efficiency in Sorghum

    Science.gov (United States)

    Declining freshwater resources, increasing population, and growing demand for biofuels pose new challenges for agriculture research. To meet these challenges, the concept “Blue Revolution” was proposed to improve water productivity in agriculture--“More Crop per Drop”. Sorghum is the fifth most imp...

  14. Variation in transpiration efficiency in sorghum

    Science.gov (United States)

    Declining freshwater resources, increasing population, and growing demand for biofuels pose new challenges for agriculture research. To meet these challenges, the concept “Blue Revolution” was proposed to improve water productivity in agriculture--“More Crop per Drop”. Sorghum is the fifth most imp...

  15. EVALUATION OF GRAIN SORGHUM CULTIVARS FOR DOUBLE CROPPING IN THE SOUTHWEST OF GOIÁS STATE, BRAZIL AVALIAÇÃO DE CULTIVARES DE SORGO GRANÍFERO NA SAFRINHA NO SUDOESTE DO ESTADO DE GOIÁS

    Directory of Open Access Journals (Sweden)

    Eduardo Bezerra de Morães

    2009-03-01

    Full Text Available

    Sorghum is a crop of great importance for double cropping, in the Brazilian Central-West region. Within this region, in the Southwestern Goiás State, a research was conducted to select sorghum (Sorghum bicolor (L. Moench cultivars, in the municipalities of Montividiu, Rio Verde, and Santa Helena de Goiás. A randomized blocks design, with four replications, was used. The grain sorghum cultivars tested were: BR 304, 741, 822, Catuy, and the experimental hybrid V 00069. The cultivars were sown on March 5, 2005. The evaluated characteristics were: yield, weight of thousand grains, plant height, and flowering and maturation dates. The results showed the interaction genotype x environment for all evaluated characteristics. The region of Montividiu presented better potential for sorghum grain production. Early flowering and harvest allowed higher grain yields.

     

  16. Arsenic-contaminated soils. Phytotoxicity studies with sunflower and sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Lyubun, Y.V.; Kosterin, P.V.; Zakharova, E.A.; Fedorov, E.E. [Inst. of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Shcherbakov, A.A. [Saratov Military Inst. of Radiological, Chemical and Biological Defence, Saratov (Russian Federation)

    2002-07-01

    Background, Aim and Scope. Environmental pollution caused by arsenic (As) is a major ecological problem. There has been intense worldwide effort to find As-hyperaccumulating plants that can be used in phytoremediation - the green-plant-assisted removal of chemical pollutants from soils. For phytoremediation, it is natural to prefer cultivated rather than wild plants, because their agriculture is well known. This study was conducted to evaluate the tolerance of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.) for soil-As contents of 10-100 mg As kg{sup -1} soil, with sodium arsenite as a model contaminant. Methods. Plants were grown in a growth chamber for 30 days. Microfield experiments were conducted on experimental plots. To study the phytoremediation effect of the auxins indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), we treated 1- and 3-day-old plant seedlings with water solutions of the auxins (concentrations of 10{sup -5}, 10{sup -7}, and 10{sup -9} g l{sup -1}). The soil and plant-biomass samples were analyzed for total As by using the color reaction of ammonium molybdate with As. Results and Discussion. Phytotoxicity studies showed that 100 mg as kg{sup -1} soil poisoned sunflower and sorghum growth by 50%. There was a linear correlation between soil-As content and As accumulation in the plants. Laboratory experiments showed that the soil-As content was reduced two- to threefold after sunflower had been grown with 10-100 mg As kg{sup -1} soil for 30 days. Treatment of sunflower and sorghum seedlings with IAA and 2,4-D at a concentration of 10{sup -5} g l{sup -1} in microfield experiments enhanced the phytoremediation two- to fivefold as compared with untreated control plants. The best results were obtained with 3-day-old seedlings. Conclusion, Recommendation and Outlook. (a) Sunflower and sorghum are good candidates to remediate As-polluted soils. (b) Phytoremediation can be improved with IAA or 2

  17. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    Science.gov (United States)

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  18. (Sorghum bicolor (L.)

    African Journals Online (AJOL)

    user

    2017-11-13

    Nov 13, 2017 ... major cereal crop with multi-purposes in lower and mid altitude regions ... efficiency and grain yield for different cereal crops (Malakouti, 2008). .... The analysis of variance (ANOVA) was ..... Agriculture and environment in EU-15 – the IRENA ... Moench) varieties to blended fertilizer on yield, yield component ...

  19. Achievements and problems in the weed control in grain sorghum (Sorghum Bicolor Moench.

    Directory of Open Access Journals (Sweden)

    Gr. Delchev

    2017-09-01

    Full Text Available Abstract. Chemical control has emerged as the most efficient method of weed control. Herbicides combinations and tank mixtures of herbicides with adjuvants, fertilizers, growth regulators, fungicides, insecticides are more effective than when applied alone on sorghum crops. Their combined use often leads to high synergistic effect on yield. The use of herbicide antidotes for the treatment of seeds in sorghum is a safe way to overcome its high sensitivity to many herbicides. Data regarding herbicide for chemical control of annual graminaceous weeds in sorghum crops are quite scarce even worldwide. Problem is the persistence of some herbicides used in the predecessors on succeeding crops, which is directly related to the weather conditions during their degradation. Most of the information on sorghum relates to the conventional technology for weed control. There is no information about the new Concep technology in grain sorghum. A serious problem is also the volunteers of the Clearfield and Express sun sunflower. They have resistance to herbicides different from that of conventional sunflower hybrids. There is no information yet in scientific literature on control of these volunteers.

  20. Evaluation of climate adaptation options for Sudano-Sahelian cropping systems

    NARCIS (Netherlands)

    Traore, B.; Wijk, van M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.

    2014-01-01

    In the Sudano-Sahelian region, smallholder agricultural production is dominated by rain-fed production of millet, sorghum and maize for food consumption and of cotton for the market. A major constraint for crop production is the amount of rainfall and its intra and inter-annual variability. We

  1. Effect of diammonium phosphate application on strigolactone production and Striga hermonthica infection in three sorghum cultivars

    NARCIS (Netherlands)

    Jamil, M.; Mourik, van T.A.; Charnikova, T.; Bouwmeester, H.J.

    2013-01-01

    Striga hermonthica infection poses a major constraint to sorghum production in sub-Saharan Africa, and low soil fertility aggravates the S. hermonthica problem. Under mineral nutrient deficiency, the sorghum host secretes large quantities of strigolactones, signalling molecules, into the

  2. Efficient Identification of Causal Mutations through Sequencing of Bulked F2 from Two Allelic Bloomless Mutants of Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Yinping Jiao

    2018-01-01

    Full Text Available Sorghum (Sorghum bicolor Moench, L. plant accumulates copious layers of epi-cuticular wax (EW on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1 and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

  3. Rate and Timing Effects of Growth Regulating Herbicides Applications on Grain Sorghum (Sorghum bicolor Growth and Yield

    Directory of Open Access Journals (Sweden)

    Thierry E. Besançon

    2016-01-01

    Full Text Available Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1 and dicamba (280 g acid equivalent ha−1 applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1 or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1 and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.

  4. Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.

    Science.gov (United States)

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro

    2018-02-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. (Arachis hypogaea) and Sorghum (Sorghum bicolor)

    African Journals Online (AJOL)

    ADOWIE PERE

    as enzyme activities of Arachis hypogaea and Sorghum bicolor in crude oil contaminated soil. Crude oil ... Treatments without crude oil were ... replicates were made for each treatment. .... dead sections of leaf margins, burning and stunted or.

  6. Two distinct classes of QTL determine rust resistance in sorghum.

    Science.gov (United States)

    Wang, Xuemin; Mace, Emma; Hunt, Colleen; Cruickshank, Alan; Henzell, Robert; Parkes, Heidi; Jordan, David

    2014-12-31

    Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect

  7. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.

    Science.gov (United States)

    Rigdon, Anne R; Jumpponen, Ari; Vadlani, Praveen V; Maier, Dirk E

    2013-03-01

    With increased mandates for biofuel production in the US, ethanol production from lignocellulosic substrates is burgeoning, highlighting the need for thorough examination of the biofuel production supply chain. This research focused on the impact storage has on biomass, particularly photoperiod-sensitive sorghum biomass. Biomass quality parameters were monitored and included biomass components, cellulose, hemicellulose and lignin, along with extra-cellular enzymatic activity (EEA) responsible for cellulose and hemicellulose degradation and conversion to ethanol yields. Analyses revealed dramatic decreases in uncovered treatments, specifically reduced dry matter content from 88% to 59.9%, cellulose content from 35.3% to 25%, hemicellulose content from 23.7% to 16.0% and ethanol production of 0.20 to 0.02gL(-1) after 6months storage along with almost double EEA activities. In contrast, biomass components, EEA and ethanol yields remained relatively stable in covered treatments, indicating covering of biomass during storage is essential for optimal substrate retention and ethanol yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Nutrient and carbohydrate partitioning in sorghum stover

    International Nuclear Information System (INIS)

    Powell, J.M.; Hons, F.M.; McBee, G.G.

    1991-01-01

    Sorghum [Sorghum bicolor (L.) Moench] stover has been demonstrated to be a potential biomass energy source. Complete aboveground crop removal, however, can result in soil degradation. Differential dry matter, nutrient, and carbohydrate partitioning by sorghum cultivars may allow management strategies that return certain parts to the field while removing other portions for alternative uses, such as energy production. A field study was conducted to determine N,P,K, nonstructural carbohydrate, cellulose hemicellulose, and lignin distributions in stover of three diverse sorghum cultivars of differing harvest indices. Determinations were based on total vegetative biomass; total blades; total stalks; and upper middle, and lower blades and stalks. Concentrations of N and P were higher in blades than stalks and generally declines from upper to lower stover parts. Large carbohydrate and lignin concentration differences were observed on the basis of cultivar and stover part. Greater nutrient partitioning to the upper third of the intermediate and forage-type sorghum stovers was observed as compared to the conventional grain cultivar. Stover carbohydrates for all cultivars were mainly contained in the lower two-thirds of the stalk fraction. A system was proposed for returning upper stover portion to soil, while removing remaining portions for alternative uses

  9. Bioethanol production from dried sweet sorghum stalk

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Ghoreishi, F.; Yosefi, F. [Biology Dept. Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Bioethanol as a renewable transportation fuel has a great potential for energy and clean environment. Among crops sweet sorghum is one of the best feedstock for ethanol production under hot and dry climatic conditions. Because it has higher tolerance to salt and drought comparing to sugarcane and corn that are currently used for bio-fuel production in the world. Generally mills are used to extract the juice from sweet sorghum stalks. Three roller mills extract around nearly 50 percent of the juice and more mills is needed to extract higher percentage of the juice. More over under cold weather the stalks become dry and juice is not extracted from the stalk, therefore reduce harvesting period. In this study stalks were harvested, leaves were stripped from the stalks and the stalks were chopped to nearly 4 mm length and sun dried. The dry stalks were grounded to 60 mesh powder by a mill. Fermentation medium consists of 15-35% (w/w) sweet sorghum powder, micronutrients and active yeast inoculum from 0.5-1% (w/w) by submerge fermentation method. The fermentation time and temperature were 48-72 hours and 30 deg, respectively. The results showed the highest amount of ethanol (14.5 % w/w sorghum) was produced with 10% sweet sorghum powder and 1% of yeast inoculum, three day fermentation at 30 deg.

  10. Bioactivity of flours of seeds of leguminous crops Pisum sativum ...

    African Journals Online (AJOL)

    Bioactivity of flours of seeds of leguminous crops Pisum sativum, Phaseolus vulgaris and Glycine max used as botanical insecticides against Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae) on sorghum grains.

  11. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  12. Glucuronoarabinoxylans from sorghum grain

    NARCIS (Netherlands)

    Verbruggen, M.A.

    1996-01-01


    Water-unextractable cell wall materials (WUS) were prepared from raw, polished, and malted sorghum ( Sorghum vulgare cv. Fara Fara). Except for the amounts, hardly any difference could be observed between the WUS of these three raw materials. This means that cell wall

  13. Sorghum as an alternative of cultivation to maize; Sorghumhirse als Anbaualternative zum Mais

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, Kerstin; Theiss, Markus; Poetzschke, Karen [Saechsisches Landesamt fuer Umwelt, Landwirtschaft und Geologie (LfULG), Dresden (Germany)] [and others

    2013-10-01

    Due to their high dry matter yield potential Sorghum bicolor and Sorghum bicolor x sudanense are well fitted as feedstock for biogas production. Similar to maize, both species show a high efficiency in their use of water (C4-plants). However, Sorghum has a higher drought tolerance in comparison with maize but is more sensitive to low temperatures. Hence a cultivation of Sorghum is recommendable especially in dry and relatively warm regions, including recultivated areas and even on loess soil, provided that the required temperatures are given. Due to the fact that Sorghum is not affected by the corn root worm, it also could gain relevance in regions were the cultivation of maize is restricted. Furthermore, Sorghum is usable as a catch crop as well as a main crop because of its variable sowing time. Catch crop cultivation, however, yields a significantly lower amount of dry matter and -quality which is a result of its shorter vegetation period. Owing to its higher crude fiber concentration Sorghum achieves a lower theoretically attainable specific methane yield (Weissbach) than maize. Thus only on rare occasions Sorghum does achieve methane yields per hectare that are comparable to maize. Eventually, the competitiveness of Sorghum greatly depends on provision of enhanced cultivars achieved through genetic improvement. (orig.)

  14. Interception and translocation of radionuclides in major food crops for Koreans

    International Nuclear Information System (INIS)

    Choi, Y. H.; Lim, K. M.; Park, H. G.; Choi, H. J.; Lee, H. S.

    2002-01-01

    In order to investigate the direct plant contamination pathway of 54 Mn, 57 Co, 85 Sr, 103 Ru and 134 Cs in major food crops for Koreans, rice, soybean and radish plants at different growth stages were sprayed with radioactive solutions in a greenhouse. The interception factor and the translocation factor were quantified as the fraction of the total deposition that is initially retained on the aboveground plant surface and the fraction of the total initial plant activity that is contained in the edible part at harvest, respectively. In rice and radish, interception factors increased as plants grew old to harvest. In soybean, however, rapid defoliation in old plants made interception factors decrease with increasing age during the later part of the growth. There was little difference in the interception factor among radionuclides. Translocation factors decreased in the order of 134 Cs ≥> 57 Co > 54 Mn ≥ 85 Sr > 103 Ru in general and varied with radionuclides by factors of 6-4000, depending on application time and plant species. Translocation factors for rice seeds were the highest when radionuclides were applied at the active seed growth stage and those for soybean seeds were the highest following the application at the early pod-filling stage except for 103 Ru. For radish roots, translocation factors were on the whole the highest following the early- growth-stage application. The obtained data can be used for parameter values in food-chain dose assessment models especially for Koreans and many other Asian people

  15. Soil-to-Plant Transfer Factors of {sup 99}Tc for Korean Major Upland Crops

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Keum, Dong Kwon [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2011-12-15

    In order to investigate the soil-to-plant transfer factor (TF) of {sup 99}Tc for Korean major upland crops (soybean, radish and Chinese cabbage), pot experiments were performed in a greenhouse. Soils were collected from four upland fields (two for soybean and two for radish and Chinese cabbage) around Gyeongju radioactive-waste disposal site. Three to four weeks before sowing, dried soils were mixed with a {sup 99}Tc solution and the mixtures were put into pots and irrigated. TF values were expressed as the ratios of the {sup 99}Tc concentrations in plants (Bq kg{sup -1}-dry or fresh) to those in soils (Bq kg{sup -1}-dry). There was no great difference in the TF value between soils. The TF values for soybean seeds were extremely lower than those for the straws, indicating a very low mobility of {sup 99}Tc to seeds. As representative TF values of{sup 99}Tc,1.8 X 10{sup -1}, 1.2 X 10{sup 1}, 3.2 X 10{sup 2} and 1.3 X 10{sup 2} (for dry plants), arithmetic means for two soils, were proposed for soybean seeds, radish roots, radish leaves and Chinese cabbage leaves, respectively. In the case of the vegetables, proposals for fresh plants were also made. The proposed values are not sufficiently representative so successive updates are needed.

  16. Physical and Mechanical Properties of Sorghum Grains (Sorghum Vulgare

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available The physical and mechanical properties of sorghum grains (sorghum vulgare were studied at varying moisture contents of 13%, 20% and 30% (w.b. The four varieties of sorghum grains studied include; Dura, Guinea, Faterita and Kafir. Results indicate that the size ranges were 3.94mm - 4.83mm for Dura variety; 3.75mm - 4.54mm for Guinea variety; 3.21mm - 4.42mm for Kafir variety and 2.70mm - 4.14mm for Faterita variety. Irregularities in the shapes of the grains were observed but all approximated to a sphere. In the mechanical properties, at major diameter, Dura variety had highest rupture force of 1.16kN at 13% moisture content (w.b while the Guinea variety had the lowest rupture force of 0.955kN. In minor diameter, the Dura variety also recorded highest rupture force of 1.12kN at 13% moisture content (w.b while the Kafir variety had the lowest value of 0.952kN. Also at 20% moisture content, the Dura variety had highest rupture force of 1.025kN while the Guinea variety had the lowest rupture force of 0.965kN. The same trend applies in the varieties at 30% moisture content. This is because, increase in moisture content results to decrease in rupture force. And this implies that force beyond these points at these moisture contents may cause damage to the sorghum varieties.

  17. Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet sorghum

    Science.gov (United States)

    Southern root-knot nematodes (Meloidogyne incognita) are a pest on many economically important row crop and vegetable species and management relies on chemicals, plant resistance, and cultural practices such as crop rotation. Little is known about the inheritance of resistance to M. incognita or the...

  18. Yield and forage value of a dual-purpose bmr-12 sorghum hybrid

    Science.gov (United States)

    Grain sorghum [Sorghum bicolor (L.) Moench] is an important crop for rainfed production systems with 2.7 million ha grown in the USA in 2013. The brown-midrib (bmr) mutations, especially bmr-12, have resulted in low stover lignin and high fiber digestibility without reducing grain yield in some sor...

  19. Simulating the probability of grain sorghum maturity before the first frost in northeastern Colorado

    Science.gov (United States)

    Expanding grain sorghum [Sorghum bicolor (L.) Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS) to predict the ...

  20. Supplemental irrigation for grain sorghum production in the US Eastern Coastal Plain

    Science.gov (United States)

    Grain sorghum is an important grain crop throughout the world and is generally considered drought tolerant. Recently, in the US eastern Coastal Plain region, there was an emphasis on increasing regional grain production with grain sorghum having an important role. The region soils have low water hol...

  1. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed,

  2. Mutation breeding of pearl millet and sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, W W [United States Department of Agriculture, Agricultural Research Service, University of Georgia, College of Agricultural Experiment Stations, Coastal Plain Station, Agronomy Department, Tifton, GA (United States)

    1982-07-01

    Pearl millet and sorghum are important food and feed crops grown mostly in semi-arid regions of the world. Although there exists a large amount of genetic variability in both species, it does not always satisfy the needs of plant breeders in improving varieties with regard to yield, quality, resistance or environmental adaptation. Plant breeders interested in using induced mutations for variety improvement will find in this review information about the techniques used by others. (author)

  3. Mutation breeding of pearl millet and sorghum

    International Nuclear Information System (INIS)

    Hanna, W.W.

    1982-01-01

    Pearl millet and sorghum are important food and feed crops grown mostly in semi-arid regions of the world. Although there exists a large amount of genetic variability in both species, it does not always satisfy the needs of plant breeders in improving varieties with regard to yield, quality, resistance or environmental adaptation. Plant breeders interested in using induced mutations for variety improvement will find in this review information about the techniques used by others. (author)

  4. Interception and translocation of radionuclides in major food crops for Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y. H.; Lim, K. M.; Park, H. G.; Choi, H. J.; Lee, H. S. [KAERI, Daejon (Korea, Republic of)

    2002-07-01

    In order to investigate the direct plant contamination pathway of {sup 54}Mn, {sup 57}Co, {sup 85}Sr, {sup 103}Ru and {sup 134}Cs in major food crops for Koreans, rice, soybean and radish plants at different growth stages were sprayed with radioactive solutions in a greenhouse. The interception factor and the translocation factor were quantified as the fraction of the total deposition that is initially retained on the aboveground plant surface and the fraction of the total initial plant activity that is contained in the edible part at harvest, respectively. In rice and radish, interception factors increased as plants grew old to harvest. In soybean, however, rapid defoliation in old plants made interception factors decrease with increasing age during the later part of the growth. There was little difference in the interception factor among radionuclides. Translocation factors decreased in the order of {sup 134}Cs {>=}> {sup 57}Co > {sup 54}Mn {>=} {sup 85}Sr >{sup 103}Ru in general and varied with radionuclides by factors of 6-4000, depending on application time and plant species. Translocation factors for rice seeds were the highest when radionuclides were applied at the active seed growth stage and those for soybean seeds were the highest following the application at the early pod-filling stage except for {sup 103}Ru. For radish roots, translocation factors were on the whole the highest following the early- growth-stage application. The obtained data can be used for parameter values in food-chain dose assessment models especially for Koreans and many other Asian people.

  5. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    Science.gov (United States)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  6. Agronomic and morphological performance of sorghum (sorghum ...

    African Journals Online (AJOL)

    SARAH

    2013-03-30

    Mar 30, 2013 ... occasional frost limits growth and seed set of un- adapted cultivars (Arkel, 1979) making seed multiplication of un-adapted varieties unsuccessful. Previous studies have shown that sorghum cultivars adapted to high altitude, low rainfall areas. Journal of Applied Biosciences 63: 4720 – 4726. ISSN 1997– ...

  7. Taxonomy Icon Data: sorghum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sorghum Sorghum bicolor Sorghum_bicolor_L.png Sorghum_bicolor_NL.png Sorghum_bicolor_S.png Sorg...hum_bicolor_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=L http://b...iosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorg...hum+bicolor&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NS ...

  8. Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench

    Directory of Open Access Journals (Sweden)

    Rahul M. Phuke

    2017-05-01

    Full Text Available The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01 indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc.

  9. The potential role of sorghum in enhancing food security in semi ...

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... aDepartment of Agricultural Resource Management &bDepartment of ... production in these areas though the crop is regarded a high risk option due to poor adaptation especially to the ...... Sorghum handbook: All about white.

  10. Gene flow from Sorghum bicolor to its weedy relatives and its ...

    African Journals Online (AJOL)

    computer user

    2015-04-29

    Apr 29, 2015 ... 2Africa Harvest Biotechnology Foundation International, P.O. Box 642, ... traditional sorghum varieties in order to assess the potential effect of crop genes in ..... removed by pippeting from PCR products and 1 µl of loading dye.

  11. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  12. Assessment of Climate Change Impacts and Evaluation of Adaptation Strategies for Grain Sorghum and Cotton Production in the Texas High Plains

    Science.gov (United States)

    Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.

    2017-12-01

    The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.

  13. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    the rotation; furthermore, a considerable number of lesser-known energy crops such as biomass sorghum (Sorghum spp.), hemp (Cannabis sativa), kenaf (Hibiscus cannabinus), Ethiopian mustard (Brassica carinata) could be expected to lead to even greater benefits according to literature. Therefore, this review aimed at systematizing and reorganizing the existing and fragmentary information on these crops while stressing major knowledge gaps to be urgently investigated. (author)

  14. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    Science.gov (United States)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-07-01

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  15. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    International Nuclear Information System (INIS)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-01-01

    This study presents an estimate of the effects of climate variables and CO 2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO 2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  16. Parameter values for the estimation of radionuclide transfer to major food crops in Korea

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Lee, Chang-Woo

    2008-01-01

    This paper summarizes the results of the radiotracer experiments and field studies performed in Korea for the past 20 years to obtain parameter values for estimating the environmental transfer of radionuclides to food crops. With regards to direct plant contamination, the interception fractions, weathering half-lives and translocation factors of Cs, Sr, Mn, Co and Ru were measured for depositions at different growth stages of selected food crops. In order to investigate an indirect contamination pathway, the soil-to-plant transfer factors (TF m , dimensionless) of Cs, Sr, Mn, Co and/or Zn were measured for rice, Chinese cabbage, radish, soybean, barley, lettuce and so on in one or more soils. In addition, the transfer factors (TF a , m 2 kg -1 ) based on a deposition density were also measured following depositions at different times during the growth periods of several food crops. Particularly for rice and Chinese cabbage, tritium experiments were also carried out for the TF a . The obtained parameter values varied considerably with the soils, crops, radionuclides and deposition times. These data would be applicable to both normal and acute releases not only in Korea but also in many other countries. (author)

  17. Production of quality/certified seed of fodder-crops

    International Nuclear Information System (INIS)

    Bhutta, A.R.; Hussain, A.

    2006-01-01

    Although, Pakistan has well developed Seed-production and certification Programme for major crops, but seed programme for fodder-crops is still not well organized. Availability of local certified seed, remained 250-350 mt for Berseem, Sorghum, maize, barley and oat. About 5000 to 9000 mt of seed has being imported during 2003-04 to 2005-06. Fodder Research Institute and jullundhur Seed Corporation have demonstrated a model of public/private partnership for initiation of certified seed of a few fodder crops. To produce quality seeds of fodder crops, various steps, procedures and prescribed standards have been given, which will help in production of quality seed of fodder crops in Pakistan. (author)

  18. Greenhouse gases emission from soils under major crops in Northwest India

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N., E-mail: nivetajain@gmail.com [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Chakraborty, D. [Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India)

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N{sub 2}O emissions were significantly different (P > 0.05) among the crop types. Emission of N{sub 2}O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r{sup 2} = 0.74, P < 0.05). The cumulative flux of CH{sub 4} from the rice crop was 28.64 ± 4.40 kg ha{sup −1}, while the mean seasonal integrated flux of CO{sub 2} from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO{sub 2} ha{sup −1} under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO{sub 2} eq. ha{sup −1} (pigeon pea) and 3968 kg CO{sub 2} eq. ha{sup −1} (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha{sup −1}) and largest in wheat (1042 kg C ha{sup −1}). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha{sup −1}, methane from 27.78–29.50 kg ha{sup −1} and carbon dioxide from 2377–3910 kg ha{sup −1}. • Emission of nitrous oxide as percent of applied N was highest in pulses (0

  19. Greenhouse gases emission from soils under major crops in Northwest India

    International Nuclear Information System (INIS)

    Jain, N.; Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P.

    2016-01-01

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N 2 O emissions were significantly different (P > 0.05) among the crop types. Emission of N 2 O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r 2 = 0.74, P < 0.05). The cumulative flux of CH 4 from the rice crop was 28.64 ± 4.40 kg ha −1 , while the mean seasonal integrated flux of CO 2 from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO 2 ha −1 under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO 2 eq. ha −1 (pigeon pea) and 3968 kg CO 2 eq. ha −1 (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha −1 ) and largest in wheat (1042 kg C ha −1 ). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha −1 , methane from 27.78–29.50 kg ha −1 and carbon dioxide from 2377–3910 kg ha −1 . • Emission of nitrous oxide as percent of applied N was highest in pulses (0.67%) followed by oilseeds (0.55%). • Global warming potential (GWP) of soils under different

  20. Introduction of sorghum (Sorghum bicolor (L.) Moench) into China ...

    African Journals Online (AJOL)

    The sorghum is a plant, which has been intentionally introduced in China for foods needs. It is a plant of African origin, which is much cultivated in the northern hemisphere. For millions of people in the semiarid tropic temperature of Asia and Africa, sorghum is the most important staple food. Sorghum is becoming one of the ...

  1. Genome Evolution in the Genus Sorghum (Poaceae)

    OpenAIRE

    PRICE, H. JAMES; DILLON, SALLY L.; HODNETT, GEORGE; ROONEY, WILLIAM L.; ROSS, LARRY; JOHNSTON, J. SPENCER

    2005-01-01

    • Background and Aims The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective.

  2. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  3. Importance of seed-borne fungi of sorghum and pearl millet in Burkina Faso and their control using plant extracts

    DEFF Research Database (Denmark)

    Zida, Elisabeth Pawindé; Sérémé, Paco; Leth, Vibeke

    2008-01-01

    recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95...... of pearl millet, respectively. Seeds inoculated with Acremonium strictum, Curvularia oryzae, F. equiseti, F. moniliforme and F. subglutinans and sown in sterilized soil, showed considerable mortality of the seedlings. Three essential oils inhibited in vitro the mycelial growth of all the fungi used by 85......Seed-borne fungi of sorghum and pearl millet in Burkina Faso were surveyed. A total of 188 seed samples from various locations, collected in 1989 (42) and 2002 (146), were tested, using the blotter, dry inspection and washing methods. Infection experiments were carried out with the major fungi...

  4. High-polyphenol sorghum bran extract inhibits cancer cell growth through DNA damage, cell cycle arrest, and apoptosis

    Science.gov (United States)

    As diet is one of the major controllable factors in cancer development, potentially chemopreventive foods are of significant interest to public health. One such food is sorghum (Sorghum bicolor), a cereal grain that contains varying concentrations of polyphenols. In a panel of 15 sorghum germplasm...

  5. Evaluation of selected sorghum lines and hybrids for resistance to grain mold and long smut fungi in Senegal, West Africa

    Science.gov (United States)

    Grain mold in sorghum [Sorghum bicolor (L.) Moench] is a major worldwide problem; damage caused by this fungal disease complex includes a reduction in yield (loss of seed mass), grain density, and germination. Long smut is another important fungal disease in sorghum and potential threat to food sec...

  6. Drought-induced changes in nitrogen partitioning between cyanide and nitrate in leaves and stems in sorghum grown at elevated CO2 are age dependent

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Möench] is the world’s fifth most important crop, grown for forage, grain, and as a biofuel. Fast growing and drought tolerant, it is considered a climate-change-ready crop. Two free-air CO2 enrichment (FACE) experiments at Maricopa, Arizona, USA showed that, like othe...

  7. sorghum head bug infestation and mould infection on the grain

    African Journals Online (AJOL)

    ACSS

    2017-08-01

    Aug 1, 2017 ... 1Department of Crop Science, P. O. Box LG44, Legon, Ghana ... 3CSIR- Savanna Agricultural Research Institute, Sorghum Improvement Section, P. O. Box TL 52,. Tamale, Ghana ...... Bramel-Cox, P.J. 1999. A pictorial guide.

  8. Climate change and its effect on grain crops yields in the middle belt ...

    African Journals Online (AJOL)

    user

    impact of climate on the yield on reference crops in Kwara State, Nigeria. Multiple ... As a result, it is recommended that investment should be made to intensify the cultivation of crops on which .... Project (KWADP), Ilorin on maize (Zea mays), sorghum (Sorghum ... crop yield and the evaluation of a decade data is based on.

  9. Importance of seed-borne fungi of sorghum and pearl millet in Burkina Faso and their control using plant extracts.

    Science.gov (United States)

    Zida, Pawindé Elisabeth; Sérémé, Paco; Leth, Vibeke; Sankara, Philippe; Somda, Irénée; Néya, Adama

    2008-02-01

    Seed-borne fungi of sorghum and pearl millet in Burkina Faso were surveyed. A total of 188 seed samples from various locations, collected in 1989 (42) and 2002 (146), were tested, using the blotter, dry inspection and washing methods. Infection experiments were carried out with the major fungi recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95 to 100% of the seed samples of both sorghum and pearl millet. Sphacelotheca sorghi and Tolyposporium ehrenbergii were encountered in respectively, 75 and 33% of seed samples of sorghum. T. penicillariae, Sclerospora graminicola and Claviceps fusiformis were present in 88, 41 and 32% of seed samples of pearl millet, respectively. Seeds inoculated with Acremonium strictum, Curvularia oryzae, F. equiseti, F. moniliforme and F. subglutinans and sown in sterilized soil, showed considerable mortality of the seedlings. Three essential oils inhibited in vitro the mycelial growth of all the fungi used by 85 to 100% and reduced significantly sorghum and pearl millet seed infection rates of Phoma sp., Fusarium sp., Curvularia sp., Colletotrichum graminicola and Exserohilum sp. Presence of many pathogenic fungi in considerable number of seed samples indicates the need of field surveys for these and other pathogens. Development of plant extracts for the control of seed-borne pathogens and public awareness on seed-borne diseases management measures for maintaining quality seed should be increased.

  10. Characterizing Sorghum Panicles using 3D Point Clouds

    Science.gov (United States)

    Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.

    2017-12-01

    To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.

  11. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  12. Sugar cane/sweet sorghum as an ethanol feedstock in Louisiana and Piedmont

    International Nuclear Information System (INIS)

    Marsh, L.S.; Cundiff, J.S.

    1991-01-01

    Cost to provide readily fermentable feedstock for a year round sweet sorghum-to-ethanol production facility, up to the point at which fermentation begins, was determined. It was assumed that sweet sorghum is produced on marginal crop lands in the Southeastern Piedmont, and is purchased, standing in the field by a central ethanol production facility. Feedstock cost varied from $1.96 to $2.98/gal of ethanol potential depending on harvest system and use of by-products. Major contributors to feedstock cost were field production, harvest/field processing, and cost to evaporate juice to a storable syrup. Cost to transport feedstock to a central production facility, and cost of storage were relatively minor components of total cost, contributing only $0.05 and $0.06/gal ethanol potential, respectively. For a point of comparison, cost of producing ethanol feedstock from sugar cane, based on current processing practices in Louisiana sugar mills, was determined to be $2.50/gal ethanol potential. This cost is higher than determined for most options in the Piedmont for two reasons: (1) sugar cane demands a higher price in Louisiana than was assumed for sweet sorghum in the Piedmont, and (2) little market exists in Louisiana for by-products of sugar milling, consequently, no by-product credit was assigned. Current market value of ethanol must approximately double before a sweet sorghum-to-ethanol industry in the Piedmont could be economically viable, as no opportunity was identified for a significant reduction in feedstock cost

  13. Sustaining Milk Production by use Sorghum Silage and Sweet Potato and Sweet Potato Vines

    International Nuclear Information System (INIS)

    Ouda, J.O

    2002-01-01

    Dairy sector in Kenya is an important source of rural employment and farm income besides provision of milk consumed in the urban centres. Dairy cattle nutrition and sustenance of production through out the year are constraints to production. Feeding during dry season is a major problem and can be alleviated through cultivation of high yielding fodder crops and feed conservation. The current work evaluated the nutritive value of sorghum silage (SS) and sweet potato vines (SPV) as feeds for dairy production in the dry highlands. On-station work involved performance trial of dairy cattle fed on varying proportions of SS and SPV while on farm work involved demonstration and popularization of sorghum and SPV utilization technology. The dry matter (DM), crude protein, (CP) neutral detergent fibre (NDF) and acid detergent lignin (ADL) contents for SS ranged from 267.3-350.7, 50.0-70.6, 60.8 and 55.0-67.3 g kg - 1 respectively. The corresponding values for SPV were 129.5-190.4, 83.4-179.1, 300.9-383.5 and 61.5-68.0 g kg - 1. Daily milk yield ranged from 3.44 l d - 1 when SS alone was fed to 15 l d - 1 when combination of SS and SPV was fed to dairy cows. Most farmers rationed sorghum and fed as green chop besides SS especially during the dry season. Improvement and sustenance of milk production was observed on-farm, showing that sorghum and SPV utilization technology has generated great potential of enhancing dairy production

  14. Evaluation of sweet sorghum (Sorghum bicolor L. [Moench]) on several population density for bioethanol production

    Science.gov (United States)

    Suwarti; Efendi, R.; Massinai, R.; Pabendon, M. B.

    2018-03-01

    Sweet sorghum (Sorghum bicolor L. [Moench]) crop management that is use for raw source of bioethanol for industrial purpose in Indonesia is less developed. The aim of this research was to evaluated sweet sorghum variety at several population to determine optimum density for juice production. Experiment design was set on split-plot design with three replications, conducted on August to December 2016 at the Indonesian Cereals Research Institute Research Station, Maros South Sulawesi. Main plot were six variation of plant row, and sub plot were three sweet sorghum varieties. Result of the study showed that plant population was high significanty affect to stalk weight, total biomass yield, leaf weight, and also significantly affect bagass weight and juice volume. Varieties were high significantly different in plant height, juice volume, and number of nodes. Super 1 variety on population at 166,667 plants/ha (P1) was obtained the highest juice volume (19,445 lHa-1), meanwhile the highest brix value obtained from Numbu at the same plants population. Furthermore juice volume had significant correlation with biomass weight at the r=0.73. Based on ethanol production, Super 2 and Numbu had the highest volume at 83.333 plants/ha density (P3) and Super 1 at 166.667 plants/ha density with the ethanol volume were 827.68 l Ha-1, 1116.50 l/ha and 993.62 l Ha-1 respectively.

  15. Sorghum-sudangrass responses to nitrogen and tillage following polyphenol-containing legumes, alfalfa, reed canarygrass, and kale

    Science.gov (United States)

    The collective effects of protein-binding polyphenols (PBP), preceding forage type, tillage, and fertilizer N on soil NO3-N production, N uptake, and dry matter yield (DMY) of N-demanding crops such as sorghum-sudangrass [SS, Sorghum bicolor (L.) Moench x S. sudanese Piper] are poorly understood. Th...

  16. The virtual water content of major grain crops and virtual water flows between regions in China.

    Science.gov (United States)

    Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning

    2013-04-01

    The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.

  17. Cost to deliver sweet sorghum fermentables to a central plant

    International Nuclear Information System (INIS)

    Cundiff, J.S.

    1991-01-01

    The major obstacle to a sweet sorghum-for-ethanol industry in the Piedmont of Virginia is the short harvest season of eight weeks. A Piedmont harvesting system is described that will enable the Piedmont to compete with Louisiana in production of sweet sorghum for ethanol. The cost to supply feedstock (up to the point fermentation begins) for a one million GPY ethanol plant was estimated to be $2.35/gal expected ethanol yield. This amount compared favorably with two other options

  18. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  19. Inheritance of Resistance to Sorghum Shoot Fly, Atherigona soccata in Sorghum, Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Mohammed eRiyazaddin

    2016-04-01

    Full Text Available Host plant resistance is one of the major components to control sorghum shoot fly, Atherigona soccata. To understand the nature of gene action for inheritance of shoot fly resistance, we evaluated 10 parents, 45 F1’s and their reciprocals in replicated trials during the rainy and postrainy seasons. Genotypes ICSV 700, Phule Anuradha, ICSV 25019, PS 35805, IS 2123, IS 2146 and IS 18551 exhibited resistance to shoot fly damage across seasons. Crosses between susceptible parents were preferred for egg laying by the shoot fly females, resulting in a susceptible reaction. ICSV 700, ICSV 25019, PS 35805, IS 2123, IS 2146 and IS 18551 exhibited significant and negative general combining ability (gca effects for oviposition, deadheart incidence, and overall resistance score. The plant morphological traits associated with expression of resistance/ susceptibility to shoot fly damage such as leaf glossiness, plant vigor, and leafsheath pigmentation also showed significant gca effects by these genotypes, suggesting the potential for use as a selection criterion to breed for resistance to shoot fly, A. soccata. ICSV 700, Phule Anuradha, IS 2146 and IS 18551 with significant positive gca effects for trichome density can also be utilised in improving sorghums for shoot fly resistance. The parents involved in hybrids with negative specific combining ability (sca effects for shoot fly resistance traits can be used in developing sorghum hybrids with adaptation to postrainy season. The significant reciprocal effects of combining abilities for oviposition, leaf glossy score and trichome density suggested the influence of cytoplasmic factors in inheritance of shoot fly resistance. Higher values of variance due to sca (σ2s, dominance variance (σ2d, and lower predictability ratios than the variance due to gca (σ2g and additive variance (σ2a for shoot fly resistance traits indicated the predominance of dominance type of gene action, whereas trichome density, leaf

  20. Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era

    Science.gov (United States)

    Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui

    2018-02-01

    The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.

  1. Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era

    Directory of Open Access Journals (Sweden)

    B. Parkes

    2018-02-01

    Full Text Available The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986–2005 and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.

  2. YIELD AND QUALITY OF SORGHUM IN IRRIGATED AGRO LANDSCAPES OF REPUBLIC OF DAGESTAN

    Directory of Open Access Journals (Sweden)

    M G. Muslimov

    2016-01-01

    Full Text Available Aim. One of drought-resistant crops that can provide stable high yields is sorghum, which is salt-tolerant, heat-resistant and a flexible crop of versatile use (green forage, silage, hay, grass meal, grain forage. The research conducted in 2010-2013 included studies on the effectiveness of the methods and norms of sowing the sorghum, required quantities of mineral fertilizers to increase the crop yields and nutritional value of sorghum sown in the irrigated lowland areas of Dagestan. Methods. We conducted three field researches. In experiments with grain sorghum (the middle ripening group Zernogradskiy 88 we studied drill and broad-cast methods of sowing, seeding rate, the calculated doses of mineral fertilizers on programmable levels of crop yields: 6 t/ha (N160P112K70, 7 t/ha (N190P128K80 and 8 t/ha (N220P144K90. Seeding rate was 300, 350 and 400 thousand viable seeds per 1 ha; broadcast was chosen as a sowing method.A field experiment with sweet sorghum included promising hybrid crop Debut, fertilizers N140P80K70, N190P110K95 and N240P140K120 to obtain 60, 70 and 80 t/ha of green mass for two mowings, respectively. Results. The use of fertilizers based on a given level of productivity at optimum plant population can significantly improve the nutritional regime of the soil during the growing season of the sweet sorghum and create optimal conditions for nitrogen, phosphorus and potassium security for the crops and thus obtain the planned crop yield. Conclusion. The fodder quality of sweet sorghum varies depending on the nutrient status of the soil and mowing time.

  3. High outcrossing rates in fields with mixed sorghum landraces: how are landraces maintained?

    Science.gov (United States)

    Barnaud, A; Trigueros, G; McKey, D; Joly, H I

    2008-11-01

    The effect of mating system on genetic diversity is a major theme in plant evolutionary genetics, because gene flow plays a large role in structuring the genetic variability within and among populations. Understanding crop mating systems and their consequences for gene flow can aid in managing agricultural systems and conserving genetic resources. We evaluated the extent of pollen flow, its links with farming practices and its impact on the dynamics of diversity of sorghum in fields of Duupa farmers in Cameroon. Duupa farmers grow numerous landraces mixed in a field, a practice that favours extensive pollen flow. We estimated parameters of the mating system of five landraces representative of the genetic diversity cultivated in the study site, using a direct method based on progeny array. The multilocus outcrossing rate calculated from all progenies was 18% and ranged from 0 to 73% among progenies. Outcrossing rates varied greatly among landraces, from 5 to 40%. Our results also showed that individual maternal plants were usually pollinated by more than eight pollen donors, except for one landrace (three pollen donors). Although the biological traits of sorghum (inflorescence morphology, floral traits, phenology) and the spatial planting practices of Duupa farmers led to extensive pollen flow among landraces, selection exerted by farmers appears to be a key parameter affecting the fate of new genetic combinations from outcrossing events. Because both natural and human-mediated factors shape evolution in crop populations, understanding evolutionary processes and designing in situ conservation measures requires that biologists and anthropologists work together.

  4. Sorghum to Ethanol Research Initiative: Cooperative Research and Development Final Report, CRADA Number CRD-08-291

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.

    2011-10-01

    The goal of this project was to investigate the feasibility of using sorghum to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a portion of the feedstocks required to produce renewable domestic transportation fuels.

  5. Climate variability and yields of major staple food crops in Northern ...

    African Journals Online (AJOL)

    Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we ...

  6. The effect of alpha amylase enzyme on quality of sweet sorghum juice for chrystal sugar

    Science.gov (United States)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Astiati, U. T.; Budiyanto, A.; Wahyudiono; Arif, A. B.; Richana, N.

    2018-01-01

    Sweet sorghum juice (Sorghum bicolor L. Moench) has characteristics similar to sugar cane juice and potentially used for sugar substitutes that can support food security. Nevertheless the sweet sorghum juicecontain starch which impede sorghum sugar crystallization. Therefore, research on the enzymatic process is needed to convert starch into reducing sugar. The experimental design used was the Factorial Randomized Design with the first factor was alpha amylase enzyme concentration (0, 20, 40, 60, 80, 100, 120 μL/100 mL) and second factor was incubation time (0, 30, 60, 90 minute) at temperature 100°C. The experiment was conducted on fresh sweet sorghum. The results showed that the addition of the alpha amylase enzyme increased the content of reducing sugar and decreased levels of starch. Elevating concentration of alpha amylase enzyme will increase the reducing sugar content in sweet sorghum juice. The optimum alpha amylase enzyme concentration to produce the highest total sugar was 80 μL/100 mL of sweet sorghum juice with the optimum incubation time was 90 minutes. The results of this study are expected to create a new sweetener for sugar substitution. From the economic prospective aspect, sorghum is a potential crop and can be relied upon to support the success of the food diversification program which further leads to the world food security

  7. Sorghum production and anthracnose disease management in future global energy and food security

    Science.gov (United States)

    Sorghum is the fifth most important cereal crop in world commerce with uses ranging from animal feed, food, in brewery, and recently as a potential source of biofuel. With the expected increase in the world's population, crop production outputs must be increased. Annual cereal production, including...

  8. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  9. Is the possibility of replacing seed dressings containing neonicotinoids with other means of protection viable in major Polish agricultural crops?

    Directory of Open Access Journals (Sweden)

    Matyjaszczyk Ewa

    2015-12-01

    Full Text Available Following the limitations regarding the use of the neonicotinoids: clothianidin, thiamethoxam and imidacloprid there are no currently available insecticide seed dressings for oilseed rape in Poland. For maize here is only one seed dressing containing methiocarb available with a very narrow registered scope of use. The impact of limitations on protection possibilities of other major Polish agricultural crops is either negligible or non-existent. In consequence a group of economically important insect pests of maize [dungbeetles (Melolonthidae; click beetles (Elateridae; noctuid moths (Agrotinae] and oilseed rape [leaf miners (Agromyzidae, turnip sawfly (Athalia colibri Christ., cabbage weevils (Curculionidae, cabbage root fly (Hylemyia brassicae Bche., diamond-back moth (Plutella maculipennis Curt.] is left without any legal possibility of chemical control. For the other important pests of the early growth stage of oilseed rape development, there are only pyrethroids available together with one product containing chloropiryfos that can be applied once per vegetation season. Since both maize and oilseed rape are grown in Poland on the area of approximately 1 million ha (each crop, this situation raises concerns about production possibilities as well as development of pest resistance.

  10. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  11. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  12. Global and Country-Level Fragility to Major Disruptions in Crop Production

    Science.gov (United States)

    Puma, M. J.; Wada, Y.; Chon, S. Y.; Cook, B. I.; Nordbotten, J. M.

    2016-12-01

    New food polices are needed to mitigate vulnerabilities in the global food system to unexpected and severe production losses. The starting point for developing such policies is the ability to quantify the potential range of food and economic losses associated with major food-production shocks. Although individual major shock events are unpredictable, it is possible to quantify the relative vulnerabilities of the global food system as a whole and of individual countries within the system to production shocks. Here we combine a scale for food disruptions, which links the magnitude for a production shock with the corresponding short-term food and economic losses for that event (analogous to the well-known Richter magnitude scale for earthquakes), with country-level food system metrics. We demonstrate the value of our approach using the recent El Niño event of 2015-2016. Ultimately, these metrics can be used as part of efforts to develop national and global level food policies to prepare for and mitigate possible food-supply disruptions.

  13. Sorghum and rice: Mali

    International Nuclear Information System (INIS)

    2003-01-01

    Agriculture is the mainstay of the Malian economy and yet cereal imports absorb 6.5% of GDP. Food self-sufficiency is therefore a national priority. The Joint FAO/IAEA Division is supporting a programme to improve local varieties of sorghum and rice by using nuclear techniques to develop new cultivars that will produce higher yields under Mali's semi-arid climatic conditions. (IAEA)

  14. An investigative study of indigenous sweet sorghum varieties for bioethanol production: the case of Kenya local sorghum varieties

    Energy Technology Data Exchange (ETDEWEB)

    Wangai, L.K.; Mbeo, C.O. [Kenya Industrial Research and Development Inst., Nairobi (Kenya); Kamau, C.K. [Kenya Agricurtural Research Inst.(s), Machakos (Kenya)

    2012-11-01

    There are over 500 sorghum genotypes grown locally in Kenya. This study was an investigation and selection of suitable sorghum genotypes for sustainable bio-ethanol production in Kenya. For the study, 500 genotypes of sorghum were planted and grown using the recommended agricultural practices. Random sampling of 230 genotypes was done and the samples analysed for juice and sugar content. The 26 best yielding genotypes were selected and grown again in duplicate for further detailed study. Data on date of flowering, pest resistance, {sup 0}brix, wet and dry weight, plant population, ratooning, grain yield and juice yield and juice sugar content were recorded and analyzed using GENstat. Sampling was done for each genotype when about 50% of the crop had flowered and there after, every 2 weeks until the grains dried. Crushing was done with a three roller mill crusher [8]. The sugar content was measured using a digital refractometer. Sugar yield obtained ranged between 10.3{sup 0}Brix and 19.3{sup 0}Brix and juice yield between 268 litres/hectare and 11390 litres/hectare. Five indigenous sorghum varieties, GBK-007130, GBK-007076, GBK-007102, GBK-007296, GBK-007098 were found to have the highest sugar and juice yields and were considered the most suitable sweet sorghum genotypes among those studied, for bio-ethanol production in Kenya.

  15. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    Science.gov (United States)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food

  16. In planta transformation of sorghum (Sorghum bicolor (L.) Moench)

    Indian Academy of Sciences (India)

    An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the ...

  17. Insect pests associated with cowpea – sorghum intercropping system by considering the phenological stages

    Directory of Open Access Journals (Sweden)

    Diana González Aguiar

    2016-10-01

    Full Text Available The research aims to determine the main insect pest populations and their behavior in the combination cowpea - sorghum. This work took into account the phenology of each crop. The study was conducted on a Cambisol soil from the Basic Unit of Cooperative Production “Día y Noche”, which belongs to the Basic Unit of Cooperative Production “28 de Octubre”, Santa Clara municipality, Villa Clara province, Cuba. The experimental design was a random blocks included four treatments and four repetitions. The first arrangement consisted of two rows of cowpea for each row of sorghum; the second one included three rows of cowpea and one row of sorghum. The other treatments were the monocultures of cowpea and sorghum. The methodology included visual observations of plants with a weekly frequency until crop harvest to detect the presence of the insects. Also, the phenology of each crop was considered. The phytophagous insects quantified in the cowpea crop belong to the families Chrysomelidae, Pyralidae, Cicadellidae, while in the sorghum crop, these insects belong to the families Noctuidae and Aphididae. Finally, the results showed the positive effects of both spatial arrangements with a smaller incidence of insect pest populations.

  18. Chemical control of wild sorghum (sorghum arundinaceum Del. Stapf. in faba bean (vicia faba L.) in the Northern State of Sudan

    International Nuclear Information System (INIS)

    Bedry, K. A. M.; Elamin, A. E. M.

    2011-01-01

    An experiment was conducted at Merowe Research Station farm, in the Northern State, Sudan, during 2008/2009 and 2009/2010 seasons. The objectives of the experiment were to determine the damage inflicted by a wild sorghum species (Sorghum arundinaceum (Del.) Stapf. ) on the yield of faba bean (Vicia faba L.) and to evaluate the efficacy of the post-emergence herbicide clodinafop-propargyl (Topik) on wild sorghum and its effect on faba bean yield. The wild sorghum reduced faba bean crop stand and straw and seed yields by 53% - 76%, 76% - 79% and 88% - 91%, respectively, compared with the hand-weeded control. Faba bean was tolerant to the herbicide. The herbicide, at all rates, effected complete (100%) and persistent control of the wild sorghum and resulted in faba bean seed yield comparable to the hand-weeded control. The lowest dose (0.075 kg a.i/ha) of the herbicide used was equal to 75% of the dose recommended for the control of wild sorghum in wheat. It is concluded that clodinafop-propargyl at 0.075 kg a.e/ha could be used in controlling wild sorghum in faba bean. At this rate, the marginal rate of return was about 35 which indicating that every monetary unit (SDG 1) invested in the mentioned treatment would be returned back, plus additional amount of 35 SDG.(Author)

  19. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  20. N use efficiencies and N2O emissions in two contrasting, biochar amended soils under winter wheat—cover crop—sorghum rotation

    Science.gov (United States)

    Hüppi, Roman; Neftel, Albrecht; Lehmann, Moritz F.; Krauss, Maike; Six, Johan; Leifeld, Jens

    2016-08-01

    Biochar, a carbon-rich, porous pyrolysis product of organic residues, is evaluated as an option to tackle major problems of the global food system. Applied to soil, biochar can sequester carbon and have beneficial effects on nitrogen (N) cycling, thereby enhancing crop yields and reducing nitrous oxide (N2O) emissions. There is little understanding of the underlying mechanisms, but many experiments indicated increased yields and manifold changes in N transformation, suggesting an increase in N use efficiency. Biochar’s effects can be positive in extensively managed tropical agriculture, however less is known about its use in temperate soils with intensive fertilisation. We tested the effect of slow pyrolysis wood chip biochar on N use efficiency, crop yields and N2O emissions in a lysimeter system with two soil types (sandy loamy Cambisol and silty loamy Luvisol) in a winter wheat—cover crop—sorghum rotation. 15N-labelled ammonium nitrate fertiliser (170 kg N ha-1 in 3 doses, 10% 15N) was applied to the first crop to monitor its fate in three ecosystem components (plants, soil, leachate). Green rye was sown as cover crop to keep the first year’s fertiliser N for the second year’s sorghum crop (fertilised with 110 kg N ha-1 in two doses and natural abundance 15N). We observed no effects of biochar on N fertiliser use efficiency, yield or N uptake for any crop. Biochar reduced leaching by 43 ± 19% but only towards the end of the experiment with leaching losses being generally low. For both soils N2O emissions were reduced by 15 ± 4% with biochar compared to the control treatments. Our results indicate that application of the chosen biochar induces environmental benefits in terms of N2O emission and N leaching but does not substantially affect the overall N cycle and hence crop performance in the analyzed temperate crop rotation.

  1. Farm family effects of adopting improved and hybrid sorghum seed in the Sudan Savanna of West Africa.

    Science.gov (United States)

    Smale, Melinda; Assima, Amidou; Kergna, Alpha; Thériault, Véronique; Weltzien, Eva

    2018-01-01

    Uptake of improved sorghum varieties in the Sudan Savanna of West Africa has been limited, despite the economic importance of the crop and long-term investments in sorghum improvement. One reason why is that attaining substantial yield advantages has been difficult in this harsh, heterogeneous growing environment. Release in Mali of the first sorghum hybrids in Sub-Saharan Africa that have been developed primarily from local germplasm has the potential to change this situation. Utilizing plot data collected in Mali, we explain the adoption of improved seed with an ordered logit model and apply a multivalued treatment effects model to measure impacts on farm families, differentiating between improved varieties and hybrids. Since farm families both consume and sell their sorghum, we consider effects on consumption patterns as well as productivity. Status within the household, conferred by gender combined with marital status, generation, and education, is strongly related to the improvement status of sorghum seed planted in these extended family households. Effects of hybrid use on yields are large, widening the range of food items consumed, reducing the share of sorghum in food purchases, and contributing to a greater share of the sorghum harvest sold. Use of improved seed appears to be associated with a shift toward consumption of other cereals, and also to greater sales shares. Findings support on-farm research concerning yield advantages, also suggesting that the use of well-adapted sorghum hybrids could contribute to diet diversification and the crop's commercialization by smallholders.

  2. Fitomassa e relação C/N em consórcios de sorgo e milho com espécies de cobertura Biomass and C/N ratio in intercrops of sorghum and maize with cover crops

    Directory of Open Access Journals (Sweden)

    Paulo Claudeir Gomes da Silva

    2009-11-01

    following treatments: monocultures of sorghum and maize and their intercrops with pigeon pea, sunn hemp, sunflower, turnip forage, white lupine, in the plots; and cut management times, at 60, 90 and 120 days after sowing, in the subplots. Intercrops of sorghum and maize with other species significantly outweighed the biomass productivity of their monocultures, which accumulated less N and had higher C/N ratio of biomass. The best cut management time is at 120 days after sowing of the cover crops, for dry biomass yield. Cutting at 90 days after sowing promoted the greater N accumulation and the lower C/N ratios.

  3. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    Science.gov (United States)

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  4. Measurement of N2 fixation in Sesbania aculeata and Sorghum bicolor L. grown in intercropping system using 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2001-09-01

    A field experiment on Sesbania aculeata and Sorghum bicolor grown in mono cropping and in inter cropping systems was conducted under non-saline conditions (soil EC e 0.16, water EC w 1dS/m) to evaluate dry matter production, total N yield, soil N uptake and N 2 -fixation using 15 N isotope dilution method. Three different row ratios of sesbania (ses) and sorghum (sor) were subjected in the inter cropping system (2ses: 1sot; 1ses: 1sor and 1ses: 2sor row ratio). Dry matter yield of sole sorghum was higher than that of sole sesbania, and it was similar to that produced by the inter cropping treatments. However, total N yield of sole sorghum was significantly the lowest, with no differences being obtained between sole sesbania and inter cropping treatments. The LERs of total N yield were, in all cases, higher than 1, reflecting a greater advantage of inter cropping system in terms of land use efficiency. Percentages of N 2 fixation in the inter cropped sesbania were considerably enhanced compared with the pure stand of sesbania. This was mainly attributed to the depletion of soil N resulting from the greater apparent competitiveness of sorghum for soil N, and consequently, a greater dependence of sesbania on N 2 fixation. However, the degree of the intraspecific competition for soil N uptake was affected by the proportion of crops in the mixture, and it was considerably reduced in the 2ses: 1sor row ratio. This was demonstrated when an equal depletion of soil and fertilizer N uptake occurred for both crops. We excluded in all-inter cropping treatments the possibility of N transfer from sesbania to sorghum. Row inter cropping, with crops grown in alternation of two rows of sesbania with one row of sorghum, seemed to be the most adequate row ratio in terms of total N yield, LER, N 2 -fixation and soil N uptake balance of the component crops. (author)

  5. Identification and characterization of 4 missense mutations in brown midrib 12 (Bmr12); the caffeic O-methyltranferase (COMT) of sorghum

    Science.gov (United States)

    Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase...

  6. Assessment of sorghum germplasm from Burkina Faso and South Africa to identify new sources of resistance to grain mold and anthracnose

    Science.gov (United States)

    Sorghum is an important worldwide crop whose yield can be significantly reduced by anthracnose (Colletotrichum sublineola) and grain mold diseases (multiple fungi). The identification of new genetic sources of resistance to both diseases is imperative for the development of new sorghum varieties. T...

  7. Traditional sorghum beer "ikigage"

    OpenAIRE

    Lyumugabe Loshima, François

    2010-01-01

    Samples of traditional sorghum beer Ikigage was collected in the southern province of Rwanda and analyzed for microbiological and physico-chemical contents. Ikigage contained total aerobic mesophilic bacteria (33.55 x 106 cfu/ml), yeast (10.15 x 106 cfu/ml), lactic acid bacteria (35.35 x 104 cfu/ml), moulds (4.12 x 104 cfu/ml), E. coli (21.90 x 103 cfu/ml), fecal streptococci (22.50 x 103 cfu/ml), Staphylococcus aureus (16.02 x 103 cfu/ml), total coliform (32.30 x 103 cfu/ml), eth...

  8. Teste de um modelo de monitoramento de água no solo para uma cultura de sorgo submetida a diferentes tratamentos de irrigação Test of a soil water assessment model for a sorghum crop under different irrigation treatments

    Directory of Open Access Journals (Sweden)

    Marcelo Bento Paes de Camargo

    1994-01-01

    Full Text Available Um modelo de balanço hídrico diário utilizando informações de estação meteorológica automática, fenologia e informações edáficas foi ajustado e testado para uma cultura de sorgo usando experimentos de campo com diferentes tratamentos de irrigação durante o verão de 1990 e 1991, em Mead, Estado de Nebraska-EUA. Estimativas do total de água no solo a partir do balanço hídrico compararam-se bem com as leituras de sonda de nêutrons tomadas nos diferentes tratamentos. O desempenho do modelo, por camadas de solo, indicou pequena subestimativa da umidade nas camadas superiores, pequena superestimativa nas inferiores e boa estimativa nas intermediárias. A eliminação desses erros resultaria em melhor desempenho do modelo nas diferentes camadas. Boas estimativas do total de água no solo podem ser obtidas através deste balanço hídrico edafoclimático modificado com base em informações fenológicas, edáficas e de dados obtidos de estações meteorológicas automáticas.A model to monitor the soil water status using automated weather station data, crop phenology, and soil information was adjusted and tested for a sorghum crop using field experiments with eight different water treatments in a randomized split factorial block irrigation design during the 1990 and 1991 growing seasons at Mead, Nebraska-USA. Estimates of the total soil water content from the soil water balance model matched well with neutron-probe readings in the sorghum crop. Model performance by soil layer indicates slight underestimates of soil water content in the upper layers of soil, slight overestimates of soil water content in the lower soil layers, and close agreement between simulated and observed soil water contents in the middle soil layers. Elimination of these small offseting errors from the model would result in an improved performance within layers. One possible means of eliminating the error is to adjust the root soil water extraction slightly away

  9. Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum.

    Science.gov (United States)

    Kong, Wenqian; Jin, Huizhe; Franks, Cleve D; Kim, Changsoo; Bandopadhyay, Rajib; Rana, Mukesh K; Auckland, Susan A; Goff, Valorie H; Rainville, Lisa K; Burow, Gloria B; Woodfin, Charles; Burke, John J; Paterson, Andrew H

    2013-01-01

    We describe a recombinant inbred line (RIL) population of 161 F5 genotypes for the widest euploid cross that can be made to cultivated sorghum (Sorghum bicolor) using conventional techniques, S. bicolor × Sorghum propinquum, that segregates for many traits related to plant architecture, growth and development, reproduction, and life history. The genetic map of the S. bicolor × S. propinquum RILs contains 141 loci on 10 linkage groups collectively spanning 773.1 cM. Although the genetic map has DNA marker density well-suited to quantitative trait loci mapping and samples most of the genome, our previous observations that sorghum pericentromeric heterochromatin is recalcitrant to recombination is highlighted by the finding that the vast majority of recombination in sorghum is concentrated in small regions of euchromatin that are distal to most chromosomes. The advancement of the RIL population in an environment to which the S. bicolor parent was well adapted (indeed bred for) but the S. propinquum parent was not largely eliminated an allele for short-day flowering that confounded many other traits, for example, permitting us to map new quantitative trait loci for flowering that previously eluded detection. Additional recombination that has accrued in the development of this RIL population also may have improved resolution of apices of heterozygote excess, accounting for their greater abundance in the F5 than the F2 generation. The S. bicolor × S. propinquum RIL population offers advantages over early-generation populations that will shed new light on genetic, environmental, and physiological/biochemical factors that regulate plant growth and development.

  10. The Potential to Reduce Nitrogen Loss Through Rotating Different Sorghum Varieties in Greenhouse Vegetable Field

    Directory of Open Access Journals (Sweden)

    KANG Ling-yun

    2015-06-01

    Full Text Available In North China plain, excessive fertilization in vegetable greenhouse always results in nitrate accumulation in soil and possible nitrogen leaching with potential environmental risk. It is necessary to rotate appropriate catch crop to absorb surplus nitrogen in fallow season and reduce rootzone nitrate level. An experiment was carried out to select suitable sorghum variety as catch crop to reduce nitrogen loss in Beijing suburb. Six common varieties were used in the experiment as conventional catch crop, sweet corn as the control. The results indicated that the biomass, root growth and nitrogen accumulation in shoots of sorghum Jinza 12 were highest in the catch crops. It demonstrated that the variety Jinza 12 was an appropriate catch crop for reducing nitrogen accumulation in surface soil layer compared with sweet corn. Meanwhile, variety Jiliang 2 maintained highest proportion of soil NH4+-N content after urea application, which might be related to the biological nitrification inhibitors (BNI released by the root system of sorghum. It implied that sorghum could be used as catch crop to reduce nitrogen loss through plant extraction i.e. nitrogen uptake and stabilization i.e. BNI inhibition, in comparison with sweet corn.

  11. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    Science.gov (United States)

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  12. Lodging markedly reduced the biomass of sweet sorghum via decreasing photosynthesis in saline-alkali field

    Science.gov (United States)

    Guo, Jian Rong; Fan, Hai; Wang, Bao Shan

    2018-06-01

    Lodging is a serious problem in plant growth, especially in crops growth of the natural habitat. In order to determine the influence of lodging on the growth characters of sweet sorghum, plants grown in natural saline-alkali environment were used to investigate the fresh weight, dry weight, sugar content in the stalks and the photosynthesis index of salt tolerant crop sweet sorghum. Results showed that lodging significantly reduced the growth of sweet sorghum, the fresh weight and dry weight was only 28.3% and 22.5% of the normal plants when lodging occurred after 49 days. Lodging also reduced the stalks sugar content of sweet sorghum, the stalk sugar content of lodged plants was only 45.4% of that in the normal plants, when lodging occurred for 49 days. Lodging reduced the growth and sugar content by reducing the photosynthesis parameters of sweet sorghum grown in the saline-alkali field, thus, affected the accumulation of photosynthate. Interestingly, with the extension of the lodging time, lodging led to a decrease in photosynthetic rate of sweet sorghum mainly due to non-stomatal factors.

  13. Solid-state fermentation from dried sweet sorghum stalk for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Omidi, A. [Univ. of Isfahan, Biology Dept., Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Due to depletion of global crude oil, countries are interested to alternate fuel energy resources. Presently bioethanol as a source of energy has been a subject of great interest for the industrialized countries. Therefore, there is need for efficient bioethanol production with low cost raw material and production process. Among energy crops, sweet sorghum is the best candidate for bioethanol production. It has been identified as having higher drought tolerance, lower input cost and higher biomass yield than other energy crops. In addition it has wide adoptability and tolerance to abiotic stresses. Moreover due to the shortage of water in dry and hot countries there is a need to reduce water requirement for bioethanol production and solid state fermentation could be the best process for making bioethanol in these countries. The purpose of this study is to achieve the highest ethanol production with lowest amount of water in solid state fermentation using sweet sorghum stalk. In this study the sweet sorghum particles were used for solid state fermentation. Fermentation medium were: sweet sorghum particles with nutrient media, active yeast powder and different moisture contents. The fermentation medium was incubated for 2-3 days at 30 deg C temperature. The results showed sweet sorghum particles (15% w/w) fermented in medium containing 0.5% yeast inoculums, 73.5% moisture content and 3 days incubation period produced the highest amount of ethanol (13% w/w sorghum)

  14. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

    DEFF Research Database (Denmark)

    O'Donnell, Natalie H.; Møller, Birger Lindberg; Neale, Alan D.

    2013-01-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentratio...... of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress....... of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism....... Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20...

  15. Critical periods of sorghum and palisadegrass in intercropped cultivation for climatic risk zoning

    Directory of Open Access Journals (Sweden)

    Nino Rodrigo Cabral de Barros Lima

    2011-07-01

    Full Text Available The objective of this work was to define critical periods for sorghum and palisadegrass cultivated on crop-livestock integrated systems under water deficit. An experiment was carried out in a completely random block design with four treatments (control and interruption of water supply in three periods and three replicates. Water supply was interrupted until soil water humidity was close to permanent wilting point at the phases: germination of palisadegrass seeds; start of tillering of palisadegrass and initiation of panicles of shorghum; start of shorghum flowering. Water deficit starting at palisadegrass germination delayed intital development of the plants because of the reduction in tillering. Water restriction at panicle initiation phase and at sorghum flowering determined reduction of grain production. Critical periods for intercrop of sorghum and palisadegrass correspond to palisadegrass germination phase and flowering and panicle inititation phase of sorghum.

  16. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    Science.gov (United States)

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.

  17. Harnessing the sorghum genome sequence:development of a genome-wide microsattelite (SSR) resource for swift genetic mapping and map based cloning in sorghum

    Science.gov (United States)

    Sorghum is the second cereal crop to have a full genome completely sequenced (Nature (2009), 457:551). This achievement is widely recognized as a scientific milestone for grass genetics and genomics in general. However, the true worth of genetic information lies in translating the sequence informa...

  18. Characteristics of African traditional beers brewed with sorghum malt: a review

    Directory of Open Access Journals (Sweden)

    Lyumugabe, F.

    2012-01-01

    Full Text Available Traditional sorghum beers are produced in several countries of Africa, but variations in the manufacturing process may occur depending on the geographic localization. These beers are very rich in calories, B-group vitamins including thiamine, folic acid, riboflavin and nicotinic acid, and essential amino acids such as lysine. However, the traditional sorghum beer is less attractive than Western beers because of its poorer hygienic quality, organoleptic variations and shorter shelf life. Research into the microbiological and biochemical characteristics of traditional sorghum beers as well as their technologies have been performed and documented in several African countries. This review aims to summarize the production processes and compositional characteristics of African traditional sorghum beers (ikigage, merissa, doro, dolo, pito, amgba and tchoukoutou. It also highlights the major differences between these traditional beers and barley malt beer, consumed worldwide, and suggests adaptations that could be made to improve the production process of traditional sorghum beer.

  19. The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling

    NARCIS (Netherlands)

    Affholder, F.; Poeydebat, C.; Corbeels, M.; Scopel, E.; Tittonell, P.A.

    2013-01-01

    Yield gaps of major food crops are wide under rainfed family agriculture in the tropics. Their magnitude and causes vary substantially across agro-ecological, demographic and market situations. Methods to assess yield gaps should cope with spatio-temporal variability of bio-physical conditions,

  20. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    Energy Technology Data Exchange (ETDEWEB)

    Shakoor, N; Nair, R; Crasta, O; Morris, G; Feltus, A; Kresovich, S

    2014-01-23

    Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.

  1. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    Science.gov (United States)

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  2. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    Science.gov (United States)

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  3. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn

    Directory of Open Access Journals (Sweden)

    Pattarawadee Sumthong Nakmee

    2016-05-01

    Full Text Available Sorghum (Sorghum bicolor Linn. seedlings were grown in pots using Pakchong soil from Nakhon Ratchasima province. Ten species of native Arbuscular mycorrhizal (AM fungi: Glomus sp. 1, Glomus sp. 2, Glomus sp. 3, Glomus aggregatum, Glomus fasciculatum, Acaulospora longula, Glomus occultum, Acaulospora scrobiculata, Acaulospora spinosa and Scutellospora sp., were used to inoculate sorghum seedlings. The sorghum growth and uptake of several major nutrients were evaluated at the harvesting stage. The results revealed that sorghum inoculated with A. scrobiculata produced the greatest biomass, grain dry weight and total nitrogen uptake in shoots. The highest phosphorus uptake in shoots was found in A. spinosa-inoculated plants, followed by Glomus sp. and A. scrobiculata, whereas Scutellospora sp.-inoculated plants showed the highest potassium uptake in shoots followed by A. scrobiculata. Overall, the most efficient AM fungi for improvement of nutrient uptake, biomass and grain dry weight in sorghum were A. scrobiculata.

  4. Measurement of N2 fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC e 15, water EC w 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N 2 -fixation using 15 N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N 2 fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N 2 fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  5. 7339 BASELINE SURVEY ON FACTORS AFFECTING SORGHUM ...

    African Journals Online (AJOL)

    muuicathy

    2013-01-01

    Jan 1, 2013 ... factors affecting sorghum production and the sorghum farming ... The informal seed system includes methods such as retaining seed on-farm from ..... Jaetzold R and H Schmidt Farm Management Handbook of Kenya, Ministry.

  6. Productivity and Competitiveness of Sorghum Production in ...

    African Journals Online (AJOL)

    showed that sorghum production in the study areas yielded profitable returns ... Keywords: Sorghum, Profitability, Competitiveness, Investment Potential, .... Guinness Ghana Brewery Limited to estimate cost and returns at the marketing sector ...

  7. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation

    International Nuclear Information System (INIS)

    Marx, Sanette; Ndaba, Busiswa; Chiyanzu, Idan; Schabort, Corneels

    2014-01-01

    Sweet sorghum is a hardy crop that can be grown on marginal land and can provide both food and energy in an integrated food and energy system. Lignocellulose rich sweet sorghum bagasse (solid left over after starch and juice extraction) can be converted to bioethanol using a variety of technologies. The largest barrier to commercial production of fuel ethanol from lignocellulosic material remains the high processing costs associated with enzymatic hydrolysis and the use of acids and bases in the pretreatment step. In this paper, sweet sorghum bagasse was pretreated and hydrolysed in a single step using microwave irradiation. A total sugar yield of 820 g kg −1 was obtained in a 50 g kg −1 sulphuric acid solution in water, with a power input of 43.2 kJ g −1 of dry biomass (i.e. 20 min at 180 W power setting). An ethanol yield based on total sugar of 480 g kg −1 was obtained after 24 h of fermentation using a mixed culture of organisms. These results show the potential for producing as much as 0.252 m 3  tonne −1 or 33 m 3  ha −1 ethanol using only the lignocellulose part of the stalks, which is high enough to make the process economically attractive. - Highlights: • Different sweet sorghum cultivars were harvested at 3 and 6 months. • Sweet sorghum bagasse was converted to ethanol. • Microwave pretreatment and hydrolysis was done in a single step. • Sugar rich hydrolysates were converted to ethanol using co-fermentation

  8. The Effect of Silicon on some Morpho-physiological Characteristics and Grain Yield of Sorghum (Sorghum bicolor L.) under Salt Stress

    OpenAIRE

    S Hasibi; H Farahbakhsh; Gh Khajoeinejad

    2016-01-01

    Introduction Nowadays, salinity is one of the limiting factors for crop production in arid and semi-arid regions. On the other hand, sorghum (Sorghum bicolor L.) is a self-pollinated and short-day plant, which partly has been adapted to salinity and water stress conditions; also play an important role in humans, livestock and poultry nourishments. All studies have showed the positive effects of Silicon on growth and yield of plants in both normal and stress conditions. The aim of this exp...

  9. SPI-Based Analyses of Drought Changes over the Past 60 Years in China’s Major Crop-Growing Areas

    Directory of Open Access Journals (Sweden)

    Lang Xia

    2018-01-01

    Full Text Available This study analyzes the changes in drought patterns in China’s major crop-growing areas over the past 60 years. The analysis was done using both weather station data and Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI rainfall data to calculate the Standardized Precipitation Index (SPI. The results showed that the occurrences of extreme drought were the most serious in recent years in the Southwest China and Sichuan crop-growing areas. The Yangtze River (MLRY and South China crop-growing areas experienced extreme droughts during 1960–1980, whereas the Northeast China and Huang–Huai–Hai crop-growing areas experienced extreme droughts around 2003. The analysis showed that the SPIs calculated by TRMM data at time scales of one, three, and six months were reliable for monitoring drought in the study regions, but for 12 months, the SPIs calculated by gauge and TRMM data showed less consistency. The analysis of the spatial distribution of droughts over the past 15 years using TMI rainfall data revealed that more than 60% of the area experienced extreme drought in 2011 over the MLRY region and in 1998 over the Huang–Huai–Hai region. The frequency of different intensity droughts presented significant spatial heterogeneity in each crop-growing region.

  10. Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in eastern Kenya.

    Directory of Open Access Journals (Sweden)

    Vanesse Labeyrie

    Full Text Available Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the

  11. Comparative Analysis of CDPK Family in Maize, Arabidopsis, Rice, and Sorghum Revealed Potential Targets for Drought Tolerance Improvement

    Directory of Open Access Journals (Sweden)

    Shikha Mittal

    2017-12-01

    Full Text Available Calcium dependent protein kinases (CDPKs play significant role in regulation of plant growth and development in response to various stresses including drought. A set of 32 CDPK genes identified in maize were further used for searching of orthologs in the model plant Arabidopsis (72 and major food crops such as rice (78 and sorghum (91. We comprehensively studied the phylogenetic relationship, annotations, gene duplications, gene structure, divergence time, 3-D protein structures and tissue-specific drought induced expression of CDPK genes in all four species. Variation in intron frequency in the studied species was one of the reasons for the functional diversity of CDPK genes to various stress responses. Protein kinase and protein kinase C phosphorylation site domains were the most conserved motifs identified in all species. Four groups were identified from the sequence-based phylogenetic analysis, in which maize CDPKs were clustered in group III. Expression data showed that the CDPK genes were highly expressed in leaf of maize, rice, and sorghum whereas in Arabidopsis the maximum expression was observed in root. The expression assay showed 5, 6, 11, and 9 were the commonly and differentially expressed drought-related orthologous genes in maize, Arabidopsis, rice, and sorghum, respectively. 3-D protein structure were predicted for the nine genes (Arabidopsis: 2, maize: 2, rice: 3, and sorghum: 2 showing differential expression in at least three species. The predicted 3-D structures were further evaluated and validated by Ramachandran plot, ANOLEA, ProSA, and Verify-3D. The superimposed 3-D structure of drought-related orthologous proteins retained similar folding pattern owing to their conserved nature. Functional annotation revealed the involvement of CDPK genes in various pathways such as osmotic homeostasis, cell protection, and root growth. The interactions of CDPK genes in various pathways play crucial role in imparting drought tolerance

  12. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy

    OpenAIRE

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodr?guez, Mar?a Ver?nica

    2013-01-01

    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneous...

  13. Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler

    Directory of Open Access Journals (Sweden)

    Yuli Darni

    2017-05-01

    Full Text Available This study evaluated the feasibility of bioplastics production by various ratio of sorghum starch and cellulose from red seaweed Eucheuma spinossum, and the use of glycerol as plasticizer and sorghum stalks as filler. Solid-liquid matrix transition should be far over the operating temperature of gelatinization and extracted at 95oC in order to avoid the loss of conductivity. The analyzed variables were starch and cellulose seaweed Eucheuma spinossum and the addition of variation of filler. Sorghum stalk could be expected to affect the mechanical and physical properties of bioplastics. A thin sheet of plastic (plastic film was obtained as a result that have been tested mechanically to obtain the best condition for the formulation of starch-cellulose 8.5:1.5 (g/g. From the result of morphological studies, the fillers in the mixture composites were more randomly in each product and the addition of filler can increase mechanical properties of bioplastics. Chemical modification had a major effect on the mechanical properties. The phenomena of degradation and thermoplasticization were visible at chemical changes that can be observed in FTIR spectrum test results.

  14. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    Science.gov (United States)

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    Science.gov (United States)

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  16. Influence of Chemical Treatments Sequence on Morphology and Crystallinity of Sorghum Fibers

    Directory of Open Access Journals (Sweden)

    Ismojo Ismojo

    2018-05-01

    Full Text Available Micro-fibrillated cellulose (MFC derived from natural fibre is continuously gaining interest to produce an environmentally-friendly material, due to economic and ecological reasons. In consequence, sorghum is one of the most-cultivated crops that usually remain the waste as by product of bioethanol production. Indeed, it will be a promising area to utilize sorghum waste to produce MFC for enhancing polymer performance, especially in terms of crystallinity. The objective of this study is to investigate the effect of a sequence of chemical modification was applied to sorghum fibres, i.e. alkalization using 4% sodium hydroxide followed by bleaching using 1.7% sodium chlorite plus acetic acid as a buffer. The treatment was purposed to unbundle the lignocellulose networks into microfibrils cellulose with less amorphous part and lower hydrophilic properties. Evaluation of the chemical treatments effect on internal microstructure, crystallinity index and chemical composition of sorghum fibre was measured via Field-Emission Scanning Electron microscope (FE-SEM, X-ray Diffraction (XRD and Fourier Transformation Infra-Red (FTIR Spectroscopy. The experiments show that treatments led to a removal of binding materials, such as amorphous parts hemicellulose and lignin, from the sorghum fibres, resulting MFC of sorghum fibres and enhanced crystallinity index from 41.12 % to 75.73%.

  17. Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping

    NARCIS (Netherlands)

    Langeveld, J.W.A.; Dixon, J.; Keulen, van H.; Quist-Wessel, P.M.F.

    2014-01-01

    Estimates on impacts of biofuel production often use models with limited ability to incorporate changes in land use, notably cropping intensity. This review studies biofuel expansion between 2000 and 2010 in Brazil, the USA, Indonesia, Malaysia, China, Mozambique, South Africa plus 27 EU member

  18. Assessment of N2 fixing efficiency of Beijerinckia indica and Azospirillum brasilense in Sorghum (Sorghum bicolor (L.) moench) using 15N tracer

    International Nuclear Information System (INIS)

    Kanimoli, S.; Marimuthu, P.; Arulmozhiselvan, K.

    2010-01-01

    For studying the benefits of inoculation of N 2 fixing diazotrophs in the root zone of sorghum crop, a pot culture was conducted on neutral red sandy loam soil with sorghum cv. CO26, using 15 N tracer. At the end of 45 days duration after sowing, Beijerinckia indica inoculation contributed 56.9 per cent N derived from N 2 fixation, out of total N concentration in whole drymatter of sorghum plant. It proved to be the efficient N 2 fixer by contributing N from N 2 fixation to the tune of 17.6 Kg -1 . Accumulation of N derived from N 2 fixation from B. indica was primarily in leaf blade (50.0%) followed by stem (31.8%), leaf sheath (14.0%) and root (4.2%). Inoculation of Azospirillum brasllense accelerated uptake of N from soil and fertilizer N sources compared to B. indica and hence registered low N fixation. (author)

  19. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.

    Science.gov (United States)

    J Felderhoff, Terry; M McIntyre, Lauren; Saballos, Ana; Vermerris, Wilfred

    2016-07-07

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar 'Bk7', a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing 'Bk7' with the susceptible inbred 'Early Hegari-Sart'. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from 'Bk7'. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between 'Bk7' and sweet sorghum 'Mer81-4' narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases. Copyright © 2016 Felderhoff et al.

  20. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought.

    Science.gov (United States)

    Ogbaga, Chukwuma C; Stepien, Piotr; Johnson, Giles N

    2014-10-01

    Sorghum is one of the most drought tolerant crops but surprisingly, little is known about the mechanisms achieving this. We have compared physiological and biochemical responses to drought in two sorghum cultivars with contrasting drought tolerance. These closely related cultivars have starkly contrasting responses to water deficit. In the less tolerant Samsorg 40, drought induced progressive loss of photosynthesis. The more drought tolerant Samsorg 17 maintained photosynthesis, transpiration and chlorophyll content until the most extreme conditions. In Samsorg 40, there was a highly specific down-regulation of selected proteins, with loss of PSII and Rubisco but maintenance of PSI and cytochrome b6 f, allowing plants to maintain ATP synthesis. The nitrogen released allows for accumulation of glycine betaine and proline. To the best of our knowledge, this is the first example of specific reengineering of the photosynthetic apparatus in response to drought. In contrast, in Samsorg 17 we detected no substantial change in the photosynthetic apparatus. Rather, plants showed constitutively high soluble sugar concentration, enabling them to maintain transpiration and photosynthesis, even in extremely dry conditions. The implications for these strikingly contrasted strategies are discussed in relation to agricultural and natural systems. © 2014 Scandinavian Plant Physiology Society.

  1. Effect of salinity and silicon application on oxidative damage of sorghum [sorghum bicolor (L.) moench.

    International Nuclear Information System (INIS)

    Kafi, M.; Nabati, J.; Masoumi, A.; Mehrgerdi, M.Z.

    2011-01-01

    Application of silicon (Si) to soil is considered as an alternative approach to alleviate salinity stress in crop plants. Therefore, a field experiment was conducted to investigate the effects of Si application [control (without Si), 1.44 and 1.92 g.kg /sup -1/ soil on membrane stability index (MSI), relative water content (RWC), leaf proline, soluble sugars, antioxidant activity, total phenols and dry matter accumulation of two sorghum (Sorghum bicolor) cultivars under three levels of salinity of irrigation water (5.2, 10.5 and 23.1 dS m/sup -1/ . The results showed that leaf proline content, activities of ascorbate peroxidase (APX) and glutathione reductase (GR), Na/sup +/ concentration significantly increased only at high level of salinity, while, RWC Si caused an and dry matter accumulation were significantly decreased at all salinity levels. Soil application of 1.44 g.kg/sup -1/ increase in the activities of APX, catalase (CAT), superoxide dismutase (SOD), peroxidase (PRO), glutathione reductase soil Si caused an increase in membrane stabilityindex, (GR), total antioxidant and total phenol contents and 1.92 g.kg/sup -1/ soluble sugar and total phenol contents, CAT, SOD and total antioxidant activity. Soluble sugars, total phenols, SOD and total antioxidant activity and dry matter accumulation in cv. Omidbakhsh were higher than those in cv. Sepideh. In conclusion, alleviation of salinity stress by exogenous application of Si was found to be associated partly with enhanced antioxidant activity. (author)

  2. Microeconomic aspects of energy crops cultivation

    International Nuclear Information System (INIS)

    Bartolelli, V.; Mutinati, G.; Pisani, F.

    1992-01-01

    The topic of energy crops, namely of those crops designed to produce biomass to transform into ethanol, has been explored, in Italy and abroad, in all its technical and agronomical aspects. The microeconomic aspect, including the evaluation of convenience for the farmer in adopting such crops, is, on the contrary, less well researched. RENAGRI has developed a research methodology able to give information about the level of convenience of two energy crops (Sweet Sorghum and Topinambour) and has applied it to different Italian agricultural situations, in order to verify the existence of conditions favourable to the cultivation of the two crops, or to indicate the necessity of eventual subvention. (author)

  3. PAV markers in Sorghum bicolour

    DEFF Research Database (Denmark)

    Shen, Xin; Liu, Zhiquan; Mocoeur, Anne Raymonde Joelle

    2015-01-01

    Abstract Genic presence/absence variants (PAVs) correlate closely to the phenotypic variation, impacting plant genome sizes and the adaption to the environment. To shed more light on their genome-wide patterns, functions and to test the possibility of using them as molecular markers, we analyzed...... enriched in stress responses and protein modification. We used 325 polymorphic PAVs in two sorghum inbred lines Ji2731 and E-Tian, together with 49 SSR markers, and constructed a genetic map, which consisted of 10 linkage groups corresponding to the 10 chromosomes of sorghum and spanned 1430.3 cM in length...

  4. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.

    Science.gov (United States)

    Hammer, Graeme L; van Oosterom, Erik; McLean, Greg; Chapman, Scott C; Broad, Ian; Harland, Peter; Muchow, Russell C

    2010-05-01

    Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.

  5. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum

    Science.gov (United States)

    Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...

  6. Assessment of Genetic Variability in Sorghum Accessions (Sorghum ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The polymorphic information content (PIC) of individual primer ranged from 0.34 to 0.70 with a mean value of 0.54 indicating enough ... Keywords: Sorghum; Simple Sequence Repeat markers; Genetic variation; Polymorphic Information Content;. Coefficient of ... based techniques include Restriction Fragment Length.

  7. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    Directory of Open Access Journals (Sweden)

    Zhenping Yang

    Full Text Available As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping

  8. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    Science.gov (United States)

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  9. Tropical rotation crops influence nematode densities and vegetable yields.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.

  10. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    Science.gov (United States)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  11. a survey of sorghum downy mildew in sorghum in the sudano

    African Journals Online (AJOL)

    DR. AMINU

    Sahel savanna AEZs respectively) indicated that the disease was present only at the seedling stage ... In the southern guinea ... northern Nigeria, sorghum downy mildew in sorghum .... There was a significant (P>0.05) difference in SDM.

  12. Comparative analysis of CDPK family in maize, Arabidopsis, rice and sorghum revealed potential targets for drought tolerance improvement

    Science.gov (United States)

    Mittal, Shikha; Mallikarjuna, Mallana Gowdra; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2017-12-01

    Calcium dependent protein kinases (CDPKs) play major role in regulation of plant growth and development in response to various stresses including drought. A set of 32 CDPK genes identified in maize were further used for searching of orthologs in the model plant Arabidopsis (72) and major food crops such as rice (78) and sorghum (91). We comprehensively investigated the phylogenetic relationship, annotations, gene duplications, gene structure, divergence time, 3-D protein structures and tissue-specific drought induced expression of CDPK genes in all four species. Variation in intron frequency among these species likely contributed to the functional diversity of CDPK genes to various stress responses. Protein kinase and protein kinase C phosphorylation site domains were the most conserved motifs identified in all species. Four groups were identified from the sequence-based phylogenetic analysis, in which maize CDPKs were clustered in group III. The time of divergence (Ka/Ks) analysis revealed that the CDPKs were evolved through stabilizing selection. Expression data showed that the CDPK genes were highly expressed in leaf of maize, rice, and sorghum whereas in Arabidopsis the maximum expression was observed in root. 3-D protein structure were predicted for the nine genes (Arabidopsis: 2, maize: 2, rice: 3 and sorghum: 2) showing differential expression in at least three species. The predicted 3-D structures were further evaluated and validated by Ramachandran plot, ANOLEA, ProSA and Verify-3D. The superimposed 3-D structure of drought-related orthologous proteins retained similar folding pattern owing to their conserved nature. Functional annotation revealed the involvement of CDPK genes in various pathways such as osmotic homeostasis, cell protection and root growth. The interactions of CDPK genes in various pathways play crucial role in imparting drought tolerance through different ABA and MAPK signalling cascades. Our studies suggest that these selected candidate

  13. Contribution of Food Crops to Household Food Security Among ...

    African Journals Online (AJOL)

    acer

    Department of Agricultural Economics And Extension, Usmanu Danfodiyo ... farmers to household food security in Patigi Local Government Area, Kwara ... They earn more revenue from rice (87%), sorghum (35%), melon (14.2%), ... the type of crops they grow on their farm .... help farmers achieve high crop yield, ability to.

  14. Crop model usefulness in drylands of southern Africa: an application ...

    African Journals Online (AJOL)

    Data limitations in southern Africa frequently hinder adequate assessment of crop models before application. ... three locations to represent varying cropping and physical conditions in southern Africa, i.e. maize and sorghum (Mohale's Hoek, Lesotho and Big Bend, Swaziland) and maize and groundnut (Lilongwe, Malawi).

  15. Effect of liquid liming on sorghum growth in an Ultisol.

    Directory of Open Access Journals (Sweden)

    Manuel E. Camacho

    2015-06-01

    Full Text Available   The aim of this study was to evaluate the effects of the application of liquid lime on sorghum growth in an Ultisol. This research was conducted between August and November, 2011 at the Agricultural Research Center, San José, Costa Rica. In an Ultisol planted with sorghum, in pots of 800 ml, the following treatments where applied: control without lime, calcium carbonate at doses of 10 and 20 l/ha, magnesium oxide at doses of 10 and 20 l/ha, calcium carbonate + magnesium oxide at doses of 5 + 5 and 10 + 10 l/ha, respectively. Six weeks after planting, sorghum was harvested, measuring leaf area, dry and fresh weight of the aerial and root biomass, nutrient absorption and the soil chemical characteristics. Treatments using calcium carbonate and calcium carbonate + magnesium oxide obtained the best values of leaf area and the higher weight of the aerial and root biomass of sorghum. Even though there were no significant differences between liquid lime treatments, there were regarding control without lime and weight biomass variables. Liquid calcium carbonate significantly increased Ca absorption, and the calcium carbonate + magnesium oxide treatment at doses of 10 l/h showed the highest Mg absorption. All amendment treatments caused an improvement of the soil fertility, the most notable being the application of 20 l/ha of magnesium oxide that dropped the exchangeable acidity from 9.02 to 0.36 cmol(+/l, acidity saturation dropped from 95 to 3.3%, and pH increased from 5 to 5.7. It was concluded that the liquid liming amendments had a positive effect over the crop and the soil fertility.

  16. Global analysis of epigenetic regulation of gene expression in response to drought stress in Sorghum.

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Anireddy [Colorado State Univ., Fort Collins, CO (United States); Ben-Hur, Asa [Colorado State Univ., Fort Collins, CO (United States)

    2017-11-22

    Abiotic stresses including drought are major limiting factors of crop yields and cause significant crop losses. Acquisition of stress tolerance to abiotic stresses requires coordinated regulation of a multitude of biochemical and physiological changes, and most of these changes depend on alterations in gene expression. The goal of this work is to perform global analysis of differential regulation of gene expression and alternative splicing, and their relationship with chromatin landscape in drought sensitive and tolerant cultivars. our Iso-Seq study revealed transcriptome-wide full-length isoforms at an unprecedented scale with over 11000 novel splice isoforms. Additionally, we uncovered alternative polyadenylation sites of ~11000 expressed genes and many novel genes. Overall, Iso-Seq results greatly enhanced sorghum gene annotations that are not only useful in analyzing all our RNA-seq, ChIP-seq and ATAC-seq data but also serve as a great resource to the plant biology community. Our studies identified differentially expressed genes and splicing events that are correlated with the drought-resistant phenotype. An association between alternative splicing and chromatin accessibility was also revealed. Several computational tools developed here (TAPIS and iDiffIR) have been made freely available to the research community in analyzing alternative splicing and differential alternative splicing.

  17. Simulating the Probability of Grain Sorghum Maturity before the First Frost in Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Gregory S. McMaster

    2016-09-01

    Full Text Available Expanding grain sorghum [Sorghum bicolor (L. Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS to estimate the probability of reaching physiological maturity before the first fall frost for a variety of agronomic practices in northeastern Colorado. Physiological maturity for seven planting dates (1 May to 12 June, four seedbed moisture conditions affecting seedling emergence (from Optimum to Planted in Dust, and three maturity classes (Early, Medium, and Late were simulated using historical weather data from nine locations for both irrigated and dryland phenological parameters. The probability of reaching maturity before the first frost was slightly higher under dryland conditions, decreased as latitude, longitude, and elevation increased, planting date was delayed, and for later maturity classes. The results provide producers with estimates of the reliability of growing grain sorghum in northeastern Colorado.

  18. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings

    DEFF Research Database (Denmark)

    Ngara, Rudo; Ndimba, Roya; Borch-Jensen, Jonas

    2012-01-01

    Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet...... sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination...... with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p...

  19. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  20. Computational sequence analysis of predicted long dsRNA transcriptomes of major crops reveals sequence complementarity with human genes.

    Science.gov (United States)

    Jensen, Peter D; Zhang, Yuanji; Wiggins, B Elizabeth; Petrick, Jay S; Zhu, Jin; Kerstetter, Randall A; Heck, Gregory R; Ivashuta, Sergey I

    2013-01-01

    Long double-stranded RNAs (long dsRNAs) are precursors for the effector molecules of sequence-specific RNA-based gene silencing in eukaryotes. Plant cells can contain numerous endogenous long dsRNAs. This study demonstrates that such endogenous long dsRNAs in plants have sequence complementarity to human genes. Many of these complementary long dsRNAs have perfect sequence complementarity of at least 21 nucleotides to human genes; enough complementarity to potentially trigger gene silencing in targeted human cells if delivered in functional form. However, the number and diversity of long dsRNA molecules in plant tissue from crops such as lettuce, tomato, corn, soy and rice with complementarity to human genes that have a long history of safe consumption supports a conclusion that long dsRNAs do not present a significant dietary risk.

  1. Optimization of extraction of polyphenols from Sorghum Moench ...

    African Journals Online (AJOL)

    phenolic acid were assayed using high performance liquid (HPLC). ... quantification of antioxidants and phenolic compounds from Sorghum M, ... Keywords: Response surface methodology, Sorghum moench, Polyphenols, Antioxidants.

  2. Towards a Solid Foundation of Using Remotely Sensed Solar-Induced Chlorophyll Fluorescence for Crop Monitoring and Yield Forecast

    Science.gov (United States)

    Chen, Y.; Sun, Y.; You, L.; Liu, Y.

    2017-12-01

    The growing demand for food production due to population increase coupled with high vulnerability to volatile environmental changes poses a paramount challenge for mankind in the coming century. Real-time crop monitoring and yield forecasting must be a key part of any solution to this challenge as these activities provide vital information needed for effective and efficient crop management and for decision making. However, traditional methods of crop growth monitoring (e.g., remotely sensed vegetation indices) do not directly relate to the most important function of plants - photosynthesis and therefore crop yield. The recent advance in the satellite remote sensing of Solar-Induced chlorophyll Fluorescence (SIF), an integrative photosynthetic signal from molecular origin and a direct measure of plant functions holds great promise for real-time monitoring of crop growth conditions and forecasting yields. In this study, we use satellite measurements of SIF from both the Global Ozone Monitoring Experiment-2 (GOME-2) onboard MetOp-A and the Orbiting Carbon Observatory-2 (OCO-2) satellites to estimate crop yield using both process-based and statistical models. We find that SIF-based crop yield well correlates with the global yield product Spatial Production Allocation Model (SPAM) derived from ground surveys for all major crops including maize, soybean, wheat, sorghum, and rice. The potential and challenges of using upcoming SIF satellite missions for crop monitoring and prediction will also be discussed.

  3. Water and nitrogen management effects on semiarid sorghum production and soil trace gas flux under future climate.

    Science.gov (United States)

    Duval, Benjamin D; Ghimire, Rajan; Hartman, Melannie D; Marsalis, Mark A

    2018-01-01

    External inputs to agricultural systems can overcome latent soil and climate constraints on production, while contributing to greenhouse gas emissions from fertilizer and water management inefficiencies. Proper crop selection for a given region can lessen the need for irrigation and timing of N fertilizer application with crop N demand can potentially reduce N2O emissions and increase N use efficiency while reducing residual soil N and N leaching. However, increased variability in precipitation is an expectation of climate change and makes predicting biomass and gas flux responses to management more challenging. We used the DayCent model to test hypotheses about input intensity controls on sorghum (Sorghum bicolor (L.) Moench) productivity and greenhouse gas emissions in the southwestern United States under future climate. Sorghum had been previously parameterized for DayCent, but an inverse-modeling via parameter estimation method significantly improved model validation to field data. Aboveground production and N2O flux were more responsive to N additions than irrigation, but simulations with future climate produced lower values for sorghum than current climate. We found positive interactions between irrigation at increased N application for N2O and CO2 fluxes. Extremes in sorghum production under future climate were a function of biomass accumulation trajectories related to daily soil water and mineral N. Root C inputs correlated with soil organic C pools, but overall soil C declined at the decadal scale under current weather while modest gains were simulated under future weather. Scaling biomass and N2O fluxes by unit N and water input revealed that sorghum can be productive without irrigation, and the effect of irrigating crops is difficult to forecast when precipitation is variable within the growing season. These simulation results demonstrate the importance of understanding sorghum production and greenhouse gas emissions at daily scales when assessing annual

  4. Measurement of N{sub 2} fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using {sup 15}N isotopic dilution technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Khalifa, K; Janat, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Agriculture

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC{sub e} 15, water EC{sub w} 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N{sub 2}-fixation using {sup 15}N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N{sub 2} fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N{sub 2} fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  5. Intercropping Urochloa brizantha and sorghum inoculated with Azospirillum brasilense for silage

    Directory of Open Access Journals (Sweden)

    Allan Hisashi Nakao

    Full Text Available ABSTRACT Livestock performance in the Brazilian Cerrado has been limited by the low availability of good quality fodder, especially during periods of low rainfall. The aim of this study was to evaluate growth and dry matter production in two cultivars of sorghum, inoculated or not with diazotrophic bacteria, and as a monocrop or intercropped with palisade grass under a system of crop-livestock integration. The experiments were carried out in the field in the Cerrado region during the autumn-winter period of 2015 and 2016, on the experimental farm of the Faculty of Engineering at Ilha Solteira, UNESP, in Selvíria, in the State of Mato Groso do Sul, Brazil (MS. A randomised complete block experimental design was used in a 2 x 2 x 2 factorial scheme with four replications. The treatments corresponded to two agricultural years (2015 and 2016; the cultivation of dual-purpose grain sorghum, alone or intercropped with palisade grass; with or without inoculation of the sorghum seeds with the bacterium Azospirillum brasilense. The dry matter production of the plant components and plant growth were evaluated for the preparation of silage. Inoculation of sorghum seeds with the bacterium Azospirillum brasilense increases the production of plant dry matter for silage, irrespective of the cultivar or intercrop. Dual-purpose grain sorghum intercropped with palisade grass is a viable agronomic system for producing plant matter for silage during the autumn season.

  6. Mineral composition and biomass partitioning of sweet sorghum grown for bioenergy in the southeastern USA

    International Nuclear Information System (INIS)

    Singh, M.P.; Erickson, J.E.; Sollenberger, L.E.; Woodard, K.R.; Vendramini, J.M.B.; Fedenko, J.R.

    2012-01-01

    Biomass yield and tissue mineral composition can affect total energy yield potential, conversion efficiencies and environmental impacts, but relatively few data are available for sweet sorghum [Sorghum bicolor (L.) Moench] grown in the southeastern USA. Therefore, a study was conducted at two locations in North and Central Florida on marginal sand soils comparing the effects of planting date (PD) on dry biomass yield and mineral composition of leaf, stem, and grain heads for ‘M-81E’ and ‘Dale’ sweet sorghum cultivars. Overall tissue mineral concentrations were relatively low for sweet sorghum, attributable to low K and Ca concentrations. Ash and mineral concentrations were generally greater for Dale, especially for the early PD. Leaf and grain heads were greater in mineral concentrations compared to stems. Dry biomass yield averaged 19.4 Mg ha −1 and was greater for M-81E and the early PD. Stems accounted for 73% of the total biomass compared to leaves (13%) across all treatments. Total N, P, and K removals averaged 136, 27.6, and 81.4 kg ha −1 , respectively. Overall, leaves removed 30, 23, and 19% of total N, P, and K compared to 34, 34, and 61% by stem, respectively. Considering lower biomass but greater mineral concentrations in leaf and grain heads compared to stems, returning leaf residues and possibly grain heads to the soil have the potential to offset nutrient and energy inputs needed on these marginal soils and enhance the sustainability of sweet sorghum cropping systems.

  7. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  8. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  9. Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence

    OpenAIRE

    Hunt, Harriet Vaughan; Shang, X; Jones, Martin Kenneth

    2017-01-01

    The two cultivated species of buckwheat, Fagopyrum esculentum (common buckwheat) and F. tataricum (Tartary buckwheat) are Chinese domesticates whose origins are usually thought to lie in upland southwestern China, outside the major centres of agricultural origins associated with rice and millet. Synthesis of the macro- and microfossil evidence for buckwheat cultivation in China found just 26 records across all time periods, of which the majority are pollen finds. There are few or no identifyi...

  10. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    Directory of Open Access Journals (Sweden)

    Dipak Sharma-Poudyal

    Full Text Available In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT plots adjacent to conventionally tilled (CT plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  11. Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions.

    Science.gov (United States)

    Balog, Adalbert; Hartel, Tibor; Loxdale, Hugh D; Wilson, Kenneth

    2017-11-01

    The five-year value in the compound annual growth rate of the biopesticides sector is predicted to be 16% by 2017 and to produce a global market worth $US 10 billion. Despite this, several impediments occur within the EU that negatively affect biopesticide research and innovation. At present, there are fewer biopesticide-active substances registered in the EU compared with the United States, India, Brazil and China. The relatively low level of biopesticide research in the EU (6880 ISI papers) versus the United States (18 839), India (9501) and China (7875) relates to the greater complexity of EU-based biopesticide regulations compared with these other countries. In this light, it is worth noting that tensions may exist between regulators that emphasise the beneficial nature of biopesticides in environmentally friendly crop management and those that adopt a more technologically based approach dependent on a chemical-pesticide-driven model. Compared with the other aforementioned countries, far fewer biopesticide products are available in the EU market, mainly as a direct result of the severe regulatory factors present there. The extent to which this trend will continue depends largely on a range of interacting political and/or regulatory decisions that influence environmentally friendly agricultural industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  13. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  14. Measurement of N{sub 2} fixation in Sesbania aculeata and Sorghum bicolor L. grown in intercropping system using {sup 15}N isotopic dilution technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Khalifa, K; Janat, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Agriculture

    2001-09-01

    A field experiment on Sesbania aculeata and Sorghum bicolor grown in mono cropping and in inter cropping systems was conducted under non-saline conditions (soil EC{sub e} 0.16, water EC{sub w}1dS/m) to evaluate dry matter production, total N yield, soil N uptake and N{sub 2}-fixation using {sup 15}N isotope dilution method. Three different row ratios of sesbania (ses) and sorghum (sor) were subjected in the inter cropping system (2ses: 1sot; 1ses: 1sor and 1ses: 2sor row ratio). Dry matter yield of sole sorghum was higher than that of sole sesbania, and it was similar to that produced by the inter cropping treatments. However, total N yield of sole sorghum was significantly the lowest, with no differences being obtained between sole sesbania and inter cropping treatments. The LERs of total N yield were, in all cases, higher than 1, reflecting a greater advantage of inter cropping system in terms of land use efficiency. Percentages of N{sub 2} fixation in the inter cropped sesbania were considerably enhanced compared with the pure stand of sesbania. This was mainly attributed to the depletion of soil N resulting from the greater apparent competitiveness of sorghum for soil N, and consequently, a greater dependence of sesbania on N{sub 2} fixation. However, the degree of the intraspecific competition for soil N uptake was affected by the proportion of crops in the mixture, and it was considerably reduced in the 2ses: 1sor row ratio. This was demonstrated when an equal depletion of soil and fertilizer N uptake occurred for both crops. We excluded in all-inter cropping treatments the possibility of N transfer from sesbania to sorghum. Row inter cropping, with crops grown in alternation of two rows of sesbania with one row of sorghum, seemed to be the most adequate row ratio in terms of total N yield, LER, N{sub 2}-fixation and soil N uptake balance of the component crops. (author)

  15. Structure and chemistry of the sorghum grain

    Science.gov (United States)

    Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...

  16. Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk

    NARCIS (Netherlands)

    Rurinda, J.; Mapfumo, P.; Wijk, van M.T.; Mtambanengwe, F.; Rufino, M.C.; Chikowo, R.; Giller, K.E.

    2014-01-01

    Questions as to which crop to grow, where, when and with what management, will be increasingly challenging for farmers in the face of a changing climate. The objective of this study was to evaluate emergence, yield and financial benefits of maize, finger millet and sorghum, planted at different

  17. Allelic variants in the PRR37 gene play and the human-mediated dispersal and diversification of sorghum

    Science.gov (United States)

    The domestication and spread of crops by early humans is of interest from a historical perspective and is of practical importance to present-day agriculturists. From its origin in northeastern Africa, cultivation of the tropical cereal sorghum spread north and south of the equator beginning approxi...

  18. Assessing production constraints, management and use of sorghum diversity in north-east Ghana : a diagnostic study

    NARCIS (Netherlands)

    Kudadjie, C.Y.; Struik, P.C.; Richards, P.; Offei, S.K.

    2004-01-01

    This paper reports on the results of a diagnostic study conducted to assess the problems and needs of sorghum farmers in north-east Ghana with the aim of determining the type of research that would be useful for them in their own context. The importance of the crop and its position within the

  19. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones

    NARCIS (Netherlands)

    Mohemed Ahmed Mohamed, Nasr Eldin; Charnikhova, Tatsiana; Bakker, Evert J.; Ast, van Aad; Babiker, Abdelgabar Gt; Bouwmeester, Harro J.

    2016-01-01

    BACKGROUND: Significant losses in sorghum biomass and grain yield occur in sub-Saharan Africa owing to infection by the root-parasitic weed Striga hermonthica (Del.) Benth. One strategy to avoid these losses is to adopt resistant crop varieties. For further delineation of the role of germination

  20. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  1. Assessment of sorghum-cowpea intercrop system under water-limited conditions using a decision support tool

    OpenAIRE

    Chimonyo, VGP; Modi, AT; Mabhaudhi, T

    2016-01-01

    Intercropping can improve crop productivity through increased water use efficiency (WUE). However, limited information exists to support its adoption and subsequent management. In such instances, crop models can be used as decision support tools to complement data from field trials. The Agricultural Production Systems Simulator Model (APSIM) was used to develop best management practices for improved yield and WUE for a sorghum-cowpea intercrop system for 5 sites in KwaZulu-Natal, South Africa...

  2. Transfer factors of radionuclides 137Cs and 65Zn from soil to pearl millet and sorghum

    International Nuclear Information System (INIS)

    Sachdev, P.; Sachdev, M.S.; Deb, D.L.

    1996-01-01

    The soil to plant transfer factors (TF) of 137 Cs and 65 Zn were determined for two crops, sorghum and pearl millet, under irrigated conditions in greenhouse and under rain fed conditions in field. In the greenhouse experiment, the accumulation of 137 Cs was almost doubled when the soil contamination level was doubled. Under field conditions, 137 Cs concentration in both pearl millet and sorghum grains as well as straw was nearly four times more at 148 kBq Kg -1 level of soil contamination as compared to lower level of 74 kBq kg -1 soil. The TF values for 65 Zn determined under greenhouse conditions for both the crops were nearly a hundred-fold higher as compared to 137 Cs. (author). 7 refs., 2 tabs

  3. Lipids characterization of ultrasound and microwave processed germinated sorghum.

    Science.gov (United States)

    Hassan, Sadia; Imran, Muhammad; Ahmad, Nazir; Khan, Muhammad Kamran

    2017-06-27

    Cereal crops and oilseeds provide diverse pool of fatty acids with characteristic properties. Sorghum (Sorghum bicolor (L.) Moench) provides the staple food with serving as main source of energy and protein. Germination of sorghum generally increases the nutritive value of seeds and the effects of germination on lipids composition of seeds vary greatly with processing conditions. Therefore, the current study was conducted to compare the effect of emerging processing techniques such as ultrasound (US) and microwave (MW) on fatty acids composition and oil yield of sorghum seeds before and after germination. Initially sorghum grains were soaked with 5% NaOCl (sodium hypochlorite) for surface sterilization. Afterwards, grains were soaked in excess water for 22 h at room temperature and were divided into four portions. The first portion (100 g grains) was subjected to germination without applying any microwave and ultrasonic treatment (T 0 ). Second portion was further divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group) and grains were subjected to ultrasonic treatments using two different ultrasonic intensities (US 1 : 40%; US 2 : 60%) within range of 0-100% and with two different time durations (t US1 : 5 min; t US2 : 10 min) at constant temperature. Third portion was also divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group) and exposed to microwave treatments at two different power levels (MW 1 : 450 watt; MW 2 : 700 watt) within the range of 100-900 W for two different time durations (t MW1 : 15 s; t MW2 : 30s). Similarly, fourth portion was divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group). Each group was exposed to both MW (MW 1 , MW 2 ) (100-900 watt power) & US (US 1 , US 2 ) (0-100% intensity) treatments at two different time levels (t US , t MW ). Then, germination was carried out and pre-treated raw and pre-treated germinated sorghum grains were analyzed for total oil yield, fatty acid

  4. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations.

    Science.gov (United States)

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Roth, G W; Hristov, A N

    2017-07-01

    Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly

  5. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    large sectors of Iberia for up to seven months (out of eleven) of the vegetative cycle. While in the case of the drought episode of 2005 the impact on vegetation covered roughly 2/3 of the Iberian Peninsula (Gouveia et al., 2012), whereas in the recent episode of 2012 the deficit in greenness affected a more restrictive area located in central Iberia. The vegetation response to water stress was also analysed and compared for different land cover types. Results revealed a stronger vulnerability to drought events for arable land with severe impacts on cereals crop productions and yield (namely wheat), for Portugal and Spain in both years, however slightly less severe for 2012. In conclusion, and from an operational point of view, our results reveal the ability of the developed methodology to monitor vegetation stress and droughts in Iberia. Acknowledgments: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAG-GLO/4155/2012) Garcia-Herrera R., Paredes D., Trigo R. M., Trigo I. F., Hernandez E., Barriopedro D. and Mendes M. A., 2007: The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation, J. Hydrometeorol., 8, 483-498. Gouveia C., Trigo R. M., and DaCamara C. C., 2009: Drought and vegetation stress monitoring in Portugal using satellite data, Nat. Hazards Earth Syst. Sci., 9, 185-195, doi:10.5194/nhess-9-185- 2009. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C., 2012: Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards Earth System Sciences, 12, 3123-3137, 2012, doi:10.5194/nhess-12-3123-2012. Hoerling M., Eischeid J., Perlwitz J., Quan X., Zhang T., Pegion P., 2012: On the Increased Frequency of Mediterranean Drought. J. Climate, 25, 2146-2161. doi: http://dx.doi.org/10.1175/JCLI-D-11-00296.1 Trigo R.M., Añel J., Barriopedro D., García-Herrera R., Gimeno L., Nieto R., Castillo R., Allen

  6. Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum

    Directory of Open Access Journals (Sweden)

    Tran Dang Xuan

    2015-08-01

    Full Text Available The use of biofuels helps to reduce the dependency on fossil fuels and therefore decreases CO2 emission. Ethanol mixed with gasoline in mandatory percentages has been used in many countries. However, production of ethanol mainly depends on food crops, commonly associated with problems such as governmental policies and social controversies. Sweet sorghum (Sorghum bicolor (L. Moench is one of the most potential and appropriate alternative crops for biofuel production because of its high biomass and sugar content, strong tolerance to environmental stress conditions and diseases, and wide adaptability to various soils and climates. The aim of this study was to select prospective varieties of sweet sorghum, optimum sowing times and densities to achieve high yields of ethanol production and to establish stable operational conditions in cultivating this crop. The summer-autumn cropping season combined with the sowing densities of 8.3–10.9 plant m−2 obtained the highest ethanol yield. Among cultivated locations, the soil with pH of 5.5 and contents of Al and Zn of 39.4 and 0.6 g kg−1, respectively, was the best condition to have an ethanol yield >5000 L ha−1. The pH ≥ 6.0 may be responsible for the significant reduction of zinc content in soils, which decreases both biomass of sweet sorghum and ethanol yield, while contents of N, P, K, organic carbon (OC and cation exchange capacity (CEC, and Fe likely play no role. The cultivar 4A was the preferred candidate for ethanol production and resistant to pests and diseases, especially cut worm (Agrotis spp..

  7. Decontamination Procedure for Sorghum and Coffee Leaves Sprayed With Zinc and a Surfactant

    OpenAIRE

    Caione, Gustavo; Guirra, Ana Paula Pires Maciel; Prado, Renato de Mello; Klar, Antonio Evaldo

    2014-01-01

    Decontaminating leaf samples from crops sprayed with pesticides and nutrient solutions is important for foliar analysis. This study evaluated the effect of different washing methods in coffee and sorghum foliage that had been sprayed with zinc (with or without surfactant). The plants were sprayed with a 3 g L-1 zinc sulfate solution, with and without surfactant. Seven days later, leaves were collected and washed. The experiment was completely randomized in a 2 x 2 x 3 + 2 factorial, with thre...

  8. Development of sorghum varieties and hybrids for dryland areas of ...

    African Journals Online (AJOL)

    Mo

    second to tef as injera (leavened local flat bread) making cereal. In the dryland areas of Ethiopia which covers 66 per cent of the total area, it is the major cereal crop grown. In these areas crop production is mainly rain-fed. Because of the low amount, uneven distribution and erratic nature of the rainfall crop production is ...

  9. The Effect of Soil Fertilizers on Yield and Growth Traits of Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2016-07-01

    , but they had significant effects on characteristics of root length colonization, specific root length, leaf area index, crop yield, number of seeds per panicle and thousand grains weight .The results demonstrated that the highest percent of root length colonization (82, specific root length (51.82 m root in 25 cm3 soil, leaf area index (5.47, seed yield (425.62 g.m-2, number of seeds in panicle (635 were obtained in mycorhhiza with Nitroxine® treatment. The highest weight of thousands seeds (29.26 g was gained in simultaneous use of mycrhhoriza and vermicampost. On the basis of our results, the integration of mycrhhoriza with Nitroxine® is suggested as the best fertilizer treatment for sorghum. Conclusions The results showed that the application of mycorrhiza with nitroxin had the greatest effect on growth characteristics and yield of sorghum. It seems that whenever there was a source of nitrogen beside the mycorrhiza, the performance of sorghum was higher. Undoubtedly, application of bio and organic fertilizers specially in poor soils, have positive effects on soil physical and nutritional characteristics. On the other hand according to economical, environmental and social aspects, they are benefits and could be appropriate alternative for chemical fertilizers in future.

  10. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  11. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2018-05-01

    Full Text Available A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice in China during 2106–2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop–Weather relationship over a Large Area (MCWLA family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6, +4.1 (+9.4 and +0.2 % (−1.7 %, respectively, in a warming scenario of 1.5 °C (2.0 °C. In general, the warming scenarios would bring more opportunities than

  12. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum

    International Nuclear Information System (INIS)

    Kiniry, J.R.; Landivar, J.A.; Witt, M.; Gerik, T.J.; Cavero, J.; Wade, L.J.

    1998-01-01

    Variability within a crop species in the amount of dry mass produced per unit intercepted solar radiation, or radiation-use efficiency (RUE), is important for the quantification of plant productivity. RUE has been used to integrate (1) leaf area, (2) solar radiation interception, and (3) productivity per unit leaf area into crop productivity. Responsiveness of RUE to vapor pressure deficit (VPD) should relate closely to responsiveness of CO 2 exchange rate (CER) to VPD. The objective of this study was to compare independent RUE measurements to published response functions relating VPD with RUE of maize (Zea mays L.) and grain sorghum [Sorghum bicolor L. (Moench)]. Data sets from five locations covering a wide range of mean VPD values were compared to published response functions. Predicted RUE values were nearly always within the 95% confidence intervals of measurements. Measured RUE of maize decreased as VPD increased from 0.9 to 1.7 kPa. For sorghum, measured values of RUE agreed closely with predictions. RUE of sorghum decreased as VPD increased from 1.1 to 2.2 kPa. The relative RUE:VPD responses for these two species were similar to CER:VPD responses reported in the literature. Thus, these RUE:VPD responses may be general and appear to be related to carbon exchange rates. We calculated the expected impacts of VPD on RUE at three USA locations during maize and sorghum growing seasons. The RUE:VPD equations offer hope in describing location effects and time-of-year effects on RUE. (author)

  13. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  14. Effect of liquid amendments on sorghum growth in an ultisol

    International Nuclear Information System (INIS)

    Camacho, Manuel E.; Cabalceta-Aguilar, Gilberto; Molina-Rojas, Eloy

    2015-01-01

    The effect of the application of liquid amendments was evaluated in a Ultisol cultivated with sorghum. The research was conducted between August and November 2011 at the Centro de Investigaciones Agronomicas, San Jose, Costa Rica. In 800 ml pots of Ultisol seeded with sorghum, the following treatments were applied: control were lime, calcium carbonate in doses of 10 and 20 l/ha, magnesium oxide in doses of 10 and 20 l/ha, carbonate calcium + magnesium oxide in doses of 5 + 5 and 10 + 10 l/ha, respectively. The plants were harvested at six weeks, which were determined leaf area, dry and fresh weight of aerial and root biomass, nutrient absorption and soil chemical characteristics. The treatments of calcium carbonate and in mixture with magnesium oxide obtained the best values of leaf area and the highest values of fresh and dry weight both for both root and aerial part of the sorghum. Little significant differences were found between treatments of liquid lime but there were important differences with respect to the control with no lime with the variables of weight of biomass. Liquid calcium carbonate increased the Ca uptake significantly, and the treatment of carbon + oxides in doses of 10 l/ha showed the highest absorption of Mg. An improvement in soil fertility was caused by all treatments of amendments, the most outstanding being the treatment of magnesium oxide in doses of 20 l/ha, which decreased the exchangeable acidity from 9.02 to 0.36 cmol (+)/l, the percentage of acid saturation was low from 95 to 3.3% and the pH increased from 5.0 to 5.7. The net amendments had a positive effect on the indicator crop and soil fertility. (author) [es

  15. Genetic Analysis of Recombinant Inbred Lines for Sorghum bicolor ? Sorghum propinquum

    OpenAIRE

    Kong, Wenqian; Jin, Huizhe; Franks, Cleve D.; Kim, Changsoo; Bandopadhyay, Rajib; Rana, Mukesh K.; Auckland, Susan A.; Goff, Valorie H.; Rainville, Lisa K.; Burow, Gloria B.; Woodfin, Charles; Burke, John J.; Paterson, Andrew H.

    2013-01-01

    We describe a recombinant inbred line (RIL) population of 161 F5 genotypes for the widest euploid cross that can be made to cultivated sorghum (Sorghum bicolor) using conventional techniques, S. bicolor ? Sorghum propinquum, that segregates for many traits related to plant architecture, growth and development, reproduction, and life history. The genetic map of the S. bicolor ? S. propinquum RILs contains 141 loci on 10 linkage groups collectively spanning 773.1 cM. Although the genetic map ha...

  16. Productivity of clay tailings from phosphate mining: 3. Grain crops

    International Nuclear Information System (INIS)

    Mislevy, P.; Blue, W.G.; Roessler, C.E.; Martin, F.G.

    1991-01-01

    A split-fold field experiment was conducted to study forage and grain yield, forage quality, plant nutrient concentrations, changes in soil nutrients, and 226 Ra contents of four grain crops in various rotations. The crop rotations (1) corn (Zea mays L. Jacques 247)-sunflower (Helianthus annuus L. Cargil 205), (2) sunflower-grain sorghum (Sorghum bicolor L, Moench Northrup King Savanna 5), (3) soybean (Glycine max L. Merr. Williams 80)-grain sorghum, and (4) grain sorghum-soybean (University of Florida V-1) were grown on a dry phosphatic clay with and without a 50-mm surface layer of quartz-sand tailings. Results show that corn and grain sorghum produced highest forage yields and highest grain yields per harvest, respectively. Soybean harvested for forage (Crop 1) contained the highest crude protein and in vitro organic matter digestibility. Concentrations of P, K, Ca, Mg, and Fe in most of the forages were adequate for the diets of beef cattle, while those of Mn, Cu and Zn were low. Mehlich I-extractable soil, Ca, and Mg were considered very high and changed little over the 4-yr production period. Application of 50 mm of sand tailings tended to increase Mehlich I-extractable P, Ca, Mn, Cu, Zn, and Fe. Radium-226 concentration in the forage of all grain crops averaged 8.5 Bq kg -1 , which was about 17 times higher than that in the grain of the same crops. Concentrations of 226 Ra in the forage and grain were 1.1% and 0.09% of the concentration in clay respectively. These data indicate that phosphatic clays can be a valuable resource for the production of corn and sorghum grain that contain low concentrations of 226 Ra

  17. Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare.

    Science.gov (United States)

    Fina, Brenda L; Lupo, Maela; Dri, Nicolas; Lombarte, Mercedes; Rigalli, Alfredo

    2016-08-01

    Fluorosis is a disease caused by over-exposure to fluoride (F). Argentina's rural lands have higher fluorine content than urban lands. Evidence confirms that plants grown in fluoridated areas could have higher F content. We compared F uptake and growth of crops grown in different F concentrations. The effect of 0-8 ppm F concentrations on maize, soybeans and sorghum germination and growth was compared. After 6 days seeding, the germination was determined, the roots and aerial parts lengths were measured, and vigor index was calculated. F content was measured in each part of the plants. Controls with equal concentrations of NaCl were carried out. Significant decrease in roots and aerial parts lengths, and in vigor index of maize and soybeans plants was observed with F concentrations greater than 2 ppm. This was not observed in sorghum seedlings. Also, the amount of F in all crops augmented as F increases, being higher in roots and ungerminated seeds. Sorghum was the crop with the highest F content. Fluoride decreased the germination and growth of maize and soybeans and therefore could influence on their production. Conversely, sorghum seems to be resistant to the action of F. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Growth and development of sugar sorghum (Sorghum saccharatum L. Pers. plants at different terms of sowing and seeding depth in the Forest-Steppe of Ukraine

    Directory of Open Access Journals (Sweden)

    Л. А. Герасименко

    2013-02-01

    Full Text Available The article features the results of research on phenological observations, biometric parameters of growth and development of the plants of sugar sorghum Silosnoe 42 variety during the vegetation at different terms of sowing and seeding depth in the Forest-Steppe of Ukraine. In particular, we show data on ground germination capacity of the seeds, the duration of the interphase periods, tillering, plant height and the diameter of the stem. It was established that the planting of sugar sorghum in mid-May (the third sowing date to the seeding depth of 4...6 cm enabled better plant development, as well as in these conditions the maximum values of plant growth and development were registered compared to the other test editions. Therefore, were would suggest the third term of sowing and seed depth 4...6 cm for growing the crop in this area.

  19. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data

    DEFF Research Database (Denmark)

    Nielsen, Lasse Janniche; Stuart, Peter; Pičmanová, Martina

    2016-01-01

    Background: The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous...... turnover of dhurrin for which putative pathways have been suggested but not confirmed. Results: In this study, the biosynthesis and endogenous turnover of dhurrin in the developing sorghum grain was studied by metabolite profiling and time-resolved transcriptome analyses. Dhurrin was found to accumulate...... analyses coupled with metabolite profiling, identified gene candidates involved in proanthocyanidin biosynthesis in sorghum. Conclusions: The results presented in this article reveal the existence of two endogenous dhurrin turnover pathways in sorghum, identify genes putatively involved...

  20. Sorghum used to fodder production in dry farming

    Directory of Open Access Journals (Sweden)

    G. Ferruzzi

    2010-04-01

    Full Text Available In Italy water deficient increase forward to cultivate resistant crops for forage production. In the present research it has been studied the opportunity of using 2 varieties of sorghum: the “Sweet Creek”, used as green forage and for silage and the “True”, with thinner stalks, used as hay. The fodder production and the dhurrin content during the vegetative phase of the 2 varieties were recorded. Production and chemical characteristics of green and preserved fodders (hay and silage were determined; moreover the nutritive value and the in vitro digestibility of DM were measured. Results confirm the good adaptation of the sorghum to the water limited conditions as those ones in which the test has been carried out; green and preserved fodders yield were high, however during the hay harvest problems due to the different drying dynamics of leaves and stalks were found. The dhurrin content of these two varieties, even in the young phase, allows the use for grazing of the regrown, which have good bunching.

  1. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  2. Nitrogen levels and yeast viability during ethanol fermentation of grain sorghum containing condensed tannins

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, J T; NeSmith, C

    1988-01-01

    Selected varieties of sorghum, Sorghum bicolor (L.) Moench, give high crop yields and they also return to favorable energy balance in terms of energy calories produced per cultural energy invested. The brown, condensed-tannin, bird- and mold-resistant varieties illustrate these advantages, but their nutritional value and ability to support the expected rate of ethanol fermentation is significantly lower than that of non-brown sorghums. It has been previously shown that the addition of nitrogen to brown sorghum mash supports a high rate of fermentative metabolism without removing the tannins, and suggested that the basis for the inhibition of ethanol fermentation was nitrogen starvation of the yeast cells. In this investigation, it is demonstrated that the addition of protease enzyme to mash results in an increase in amino nitrogen sufficient to support accelerated rates of ethanol fermentation by yeast cells. Thus, the hypothesis commonly cited in the literature that the presumed inhibitor, condensed tannins, function to reduce fermentative metabolism solely via the binding and precipitation of proteins is rejected.

  3. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    Science.gov (United States)

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  4. Nutrient content of sorghum beer strainings

    African Journals Online (AJOL)

    Sorghum beer strainings were analysed for starch, protein, fat, crude fibre, ash, minerals and ... The importance of minerals in animal nutrition has been recognized for many ..... strainings is probably due to yeast activity during fermentation ...

  5. Genetic diversity among sorghum landraces and polymorphism ...

    African Journals Online (AJOL)

    breeding program through marker-assisted selection. ... Keywords: Sorghum, diversity, stay-green trait, marker, polymorphism. ..... Na: Number of different alleles; Na Freq: Frequency of different alleles; Ne: Number of effective alleles; ...

  6. Sorghum production under future climate in the Southwestern USA: model projections of yield, greenhouse gas emissions and soil C fluxes

    Science.gov (United States)

    Duval, B.; Ghimire, R.; Hartman, M. D.; Marsalis, M.

    2016-12-01

    Large tracts of semi-arid land in the Southwestern USA are relatively less important for food production than the US Corn Belt, and represent a promising area for expansion of biofuel/bioproduct crops. However, high temperatures, low available water and high solar radiation in the SW represent a challenge to suitable feedstock development, and future climate change scenarios predict that portions of the SW will experience increased temperature and temporal shifts in precipitation distribution. Sorghum (Sorghum bicolor) is a valuable forage crop with promise as a biofuel feedstock, given its high biomass under semi-arid conditions, relatively lower N fertilizer requirements compared to corn, and salinity tolerance. To evaluate the environmental impact of expanded sorghum cultivation under future climate in the SW USA, we used the DayCent model in concert with a suite of downscaled future weather projections to predict biogeochemical consequences (greenhouse gas flux and impacts on soil carbon) of sorghum cultivation in New Mexico. The model showed good correspondence with yield data from field trials including both dryland and irrigated sorghum (measured vs. modeled; r2 = 0.75). Simulation experiments tested the effect of dryland production versus irrigation, low N versus high N inputs and delayed fertilizer application. Nitrogen application timing and irrigation impacted yield and N2O emissions less than N rate and climate. Across N and irrigation treatments, future climate simulations resulted in 6% increased yield and 20% lower N2O emissions compared to current climate. Soil C pools declined under future climate. The greatest declines in soil C were from low N input sorghum simulations, regardless of irrigation (>20% declines in SOM in both cases), and requires further evaluation to determine if changing future climate is driving these declines, or if they are a function of prolonged sorghum-fallow rotations in the model. The relatively small gain in yield for

  7. Effects of Nitrogen Application on Growth and Ethanol Yield of Sweet Sorghum [Sorghum bicolor (L. Moench] Varieties

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Olugbemi

    2016-01-01

    Full Text Available A study was carried out in two locations, Ilorin (8° 29′ N; 4° 35′ E; about 310 m asl and Ejiba (8° 17′ N; 5° 39′ E; about 246 m asl, at the Southern Guinea Savannah agroecological zone of Nigeria to assess the effect of nitrogen fertilizer on the growth and ethanol yield of four sweet sorghum varieties (NTJ-2, 64 DTN, SW Makarfi 2006, and SW Dansadau 2007. Five N fertilizer levels (0, 40, 80, 120, and 160 kg ha−1 were used in a 4 × 5 factorial experiment, laid out in split-plots arrangement. The application of nitrogen fertilizer was shown to enhance the growth of sweet sorghum as observed in the plant height, LAI, CGR, and other growth indices. Nitrogen fertilizer application also enhanced the ethanol yield of the crop, as variations in growth parameters and ethanol yield were observed among the four varieties studied. The variety SW Dansadau 2007 was observed as the most promising in terms of growth and ethanol yield, and the application of 120 kg N ha−1 resulted in the best ethanol yield at the study area.

  8. Sudex cover crops can kill and stunt subsequent tomato, 
lettuce and broccoli transplants through allelopathy

    OpenAIRE

    Summers, Charles G.; Mitchell, Jeffrey P.; Prather, Timothy S.; Stapleton, James J.

    2009-01-01

    Grass cover crops can be harvested for biomass or used as a surface mulch to reduce erosion, improve soil structure, suppress weeds and conserve moisture. There is concern, however, that such plantings may affect subsequent crops. We studied the effects of sudex, a sorghum hybrid used as a cover crop, on subsequent crops of tomato, broccoli and lettuce started from transplants. Within 3 to 5 days of being transplanted into recently killed sudex, all three crops showed symptoms of phytotoxicit...

  9. TECHNOLOGICAL ADVANCES IN THE OBTAINING OF ETHANOL FROM Sweet sorghum (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Sandro Pedroso Cunha

    2010-11-01

    Full Text Available ABSTRACT: Replacing the use of gasoline with ethanol in vehicles reduces by 90% CO2 emissions, this justifies the interest in the use of bioethanol as renewable energy. Besides sugar cane, cassava, maize and sugar beet special emphasis is being given to sorghum (Sorghum bicolor L. Moench to produce ethanol for its productivity and resistance. The sorghum is grown in Rio Grande do Sul with a production of about 70,000 tons / year. Embrapa has a program to develop cultivars of sorghum from the time the Pro-Alcohol and currently 25 new varieties of sorghum are being evaluated. Several factors are relevant in the optimization of production such as increased productivity and reduced costs in the production of ethanol. This study aimed to survey recent data that will assess production parameters of ethanol from sorghum. Factors such as reducing the risk of bacterial contamination, the means conducive to fermentation processes or grain sorghum stalk through the use of pretreatment of the sample, have been of great importance because it is basically turning cellulosic biomass into fermentable sugars. Superior genotypes of sweet sorghum for ethanol production are of utmost importance, as well as better ways to convert sugars into ethanol. Lignin, toxic against microorganisms, prevents the conversion of lignocellulose into ethanol. The conversion of lignocellulosic ethanol compounds based on the hydrolysis of cellulose producing simple sugars and fermenting those sugars into ethanol through microbiology.

  10. Dhurrin content relates to sorghum (Sorghum bicolor (L) Moench) seedling growth in marginal soils.

    Science.gov (United States)

    Dhurrin content in leaves of mature sorghum plant is a quantitative measure of the level of pre-and postflowering drought tolerance (Burke et al., 2013). Postflowering drought tolerance in sorghum is linked to the staygreen (delayed senescence) trait (Howarth, 2000; Rosenow et al., 1977) which has b...

  11. Dhurrin content relates to sorghum [sorghum bicolor (L.) Moench] seedling growth in marginal soils

    Science.gov (United States)

    Dhurrin content in leaves of mature sorghum plant is a quantitative measure of the level of pre-and postflowering drought tolerance (Burke et al., 2013). Postflowering drought tolerance in sorghum is linked to the staygreen (delayed senescence) trait (Howarth, 2000; Rosenow et al., 1977) which has ...

  12. Analysis of aluminium sensitivity in sorghum (Sorghum bicolor (L.) Moench) genotypes

    NARCIS (Netherlands)

    Tan, K.

    1993-01-01

    Twelve genotypes of sorghum ( Sorghum bicolor (L.) Moench) differing in Al sensitivity were grown in an acid soil (with additions of lime or MgSO 4 ) and in nutrient solutions (with or without Al at constant pH) for periods between 14 and 35 days.

  13. Radioinduced variation in genetic improvement of sorghum (Sorghum bicolor (l.). Moench)

    International Nuclear Information System (INIS)

    Gutierrez del Rio, E.

    1984-01-01

    A genetic variability study among 25 varieties of sorghum (Sorghum bicolor (L.) Moench) is presented. The populations are irradiated with 0, 10, 20, 30, 40, 50 and 60 Krads of cobalt 60 as far as M 5 generation. An individual selection is done taking into consideration agronomic characteristics like precocity, type, size. height of the plant. (M.A.C.) [pt

  14. Carboxylesterase activities toward pesticide esters in crops and weeds.

    Science.gov (United States)

    Gershater, Markus; Sharples, Kate; Edwards, Robert

    2006-12-01

    Proteins were extracted from maize, rice, sorghum, soybean, flax and lucerne; the weeds Abutilon theophrasti, Echinochloa crus-galli, Phalaris canariensis, Setaria faberii, Setaria viridis, Sorghum halepense and the model plant Arabidopsis thaliana and assayed for carboxylesterase activity toward a range of xenobiotics. These included the pro-herbicidal esters clodinafop-propargyl, fenoxaprop-ethyl, fenthioprop-ethyl, methyl-2,4-dichlorophenoxyacetic acid (2,4-d-methyl), bromoxynil-octanoate, the herbicide-safener cloquintocet-mexyl and the pyrethroid insecticide permethrin. Highest activities were recorded with alpha-naphthyl acetate and methylumbelliferyl acetate. Esters of p-nitrophenol were also readily hydrolysed, with turnover declining as the chain length of the acyl component increased. Activities determined with model substrates were much higher than those observed with pesticide esters and were of limited value in predicting the relative rates of hydrolysis of the crop protection agents. Substrate preferences with the herbicides were typically 2,4-d-methyl>clodinafop-propargyl>fenthioprop-ethyl, fenoxaprop-ethyl and bromoxynil-octanoate. Isoelectric focussing in conjunction with staining for esterase activity using alpha-naphthyl acetate as substrate confirmed the presence of multiple carboxylesterase isoenzymes in each plant, with major qualitative differences observed between species. The presence of serine hydrolases among the resolved isoenzymes was confirmed through their selective inhibition by the organophosphate insecticide paraoxon. Our studies identify potentially exploitable differences between crops and weeds in their ability to bioactivate herbicides by enzymic hydrolysis and also highlight the usefulness of Arabidopsis as a plant model to study xenobiotic biotransformation.

  15. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars.

    Science.gov (United States)

    Forte, Annachiara; Zucaro, Amalia; Fagnano, Massimo; Fierro, Angelo

    2017-11-15

    A life cycle assessment (LCA) was applied to assess the environmental load of a prospective local bioethanol (EtOH) production system in Southern Italy by using lignocellulosic Fiber sorghum (FS) feedstock. A two steps analysis was carried out considering: (i) a "cradle-to-farm gate" LCA to investigate thoroughly the FS cultivation on hilly marginal land and (ii) a "cradle-to-wheels" system boundary encompassing the environmental pressure of the whole EtOH supply-use chain. Primary data related to lignocellulosic biomass production were combined with experimental feedstock conversion processes through advanced second generation technology. The purpose was the evaluation of the environmental performance of different EtOH-gasoline mixtures in midsize passenger cars: E10 (10% of EtOH and 90% of gasoline) and E85 (85% of EtOH and 15% of gasoline). N fertilization appeared as the prevailing contributor of the crop phase. The "cradle-to-wheels" results concerning E10 passenger car disclosed that the main hotspots were represented by the input of low sulphur petrol (66%) and the linked tailpipe emissions (15%), for almost all the impact categories. Otherwise, for E85 flex-fuel vehicle, the major drivers were represented by the feedstock production (46%) and the imported electricity used in the conversion facility (18%). The FS EtOH blends entailed potential environmental benefits compared with the fossil counterpart (gasoline) for climate change, ozone and fossil depletions. Otherwise, they evidenced a worse profile in terms of acidification, eutrophication and particulate matter formation. Within the context of a the prospective territorial bio-refinery network, the comparison of the annual FS bioethanol based systems with similar EtOH scenarios from giant reed perennial crops highlighted: (i) the importance to optimize the N-management for FS feedstock cultivation and (ii) the need to increase the use of the renewable energy carriers along the industrial conversion

  16. Utilization of Iles-Iles and Sorghum Starch for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2014-05-01

    Full Text Available The aims of this study were to convert the starches from iles-iles tubers (Amorphophalus campanulatus and sorghum grains (Sorghum bicolor L into bioethanol as an alternative energy. Both of these agricultural products contains a high content starches and they do not use as the major foods in Indonesia. To find out the maximum ethanol concentration and yield, both the raw materials were converted to ethanol on various process variables including the concentration of flour substrate solution (100-300 g/L, β-amylase enzyme concentration (0.8 - 6.4 ml/kg of flour , the  concentration of dry yeast S. cerevisiae (2-15 g, and fermentation time (72-168 hours. The results showed that at the flour substrate concentration of 250 g/L produced the maximum ethanol contents of 100.29 g/L and 95.11 g/L   for iles-iles and sorghum, respectively. Effect of β-amylase enzyme in the saccharification process showed that at concentration  of 3.2 ml/kg  the maximum reducing sugar content of 204.94 g/L and 193.15 g/L  for iles-iles and sorghum substrate, respectively were generated therefore it was corresponding to the maximum ethanol production. The concentration effect of dry yeast S. cerevisiae in the fermentation stage for the iles-iles and sorghum substrate revealed that the maximum ethanol obtained at 5 g yeast activated in 100 ml medium starter resulted the highest ethanol content 100.29 g/L 95.11 g/L for iles-iles and sorghum substrate, respectively. To determine the effect of fermentation time on ethanol yield from iles-iles and sorghum substrate, the fermentation process were performed at 3, 5, and 7 days. The maximum ethanol fermentation was obtained at 5 days fermentation. The ethanol yield is calculated by weight of ethanol is formed (g divided by the weight of flour (g. Based on the experiment results, conducted, generally the highest ethanol yield of iles-iles was higher than that of sorghum flour. The highest yield (g/g iles-iles and sorghum

  17. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  18. Potential impacts of agricultural drought on crop yield variability under a changing climate in Texas

    Science.gov (United States)

    Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.

    2017-12-01

    Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.

  19. Sorghum

    NARCIS (Netherlands)

    Kumar, U.; Craufurd, P.; Gowda, C.L.L.; Kumar, A.A.; Claessens, L.F.G.

    2012-01-01

    The document attempts to distil what is currently known about the likely impacts of climate change on the commodities and natural resources that comprise the mandate of CGIAR and its 15 Centres. It was designed as one background document for a review carried out by the High Level Panel of Experts on

  20. Effects of climate change on water requirements and phenological period of major crops in Heihe River basin, China - Based on the accumulated temperature threshold method

    Science.gov (United States)

    Han, Dongmei; Xu, Xinyi; Yan, Denghua

    2016-04-01

    In recent years, global climate change has significantly caused a serious crisis of water resources throughout the world. However, mainly through variations in temperature, climate change will affect water requirements of crop. It is obvious that the rise of temperature affects growing period and phenological period of crop directly, then changes the water demand quota of crop. Methods including accumulated temperature threshold and climatic tendency rate were adopted, which made up for the weakness of phenological observations, to reveal the response of crop phenological change during the growing period. Then using Penman-Menteith model and crop coefficients from the United Nations Food& Agriculture Organization (FAO), the paper firstly explored crop water requirements in different growth periods, and further forecasted quantitatively crop water requirements in Heihe River Basin, China under different climate change scenarios. Results indicate that: (i) The results of crop phenological change established in the method of accumulated temperature threshold were in agreement with measured results, and (ii) there were many differences in impacts of climate warming on water requirement of different crops. The growth periods of wheat and corn had tendency of shortening as well as the length of growth periods. (ii)Results of crop water requirements under different climate change scenarios showed: when temperature increased by 1°C, the start time of wheat growth period changed, 2 days earlier than before, and the length of total growth period shortened 2 days. Wheat water requirements increased by 1.4mm. However, corn water requirements decreased by almost 0.9mm due to the increasing temperature of 1°C. And the start time of corn growth period become 3 days ahead, and the length of total growth period shortened 4 days. Therefore, the contradiction between water supply and water demands are more obvious under the future climate warming in Heihe River Basin, China.

  1. The impact of weather conditions on response of sorghum genotypes to anthracnose (Colletotrichum sublineola) infection

    Science.gov (United States)

    Rainfall is a major climatic factor influencing anthracnose development and in this study, 68 sorghum accessions were evaluated for anthracnose resistance under dry and wet growing conditions at the Texas A&M Agricultural Experiment Station, near College Station, Texas. Accessions, planted in a ran...

  2. Effect of Sources and Storage Conditions on Quality of Sorghum ...

    African Journals Online (AJOL)

    The germination test of sorghum seeds varied highly significantly (P<0.001) from Kwimba. 74%, Chamwino .... Mean separation test was done using Least. Significance ... for QDS sorghum is 98%. One dot represents more than one sample.

  3. 76 FR 314 - Sorghum Promotion, Research, and Information Program: Referendum

    Science.gov (United States)

    2011-01-04

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Doc. No. AMS-LS-10-0103] Sorghum Promotion, Research, and Information Program: Referendum AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice of Opportunity to Participate in the Sorghum Promotion, Research, and Information...

  4. Sorghum stem yield and soluble carbohydrates under different ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Key words: Sweet sorghum, grain sorghum, salinity, stem yield, ... The effect of salinity on the stem yield and sucrose was .... growth and polyamine metabolism in two citrus rootstocks with ... Growth and osmoregulation in two.

  5. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions

    OpenAIRE

    Ghazi N. Al-Karaki; M. Al-Hashimi

    2012-01-01

    The objectives of this study were to evaluate five forage crops (alfalfa (Medicago sativa), barley (Hordeum vulgare), cowpea (Vigna unguiculata), sorghum (Sorghum bicolor), and wheat (Triticum aestivum)) for green fodder production and water use efficiency under hydroponic conditions. The experiment has been conducted under temperature-controlled conditions (24 ± 1°C) and natural window illumination at growth room of Soilless Culture Laboratory, Arabian Gulf University, Manama, Bahrain. The r...

  6. Fermentation and enzyme treatments for sorghum

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Schons

    2012-03-01

    Full Text Available Sorghum (Sorghum bicolor Moench is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum, phytase (2640 U/Kg sorghum and Paecilomyces variotii (1.6 X 10(7 spores/mL; A Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  7. Fermentation and enzyme treatments for sorghum.

    Science.gov (United States)

    Schons, Patrícia Fernanda; Battestin, Vania; Macedo, Gabriela Alves

    2012-01-01

    Sorghum (Sorghum bicolor Moench) is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum), phytase (2640 U/Kg sorghum) and Paecilomyces variotii (1.6 X 10(7) spores/mL); A) Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B) An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C) a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  8. Inclusion of sorghum, millet and cottonseed meal in broiler diets: a meta-analysis of effects on performance.

    Science.gov (United States)

    Batonon-Alavo, D I; Umar Faruk, M; Lescoat, P; Weber, G M; Bastianelli, D

    2015-07-01

    A meta-analysis was conducted (i) to evaluate broiler response to partial or total substitution of corn by sorghum and millet and (ii) to determine the effect of soybean meal replacement by cottonseed meal in broiler diet. The database included 190 treatments from 29 experiments published from 1990 to 2013. Bird responses to an experimental diet were calculated relative to the control (Experimental-Control), and were submitted to mixed-effect models. Results showed that diets containing millet led to similar performance as the corn-based ones for all parameters, whereas sorghum-based diets decreased growth performance. No major effect of the level of substitution was observed with millet or cottonseed meal. No effect of the level of substitution of sorghum on feed intake was found; however, growth performance decreased when the level of substitution of corn by sorghum increased. Cottonseed meal was substituted to soybean meal up to 40% and found to increase feed intake while reducing growth performance. Young birds were not more sensitive to these ingredients than older birds since there was no negative effect of these ingredients on performance in the starter phase. Results obtained for sorghum pointed out the necessity to find technological improvements that will increase the utilization of these feedstuffs in broiler diet. An additional work is scheduled to validate these statistical results in vivo and to evaluate the interactions induced with the simultaneous inclusions of sorghum, millet and cottonseed meal in broiler feeding.

  9. Morphological responses of forage sorghums to salinity and ...

    African Journals Online (AJOL)

    The response of forage sorghum [Sorghum bicolor (L.) Moench] varieties to salinity and irrigation frequency were studied from December 2007 to December 2009. Two forage sorghum varieties (Speedfeed and KFS4) were grown under salinity levels of 0, 5, 10 and 15 dS m-1 and irrigated when the leaf water potential ...

  10. Tapping the US sweet sorghum collection to identify biofuel germplasm

    Science.gov (United States)

    The narrow genetic base in sweet sorghum [Sorghum bicolor (L.) Moench] breeding programs is limiting the development of new varieties for biofuel production. Therefore, the identification of genetically diverse sweet sorghum germplasm in the U.S. National Plant Germplasm System (NPGS) collection is...

  11. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)

    user

    2012-03-15

    Mar 15, 2012 ... Sweet sorghum (sugar sorghum, Sorghum bicolor) is one kind of non-grain energy ... government that only ''non-grain” materials can be used ... In this work, ... inoculated (10%, v/v) into fermentation medium prepared with the.

  12. Agro-biodiversity in Subsistence Farming Systems of South Somalia –Collection and Agronomic Assessment of Somali Sorghum (Sorghum bicolor (L. Moench Germplasm

    Directory of Open Access Journals (Sweden)

    Manzelli, M.

    2006-01-01

    Full Text Available After the collapse of Siyad Barre' regime, Somalia lost any form of agricultural research with negative consequences on food availability and seed sector stability. A fi rst step to restore food security can be represented by enhancing local genetic resources. Sorghum (Sorghum bicolor (L. Moench is a very important crop in rainfed areas of Somalia serving as primary source of food and forage. Eight morphological and productive characteristics were chosen to assess the phenotypic variability of 7 accessions from South Somalia. Univariate (ANOVA and multivariate (discriminant and cluster analysis methods were used to assess the productive variation within the accession and to group the 7 accessions into clusters based on quantitative characters. The results showed that there is a wide morpho-agronomical diversity among accessions, especially regarding specifi c features suitable for different purpose, such as grain and/or forage production. Moreover the landraces were able to grow and produce under harsh environmental conditions. The gathered information can be used to promote the conservation and future improvement of local sorghum landraces, thus aiding in the stabilisation of a secure and sustainable food resource for farmers of southern Somalia.

  13. Response of Sorghum bicolor L. to Residual Phosphate on Two Contrasting Soils Previously Planted to Cowpea or Maize

    Directory of Open Access Journals (Sweden)

    Tola Omolayo Olasunkanmi

    2016-01-01

    Full Text Available Proper fertilizer nutrient management through adequate utilization of the residual value coupled with healthy crop rotation contributes significantly to sustainable crop production. This study was conducted to evaluate the direct and residual effects of two rock phosphate (RP materials on two contrasting soils previously planted with either the cereal crop or the leguminous crop. The effectiveness of the RP materials as substitute for the conventional P fertilizers was evaluated using single superphosphate as reference at the Department of Agronomy, University of Ibadan, Ibadan, Nigeria. The experiments were 2 × 2 × 4 factorial in completely randomized design. The test crops in the first cropping performed better on the slightly acidic loamy sand than on the strongly acidic sandy clay loam. Performance of each crop was improved by P supply in the first and second cropping. Single superphosphate proved to be more efficient than the RPs in the first cropping but not as effective as MRP in the second cropping. In the second cropping, sorghum performed better on the soil previously cropped to cowpea while Morocco RP had the highest residual effect among the P-fertilizer sources. It is evident that rock phosphates are better substitutes to the conventional phosphorus fertilizers due to their long term residual effect in soils. The positive effects of healthy rotation of crops as well as the negative effects of low soil pH are also quite obvious.

  14. Measurement of N2 fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, using sup 1 sup 5 N isotopic dilution technique. 1: Field evaluation under non-saline conditions

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2002-01-01

    A field experiment on Sesbania aculeata and Sorghum bicolor grown in mono cropping and in inter cropping systems was conducted under non-saline conditions (soil EC sub e 0.16, water EC sub w 1 ds/m/m) to evaluate dry matter production, total N yield, soil N uptake and N sub 2 -fixation using sup 1 sup 5 N isotope dilution method. Three different row ratios of sesbania (ses) and sorghum (sor) were subjected in the inter cropping system (2 ses: 1 sor; 1 ses: 1 sor and 1 ses: 2 sor row ratio). Dry matter yield of sole sorghum was higher than that of sole sesbania, and it was similar to that produced by the inter cropping treatments. However, total N yield of sole sorghum was significantly the lowest, with no differences being obtained between sole sesbania and inter cropping treatments. The LERs of total N yield were, in all cases, higher than 1, reflecting a greater advantage of inter cropping system in terms of land use efficiency. Percentages of N sub 2 fixation in the inter cropped sesbania were considerably enhanced compared with the pure stand of sesbania. This was mainly attributed to the depletion of soil N resulting from the greater apparent competitiveness of sorghum for soil N, and consequently, a greater dependence of sesbania on N sub 2 fixation. However, the degree of the intraspecific competition for soil N uptake was affected by the proportion of crops in the mixture, and it was considerably reduced in the 2 ses: 1 sor row ratio. This was demonstrated when an equal depletion of soil and fertilizer N uptake occurred for both crops. We excluded in all-inter cropping treatments the possibility of N transfer from sesbania to sorghum. Row inter cropping, with crops grown in alternation of two rows of sesbania with one row of sorghum, seemed to be the most adequate row ratio in terms of total N yield, LER, N sub 2 -fixation and soil N uptake balance of the component crops. (author)

  15. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    Puspitasari, W.; Human, S.; Wirnas, D.; Trikoesoemaningtyas

    2012-01-01

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  16. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench)

    DEFF Research Database (Denmark)

    Blomstedt, Cecilia K; O'Donnell, Natalie H; Bjarnholt, Nanna

    2016-01-01

    Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and U...

  17. Production and nutrition rates of piatã grass and hybrid sorghum at different cutting ages - doi: 10.4025/actascianimsci.v35i3.18016

    Directory of Open Access Journals (Sweden)

    Luciano da Silva Cabral

    2013-07-01

    Full Text Available The influence of cutting age on yield and nutrition rates of piatã grass (Brachiaria brizantha cv. BRS Piatã and hybrid sorghum (Sorghum spp. cv. BRS 801 under an integrated crop-livestock system was evaluated. The trial was carried out at the Embrapa Beef Cattle (20°27¢ S; 54°37¢ W in Campo Grande, Mato Grosso do Sul State, Brazil, between April and October 2009. Experimental design consisted of randomized blocks with four replicates. Treatments were distributed across a split-plot design, which included three production systems (single piatã grass; single hybrid sorghum; mixed cultivation of sorghum and piatã grass. Half-plots consisted of three forage ages at harvest (with 70, 90 and 110 days after seeding. Variables included agronomical characteristics, productivity and nutrition value. Regardless of the evaluated systems, cutting age affected agronomical characteristics and in vitro digestibility of organic matter (IVDOM. Production was highest (4,048 kg ha-1 within the integrated system. Regardless of cutting age, monoculture sorghum had the highest crude protein level. Results showed that integrated sorghum and piatã grasses were an asset for forage productivity. Forages had higher rates in crude protein and in in vitro digestibility of organic matter on the 70th day after seeding.   

  18. Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum

    Directory of Open Access Journals (Sweden)

    Ilaria Proietti

    2015-03-01

    Full Text Available Sorghum (Sorghum bicolor (L. Moench is a drought-resistant crop and an important food resource in terms of nutritional as well as social-economic values, especially in semi-arid environments. Cultivar selection and processing methods have been observed to impact on composition and functional and nutritional value of sorghum. Amino acid imbalance, cyanogenic glycosides, endogenous anti-nutrients, mycotoxins and toxic elements are among factors impairing its nutritional value. This paper reviews possible approaches (varieties selection, production practices, cooking processes to improve the benefits-to-risks balance of sorghum meal, to mitigate the risk of deficiencies and/or imbalances and to improve effects on human nutrition. Opportunity for avoiding dietary diversification in high sorghum consumers is also discussed, e.g., tryptophan and niacin deficits potentially related to pellagra, or unavailability of proteins and divalent cations (e.g., Fe, Zn due to the antinutrient activity of phytic acid and tannins. As potential candidate for production investments, the role of sorghum in preserving biological diversity is also considered.

  19. Field damage of sorghum (Sorghum bicolor) with reduced lignin levels by naturally occurring insect pests and pathogens

    Science.gov (United States)

    Mutant lines of sorghum with low levels of lignin are potentially useful for bioenergy production, but may have problems with insects or disease. Field grown normal and low lignin bmr6 and bmr12 sorghum (Sorghum bicolor) were examined for insect and disease damage in the field, and insect damage in ...

  20. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Directory of Open Access Journals (Sweden)

    Ran Du

    Full Text Available The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY. These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  1. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Science.gov (United States)

    Du, Ran; Yan, Jianbin; Feng, Quanzhou; Li, Peipei; Zhang, Lei; Chang, Sandra; Li, Shizhong

    2014-01-01

    The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  2. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...... sorghum plants. In each field, leaf samples were collected from five well-developed (performing) and five less-developed (non-performing) plants at 3-5 leaf stage, while at plant maturity leaf, stem and root samples were collected from the same plants and fungal endophytes were isolated. A total of 39...... fungal species belonging to 25 genera were isolated. The most represented genera included Fusarium, Leptosphaeria, Curvularia, Nigrospora and Penicillium. The genera Fusarium and Penicillium occurred significantly higher in performing plants as compared to non-performing plants while the genera...

  3. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant.

    Science.gov (United States)

    Syamala, D; Devi, Prathibha

    2003-12-01

    Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.

  4. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States

    Science.gov (United States)

    Coupe, Richard H.; Capel, Paul D.

    2016-01-01

    BACKGROUNDGenetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected.RESULTSThere has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops.CONCLUSIONSThe observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis.

  5. Diurnal oscillation of SBE expression in sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chuanxin; Mutisya, J.; Rosenquist, S.; Baguma, Y.; Jansson, C.

    2009-01-15

    Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This is different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.

  6. Effect of sowing date on grain quality of sorghum ( Sorghum bicolor ...

    African Journals Online (AJOL)

    IVHAA) while minerals; iron and zinc were determined using Atomic Absorption Spectrophotometry. Significant site by variety by sowing date interactions at P < 0.05 level of probability were obtained for protein, iron and zinc content of sorghum ...

  7. Crop Depredation by Birds in Deccan Plateau, India

    Directory of Open Access Journals (Sweden)

    Manoj Ashokrao Kale

    2014-01-01

    Full Text Available Extent of crop depredation in agricultural fields of groundnut, pearl millet, peas, sorghum and sunflower was assessed in Pune, Akola and Amravati, the three productive districts of Maharashtra, India. The study included interviews with the farmers, identification of the bird species responsible for the crop depredation and actual field assessment of damage. The problem of crop depredation is severe for the crops mostly during harvesting season. Most farmers were not satisfied with the conventional bird repelling techniques. A maximum depredation was observed by Sorghum crops by house sparrows Passer domesticus, baya weavers Ploceus philippinus, and rose-ringed parakeets Psittacula krameri, accounting to 52% of the total damage. Blue rock pigeons Columba livia damaged 42% of the peas crop (chick peas and pigeon peas, while house sparrows and baya weaver damaged the groundnut crop by 26% in the sampling plots. House sparrow Passer domesticus and baya weaver Ploceus philippinus damaged the groundnut crop in the sampling plots just after the sowing period. The sustainable solution for reducing crop depredation is a need for the farmers and also such techniques will help avoid direct or indirect effects of use of lethal bird control techniques on bird species.

  8. Impact of Brewery Waste Sludge on Sorghum (Sorghum bicolor L. Moench Productivity and Soil Fertility in Harari Regional State, Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Nano Alemu Daba

    2017-04-01

    Full Text Available The study was conducted on farmers' field in sofi district of Harari Regional State during 2013/2014 main cropping season, eastern Ethiopia, to investigate the impact of brewery sludge on sorghum production and soil fertility. The treatments comprised seven levels of brewery sludges (0, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 t ha-1 and NP inorganic fertilizer at recommended rate, arranged in randomized complete block design with four replications. Application of brewery sludge at 15 t ha-1 significantly increased the yield and biomass yield of sorghum by 79 and 85% over control and by 57 and 67% over NP application, respectively. There was no effect of brewery sludge application on heavy metals concentrations in soil after crop harvest, compared to international standard tolerable level. Co and Se levels were high in the control as well as in the soils treated with brewery sludge indicating the already high concentration of these heavy metals in the soils of the area. Plots, which received higher brewery sludge application, resulted in decreased or less percentage of grain nitrogen content showing the independence of grain protein content on lower brewery sludge level. The nitrogen uptake by sorghum grain, straw and the total was maximum (52.68, 44.25 and 79.03 kg ha-1, respectively with the application of brewery waste sludge at 10 and 15 t ha-1 which were significantly higher than the other brewery sludge and NP mineral fertilizer applications.

  9. Growth and N2-fixation of Dhaincha C-3/Sorghum C-4 and Dhaincha C-3/Sunflower C-3 intercropping systems using the 15N and 13C natural abundance method technique

    International Nuclear Information System (INIS)

    Kurdali, F.

    2007-06-01

    A field experiment on dhaincha C 3 (Sesbania aculeata Pers), sunflower C 3 (Helianthus annuus L.) and sorghum C 4 (Sorghum bicolor L.) plants grown in monocropping and intercropping systems was conducted to evaluate seed yield, dry matter production, total N yield, land equivalent ratio (LER), intraspecific competition for soil N uptake, water use efficiency (WUE) and N 2 -fixation using the 15 N natural abundance technique (δ 15 N ). Moreover, carbon isotope discrimination (Δ13 C ) was determined to assess factors responsible for crop performance variability in the different cropping systems. Intercropping of sesbania/sorghum showed greater efficiency over monocropping in producing dry matter, during the entire growth period, as indicated by the LERs (>1); whereas, the efficiency of producing dry matter in the sesbania /sunflower intercropping was similar to that in the monocropping system (LER=1). Moreover, sorghum plants (C 4 ) was more competitive than sesbania (C 3 ) for soil N uptake; whereas, sesbania seemed to be more competitive than its associated sunflower (C 3 ). N uptake in the mixed stand of sesbania/sorghum was improved due to the increase in soil N uptake by the component sorghum and the higher root nodule activity of component sesbania without affecting the amount of N 2 fixed. In both cropping systems, sesbania plants fixed almost the same amount of N 2 (an average of 105 kg N/ha) although the number of rows in the mixed stand was 2/3 of that in the pure stand. This gives an advantage of the intercropping over sole cropping system with regards to N 2 -fixation. 13 C discrimination in plant materials was found to be affected by plant species and the cropping system. Factors affected Δ13 C in plants grown in the mixed stand relative to solely grown crops are discussed.(author)

  10. Use of hybridization (F1 in forage sorghum (Sorghum bicolor (L. Moench breeding

    Directory of Open Access Journals (Sweden)

    Pataki Imre

    2010-01-01

    Full Text Available In plants with bisexual flowers, the development of hybrids and F1 seed production is only possible by using cytoplasmatic male sterility. The discovery of such sterility and the maintainers has made it possible to utilize the phenomenon of heterosis to improve yields and yield components in forage sorghum. It has been shown that the best way to develop forage sorghum hybrids is to cross grain sorghum as the female parent and Sudan grass as the male. The objective of this study was to develop a forage sorghum hybrid for the production of green matter to be used either fresh or for silage. The sorghum hybrid developed in these efforts (Siloking is intended for multiple cutting, as the basal nodes produce buds and regrowth takes place. The performance of the new hybrid with respect to yield and quality was compared to that of the forage sorghum cultivar NS Džin. In a two-year study conducted under different growing conditions in four locations, Siloking produced an average green matter yield of 86.29 t ha-1 (two cuts, a dry matter yield of 25.34 t ha-1, and a crude protein content of 11.85 %. Siloking outperformed NS Džin in terms of yield and quality. .

  11. Effect of Harvesting Stage on Sweet Sorghum (Sorghum bicolor L. Genotypes in Western Kenya

    Directory of Open Access Journals (Sweden)

    Moses Owuor Oyier

    2017-01-01

    Full Text Available Harvesting stage of sweet sorghum (Sorghum bicolor L. Moench cane is an important aspect in the content of sugar for production of industrial alcohol. Four sweet sorghum genotypes were evaluated for harvesting stage in a randomized complete block design. In order to determine sorghum harvest growth stage for bioethanol production, sorghum canes were harvested at intervals of seven days after anthesis. The genotypes were evaluated at different stages of development for maximum production of bioethanol from flowering to physiological maturity. The canes were crushed and juice fermented to produce ethanol. Measurements of chlorophyll were taken at various stages as well as panicles from the harvested canes. Dried kernels at 14% moisture content were also weighed at various stages. Chlorophyll, grain weight, absolute ethanol volume, juice volume, cane yield, and brix showed significant (p=0.05 differences for genotypes as well as the stages of harvesting. Results from this study showed that harvesting sweet sorghum at stages IV and V (104 to 117 days after planting would be appropriate for production of kernels and ethanol. EUSS10 has the highest ethanol potential (1062.78 l ha−1 due to excellent juice volume (22976.9 l ha−1 and EUSS11 (985.26 l ha−1 due to its high brix (16.21.

  12. Crop rotation in the Valle Calido del Alto Magdalena a sustainable focus of high yield

    International Nuclear Information System (INIS)

    Alfaro Rodriguez, Ricardo; Maria Caicedo, Antonio; Amezquita Collazos, Edgar; Castro Franco, Hugo Eduardo

    1996-01-01

    Experiments were carried out during five years at the Nataima Research Center, located at 431 m.a.s.l, with average temperature of 28 Celsius degrades and annual rainfall of 1274 Boyaca mm, on a soil classified as Arenic Haplustalf, to evaluate different crops rotation based on rice and sorghum; the combinations used were as follows; rice-rice (R-R), rice-- soybean (R-SY), rice-crotalaria-sorghum (R-C-S), sorghum-sorghum (S-S), sorghum-soybean (S-SY) and cotton-sorghum (Al-S). Simultaneously it was evaluated the response to four nitrogen levels, which allowed to find out yield functions and optimum economical. The rotations S-SY, R-SY and AI-S have been the best qualified from an environmental perspective. Sorghum-soybean rotation presents increases in yield compared with expected values, which allows thinking that it is a truly sustainable rotation. This rotation also had an excellent profitability and for that reason is considered the best option within the goals of this work

  13. Phylogenetic relationship among Kenyan sorghum germplasms ...

    African Journals Online (AJOL)

    Mr Kiboi

    phylogenetic relationships based on 10 DNA fragments at AltSB loci with SbMATE, ORF9 and MITE primers. .... estimate the overall genetic diversity in Kenyan sorghum lines: Cheprot et al. 3529 ..... EARN project and Generation Challenge (GCP), ... genetics and molecular biology of plant aluminum resistance and toxicity.

  14. Brown midrib sorghum deserves a look

    Science.gov (United States)

    Forage sorghum varieties have been developed to allow them to thrive under low moisture and poor soil conditions while producing adequate amounts of forage. In addition, newer varieties, such as the brown midrib (BMR) hybrids, can be alternatives to conventional varieties as they contain less lignin...

  15. PROTEIN ENRICHMENT OF SPENT SORGHUM RESIDUE USING ...

    African Journals Online (AJOL)

    BSN

    The optimum concentration of spent sorghum for protein enrichment with S. cerevisiae was 7.Sg/100 ml. Th.: protein ... production of single sell protein using Candida utilis and cassava starch effluem as substrate. ... wastes as substrates, Kluyveromyces fragilis and milk whey coconut water as substrate (Rahmat et al.,. 1995 ...

  16. Accumulation of heavy metals using Sorghum sp

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Vaňková, Radomíra; Song, J.; Vaněk, Tomáš

    2014-01-01

    Roč. 104, JUN 2014 (2014), s. 15-24 ISSN 0045-6535 R&D Projects: GA MŠk LH12162; GA MŠk(CZ) LD13029 Institutional support: RVO:61389030 Keywords : Sorghum * Cadmium * Zinc Subject RIV: EF - Botanics Impact factor: 3.340, year: 2014

  17. Genetic options for improving fodder yield and quality in forage sorghum

    Directory of Open Access Journals (Sweden)

    C. Aruna

    2015-01-01

    Full Text Available Improving yield and quality of fodder from forage sorghum is important, especially in the semi-arid tropics, where sorghum is a major source of fodder. The aim of this work was to understand the genetic basis of fodder yield and quality traits, and character associations, and to estimate combining ability of the parents. The experiment was carried out during 2 successive rainy seasons using 10 parents crossed in a half-diallel design. Significant differences among the genotypes for fodder yield, quality and cell wall constituents were observed. Important quality traits, crude protein and digestibility (IVOMD, were not correlated with fodder yield, indicating the potential to improve yield and quality simultaneously in forage sorghum. General combining ability and specific combining ability variances showed that, for almost all characters, both additive and non-additive gene effects were important, with a predominance of non-additive effects. Parental lines SEVS4, HC308 and UPMC503 were good general combiners for yield and quality. The brown midrib lines, EC582508 and EC582510, were good general combiners for low lignin and high IVOMD. Strategies for improving forage sorghum to suit animal and biofuel industries are discussed.Keywords: Digestibility, crude protein, ADL, diallel analysis, gene effects.DOI: 10.17138/TGFT(349-58

  18. Evaluation of KTJT-1, an early-maturity of sweet sorghum acquired by carbon ions irradiation

    International Nuclear Information System (INIS)

    Dong Xicun; Li Wenjian

    2014-01-01

    Sweet sorghum has the potential of becoming a useful energy crop. An early-maturity mutant of sweet sorghum, KFJT-1, was obtained by carbon ions irradiation of KFJT-CK, a wild plant. In this paper, we evaluate the mutant from the length and fresh weight of radicle and leaves after seed germination, the growth rate at the elongation stage, and the internodal parameters under field trail condition. The results showed that the seedling growth of KFJT-1 was inhibited by carbon ions irradiation, and the leaf length, the fresh weight of radicle and leaves from KFJT-1 decreased by 15.32%, 76.27%, and 27.08% than those of KFJT-CK, respectively. However, the growth rate of KFJT-1 on July 12, July 27 and August 1 increased by 16.19%, 59.28% and 26.87%, respectively, compared with the KFJT-CK. The stalk diameter, total biomass yield and sugar content of KFJT-1 was higher than those of KFJT-CK, despite that the plant height of KFJT-1 was significantly less than KFJT-CK (P<0.05). In addition, KFJT-1 differed from KFJT-CK in the internodal length, weight and sugar content. In conclusion, the early-maturity mutant of KFJT-1 will be a promising variety for sweet sorghum industrialization in Gansu province, China. (authors)

  19. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  20. A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover

    Directory of Open Access Journals (Sweden)

    Saykhedkar Sayali

    2012-07-01

    Full Text Available Abstract Background Fungi are important players in the turnover of plant biomass because they produce a broad range of degradative enzymes. Aspergillus nidulans, a well-studied saprophyte and close homologue to industrially important species such as A. niger and A. oryzae, was selected for this study. Results A. nidulans was grown on sorghum stover under solid-state culture conditions for 1, 2, 3, 5, 7 and 14 days. Based on analysis of chitin content, A. nidulans grew to be 4-5% of the total biomass in the culture after 2 days and then maintained a steady state of 4% of the total biomass for the next 12 days. A hyphal mat developed on the surface of the sorghum by day one and as seen by scanning electron microscopy the hyphae enmeshed the sorghum particles by day 5. After 14 days hyphae had penetrated the entire sorghum slurry. Analysis (1-D PAGE LC-MS/MS of the secretome of A. nidulans, and analysis of the breakdown products from the sorghum stover showed a wide range of enzymes secreted. A total of 294 extracellular proteins were identified with hemicellulases, cellulases, polygalacturonases, chitinases, esterases and lipases predominating the secretome. Time course analysis revealed a total of 196, 166, 172 and 182 proteins on day 1, 3, 7 and 14 respectively. The fungus used 20% of the xylan and cellulose by day 7 and 30% by day 14. Cellobiose dehydrogenase, feruloyl esterases, and CAZy family 61 endoglucanases, all of which are thought to reduce the recalcitrance of biomass to hydrolysis, were found in high abundance. Conclusions Our results show that A. nidulans secretes a wide array of enzymes to degrade the major polysaccharides and lipids (but probably not lignin by 1 day of growth on sorghum. The data suggests simultaneous breakdown of hemicellulose, cellulose and pectin. Despite secretion of most of the enzymes on day 1, changes in the relative abundances of enzymes over the time course indicates that the set of enzymes

  1. Climate change, climate variability and adaptation options in smallholder cropping systems of the Sudano - Sahel region in West Africa

    OpenAIRE

    Traore, Bouba

    2014-01-01

    Key words: crop production, maize, millet, sorghum, cotton, fertilizer, rainfall, temperature, APSIM, Mali, In the Sudano-Sahelian zone of West Africa (SSWA) agricultural production remains the main source of livelihood for rural communities, providing employment to more than 60 percent of the population and contributing to about 30% of gross domestic product. Smallholder agricultural production is dominated by rain-fed production of millet, sorghum and maize for food consumption and of c...

  2. An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench).

    Science.gov (United States)

    Woldesemayat, Adugna Abdi; Van Heusden, Peter; Ndimba, Bongani K; Christoffels, Alan

    2017-12-22

    Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the

  3. Influence of temperature, pH and yeast on in-field production of ethanol from unsterilized sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Kundiyana, Dimple K.; Bellmer, Danielle D.; Huhnke, Raymond L.; Wilkins, Mark R. [Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Claypool, P.L. [Department of Statistics, Oklahoma State University, Stillwater, OK 74078 (United States)

    2010-10-15

    It is inevitable that ethanol production in the United States will continue to increase. Sweet sorghum has the potential to be used as a renewable energy crop, and is a viable candidate for ethanol production. Previous barriers to commercialization of sweet sorghum to ethanol have primarily been the high capital cost involved in building a central processing plant that may be operated only seasonally. In order to reduce the investment necessary in a central processing facility, the proposed process involves in-field production of ethanol from sweet sorghum. The overall objective of the research was to determine whether fermentation can take place in the environment with no process control. The goals were to evaluate the effects of yeast type, pH, and nutrients on fermentation process efficiency. Results indicated that both strains of Saccharomyces cerevisiae tested were able to perform fermentation within a wide ambient temperature range (10-25 C). Maximum ethanol produced was 7.9% w v{sup -1} in 120 h under ambient temperature conditions. Other process variables such as adding urea or lowering pH did not significantly improve the sugar to ethanol conversion efficiency of yeasts. Results indicate that in-field fermentation of sweet sorghum juice to ethanol is possible with minimal or no process controls and is a feasible process for ethanol production. (author)

  4. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  5. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  6. Genomic prediction applied to high-biomass sorghum for bioenergy production.

    Science.gov (United States)

    de Oliveira, Amanda Avelar; Pastina, Maria Marta; de Souza, Vander Filipe; da Costa Parrella, Rafael Augusto; Noda, Roberto Willians; Simeone, Maria Lúcia Ferreira; Schaffert, Robert Eugene; de Magalhães, Jurandir Vieira; Damasceno, Cynthia Maria Borges; Margarido, Gabriel Rodrigues Alves

    2018-01-01

    The increasing cost of energy and finite oil and gas reserves have created a need to develop alternative fuels from renewable sources. Due to its abiotic stress tolerance and annual cultivation, high-biomass sorghum ( Sorghum bicolor L. Moench) shows potential as a bioenergy crop. Genomic selection is a useful tool for accelerating genetic gains and could restructure plant breeding programs by enabling early selection and reducing breeding cycle duration. This work aimed at predicting breeding values via genomic selection models for 200 sorghum genotypes comprising landrace accessions and breeding lines from biomass and saccharine groups. These genotypes were divided into two sub-panels, according to breeding purpose. We evaluated the following phenotypic biomass traits: days to flowering, plant height, fresh and dry matter yield, and fiber, cellulose, hemicellulose, and lignin proportions. Genotyping by sequencing yielded more than 258,000 single-nucleotide polymorphism markers, which revealed population structure between subpanels. We then fitted and compared genomic selection models BayesA, BayesB, BayesCπ, BayesLasso, Bayes Ridge Regression and random regression best linear unbiased predictor. The resulting predictive abilities varied little between the different models, but substantially between traits. Different scenarios of prediction showed the potential of using genomic selection results between sub-panels and years, although the genotype by environment interaction negatively affected accuracies. Functional enrichment analyses performed with the marker-predicted effects suggested several interesting associations, with potential for revealing biological processes relevant to the studied quantitative traits. This work shows that genomic selection can be successfully applied in biomass sorghum breeding programs.

  7. On the extent of genetic variation for transpiration efficiency in sorghum

    International Nuclear Information System (INIS)

    Hammer, G.L.; Broad, I.J.; Farquhar, G.D.

    1997-01-01

    A glasshouse study examined 49 diverse sorghum lines for variation in transpiration efficiency. Three of the 49 lines grown were Sorghum spp. native to Australia; one was the major weed Johnson grass (Sorghum halepense), and the remaining 45 lines were cultivars of Sorghum bicolor. All plants were grown under non-limiting water and nutrient conditions using a semi-automatic pot watering system designed to facilitate accurate measurement of water use. Plants were harvested 56-58 days after sowing and dry weights of plant parts were determined. Transpiration efficiency differed significantly among cultivars. The 3 Australian native sorghums had much lower transpiration efficiency than the other 46 cultivars, which ranged from 7.7 to 6.0 g/kg. For the 46 diverse cultivars, the ratio of range in transpiration efficiency to its l.s.d. was 2.0, which was similar to that found among more adapted cultivars in a previous study. This is a significant finding as it suggests that there is likely to be little pay-off from pursuing screening of unadapted material for increased variation in transpiration efficiency. It is necessary, however, also to examine absolute levels of transpiration efficiency to determine whether increased levels have been found. The cultivar with greatest transpiration efficiency in this study (IS9710) had a value 9% greater (P < 0.05) than the accepted standard for adapted sorghum cultivars. The potential impact of such an increase in transpiration efficiency warrants continued effort to capture it. Transpiration efficiency has been related theoretically and experimentally to the degree of carbon isotope discrimination in leaf tissue in sorghum, which thus offers a relatively simple selection index. In this study, the variation in transpiration efficiency was not related simply to carbon isotope discrimination. Significant associations of transpiration efficiency with ash content and indices of photosynthetic capacity were found. However, the

  8. Effect of heat moisture treatment (HMT) on product quality of sorghum starch

    Science.gov (United States)

    Haryani, Kristinah; Hadiyanto, Handayani, Noera; Nugraheni, Dwi; Suryanto

    2015-12-01

    Sorghum is a cereal plant that rich of nutrition contents. The high content of carbohydrate in sorghum make this plant can be processed into one of the processed food i.e vermicelli. To give better quality, it is necessary to use flour substitution from sorghum starch. The aim of this study was to evaluate the treatment of natural sorghum starch substitution, the addition of CMC, and a comparison of the natural starch with starch sorghum forage sorghum against solid losses value, rehydration weight and texture profiles. The variable used in this study: amount of natural sorghum starch subtituion (10%, 20%, 30%, 40%, 50%), the addition of CMC (0.1%; 0.2%; 0.3%; 0.4%; 0.5%) and substituting sorghum starch Natural: HMT sorghum starch (1: 1; 1: 2; 1: 3; 1: 4; 1: 5) and the quality parameters were evaluated. The result indicated that to substitute sorghum starch naturally at a rate of 50% had the best results with a value of solid losses 5.1% (white sorghum) 5.83% (red sorghum) and weighing rehydration 301.82% (white sorghums) 293.16% (red sorghum), the addition of CMC with 0.5% concentration of 3.96% solid losses value (red sorghum) 4:21% (white sorghums) and weight rehydration 252.71% (white sorghums) 244.45% (red sorghums).

  9. Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower

    International Nuclear Information System (INIS)

    Flénet, F.; Kiniry, J.R.; Board, J.E.; Westgate, M.E.; Reicosky, D.C.

    1996-01-01

    In many crop models, light intercepted by a canopy (IPAR) is calculated from a Beer's Law equation: IPAR = PAR x [1- exp(-k x LAI)], where k is the extinction coefficient, PAR the photosynthetically active radiation, and LAI the leaf area index. The first objective of this study was to investigate the effect of row spacing on k for corn (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench], soybean [Glycine max (L.) Merr.], and sunflower (Helianthus annuus L.) to provide information for modeling. Data from literature and from an experiment conducted at Temple, TX, were evaluated. The second objective was to investigate effects of time of day and stage of crop development on k for different row spacings. Seeds of all four species were sown in rows 0.35, 0.66, or 1.00 m apart. Measurements of canopy light interception were taken near solar noon on two dates before anthesis. At anthesis, extinction coefficients were determined at 0845, 1015, and 1145 h (solar time). The extinction coefficient showed a linear decrease as row spacing increased. For each crop, the effect of row spacing on k was described by one linear regression for most data. Stage of crop development and stage of development x row spacing interaction did not significantly affect k during the period of measurements. The effect of time of day was significant for all four crops, and the time of day x row spacing interaction was significant for soybean and sunflower. Thus, modeling light interception for different row spacings should account for these effects

  10. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  11. Experimental study on bread yeast cultured in sweet sorghum juice

    International Nuclear Information System (INIS)

    Wang Jufang; Dong Xicun; Li Wenjian; Xiao Guoqing; Ma Liang; Gao Feng

    2008-01-01

    As a substitute for food supplies, sweet sorghum juice with high grade has demonstrated out- standing advantage in fermentation. To obtain the optimized fermentation conditions, the growth, the bio- mass of bread yeast cultured in sweet sorghum juice and total residual sugar were investigated in the paper. The fermentation was performed and optimized in a 10-100 1 bio-reactor. The results show that the application of sweet sorghum juice in bread yeast production is very potential. (authors)

  12. An assay of the utilization of the residual use of a N fertilizer [(15NH4)2SO4] made by a wheat crop, using an isotope technique

    International Nuclear Information System (INIS)

    Bujan, A.; Quitegui, M.I.; Quitegui, M.C.; Ghelfi, L.E.P. de; Deybe, D.

    1982-01-01

    An experimental study was carried out in order to determine the residual use of a N fertilizer made by wheat during a year. Wheat was seeded in plots which had been cropped the year before with inoculated soybean (glycine max), non-inoculated soybean and sorghum (sorghum caffrorum) fertilized with (NH 4 ) 2 SO 4 at two different levels: 20 and 100kg N/ha tagged with 5% excess 15 N and 1% respectively. It was concluded that:1) the % excess 15 N used in the previous crops were sufficient to determine residuality from the N fertilizer. 2)when the previous crop was non-inoculated soybean, the total nitrogen content of the wheat grains was significantly higher than when the previous crop was either inoculated soybean or sorghum. The total N content was significantly higher on the plots fertilized with 100KgN/ha than on those with 20kgN/ha.3) non-inoculated - and inoculated soybeans determined higher wheat grain yields than sorghum as previous crops. Higher wheat grain yields ocurred on the 100kgN/ha fertilized plots. Higher residual N content ocurred on the 100KgN/ha fertilized plots. Non-inoculated soybean determined higher residual N content in grain than inoculated soybean and sorghum; inoculated soybean determined higher content than sorghum. There were no significant differences in residual N content in the plants depending on the previous crop. (Author) [pt

  13. Robust features of future climate change impacts on sorghum yields in West Africa

    International Nuclear Information System (INIS)

    Sultan, B; Guan, K; Lobell, D B; Kouressy, M; Biasutti, M; Piani, C; Hammer, G L; McLean, G

    2014-01-01

    West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO 2 , mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO 2 . Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a

  14. Robust features of future climate change impacts on sorghum yields in West Africa

    Science.gov (United States)

    Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.; Lobell, D. B.

    2014-10-01

    West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031-2060 compared to a baseline of 1961-1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16-20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential

  15. Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia.

    Science.gov (United States)

    Kosmowski, Frédéric; Worku, Tigist

    2018-01-01

    Crop cultivar identification is fundamental for agricultural research, industry and policies. This paper investigates the feasibility of using visible/near infrared hyperspectral data collected with a miniaturized NIR spectrometer to identify cultivars of barley, chickpea and sorghum in the context of Ethiopia. A total of 2650 grains of barley, chickpea and sorghum cultivars were scanned using the SCIO, a recently released miniaturized NIR spectrometer. The effects of data preprocessing techniques and choosing a machine learning algorithm on distinguishing cultivars are further evaluated. Predictive multiclass models of 24 barley cultivars, 19 chickpea cultivars and 10 sorghum cultivars delivered an accuracy of 89%, 96% and 87% on hold-out sample. The Support Vector Machine (SVM) and Partial least squares discriminant analysis (PLS-DA) algorithms consistently outperformed other algorithms. Several cultivars, believed to be widely adopted in Ethiopia, were identified with perfect accuracy. These results advance the discussion on cultivar identification survey methods by demonstrating that miniaturized NIR spectrometers represent a low-cost, rapid and viable tool. We further discuss the potential utility of the method for adoption surveys, field-scale agronomic studies, socio-economic impact assessments and value chain quality control. Finally, we provide a free tool for R to easily carry out crop cultivar identification and measure uncertainty based on spectral data.

  16. Preliminary investigation into the pressing process of sweet pearl millet and sweet sorghum biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Crepeau, M.; Khelifi, M.; Vanasse, A. [Laval Univ., Quebec City, PQ (Canada). Dept. of Soil Science and Agri-Food Engineering

    2010-07-01

    Corn is the main source for biofuel production in North America. However, both sweet pearl millet and sweet sorghum crops represent an interesting alternative to corn for ethanol production because of their high biomass yield under a wide range of environmental conditions and high concentration of readily fermentable sugars. Coproducts such as pressing residues can be also be utilized so that nothing is lost in the process. However, in order to improve the extraction of juice for ethanol production, the pressing process of this biomass must be optimized. Preliminary experiments were therefore conducted to optimize the juice extraction from sweet pearl millet and sweet sorghum using 2 different presses, notably a screw press and a manually operated hydraulic press. Both types of biomass were either chopped finely or coarsely and were exposed to various pressures with the hydraulic press. The volume of juice extracted from both crops increased linearly with increasing pressure. Sweet sorghum appeared to be a better feedstock for ethanol production because it produced about 0.03 to 0.06 litre of juice per kg of biomass more than sweet pearl millet. Juice extraction was more effective with the screw press, but only a small difference was noted between the 2 chopping modes.

  17. Impact of sorghum processing on phytate, phenolic compounds and in vitro solubility of iron and zinc in thick porridges

    NARCIS (Netherlands)

    Kayodé, A.P.P.; Linnemann, A.R.; Nout, M.J.R.; Boekel, van M.A.J.S.

    2007-01-01

    This study focussed on the impact of process variables on levels of phytate and phenolic compounds, and in vitro solubility of iron (Fe) and zinc (Zn) in sorghum porridges, a major staple in semi-arid tropics. The aim was to identify practices that enhance the mineral availability in this type of

  18. EFIKASI DOSIS PUPUK TEPUNG TULANG (TULAG SAPI DAN TULANG AYAM TERHADAP PERTUMBUHAN TANAMAN SORGHUM (Sorghum bicolor, (L MOENCH PADA TANAH PMK

    Directory of Open Access Journals (Sweden)

    Sri Utami Lestari

    2015-02-01

    Full Text Available ABSTRACT                  Sorghum has the advantage on agroecology broad adaptability, resistant to drought, higher production, and greater resistance to pests and diseases than other food crops. In addition to food substitution of sorghum utilization can also be used as a raw material source of alternative energy, namely as a fertilizer industry bioethanol.Dengan the bones of calcium and magnesium in the soil can be supplied and is also expected to increase the soil pH.                The purpose of this study was to determine the effect and get a good dose of fertilizer tlang on the growth of sorghum.                Research conducted an experiment with completely randomized design consisting of 4 levels treatments and 3 replications. S0 = Without treatment (control, S1 = Giving bone meal 5 g / plant, S2 = Giving bone flour 10 gr / plant, S3 = Giving bone flour 15 gr / plant. Data were analyzed using analysis of variance if F count ≥ F tables at the level of 5%, then followed by a further test Duncans.                The results Award bone meal no real effect on all parameters of plant growth (plant height, leaf width and leaf length, results showed an increasing trend of numerical results with increasing dose given bone meal.

  19. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    Directory of Open Access Journals (Sweden)

    Frank Maulana

    2017-05-01

    Full Text Available Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1 to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2 to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  20. Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum

    International Nuclear Information System (INIS)

    Guo, Ying; Hu, Shan-ying; Li, You-run; Chen, Ding-jiang; Zhu, Bing; Smith, Karl M.

    2010-01-01

    The use of non-food crops for bioethanol production represents an important trend for renewable energy in China. In this paper, a bioethanol agro-industrial system with distributed fermentation plants from sweet sorghum is presented. The system consists of the following processes: sweet sorghum cultivation, crude ethanol production, ethanol refining and by-product utilization. The plant capacities of crude ethanol and pure ethanol, in different fractions of useful land, are optimized. Assuming a minimum cost of investment, transport, operation and so on, the optimum capacity of the pure ethanol factory is 50,000 tonnes/year. Moreover, this bioethanol system, which requires ca. 13,300 ha (hectares) of non-cultivated land to supply the raw materials, can provide 26,000 jobs for rural workers. The income from the sale of the crops is approximately 71 million RMB Yuan and the ethanol production income is approximately 94 million RMB Yuan. The potential savings in CO 2 emissions are ca. 423,000 tonnes/year and clear economic, social and environmental benefits can be realized. (author)

  1. CLUSTER OF INDONESIA KABUPATEN-KOTA POTENTIAL IN DEVELOPING FOOD CROP AND HORTICULTURE COMMODITIES

    Directory of Open Access Journals (Sweden)

    Imam Wahyudi

    2016-09-01

    Full Text Available Identification of potential areas in an agricultural sector is needed in order to meet the national food needs, among others, by carrying out mapping the potential areas through clustering the Kabupaten-Kota in Indonesia, especially on imported agricultural commodities of food crops and horticultures. The use of cluster analysis with top-down clustering method (K-means produces the best cluster. Of 268 regencies-cities, there are 7 clusters, namely Cluster 1 consisting of 154 regencies, Cluster 2 consisting of 2 regencies, Cluster 3 consisting of only1 regency, Cluster 4 consisting of 8 regencies, Cluster 5 consisting of 24 regencies, Cluster 6 consisting of 75 regencies, and Cluster 7 consisting of 4 regencies. Each cluster has its own dominant commodity characteristics.  The results of typology klassen on constructed clusters show that food crop and horticulture commodities have grown well and fast. Out of 13 commodities, there are 7 major commodities: Cluster 1: rice and corns; Clusters 2, 3 and 7: cassava; Cluster 4: corns, cassavas and chilly; Cluster 5: apples; Cluster 6: corns, shallots, and garlic. Six other commodities do not grow well, namely sorghum, potatoes, soybeans, peanuts, oranges, and grapes. The potential lack of an area is due to the plants’ low productivity, which is mainly because of plant pests, highly operational cost, climates and natural disasters. Keywords: imports, food crops, horticulture, cluster, and leading sector.

  2. Nutritional value and acceptability of homemade maize/sorghum-based weaning mixtures supplemented with rojo bean flour, ground sardines and peanut paste.

    Science.gov (United States)

    Mosha, Theobald C E; Vicent, Mary M

    2004-06-01

    Low nutrient density in weaning foods is the major cause of under-nutrition among infants and young children in developing countries. Ten types of composite weaning diets (namely, maize-rojo beans-peanut, maize-peanut-sardines, maize-peanut-sardine-rojo beans, maize-peanut-soaked rojo beans, maize-peanut-germinated rojo beans, sorghum-rojo beans-peanut, sorghum-peanut-sardines, sorghum-peanut-sardine-rojo beans, sorghum-peanut-soaked rojo beans, and sorghum-peanut-germinated rojo beans) were formulated and assayed for proximate composition, energy, mineral density, tannin content and residual urease activity. The diets were also evaluated for storage stability under ambient conditions, sensory quality and overall acceptability. Results of the study indicated that, concentrations of protein, fat, ash, calcium, iron, zinc and copper were significantly (Pfoods. Both maize and sorghum-based composite gruels had a short shelf-life under ambient conditions (26.4 degrees C) ranging between 4 and 6 h, with gruels containing ground sardines showing a tendency to spoil faster. All composite gruels except those containing germinated rojo beans were highly liked and accepted by consumers (Pfoods for older infants and young children. Further investigations are suggested to extend the shelf-life of the composite products and improve the organoleptic quality of the diets containing germinated rojo beans.

  3. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop...... production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal...

  4. Potential for fuel production from crops

    Energy Technology Data Exchange (ETDEWEB)

    Hurduc, N.; Teaci, D.; Serbanescu, E.; Hartia, S.

    1986-07-01

    Studies conducted during the last few years show that the various ecological conditions in Romania determine different pathways of energetic phytomass production and transformation into fuel. There are approximately 22 million ha of land covered by terrestrial vegetation of which 10 million is arable land and one-fifth of this is of poor productivity. Waters cover approximately 0.7 million ha. The technologies used for the production of energetic phytomass from various agricultural, forest and aquatic species tend to yield 20-25 t of dry matter for the terrestrial forms and 20-40 t of dry matter for the aquatic ones; this represents a mean annual output of 2000-2500 l of ethanol per ha. For agricultural lands having a high fertility, the following species were shown to be important from an energy point of view: sugar beet (roots), sweet sorghum at the milk-dough stage, kernel maize, Jerusalem artichoke (tubers and green above-ground parts), potatoes (tubers), and oil rape. Some laticiferous plants are also being studied. On fertile soils in the southern irrigated areas, high yields of energetic phytomass were obtained in stubble crops with maize, sorghum X Sudan grass and grain sorghum. Investigations are being conducted with a view to improving the fertility of poorly productive soils, which cannot be used for agricultural purposes at the present time. 3 figs., 6 tabs., 2 refs.

  5. Factors Influencing the Adoption of Improved Sorghum Varieties in ...

    African Journals Online (AJOL)

    The findings of the study indicated that age and distance to input market were negatively and significantly related to improved sorghum varieties whereas farm size and type of house owned were found to have been positively and significantly related to improved sorghum varieties. The results of the study confirm that ...

  6. Factors influencing beta-amylase activity in sorghum malt

    CSIR Research Space (South Africa)

    Taylor, JRN

    1993-09-01

    Full Text Available isozyme of pI approximately 4.4-4.5, unlike the many isozymes all of higher pI in barley. However, like barley, sorghum beta-amylase was more temperature-labile than its alpha-amylase. Beta-amylase activity in sorghum malt was increased by germination time...

  7. Inclusion of sweet sorghum flour in bread formulations | Araujo ...

    African Journals Online (AJOL)

    Sweet sorghum (Sorghum bicolor L. Moench) has been studied as an additional source of raw material for production or partial replacement of foods due to its high fiber concentration. Its consumption is associated with the prevention of some diseases and nutritional benefits. The aim of this study was to evaluate the partial ...

  8. Electrochemical evaluation of sweet sorghum fermentable sugar bioenergy feedstock

    Science.gov (United States)

    Redox active constituents of sorghum, e.g., anthocyanin, flavonoids, and aconitic acid, putatively contribute to its pest resistance. Electrochemical reactivity of sweet sorghum stem juice was evaluated using cyclic voltammetry (CV) for five male (Atlas, Chinese, Dale, Isidomba, N98) and three fema...

  9. Antimicrobial evaluation of red, phytoalexin-rich sorghum food biocolorant

    NARCIS (Netherlands)

    Akogou, Folachodé U.G.; Besten, Den Heidy M.W.; Polycarpe Kayodé, A.P.; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    Sorghum (Sorghum bicolor) extract is traditionally used as red biocolorant in West Africa to colour foods, among which wagashi, a soft cheese. This biocolorant is a source of the phytoalexin apigeninidin and phenolic acids, and users claim that it has preservative effects next to its colouring

  10. Registration of six grain sorghum pollinator (R) lines

    Science.gov (United States)

    Six sorghum [Sorghum bicolor (L.) Moench] pollinators [KS142R (Reg. No. PI XXXX), KS143R (Reg. No. PI XXXX), KS144R (Reg.No. PI XXXX), KS145R (Reg. No. PI XXXX), KS146R (Reg. No. PI XXXX) and KS147R (Reg. No. PI XXXX) were developed from random mating using a recurrent selection followed by pedigree...

  11. Supplementary data: Mapping of shoot fly tolerance loci in sorghum ...

    Indian Academy of Sciences (India)

    Supplementary data: Mapping of shoot fly tolerance loci in sorghum using SSR markers. D. B. Apotikar, D. Venkateswarlu, R. B. Ghorade, R. M. Wadaskar, J. V. Patil and P. L. Kulwal. J. Genet. 90, 59–66. Table 1. List of SSR primers for sorghum. Primer code. Forward and reverse. Annealing temperature (°C). Product.

  12. Sorghum stem yield and soluble carbohydrates under different ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... The aim of this study was to select the most suitable cultivar for salty land in this geographical area. Two sweet sorghum cultivars (Keller and Sofra) and one grain sorghum cultivar (Kimia) were grown in greenhouse benches under four salinity levels of 2, 4, 8 and 12 dSm-1 to evaluate the effects of salinity.

  13. Sorghum cobalt analysis on not determined wave length with atomic ...

    African Journals Online (AJOL)

    This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 ...

  14. Evaluation of sorghum genotypes under drought stress conditions ...

    African Journals Online (AJOL)

    Seven genotypes of sorghum (Sorghum bicolour (L.) Moench) were studied in both drought and normal conditions. In each condition, the genotypes were evaluated using a split plot based randomized complete block design with three replications. Drought tolerance indices including stability tolerance index (STI), mean ...

  15. Effect of Agromorphological Diversity and Botanical Race on Biochemical Composition in Sweet Grains Sorghum [Sorghum Bicolor (L. Moench] of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Nerbéwendé Sawadogo

    2017-05-01

    Full Text Available Sorghum bicolor (L. Moench is an under-harvested crop in Burkina Faso. It is grown mainly for its sweet grains in the pasty stage. However, the precocity of the cycle and the sweet grains at pasty stage make it an interesting plant with agro-alimentary potential during the lean season. This study was carried out to identify the main sugars responsible for the sweetness of the grains at the pasty stage and their variation according to the agro-morphological group and the botanical race. Thus, the grains harvested at the pasty stage of fifteen (15 accessions selected according to the agro-morphological group and botanical race were lyophilized and analyzed by High Performance Liquid Chromatography (HPLC. The results reveal the presence of four (4 main carbohydrates at pasty stage of grains such as fructose, glucose, sucrose and starch. Analysis of variance revealed that these carbohydrates discriminate significantly the agro-morphological groups and the botanical races. Moreover, with exception of the sucrose, the coefficient of determination (R2 values shows that the agro-morphological group factor has a greater effect on the expression of glucose, fructose and starch than the botanical race. Group III and caudatum race have the highest levels of fructose and would be the sweetest. While group IV and the guinea-bicolor race with the low value of fructose would be the least sweet. Fructose is therefore the main sugar responsible for the sweetness of the pasty grains of sweet grains sorghum.

  16. Assessing the Effect of Organic Compounds, Biofertilizers and Chemical Fertilizers on Morphological Properties,yield and Yield Components of Forage Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    A.H Saeidnejad

    2012-12-01

    Full Text Available Recently, using the source of organic fertilizers and biofertilizers in sustainable crop production is growing. In order to evaluate the effect of organic compounds, biofertilizers and chemical fertilizer on morphological properties, yield and yield components of forage Sorghum (sorghum bicolor a field experiment was conducted in the Research Farm, College of Agriculture, Ferdowsi University of Mashhad in 2008.The treatments were seed inoculation with the combination of Azotobacter chroococcum and Azospirillum brasilense, Compost (15 t/ha, Vermicompost (10 t/ha, seed inoculation with Azotobacter and Azospirillum and compost (10t/ha, seed inoculation with Azotobacter chroococcum and Azospirillum brasilense and Vermicompost (7t/ha, seed inoculation with Pseudomonas flurescence, seed inoculation with Pseudomonas flurescence and Azotobacter chroococcum and Azospirillum brasilense combination, seed inoculation with Pseudomonas flurescence and compost (15t/ha, chemical fertilizer (80 kg/h urea fertilizer and 50 kg/h super phosphate fertilizer and control. Harvesting was performed in 2 cuts in flowering stage. Plant height, number of tiller per plant and SPAD reading was significantly affected by the treatments. Stem diameter was not affected by any treatments. There was a significant difference among all treatments in terms of fresh and dry forage yield. There were no significant differences among all treatments in terms of stem and leaf dry matter. In general, result of this experiment indicated that organic amendments and biofertilizers could be acceptable alternatives for chemical fertilizers.

  17. Effect of winter cover crops on nematode population levels in north Florida.

    Science.gov (United States)

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  18. Energy performance and efficiency of two sugar crops for the biofuel supply chain. Perspectives for sustainable field management in southern Italy

    International Nuclear Information System (INIS)

    Garofalo, Pasquale; D'Andrea, Laura; Vonella, A. Vittorio; Rinaldi, Michele; Palumbo, A. Domenico

    2015-01-01

    Improvement of the energy balance and efficiency for reduced input of cropping systems is one of the main goals for the cultivation of energy crops. In this field study, two sugar crops for bioethanol production were cultivated under different soil tillage management (conventional; no tillage) and mineral nitrogen application (0, 75, 150 kg N ha"−"1): sweet sorghum and sugar beet. The energy performance and efficiency along the bioethanol supply chain were analysed and compared. Both of these crops showed good growth adaptation to the different soil and nitrogen management, and thus the energy return, resource and energy efficiencies were significantly improved in the low-input system. Sweet sorghum provided better responses in terms of water and nitrogen use efficiency for biomass accumulation, as well as its energy yield and net gain, compared to sugar beet, whereas sugar beet showed higher energy efficiency than sorghum. According to these data, both of these crops can be cultivated in a Mediterranean environment with low energy input, which guarantees good crop and energy performances for biofuel strategy planning. - Highlights: • Two sugar crops for the bioethanol supply chain were evaluated. • Energy performances and efficiencies were assessed under different energy input. • Sugar yield resulted not compromised by the different crop management. • The energy gain was improved with low energy input at field level. • Sweet sorghum gave the highest energy yield, sugar beet the energy efficiency.

  19. Fermentation of sweet sorghum syrup to butanol in the presence of natural nutrients and inhibitors

    Science.gov (United States)

    Sweet sorghum syrups represent a renewable raw material that can be available year-round for production of biofuels and biochemicals. Sweet sorghum sugars have been used as sources for butanol production in the past but most often the studies focused on sweet sorghum juice and not on sweet sorghum s...

  20. Analysis of water footprints of rainfed and irrigated crops in Sudan

    Directory of Open Access Journals (Sweden)

    Shamseddin Musa Ahmed

    2011-12-01

    Full Text Available Water rather than land is the limiting factor for crop production in Sudan. This study attempts to use the water footprint (WFP and virtual water concepts to account for crops water consumption under the Sudanese rainfed and irrigated conditions. The general average of the green WFP of sorghum and millet were found to be about 7700 and 10700 m3 ton-1, respectively. According to experimental results at three different climates, in-situ rainwater harvesting techniques could reduce the WFP of rainfed sorghum by 56% on the average. The blue component (surface water shows the highest contribution to the total WFP of irrigated crops: 88% for cotton, 70% for sorghum, 68% for groundnut and 100% for wheat. However, the role of the green water (rainwater is not marginal since it largely influences the operation and maintenance (silt clearance of the gravity-fed irrigation system. Under normal conditions, the annual total virtual water demand of sorghum (the dominant food crop in Sudan is found to be 15 km3, of which 91% is green water. During a dry year, however, Sudan could experience a deficit of 2.3 km3 of water, necessitating the adoption of a wise food stocking-exporting policy.

  1. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  2. Genomic dissection of anthracnose resistant response in sorghum [Sorghum bicolor (L.)

    Science.gov (United States)

    The goal of this project is to use a genomics-based approaches to identify anthracnose resistance loci from diverse sorghum germplasm as an effort to the disease resistance mechanism of at least one of these genes. This information will provide plant breeders with a tool kit that can be used to maxi...

  3. In Vitro Screening for Drought Tolerance in Different Sorghum (Sorghum bicolor (L. Moench Varieties

    Directory of Open Access Journals (Sweden)

    Yohannes Tsago

    2013-08-01

    Full Text Available Drought is one of the complex environmental factors affecting growth and yield of sorghum in arid and semi-arid areas of the world. Sixteen elite sorghum (Sorghum bicolor (L Moench genotypes were evaluated for their genetic potential to drought tolerance at callus induction and plant regeneration stage for drought tolerance. The non-ionic water soluble polymer polyethylene glycol (PEG of molecular weight 6000 was used as osmoticum to simulate water stress. The factorial experiment was laid down in a completely randomized design which comprised of a combination of two factors (genotypes and five PEG stress level; 0, 0.5, 1.0, 1.5, and 2.0% (w/v treatments. Data were recorded for callus induction efficiency, callus fresh weight, embryogenic callus percentage and plant regeneration percentage. Significant differences were observed among the genotypes, treatments and their interactions for the evaluated plant traits suggesting a great amount of variability for drought tolerance in sorghum. The correlation analysis also revealed strong and significant association between embryogenic callus percent and plant regeneration percent as well as between embryogenic callus percent and plant regeneration percent. By taking into consideration all the measured traits, Mann Whitney rank sum test revealed that 76T1#23 and Teshale followed by Meko, Gambella-1107 and Melkam showed better drought stress tolerance. Therefore they are recommended to be used as parents for genetic analysis, gene mapping and improvement of drought tolerance while Chelenko, Hormat and Raya appear to be drought sensitive.

  4. Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems

    CSIR Research Space (South Africa)

    Grootboom, AW

    2010-01-01

    Full Text Available of transformation. In sorghum, concerns about flow of herbicide and antibiotic resistance gene into genetically related wild and weedy species have a direct bearing on the choice of suitable selectable markers in many tropical and subtropical regions. The authors...

  5. EFFECT OF MECHANICAL CONDITIONING ON THIN-LAYER DRYING OF ENERGY SORGHUM (Sorghum bicolor (L.) Moench)

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; Kevin L. Kenney

    2012-10-01

    Cellulosic energy varieties of Sorghum bicolor (L.) Moench show promise as a bioenergy feedstock, however, high moisture content at the time of harvest results in unacceptable levels of degradation when stored in aerobic conditions. To safely store sorghum biomass for extended periods in baled format, the material must be dried to inhibit microbial growth. One possible solution is allowing the material to dry under natural in-field conditions. This study examines the differences in thin-layer drying rates of intact and conditioned sorghum under laboratory-controlled temperatures and relative humidity levels (20 degrees C and 30 degrees C from 40% to 85% relative humidity), and models experimental data using the Page’s Modified equation. The results demonstrate that conditioning drastically accelerates drying times. Relative humidity had a large impact on the time required to reach a safe storage moisture content for intact material (approximately 200 hours at 30 degrees C and 40% relative humidity and 400 hours at 30 degrees C and 70% relative humidity), but little to no impact on the thin-layer drying times of conditioned material (approximately 50 hours for all humidity levels < 70% at 30 degrees C). The drying equation parameters were influenced by temperature, relative humidity, initial moisture content, and material damage, allowing drying curves to be empirically predicted. The results of this study provide valuable information applicable to the agricultural community and to future research on drying simulation and management of energy sorghum.

  6. Summer crops evapotranspiration for two climatically constrating regions of Uruguay

    International Nuclear Information System (INIS)

    Gimenez, L.; Garcia, M.

    2011-01-01

    During the growth and development of grain crops there are a series of limiting factors which prevent obtaining yields to full potential. In particular, in summer crops grown in rain fed conditions, water deficiency stands out as one of the main factors affecting yield productivity. In this study crop evapotranspiration (E Tc) was estimated as a way to assess water needs in summer crops and real evapotranspiration (E Tr) of rain fed crops that occurs under field conditions. The study consisted in estimating E Tc and E Tr of soybean G M IV and V I, corn, sorghum and sunflower in two contrasting climatic regions of Uruguay for a period of 24 years (1984/2007) using the model WinISAREG. Water needs varied. The Nina and Nino years stood out with higher and lower values of Etc respectively. Such water needs are linked to cycle duration. Daily Etc was higher in the North and total Etc was higher in the South. The Etr obtained was substantially lower than Etc and with higher variability in most agr o-climatic situations studied. Sunflower and sorghum were the crops that presented the least differences between Etc and E Tr, and soybean and corn showed the greatest differences at both locations

  7. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  8. Novel storage technologies for raw and clarified syrup biomass feedstocks from sweet sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Attention is currently focused on developing sustainable supply chains of sugar feedstocks for new, flexible biorefineries. Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench) include stabiliz...

  9. Effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified White sorghum (Sorghum bicolor) starch

    International Nuclear Information System (INIS)

    Ali, Tahira Mohsin; Hasnain, Abid

    2013-01-01

    Highlights: ► Sorghum starches were chemically modified. ► Starch–lipid complexes were studied in the presence of emulsifiers. ► Type II complexes were also detected in native and oxidized starches on adding GMS. ► Starch–lipid complexes sharply reduced retrogradation in modified starches. - Abstract: The effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified white sorghum starches was studied. Complex forming tendency of white sorghum starch with commercially available emulsifiers GMS and DATEM improved after acetylation. Presence of emulsifiers reduced λ max (wavelength of maximum absorbance) both for native and modified sorghum starches suggesting lower availability of amylose chains to complex with iodine. In native white sorghum starch (NWSS) and oxidized white sorghum starch (OWSS), both Type I and Type II starch–lipid complexes were observed on addition of 1.0% GMS prior to gelatinization. Acetylated-oxidized white sorghum starch (AOWSS) formed weakest complexes among all the modified starches. The results revealed that antistaling characteristics of modified sorghum starches were enhanced when used in combination with emulsifiers. The most prominent decline in reassociative capability among modified starches was observed for acetylated starches.

  10. Dry Matter Accumulation and Remobilization in Grain Sorghum Genotypes (Sorghum bicolor L. Moench (underNormal and Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Beheshti

    2011-02-01

    Full Text Available Abstract Production, remobilization and accumulation of assimilates in crops especially under water stress are essential factors for determination and studying the yield differences of species and cultivars. Field experiment was conducted using a split plot design based on a randomized complete block design with 3 replication s during 2007 growing season in agricultural research station (Khorasan Agricultural and Natural Resource Research Center, Mashhad-Iran. Main plots were consisted of 2 levels of water, water deficit after anthesis and normal condition (with out water stress and factorial arrangement of photosynthesis status (non desiccation and chemical desiccation with potassium iodide and 3 grain sorghum genotypes (Sepide, M5 and M2 promising lines were assigned to sub plots. Results of variance analysis showed, that the effects of water stress on dry matter accumulation, efficiency of remobilization (REE, percent of remobilization (REP, biologic yield were significant in (p≤0.01 (and grain yield (economic yield was significant in p≤0.05, respectively. Water deficit caused an increase of 10.08%, 24.45 % and 12.43% in dry matter accumulation, percent of remobilization and efficiency of remobilization, respectively as compared to normal conditions. This in turn was led to decrease in seed yield, biological yield and harvest index by 36.38%, 5.43% and 31.60%, respectively. The effect of disturbance in current photosynthesis was significant in all of traits and caused the increase of 15.58%, 17.5% and 36.62% in dry matter accumulation, efficiency of remobilization and percent of remobilization, respectively. The role of remobilization was crucial in sorghum genotypes. Interaction between factors showed that highest dry matter accumulation, percentage of remobilization and efficiency of remobilization was in drought stress and disturbance in current photosynthesis and was 16.62%, 62.54 and 24.60%, respectively and was significantly

  11. The Effect of Silicon on some Morpho-physiological Characteristics and Grain Yield of Sorghum (Sorghum bicolor L. under Salt Stress

    Directory of Open Access Journals (Sweden)

    S Hasibi

    2016-12-01

    Full Text Available Introduction Nowadays, salinity is one of the limiting factors for crop production in arid and semi-arid regions. On the other hand, sorghum (Sorghum bicolor L. is a self-pollinated and short-day plant, which partly has been adapted to salinity and water stress conditions; also play an important role in humans, livestock and poultry nourishments. All studies have showed the positive effects of Silicon on growth and yield of plants in both normal and stress conditions. The aim of this experiment was to improve salinity tolerance of Sorghum by application of Silicon. Materials and Methods A split plot experiment based on randomized complete block design with three replications in both normal and salt stress conditions was carried out at research farm of Shahid Bahonar University of Kerman in 2013. Silicon treatments (0 and 6 mM were considered as main plot and various sorghum genotypes (payam, sepideh, TN-4-70, TN-04-71, TN-04-39, TN-04-107, TN-04-100, TN-04-37, TN-04-68, TN-04-83, TN-04-62 and TN-04-95 were assigned to sub plots. The sodium silicate was used as silica source. The data were analyzed by SAS software using combine analysis. Means comparisons were accomplished by Duncan multiple range test at 5% probability level. Some of the measured traits were as follow: Relative water content (Ritchie and Nguyen, 1990, Relative permeability (33, leaf area index and chlorophyll index (by SPAD. Results and Discussion According to the results, use of silicon led to increase of RWC under salinity stress, while RWC decreased by 13% when no silicon applied. Salinity significantly decreased 1000-grain weight. Maximum grain yield obtained from TN-04-37 (987.6 g m-2 under normal condition with foliar application of silicon. Application of silicon under stress condition led to 38% increase in grain yield of Sepideh compared to control. Under salt stress, silicon also increased shoot dry weight in TN-04-107, TN-04-70, TN-04-37, Payam and Sepideh genotypes

  12. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems.

    Science.gov (United States)

    Subbarao, G V; Rao, I M; Nakahara, K; Sahrawat, K L; Ando, Y; Kawashima, T

    2013-06-01

    Agriculture and livestock production systems are two major emitters of greenhouse gases. Methane with a GWP (global warming potential) of 21, and nitrous oxide (N2O) with a GWP of 300, are largely emitted from animal production agriculture, where livestock production is based on pasture and feed grains. The principal biological processes involved in N2O emissions are nitrification and denitrification. Biological nitrification inhibition (BNI) is the natural ability of certain plant species to release nitrification inhibitors from their roots that suppress nitrifier activity, thus reducing soil nitrification and N2O emission. Recent methodological developments (e.g. bioluminescence assay to detect BNIs in plant root systems) have led to significant advances in our ability to quantify and characterize the BNI function. Synthesis and release of BNIs from plants is a highly regulated process triggered by the presence of NH4 + in the rhizosphere, which results in the inhibitor being released precisely where the majority of the soil-nitrifier population resides. Among the tropical pasture grasses, the BNI function is strongest (i.e. BNI capacity) in Brachiaria sp. Some feed-grain crops such as sorghum also have significant BNI capacity present in their root systems. The chemical identity of some of these BNIs has now been established, and their mode of inhibitory action on Nitrosomonas has been characterized. The ability of the BNI function in Brachiaria pastures to suppress N2O emissions and soil nitrification potential has been demonstrated; however, its potential role in controlling N2O emissions in agro-pastoral systems is under investigation. Here we present the current status of our understanding on how the BNI functions in Brachiaria pastures and feed-grain crops such as sorghum can be exploited both genetically and, from a production system's perspective, to develop low-nitrifying and low N2O-emitting production systems that would be economically profitable and

  13. Seed of sweet sorghum: studies on fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, F A; Onetto, E; Angeloro, H; Victorio Gugliucci, S

    1961-01-01

    Both the percentage of starch transformed by saccharification with malt and the alcohol fermentation efficiency for four varieties of sweet sorghum is determined, and it is compared with those of a corn sample. Seeds of the varieties with low peel content yield values comparable to those of corn. Seeds of the varieties with high peel content give values lower than those of the low peel content, but, if they are previously peeled, the yield of both, in terms of transformed starch and alcohol produced, is improved, the values approaching those obtained with corn.

  14. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  15. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  16. The uptake and transfer of caesium-137, strontium-90 and zinc-65 from soil to food crops in tropical environment

    International Nuclear Information System (INIS)

    Sachdev, P.; Sachdev, M.S.; Deb, D.L.

    1998-01-01

    The soil to plant transfer factors (TF) of 137 Cs, 90 Sr and 65 Zn were determined for two crops, pearlmillet (Pennisetum typhoides) and sorghum (Sorghum vulgare) under irrigated conditions in greenhouse and in natural conditions of rain in field. The accumulation of 137 Cs was almost doubled when the soil contamination level was doubled. Under the field conditions, 137 Cs concentration in both pearlmillet and sorghum grains as well as straw was nearly four times more at a higher level of soil contamination (148 kBq/kg soil) compared to that at a lower level of 74 kBq/kg soil. 90 Sr absorption by both the crops was nearly 50 to 100 times more compared to 137 Cs under identical conditions of crop growth and soil contamination. 65 Zn concentration was higher in pearlmillet grains than in straw portions, whereas in sorghum it was otherwise. The TF values for 137 Cs decreased nearly ten fold in the second year both under field and pot culture conditions, while those for 90 Sr reduced by half and for 65 Zn by about five times. Under irrigated conditions in field the transfer factors for 137 Cs were nearly four times larger both for pearlmillet and sorghum (1996 experiment) and for 90 Sr more than two times, compared to those under rain fed conditions obtained in 1994. (author)

  17. The Sorghum bicolor genome and the diversification of grasses

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Andrew H.; Bowers, John E.; Bruggmann, Remy; dubchak, Inna; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hellsten, Uffe; Mitros, Therese; Poliakov, Alexander; Schmutz, Jeremy; Spannagl, Manuel; Tang, Haibo; Wang, Xiyin; Wicker, Thomas; Bharti, Arvind K.; Chapman, Jarrod; Feltus, F. Alex; Gowik, Udo; Grigoriev, Igor V.; Lyons, Eric; Maher, Christopher A.; Martis, Mihaela; Marechania, Apurva; Otillar, Robert P.; Penning, Bryan W.; Salamov, Asaf. A.; Wang, Yu; Zhang, Lifang; Carpita, Nicholas C.; Freeling, Michael; Gingle, Alan R.; hash, C. Thomas; Keller, Beat; Klein, Patricia; Kresovich, Stephen; McCann, Maureen C.; Ming, Ray; Peterson, Daniel G.; ur-Rahman, Mehboob-; Ware, Doreen; Westhoff, Peter; Mayer, Klaus F. X.; Messing, Joachim; Rokhsar, Daniel S.

    2008-08-20

    Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approx730-megabase Sorghum bicolor (L.) Moench genome, placing approx98percent of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approx75percent larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approx70 million years ago, most duplicated gene sets lost one member before the sorghum rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24percent of genes are grass-specific and 7percent are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.

  18. Frações lábeis da matéria orgânica em sistema de cultivo com palha de braquiária e sorgo Labile fractions of organic matter in cropping system with straw of brachiaria and sorghum

    Directory of Open Access Journals (Sweden)

    Celeste Queiroz Rossi

    2012-03-01

    Full Text Available O papel fundamental da matéria orgânica nas características físicas, químicas e biológicas do solo, justifica o crescente interesse pela identificação de sistemas de uso e de manejo que contribuam para o aumento do estoque de carbono em solos tropicais. O objetivo desse trabalho foi avaliar o estoque de carbono (EstC na fração particulada (>53 µm da matéria orgânica do solo e na fração associada aos minerais (The key role of organic matter (OM in the physical, chemical and biological soil features justifies the growing interest in identifying use and management systems which contribute to increase the stock of carbon (StC in tropical soils. The aim of this study was to evaluate the stock of carbon in the particulate (>53 µm and mineral-associated soil organic matter fractions (<53 mm. Soil samples from a Rhodic Udox collected in Montividiu, Goiás State (Brazil, were taken at five depths in the following agricultural systems: a brachiaria cultivated in the soybean fallow period (SB, b sorghum cultivated in the soybean fallow period (SS and Cerrado as reference area. The levels of total organic carbon (TOC, granulometric fractioning of soil organic matter and the stock of carbon in each of the fractions were quantified. There were significant differences in the TOC levels at all depths. The highest values were found in the StC of SB system, at all depths. The fraction of particulate organic matter (POM was an effective parameter to demonstrate differences between management systems, achieving the highest levels in the SB system due to the higher biomass input in this system, however for the mineral-associated fraction, the highest levels were recorded in the reference area, followed by the SS system.

  19. Sensory Characteristics and Volatile Components of Dry Dog Foods Manufactured with Sorghum Fractions.

    Science.gov (United States)

    Donfrancesco, Brizio Di; Koppel, Kadri

    2017-06-17

    Descriptive sensory analysis and gas chromatography-mass spectrometry (GC-MS) with a modified headspace solid-phase microextraction (SPME) method was performed on three extruded dry dog food diets manufactured with different fractions of red sorghum and a control diet containing corn, brewer's rice, and wheat as a grain source in order to determine the effect of sorghum fractions on dry dog food sensory properties. The aroma compounds and flavor profiles of samples were similar with small differences, such as higher toasted aroma notes, and musty and dusty flavor in the mill-feed sample. A total of 37 compounds were tentatively identified and semi-quantified. Aldehydes were the major group present in the samples. The total volatile concentration was low, reflecting the mild aroma of the samples. Partial least squares regression was performed to identify correlations between sensory characteristics and detected aroma compounds. Possible relationships, such as hexanal and oxidized oil, and broth aromatics were identified. Volatile compounds were also associated with earthy, musty, and meaty aromas and flavor notes. This study showed that extruded dry dog foods manufactured with different red sorghum fractions had similar aroma, flavor, and volatile profiles.

  20. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    Science.gov (United States)

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  1. Identification of Dw1, a Regulator of Sorghum Stem Internode Length.

    Directory of Open Access Journals (Sweden)

    Josie Hilley

    Full Text Available Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3-4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production of grain. Quinby and Karper identified allelic variation at four loci designated Dw1-Dw4 that regulated plant height by altering the length of stem internodes. The current study used a map-based cloning strategy to identify the gene corresponding to Dw1. Hegari (Dw1dw2Dw3dw4 and 80M (dw1dw2Dw3dw4 were crossed and F2 and HIF derived populations used for QTL mapping. Genetic analysis identified four QTL for internode length in this population, Dw1 on SBI-09, Dw2 on SBI-06, and QTL located on SBI-01 and SBI-07. The QTL on SBI-07 was ~3 Mbp upstream of Dw3 and interacted with Dw1. Dw1 was also found to contribute to the variation in stem weight in the population. Dw1 was fine mapped to an interval of ~33 kbp using HIFs segregating only for Dw1. A polymorphism in an exon of Sobic.009G229800 created a stop codon that truncated the encoded protein in 80M (dw1. This polymorphism was not present in Hegari (Dw1 and no other polymorphisms in the delimited Dw1 locus altered coding regions. The recessive dw1 allele found in 80M was traced to Dwarf Yellow Milo, the progenitor of grain sorghum genotypes identified as dw1. Dw1 encodes a putative membrane protein of unknown function that is highly conserved in plants.

  2. Performance of Broiler Chicks Fed Irradiated Sorghum Grains

    International Nuclear Information System (INIS)

    Farag, M.D.D.; Farag, M.F. S. El-D.; Afify, A.S.

    2003-01-01

    Substitution of yellow corn with raw sorghum grains in chick diets resulted in decreases in live body weight, accumulative feed consumption and efficiency of feed utilization as compared with reference diet. Relative to raw sorghum diet, inclusion of sorghum grains irradiated at 60 and 100 kGy and/or supplemented with PEG in chick diets resulted in increases in accumulative feed consumption an efficiency feed utilization. The study suggested that irradiation treatment up to 100 kGy up grade broiler chicks performance and the combinations between radiation and PEG treatments sustain the effect of each other

  3. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  4. Herbaceous energy crops: a general survey and a microeconomic analysis

    International Nuclear Information System (INIS)

    Caserta, G.

    1995-01-01

    Liquid fuels (bioethanol and biooil) derived from herbaceous crops are considered beneficial for the environment and human health especially if they are used as fuels for motor vehicles. The choice of the most suited crop to be cultivated for liquid biofuel production depends on many factors; the most important being the economic convenience for farmers to cultivate the new energy crop in place of the traditional ones. In order to analyse the conditions which favour the cultivation and selling of specific energy crops, a simple methodology is proposed, based on the calculation of the ''threshold price'' of the energy crop products. The ''threshold price'' is the minimum price at which the primary products of the energy crop, i.e., roots, tubers, seeds, etc., must be sold in order to obtain a gross margin equal to that usually obtained from the traditional crop which is replaced by the energy crop. As a case-study, this methodology has been applied to twelve Italian provinces where the cultivation of six energy crops, both in productive lands and set-aside lands, is examined. The crops considered are sugar beet, sweet sorghum and topinambour, useful for bioethanol production; and rapeseed, sunflower and soya, which are usually employed for the production of biooil. (Author)

  5. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    Science.gov (United States)

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  8. The Kraft Pulp And Paper Properties of Sweet Sorghum Bagasse (Sorghum bicolor L Moench

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2015-05-01

    Full Text Available This study investigated the potency of sweet sorghum (Sorghum bicolor bagasse as raw material for pulp and paper using kraft pulping. The effects of alkali and sulfidity loading on kraft pulp and paper properties were also investigated. The pulping condition of the kraft pulp consisted of three levels of alkali loading (17, 19 and 22% and sulfidity loading (20, 22 and 24%. The maximum cooking temperature was 170°C for 4 h with a liquid to wood ratio of 10:1. Kraft pulping of this Numbu bagasse produced good pulp indicated by high screen yield and delignification selectivity with a low Kappa number (< 10. The unbleached pulp sheet produced a superior brightness level and a high burst index. The increase of active alkali loading tended to produce a negative effect on the pulp yield, Kappa number and paper sheet properties. Therefore, it is suggested to use a lower active alkaline concentration.

  9. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content

    International Nuclear Information System (INIS)

    Asgharipour, M.R.; Heidari, M.

    2011-01-01

    Nowadays, the main limiting natural resource is widely considered to be water. Therefore, research into crop management practices that enhance drought resistance and plant growth when water supply is limited has become increasingly essential. This study was conducted to evaluate the effect of potassium (K) nutritional status on the drought resistance of grain sorghum during 2009. Drought stress by reducing the yield components, especially the number of panicle per plant and one-hundred grain weight reduced grain yield and greatest yield (3499 kg ha/sup -1/) obtained at full irrigation. Potassium sulfate increased grain and biological yield by 28% and 22%, respectively compared to control through improving growth conditions. Drought stress increased the N content, while reduced water availability decreased the K and Na in plant. No K fertilized plants had the lowest leaf K and N and highest Na concentrations. Chlorophyll content increased significantly with increase in K supply and increased frequency of irrigation. Interaction effect of drought stress and potassium sulfate on all studied traits except chlorophyll content was significant and optimum soil K levels protects plants from drought. These observations indicate that adequate K nutrition can improve drought resistance of sorghum. (author)

  10. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris [National Technical Univ. of Athens, Zografou (Greece). Biotechnology Lab.

    2012-07-15

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and {beta}-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively. (orig.)

  11. Differences in Fusarium Species in brown midrib Sorghum and in Air Populations in Production Fields.

    Science.gov (United States)

    Funnell-Harris, Deanna L; Scully, Erin D; Sattler, Scott E; French, Roy C; O'Neill, Patrick M; Pedersen, Jeffrey F

    2017-11-01

    Several Fusarium spp. cause sorghum (Sorghum bicolor) grain mold, resulting in deterioration and mycotoxin production in the field and during storage. Fungal isolates from the air (2005 to 2006) and from leaves and grain from wild-type and brown midrib (bmr)-6 and bmr12 plants (2002 to 2003) were collected from two locations. Compared with the wild type, bmr plants have reduced lignin content, altered cell wall composition, and different levels of phenolic intermediates. Multilocus maximum-likelihood analysis identified two Fusarium thapsinum operational taxonomic units (OTU). One was identified at greater frequency in grain and leaves of bmr and wild-type plants but was infrequently detected in air. Nine F. graminearum OTU were identified: one was detected at low levels in grain and leaves while the rest were only detected in air. Wright's F statistic (F ST ) indicated that Fusarium air populations differentiated between locations during crop anthesis but did not differ during vegetative growth, grain development, and maturity. F ST also indicated that Fusarium populations from wild-type grain were differentiated from those in bmr6 or bmr12 grain at one location but, at the second location, populations from wild-type and bmr6 grain were more similar. Thus, impairing monolignol biosynthesis substantially effected Fusarium populations but environment had a strong influence.

  12. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.

    Science.gov (United States)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris

    2012-07-01

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 °C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively.

  13. Intake and digestibility of sorghum (Sorghum bicolor, L. Moench silages with different tannin contents in sheep

    Directory of Open Access Journals (Sweden)

    Alex de Matos Teixeira

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the voluntary intake and digestibility of three sorghum (Sorghum bicolor, L. Moench hybrid silages in sheep. The hybrids used were H1 -BRS 655 (CMSXS 222 A × CMSXS 235 R, with tannin; H2 -(ATF54 A × CMSXS 235 R, without tannin; and H3 -BRS 610 (CMSXS 232 A × CMSXS 234 R, without tannin. The intake and digestibility of dry matter (DM, gross energy (GE, neutral detergent fiber (NDF, acid detergent fiber (ADF and crude protein (CP were measured. Eighteen crossbred sheep weighing 59.4 kg (±8.3 were used in the trial. A completely randomized design with three treatments (hybrids and six repetitions (sheep was used. There were no differences in the DM intake or apparent digestibility among the hybrids. Silage of hybrid BRS 610 displayed higher digestibility coefficients for CP, NDF, ADF, and GE compared with the other silages, which did not differ from each other. The neutral detergent fiber, ADF and digestible energy (DE intakes were similar among the hybrids silages. All of the hybrids resulted in a positive N balance in sheep. The levels of DE were superior in hybrid silage BRS 610 in comparison with the other hybrids. Sorghum hybrid BRS 610 silage exhibited superior nutritional value compared with the other hybrids, which is most likely in part due to the absence of tannins. Sorghum silage made with hybrid BRS 610 (CMSXS 232 A × CMSXS 234 R presents superior gross energy, crude protein, neutral detergent fiber and acid detergent fiber digestibility coefficients, as well as greater digestible energy levels than BRS 655 (CMSXS 222 A × CMSXS 235 R and (ATF54 A × CMSXS 235 R.

  14. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  15. Effect of Fungicide Applications on Grain Sorghum (Sorghum bicolor L. Growth and Yield

    Directory of Open Access Journals (Sweden)

    Dan D. Fromme

    2017-01-01

    Full Text Available Field studies were conducted in the upper Texas Gulf Coast and in central Louisiana during the 2013 through 2015 growing seasons to evaluate the effects of fungicides on grain sorghum growth and development when disease pressure was low or nonexistent. Azoxystrobin and flutriafol at 1.0 L/ha and pyraclostrobin at 0.78 L/ha were applied to the plants of two grain sorghum hybrids (DKS 54-00, DKS 53-67 at 25% bloom and compared with the nontreated check for leaf chlorophyll content, leaf temperature, and plant lodging during the growing season as well as grain mold, test weight, yield, and nitrogen and protein content of the harvested grain. The application of a fungicide had no effect on any of the variables tested with grain sorghum hybrid responses noted. DKS 53-67 produced higher yield, greater test weight, higher percent protein, and N than DKS 54-00. Results of this study indicate that the application of a fungicide when little or no disease is present does not promote overall plant health or increase yield.

  16. Mutation breeding in sorghum (sorghum bicolor L.) for improving plant as ruminant feed

    International Nuclear Information System (INIS)

    H, Soeranto

    1998-01-01

    Mutation breeding using gamma irradiation in sorghum was aimed at improving the quality and production of sorghum plant as ruminant feed. Seeds of local sorghum variety Keris with moisture of about 14% were irradiated with gamma rays from Cobalt-60 source using the dose levels up to 0.5 kgy. The MI plant were grown in Pasar Jumat, the M2 and M3 were grown in Citayam experimental station. The M2 plants were harvested 40 days after sowing by cutting plants 20 cm above ground surface. Two weeks later observations for the ability of plants to produce new buds (buds variable). The plants green products in green products in from of their dry weight (product variable) were collected 40 days after harvesting and drying process in oven at 105 0 C for 24 hours. Plant selections with intensity of 20% were done for the bud variable among samples of M2 plants. Selection responses in the M3 were found to vary from the lowest at 0.5 kgy population (R s = 0.8507). The share of genetic factors to selection responses in bud variable varied from 7.25% at 0,5 kgy population to 22.35% at 0.3 kgy population. Selection for bud variable gave directly impact in increasing product variable in the M3. (author)

  17. Ethanol production from Sorghum bicolor using both separate and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production ..... The authors wish to acknowledge financial support from ... Official energy statistics from.

  18. Productivity of Cassava, Sorghum and Groundnut Intercrop Using ...

    African Journals Online (AJOL)

    Productivity of Cassava, Sorghum and Groundnut Intercrop Using Poultry Manure with Chemical Fertilizer Replacement Combinations. II Ibeawuchi, CI Duruigbo, LU Ihenacho, GO Ihejirika, MO Ofor, OP Obilo, JC Obiefuna ...

  19. Development of a Low Cost Machine for Improved Sorghum ...

    African Journals Online (AJOL)

    ... dehullers are limited. Key Words: Sorghum, grain tempering, dehuller, dehulling efficiency ... obtained from the local market in Morogoro municipal were used to test the .... The hypothesis was accepted or rejected at 95% confidence level.

  20. Performance of broiler chickens fed South African sorghum-based ...

    African Journals Online (AJOL)

    Mabelebele, Monnye

    2017-09-10

    Sep 10, 2017 ... availability of starch and protein in the sorghum. ... component of acid-insoluble ash, was included in the diet as an inert marker. ... Calculated analysis .... and carbohydrate-polyphenol interactions are the main factors affecting.

  1. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Additionally, sorghum cell suspension cultures have been initiated from the friable ... proteomics technologies. The field of proteomics is .... air dried at room temperature and resuspended in 2 ml of urea buffer [9 M urea, 2 M ...

  2. Evaluation of Sorghum bicolor leaf base extract for gastrointestinal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Key words: Sorghum bicolor, gastrointestinal, motility, diarrhoea, jejunum, ileum, fundus. INTRODUCTION ..... the propulsive movement of charcoal meal through the .... A delay in gastric emptying will prevent speedy evacua-.

  3. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.

    Directory of Open Access Journals (Sweden)

    Silvia Raya-Díaz

    Full Text Available Although entomopathogenic fungi (EPF are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite and (ii to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58-Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most

  4. Potencialidades do sorgo sacarino [Sorghum bicolor (L. Moench] para a produção sustentável de bioetanol no Alentejo The potential of sweet sorghum [Sorghum bicolor (L. Moench] for sustainable bioethanol production in Alentejo

    Directory of Open Access Journals (Sweden)

    M.E.V. Lourenço

    2007-01-01

    Full Text Available Fazem-se algumas considerações sobre a importância dos biocombustíveis (biodiesel e bioetanol, num futuro próximo, e acerca das potencialidades do sorgo sacarino para a produção de bioetanol. Apresentam-se resultados de um ensaio de quatro dotações de rega (1500, 2500, 3500 e 4500 m³/ha aplicadas a uma variedade de sorgo sacarino. Avaliou-se a concentração em sólidos solúveis (ºBrix nos caules verdes e a altura das plantas ao longo do ciclo. Determinou-se a produção de matéria verde em caules e de matéria seca em caules, folhas e inflorescências. Estimou-se também a produção de açúcar e bioetanol por hectare. Os dados revelaram que a dotação de rega mais aconselhável foi a de 4500 m³/ha pois conduziu aos melhores resultados em todos os parâmetros, excepto no que se refere ao Brix que foi semelhante à da dotação de 3500 m ³/ha (17 e 16%, respectivamente. Com aquela dotação de rega, se os resultados se confirmarem, será de esperar que, no Alentejo, as produções de bioetanol, da referida cultura, sejam superiores a 5000 l/ha.The importance of biofuels (biodiesel and bioethanol in the next future, and the potential of sweet sorghum for bioethanol production are discussed. Results of a trial with four irrigation treatments (1500, 2500, 3500 e 4500 m³/ha applied, to one variety of sweet sorghum, are presented. The soluble solids content (ºBrix of the fresh stalks and plant height were monitored along the life cycle of the crop. The yield of fresh stalks and the dry matter yield of stalks, leaves and inflorescences were determined. Sugar and bioethanol yields were also estimated. The results showed that the 4500 m³/ha irrigation treatment conducted to the best results in all variables, except for the Brix values that were similar to the 3500 m³/ha treatment (17 and 16%, respectively. With that irrigation treatment, and if the results are confirmed in the future, it will be expected that bioethanol yields from

  5. Atividade de glutationa S-transferase na metabolização de acetochlor, atrazine e oxyfluorfen em milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivumL. (Poaceae

    Directory of Open Access Journals (Sweden)

    Ethel Lourenzi Barbosa Novelli

    2002-05-01

    Full Text Available Este experimento foi conduzido para avaliar a seletividade em plantas dos herbicidas acetochlor, atrazine e oxyfluorfen em relação à atividade da glutationa S-transferase (GST em plantas de milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae. A atividade da GST foi detectada às 24, 48 e 72 horas após as aplicaç��es dos tratamentos. Os tratamentos do experimento consistiram de aplicação com água (controle, acetochlor (3 L.ha-1, atrazine (4 L.ha-1 e oxyfluorfen (1 L.ha-1. As maiores atividades de GST foram observadas na presença de acetochlor, principalmente às 48 horas após o tratamento. Esses aumentos foram 105, 148 e 118% em relação ao controle para milho, sorgo e trigo, respectivamente. É sugerido que a GST pode ter papel na degradação de acetochlor e pode ser uma das razões para a seletividade desse herbicida para essas culturas.This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivum L (Poaceae plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control, acetochlor (3 L.ha-1`, atrazine (4 L.ha-1 and oxyfluorfen (1 L.ha-1. The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.

  6. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  7. De novo transcriptome assembly of Sorghum bicolor variety Taejin

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2016-06-01

    Full Text Available Sorghum (Sorghum bicolor, also known as great millet, is one of the most popular cultivated grass species in the world. Sorghum is frequently consumed as food for humans and animals as well as used for ethanol production. In this study, we conducted de novo transcriptome assembly for sorghum variety Taejin by next-generation sequencing, obtaining 8.748 GB of raw data. The raw data in this study can be available in NCBI SRA database with accession number of SRX1715644. Using the Trinity program, we identified 222,161 transcripts from sorghum variety Taejin. We further predicted coding regions within the assembled transcripts by the TransDecoder program, resulting in a total of 148,531 proteins. We carried out BLASTP against the Swiss-Prot protein sequence database to annotate the functions of the identified proteins. To our knowledge, this is the first transcriptome data for a sorghum variety derived from Korea, and it can be usefully applied to the generation of genetic markers.

  8. EVALUATION OF TWO VARIETIES OF SORGHUM FOR STARCH EXTRACTION

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-01-01

    Full Text Available In Cuba, the wet milling process for the extraction of starch is made from corn, cereal which is currently imported, that is why it is required to substitute it for another grain of national production as it is the case of sorghum. Given the similarities of the two grains in their starch content and considering the potential of sorghum for the food industry, it is developed in this work an assessment process, taking into account two sorghum varieties: red (CIAPR-132 and white (UDG-110. In this sense, a factorial design of the type 2k-1 is made, where the independent variables of most influence in the laboratory process are considered, such as: (x1 type of sorghum, (x2 soaking time and (x3 solution concentration. It is considered that there is no interaction between them and it is taken as the response variable the starch yield in the extraction process. We conclude that the type of sorghum and soaking time are the most influential variables, obtaining the best results for white sorghum subjected for 48 hours to soak in a solution of SO2 at a concentration of 1800 ppm.

  9. Lactic acid fermentation of crude sorghum extract

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  10. Apomictic frequency in sorghum R473

    International Nuclear Information System (INIS)

    Reddy, C.S.; Schertz, K.F.; Bashaw, E.C.

    1980-01-01

    Apomixis has been reported in a few lines of sorghum, among them R473 which was originally reported to be an obligate apomict. Although this line has multiple embryo sacs, the frequency of apomictic seed formation has not been determined because a progeny test has not been possible. R473 does not cross as a female with other lines except when its own pollen is present. In the present study mutations were induced in R473 by hydrazine and irradiation. Crosses were made between male-sterile mutants as females and normal R473 as males. Plants of R473 produced F 1 hybrids sexually, thus indicating that they were not obligate apomicts. These F 1 's also reproduced sexually, as indicated by segregation for male sterility and male fertility in F 2 progenies. (orig.)

  11. Climate change, climate variability and adaptation options in smallholder cropping systems of the Sudano - Sahel region in West Africa

    NARCIS (Netherlands)

    Traore, B.

    2014-01-01

    Key words: crop production, maize, millet, sorghum, cotton, fertilizer, rainfall, temperature, APSIM, Mali,

    In the Sudano-Sahelian zone of West Africa (SSWA) agricultural production remains the main source of livelihood for rural communities, providing employment to more than 60

  12. Organic fertilization and conservation practices on the yield of rainfed sorghum

    International Nuclear Information System (INIS)

    Espinosa Ramirez, M.; Castro Meza, B.; River Ortiz, P.; Andrade Limas, E.; Belmonte Serrato, F.

    2009-01-01

    The interrelations between climatic and soil conditions present in the agroecosystems of the dry zone of northern Mexico, have significant impact on the development of crops that results in impact on agricultural productivity. Soil degradation by excessive use of mechanical practices, has caused severe physical and chemical changes such as deterioration of the natural structure, loss of fertility, increased soil compaction and bulk density, and serious problems of erosion by wind and water. In order to know the influence of three organic fertilizers and soil preparation practices in the production of sorghum in San Fernando, Tamaulipas, was conducted this study. The experimental area present Vertisol soil type, and covers an area of 6 ha, which was subdivided into plots of one hectare. (Author) 6 refs.

  13. GPP estimates in a biodiesel crop using MERIS products

    Science.gov (United States)

    Sánchez, M. L.; Pardo, N.; Pérez, I.; García, M. A.; Paredes, V.

    2012-04-01

    Greenhouse gas emissions in Spain in 2008-2009 were 34.3 % higher than the base-year level, significantly above the burden-sharing target of 15 % for the period 2008-2012. Based on this result, our country will need to make a major effort to meet the committed target on time using domestic measures as well as others foreseen in the Kyoto Protocol, such as LULUFC activities. In this framework, agrofuels, in other words biofuels produced by crops that contain high amounts of vegetable oil such as sorghum, sunflower, rape seed and jatropha, appear to be an interesting mitigation alternative. Bearing in mind the meteorological conditions in Spain, sunflower and rape seed in particular are considered the most viable crops. Sunflower cultivated surface in Spain has remained fairly constant in recent years, in contrast to rapeseed crop surface which, although still scarce, has followed an increasing trend. In order to assess rape seed ability as a CO2 sink as well as to describe GPP dynamic evolution, we installed an eddy correlation station in an agricultural plot of the Spanish plateau. Measurements at the plot consisted of 30-min NEE flux measurements (using a LI-7500 and a METEK USA-1 sonic anemometer) as well as other common meteorological variables. Measurements were performed from March to October. This paper presents the results of the GPP 8-d estimated values using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MERIS, the PAR in situ measurements, and a scalar f varying, between 0 and 1, to take into account the reduction of the maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. The f values were assumed to be dependent on air temperature and the evaporative fraction, EF, which was considered as a proxy of soil moisture. ɛ0, a key parameter, which depends on biome types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites

  14. Perdas e valor nutritivo de silagens de milho, sorgo-sudão, sorgo forrageiro e girassol Losses and nutritional value of corn, Sudan sorghum, forage sorghum and sunflower silages

    Directory of Open Access Journals (Sweden)

    Leandro Barbosa de Oliveira

    2010-01-01

    Full Text Available Este trabalho foi realizado com o objetivo de avaliar as perdas e o valor nutritivo de silagens de diferentes forrageiras (milho, sorgo-sudão, sorgo forrageiro e girassol ensiladas no momento ideal de cada cultura. Utilizou-se um delineamento inteiramente ao acaso, com quatro forrageiras e cinco repetições. As forragens foram ensiladas em silos de PVC com 50 cm de altura e 10 cm de diâmetro, providos de válvula de Bunsen, que foram armazenados por 60 dias. As perdas por gases e por efluente foram avaliadas por diferença de peso antes e após a ensilagem. As perdas por gases foram relativamente pequenas em comparação às perdas por efluente. A silagem de milho se destacou por apresentar menores perdas, enquanto as de girassol e sorgo-sudão apresentaram maiores perdas por efluente. A silagem de sorgo-sudão possui menor valor nutritivo, em decorrência dos maiores teores das frações fibrosas, enquanto a de milho destaca-se positivamente pelo seu valor nutricional.The objective of this study was to assess the losses and nutritional value of silages of different forage crops (corn, Sudan sorghum, forage sorghum and sunflower ensiled at the ideal time for each crop. A randomized complete design was used, with four forage crops and five replications. The forages were ensiled in PVC silos, 50 cm high and 10 cm in diameter, equipped with a Bunsen valve, that were stored for 60 days. The losses through gases and effluent were assessed for difference in weight before and after ensilaging. The losses by gases were relatively small compared with the losses by effluent. The corn silage stood out because it presented smaller losses, while the sunflower and Sudan sorghum presented greater losses by effluent. The Sudan sorghum silage presents the lowest nutritional value, due to the greater contents of the fibrous fractions, while the corn silage stand out positively because of its nutritional value.

  15. Pre-harvest Sprouting and Grain Dormancy in Sorghum bicolor: What Have We Learned?

    Directory of Open Access Journals (Sweden)

    Roberto L. Benech-Arnold

    2018-06-01

    Full Text Available The possibility of obtaining sorghum grains with quality to match the standards for a diversity of end-uses is frequently hampered by the susceptibility to pre-harvest sprouting (PHS displayed by many elite genotypes. For these reasons, obtaining resistance to PHS is considered in sorghum breeding programs, particularly when the crop is expected to approach harvest maturity under rainy or damp conditions prevalence. As in other cereals, the primary cause for sprouting susceptibility is a low dormancy prior to crop harvest; in consequence, most research has focused in understanding the mechanisms through which the duration of dormancy is differentially controlled in genotypes with contrasting sprouting behavior. With this aim two tannin-less, red-grained inbred lines were used as a model system: IS9530 (sprouting resistant and Redland B2 (sprouting susceptible. Redland B2 grains are able to germinate well before reaching physiological maturity (PM while IS9530 ones can start to germinate at 40–45 days after pollination, well after PM. Results show that the anticipated dormancy loss displayed by Redland B2 grains is related reduced embryo sensitivity to abscisic acid (ABA and increased levels of GA upon imbibition. In turn, transcriptional data showed that ABA signal transduction is impaired in Redland B2, which appears to have an impact on GA catabolism, thus affecting the overall GA/ABA balance that regulates germination. QTL analyses were conducted to test whether previous candidate genes were located in a dormancy QTL, but also to identify new genes involved in dormancy. These analyses yielded several dormancy QTL and one of them located in chromosome 9 (qGI-9 was consistently detected even across environments. Fine mapping is already in progress to narrow down the number of candidate genes in qGI-9.

  16. Selection of herbaceous energy crops for the western corn belt. Final report Part 1: Agronomic aspects, March 1, 1988--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1994-05-01

    The relative high cost of energy derived from biomass is a major deterrent to greater use of biomass for energy production One of the most important methods of lowering the cost of dedicated biomass production is to increase the yield per unit of land area so that fixed costs can be applied to more tons of forage. For this study, the authors selected grass and legume crops with potential for high biomass yields and those that offer protection from soil erosion. The research reported here was conducted to identify those species and cultural practices that would result in high biomass yields for various land capabilities with acceptable and soil erosion potential. They also conducted research to determine if intercropping sorghum into alfalfa or reed canarygrass could increase biomass yields over alfalfa or reed canarygrass grown alone and still have the advantage for limiting soil erosion.

  17. Historical Perspective on How and Why Switchgrass was Selected as a "Model" High-Potential Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL

    2007-11-01

    A review of several publications of the Biofuels Feedstock Development Program, and final reports from the herbaceous crop screening trials suggests that there were several technical and non-technical factors that influenced the decision to focus on one herbaceous "model" crop species. The screening trials funded by the U.S. Department of Energy in the late 1980's to early 1990's assessed a wide range of about 34 species with trials being conducted on a wide range of soil types in 31 different sites spread over seven states in crop producing regions of the U.S. While several species, including sorghums, reed canarygrass and other crops, were identified as having merit for further development, the majority of institutions involved in the herbaceous species screening studies identified switchgrass as having high priority for further development. Six of the seven institutions included switchgrass among the species recommended for further development in their region and all institutions recommended that perennial grasses be given high research priority. Reasons for the selection of switchgrass included the demonstration of relatively high, reliable productivity across a wide geographical range, suitability for marginal quality land, low water and nutrient requirements, and positive environmental attributes. Economic and environmental assessments by Oak Ridge National Laboratory's Biofuels Feedstock Development Program staff together with the screening project results, and funding limitations lead to making the decision to further develop only switchgrass as a "model" or "prototype" species in about 1990. This paper describes the conditions under which the herbaceous species were screened, summarizes results from those trials, discusses the various factors which influenced the selection of switchgrass, and provides a brief evaluation of switchgrass with respect to criteria that should be considered when selecting and developing a crop for biofuels and

  18. Effect of Tropical Rotation Crops on Meloidogyne incognita and Other Plant-Parasitic Nematodes.

    Science.gov (United States)

    McSorley, R; Dickson, D W

    1995-12-01

    In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor x S. sudanense) were effective in maintaining low population densities (450/100 cm(3) soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low (crop planted in 1994, but increased by the end of the eggplant crop. The rotation crops planted during 1993 had little effect on yield of eggplant in 1994. Eggplant yield was inversely correlated with preplant densities (Pi) of Belonolaimus longicaudatus (r = -0.282; P crop cultivars were lower (P crops intended for suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well.

  19. Effects of plant urease inhibitor on crop nutrition and soil characters

    International Nuclear Information System (INIS)

    Wang Zhengyin; Xu Weihong; Huang Yun; Yuan Lujiang; Jia Zhongyuan; Zhou Jun; Ding Shuying

    2002-01-01

    A pot experiment was conducted to investigate the effects of 15 N-urea and 4 kinds of plant materials (P 1 , P 2 , P 3 and P 4 ) as urease inhibitor on sorghum and rice nutrition and soil characters. The results indicated that the growth, above-ground parts and roots weight of rice and sorghum were respectively promoted by 4 plant urease inhibitors and P 1 with little change of chl.a/chl.b ratios in these treatments. The content of amino acid in rice leaf and utilization rate of nitrogen by rice were enhanced by 12.9%-25.1% and 5.2%-7.7% respectively, and the utilization rate of nitrogen by sorghum was improved by urease inhibitor treatments (except P 1 ). Plant urease inhibitor could obviously increase the apparent utilization rate of nitrogen by 4.3%-19.2% for two crops and improve phosphorus and potassium uptake by rice plant but decrease phosphorus and potassium uptake by sorghum plant. The contents of soil alkali-hydrolyzable nitrogen were increased by plant urease inhibitor under two cultivated condition. The inhibition time of plant urease inhibitor to soil urease was short and it disappeared as 36 days of rice growth under flooded condition, while the activities of soil urease were decreased by 10.6%-18.3% at 48 days of sorghum growth in upland soil

  20. Impact of sorghum processing on phytate, phenolic compounds and in vitro solubility of iron and zinc in thick porridges

    OpenAIRE

    Kayodé, A.P.P.; Linnemann, A.R.; Nout, M.J.R.; Boekel, van, M.A.J.S.

    2007-01-01

    This study focussed on the impact of process variables on levels of phytate and phenolic compounds, and in vitro solubility of iron (Fe) and zinc (Zn) in sorghum porridges, a major staple in semi-arid tropics. The aim was to identify practices that enhance the mineral availability in this type of staple food. We studied the example of the West African porridge `dibou' for which the processing methods involve grain cleaning, milling, sieving and cooking. Regional variations occur in the proces...

  1. Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Paustian, Keith [Booz Allen Hamiltion Inc., McLean, VA (United States); Campbell, Nell [Booz Allen Hamiltion Inc., McLean, VA (United States); Dorich, Chris [Booz Allen Hamiltion Inc., McLean, VA (United States); Marx, Ernest [Booz Allen Hamiltion Inc., McLean, VA (United States); Swan, Amy [Booz Allen Hamiltion Inc., McLean, VA (United States)

    2016-01-29

    Reducing (and eventually reversing) the increase in greenhouse gases (GHGs) in the atmosphere due to human activities, and thus reducing the extent and severity of anthropogenic climate change, is one of the great challenges facing humanity. While most of the man-caused increase in GHGs has been due to fossil fuel use, land use (including agriculture) currently accounts for about 25% of total GHG emissions and thus there is a need to include emission reductions from the land use sector as part of an effective climate change mitigation strategy. In addition, analyses included in the recent IPCC 5th Climate Change Assessment report suggests that it may not be possible to achieve large enough emissions reductions in the energy, transport and industrial sectors alone to stabilize GHG concentrations at a level commensurate with a less than 2°C global average temperature increase, without the help of a substantial CO2 sink (i.e., atmospheric CO2 removal) from the land use sector. One of the potential carbon sinks that could contribute to this goal is increasing C storage in soil organic matter on managed lands. This report details a preliminary scoping analysis, to assess the potential agricultural area in the US – where appropriate soil, climate and land use conditions exist – to determine the land area on which ‘improved root phenotype’ crops could be deployed and to evaluate the potential long-term soil C storage, given a set of ‘bounding scenarios’ of increased crop root input and/or rooting depth for major crop species (e.g., row crops (corn, sorghum, soybeans), small grains (wheat, barley, oats), and hay and pasture perennial forages). The enhanced root phenotype scenarios assumed 25, 50 and 100% increase in total root C inputs, in combination with five levels of modifying crop root distributions (i.e., no change and four scenarios with increasing downward shift in root distributions). We also analyzed impacts of greater root

  2. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum

  3. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa

    International Nuclear Information System (INIS)

    Sultan, B; Roudier, P; Quirion, P; Alhassane, A; Traore, S; Muller, B; Dingkuhn, M; Ciais, P; Guimberteau, M; Baron, C

    2013-01-01

    Sub-Saharan West Africa is a vulnerable region where a better quantification and understanding of the impact of climate change on crop yields is urgently needed. Here, we have applied the process-based crop model SARRA-H calibrated and validated over multi-year field trials and surveys at eight contrasting sites in terms of climate and agricultural practices in Senegal, Mali, Burkina Faso and Niger. The model gives a reasonable correlation with observed yields of sorghum and millet under a range of cultivars and traditional crop management practices. We applied the model to more than 7000 simulations of yields of sorghum and millet for 35 stations across West Africa and under very different future climate conditions. We took into account 35 possible climate scenarios by combining precipitation anomalies from −20% to 20% and temperature anomalies from +0 to +6 °C. We found that most of the 35 scenarios (31/35) showed a negative impact on yields, up to −41% for +6 °C/ − 20% rainfall. Moreover, the potential future climate impacts on yields are very different from those recorded in the recent past. This is because of the increasingly adverse role of higher temperatures in reducing crop yields, irrespective of rainfall changes. When warming exceeds +2 °C, negative impacts caused by temperature rise cannot be counteracted by any rainfall change. The probability of a yield reduction appears to be greater in the Sudanian region (southern Senegal, Mali, Burkina Faso, northern Togo and Benin), because of an exacerbated sensitivity to temperature changes compared to the Sahelian region (Niger, Mali, northern parts of Senegal and Burkina Faso), where crop yields are more sensitive to rainfall change. Finally, our simulations show that the photoperiod-sensitive traditional cultivars of millet and sorghum used by local farmers for centuries seem more resilient to future climate conditions than modern cultivars bred for their high yield potential (−28% versus

  4. Changes in Whole-Plant Metabolism during the Grain-Filling Stage in Sorghum Grown under Elevated CO2 and Drought.

    Science.gov (United States)

    De Souza, Amanda P; Cocuron, Jean-Christophe; Garcia, Ana Carolina; Alonso, Ana Paula; Buckeridge, Marcos S

    2015-11-01

    Projections indicate an elevation of the atmospheric CO2 concentration ([CO2]) concomitant with an intensification of drought for this century, increasing the challenges to food security. On the one hand, drought is a main environmental factor responsible for decreasing crop productivity and grain quality, especially when occurring during the grain-filling stage. On the other hand, elevated [CO2] is predicted to mitigate some of the negative effects of drought. Sorghum (Sorghum bicolor) is a C4 grass that has important economical and nutritional values in many parts of the world. Although the impact of elevated [CO2] and drought in photosynthesis and growth has been well documented for sorghum, the effects of the combination of these two environmental factors on plant metabolism have yet to be determined. To address this question, sorghum plants (cv BRS 330) were grown and monitored at ambient (400 µmol mol(-1)) or elevated (800 µmol mol(-1)) [CO2] for 120 d and subjected to drought during the grain-filling stage. Leaf photosynthesis, respiration, and stomatal conductance were measured at 90 and 120 d after planting, and plant organs (leaves, culm, roots, prop roots, and grains) were harvested. Finally, biochemical composition and intracellular metabolites were assessed for each organ. As expected, elevated [CO2] reduced the stomatal conductance, which preserved soil moisture and plant fitness under drought. Interestingly, the whole-plant metabolism was adjusted and protein content in grains was improved by 60% in sorghum grown under elevated [CO2]. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Evaluation of three cultivars of sweet sorghum as feedstocks for ethanol production in the Southeast United States

    Directory of Open Access Journals (Sweden)

    Daniel E. Ekefre

    2017-12-01

    Full Text Available Sweet sorghum has become a promising alternative feedstock for biofuel production because it can be grown under reduced inputs, responds to stress more efficiently than traditional crops, and has large biomass production potential. A three-year field study was conducted to evaluate three cultivars of sweet sorghum as bioenergy crops in the Southeast United States (Fort Valley, Georgia: Dale, M81 E and Theis. Parameters evaluated were: plant density, stalk height, and diameter, number of nodes, biomass yield, juice yield, °Bx, sugar production, and theoretical ethanol yields. Yields were measured at 85, 99, and 113 days after planting. Plant fresh weight was the highest for Theis (1096 g and the lowest for Dale (896 g. M81 E reported the highest stalk dry weight (27 Mg ha−1 and Theis reported the lowest (21 Mg ha−1. Theis ranked the highest °Bx (14.9, whereas M81 E was the lowest (13.2. Juice yield was the greatest for M81 E (10915 L ha−1 and the lowest for Dale (6724 L ha−1. Theoretical conservative sugar yield was the greatest for Theis (13 Mg ha−1 and the lowest for Dale (9 Mg ha−1. Theoretical ethanol yield was the greatest for Theis (7619 L ha−1 and the lowest for Dale (5077 L ha−1.

  6. Next-generation sequencing technology for genetics and genomics of sorghum

    DEFF Research Database (Denmark)

    Luo, Hong; Mocoeur, Anne Raymonde Joelle; Jing, Hai-Chun

    2014-01-01

    and grain sorghum. NGS has also been used to examine the transcriptomes of sorghum under various stress conditions. Besides identifying interesting transcriptonal adpatation to stress conditions, these study show that sugar could potentially act as an osmitic adjusting factor via transcriptional regulation....... Furthermore, miRNAs are found to be important adaptation to both biotic and abiotic stresses in sorghum. We discuss the use of NGS for further genetic improvement and breeding in sorghum....

  7. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding

    OpenAIRE

    Ordonio, Reynante L.; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-01-01

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intr...

  8. Effects of different nitrogen levels on phytotoxicity of some allelopathic crops

    Directory of Open Access Journals (Sweden)

    Y. NOROUZI

    2016-04-01

    Full Text Available Intensive usage of herbicides can result in the serious negative impacts on environment. Allelopathy by reducing seed germination and early seedling growth can play a fundamental role in suppressing weeds in crop fields. The effectiveness of allelochemicals is governed by different factors such as soil nutrient status, pH and microorganisms. Outdoor pot experiments were conducted at the Faculty of Agriculture and Natural Resources of Razi University, Kermanshah, Iran, in 2013, to evaluate the effects of different levels of N fertilizer (0, 150, 300 kg ha-1 on the suppressing effects of alfalfa (Medicago sativa L., sorghum (Sorghum bicolor L., and tobacco (Nicotiana tabacum L. plant materials on emergence and growth parameters of some weed species including Johnson grass (Sorghum halepense (L. Pers., barnyard grass (Echinochloa crus-galli (L. Beauv. and redroot pigweed (Amaranthus retroflexus L.. Results indicated that adding plant materials of tobacco, sorghum, and alfalfa substantially reduced seed germination and early growth of the tested weeds. However, the weed species responded differently to the presence of the allelopathic plant materials. The use of N fertilizer had significant effects on the inhibitory potentials of the allelopathic plants. However, we didn't find consistent trends regarding the responses of the allelopathic crops to elevated N fertilizer levels in related to the traits under study.

  9. Recovery in the soil-plant system of nitrogen from green manure applied on cabbage crop

    International Nuclear Information System (INIS)

    Araujo, Ednaldo da Silva; Guerra, Jose Guilherme Marinho; Espindola, Jose Antonio Azevedo; Urquiaga, Segundo; Boddey, Robert Michael; Alves, Bruno Jose Rodrigues; Martelleto, Luiz Aurelio Peres

    2011-01-01

    The objective of this work was to determine, in the soil-plant system, the recovery efficiency of N derived from green manure applied on cabbage (Brassica oleracea) crop. The experiment was divided into two stages: the first one consisted of the straw production of jack bean (Canavalia ensiformis), velvet bean (Mucuna cinereum), and sorghum (Sorghum bicolor), in substrate enriched with 15 N. The second stage consisted of the application of 15 N-labeled green manure on the cabbage beds. Treatments consisted of: fresh residues of jack bean; fresh residues of velvet bean; fresh residues of sorghum; mixture of residues of jack bean, velvet bean, and sorghum at 1:1:1; and control without green manure addition. The N recovery in the soil plant system was influenced by the green manure species used, and the recovery efficiency of the N derived from the green manure legumes varied from 9 to 16%. The jack bean treatment shows a greater recovery efficiency of nitrogen and, therefore, the best synchrony of N supply, by straw decomposition, with the cabbage crop demand. (author)

  10. Occurrence of Fusarium Mycotoxins in Cereal Crops and Processed Products (Ogi from Nigeria

    Directory of Open Access Journals (Sweden)

    Cynthia Adaku Chilaka

    2016-11-01

    Full Text Available In Nigeria, maize, sorghum, and millet are very important cash crops. They are consumed on a daily basis in different processed forms in diverse cultural backgrounds. These crops are prone to fungi infestation, and subsequently may be contaminated with mycotoxins. A total of 363 samples comprising of maize (136, sorghum (110, millet (87, and ogi (30 were collected from randomly selected markets in four agro-ecological zones in Nigeria. Samples were assessed for Fusarium mycotoxins contamination using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS method. Subsequently, some selected samples were analysed for the occurrence of hidden fumonisins. Overall, 64% of the samples were contaminated with at least one toxin, at the rate of 77%, 44%, 59%, and 97% for maize, sorghum, millet, and ogi, respectively. Fumonisins were the most dominant, especially in maize and ogi, occurring at the rate of 65% and 93% with mean values of 935 and 1128 μg/kg, respectively. The prevalence of diacetoxyscirpenol was observed in maize (13%, sorghum (18%, and millet (29%, irrespective of the agro-ecological zone. Other mycotoxins detected were deoxynivalenol, zearalenone, and their metabolites, nivalenol, fusarenon-X, HT-2 toxin, and hidden fumonisins. About 43% of the samples were contaminated with more than one toxin. This study suggests that consumption of cereals and cereal-based products, ogi particularly by infants may be a source of exposure to Fusarium mycotoxins.

  11. Tapping the US historic sweet sorghum collection to identify biofuel germplasm

    Science.gov (United States)

    Sweet sorghum [Sorghum bicolor (L.) Moench] has gained an important role as a viable alternative to fossil fuels and a more profitable option than maize and sugarcane. Nevertheless, the actual narrow genetic base in sweet sorghum breeding programs is limiting the development of new biofuel varietie...

  12. Analysis of sorghum wax and carnauba wax by reversed phase liquid chromatography mass spectrometry

    Science.gov (United States)

    Sorghum is a genus in the grass family, which is used for both grain and forage production throughout the world. In the United States, sorghum grain is predominantly used as livestock feed, and in ethanol production. In recent years however, sorghum grain has been investigated for other industrial a...

  13. Three sorghum serpin recombinant proteins inhibit midgut trypsin activity and growth of corn earworm

    Science.gov (United States)

    The sorghum (Sorghum bicolor) genome contains at least 17 putative serpin (serine protease inhibitor) open reading frames, some of which are induced by pathogens. Recent transcriptome studies found that most of the putative serpins are expressed but their roles are unknown. Four sorghum serpins were...

  14. FEEDING BROWN MIDRIB FORAGE SORGHUM SILAGE AND CORN GLUTEN FEED TO LACTATING DAIRY COWS

    Science.gov (United States)

    Brown midrib (BMR) forage sorghum contains less lignin , resulting in increased NDF digestibility compared to conventional sorghum . An experiment was conducted to evaluate the effects of BMR forage sorghum silage in diets containing wet corn gluten feed (WCGF). The objective was to determine the e...

  15. Comparison of sorghum classes for grain and forage yield and forage nutritive value

    Science.gov (United States)

    Sorghum represents a broad category of plants that includes those grown primarily for forage (FS) or grain. Sorghum sudan crosses (SS) are also considered sorghum. Each of these groups can be further classified as brown midrib (BMR), nonBMR, photoperiod sensitive (PS), and nonPS. In our study, sor...

  16. Efficacy of herbicide seed treatments for controlling Striga infestation of Sorghum

    NARCIS (Netherlands)

    Tuinstra, M.R.; Soumana, S.; Al-Khatib, K.; Kapran, I.; Toure, A.; Ast, van A.; Bastiaans, L.; Ochanda, N.W.; Salami, I.; Kayentao, M.; Dembele, S.

    2009-01-01

    Witchweed (Striga spp.) infestations are the greatest obstacle to sorghum [Sorghum bicolor (L.) Moench] grain production in many areas in Africa. The objective of this study was to evaluate the efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Seeds of an

  17. The influence of time and severity of Striga infection on the Sorghum bicolor - Striga hermonthica association

    NARCIS (Netherlands)

    Ast, van A.

    2006-01-01

    Keywords: Striga hermonthica , Sorghum bicolor , infection time, infection level, tolerance.This thesis presents the results of a study on the interaction between the parasitic weed Strigahermonthica (Del.) Benth. and sorghum ( Sorghum bicolor [L.] Moench). The main objective of the study was

  18. Lactic acid fermentation of two sorghum varieties is not affected by ...

    African Journals Online (AJOL)

    The study was conducted to investigate sorghum grain variety differences in lactic acid fermentation based on their differences in phenolic contents. The study wa s conductedas a 2 x 5 x 4 factorial design with three factors: Factor 1: Sorghum variety (white and red sorghum); Factor 2: Control treatment without lactic acid ...

  19. Epicoccum nigrum the new pathogen of sorghum seed in Serbia

    Directory of Open Access Journals (Sweden)

    Ristić Danijela

    2012-01-01

    Full Text Available Sixteen samples of sorghum seed (Sorghum bicolor (L. Moench. 'Alba', 'Gold', 'Prima' and 'Reform' were analyzed in the localities of Bački Petrovac and Čantavir in the period 2009-2011. Tipresence of species belonging to the genera Epicoccum, Fusarium, Alternaria, Aspergillus and Penicillium was established in single and mixed infections. From the infected sorghum seed, monosporial cultures identified as Epicoccum nigrum based on morphology, proved their pathogenicity on artificially inoculated sorghum seedlings. Molecular identification was performed by PCR and amplification of the ITS region of ribosomal DNA. Gene sequences of selected isolates 291-09 (JQ619838 and 315-09 (JQ619839 exhibited 99-100% nucleotide identity with the sequences of 31 isolates of E. nigrum deposited in the GenBank. It obtained results represent the first detailed characterization of E. nigrum in Serbia. The presence of a large number of phytopathogenic fungi on sorghum seed should be further investigated in order to clarify their relationships and relative significance.

  20. Evaluation of whorl damage by fall armyworm (Lepidoptera:Noctuidae) on field and greenhouse grown sweet sorghum plants

    Science.gov (United States)

    The fall armyworm [Spodoptera frugiperda (Lepidoptera: Noctuidae)] is an economically important pest of sorghum [Sorghum bicolor (L) Moench]. However, resistance to fall armyworm in sweet sorghum has not been extensively studied. A collection of primarily sweet sorghum accessions were evaluated in t...

  1. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  2. Radiation induced mutations for breeding of sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Bretaudeau, A [Rural Polytechnic Inst., Katibougou, Koulikoro (Mali)

    1997-07-01

    Several sorghum cultivars of Mali were irradiated with different doses of gamma rays and compared with the Caudatum types. Radio-sensitivity studies suggested that the local types were less sensitive to radiation than the introduced types. Whereas the local varieties survived dose of 300 Gy, in Caudatum types, seed germination and growth were significantly reduced at 200 Gy. Several agronomically important mutants were obtained among the progeny of the local types. Some of the mutants were shorter and had improved panicle characteristics. Radiation-induced variation was observed in several characters such as plant height, resistance to lodging, plant architecture, drought tolerance, panicle length and compactness, seed size and color, seed quality (viterous or floury) and protein content, glume color and structure, flowering data (early and late maturity), and tillering capacity. One mutant was drought tolerant. Promising mutants were selected and are presently under evaluation in the National List Trials to confirm their potential and future release. Selected variants have been also crossed with local types to obtain promising material. (author). 8 refs, 2 tabs.

  3. Radiation induced mutations for breeding of sorghum

    International Nuclear Information System (INIS)

    Bretaudeau, A.

    1997-01-01

    Several sorghum cultivars of Mali were irradiated with different doses of gamma rays and compared with the Caudatum types. Radio-sensitivity studies suggested that the local types were less sensitive to radiation than the introduced types. Whereas the local varieties survived dose of 300 Gy, in Caudatum types, seed germination and growth were significantly reduced at 200 Gy. Several agronomically important mutants were obtained among the progeny of the local types. Some of the mutants were shorter and had improved panicle characteristics. Radiation-induced variation was observed in several characters such as plant height, resistance to lodging, plant architecture, drought tolerance, panicle length and compactness, seed size and color, seed quality (viterous or floury) and protein content, glume color and structure, flowering data (early and late maturity), and tillering capacity. One mutant was drought tolerant. Promising mutants were selected and are presently under evaluation in the National List Trials to confirm their potential and future release. Selected variants have been also crossed with local types to obtain promising material. (author). 8 refs, 2 tabs

  4. The application of secondary metabolites in the study of sorghum insect resistance

    Science.gov (United States)

    Chunming, Bai; Yifei, Liu; Xiaochun, Lu

    2018-03-01

    Insect attack is one of the main factors for limiting the production of rice and sorghum. To improve resistance to pests of rice and sorghum will be of great significance for meliorating their production and quality. However, the source and material of anti-pest was scarce. In this study, we will study on the expression patterns of hydrocyanic acid biosynthesis relative genes in sorghum firstly. And we will also genetically transform them into rice and sorghum by specific and constitutive promoters and verify their pest-resistant ability. Finally, high pest-resistant genetically modified new sorghum cultivars will be bred with favorable comprehensive agronomic traits.

  5. Germination Ecology of Johnsongrass Seeds (Sorghum halepense (L. PERS.

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2018-01-01

    Full Text Available Introduction Johnsongrass (Sorghum halepense (L. PERS is one of the most controversial and problematic weed. It is damaging at more than 30 different crops in 53 different countries. S. halepense (L. is a perennial weed reproducing by seed and rhizome. Since it produces many seeds and rhizomes, it is difficult to control it. A weed germination plays an important role in attaining a prosper establishment in a typical agri-ecosystem; and this trend is adjusted with some environmental factors such as light, temperature, salinity, pH and soil moisture. If you consider the pattern of germination and emergence of weed species, you will able to provide comprehensive information to develop weed management strategies in the future. Thus, the purpose of current research has been to evaluate the breaking methods of the seed dormancy, effect of constant and alternative temperature, light, salinity and drought stress and burial depth on germination and seedling emergence of Johnsongrass. Materials and Methods Seeds of Johnsongrass (S. halepense L. were collected in June 2013 from plants located at the research farmlands of the Agriculture research centre of Fars province in Zarghan town, Iran. Experimental treatments of Breaking Dormancy consist of six level of scarification with 95-98% acid sulfuric (4, 8, 15, 30, 45 and 60 minutes, in the other one, there were the soaked seeds in the water for 24, 48, 72 and 96 hours, and in the next group the seeds were heated in a 95- 98 boiling water for two and five minutes, and again in the next group, for 15, 30, 45 and 60 days, the seeds were chilled in 3 C, and in the last group, the seeds stored in 3 and 12 months after harvest comparing to control treatment. A number of 25 seeds were transferred to incubators to identify a suitable temperature and light regime for subsequent experiments of germination and determine under alternative day/night temperatures (15/5, 20/10, 30/15 and 35/20 C and constant temperature

  6. Transcriptome Characterization and Functional Marker Development in Sorghum Sudanense.

    Directory of Open Access Journals (Sweden)

    Jieqin Li

    Full Text Available Sudangrass, Sorghum sudanense, is an important forage in warm regions. But little is known about its genome. In this study, the transcriptomes of sudangrass S722 and sorghum Tx623B were sequenced by Illumina sequencing. More than 4Gb bases were sequenced for each library. For Tx623B and S722, 88.79% and 83.88% reads, respectively were matched to the Sorghum bicolor genome. A total of 2,397 differentially expressed genes (DEGs were detected by RNA-Seq between the two libraries, including 849 up-regulated genes and 1,548 down-regulated genes. These DEGs could be divided into three groups by annotation analysis. A total of 44,495 single nucleotide polymorphisms (SNPs were discovered by aligning S722 reads to the sorghum reference genome. Of these SNPs, 61.37% were transition, and this value did not differ much between different chromosomes. In addition, 16,928 insertion and deletion (indel loci were identified between the two genomes. A total of 5,344 indel markers were designed, 15 of which were selected to construct the genetic map derived from the cross of Tx623A and Sa. It was indicated that the indel markers were useful and versatile between sorghum and sudangrass. Comparison of synonymous base substitutions (Ks and non-synonymous base substitutions (Ka between the two libraries showed that 95% orthologous pairs exhibited Ka/Ks<1.0, indicating that these genes were influenced by purifying selection. The results from this study provide important information for molecular genetic research and a rich resource for marker development in sudangrass and other Sorghum species.

  7. Fermentation substrate and forage from south Florida cropping sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kalmbacher, R.S.; Martin, F.G.; Mislevy, P.

    1985-01-01

    Zea mays (maize), Sorghum bicolor (sorghum), Ipomoea batatas (Sweet potato), Helianthus tuberosus (Jerusalem artichoke) and Manihot esculenta (cassava) were grown as alcohol biomass crops in various sequences in 1981 and 1982, on a sandy, siliceous, hyperthermic, typic Haplaquod soil. Herbage yield and yield of non-fermentable by-products were measured as potential cattle feed. Grain produced from Z. mays followed by S. bicolor averaged 11.4 Mg/ha and was greater (P less than 0.05) than other graincrop sequences. Highest (P less than 0.05) root yields were from I. batatas (5.1 Mg/ha) in 1981 and M. esculenta (5.3 Mg/ha) in 1982. Total nonstructural carbohydrate was greatest for Z. mays/S. bicolor (6.0 Mg/ha) and Z. mays/I. batatas (6.8 Mg/ha) sequences. Crops of I. batatas and M. esculenta were hindered by high rainfall and poorly drained soil. Cropping sequences including Z. mays and S. bicolor produced more cattle feed, and they can be expected to produce more alcohol biomass with fewer cultural problems, on south-central Florida flatwoods soils. 20 references.

  8. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food

    Directory of Open Access Journals (Sweden)

    Ahmad Alshannaq

    2017-06-01

    Full Text Available Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi (molds. These low molecular weight compounds (usually less than 1000 Daltons are naturally occurring and practically unavoidable. They can enter our food chain either directly from plant-based food components contaminated with mycotoxins or by indirect contamination from the growth of toxigenic fungi on food. Mycotoxins can accumulate in maturing corn, cereals, soybeans, sorghum, peanuts, and other food and feed crops in the field and in grain during transportation. Consumption of mycotoxin-contaminated food or feed can cause acute or chronic toxicity in human and animals. In addition to concerns over adverse effects from direct consumption of mycotoxin-contaminated foods and feeds, there is also public health concern over the potential ingestion of animal-derived food products, such as meat, milk, or eggs, containing residues or metabolites of mycotoxins. Members of three fungal genera, Aspergillus, Fusarium, and Penicillium, are the major mycotoxin producers. While over 300 mycotoxins have been identified, six (aflatoxins, trichothecenes, zearalenone, fumonisins, ochratoxins, and patulin are regularly found in food, posing unpredictable and ongoing food safety problems worldwide. This review summarizes the toxicity of the six mycotoxins, foods commonly contaminated by one or more of them, and the current methods for detection and analysis of these mycotoxins.

  9. Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.

    Science.gov (United States)

    Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng

    2017-11-01

    Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg -1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg -1 moisture and 100 °C for 4 h had a high RS content (221 g kg -1 vs. 56 g kg -1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg -1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Sweet Sorghum Alternative Fuel and Feed Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Slack, Donald C. [Univ. of Arizona, Tucson, AZ (United States). Agricultural and Biosystems Engineering Dept.; Kaltenbach, C. Colin [Univ. of Arizona, Tucson, AZ (United States)

    2013-07-30

    The University of Arizona undertook a “pilot” project to grow sweet sorghum on a field scale (rather than a plot scale), produce juice from the sweet sorghum, deliver the juice to a bio-refinery and process it to fuel-grade ethanol. We also evaluated the bagasse for suitability as a livestock feed and as a fuel. In addition to these objectives we evaluated methods of juice preservation, ligno-cellulosic conversion of the bagasse to fermentable sugars and alternative methods of juice extraction.

  11. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    Science.gov (United States)

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  12. PHYTOCHEMICAL STUDY OF A TINCTORIAL PLANT OF BENIN TRADITIONAL PHARMACOPOEIA: THE RED SORGHUM (Sorghum caudatum OF BENIN

    Directory of Open Access Journals (Sweden)

    PASCAL D. C. AGBANGNAN

    2012-06-01

    Full Text Available The full phytochemical screening of red sorghum from Benin (Sorghum caudatum achieved in this work reveals the presence of leucoanthocyanins, flavonoides, free quinones, combined anthracene derivatives, sterols and terpenes in higher concentration in the leaf sheath and marrow of stem than in the seed. Catechin tannin content is 11.4% in the leaf sheath (slightly higher than that of red wine, 5.8% in the marrow and 2.8% in the seed. Gallic tannins, saponins and the mucilage present in the leaf sheath and marrow, are virtually absent in the seed. Marrow and leaf sheath extracts (1 g/50 mL showed a concentration of anthocyanins (147 mg/L and 213.5 mg/L similar to that of rosy wine and red wine with short maceration. The grain of sorghum is four times, respectively two times less rich in phenolic compounds than the leaf sheath and the marrow of stem.

  13. A Survey of Viral Diseases of Proso Millet (Panicum miliaceum L. and Sorghum (Sorghum bicolor L. in South Korea

    Directory of Open Access Journals (Sweden)

    Hyun-Geun Min

    2017-09-01

    Full Text Available Throughout year 2015 to 2016, 101 proso millet and 200 sorghum samples were collected from five provinces in South Korea. The samples were subjected to paired-end RNA sequencing and further analyzed by RT-PCR. The results indicated that Rice black-streaked dwarf virus (RBSDV was detected from sorghum collected in Gyeongsang province. The other four viruses, including RBSDV, Rice stripe virus (RSV, Barley virus G (BVG, and Cereal yellow dwarf virus (CYDV, were detected from proso millet. Among four viruses, both RSV and RBSDV were identified high frequency from proso millet collected from Gyeongsang province. Otherwise, BVG was nearly equally identified from five provinces, suggesting that the virus was supposedly widespread nationwide. RBSDV was first identified from both proso millet and sorghum in South Korea. The other virus annotated CYDV identified proso millet was shown to have relatively low identities compared to CYDV previously reported, suggesting that the virus might be new member of Polerovirus.

  14. Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows.

    Science.gov (United States)

    Oliver, A L; Grant, R J; Pedersen, J F; O'Rear, J

    2004-03-01

    Total mixed rations containing conventional forage sorghum, brown midrib (bmr)-6 forage sorghum, bmr-18 forage sorghum, or corn silage were fed to Holstein dairy cows to determine the effect on lactation, ruminal fermentation, and total tract nutrient digestion. Sixteen multiparous cows (4 ruminally fistulated; 124 d in milk) were assigned to 1 of 4 diets in a replicated Latin square design with 4-wk periods (21-d adaptation and 7 d of collection). Diets consisted of 40% test silage, 10% alfalfa silage, and 50% concentrate mix (dry basis). Acid detergent lignin concentration was reduced by 21 and 13%, respectively, for the bmr-6 and bmr-18 sorghum silages when compared with the conventional sorghum. Dry matter intake was not affected by diet. Production of 4% fat-corrected milk was greatest for cows fed bmr-6 (33.7 kg/d) and corn silage (33.3 kg/d), was least for cows fed the conventional sorghum (29.1 kg/d), and was intermediate for cows fed the bmr-18 sorghum (31.2 kg/d), which did not differ from any other diet. Total tract neutral detergent fiber (NDF) digestibility was greatest for the bmr-6 sorghum (54.4%) and corn silage (54.1%) diets and was lower for the conventional (40.8%) and bmr-18 sorghum (47.9%) diets. In situ extent of NDF digestion was greatest for the bmr-6 sorghum (76.4%) and corn silage (79.0%) diets, least for the conventional sorghum diet (70.4%), and intermediate for the bmr-18 sorghum silage diet (73.1%), which was not different from the other diets. Results of this study indicate that the bmr-6 sorghum hybrid outperformed the conventional sorghum hybrid; the bmr-18 sorghum was intermediate between conventional and bmr-6 in most cases. Additionally, the bmr-6 hybrid resulted in lactational performance equivalent to the corn hybrid used in this study. There are important compositional differences among bmr forage sorghum hybrids that need to be characterized to predict animal response accurately.

  15. genetic diversity among sorghum landraces of southwestern

    African Journals Online (AJOL)

    ACSS

    2016-05-14

    May 14, 2016 ... La classification numérique a généré un dendrogramme avec trois groupes. Le poids ... process of evolution, through farmer selection within crop diversity, to .... on days to 50% flowering, plant height, number of leaves, length ...

  16. Grain Yield and Water Use Efficiency of Five Sorghum Cultivars under Different Irrigation Regimes in Kerman

    Directory of Open Access Journals (Sweden)

    H Vahidi

    2016-02-01

    s test at five percent level of significant. Results and Discussion The result of the analysis of variance (Table 3 has shown a non-significant effect of different irrigation regimes on the study attributes. Grain yields of different cultivars were shown to have a significant effect (P < 0.01 (Table 3. Among the cultivars, Sepideh with the production of 7806.7 kg ha-1 of grain had the highest and Payam with the production of 4721.9 kg ha-1 had the lowest yield (Table 4. The results of the analysis of variance (Table 3 showed that the biological yield of the cultivars were significantly different (P < 0.01. Pegah showed the maximum dry matter production with 30365 kg ha-1 and Payam showed the minimum dry matter production with 12865 kg.ha-1 (Table 4. Harvest index of different cultivars was significantly (P < 0.01 different too (Table 3. The highest harvest index belonged to Sepideh with 43% and the lowest belonged to Pegah with 18% (Table 4. The highest WUE was 1.12 kg m-3 in Sepideh and the lowest of WUE were equal to 0.85 and 0.86 kg m-3 for Speedfeed and Payam, respectively (Table 4. The water use efficiency (WUE based on the biological yield, between the cultivars was statistically significant different (P < 0.01 (Table 1. The highest WUE belonged to Pegah with 4.34 kg m-3 and the lowest belonged to Payam with 2.33 kg m-3 (Table 2. The lowest crop water requirement was 0.91 m3 kg-1 for Sepideh and the highest was equal to 1.32 m3 kg-1 for Pegah (Table 2. Overall, the results showed that Sepideh is the most appropriate cultivar for the grain yield in arid regions. Conclusions The cultivar Sepideh with producing grain yield of 7806.7 kg ha-1 and the water use efficiency (WUE of 1.12 kg.m-3 is the best choice for the region of Kerman. On the other hand, with the purpose of cultivating sorghum, biological yield, and achieving the minimum water requirement for biological yield of sorghum in this region, Pegah cultivar is the best suggestion.

  17. Combining ability and mode of inheritance of stem thickness in forage sorghum (Sorghum bicolor L. Moench F1 hybrids

    Directory of Open Access Journals (Sweden)

    Pataki Imre

    2011-01-01

    Full Text Available Aim of this research was determination of mode of inheritance, gene effects components of genetic variance, combining abilities, average contribution of lines and testers and their interactions in expression of stem thickness in forage sorghum F1 generation. Method line x tester was applied. Material comprised of eight genetically divergent A-inbred lines of grain sorghum three R lines-testers of Sudan grass and twenty-four F1 hybrids obtained by crossing lines with testers. Among tested genotypes there were significant differences in mean values of stem thickness. Analysis of variance of combining abilities showed that there were highly significant differences for general combining abilities (GCA and specific combining abilities (SCA non-additive component of genetic variance (dominance and epistasis had greater portion in total genetic variance for stem thickness. During the first research year, interaction between inbred maternal line with testers had the largest contribution in expression of stem thickness of F1 hybrid at both locations, while in the second year at location Rimski Šančevi the largest contribution belongs to lines and at location Mačvanski Prnjavor the largest contribution belongs to testers. Assessment of combining abilities showed that these inbred lines of grain sorghum can be used as mothers: SS-1 646, SS-1 688 and S-8 682 in breeding forage sorghum for thicker stem. According to SCA, promising forage sorghum hybrids are S-8 682 x ST-R lin H and P-21 656 x C-198. This research can be of importance for developing new high-yielding forage sorghum hybrids.

  18. Mutants with increased resistance to herbicide in Guinea corn Sorghum bicolor (L.) Moench

    International Nuclear Information System (INIS)

    Odeigah, P.G.C.; Adewoyin, A.F.; Obatayo, O.O.

    1990-01-01

    Sorghum is an important staple food in many tropical countries. In Nigeria, it is extensively cultivated for food and, in recent times, as raw material for the brewing, baking and starch-making industries. We have investigated the possibilities of breeding crop cultivars of Sorghum with improved seed protein, amylase activities and resistance to herbicide by means of induced mutation. Seeds were treated by soaking them in an aqueous solution of ethyl methane sulphonate (EMS) 8 or 64 mM at room temperature 3, 6, 9, 12, 15 or 24 hours. After the treatment, the seeds were briefly rinsed in water and transferred to petri dishes containing moist filter paper for germination. The seedlings were later transplanted to loamy sand soil in plastic trays. M, seedlings were grown to maturity in the greenhouse. The M 1 contained plants with variegated leaves and other morphological abnormalities. Only the progenies of normal plants were grown for further generations. Resistance to Igran 500 E.G. (2-tert-butylamino-4-ethylamino-6-methylthio-striazine; from Ciba Geigy) was tested in M 2 seedlings by mixing 1 part per 100 (by volume) of the herbicide with the soil a day before sowing the seeds. Preliminary screening of 2,500 M 2 plants revealed a number of morphological and leaf colour mutations. 50 seedlings were more resistant to the herbicide but no seedling resistance was observed in the parent cultivar. There was a 23.43% reduction in seedling weight of the M 2 lines grown in soil treated with Igran 500, whereas the reduction in seedling weight of the original cultivar was 42.46%. The resistant M 2 seedlings had longer and better roots

  19. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  20. PHYTOCHEMICAL STUDY OF A TINCTORIAL PLANT OF BENIN TRADITIONAL PHARMACOPOEIA: THE RED SORGHUM (Sorghum caudatum) OF BENIN

    OpenAIRE

    PASCAL D. C. AGBANGNAN; CHRISTINE TACHON; HELENE BONIN; ANNA CHROSTOWKA; ERIC FOUQUET; DOMINIQUE C. K. SOHOUNHLOUE

    2012-01-01

    The full phytochemical screening of red sorghum from Benin (Sorghum caudatum) achieved in this work reveals the presence of leucoanthocyanins, flavonoides, free quinones, combined anthracene derivatives, sterols and terpenes in higher concentration in the leaf sheath and marrow of stem than in the seed. Catechin tannin content is 11.4% in the leaf sheath (slightly higher than that of red wine), 5.8% in the marrow and 2.8% in the seed. Gallic tannins, saponins and the mucilage present in the l...