WorldWideScience

Sample records for sorbitol-fermenting enterohemorrhagic escherichia

  1. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H- Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates.

    Science.gov (United States)

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina

    2017-12-01

    Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H - strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly , etp , and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H - strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins ( stx 2a and the cdtV -ABC operon) and adhesins ( eae -γ, efa1 , lpfA O157OI-141 , and lpfA O157OI-154 ) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H - strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H - strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H - (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic

  2. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H− Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates

    Science.gov (United States)

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge

    2017-01-01

    ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly, etp, and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H− strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins (stx2a and the cdtV-ABC operon) and adhesins (eae-γ, efa1, lpfAO157OI-141, and lpfAO157OI-154) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H− strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H− strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic

  3. Distribution of the urease gene cluster among and urease activities of enterohemorrhagic Escherichia coli O157 isolates from humans

    NARCIS (Netherlands)

    Friedrich, Alexander W; Köck, Robin; Bielaszewska, Martina; Zhang, Wenlan; Karch, Helge; Mathys, Werner

    Enterohemorrhagic Escherichia coli (EHEC) O157 strains belong to two closely related major groups, which are differentiated by their sorbitol fermentation phenotypes. Here we studied the conservation of urease genes and their expression in sorbitol-fermenting (SF) and non-SF EHEC O157 isolates. PCR

  4. Molecular Characterization of Human Atypical Sorbitol-Fermenting Enteropathogenic Escherichia coli O157 Reveals High Diversity.

    Science.gov (United States)

    Kossow, Annelene; Zhang, Wenlan; Bielaszewska, Martina; Rhode, Sophie; Hansen, Kevin; Fruth, Angelika; Rüter, Christian; Karch, Helge; Mellmann, Alexander

    2016-05-01

    Alongside the well-characterized enterohemorrhagic Escherichia coli (EHEC) O157:H7, serogroup O157 comprises sorbitol-fermenting typical and atypical enteropathogenic E. coli (EPEC/aEPEC) strains that carry the intimin-encoding gene eae but not Shiga toxin-encoding genes (stx). Since little is known about these pathogens, we characterized 30 clinical isolates from patients with hemolytic uremic syndrome (HUS) or uncomplicated diarrhea with respect to their flagellin gene (fliC) type and multilocus sequence type (MLST). Moreover, we applied whole-genome sequencing (WGS) to determine the phylogenetic relationship with other eae-positive EHEC serotypes and the composition of the rfbO157 region. fliC typing resulted in five fliC types (H7, H16, H34, H39, and H45). Isolates of each fliC type shared a unique ST. In comparison to the 42 HUS-associated E. coli (HUSEC) strains, only the stx-negative isolates with fliCH7 shared their ST with EHEC O157:H7/H(-) strains. With the exception of one O157:H(-) fliCH16 isolate, HUS was exclusively associated with fliCH7. WGS corroborated the separation of the fliCH7 isolates, which were closely related to the EHEC O157:H7/H(-) isolates, and the diverse group of isolates exhibiting different fliC types, indicating independent evolution of the different serotypes. This was also supported by the heterogeneity within the rfbO157 region that exhibited extensive recombinations. The genotypic subtypes and distribution of clinical symptoms suggested that the stx-negative O157 strains with fliCH7 were originally EHEC strains that lost stx The remaining isolates form a distinct and diverse group of atypical EPEC isolates that do not possess the full spectrum of virulence genes, underlining the importance of identifying the H antigen for clinical risk assessment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Foodborne transmission of sorbitol-fermenting Escherichia coli O157:[H7] via ground beef: an outbreak in northern France, 2011.

    Science.gov (United States)

    King, L A; Loukiadis, E; Mariani-Kurkdjian, P; Haeghebaert, S; Weill, F-X; Baliere, C; Ganet, S; Gouali, M; Vaillant, V; Pihier, N; Callon, H; Novo, R; Gaillot, O; Thevenot-Sergentet, D; Bingen, E; Chaud, P; de Valk, H

    2014-12-01

    Sorbitol-fermenting Escherichia coli O157:[H7] is a particularly virulent clone of E. coli O157:H7 associated with a higher incidence of haemolytic uraemic syndrome and a higher case fatality rate. Many fundamental aspects of its epidemiology remain to be elucidated, including its reservoir and transmission routes and vehicles. We describe an outbreak of sorbitol-fermenting E. coli O157:[H7] that occurred in France in 2011. Eighteen cases of paediatric haemolytic uraemic syndrome with symptom onset between 6 June and 15 July 2011 were identified among children aged 6 months to 10 years residing in northern France. A strain of sorbitol-fermenting E. coli O157:[H7] stx2a eae was isolated from ten cases. Epidemiological, microbiological and trace-back investigations identified multiply-contaminated frozen ground beef products bought in a supermarket chain as the outbreak vehicle. Strains with three distinct pulsotypes that were isolated from patients, ground beef preparations recovered from patients' freezers and from stored production samples taken at the production plant were indistinguishable upon molecular comparison. This investigation documents microbiologically confirmed foodborne transmission of sorbitol-fermenting of E. coli O157 via beef and could additionally provide evidence of a reservoir in cattle for this pathogen. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  6. Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012.

    Science.gov (United States)

    Jaakkonen, A; Salmenlinna, S; Rimhanen-Finne, R; Lundström, H; Heinikainen, S; Hakkinen, M; Hallanvuo, S

    2017-09-01

    Shiga toxin-producing, sorbitol-fermenting Escherichia coli O157 (SF O157) has emerged as a cause of severe human illness. Despite frequent human findings, its transmission routes and reservoirs remain largely unknown. Foodborne transmission and reservoir in cattle have been suspected, but with limited supporting evidence. This study describes the outbreak of SF O157 that occurred in Finland in 2012. The outbreak originated from a recreational farm selling unpasteurized milk, as revealed by epidemiologic and microbiological investigations, and involved six hospitalized children and two asymptomatic adults with culture-confirmed infection. An identical strain of SF O157 was isolated from patients, cattle and the farm environment, and epidemiologic analysis suggested unpasteurized milk as the vehicle of transmission. This study reports the first milkborne outbreak of SF O157, provides supporting evidence of cattle as a reservoir and highlights the health risks related to the consumption of unpasteurized milk. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  7. Enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Abdullah Kilic

    2011-08-01

    Full Text Available Escherichia coli is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless for human. E. coli O157:H7 is the most common member of a group of pathogenic E. coli strains known variously as enterohaemorrhagic, verocytotoxin-producing, or Shiga-toxin-producing organisms. EHEC bacterium is the major cause of haemorrhagic colitis and haemolytic uraemic syndrome. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods. [TAF Prev Med Bull 2011; 10(4.000: 387-388

  8. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania.

    Science.gov (United States)

    Lupindu, Athumani M; Olsen, John E; Ngowi, Helena A; Msoffe, Peter L M; Mtambo, Madundo M; Scheutz, Flemming; Dalsgaard, Anders

    2014-07-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol-fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-, O+:H16, and O25:H4 were identified. One ESBL-producing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment

  9. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  10. Phosphotyrosine-Mediated Regulation of Enterohemorrhagic Escherichia coli Virulence

    Science.gov (United States)

    Robertson, Colin D.; Hazen, Tracy H.; Kaper, James B.

    2018-01-01

    ABSTRACT Enteric pathogens with low infectious doses rely on the ability to orchestrate the expression of virulence and metabolism-associated genes in response to environmental cues for successful infection. Accordingly, the human pathogen enterohemorrhagic Escherichia coli (EHEC) employs a complex multifaceted regulatory network to link the expression of type III secretion system (T3SS) components to nutrient availability. While phosphorylation of histidine and aspartate residues on two-component system response regulators is recognized as an integral part of bacterial signaling, the involvement of phosphotyrosine-mediated control is minimally explored in Gram-negative pathogens. Our recent phosphotyrosine profiling study of E. coli identified 342 phosphorylated proteins, indicating that phosphotyrosine modifications in bacteria are more prevalent than previously anticipated. The present study demonstrates that tyrosine phosphorylation of a metabolite-responsive LacI/GalR family regulator, Cra, negatively affects T3SS expression under glycolytic conditions that are typical for the colonic lumen environment where production of the T3SS is unnecessary. Our data suggest that Cra phosphorylation affects T3SS expression by modulating the expression of ler, which encodes the major activator of EHEC virulence gene expression. Phosphorylation of the Cra Y47 residue diminishes DNA binding to fine-tune the expression of virulence-associated genes, including those of the locus of enterocyte effacement pathogenicity island that encode the T3SS, and thereby negatively affects the formation of attaching and effacing lesions. Our data indicate that tyrosine phosphorylation provides an additional mechanism to control the DNA binding of Cra and other LacI/GalR family regulators, including LacI and PurR. This study describes an initial effort to unravel the role of global phosphotyrosine signaling in the control of EHEC virulence potential. PMID:29487233

  11. Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence

    Directory of Open Access Journals (Sweden)

    Kimberly M. Carlson-Banning

    2016-11-01

    Full Text Available The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when exploiting the human colon. They expertly navigate complex environmental cues and interkingdom signaling to colonize and infect their hosts. Here we demonstrate how enterohemorrhagic Escherichia coli (EHEC uses three sugar-sensing transcription factors, Cra, KdpE, and FusR, to exquisitely regulate the expression of virulence factors associated with its type III secretion system (T3SS when exposed to various oxygen concentrations. We also explored the effect of mucin-derived nonpreferred carbon sources on EHEC growth and expression of virulence genes. Taken together, the results show that EHEC represses the expression of its T3SS when oxygen is absent, mimicking the largely anaerobic lumen, and activates its T3SS when oxygen is available through Cra. In addition, when EHEC senses mucin-derived sugars heavily present in the O-linked and N-linked glycans of the large intestine, virulence gene expression is initiated. Sugars derived from pectin, a complex plant polysaccharide digested in the large intestine, also increased virulence gene expression. Not only does EHEC sense host- and microbiota-derived interkingdom signals, it also uses oxygen availability and mucin-derived sugars liberated by the microbiota to stimulate expression of the T3SS. This precision in gene regulation allows EHEC to be an efficient pathogen with an extremely low infectious dose.

  12. Phosphotyrosine-Mediated Regulation of Enterohemorrhagic Escherichia coli Virulence

    Directory of Open Access Journals (Sweden)

    Colin D. Robertson

    2018-02-01

    Full Text Available Enteric pathogens with low infectious doses rely on the ability to orchestrate the expression of virulence and metabolism-associated genes in response to environmental cues for successful infection. Accordingly, the human pathogen enterohemorrhagic Escherichia coli (EHEC employs a complex multifaceted regulatory network to link the expression of type III secretion system (T3SS components to nutrient availability. While phosphorylation of histidine and aspartate residues on two-component system response regulators is recognized as an integral part of bacterial signaling, the involvement of phosphotyrosine-mediated control is minimally explored in Gram-negative pathogens. Our recent phosphotyrosine profiling study of E. coli identified 342 phosphorylated proteins, indicating that phosphotyrosine modifications in bacteria are more prevalent than previously anticipated. The present study demonstrates that tyrosine phosphorylation of a metabolite-responsive LacI/GalR family regulator, Cra, negatively affects T3SS expression under glycolytic conditions that are typical for the colonic lumen environment where production of the T3SS is unnecessary. Our data suggest that Cra phosphorylation affects T3SS expression by modulating the expression of ler, which encodes the major activator of EHEC virulence gene expression. Phosphorylation of the Cra Y47 residue diminishes DNA binding to fine-tune the expression of virulence-associated genes, including those of the locus of enterocyte effacement pathogenicity island that encode the T3SS, and thereby negatively affects the formation of attaching and effacing lesions. Our data indicate that tyrosine phosphorylation provides an additional mechanism to control the DNA binding of Cra and other LacI/GalR family regulators, including LacI and PurR. This study describes an initial effort to unravel the role of global phosphotyrosine signaling in the control of EHEC virulence potential.

  13. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Lupindu, Athumani M; Olsen, John Elmerdahl; Ngowi, Helena A

    2014-01-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-...

  14. [Construction and characterization of enterohemorrhagic Escherichia coli O157:H7 ppk- deleted strain].

    Science.gov (United States)

    Han, Peng; Sun, Qi; Zhao, Suhui; Zhang, Qiwei; Wan, Chengsong

    2014-06-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157: H7 ppk gene deletion strains and study its biological characteristics. The gene fragment of kanamycin resistance was amplified using a pair of homologous arm primers whose 5' and 3' ends were homologous with ppk gene and kanamycin resistance gene, respectively. EHEC O157: H7 EDL933w competent strains were prepared and transformed via electroporation with the amplification products. The ppk gene was replaced by kanamycin resistance gene using pKD46-mediated Red recombination system. The recombinant strain was confirmed by PCR and sequencing, and its morphology, growth ability and adhesion were assessed using Gram staining, OD600 value and Giemsa staining. We established a ppk-deleted EHEC O157:H7 EDL933w strain with kanamycin resistance and compared the biological characteristics of the wild-type and mutant strains, which may facilitate further study of the regulatory mechanism of ppk gene.

  15. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection

    Science.gov (United States)

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans. PMID:25791315

  16. Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates

    OpenAIRE

    Taylor, Diane E.; Rooker, Michelle; Keelan, Monika; Ng, Lai-King; Martin, Irene; Perna, Nicole T.; Burland, N. T. Valerie; Blattner, Fredrick R.

    2002-01-01

    Strains of Escherichia coli causing enterohemorrhagic colitis belonging to the O157:H7 lineage are reported to be highly related. Fifteen strains of E. coli O157:H7 and 1 strain of E. coli O46:H− (nonflagellated) were examined for the presence of potassium tellurite resistance (Ter). Ter genes comprising terABCDEF were shown previously to be part of a pathogenicity island also containing integrase, phage, and urease genes. PCR analysis, both conventional and light cycler based, demonstrated t...

  17. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Njoroge, Jacqueline W; Nguyen, Y; Curtis, Meredith M; Moreira, Cristiano G; Sperandio, Vanessa

    2012-10-16

    Gastrointestinal (GI) bacteria sense diverse environmental signals as cues for differential gene regulation and niche adaptation. Pathogens such as enterohemorrhagic Escherichia coli (EHEC), which causes bloody diarrhea, use these signals for the temporal and energy-efficient regulation of their virulence factors. One of the main virulence strategies employed by EHEC is the formation of attaching and effacing (AE) lesions on enterocytes. Most of the genes necessary for the formation of these lesions are grouped within a pathogenicity island, the locus of enterocyte effacement (LEE), whose expression requires the LEE-encoded regulator Ler. Here we show that growth of EHEC in glycolytic environments inhibits the expression of ler and consequently all other LEE genes. Conversely, growth within a gluconeogenic environment activates expression of these genes. This sugar-dependent regulation is achieved through two transcription factors: KdpE and Cra. Both Cra and KdpE directly bind to the ler promoter, and Cra's affinity to this promoter is catabolite dependent. Moreover, we show that the Cra and KdpE proteins interact in vitro and that KdpE's ability to bind DNA is enhanced by the presence of Cra. Cra is important for AE lesion formation, and KdpE contributes to this Cra-dependent regulation. The deletion of cra and kdpE resulted in the ablation of AE lesions. One of the many challenges that bacteria face within the GI tract is to successfully compete for carbon sources. Linking carbon metabolism to the precise coordination of virulence expression is a key step in the adaptation of pathogens to the GI environment. IMPORTANCE An appropriate and prompt response to environmental cues is crucial for bacterial survival. Cra and KdpE are two proteins found in both nonpathogenic and pathogenic bacteria that regulate genes in response to differences in metabolite concentration. In this work, we show that, in the deadly pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7

  18. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    Science.gov (United States)

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important

  19. Enterohemorrhagic Escherichia coli Hybrid Pathotype O80:H2 as a New Therapeutic Challenge

    Science.gov (United States)

    Soysal, Nurcan; Mariani-Kurkdjian, Patricia; Smail, Yasmine; Liguori, Sandrine; Gouali, Malika; Loukiadis, Estelle; Fach, Patrick; Bruyand, Mathias; Blanco, Jorge; Bidet, Philippe

    2016-01-01

    We describe the epidemiology, clinical features, and molecular characterization of enterohemorrhagic Escherichia coli (EHEC) infections caused by the singular hybrid pathotype O80:H2, and we examine the influence of antibiotics on Shiga toxin production. In France, during 2005–2014, a total of 54 patients were infected with EHEC O80:H2; 91% had hemolytic uremic syndrome. Two patients had invasive infections, and 2 died. All strains carried stx2 (variants stx2a, 2c, or 2d); the rare intimin gene (eae-ξ); and at least 4 genes characteristic of pS88, a plasmid associated with extraintestinal virulence. Similar strains were found in Spain. All isolates belonged to the same clonal group. At subinhibitory concentrations, azithromycin decreased Shiga toxin production significantly, ciprofloxacin increased it substantially, and ceftriaxone had no major effect. Antibiotic combinations that included azithromycin also were tested. EHEC O80:H2, which can induce hemolytic uremic syndrome complicated by bacteremia, is emerging in France. However, azithromycin might effectively combat these infections. PMID:27533474

  20. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    Science.gov (United States)

    Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557

  1. Survival of pathogenic enterohemorrhagic Escherichia coli (EHEC) and control with calcium oxide in frozen meat products.

    Science.gov (United States)

    Ro, Eun Young; Ko, Young Mi; Yoon, Ki Sun

    2015-08-01

    This study investigated both the level of microbial contamination and the presence of enterohemorrhagic Escherichia coli (EHEC) in frozen meat products, followed by the evaluation of its survival over 180 days under frozen temperature. We also examined the effect of calcium oxide on the populations of EHEC, E. coli O157:H7 and EPEC under both 10 °C and -18 °C storage conditions. Afterward, the morphological changes occurring in EHEC cells in response to freezer storage temperature and calcium oxide (CaO) treatments were examined using transmission electron microscopy. Among the frozen meat products tested, the highest contamination levels of total aerobic counts, coliforms and E. coli were observed in pork cutlets. Examination showed that 20% of the frozen meat products contained virulence genes, including verotoxin (VT) 1 and 2. Over 180 days of frozen storage and after 3 freeze-thaw cycles, the population of EHEC did not change regardless of the type of products or initial inoculated concentration, indicating the strong survival ability of EHEC. Subsequent testing revealed that the growth of three pathogenic E. coli strains was completely inhibited in meat patties prepared with 1% CaO, stored at 10 °C. However, the addition of 2% CaO was necessary to control the survival of EHEC, E. coli O157:H7 and EPEC in meat patties stored at -18 °C. CaO reduced the population of E. coli O157:H7 more effectively than the other EHEC and EPEC strains at both 10 °C and -18 °C. Transmission electron microscopy analysis revealed that exposed EHEC cells were resistant to the freezer storage temperature, although some cells incurred injury and death after several freeze-thaw cycles. Most of the cells exposed to CaO were found to have died or lost their cellular integrity and membranes, indicating that CaO has the potential to be used as a powerful antimicrobial agent for manufacturing frozen meat products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. N-chlorotaurine, a long-lived oxidant produced by human leukocytes, inactivates Shiga toxin of enterohemorrhagic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christian Eitzinger

    Full Text Available N-chlorotaurine (NCT, the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2, used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC. Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.

  3. Milk Fat Globules Hamper Adhesion of Enterohemorrhagic Escherichia coli to Enterocytes: In Vitro and in Vivo Evidence

    Directory of Open Access Journals (Sweden)

    Thomas Douëllou

    2018-05-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC; E. coli are food-borne agents associated with gastroenteritis, enterocolitis, bloody diarrhea and the hemolytic-uremic syndrome (HUS. Bovine milk glycans have been shown to contain oligosaccharides which are similar to host epithelial cell receptors and can therefore prevent bacterial adhesion. This study aimed to describe interactions between EHEC O157:H7 EDL933 and O26:H11 21765 and milk fat globules (MFGs in raw milk and raw milk cheese, and the impact of MFGs on EHEC strains adhesion to the intestinal tract in vitro and in vivo. Both EHEC serotypes clearly associated with native bovine MFGs and significantly limited their adhesion to a co-culture of intestinal cells. The presence of MFGs in raw milk cheese had two effects on the adhesion of both EHEC serotypes to the intestinal tracts of streptomycin-treated mice. First, it delayed and reduced EHEC excretion in mouse feces for both strains. Second, the prime implantation site for both EHEC strains was 6 cm more proximal in the intestinal tracts of mice fed with contaminated cheese containing less than 5% of fat than in those fed with contaminated cheese containing 40% of fat. Feeding mice with 40% fat cheese reduced the intestinal surface contaminated with EHEC and may therefore decrease severity of illness.

  4. [Construction of enterohemorrhagic Escherichia coli O157:H7 strains with espF gene deletion and complementation].

    Science.gov (United States)

    Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong

    2015-11-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.

  5. Modified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect

    Directory of Open Access Journals (Sweden)

    Tahamtan, Y.

    2014-11-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifidum against E. coli O157 was studied using a Vero cell model. Vero cell was pretreated with viable B. bifidum and incubated for either 3 h to 24 h and then collected from the cell to make modified Vero cell (MVC. Indirect antibacterial effects of B. bifidum were demonstrated by reduction of attachment of E. coli O157:H7 to MVC. The maximum reduction was resulted in pretreatment of Vero cell with B. bifidum for 24 h before infection. B. bifidum attenuated E. coli O157:H7 attachment to MVC up to 10 days of incubation. To our knowledge, MCV prevented Vero cell line injury induced by E. coli O157:H7. Therefore, B. bifidum can be used for inhibition of E. coli O157:H7 cytopathic effect (CPE in Vero cell model, even as pretreatment of the cell line.

  6. Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    OpenAIRE

    Delannoy, Sabine; Chaves, Byron D.; Ison, Sarah A.; Webb, Hattie E.; Beutin, Lothar; Delaval, José; Billet, Isabelle; Fach, Patrick

    2016-01-01

    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of ‘false positive’ results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC s...

  7. Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but nonculturable state in salted salmon roe?

    Science.gov (United States)

    Makino, S I; Kii, T; Asakura, H; Shirahata, T; Ikeda, T; Takeshi, K; Itoh, K

    2000-12-01

    An outbreak caused by salted salmon roe contaminated with enterohemorrhagic Escherichia coli O157 occurred in Japan in 1998. Since about 0.75 to 1.5 viable cells were estimated to cause infection, we presumed that O157 might enter the viable but nonculturable (VNC) state in salted salmon roe and consequently that viable cell numbers might be underestimated. Although patient-originating O157 cells could not grow on agar plates after 72 h of incubation in 13% NaCl, they were resuscitated in yeast extract broth, and more than 90% of the cells were shown to be viable by fluorescent staining, suggesting that almost all of them could enter the VNC state in NaCl water. Roe-originating O157 was resistant to NaCl because it could grow on agar after 72 h of incubation in NaCl water, but about 20% of cells appeared to enter the VNC state. Therefore, germfree mice were infected with O157 to examine the resuscitation of cells in the VNC state and the retention of pathogenicity. O157 that originated in roe, but not patients, killed mice and was isolated from the intestine. However, these isolates had become sensitive to NaCl. O157 cells of roe origin incubated in normal media also killed mice and were isolated from the intestine, but they also became transiently NaCl sensitive. We therefore propose that bacterial cells might enter the VNC state under conditions of stress, such as those encountered in vivo or in high salt concentrations, and then revive when those conditions have eased. If so, the VNC state in food is potentially dangerous from a public health viewpoint and may have to be considered at the time of food inspection. Finally, the establishment of a simple recovery system for VNC cells should be established.

  8. Adherence of Enterohemorrhagic Escherichia coli to Human Epithelial Cells: The Role of Intimin

    Science.gov (United States)

    1995-04-28

    mucosa (e.g., enterotoxigenic E. coli, Vibrio cholerae , and Boroetella pertussis); ii) damage to the epithelial cell microvilli induced by the...diarrhea in Mayan childm in Mexico . J. Infect. Dis. 163, 507-513. G6mez-Ouarte, O.G. and Kaper, J.B. (1995). A plasmid-encoded regulartory region...de la Cabaca, F., and Garibay, E.V. (1987). Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico . J . Clin. Microbiol. 25

  9. Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates

    Science.gov (United States)

    Taylor, Diane E.; Rooker, Michelle; Keelan, Monika; Ng, Lai-King; Martin, Irene; Perna, Nicole T.; Burland, N. T. Valerie; Blattner, Fredrick R.

    2002-01-01

    Strains of Escherichia coli causing enterohemorrhagic colitis belonging to the O157:H7 lineage are reported to be highly related. Fifteen strains of E. coli O157:H7 and 1 strain of E. coli O46:H− (nonflagellated) were examined for the presence of potassium tellurite resistance (Ter). Ter genes comprising terABCDEF were shown previously to be part of a pathogenicity island also containing integrase, phage, and urease genes. PCR analysis, both conventional and light cycler based, demonstrated that about one-half of the Ter E. coli O157:H7 strains (6 of 15), including the Sakai strain, which has been sequenced, carried a single copy of the Ter genes. Five of the strains, including EDL933, which has also been sequenced, contained two copies. Three other O157:H7 strains and the O46:H− strain did not contain the Ter genes. In strains containing two copies, the Ter genes were associated with the serW and serX tRNA genes. Five O157:H7 strains resembled the O157 Sakai strain whose sequence contained one copy, close to serX, whereas in one isolate the single copy was associated with serW. There was no correlation between Ter and the ability to produce Shiga toxin ST1 or ST2. The Ter MIC for most strains, containing either one or two copies, was 1,024 μg/ml, although for a few the MIC was intermediate, 64 to 128 μg/ml, which could be increased to 512 μg/ml by pregrowth of strains in subinhibitory concentrations of potassium tellurite. Reverse transcriptase PCR analysis confirmed that in most strains Ter was constitutive but that in the rest it was inducible and involved induction of terB and terC genes. Only the terB, -C, -D, and -E genes are required for Ter. The considerable degree of homology between the ter genes on IncH12 plasmid R478, which originated in Serratia marcescens, and pTE53, from an E. coli clinical isolate, suggests that the pathogenicity island was acquired from a plasmid. This work demonstrates diversity among E. coli O157:H7 isolates, at least as

  10. Inactivation of enterohemorrhagic Escherichia coli in rumen content- or feces-contaminated drinking water for cattle.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; West, Joe W; Bernard, John K; Cross, Heath G; Doyle, Michael P

    2006-05-01

    Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic acid plus 0.9% acidic calcium sulfate (pH 2.1) drank 18.6 liters/day. The

  11. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress

    DEFF Research Database (Denmark)

    Olesen, Inger; Jespersen, Lene

    2010-01-01

    Relative gene transcription and virulence potential, as measured by a Caco-2 adhesion assay, were investigated for three enterohemorrhagic Escherichia coli (EHEC) strains after long-term adaptation for 24 h to acid (BHI pH 5.5) and salt (BHI 4.5% (w/v) NaCl) stress. Five virulence genes (eae, lpf...... compared to EDL933 (O157:H7, raw hamburger). Long-term adaptation to salt stress significantly increased the adhesion of all three EHEC strains to Caco-2 compared to the non-stressed controls. The present study shows that long-term adaptation to food related stress factors such as acid and salt is capable...... of changing the relative transcription of important virulence and stress response genes and increasing the virulence potential as measured by adhesion to the human colonic epithelial cell line, Caco-2....

  12. Hemolytic-uremic syndrome with acute encephalopathy in a pregnant woman infected with epidemic enterohemorrhagic Escherichia coli: characteristic brain images and cytokine profiles.

    Science.gov (United States)

    Ito, M; Shiozaki, A; Shimizu, M; Saito, S

    2015-05-01

    A food-poisoning outbreak due to enterohemorrhagic Escherichia coli (EHEC) occurred in Toyama, Japan. The case of a 26-year-old pregnant woman with hemolytic-uremic syndrome who developed acute encephalopathy due to EHEC infection after eating raw meat is presented herein. On day 2 following admission, a cesarean section was performed because of a non-reassuring fetal status. Fecal bacterial culture confirmed an O111/O157 superinfection. Intensive care therapies including continuous hemodiafiltration and plasma exchange were performed. After the operation, the patient developed encephalopathy for which steroid pulse therapy was added. Her condition improved gradually and she was discharged 55 days after delivery. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models.

    Science.gov (United States)

    Chen, Y P; Lee, T Y; Hong, W S; Hsieh, H H; Chen, M J

    2013-01-01

    A potential probiotic strain, Lactobacillus kefiranofaciens M1, was previously isolated from kefir grains, which are used to manufacture the traditional fermented drink kefir. The aim of this study was to investigate the effects of Lb. kefiranofaciens M1 on enterohemorrhagic Escherichia coli (EHEC) infection, using mice and intestinal cell models. BALB/c mice were daily administrated with either phosphate buffered saline or Lb. kefiranofaciens M1 at 2×10(8) cfu/mouse per day intragastrically for 7 d. Intragastric challenges with EHEC (2×10(9) cfu/mouse) were conducted on d 0, 4, and 7 after treatment. Administration of Lb. kefiranofaciens M1 was able to prevent EHEC infection-induced symptoms, intestinal damage, renal damage, bacterial translocation, and Shiga toxin penetration. Furthermore, the mucosal EHEC-specific IgA responses were increased after Lb. kefiranofaciens M1 administration in the EHEC-infected mouse system. Additionally, in vitro, Lb. kefiranofaciens M1 was shown to have a protective effect on Caco-2 intestinal epithelial cells and Caco-2 intestinal epithelial cell monolayers; the bacteria limited EHEC-induced cell death and reduced the loss of epithelial integrity. These findings support the potential of Lb. kefiranofaciens M1 treatment as an approach to preventing EHEC infection and its effects. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    Science.gov (United States)

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  15. Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7.

    Science.gov (United States)

    Lodato, Patricia B; Thuraisamy, Thujitha; Richards, Jamie; Belasco, Joel G

    2017-07-06

    Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that assembles a type III secretion system (T3SS) on its surface. The last portion of the T3SS, called the 'translocon', is composed of a filament and a pore complex that is inserted into the membrane of intestinal epithelial cells. The genes encoding the translocon (espADB) are part of the LEE4 operon. Their expression is regulated by a complex post-transcriptional mechanism that involves the processing of LEE4 mRNA by the essential endoribonuclease RNase E. Here, we report the construction of an EHEC strain (TEA028-rne) in which RNase E can be induced by adding IPTG to the culture medium. EHEC cells deficient in RNase E displayed an abnormal morphology and slower growth, in agreement with published observations in E. coli K-12. Under those conditions, EspA and EspB were produced at higher concentrations, and protein secretion still occurred. These results indicate that RNase E negatively regulates translocon protein synthesis and demonstrate the utility of E. coli strain TEA028-rne as a tool for investigating the influence of this ribonuclease on EHEC gene expression in vitro. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Development of a rapid agglutination latex test for diagnosis of enteropathogenic and enterohemorrhagic Escherichia coli infection in developing world: defining the biomarker, antibody and method.

    Directory of Open Access Journals (Sweden)

    Letícia B Rocha

    2014-09-01

    Full Text Available Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC/EHEC are human intestinal pathogens responsible for diarrhea in both developing and industrialized countries. In research laboratories, EPEC and EHEC are defined on the basis of their pathogenic features; nevertheless, their identification in routine laboratories is expensive and laborious. Therefore, the aim of the present work was to develop a rapid and simple assay for EPEC/EHEC detection. Accordingly, the EPEC/EHEC-secreted proteins EspA and EspB were chosen as target antigens.First, we investigated the ideal conditions for EspA/EspB production/secretion by ELISA in a collection of EPEC/EHEC strains after cultivating bacterial isolates in Dulbecco's modified Eagle's medium (DMEM or DMEM containing 1% tryptone or HEp-2 cells-preconditioned DMEM, employing either anti-EspA/anti-EspB polyclonal or monoclonal antibodies developed and characterized herein. Subsequently, a rapid agglutination latex test (RALT was developed and tested with the same collection of bacterial isolates.EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis; the production of EspB was better in DMEM medium. RALT assay has the sensitivity and specificity required for high-impact diagnosis of neglected diseases in the developing world.RALT assay described herein can be considered an alternative assay for diarrhea diagnosis in low-income countries since it achieved 97% sensitivity, 98% specificity and 97% efficiency.

  17. Proteins involved in difference of sorbitol fermentation rates of the toxigenic and nontoxigenic Vibrio cholerae El Tor strains revealed by comparative proteome analysis

    Science.gov (United States)

    2009-01-01

    Background The nontoxigenic V. cholerae El Tor strains ferment sorbitol faster than the toxigenic strains, hence fast-fermenting and slow-fermenting strains are defined by sorbitol fermentation test. This test has been used for more than 40 years in cholera surveillance and strain analysis in China. Understanding of the mechanisms of sorbitol metabolism of the toxigenic and nontoxigenic strains may help to explore the genome and metabolism divergence in these strains. Here we used comparative proteomic analysis to find the proteins which may be involved in such metabolic difference. Results We found the production of formate and lactic acid in the sorbitol fermentation medium of the nontoxigenic strain was earlier than of the toxigenic strain. We compared the protein expression profiles of the toxigenic strain N16961 and nontoxigenic strain JS32 cultured in sorbitol fermentation medium, by using fructose fermentation medium as the control. Seventy-three differential protein spots were found and further identified by MALDI-MS. The difference of product of fructose-specific IIA/FPR component gene and mannitol-1-P dehydrogenase, may be involved in the difference of sorbitol transportation and dehydrogenation in the sorbitol fast- and slow-fermenting strains. The difference of the relative transcription levels of pyruvate formate-lyase to pyruvate dehydrogenase between the toxigenic and nontoxigenic strains may be also responsible for the time and ability difference of formate production between these strains. Conclusion Multiple factors involved in different metabolism steps may affect the sorbitol fermentation in the toxigenic and nontoxigenic strains of V. cholerae El Tor. PMID:19589152

  18. The gut bacterium Bacteroides thetaiotaomicron influences the virulence potential of the enterohemorrhagic Escherichia coli O103:H25.

    Directory of Open Access Journals (Sweden)

    Hildegunn Iversen

    Full Text Available Enterohemorrhagic E. coli (EHEC is associated with severe gastrointestinal disease. Upon entering the gastrointestinal tract, EHEC is exposed to a fluctuating environment and a myriad of other bacterial species. To establish an infection, EHEC strains have to modulate their gene expression according to the GI tract environment. In order to explore the interspecies interactions between EHEC and an human intestinal commensal, the global gene expression profile was determined of EHEC O103:H25 (EHEC NIPH-11060424 co-cultured with B. thetaiotaomicron (CCUG 10774 or grown in the presence of spent medium from B. thetaiotaomicron. Microarray analysis revealed that approximately 1% of the EHEC NIPH-11060424 genes were significantly up-regulated both in co-culture (30 genes and in the presence of spent medium (44 genes, and that the affected genes differed between the two conditions. In co-culture, genes encoding structural components of the type three secretion system were among the most affected genes with an almost 4-fold up-regulation, while the most affected genes in spent medium were involved in chemotaxis and were more than 3-fold up-regulated. The operons for type three secretion system (TTSS are located on the Locus of enterocyte effacement (LEE pathogenicity island, and qPCR showed that genes of all five operons (LEE1-LEE5 were up-regulated. Moreover, an increased adherence to HeLa cells was observed in EHEC NIPH-11060424 exposed to B. thetaiotaomicron. Expression of stx2 genes, encoding the main virulence factor of EHEC, was down-regulated in both conditions (co-culture/spent medium. These results show that expression of EHEC genes involved in colonization and virulence is modulated in response to direct interspecies contact between cells, or to diffusible factors released from B. thetaiotaomicron. Such interspecies interactions could allow the pathogen to recognize its predilection site and modulate its behaviour accordingly, thus increasing

  19. Clonal Diversity of Chilean Isolates of Enterohemorrhagic Escherichia coli from Patients with Hemolytic-Uremic Syndrome, Asymptomatic Subjects, Animal Reservoirs, and Food Products

    Science.gov (United States)

    Rios, Maritza; Prado, Valeria; Trucksis, Michele; Arellano, Carolina; Borie, Consuelo; Alexandre, Marcela; Fica, Alberto; Levine, Myron M.

    1999-01-01

    To determine clonal relationship among Chilean enterohemorrhagic Escherichia coli (EHEC) strains from different sources (clinical infections, animal reservoirs, and food), 54 EHEC isolates (44 of E. coli O157, 5 of E. coli O111, and 5 of E. coli O26) were characterized for virulence genes by colony blot hybridization and by pulsed-field gel electrophoresis (PFGE). By colony blotting, 12 different genotypes were identified among the 44 E. coli O157 isolates analyzed, of which the genetic profile stx1+ stx2+ hly+ eae+ was the most prevalent. All human O157 strains that were associated with sporadic cases of hemolytic-uremic syndrome (HUS) carried both the stx1 and stx2 toxin-encoding genes and were eaeA positive. Only 9 of 13 isolates from human controls were stx1+ stx2+, and 8 carried the eaeA gene. Comparison of profiles obtained by PFGE of XbaI-digested genomic DNA showed a great diversity among the E. coli O157 isolates, with 37 different profiles among 39 isolates analyzed. Cluster analysis of PFGE profiles showed a wide distribution of clinical isolates obtained from HUS cases and asymptomatic individuals and a clonal relationship among O157 isolates obtained from HUS cases and pigs. Analysis of virulence genes showed that a correlation exists among strains with the genotype stx1+ stx2+ eae+ and pathogenic potential. A larger difference in the PFGE restriction patterns was observed among the EHEC strains of serogroups O26 and O111. These results indicate that several different EHEC clones circulate in Chile and suggest that pigs are an important animal reservoir for human infections by EHEC. Guidelines have been proposed for better practices in the slaughter of animals in Chile. PMID:9986852

  20. Detection of Enterohemorrhagic Escherichia coli Related Genes in E. coli Strains Belonging to B2 Phylogroup Isolated from Urinary Tract Infections in Combination with Antimicrobial Resistance Phenotypes

    Directory of Open Access Journals (Sweden)

    Hamid Staji

    2017-07-01

    Full Text Available Background:  This study was conducted to detect the prevalence of EHEC virulence genes and antimicrobial resistance profile of Escherichia coli strains belonging to B2 phylogroup implicated in Urinary tract infections in Semnan, Iran.Methods:   From 240 urine samples 160 E. coli strains were isolated, biochemically. Then, E. coli isolates were examined by Multiplex-PCR for phylogenetic typing and detection of virulence genes (hly, stx1, stx2, eae associated with Enterohemorrhagic E. coli. Finally, Antimicrobial resistance of E. coli isolates were characterized using Disk Diffusion method.  Results:  From 160 E. coli isolates, 75 strains (47% were assigned to B2 phylogenetic group and prevalence of virulence genes were as follow: hly (21.3%, stx1 (16%, stx2 (10.6% and eae (6.7%, subsequently.  Phenotypic antimicrobial resistance of B2 isolates showed that all isolates were sensitive to Meropenem and Furazolidone and then highest frequency of resistance was observed to Streptomycin, Oxytetracycline, Neomycin, Nalidixic acid and Ampicillin (98.7% to 49.3%. Also low resistance prevalence was observed in case of Ceftizoxime, Lincospectin, Imipenem, Chloramphenicol and flurefenicole (16% to 1.3%.Conclusion:   The data suggest a high prevalence of antibiotic resistance in UPEC strains belonging to B2 phylogroup even for the antimicrobials using in pet and farm animals and their potential to cause EHEC specific clinical symptoms which may represent a serious health risk since these strains can be transmitted to GI tract and act as a reservoir for other uropathogenic E. coli and commensal strains.

  1. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    Directory of Open Access Journals (Sweden)

    Aboubaker M. Garbaj

    2016-11-01

    Full Text Available Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey that include 3 isolates from cow’s milk (11%, 3 isolates from she-camel’s milk (11%, two isolates from goat’s milk (7.4% and 7 isolates from fermented raw milk samples (26%, isolates from fresh locally made soft cheeses (Maasora and Ricotta were 9 (33% and 3 (11%, respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya.

  2. The interacting Cra and KdpE regulators are involved in the expression of multiple virulence factors in enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Njoroge, Jacqueline W; Gruber, Charley; Sperandio, Vanessa

    2013-06-01

    The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 codes for two interacting DNA binding proteins, Cra and KdpE, that coregulate expression of the locus of enterocyte effacement (LEE) genes in a metabolite-dependent manner. Cra is a transcription factor that uses fluctuations in the concentration of carbon metabolism intermediates to positively regulate virulence of EHEC. KdpE is a response regulator that activates the transcription of homeostasis genes in response to salt-induced osmolarity and virulence genes in response to changes in metabolite concentrations. Here, we probed the transcriptional profiles of the Δcra, ΔkdpE, and Δcra ΔkdpE mutant strains and show that Cra and KdpE share several targets besides the LEE, but both Cra and KdpE also have independent targets. Several genes within O-islands (genomic islands present in EHEC but absent from E. coli K-12), such as Z0639, Z0640, Z3388, Z4267, and espFu (encoding an effector necessary for formation of attaching and effacing lesions on epithelial cells), were directly regulated by both Cra and KdpE, while Z2077 was only regulated by Cra. These studies identified and confirmed new direct targets for Cra and KdpE that included putative virulence factors as well as characterized virulence factors, such as EspFu and EspG. These results map out the role of the two interacting regulators, Cra and KdpE, in EHEC pathogenesis and global gene regulation.

  3. Feedlot- and Pen-Level Prevalence of Enterohemorrhagic Escherichia coli in Feces of Commercial Feedlot Cattle in Two Major U.S. Cattle Feeding Areas.

    Science.gov (United States)

    Cull, Charley A; Renter, David G; Dewsbury, Diana M; Noll, Lance W; Shridhar, Pragathi B; Ives, Samuel E; Nagaraja, Tiruvoor G; Cernicchiaro, Natalia

    2017-06-01

    The objective of this study was to determine feedlot- and pen-level fecal prevalence of seven enterohemorrhagic Escherichia coli (EHEC) belonging to serogroups (O26, O45, O103, O111, O121, O145, and O157, or EHEC-7) in feces of feedlot cattle in two feeding areas in the United States. Cattle pens from four commercial feedlots in each of the two major U.S. beef cattle areas were sampled. Up to 16 pen-floor fecal samples were collected from each of 4-6 pens per feedlot, monthly, for a total of three visits per feedlot, from June to August, 2014. Culture procedures including fecal enrichment in E. coli broth, immunomagnetic separation, and plating on selective media, followed by confirmation through polymerase chain reaction (PCR) testing, were conducted. Generalized linear mixed models were fitted to estimate feedlot-, pen-, and sample-level fecal prevalence of EHEC-7 and to evaluate associations between potential demographic and management risk factors with feedlot and within-pen prevalence of EHEC-7. All study feedlots and 31.0% of the study pens had at least one non-O157 EHEC-positive fecal sample, whereas 62.4% of pens tested positive for EHEC O157; sample-level prevalence estimates ranged from 0.0% for EHEC O121 to 18.7% for EHEC O157. Within-pen prevalence of EHEC O157 varied significantly by sampling month; similarly within-pen prevalence of non-O157 EHEC varied significantly by month and by the sex composition of the pen (heifer, steer, or mixed). Feedlot management factors, however, were not significantly associated with fecal prevalence of EHEC-7. Intraclass correlation coefficients for EHEC-7 models indicated that most of the variation occurred between pens, rather than within pens, or between feedlots. Hence, the potential combination of preharvest interventions and pen-level management strategies may have positive food safety impacts downstream along the beef chain.

  4. Sub-Lethal Dose of Shiga toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cythoarquitecture.

    Directory of Open Access Journals (Sweden)

    Luciana eD’Alessio

    2016-02-01

    Full Text Available Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test, and ultrastructural analysis (transmission electron microscope. Intravenous administration of vehicle (control group, sub-lethal dose of 0.5 ηg and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n=6. Blood–Brain Barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance.

  5. The two-component system CpxRA negatively regulates the Locus of Enterocyte Effacement of enterohemorrhagic Escherichia coli involving sigma 32 and Lon protease

    Directory of Open Access Journals (Sweden)

    MIGUEL A. eDE LA CRUZ

    2016-02-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE, which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system consisting of a sensor histidine kinase (CpxA and a cytoplasmic response regulator (CpxR. In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32, which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC’s ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.

  6. Discrimination of Enterohemorrhagic Escherichia coli (EHEC) from Non-EHEC Strains Based on Detection of Various Combinations of Type III Effector Genes

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains comprise a subgroup of Shiga-toxin (Stx)-producing E. coli (STEC) and are characterized by a few serotypes. Among these, seven priority STEC serotypes (O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7) are most frequently implicated in severe clinical illness worldwide. Currently, standard methods using stx, eae, and O-serogroup-specific gene sequences for detecting the top 7 EHEC serotypes bear the disadvantage that these genes can be found in non-EHEC strains as well. Here, we explored the suitability of ureD, espV, espK, espN, Z2098, and espM1 genes and combinations thereof as candidates for a more targeted EHEC screening assay. For a very large panel of E. coli strains (n = 1,100), which comprised EHEC (n = 340), enteropathogenic E. coli (EPEC) (n = 392), STEC (n = 193), and apathogenic strains (n = 175), we showed that these genetic markers were more prevalent in EHEC (67.1% to 92.4%) than in EPEC (13.3% to 45.2%), STEC (0.5% to 3.6%), and apathogenic E. coli strains (0 to 2.9%). It is noteworthy that 38.5% of the EPEC strains that tested positive for at least one of these genetic markers belonged to the top 7 EHEC serotypes, suggesting that such isolates might be Stx-negative derivatives of EHEC. The associations of espK with either espV, ureD, or Z2098 were the best combinations for more specific and sensitive detection of the top 7 EHEC strains, allowing detection of 99.3% to 100% of these strains. In addition, detection of 93.7% of the EHEC strains belonging to other serotypes than the top 7 offers a possibility for identifying new emerging EHEC strains. PMID:23884997

  7. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  8. Strand-specific transcriptomes of Enterohemorrhagic Escherichia coli in response to interactions with ground beef microbiota: interactions between microorganisms in raw meat.

    Science.gov (United States)

    Galia, Wessam; Leriche, Francoise; Cruveiller, Stéphane; Garnier, Cindy; Navratil, Vincent; Dubost, Audrey; Blanquet-Diot, Stéphanie; Thevenot-Sergentet, Delphine

    2017-08-03

    Enterohemorrhagic Escherichia coli (EHEC) are zoonotic agents associated with outbreaks worldwide. Growth of EHEC strains in ground beef could be inhibited by background microbiota that is present initially at levels greater than that of the pathogen E. coli. However, how the microbiota outcompetes the pathogenic bacteria is unknown. Our objective was to identify metabolic pathways of EHEC that were altered by natural microbiota in order to improve our understanding of the mechanisms controlling the growth and survival of EHECs in ground beef. Based on 16S metagenomics analysis, we identified the microbial community structure in our beef samples which was an essential preliminary for subtractively analyzing the gene expression of the EHEC strains. Then, we applied strand-specific RNA-seq to investigate the effects of this microbiota on the global gene expression of EHEC O26 21765 and O157 EDL933 strains by comparison with their behavior in beef meat without microbiota. In strain O26 21765 , the expression of genes connected with nitrate metabolism and nitrite detoxification, DNA repair, iron and nickel acquisition and carbohydrate metabolism, and numerous genes involved in amino acid metabolism were down-regulated. Further, the observed repression of ftsL and murF, involved respectively in building the cytokinetic ring apparatus and in synthesizing the cytoplasmic precursor of cell wall peptidoglycan, might help to explain the microbiota's inhibitory effect on EHECs. For strain O157 EDL933 , the induced expression of the genes implicated in detoxification and the general stress response and the repressed expression of the peR gene, a gene negatively associated with the virulence phenotype, might be linked to the survival and virulence of O157:H7 in ground beef with microbiota. In the present study, we show how RNA-Seq coupled with a 16S metagenomics analysis can be used to identify the effects of a complex microbial community on relevant functions of an individual

  9. Escherichia coli enterohemorrágica y síndrome urémico hemolítico en Argentina Enterohemorrhagic Escherichia coli and hemolytic-uremic syndrome in Argentina

    Directory of Open Access Journals (Sweden)

    Mariana A. Rivero

    2004-08-01

    Full Text Available El síndrome urémico hemolítico (SUH.es un desorden multisistémico caracterizado por presentar insuficiencia renal aguda, anemia hemolítica microangiopática y trombocitopenia. Constituye la principal causa de insuficiencia renal aguda y la segunda causa de insuficiencia renal crónica y de transplante renal en niños en la Argentina. Actualmente, nuestro país presenta el registro más alto de SUH en todo el mundo, con aproximadamente 420 casos nuevos declarados anualmente y una incidencia de 12.2/100 000 niños menores de 5 años de edad. Se reconocen múltiples agentes etiológicos, aunque se considera a la infección por Escherichia coli enterohemorrágica (EHEC como la principal etiología de SUH. La gran mayoría de brotes epidémicos y casos esporádicos en humanos se han asociado con el serotipo O157:H7, aunque otros serotipos han sido también aislados, y éstos son un subgrupo de E. coli verocitotoxigénico (VTEC..El bovino es considerado el principal reservorio de VTEC. El contagio al hombre frecuentemente se debe al consumo de alimentos cárneos y lácteos contaminados, deficientemente cocidos o sin pasteurizar, o al contacto directo con los animales o con sus heces, consumo de agua, frutas o verduras contaminadas. También puede producirse contagio mediante el contacto interhumano.The hemolytic-uremic syndrome (HUS is a multisystemic disorder that is characterized by the onset of acute renal failure, microangiopathic hemolytic anemia and thrombocytopenia. It is the most common cause of acute renal failure and the second cause of chronic renal failure and renal transplantation in children in Argentina. Our country has the highest incidence of HUS in the world, with approximately 420 new cases observed each year with an incidence of 12.2 cases per 100 000 children in the age group 0-5 years. Numerous etiologic factors have been associated with HUS but the infection with enterohemorrhagic Escherichia coli (EHEC is considered the

  10. Towards a Molecular Definition of Enterohemorrhagic Escherichia coli (EHEC): Detection of Genes Located on O Island 57 as Markers To Distinguish EHEC from Closely Related Enteropathogenic E. coli Strains

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar

    2013-01-01

    Among strains of Shiga-toxin (Stx) producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are associated with severe clinical illness in humans. These strains are also called enterohemorrhagic E. coli (EHEC), and the development of methods for their reliable detection from food has been challenging thus far. PCR detection of major EHEC virulence genes stx1, stx2, eae, and O-serogroup-specific genes is useful but does not identify EHEC strains specifically. Searching for the presence of additional genes issued from E. coli O157:H7 genomic islands OI-122 and OI-71 increases the specificity but does not clearly discriminate EHEC from enteropathogenic E. coli (EPEC) strains. Here, we identified two putative genes, called Z2098 and Z2099, from the genomic island OI-57 that were closely associated with EHEC and their stx-negative derivative strains (87% for Z2098 and 91% for Z2099). Z2098 and Z2099 were rarely found in EPEC (10% for Z2098 and 12% for Z2099), STEC (2 and 15%), and apathogenic E. coli (1% each) strains. Our findings indicate that Z2098 and Z2099 are useful genetic markers for a more targeted diagnosis of typical EHEC and new emerging EHEC strains. PMID:23325824

  11. Vaccination with DNA encoding truncated enterohemorrhagic Escherichia coli (EHEC factor for adherence-1 gene (efa-1’ confers protective immunity to mice infected with E. coli O157:H7

    Directory of Open Access Journals (Sweden)

    Roberto eRiquelme-Neira

    2016-01-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1’ in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1’ gene (pVAXefa-1’ into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1`, EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10 and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1´ have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.

  12. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal.

    Science.gov (United States)

    Wang, Xiangyu; Du, Yanli; Hua, Ying; Fu, Muqing; Niu, Cong; Zhang, Bao; Zhao, Wei; Zhang, Qiwei; Wan, Chengsong

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, Δ espF ), N-terminal sequence (219 bp, Δ espF N ), and C-terminal sequence (528 bp, Δ espF C ) separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, Δ espF/pespF , Δ espF N /pespF N , and Δ espF C /pespF C by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER), and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT), Δ espF , Δ espF/pespF , Δ espF C , Δ espF C /pespF C , Δ espF N , and Δ espF N /pespF N groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, Δ espF/pespF , and Δ espF C were significantly higher than that of Δ espF , Δ espF N , Δ espF C /pespF C , and Δ espF N /pespF N group ( p < 0.05). The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  13. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal

    Directory of Open Access Journals (Sweden)

    Xiangyu Wang

    2017-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, ΔespF, N-terminal sequence (219 bp, ΔespFN, and C-terminal sequence (528 bp, ΔespFC separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, ΔespF/pespF, ΔespFN/pespFN, and ΔespFC/pespFC by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER, and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT, ΔespF, ΔespF/pespF, ΔespFC, ΔespFC/pespFC, ΔespFN, and ΔespFN/pespFN groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, ΔespF/pespF, and ΔespFC were significantly higher than that of ΔespF, ΔespFN, ΔespFC/pespFC, and ΔespFN/pespFN group (p < 0.05. The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  14. Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands

    Science.gov (United States)

    2010-01-01

    Sorbitol-fermenting Bifidobacteria (SFB) proved to be an excellent indicator of very recent human faecal pollution (hours to days) in the investigated tropical stream and groundwater habitats. SFB were recovered from human faeces and sources potentially contaminated with human excreta. SFB were undetectable in animal faeces and environmental samples not contaminated with human faeces. Microcosm studies demonstrated a rapid die-off rate in groundwater (T90 value 0.6 days) and stream water (T90 value 0.9–1.7 days). Discrimination sensitivity analysis, including E. coli, faecal coliforms, total coliforms and Clostridium perfringens spores, revealed high ability of SFB to distinguish differing levels of faecal pollution especially for streams although high background levels of interfering bacteria can complicate its recovery on the used medium. Due to its faster die-off, as compared to many waterborne pathogens, SFB cannot replace microbiological standard parameters for routine water quality monitoring but it is highly recommendable as a specific and complementary tool when human faecal pollution has to be localized or verified. Because of its exclusive faecal origin and human specificity it seems also worthwhile to include SFB in future risk evaluation studies at tropical water resources in order to evaluate under which situations risks of infection may be indicated. PMID:20375476

  15. Growth media simulating ileal and colonic environments affect the intracellular proteome and carbon fluxes of enterohemorrhagic Escherichia coli O157:H7 strain EDL933.

    Science.gov (United States)

    Polzin, Sabrina; Huber, Claudia; Eylert, Eva; Elsenhans, Ines; Eisenreich, Wolfgang; Schmidt, Herbert

    2013-06-01

    In this study, the intracellular proteome of Escherichia coli O157:H7 strain EDL933 was analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) spectrometry after growth in simulated ileal environment media (SIEM) and simulated colonic environment media (SCEM) under aerobic and microaerobic conditions. Differentially expressed intracellular proteins were identified and allocated to functional protein groups. Moreover, metabolic fluxes were analyzed by isotopologue profiling with [U-(13)C(6)]glucose as a tracer. The results of this study show that EDL933 responds with differential expression of a complex network of proteins and metabolic pathways, reflecting the high metabolic adaptability of the strain. Growth in SIEM and SCEM is obviously facilitated by the upregulation of nucleotide biosynthesis pathway proteins and could be impaired by exposition to 50 µM 6-mercaptopurine under aerobic conditions. Notably, various stress and virulence factors, including Shiga toxin, were expressed without having contact with a human host.

  16. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. PMID:25862232

  17. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro.

    Science.gov (United States)

    Böhnlein, Christina; Kabisch, Jan; Meske, Diana; Franz, Charles M A P; Pichner, Rohtraud

    2016-11-01

    In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive

  18. Efecto citotóxico en colon humano de Escherichia coli enterohemorrágico aislado de terneros con diarrea sanguinolenta Cytotoxic effect in human colon of enterohemorrhagic Escherichia coli isolated from calves with bloody diarrhea

    Directory of Open Access Journals (Sweden)

    V. Pistone Creydt

    2005-09-01

    Full Text Available Escherichia coli productor de toxina Shiga (STEC es el patógeno emergente en alimentos de mayor impacto, siendo su principal reservorio el ganado bovino. STEC puede causar diarrea, colitis hemorrágica y síndrome urémico hemolítico. El presente trabajo estudió la acción citotóxica de dos cepas de STEC aisladas de heces de terneros diarreicos en colon humano in vitro. Los fragmentos se montaron como un diafragma en una cámara de Ussing y se incubaron con las cepas patógenas. El flujo neto absortivo de agua (Jw disminuyó y la corriente de cortocircuito (Isc aumentó significativamente (P Shiga toxin-producing E. coli (STEC is one of the most important emergent pathogen in foods, being its main reservoir bovine cattle. STEC can cause diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome. The present work have studied the cytotoxic action in human colon of cultures of two STEC strains isolated from faeces of calves with bloody diarrhea. Colonic mucosa was mounted as a diaphragm in a Ussing chamber and incubated with the cultures of pathogenic strains. Net water flow (Jw decreased and the short-circuit current (Isc increased significantly (p < 0,01 compared to negative control. Tissues showed an erosion of the mucose, epithelial exfoliation, and presence of pseudo-membranes in the lumen. Mild circulatory lesions were observed in the lamina propia. A moderate neutrophils infiltration was observed in the lumen and into the epithelial cells. Colonic crypts were not disrupted. Both experimental strains caused a similar lesion on colon tissues. This is the first study that shows that cultures of STEC strains isolated from bovine cattle produce cytotoxic effects in vitro in human colon.

  19. Temperature-Dependent Fermentation of d-Sorbitol in Escherichia coli O157:H7

    OpenAIRE

    Bouvet, O. M. M.; Pernoud, S.; Grimont, P. A. D.

    1999-01-01

    The influence of growth temperature on the ability to ferment d-sorbitol was investigated in Escherichia coli O157:H7. It was found that O157:H7 strains have a temperature-sensitive sorbitol phenotype. d-Sorbitol transport and sorbitol-6-phosphate dehydrogenase activities were expressed in sorbitol-fermenting cells grown at 30°C but only at a low level at 40°C. Sorbitol-positive variants able to transport d-sorbitol were easily selected at 30°C from culture of Sor− E. coli O157:H7 strains.

  20. Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC O145:H25 and O145:H28.

    Directory of Open Access Journals (Sweden)

    Lothar Beutin

    Full Text Available Enterohemorrhagic E. coli (EHEC serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1-10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.

  1. THE WIDESPREAD OCCURRENCE OF THE ENTEROHEMOLYSIN GENE EHLYA AMONG ENVIRONMENTAL STRAINS OF ESCHERICHIA COLI

    Science.gov (United States)

    The putative virulence factor enterohemolysin, encoded for by the ehlyA gene, has been closely associated with the pathogenic enterohemorrhagic Escherichia coli (EHEC) group. E. coli isolates from effluents from seven geographically dispersed municipal ...

  2. Sequence Variations in the Flagellar Antigen Genes fliC H25 and fliC H28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-01-01

    Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliC H25 and fliC H28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliC H25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliC H25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliC H28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliC H25[O145] and fliC H28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1–10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliC H25[O145] and fliC H28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates. PMID:26000885

  3. Shiga Toxin in Enterohemorrhagic E.coli: regulation and novel antivirulence strategies

    Directory of Open Access Journals (Sweden)

    Vanessa eSperandio

    2012-06-01

    Full Text Available Enterohemorrhagic Escherichia coli O157:H7 infects about 73,000 people annually in the USA and is a major cause of outbreaks of bloody diarrhea worldwide, and. In 5 to 7% of the cases, the person infected develops the potentially fatal sequelae hemolytic uremic syndrome (HUS, characterized by acute kidney failure. A hallmark of EHEC pathogenesis and cause of HUS is the production of Shiga toxin (Stx. Stx was first described by Kiyoshi Shiga in Shigella dysenterae serotype I and later discovered in EHEC, and it has been linked to HUS since 1983. Many factors regulate the production of Stx, including temperature, growth phase, antibiotics, reactive oxygen species and quorum sensing. Currently, there is no effective treatment or prophylaxis for HUS. Since the use of antibiotics is not advised to treat EHEC infections because it triggers Stx production, alternative antibacterial strategies need to be developed. Quorum sensing inhibitors represent a novel class of antibacterial compounds, which have the advantage of not interfering on bacterial growth, thereby without selective pressure that can lead to appearance of resistant strains. In this review, we discuss factors that regulate Stx production in EHEC as well as novel strategies to fight Stx and minimize development to HUS in EHEC-infected patients.

  4. prevalence of escherichia coli 0157:h7 in fresh and roasted beef

    African Journals Online (AJOL)

    DR. AMINU

    The prevalence of Enterohemorrhagic Escherichia coli 0157:H7 in 300 fresh beef and 150 roasted beef samples from ... likely cause of E. coli O157:H7 infection is undercooked ground beef. ..... coli O157:H7 in a sheep model. Appl. Environ.

  5. Enteroaggregative, Shiga Toxin-Producing Escherichia coli O111:H2 Associated with an Outbreak of Hemolytic-Uremic Syndrome

    Science.gov (United States)

    Morabito, Stefano; Karch, Helge; Mariani-Kurkdjian, Patrizia; Schmidt, Herbert; Minelli, Fabio; Bingen, Edouard; Caprioli, Alfredo

    1998-01-01

    Shiga toxin-producing Escherichia coli O111:H2 strains from an outbreak of hemolytic-uremic syndrome showed aggregative adhesion to HEp-2 cells and harbored large plasmids which hybridized with the enteroaggregative E. coli probe PCVD432. These strains present a novel combination of virulence factors and might be as pathogenic to humans as the classic enterohemorrhagic E. coli. PMID:9508328

  6. Role of major surface structures of Escherichia coli O157:H7 in initial attachment to biotic and abiotic surfaces

    Science.gov (United States)

    Infection by human pathogens through fresh, minimally processed produce and solid plant-derived foods is a major concern of U.S. and global food industry and public health services. The enterohemorrhagic Escherichia coli O157:H7 is a frequent and potent food borne pathogen that causes severe disease...

  7. Determining the relative contribution and hierarchy of qseBC and hha in the regulation of flagellar motility of Escherichia coli O157:H7

    Science.gov (United States)

    In a recent study we demonstrated that in comparison to the wild-type enterohemorrhagic Escherichia coli (EHEC) O157:H7, a motility-compromised hha deletion mutant with an up-regulated type III secretion system and increased secretion of adherence proteins showed reduced fecal shedding in cattle. In...

  8. Genome sequences of thirty Escherichia coli O157:H7 isolates recovered from a single dairy farm and its associated off-site heifer raising facility

    Science.gov (United States)

    Cattle are the primary reservoir of Escherichia coli O157:H7, the most frequently isolated serotype of enterohemorrhagic E. coli infections among humans in North America. To evaluate the diversity of E. coli O157:H7 isolates within a single dairy herd the genomes of 30 isolates collected over a 7-ye...

  9. Characterization and Virulence Assessment of Two 091:821 Enterohemorrhagic Escherichia Coli Isolates

    Science.gov (United States)

    1993-04-30

    stable toxin (ST) . ETEC cause profuse watery diarrhea similar to the diarrhea caused by Vibrio cholerae infection (Sack, 1975). EIEC, unlike ETEC...Fr •• ley, R. B. Sack, W. B. Cr •• ch, A. Z. Itapikian, B. J. Gang_ro ••• 1976. Travelers diarrhea in Mexico . A prospective study of physicians...p.153- 158 . Proceedings of the U. S.-Japan 27th Joint Conference on Cholera and Related Diarrheal Diseases. Virginia. Charlottesville, Yu, J

  10. Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics.

    Science.gov (United States)

    Dini, C; Bolla, P A; de Urraza, P J

    2016-07-01

    To assay the combination of phage and probiotics against EHEC in vitro on infected Hep-2 cells. Phage and probiotics treatments on EHEC O157:H7-infected Hep-2 cells were assayed individually or combined. The effect of freeze-drying on phage and probiotic antimicrobial activity was also studied. While treatment with phage alone increased cell detachment caused by EHEC infection, the treatments with MM alone or in combination with phage proved to effectively diminish cell damage caused by EHEC infection. Combined treatment showed a decrease in apoptotic cell count of 57·3% and a reduction in EHEC adhesion to cell monolayer of 1·2 log CFU. The simultaneous use of phage and probiotics showed no antagonistic effect, and freeze-drying did not affect their antipathogenic activity. The combination of phage and probiotics has great potential for reducing the number of pathogens adhered to epithelial cells during EHEC O157:H7 infection and attenuating the cytotoxic effect derived from it. Further in vivo assays are needed for assessing the actual effectiveness of the treatment. This study presents a freeze-dried formulation of phage and probiotics capable of controlling EHEC infections and reducing epithelial cell damage in vitro. © 2016 The Society for Applied Microbiology.

  11. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    Reyes, Daniel; Vilchez, Samuel; Paniagua, Margarita; Colque-Navarro, Patricia; Weintraub, Andrej; Möllby, Roland; Kühn, Inger

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  12. Comparative sequence analysis revealed altered chromosomal organization and a novel insertion sequence encoding DNA modification and potentially stress-related functions in an Escherichia coli O157:H7 foodborne isolate

    Science.gov (United States)

    We recently described the complete genome of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain NADC 6564, an isolate of strain 86-24 linked to the 1986 disease outbreak. In the current study, we compared the chromosomal sequence of NADC 6564 to the well-characterized chromosomal sequences of ...

  13. Fatal case of hemolytic-uremic syndrome in an adult due to a rare serogroup O91 Entero hemorrhagic Escherichia coli associated with a Clostridium difficile infection. More than meets the eye

    Directory of Open Access Journals (Sweden)

    Thomas Guillard

    2015-08-01

    Full Text Available Hemolytic-uremic syndrome due to enterohemorrhagic Escherichia coli, belonging to serogroup O91 has rarely been described. We report here a case of post-diarrheal HUS due to EHEC O91 in an elderly patient for whom diagnosis was delayed given a previously diagnosed C. difficile infection. This case highlights the usefulness of Shiga-toxin detection.

  14. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    OpenAIRE

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-St...

  15. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    OpenAIRE

    Yanil R Parma; Pablo A Chacana; Paula María Alejandra Lucchesi; Ariel eRoge; Claudia V Granobles Velandia; Alejandra eKrüger; Alejandra eKrüger; Alberto E. Parma; Mariano Enrique Fernandez Miyakawa

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-St...

  16. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  17. Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and enterohemorrhagic Escherichia coli

    Science.gov (United States)

    Biofilm formation on abiotic surfaces in fresh produce processing facilities might play a role in foodborne outbreaks by providing protective microniches for pathogenic bacteria. Our previous study showed that a strain of Ralstonia insidiosa isolated from a fresh produce processing plant could enhan...

  18. Genotypes and phenotypes of Shiga toxin-producing Escherichia coli (STEC in Abeokuta, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Olowe OA

    2014-10-01

    Full Text Available Olugbenga Adekunle Olowe,1 Bukola W Aboderin,1,2 Olayinka O Idris,3 Victor O Mabayoje,4 Oluyinka O Opaleye,1 O Catherine Adekunle,1 Rita Ayanbolade Olowe,1 Paul Akinniyi Akinduti,5 Olusola Ojurongbe1 1Department of Medical Microbiology and Parasitology, College of Health Sciences, Osogbo, Osun State, Nigeria; 2Medical Microbiology Unit, Pathology Department, Federal Medical Centre, Abeokuta, Nigeria; 3Department of Microbiology, College of Sciences, Afe Babalola University, Ado Ekiti, Nigeria; 4Department of Haematology, College of Health Sciences, Ladoke Akintola University, Osogbo, Osun State, Nigeria; 5Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria Purpose: To characterize the prevalence of hemolytic Shiga toxin-producing Escherichia coli (STEC with a multidrug-resistant pattern in different age groups in Abeokuta, Nigeria. Methods: Nonrepetitive E. coli isolates were collected from 202 subjects with or without evidence of diarrhea. Each isolate was biochemically identified and antimicrobial susceptibility testing was performed using the disk diffusion method. A sorbitol fermentation test of all the E. coli isolates was done and the minimum inhibitory concentration of suspected STEC was measured by the standard broth microdilution method to determine antibiotic resistance. The genotypes of stx1, stx2, and hlyA were determined by polymerase chain reaction assay. Results: The majority of subjects were aged ≥40 years (41.6% and were female (61.9%. Of the 202 subjects, 86.1% had STEC isolates (P<0.05. A high rate of STEC isolates resistant to amoxicillin (90.6%, cefotaxime (77.7%, and cefuroxime (75.7% was observed. Resistance to amoxicillin, gentamicin, and cefotaxime was demonstrated with a minimum inhibitory concentration >16 µg/mL in 13.9%, 11.4%, and 10.4% of the isolates, respectively. The prevalence of stx1, stx2, and hlyA was 13.9%, 6.9%, and 2.0%, respectively; 5.5% of

  19. Escherichia Coli

    Science.gov (United States)

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  20. Isolation and characteristics of Shiga toxin 2f-producing Escherichia coli among pigeons in Kyushu, Japan.

    Directory of Open Access Journals (Sweden)

    Koichi Murakami

    Full Text Available An increasing number of Shiga toxin 2f-producing Escherichia coli (STEC2f infections in humans are being reported in Europe, and pigeons have been suggested as a reservoir for the pathogen. In Japan, there is very little information regarding carriage of STEC2f by pigeons, prompting the need for further investigation. We collected 549 samples of pigeon droppings from 14 locations in Kyushu, Japan, to isolate STEC2f and to investigate characteristics of the isolates. Shiga toxin stx 2f gene fragments were detected by PCR in 16 (2.9% of the 549 dropping samples across four of the 14 locations. We obtained 23 STEC2f-isolates from seven of the original samples and from three pigeon dropping samples collected in an additional sampling experiment (from a total of seven locations across both sampling periods. Genotypic and phenotypic characteristics were then examined for selected isolates from each of 10 samples with pulsed-field gel electrophoresis profiles. Eight of the stx 2f gene fragments sequenced in this study were homologous to others that were identified in Europe. Some isolates also contained virulence-related genes, including lpfA O26, irp 2, and fyuA, and all of the 10 selected isolates maintained the eae, astA, and cdt genes. Moreover, five of the 10 selected isolates contained sfpA, a gene that is restricted to Shiga toxin-producing E. coli O165:H2 and sorbitol-fermenting Shiga toxin-producing E. coli O157:NM. We document serotypes O152:HNM, O128:HNM, and O145:H34 as STEC2f, which agrees with previous studies on pigeons and humans. Interestingly, O119:H21 was newly described as STEC2f. O145:H34, with sequence type 722, was described in a German study in humans and was also isolated in the current study. These results revealed that Japanese zoonotic STEC2f strains harboring several virulence-related factors may be of the same clonal complexes as some European strains. These findings provide useful information for public health

  1. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells

    OpenAIRE

    Yao, Yufeng; Xie, Yi; Perace, Donna; Zhong, Yi; Lu, Jie; Tao, Jing; Guo, Xiaokui; Kim, Kwang Sik

    2009-01-01

    Type III secretion systems have been documented in many Gram-negative bacteria, including enterohemorrhagic Escherichia coli. We have previously shown the existence of a putative type III secretion system in meningitis-causing E. coli K1 strains, referred to as E. coli type III secretion 2 (ETT2). The sequence of ETT2 in meningitis-causing E. coli K1 strain EC10 (O7:K1) revealed that ETT2 comprises the epr, epa and eiv genes, but bears mutations, deletions and insertions. We constructed the E...

  2. Protection from hemolytic uremic syndrome by eyedrop vaccination with modified enterohemorrhagic E. coli outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Kyoung Sub Choi

    Full Text Available We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs is effective for protecting against hemolytic uremic syndrome (HUS caused by enterohemorrhagic E. coli (EHEC O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB. Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN/Creatinin (Cr were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.

  3. Fatores de virulência em linhagens de Escherichia coli isoladas de mastite bovina Virulence factors in Escherichia coli strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    M.G. Ribeiro

    2006-10-01

    cells compatible with cytotoxic-necrotic-factor production. None strain showed non-sorbitol fermenting colonies using sorbitol MacConkey agar and agglutination with specific anti-sera for E. coli O157:H7 serotype investigation. Polymixin B (97.5% and norfloxacin (95.8% were the most effective drugs. Multiple-drug resistance for 2 or more antimicrobials was observed in 24 (20.0% strains, mainly with use of ampicillin and ceftiofur.

  4. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence.

    Science.gov (United States)

    Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj

    2009-06-29

    Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and

  5. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence

    Directory of Open Access Journals (Sweden)

    Karmali Mohamed A

    2009-06-01

    Full Text Available Abstract Background Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH. Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. Results In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. Conclusion The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping

  6. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures

    OpenAIRE

    McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtu...

  7. Mechanosensing regulates virulence in Escherichia coli O157:H7.

    Science.gov (United States)

    Islam, Md Shahidul; Krachler, Anne Marie

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host. Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the host environment are known to up-regulate LEE expression, we recently demonstrated that changes in physical forces at the site of attachment are required for localized, full induction of the system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings in the light of other recent studies describing mechanosensing of the host and force-dependent induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and mechanotransduction, and the level of conservation across bacterial species.

  8. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    Science.gov (United States)

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  9. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    Science.gov (United States)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (Paligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  10. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Maricarmen Rojas-Lopez

    2018-03-01

    Full Text Available Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America. Intestinal pathotypes such as enteropathogenic E. coli (EPEC and enterotoxigenic E. coli (ETEC are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS. Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.

  11. Antibacterial effect of lactoferricin B on Escherichia coli O157:H7 in ground beef.

    Science.gov (United States)

    Venkitanarayanan, K S; Zhao, T; Doyle, M P

    1999-07-01

    The antibacterial activity of lactoferricin B on enterohemorrhagic Escherichia coli O157:H7 in 1% peptone medium and ground beef was studied at 4 and 10 degrees C. In 1% peptone medium, 50 and 100 microg of lactoferricin B per ml reduced E. coli O157:H7 populations by approximately 0.7 and 2.0 log CFU/ml, respectively. Studies comparing the antibacterial effect of lactoferricin B on E. coli O157:H7 in 1% peptone at pH 5.5 and 7.2 did not reveal any significant difference (P > 0.5) at the two pH values. Lactoferricin B (100 microg/g) reduced E. coli O157:H7 population in ground beef by about 0.8 log CFU/g (P 0.5) was observed in the total plate count between treatment and control ground beef samples stored at 4 and 10 degrees C. The antibacterial effect of lactoferricin B on E. coli O157:H7 observed in this study is not of sufficient magnitude to merit its use in ground beef for controlling the pathogen.

  12. Escherichia coli pathotypes in Pakistan from consecutive floods in 2010 and 2011.

    Science.gov (United States)

    Bokhari, Habib; Shah, Muhammad Ali; Asad, Saba; Akhtar, Sania; Akram, Muhammad; Wren, Brendan W

    2013-03-01

    This study compares Escherichia coli pathotypes circulating among children in Pakistan during the floods of 2010 and 2011 and from sporadic cases outside flood affected areas. Using multiplex polymerase chain reaction 115 of 205 stool samples (56.29%) were positive for diarrheagenic E. coli from specimens taken during the floods compared with 50 of 400 (12.5%) stool samples being positive for sporadic cases. The E. coli pathotypes were categorized as Enteropathogenic E. coli 33 (28.69%) and 13 (26%), Enterotoxigenic E. coli 29 (25.21%) and 15 (30%), Enteroaggregative E. coli 21 (18.2%) and 18 (36%), Enterohemorrhagic E. coli 5 (4.34%) and 1 (2%) from flood and sporadic cases, respectively. Furthermore, patients co-infected with more than one pathotype were 26 (22.60%) and 3 (6%) from flood and sporadic cases, respectively. The study shows an unexpectedly high rate of isolation of E. coli pathotypes suggesting Pakistan as an endemic region that requires active surveillance particularly during flood periods.

  13. Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Science.gov (United States)

    Rosser, Tracy; Allison, Lesley J.; Courcier, Emily; Evans, Judith; McKendrick, Iain J.; Pearce, Michael C.; Handel, Ian; Caprioli, Alfredo; Karch, Helge; Hanson, Mary F.; Pollock, Kevin G.J.; Locking, Mary E.; Woolhouse, Mark E.J.; Matthews, Louise; Low, J. Chris; Gally, David L.

    2012-01-01

    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx2 in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx2 phage acquisition. PMID:22377426

  14. Susceptibility of multidrug resistant enterotoxigenic escherichia coli to saponin extract from phyllanthus niruri

    International Nuclear Information System (INIS)

    Ajibade, V.A.; Famurewa, O.

    2013-01-01

    Escherichia coli were isolated from 140 samples of blood, urine, stool and water made up of 15.7%, 42.9% and 30.0% and 25.7% respectively. From the samples, 71.9% enterotoxigenic E. coli (ETEC), 14.3% enteropathogenic E. coli (EPEC), 7.1% enterohemorrhagic E. coil (EHEC) and 7.1% enteroinvasive E. coli (EIEC) occurred as diarrheagenic E. coli. Of the ETEC (240) isolates tested for susceptibility to eight conventional antibiotics. 110 (46.0%) showed resistance to all the tested antimicrobial agents. However, of the resistant strains; 24 (22.0%) were multidrug resistant. These were tested against 3.0 mg/mL of saponin extract from phyllanthus niruri and 13 (55.0%) of these were susceptible to the saponin. The antimicrobial activities of saponin from P. niruri are of interest since the crude extract was effective at concentration of 3.0 mg/ml to multiple resistant isolates of EEC. (author)

  15. Diarrhoeagenic Escherichia coli are not a significant cause of diarrhoea in hospitalised children in Kuwait

    Directory of Open Access Journals (Sweden)

    Pacsa Alexander S

    2009-03-01

    Full Text Available Abstract Background The importance of diarrhoeagenic Escherichia coli (DEC infections in the Arabian Gulf including Kuwait is not known. The prevalence of DEC (enterotoxigenic [ETEC], enteropathogenic [EPEC], enteroinvasive [EIEC], enterohemorrhagic [EHEC] and enteroaggregative [EAEC] was studied in 537 children ≤ 5 years old hospitalised with acute diarrhoea and 113 matched controls from two hospitals during 2005–07 by PCR assays using E. coli colony pools. Results The prevalence of DEC varied from 0.75% for EHEC to 8.4% for EPEC (mostly atypical variety in diarrhoeal children with no significant differences compared to that in control children (P values 0.15 to 1.00. Twenty-seven EPEC isolates studied mostly belonged to non-traditional serotypes and possessed β and θ intimin subtypes. A total of 54 DEC isolates from diarrhoeal children and 4 from controls studied for antimicrobial susceptibility showed resistance for older antimicrobials, ampicillin (0 to 100%, tetracycline (33 to 100% and trimethoprim (22.2 to 100%; 43.1% of the isolates were multidrug-resistant (resistant to 3 or more agents. Six (10.4% DEC isolates produced extended spectrum β-lactamases and possessed genetic elements (blaCTX-M, blaTEM and ISEcp1 associated with them. Conclusion We speculate that the lack of significant association of DEC with diarrhoea in children in Kuwait compared to countries surrounding the Arabian Gulf Region may be attributable to high environmental and food hygiene due to high disposable income in Kuwait.

  16. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  17. Conjugation in Escherichia coli

    Science.gov (United States)

    Boyer, Herbert

    1966-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905

  18. Diffuse and enteroaggregative patterns of adherence of Escherichia coli isolated from stools of children in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Scaletsky Isabel Cristina Affonso

    2001-01-01

    Full Text Available Childhood diarrheal diseases remain highly endemic in northeastern Brazil. The attributable fraction of all diarrheal diseases among children less than 2 years of age due to Escherichia coli was examined in a 2-year prospective study in two large urban centers of Brazil. Between May 1997 and June 1999, fecal E. coli isolates from 237 children with diarrhea (217 acute and 20 persistent cases and 231 children without diarrhea (controls attending two hospitals in Northeast Brazil were tested for their pattern of adherence to HEp-2 cells and for colony hybridization with DNA probes specific for the six pathotypes of diarrheagenic E. coli. Enteroinvasive E. coli, enterotoxigenic E. coli and enterohemorrhagic E. coli were not isolated from any children. Diffusely adherent E. coli (DAEC and enteroaggregative E. coli (EAEC were the most frequent isolates with similar frequencies from children with or without diarrhea. Atypical EPEC (EAF-negative strains were isolated with similiar frequency from both cases (5.5% and controls (5.6%. Enteropathogenic E. coli (typical EPEC strains, characterized by localized adherence pattern of adherence, hybridization with the EAF probe, and belonging to the classical O serogroups, were significantly associated with diarrhea (P = 0.03. These E. coli strains associated with diarrhea accounted for 9% of all children with diarrhea. Collectively, in Northeast Brazil, E. coli strains comprise a small proportion of severe diarrhea prevalence in children.

  19. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7

    Science.gov (United States)

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC. PMID:27808174

  20. Investigation of Listeria, Salmonella, and toxigenic Escherichia coli in various pet foods.

    Science.gov (United States)

    Nemser, Sarah M; Doran, Tara; Grabenstein, Michael; McConnell, Terri; McGrath, Timothy; Pamboukian, Ruiqing; Smith, Angele C; Achen, Maya; Danzeisen, Gregory; Kim, Sun; Liu, Yong; Robeson, Sharon; Rosario, Grisel; McWilliams Wilson, Karen; Reimschuessel, Renate

    2014-09-01

    The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), in collaboration with the Food Emergency Response Network (FERN) and its Microbiology Cooperative Agreement Program (MCAP) laboratories, conducted a study to evaluate the prevalence of selected microbial organisms in various types of pet foods. The goal of this blinded study was to help the Center for Veterinary Medicine prioritize potential future pet food-testing efforts. The study also increased the FERN laboratories' screening capabilities for foodborne pathogens in animal feed matrices, since such pathogens may also be a significant health risk to consumers who come into contact with pet foods. Six U.S. Food and Drug Administration FERN MCAP laboratories analyzed approximately 1056 samples over 2 years. Laboratories tested for Salmonella, Listeria, Escherichia coli O157:H7 enterohemorrhagic E. coli, and Shiga toxin-producing strains of E. coli (STEC). Dry and semimoist dog and cat foods purchased from local stores were tested during Phase 1. Raw dog and cat foods, exotic animal feed, and jerky-type treats purchased through the Internet were tested in Phase 2. Of the 480 dry and semimoist samples, only 2 tested positive: 1 for Salmonella and 1 for Listeria greyii. However, of the 576 samples analyzed during Phase 2, 66 samples were positive for Listeria (32 of those were Listeria monocytogenes) and 15 samples positive for Salmonella. These pathogens were isolated from raw foods and jerky-type treats, not the exotic animal dry feeds. This study showed that raw pet foods may harbor food safety pathogens, such as Listeria monocytogenes and Salmonella. Consumers should handle these products carefully, being mindful of the potential risks to human and animal health.

  1. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection

    Science.gov (United States)

    Ferens, Witold A.

    2011-01-01

    Abstract This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people. PMID:21117940

  2. Placental and colostral transfer of antibodies reactive with enteropathogenic Escherichia coli intimins α, β, or γ

    Directory of Open Access Journals (Sweden)

    Silvia P.N. Altman

    2017-11-01

    Full Text Available Objective: Intimins are protein adhesins of enteropathogenic Escherichia coli and enterohemorrhagic E. coli capable of inducing attachment and effacement lesions in enterocytes. Anti-intimin antibodies are important for the protection from enteropathogenic E. coli and enterohemorrhagic E. coli infections because these antibodies inhibit bacterial adhesion and impair the initial step of the pathogenesis. We studied the transfer of maternal anti-intimin antibodies from healthy Brazilian mothers to their newborns through the placenta and colostrum. Methods: Serum immunoglobulin G and secretory immunoglobulin A antibodies against conserved and variable regions of intimins α, β, and γ were analyzed using an enzyme linked-immunosorbent assay in the blood and colostrum from 45 healthy women as well as cord blood serum samples from their newborns. Results: The concentrations of antibodies reactive with α intimin were significantly lower than those of anti-γ and anti-conserved intimin antibodies in the colostrum samples. IgG serum antibodies reactive with all the subtypes of intimins were transferred to the newborns, but the concentrations of anti-conserved intimin serum antibodies were significantly higher in mothers and newborns than concentrations of antibodies against variable regions. The patterns of IgG transfer from mothers to newborns were similar for all anti-intimin antibodies. These values are similar to the percentage transference of total IgG. Conclusions: Anti-intimin antibodies are transferred from mothers to newborns through the placenta, and reinforce the protection provided by breastfeeding against diarrheagenic E. coli infections. Resumo: Objetivo: As Intiminas são adesinas proteicas de Escherichia coli enteropatogênicas e enterohemorrágicas capazes de induzir as lesões “attaching and effacing” nos enterócitos. Anticorpos anti-intiminas são importantes para a proteção contra infecções por E. coli enteropatogênica e

  3. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures.

    Science.gov (United States)

    McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin ( stx ) and intimin ( eae )]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae -negative STEC and eae -positive E. coli , but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets ( stx and eae ) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli . By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae -negative STEC and eae -positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and

  4. Thioredoxin from Escherichia coli

    International Nuclear Information System (INIS)

    Holmgren, A.; Ohlsson, I.; Grankvist, M.L.

    1978-01-01

    A competition radioimmunoassay for Escherichia coli thioredoxin using 125 I-labeled thioredoxin-S 2 and a double antibody technique was developed. The method permits determination of picomole amounts of thioredoxin in crude cell extracts and was used to study the localization of thioredoxin cell fractions. E. coli B was calculated to have approximately 10,000 copies of thioredoxin per cell mainly located in the soluble fraction after separation of the membrane and soluble fractions by gentle lysis and centrifugation. E. coli B tsnC mutants which are defective in the replication of phage T7 DNA in vivo and in vitro were examined for their content of thioredoxin. E. coli B tsnC 7004 contained no detectable level of thioredoxin in cell-free extracts examined under a variety of conditions. The results strongly suggest that tsnC 7004 is a nonsense or deletion mutant. Two other E. coli tsnC mutants, 7007 and 7008, contained detectable levels of thioredoxin in crude extracts as measured by thioredoxin reductase and gave similar immunoprecipitation reactions as the parent strain B/1. By radioimmunoassay incompletely cross-reacting material was present in both strains. These results show that tsnC 7007 and 7008 belong to a type of thioredoxin mutants with missence mutations in the thioredoxin gene affecting the function of thioredoxin as subunit in phage T7 DNA polymerase

  5. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    Science.gov (United States)

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  6. PART I. ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Sanaa Mahdi Oraibi

    2016-11-01

    Full Text Available The presence of Escherichia coli in the air of facilities involved in management and composting of post-slaughter poultry wastes in selected plants of West Western Pomerania region was studied. Measurements were made on four dates in a variety of weather conditions during the year. The study was conducted at 5 objects that differ in the type of waste and the degree of preparation for composting. These were: chemical treatment and preliminary processing plant, liquid wastes reservoir, platform for preparation of materials for composting, storage of biological sediments, and composting facility. Measurement of bacteria count was carried out in accordance with the applicable procedures on selective chromogenic TBX medium. The assays revealed the presence of E. coli at all test objects, but not always on all measurement dates. It has been shown that the presence of E. coli was from 20 to 3047 CFU∙m-3 of air, although the largest quantities were most frequently detected in the air of the building for post-slaughter waste pre-treatment in chemical treatment plant.

  7. A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables.

    Science.gov (United States)

    Tzschoppe, Markus; Martin, Annett; Beutin, Lothar

    2012-01-03

    -EHEC strains. EHEC strains which did not grow on CHROMagar STEC were negative for terB as frequently observed with EHEC O103:H2 (52.9%) and sorbitol-fermenting O157:NM strains (100%). The enrichment and detection method was applied in the examination of sprouted seeds incriminated as vehicles in the EHEC O104:H4 outbreak in Germany. Aggregative EHEC O104:H4 could be detected and isolated from a sample of sprouted seeds which was suspected as vector of transmission of EHEC O104 to humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Identifying mechanisms by which Escherichia coli O157:H7 subverts interferon-γ mediated signal transducer and activator of transcription-1 activation.

    Directory of Open Access Journals (Sweden)

    Nathan K Ho

    Full Text Available Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein.

  9. 76 FR 20542 - Escherichia coli

    Science.gov (United States)

    2011-04-13

    ... beef, Escherichia coli and coliphages were found in chicken, fresh pork, fresh oyster, fresh mushrooms, lettuce, chicken pot pie, biscuit dough, deli loaf, deli roasted turkey, and package roasted chicken... surfaces, and in foods such as ground beef, pork sausage, chicken, oysters, cheese, fresh mushrooms, and...

  10. ESCHERICHIA COLI AND STAPHYLOCOCCUS AUREUS

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The bio-effects of the ethanol extracts from the leaf and stem of Momordica charantia were studied with the view to ascertain the medical usefulness ascribed to the plant by the locals. The plant parts, stem and leaf, revealed remarkable activity against Escherichia coli and Staphlococcus aureus. The leaves ...

  11. Conjugal Pairing in Escherichia Coli

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...

  12. Escherichia coli as a probiotic?

    NARCIS (Netherlands)

    Jansen, GJ; Wildeboer-Veloo, ACM; van der Waaij, D; Degener, JE

    1998-01-01

    The influence of oral treatment with a suspension of non-pathogenic Escherichia coli cells (commercially available as: Symbioflor II(R)) on the morphological composition of the gut microflora and on the systemic humoral immune response (the IgG-, IgA- and IgM-isotype) against the bacterial cells in

  13. PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation.

    Directory of Open Access Journals (Sweden)

    Samuel Mohammed Chekabab

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, an emerging food- and water-borne hazard, is highly pathogenic to humans. In the environment, EHEC must survive phosphate (Pi limitation. The response to such Pi starvation is an induction of the Pho regulon including the Pst system that senses Pi variation. The interplay between the virulence of EHEC, Pho-Pst system and environmental Pi remains unknown. To understand the effects of Pi deprivation on the molecular mechanisms involved in EHEC survival and virulence under Pho regulon control, we undertook transcriptome profiling of the EDL933 wild-type strain grown under high Pi and low Pi conditions and its isogenic ΔphoB mutant grown in low Pi conditions. The differentially expressed genes included 1067 Pi-dependent genes and 603 PhoB-dependent genes. Of these 131 genes were both Pi and PhoB-dependent. Differentially expressed genes that were selected included those involved in Pi homeostasis, cellular metabolism, acid stress, oxidative stress and RpoS-dependent stress responses. Differentially expressed virulence systems included the locus of enterocyte effacement (LEE encoding the type-3 secretion system (T3SS and its effectors, as well as BP-933W prophage encoded Shiga toxin 2 genes. Moreover, PhoB directly regulated LEE and stx2 gene expression through binding to specific Pho boxes. However, in Pi-rich medium, constitutive activation of the Pho regulon decreased LEE gene expression and reduced adherence to HeLa cells. Together, these findings reveal that EHEC has evolved a sophisticated response to Pi limitation involving multiple biochemical strategies that contribute to its ability to respond to variations in environmental Pi and to coordinating the virulence response.

  14. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem

    Directory of Open Access Journals (Sweden)

    Pallavi eSingh

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC and enteropathogenic E. coli (EPEC between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June. The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST was performed on a subset. STEC and EHEC were cultured from 12% and 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March versus June where the frequency of STEC, EHEC, and EPEC was 1%, 6% and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds.

  15. Survival of Escherichia coli O157:H7 in Milk Exposed to High Temperatures and High Pressure**

    Directory of Open Access Journals (Sweden)

    Irena Usajewicz

    2006-01-01

    Full Text Available The objective of the present study was to determine the survival of two enterohemorrhagic Escherichia coli O157:H7 strains (no. 94 and 402 and a saprophytic E. coli 1 strain at temperatures of 55 and 60 °C, and under the pressure of 300 to 600 MPa at ambient temperature (about 20 °C. The strains, in populations of 106–107 CFU/mL, were introduced into the skim milk and broth. The survival of test strains at high temperatures and high pressure depended to a high degree (p<0.05 on the type of medium in which the cells were suspended. At 55 °C the inactivation of E. coli cells was recorded after 60 to 120 min in the broth, and after 180 min in the milk. At 60 °C the time required for their thermal death was 15 to 30 min in broth. In milk only E. coli 1 cells died after 30-minute heating; the other strains survived in populations of about 40 CFU/mL. In the broth, a pressure of 550 MPa, applied for 20 min at ambient temperature, killed the entire populations of E. coli 94 and E. coli 402, and all E. coli 1 cells died at 600 MPa, also applied for 20 min at ambient temperature. In the milk live cells of all pressurized strains survived in the quantities of 102–103 CFU/mL, so their reduction by 5 log cycles was not achieved. Damaged cells were found in the majority of samples exposed to heating and high pressure. These cells did not form colonies on nutrient agar, but were able to repair damage and grow in nutrient broth at 37 °C.

  16. Estimating the Prevalence of Potential Enteropathogenic Escherichia coli and Intimin Gene Diversity in a Human Community by Monitoring Sanitary Sewage

    Science.gov (United States)

    Yang, Kun; Pagaling, Eulyn

    2014-01-01

    Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison. PMID:24141131

  17. Enteropathogenic Escherichia coli Uses NleA to Inhibit NLRP3 Inflammasome Activation.

    Directory of Open Access Journals (Sweden)

    Hilo Yen

    2015-09-01

    Full Text Available Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC are related strains capable of inducing severe gastrointestinal disease. For optimal infection, these pathogens actively modulate cellular functions through the deployment of effector proteins in a type three secretion system (T3SS-dependent manner. In response to enteric pathogen invasion, the Nod-like receptor pyrin domain containing (NLRP inflammasome has been increasingly recognized as an important cytoplasmic sensor against microbial infection by activating caspase-1 and releasing IL-1β. EPEC and EHEC are known to elicit inflammasome activation in macrophages and epithelial cells; however, whether the pathogens actively counteract such innate immune responses is unknown. Using a series of compound effector-gene deletion strains of EPEC, we screened and identified NleA, which could subdue host IL-1β secretion. It was found that the reduction is not because of blocked NF-κB activity; instead, the reduction results from inhibited caspase-1 activation by NleA. Immunostaining of human macrophage-like cells following infection revealed limited formation of inflammasome foci with constituents of total caspase-1, ASC and NLRP3 in the presence of NleA. Pulldown of PMA-induced differentiated THP-1 lysate with purified MBP-NleA reveals that NLRP3 is a target of NleA. The interaction was verified by an immunoprecipitation assay and direct interaction assay in which purified MBP-NleA and GST-NLRP3 were used. We further showed that the effector interacts with regions of NLRP3 containing the PYD and LRR domains. Additionally, NleA was found to associate with non-ubiquitinated and ubiquitinated NLRP3 and to interrupt de-ubiquitination of NLRP3, which is a required process for inflammasome activation. Cumulatively, our findings provide the first example of EPEC-mediated suppression of inflammasome activity in which NieA plays a novel role in controlling the host immune response

  18. Principales características y diagnóstico de los grupos patógenos de Escherichia coli Diagnosis and main characteristics of Escherichia coli pathogenic groups

    Directory of Open Access Journals (Sweden)

    Guadalupe Rodríguez-Angeles

    2002-09-01

    Full Text Available Escherichia coli coloniza el intestino del hombre pocas horas después del nacimiento y se considera de flora normal, pero hay descritos seis grupos de E. coli productora de diarrea: enterotoxigénica (ETEC, enterohemorrágica (EHEC, enteroinvasiva (EIEC, enteropatógena (EPEC, enteroagregativa (EAEC y de adherencia difusa (DAEC. La bacteria se puede aislar e identificar tradicionalmente con base en sus características bioquímicas o serológicas, pero también se pueden estudiar sus mecanismos de patogenicidad mediante ensayos en cultivos celulares o modelos animales y, más recientemente, empleando técnicas de biología molecular que evidencian la presencia de genes involucrados en dichos mecanismos. La intención del presente trabajo es resaltar la importancia del estudio y diagnóstico de E. coli como patógeno capaz de causar casos aislados o brotes de diarrea, síndrome urémico hemolítico, colitis hemorrágica y cuadros de disentería, principalmente en niños; por esto es necesario conocer mejor a la bacteria y mantener la vigilancia epidemiológica.Escherichia coli colonizes the human intestinal tract within hours of birth and is considered a non-pathogenic member of the normal intestinal flora. However, there are six pathogenic groups that may produce diarrhea: enterotoxigenic (ETEC, enterohemorrhagic (EHEC, enteroinvasive (EIEC, enteropathogenic (EPEC, enteroaggregative (EAEC and diffusely adherent (DAEC groups. E. coli can be isolated and classified using traditional methods, by identifying its biochemical or serum characteristics. The pathogenic mechanisms may be studied in cell cultures and animal model assays, as well as more up to date molecular biology methods for study and diagnosis. The latter have proven that genes are involved in pathogenesis. The objective of the present work is to draw attention to the importance of E. coli as a pathogenic organism. This microorganism is an etiologic agent of sporadic cases of diarrhea

  19. Enteroaggregative Escherichia coli in Daycare

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Stensvold, Christen R.; Struve, Carsten

    2016-01-01

    Enteroaggregative Escherichia coli (EAEC) has been associated with persistent diarrhea, reduced growth acceleration, and failure to thrive in children living in developing countries and with childhood diarrhea in general in industrialized countries. The clinical implications of an EAEC carrier...... and answered a questionnaire regarding gastrointestinal symptoms and exposures. Exposures included foreign travel, consumption of antibiotics, and contact with a diseased animal. In the capital area of Denmark, a total of 179 children aged 0-6 years were followed in a cohort study, in the period between 2009...

  20. Asymptomatic bacteriuria Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast...... to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete...

  1. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets.

    Directory of Open Access Journals (Sweden)

    Rembert Pieper

    Full Text Available Shiga toxin (Stx-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects.Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029 and outer membrane (OM assembly (LptD, MlaA, MlaC suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3 with the bacterial cell envelope.Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM

  2. PATHOGENIC POTENTIALS OF ESCHERICHIA COLI ISOLATED ...

    African Journals Online (AJOL)

    Electrolyte and haematological parameters in rabbits infected with pathogenic isolates of Escherichia coli from rural water supplies in Rivers State, Nigeria, where monitored. Rabbits were orally infected with suspension containing 3x107 cfu /ml of Escherichia coli to induce diarrhoea, and the electrolyte (sodium, potassium ...

  3. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    Science.gov (United States)

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  4. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III.

    Directory of Open Access Journals (Sweden)

    Caroline Chagnot

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.

  5. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  6. Genomics of Escherichia and Shigella

    Science.gov (United States)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  7. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  8. Mainstreams of horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic E. coli O104:H4 in Germany in 2011.

    Directory of Open Access Journals (Sweden)

    Oliver Bezuidt

    Full Text Available BACKGROUND: Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods. PRINCIPAL FINDINGS: The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective 'vehicles' ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria. CONCLUSIONS: Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.

  9. Photocatalysis-assisted water filtration: Using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7

    International Nuclear Information System (INIS)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-01-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO 2 ) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO 2 /MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope–energy dispersive analysis of X-ray (SEM–EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO 2 /MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P < 0.05) as compared to TiO 2 /MWCNT coated ceramic. The photocatalytic killing rate constant for TiO 2 -ceramic and MWCNT/TiO 2 -ceramic under fluorescent light was found be 1.45 × 10 −2 min −1 and 2.23 × 10 −2 min −1 respectively. Further, when I–V characteristics were performed for TiO 2 /MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. - Highlights: • Coating of vertically aligned MWCNT on ceramic candle filter • Surface orchestration of TiO 2 on MWCNT arrays • I–V characteristic studies are performed under dark and illumination. • Photocatalytic efficiency of TiO 2 /MWCNT arrays is determined using E. coli O157:H7. • Proposed a mechanism of bacterial killing due to free radical formation

  10. Molecular and Phenotypic Characterization of Escherichia coli O26:H8 among Diarrheagenic E. coli O26 Strains Isolated in Brazil

    Science.gov (United States)

    Piazza, Roxane M. F.; Delannoy, Sabine; Fach, Patrick; Saridakis, Halha O.; Pedroso, Margareth Z.; Rocha, Letícia B.; Gomes, Tânia A. T.; Vieira, Mônica A. M.; Beutin, Lothar

    2013-01-01

    Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance. PMID:23974139

  11. Elevated Expression of GlpT and UhpT via FNR Activation Contributes to Increased Fosfomycin Susceptibility in Escherichia coli under Anaerobic Conditions

    Science.gov (United States)

    Kurabayashi, Kumiko; Tanimoto, Koichi; Fueki, Shinobu; Tomita, Haruyoshi

    2015-01-01

    Because a shortage of new antimicrobial agents is a critical issue at present, and with the spread of multidrug-resistant (MDR) pathogens, the use of fosfomycin to treat infections is being revisited as a “last-resort option.” This drug offers a particular benefit in that it is more effective against bacteria growing under oxygen-limited conditions, unlike other commonly used antimicrobials, such as fluoroquinolones and aminoglycosides. In this study, we showed that Escherichia coli strains, including enterohemorrhagic E. coli (EHEC), were more susceptible to fosfomycin when grown anaerobically than when grown aerobically, and we investigated how the activity of this drug was enhanced during anaerobic growth of E. coli. Our quantitative PCR analysis and a transport assay showed that E. coli cells grown under anaerobic conditions had higher levels of expression of glpT and uhpT, encoding proteins that transport fosfomycin into cells with their native substrates, i.e., glycerol-3-phosphate and glucose-6-phosphate, and led to increased intracellular accumulation of the drug. Elevation of expression of these genes during anaerobic growth requires FNR, a global transcriptional regulator that is activated under anaerobic conditions. Purified FNR bound to DNA fragments from regions upstream of glpT and uhpT, suggesting that it is an activator of expression of glpT and uhpT during anaerobic growth. We concluded that the increased antibacterial activity of fosfomycin toward E. coli under anaerobic conditions can be attributed to elevated expression of GlpT and UhpT following activation of FNR, leading to increased uptake of the drug. PMID:26248376

  12. Occurrence and characterization of Shiga toxin-producing Escherichia coli in raw meat, raw milk, and street vended juices in Bangladesh.

    Science.gov (United States)

    Islam, Mohammad A; Mondol, Abdus S; Azmi, Ishrat J; de Boer, Enne; Beumer, Rijkelt R; Zwietering, Marcel H; Heuvelink, Annet E; Talukder, Kaisar A

    2010-11-01

    The major objective of this study was to investigate the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in different types of food samples and to compare their genetic relatedness with STEC strains previously isolated from animal sources in Bangladesh. We investigated a total of 213 food samples, including 90 raw meat samples collected from retail butcher shops, 20 raw milk samples from domestic cattle, and 103 fresh juice samples from street vendors in Dhaka city. We found that more than 68% (n = 62) of the raw meat samples were positive for the stx gene(s); 34% (n = 21) of buffalo meats and 66% (n = 41) of beef. Approximately 10% (n = 2) of the raw milk and 8% (n = 8) of the fresh juice samples were positive for stx. We isolated STEC O157 from seven meat samples (7.8%), of which two were from buffalo meats and five from beef; and no other STEC serotypes could be isolated. We could not isolate STEC from any of the stx-positive raw milk and juice samples. The STEC O157 isolates from raw meats were positive for the stx(2), eae, katP, etpD, and enterohemorrhagic E. coli hly virulence genes, and they belonged to three different phage types: 8 (14.3%), 31 (42.8%), and 32 (42.8%). Pulsed-field gel electrophoresis (PFGE) typing revealed six distinct patterns among seven isolates of STEC O157, suggesting a heterogeneous clonal diversity. Of the six PFGE patterns, one was identical and the other two were ≥90% related to PFGE patterns of STEC O157 strains previously isolated from animal feces, indicating that raw meats are readily contaminated with fecal materials. This study represents the first survey of STEC in the food chain in Bangladesh.

  13. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    Directory of Open Access Journals (Sweden)

    Yanil R Parma

    2012-06-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, a subset of Shiga toxin producing E. coli (STEC is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic uremic syndrome (HUS. Regardless of serotype, Shiga toxins (Stx1 and/or Stx2 are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx was developed using anti-Stx2 B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933 and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 400 ng /ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for 2 strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli.

  14. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    Science.gov (United States)

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli. PMID:22919675

  15. Genetic Relatedness Among Shiga Toxin-Producing Escherichia coli Isolated Along the Animal Food Supply Chain and in Gastroenteritis Cases in Qatar Using Multilocus Sequence Typing.

    Science.gov (United States)

    Palanisamy, Srikanth; Chang, YuChen; Scaria, Joy; Penha Filho, Rafael Antonio Casarin; Peters, Kenlyn E; Doiphode, Sanjay H; Sultan, Ali; Mohammed, Hussni O

    2017-06-01

    Pathogenic Escherichia coli has been listed among the most important bacteria associated with foodborne illnesses around the world. We investigated the genetic relatedness among Shiga toxin-producing E. coli (STEC) isolated along the animal food supply chain and from humans diagnosed with gastroenteritis in Qatar. Samples were collected from different sources along the food supply chain and from patients admitted to the hospital with complaints of gastroenteritis. All samples were screened for the presence of E. coli O157:H7 and non-O157 STEC using a combination of bacterial enrichment and molecular detection techniques. A proportional sampling approach was used to select positive samples from each source for further multilocus sequence typing (MLST) analysis. Seven housekeeping genes described for STEC were amplified by polymerase chain reaction, sequenced, and analyzed by MLST. Isolates were characterized by allele composition, sequence type (ST) and assessed for epidemiologic relationship within and among different sources. Nei's genetic distance was calculated at the allele level between sample pools in each site downstream. E. coli O157:H7 occurred at a higher rate in slaughterhouse and retail samples than at the farm or in humans in our sampling. The ST171, an ST common to enterotoxigenic E. coli and atypical enteropathogenic E. coli, was the most common ST (15%) in the food supply chain. None of the genetic distances among the different sources was statistically significant. Enterohemorrhagic E. coli pathogenic strains are present along the supply chain at different levels and with varying relatedness. Clinical isolates were the most diverse, as expected, considering the polyclonal diversity in the human microbiota. The high occurrence of these food adulterants among the farm products suggests that implementation of sanitary measures at that level might reduce the risk of human exposure.

  16. (ESBL) producing Escherichia coli and Klebsiella pneumoniae

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... the most common serious bacterial infections in infants ... UTI is a common cause of morbidity .... of ESBL and non-ESBL producing Escherichia coli and Klebsiella pneumonia. ... in hospital and community acquired infections.

  17. Characterization of Escherichia coli Phylogenetic Groups ...

    African Journals Online (AJOL)

    tract infection (UTI), bacteremia, pneumonia, soft-tissue infection, and ... Keywords: Drug resistance, Escherichia coli, Extraintestinal infections, Polymerase chain reaction, .... gynecology, 12 from orthopedics and 5 from pediatrics units.

  18. escherichia coli serotypes confirmed in experimental mammary ...

    African Journals Online (AJOL)

    DJFLEX

    VARIATIONS IN VIRULENCE OF THREE (3) ESCHERICHIA COLI. SEROTYPES CONFIRMED IN ... ows are susceptible to E. coli infection because. E. coli exist in the .... Coli infections in mice: A laboratory animal model for research in.

  19. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  20. Assessment of Shiga toxin-producing Escherichia coli isolates from wildlife meat as potential pathogens for humans.

    Science.gov (United States)

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-10-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx(2), stx(2d), and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains.

  1. Assessment of Shiga Toxin-Producing Escherichia coli Isolates from Wildlife Meat as Potential Pathogens for Humans▿

    Science.gov (United States)

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-01-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx2, stx2d, and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains. PMID:19700552

  2. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: serogroups, virulence factors, and antimicrobial resistance properties.

    Science.gov (United States)

    Momtaz, Hassan; Jamshidi, Alireza

    2013-05-01

    The aim of the current study was to determine the virulence factors, serogroups, and antibiotic resistance properties of Shiga toxin-producing Escherichia coli isolated from chicken meat samples. A total of 422 chicken meat samples were collected from 5 townships of Iran. Specimens were immediately transferred to the laboratory in a cooler with an ice pack. Samples were cultured, and the positive culture samples were analyzed by PCR assays. Finally, the antimicrobial susceptibility test was performed using the disk diffusion method in Mueller-Hinton agar. According to the results, out of 422 samples, 146 (34.59%) were confirmed to be E. coli positive and among E. coli-positive samples, 51 (34.93%) and 31 (21.23%) were from attaching and effacing E. coli (AEEC) and enterohemorrhagic E. coli (EHEC) subgroups, respectively. All of the EHEC-positive samples had all stx1, eaeA, and ehly virulence genes, whereas only 5 (9.80%) of AEEC subgroup had all stx1, stx2, and eaeA genes. As the data revealed, O157 was the most prevalent and O111 was the least prevalent strains in the Shiga toxin-producing E. coli (STEC) population. Among STEC strains, sulI and blaSHV had the highest and lowest incidence rate, respectively. There was a high resistance to tetracycline (76.82%), followed by chloramphenicol (73.17%) and nitrofurantoin (63.41%), but there was low resistance to cephalotine (7.31%) antibiotics in isolated strains. Results shows that the PCR technique has a high performance for detection of serogroups, virulence genes, and antibiotic resistance genes in STEC strains. This study is the first prevalence report of detection of virulence genes, serogroups, and antibiotic resistance properties of STEC strains isolated from chicken meat samples in Iran. Based on the results, chicken meat is one of the main sources of STEC strains and its virulence factors in Iran, so an accurate meat inspection would reduce disease outbreaks.

  3. Pre-harvest management controls and intervention options for reducing escherichia coli O157:H7 shedding in cattle

    Science.gov (United States)

    Cattle can be naturally colonized with enterohemorrhagic E. coli (EHEC; also known as Shiga Toxin Producing E. coli, STEC) in their gastrointestinal tract. In order to further curtail these human illnesses and ensure a safe and wholesome food supply, research into preharvest E. coli O157:H7 and non...

  4. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  5. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from cultured...

  6. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the ... lactam resistance in multidrug resistant E. coli in ESBL and non-ESBL isolates. .... and decreased susceptibility to carbapenems, particularly ertapenem (Perez et al.,.

  7. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    The study was conducted with the objective of examining the outer membrane proteins and their involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the response of gram negative bacterial biomembrane alteration was studied using extended ...

  8. Optimization of plasmid electrotransformation into Escherichia coli ...

    African Journals Online (AJOL)

    In order to improve electroporation, optical density of bacteria, recovery time and electrical parameter (field strength and capacitance) were optimized using the Taguchi statistical method. ANOVA of obtained data indicated that the optimal conditions of electrotransformation of pET-28a (+) plasmid into Escherichia coli ...

  9. Inhibition of Escherichia Coli, Salmonella and Staphylococcus ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7, Salmonella typhimurium and Staphylococcus. aureus are of great concern to the food industry, especially in foods stored under refrigerated conditions where, unlike most food-borne pathogens are able to multiply. This investigation was conducted to study the inhibitory effect of some spice ...

  10. (ESBL) producing Escherichia coli and Klebsiella pneumoniae

    African Journals Online (AJOL)

    Emerging antibiotic resistance due to extended spectrum β-lactamase (ESBL) production limited the use of β-lactam antibiotics against Escherichia coli and Klebsiella pneumoniae. This observational study was conducted at the Microbiology department of the Children's Hospital, Lahore Pakistan, from June, 2009 to ...

  11. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained from 382 samples.

  12. Characterization of Escherichia coli Phylogenetic Groups ...

    African Journals Online (AJOL)

    Background: Escherichia coli strains mainly fall into four phylogenetic groups (A, B1, B2, and D) and that virulent extra‑intestinal strains mainly belong to groups B2 and D. Aim: The aim was to determine the association between phylogenetic groups of E. coli causing extraintestinal infections (ExPEC) regarding the site of ...

  13. Mutagenic DNA repair in Escherichia coli

    International Nuclear Information System (INIS)

    Bridges, B.A.; Sharif, Firdaus

    1986-01-01

    The authors report a study of the misincorporation step in excision proficient umuC Escherichia coli as revealed by delayed photoreversal and show that it parallels the loss of photoreversibility of mutations induced in isogenic umu + bacteria; in both cases the end-point was mutation to streptomycin resistance. (author)

  14. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA.

    Science.gov (United States)

    Alrowais, Hind; McElheny, Christi L; Spychala, Caressa N; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A; Doi, Yohei

    2015-11-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

  15. Strategies for Protein Overproduction in Escherichia coli.

    Science.gov (United States)

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  16. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Purpose: To investigate the antibiotic resistance pattern of uropathogenic Escherichia coli (UPEC) strains isolated from pregnant women with history of recurrent urinary tract infections (RUTIs) and healthy pregnant women. Methods: A total of 485 high vaginal swab specimens were collected from pregnant women with ...

  17. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  18. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    Escherichia coli is an important component of the biosphere and is an ideal model for studies of processes involved in bacterial genome evolution. Sixty-one publically available E. coli and Shigella spp. sequenced genomes are compared, using basic methods to produce phylogenetic and proteomics...

  19. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    user1

    2012-07-19

    Jul 19, 2012 ... Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained.

  20. Prevalence of Arcobacter, Escherichia coli, Staphylococcus aureus ...

    African Journals Online (AJOL)

    In this study, varying level of resistance of Escherichia coli 66(84.6%), Salmonella 6(100%) and Arcobacter 57(100%) to amoxicillin was observed. The susceptibility pattern indicates that the bacterial isolates exhibited a varying level of resistance to two or more antimicrobial agents with maximum resistance to amoxicillin.

  1. Fimbrial adhesins from extraintestinal Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Schembri, Mark A.

    2010-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) represent an important subclass of E. coli that cause a wide spectrum of diseases in human and animal hosts. Fimbriae are key virulence factors of ExPEC strains. These long surface located rod-shaped organelles mediate receptor-specific attachment...

  2. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  3. lactamase in clinical isolates of Escherichia coli

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... The beta lactamase enzyme producing E. coli, resistant to β-lactam antibiotics, created many problems ... Key words: Escherichia coli, β-lactamase enzymes, TEM-type extended spectrum ... difficulties in treatment using antibiotics that are currently ... and chloramphenicol (30 µg) (Mast Diagnostics Ltd., UK).

  4. ANTIMICIROBIAL SUSCEPTIBILITY PATTERNS OF Escherichia coli ...

    African Journals Online (AJOL)

    DR. AMINU

    A total of 56 and 24 strains of E. coli and Shigella sp. isolated from children less than five years with diarrhoea attending 3 ... parasitic infections, as well as food intolerance, reaction to ..... Escherichia coil 0157:H7 as a model of entry of a new.

  5. Different expression patterns of genes from the exo-xis region of bacteriophage λ and Shiga toxin-converting bacteriophage Ф24B following infection or prophage induction in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Sylwia Bloch

    Full Text Available Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide. This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation.

  6. Photocatalysis-assisted water filtration: Using TiO{sub 2}-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi [N.S. N. Research Centre for Nanotechnology and Bionanotechnology, Jambhul Phata, Kalyan-Badlapur Road, Ambernath (W) 421505, Maharashtra (India); Jagadale, Pravin [DISAT — Department of Applied Science and Technology, Carbon group, Politecnico di Torino (Italy); Sharon, Maheshwar [N.S. N. Research Centre for Nanotechnology and Bionanotechnology, Jambhul Phata, Kalyan-Badlapur Road, Ambernath (W) 421505, Maharashtra (India); Sharon, Madhuri, E-mail: sharonmadhuri@gmail.com [N.S. N. Research Centre for Nanotechnology and Bionanotechnology, Jambhul Phata, Kalyan-Badlapur Road, Ambernath (W) 421505, Maharashtra (India)

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO{sub 2}) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO{sub 2}/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope–energy dispersive analysis of X-ray (SEM–EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO{sub 2}/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P < 0.05) as compared to TiO{sub 2}/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO{sub 2}-ceramic and MWCNT/TiO{sub 2}-ceramic under fluorescent light was found be 1.45 × 10{sup −2} min{sup −1} and 2.23 × 10{sup −2} min{sup −1} respectively. Further, when I–V characteristics were performed for TiO{sub 2}/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. - Highlights: • Coating of vertically aligned MWCNT on ceramic candle filter • Surface orchestration of TiO{sub 2} on MWCNT arrays • I–V characteristic studies are performed under dark and illumination. • Photocatalytic efficiency of TiO{sub 2}/MWCNT arrays is determined using E. coli O157:H7. • Proposed a mechanism of bacterial killing due to free radical formation.

  7. Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves.

    Science.gov (United States)

    Rabinovitz, B C; Gerhardt, E; Tironi Farinati, C; Abdala, A; Galarza, R; Vilte, D A; Ibarra, C; Cataldi, A; Mercado, E C

    2012-06-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of intestinal disease and hemolytic uremic syndrome, a serious systemic complication that particularly affects children. Cattle are primary reservoirs for EHEC O157:H7 and the main source of infection for humans. Vaccination of cattle with different combinations of bacterial virulence factors has shown efficacy in decreasing EHEC O157:H7 shedding. It is, therefore, important to demonstrate whether vaccination of pregnant cows with EHEC O157:H7 induces high titers of transferable antibodies to avoid early colonization of calves by the bacteria. In this study we evaluated the ability of EspA, EspB, the C-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and inactivated Shiga toxin (Stx) 2 proteins to induce specific antibodies in colostrum and their passive transference to colostrum-fed calves. Friesian pregnant cows immunized by the intramuscular route mounted significantly high serum and colostrum IgG responses against EspB and γ-intimin C₂₈₀ that were efficiently transferred to their calves. Antibodies to EspB and γ-intimin C₂₈₀ were detected in milk samples of vaccinated cows at d 40 postparturition. Significant Stx2-neutralizing titers were also observed in colostrum from Stx2-vaccinated cows and sera from colostrum-fed calves. The results presented showed that bovine colostrum with increased levels of antibodies against EHEC O157:H7 may be obtained by systemic immunization of pregnant cows, and that these specific antibodies are efficiently transferred to newborn calves by feeding colostrum. Hyperimmune colostrum and milk may be an alternative to protect calves from early colonization by EHEC O157:H7 and a possible key source of antibodies to block colonization and toxic activity of this bacterium. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Energetics of sodium efflux from Escherichia coli

    International Nuclear Information System (INIS)

    Borbolla, M.G.; Rosen, B.P.

    1984-01-01

    When energy-starved cells of Escherichia coli were passively loaded with 22 Na+, efflux of sodium could be initiated by addition of a source of metabolic energy. Conditions were established where the source of energy was phosphate bond energy, an electrochemical proton gradient, or both. Only an electrochemical proton gradient was required for efflux from intact cells. These results are consistent with secondary exchange of Na+ for H+ catalyzed by a sodium/proton antiporter

  9. Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde.

    Science.gov (United States)

    Viazis, Stelios; Akhtar, Mastura; Feirtag, Joellen; Diez-Gonzalez, Francisco

    2011-02-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been recognized as a major foodborne pathogen responsible for frequent gastroenteritis outbreaks. Phages and essential oils can be used as a natural antimicrobial method to reduce bacterial pathogens from the food supply. The objective of this study was to determine the effect of a bacteriophage cocktail, BEC8, alone and in combination with the essential oil trans-cinnameldehyde (TC) on the viability of a mixture of EHEC O157:H7 strains applied on whole baby romaine lettuce and baby spinach leaves. The EHEC O157:H7 strains used were Nal(R) mutants of EK27, ATCC 43895, and 472. Exponentially growing cells from tryptic soy (TS) broth cultures were spot inoculated on leaves and dried. EHEC cells were placed at low, medium, and high inoculum levels (10(4), 10(5), and 10(6) CFU/mL, respectively). Appropriate controls, BEC8 (approx. 10(6) PFU/leaf), and TC (0.5% v/v) were applied on treated leaves. The leaves were incubated at 4, 8, 23, and 37 °C in Petri dishes with moistened filter papers. EHEC survival was determined using standard plate count on nalidixic acid (50 μg/mL) Sorbitol MacConkey agar. No survivors were detected when both leaves were treated with BEC8 or TC individually at low inoculum levels after 24 h at 23 and 37 °C. When the EHEC inoculum size increased and/or incubation temperature decreased, the efficacy of BEC8 and TC decreased. However, when the two treatments were combined, no survivors were detected after 10 min at all temperatures and inoculum levels on both leafy greens. These results indicated that the BEC8/TC combination was highly effective against EHEC on both leafy greens. This combination could potentially be used as an antimicrobial to inactivate EHEC O157:H7 and reduce their incidence in the food chain. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes.

    Science.gov (United States)

    Beutin, Lothar; Miko, Angelika; Krause, Gladys; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine

    2007-08-01

    We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.

  11. Translational coupling in Escherichia coli of a heterologous Bacillus subtilis-Escherichia coli gene fusion.

    OpenAIRE

    Zaghloul, T I; Doi, R H

    1986-01-01

    The efficient expression in Escherichia coli of the Tn9-derived chloramphenicol acetyltransferase (EC 2.3.1.28) gene fused distal to the promoter and N terminus of the Bacillus subtilis aprA gene was dependent on the initiation of translation from the ribosome-binding site in the aprA gene.

  12. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    Science.gov (United States)

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  13. Enteropathogenic Escherichia coli: foe or innocent bystander?

    Science.gov (United States)

    Hu, Jia; Torres, Alfredo G.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae+), which possess bfpA+ and lack the stx- genes are found strongly associated with diarrheal cases. However, occurrence of atypical EPEC (aEPEC; eae+ bfpA- stx-) in diarrheal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data is helping answering the question whether EPEC is mainly a foe or an innocent bystander during infection. PMID:25726041

  14. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  15. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  16. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli.

    OpenAIRE

    Atassi , Fabrice; Brassart , Dominique; Grob , Philipp; Graf , Federico; Servin , Alain ,

    2006-01-01

    The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372....

  17. 99mTechnetium labelled Escherichia coli

    International Nuclear Information System (INIS)

    Diniz, S.O.F.; Cardoso, V.N.; Resende, B.M.; Nunan, E.A.; Simal, C.J.R.

    1999-01-01

    Samples of a culture of unlabeled Escherichia coli were incubated with different concentrations of stannous chloride for various time periods. 99m Tc (26.0 MBq) was added to each preparation and the results showed a labelling yield of 98% for E. coli. Since the bacterial viability of 99m Tc-E. coli and E. coli did not show any statistical differences, these results demonstrate that labelling of E. coli with 99m Tc does not modify the bacterial viability, and the radiolabelled bacteria may be a good model to study bacterial translocation

  18. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  19. Multiplex Genome Editing in Escherichia coli

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Nielsen, Alex Toftgaard

    2018-01-01

    Lambda Red recombineering is an easy and efficient method for generating genetic modifications in Escherichia coli. For gene deletions, lambda Red recombineering is combined with the use of selectable markers, which are removed through the action of, e.g., flippase (Flp) recombinase. This PCR......-based engineering method has also been applied to a number of other bacteria. In this chapter, we describe a recently developed one plasmid-based method as well as the use of a strain with genomically integrated recombineering genes, which significantly speeds up the engineering of strains with multiple genomic...

  20. Infectious endocarditis caused by Escherichia coli

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Arpi, Magnus; Fritz-Hansen, Thomas

    2011-01-01

    Although Escherichia coli is among the most common causes of Gram-negative bacteraemia, infectious endocarditis (IE) due to this pathogen is rare. A 67-y-old male without a previous medical history presented with a new mitral regurgitation murmur and persisting E. coli bacteraemia in spite of broad......-spectrum intravenous antibiotics. Transthoracic and transoesophageal echocardiography revealed a severe mitral endocarditis. E. coli DNA was identified from the mitral valve and the vegetation, and no other pathogen was found. The case was further complicated by spondylodiscitis and bilateral endophthalmitis. Extra...

  1. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  2. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Results: A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern ...

  3. Gene encoding virulence markers among Escherichia coli isolates ...

    African Journals Online (AJOL)

    River water sources and diarrhoeic stools of residents in the Venda Region, Limpopo Province of South Africa were analysed for the prevalence of Escherichia coli (E. coli) and the presence of virulence genes among the isolates. A control group of 100 nondiarrhoeic stool samples was included. Escherichia coli was ...

  4. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  5. Escherichia coli clearance after splenic autotransplants

    International Nuclear Information System (INIS)

    Marques, R.G.; Petroianu, A.; Oliveira, M.B.N.; Bernardo-Filho, M.; Portela, M.C.

    2002-01-01

    Background: Splenic autotransplantation seems to be the only alternative for preservation of splenic tissue, after total splenectomy. The present study was carried out to analyze Escherichia coli depuration by mononuclear phagocyte system organs after total splenectomy and splenic autotransplantation. Methods: We utilized an experimental model including young and adult Wistar rats, of both sexes, submitted to total splenectomy and splenic autotransplantation. The evaluation method was intravenous inoculation of a suspension of Escherichia coli labeled with technetium-99m. We analyzed bacteria uptake by mononuclear phagocyte system organs and bacteria remnant in the bloodstream. Results: There was no difference between young and adult animals in bacteria uptake by mononuclear phagocyte system organs. In the comparison of groups, it was found out that the mean percent uptake by spleen and liver of animals in the control group was higher than that observed for animals with splenic implants. However, bacteria uptake in the lung was higher in the splenic implant group than in the control group. Although spleen bacteria uptake in the control group animals has been higher than that of animals in the splenic implant group, the remnant bacteria in the bloodstream was similar. Animals submitted to isolated total splenectomy showed higher bacteria remnant in the bloodstream than animals of the control group or the group submitted to total splenectomy combined with splenic autotransplantation. Conclusion: Our results indicate that autogenous splenic implant is efficacious in bacteria depuration in rats, by means of their macrophages phagocytosis. In addition, it does not modify bacteria removal function of liver and lung

  6. Escherichia coli in broiler chickens with airsacculitis

    Directory of Open Access Journals (Sweden)

    Leandro S. Machado

    2014-09-01

    Full Text Available ABSTRACT. Machado L.S., do Nascimento E.R., Pereira V.L.A., Abreu D.L.C., Gouvea R. & Santos L.M.M. 2014. [Escherichia coli in broiler chickens with airsacculitis.] Escherichia coli em frangos de corte com aerossaculite. Revista Brasileira de Medicina Veterinária, 36(3:261-265, 2014. Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Dr. Vital Brazil Filho 64, Vital Brazil, Niterói, RJ 24230-340, Brazil. E-mail: leandromachadovet@yahoo.com.br The Brazilian poultry industry grows each year and becomes increasingly representative in the production and export of products. The health care with poultry have accompanied and favored this evolution, however, respiratory agents that affect the weight and carcass quality, continue to cause great damage to the poultry industry. Airsacculitis is considered the main cause of total and partial condemnation of carcasses of broilers, and has been attributed to Mycoplasmosis mostly caused by Mycoplasma gallisepticum (MG and Mycoplasma synoviae (MS and Escherichia coli. The aim of this study was to relate the positivity of MG / MS and E. coli detected by PCR as a risk factor for airsacculitis in condemnation of broilers in Health Inspection Service. We studied 30 broiler poultry slaughtered in a slaughterhouse under Federal Sanitary Inspection, located in the State of Rio de Janeiro. 30 chickens were randomly collected from different lots and tracheas obtained in each PCR. DNA was extracted by phenol-chloroform method and amplified using pairs of “primer”specific for MG, MS and E. coli. Of the 30 chickens analyzed by PCR, 30% (9/30 had lesions in air sacs. None of the birds showed infection with MG and/or MS PCR, however 33.3% (3/9 birds were positive for airsacculitis iss gene from E.coli. E.coli found in broiler chickens that were negative for mycoplasma airsacculitis, implying the presence of such bacteria may be sufficient

  7. Identification and Prevalence of Escherichia coli and Escherichia coli O157: H7 in Foods

    Directory of Open Access Journals (Sweden)

    Ancuta Mihaela Rotar

    2013-11-01

    Full Text Available The objective of this study is to investigate the incidence of Escherichia coli in animal and non-animal foods, and mainly the incidence of the serotype O157: H7 producing verotoxin. The presence of common Escherichia coli and Escherichia coli O157: H7 in various foods (of animal and non animal origin was performed in Transylvania area. We analyzed a total of one hundred forty-one samples of minced meat, one hundred twenty-six samples of meat , twenty six samples of meat products, five samples of alcoholic beverages, three samples of seafood, one hundred samples of cheese from pasteurized milk, seventeen samples of butter, four samples of vegetables and one sample of milk powder, using the standard cultural method and Vidas Eco method for E. coli O157: H7 strains. E. coli was identified in 50 samples of minced meat, 55 samples of meat prepared, 4 samples of meat products, 2 samples of alcoholic beverages, 25 samples of cheese from pasteurized milk, 6 samples of butter and 1 sample of vegetables. In this study were not been identified any foods contaminated with the E. coli O157: H7 serotype. The results of this reasearch have demostrated that E. coli wich represents a hygienic indicator of recent food contamination, can be destroyed with heat treatment and hygienic handling of foods. Our country over the years has been among the few countries where the incidence of the E. coli O157: H7 serotype has been minimal.

  8. Action of sodium deoxycholate on Escherichia coli

    International Nuclear Information System (INIS)

    D'Mello, A.; Yotis, W.W.

    1987-01-01

    Sodium deoxycholate is used in a number of bacteriological media for the isolation and classification of gram-negative bacteria from food and the environment. Initial experiments to study the effect of deoxycholate on the growth parameters of Escherichia coli showed an increase in the lag time constant and generation time and a decrease in the growth rate constant total cell yield of this microorganisms. Cell fractionation studies indicated that sodium deoxycholate at levels used in bacteriological media interferes with the incorporation of [U- 14 C]glucose into the cold-trichloroacetic acid-soluble, ethanol-soluble, and trypsin-soluble cellular fractions of E. coli. Finally, sodium deoxycholate interfered with the flagellation and motility of Proteus mirabilis and E. coli. It would appear then that further improvement of the deoxycholate medium may be in order

  9. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    Directory of Open Access Journals (Sweden)

    Tjaša Danevčič

    Full Text Available Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria.

  10. Deuterium incorporation into Escherichia-coli proteins

    DEFF Research Database (Denmark)

    Lederer, H.; May, R. P.; Kjems, Jørgen

    1986-01-01

    Neutron small-angle scattering studies of single protein subunits in a protein-DNA complex require the adjustment of the neutron scattering-length densities of protein and DNA, which is attainable by specific deuteration of the protein. The neutron scattering densities of unlabelled DNA and DNA......-dependent RNA polymerase of Escherichia coli match when RNA polymerase is isolated from cells grown in a medium containing 46% D2O and unlabelled glucose as carbon source. Their contrasts vanish simultaneously in a dialysis buffer containing 65% D2O. An expression was evaluated which allows the calculation...... of the degree of deuteration and match point of any E. coli protein from the D2O content of the growth medium, taking the 2H incorporation into RNA polymerase amino acids to be representative for all amino acids in E. coli proteins. The small-angle scattering results, on which the calculation of the degree...

  11. FTIR nanobiosensors for Escherichia coli detection

    Directory of Open Access Journals (Sweden)

    Stefania Mura

    2012-07-01

    Full Text Available Infections due to enterohaemorrhagic E. coli (Escherichia coli have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyltriethoxysilane and GA (glutaraldehyde were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples.

  12. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  13. Escherichia coli pyomyositis in an immunocompromised host.

    Science.gov (United States)

    Sharma, Umesh; Schwan, William R; Agger, William A

    2011-08-01

    Pyomyositis due to Escherichia coli (E. coil) is rarely reported in immunocompromised patients with hematological malignancy. We present a case report of a 34-year-old man who developed E. coli pyomyositis as a complication of acute myelogenous leukemia (AML). Magnetic resonance imaging (MRI) of the right hip suggested myofascial infection of the gluteal muscles, and a needle muscle aspiration grew E. coli phylogenetic group B2. The patient responded to intravenous piperacillin/tazobactam followed by prolonged oral levofloxacin. Pyomyositis should be suspected in all immunocompromised patients complaining of muscle pain and may exhibit signs of localized muscle infection. Appropriate antibiotic therapy targeting fluoroquinolone-resistant E. coli should be considered for initial empiric therapy of pyomyositis in immunocompromised patients.

  14. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha...... and to estimate the transcription time for the rRNA operon under different conditions. In steady states of growth with growth rates ranging from 0.75 to 2.3 doublings/h, as well as during the transition after a shift-down, the transcription time of the rRNA operon was constant. The rate of synthesis of r......RNA correlated during this transition – in contrast to the rate of accumulation (M. T. Hansen et al., J. Bacteriol. 122: 585-591, 1975) – with the ppGpp pool in the same way as has been observed during partial amino acid starvation....

  15. Repair replication in permeabilized Escherichia coli

    International Nuclear Information System (INIS)

    Masker, W.E.; Simon, T.J.; Hanawalt, P.C.

    1975-01-01

    We have examined the modes of DNA synthesis in Escherichia coli strains made permeable to nucleoside triphosphates by treatment with toluene. In this quasi in vitro system, polymerase-I-deficient mutants exhibit a nonconservative mode of synthesis with properties expected for the resynthesis step of excision-repair. This uv-stimulated DNA synthesis can be performed by either DNA polymerase II or III and it also requires the uvrA gene product. It requires the four deoxynucleoside triphosphates; but, in contrast to the semiconservative mode, the ATP requirement can be partially satisfied by other nucleoside triphosphates. The ATP-dependent recBC nuclease is not involved. The observed uv-stimulated mode of DNA synthesis may be part of an alternate excision-repair mechanism which supplements or complements DNA-polymerase-I-dependent repair in vivo

  16. Expression of maize prolamins in Escherichia Coli

    International Nuclear Information System (INIS)

    Wang, Szu-zhen; Esen, Asim

    1985-01-01

    We have constructed a cDNA expression library of developing corn (Zea manys L.) endosperm using plasmid pUC8 as vector and Escherichia coli strain DH1 as host. The expression library was screened with non-radioactive immunological probes to detect the expression of gamma-zein and alpha-zein. When anti-gamma-zein antibody was used as the probe, 23 colonies gave positive reactions. The lengths of cDNA inserts of the 23 colonies were found to be 250-900 base pairs. When anti-alpha zein antibody was used, however, fewer colonies gave positive reactions. The library was also screened by colony-hybridization with 32 P-labeled DNA probes. Based on immunological and hybridization screening of the library and other evidence, we conclude that alpha-zein was either toxic to E. coli cells or rapidly degraded whereas gamma-zein and its fragments were readily expressed. (author)

  17. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...... temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus......, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie...

  18. Infectious endocarditis caused by Escherichia coli

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Arpi, Magnus; Fritz-Hansen, Thomas

    2011-01-01

    Although Escherichia coli is among the most common causes of Gram-negative bacteraemia, infectious endocarditis (IE) due to this pathogen is rare. A 67-y-old male without a previous medical history presented with a new mitral regurgitation murmur and persisting E. coli bacteraemia in spite of broad......-spectrum intravenous antibiotics. Transthoracic and transoesophageal echocardiography revealed a severe mitral endocarditis. E. coli DNA was identified from the mitral valve and the vegetation, and no other pathogen was found. The case was further complicated by spondylodiscitis and bilateral endophthalmitis. Extra......-intestinal pathogenic E. coli (ExPEC) are able to colonize tissue outside the gastrointestinal tract and contain a variety of virulence factors that may enable the pathogens to invade and induce infections in the cardiac endothelia. In these cases echocardiography as the imaging technology is of paramount importance...

  19. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  20. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  1. Action of sodium deoxycholate on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    D' Mello, A.; Yotis, W.W.

    1987-08-01

    Sodium deoxycholate is used in a number of bacteriological media for the isolation and classification of gram-negative bacteria from food and the environment. Initial experiments to study the effect of deoxycholate on the growth parameters of Escherichia coli showed an increase in the lag time constant and generation time and a decrease in the growth rate constant total cell yield of this microorganisms. Cell fractionation studies indicated that sodium deoxycholate at levels used in bacteriological media interferes with the incorporation of (U-/sup 14/C)glucose into the cold-trichloroacetic acid-soluble, ethanol-soluble, and trypsin-soluble cellular fractions of E. coli. Finally, sodium deoxycholate interfered with the flagellation and motility of Proteus mirabilis and E. coli. It would appear then that further improvement of the deoxycholate medium may be in order.

  2. The effect of soil management on the persistence of E. coli and Listeria spp. in manure- amended soils in the Northeast United States

    Science.gov (United States)

    Introduction: Enterohemorrhagic Escherichia coli and Listeria monocytogenes can contaminate leafy greens through inappropriately managed raw manure applied to soils. Current FDA guidance includes calling for additional scientific data to determine the appropriate interval between application of man...

  3. A prebiotic, Celmanax™, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    Juba Jean

    2011-04-01

    Full Text Available Abstract Background Escherichia coli O157:H7 is the most common serovar of enterohemorrhagic E. coli associated with serious human disease outbreaks. Cattle are the main reservoir with E. coli O157:H7 inducing hemorrhagic enteritis in persistent shedding beef cattle, however little is known about how this pathogen affects cattle health. Jejunal Hemorrhage Syndrome (JHS has unclear etiology but the pathology is similar to that described for E. coli O157:H7 challenged beef cattle suggestive that E. coli O157:H7 could be involved. There are no effective treatments for JHS however new approaches to managing pathogen issues in livestock using prebiotics and probiotics are gaining support. The first objective of the current study was to characterize pathogen colonization in hemorrhaged jejunum of dairy cattle during natural JHS outbreaks. The second objective was to confirm the association of mycotoxigenic fungi in feeds with the development of JHS and also to identify the presence of potential mycotoxins. The third objective was to determine the impact of a prebiotic, Celmanax™, or probiotic, Dairyman's Choice™ paste, on the cytotoxicity associated with feed extracts in vitro. The fourth objective was to determine the impact of a prebiotic or a probiotic on E. coli O157:H7 colonization of mucosal explants and a bovine colonic cell line in vitro. The final objective was to determine if prebiotic and probiotic feed additives could modify the symptoms that preceded JHS losses and the development of new JHS cases. Findings Dairy cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium culmorum, F. poae, F. verticillioides, F. sporotrichioides, Aspergillusflavus, Penicillium roqueforti, P. crustosum, P. paneum and P. citrinum. Mixtures of Shiga toxin - producing Escherichia coli (STEC colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs

  4. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Olsen, Katharina E P; Struve, Carsten

    2014-01-01

    Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission...

  5. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    Science.gov (United States)

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  6. lactamases genes among0 Escherichia coli from patients with ...

    African Journals Online (AJOL)

    -lactamases (ESBLs) that mediate resistance to b-lactam drugs among Escherichia coli and other uropathogens have been reported worldwide. However, there is little information on the detection of ESBLs genes in E. coli from patients with ...

  7. The Prevalence of Enterhaemorrhagic Escherichia Coli in children ...

    African Journals Online (AJOL)

    EHEC), the pathogenicity of other strains of Escherichia coli and other organisms in children presenting with and without diarrhoea in the hospital. Subjects and Methods: A total of 247 stool samples collected from children aged 1 month to 7 ...

  8. Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli ...

    African Journals Online (AJOL)

    Erah

    PMQR) genes and the prevalence of extended spectrum β-lactamase (ESBL) types in Escherichia coli clinical isolates. Methods: Sixty-one ESBL-producing urinary E. coli isolates were studied. An antibiotic susceptibility test was performed ...

  9. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  10. Identifying New Small Proteins in Escherichia coli.

    Science.gov (United States)

    VanOrsdel, Caitlin E; Kelly, John P; Burke, Brittany N; Lein, Christina D; Oufiero, Christopher E; Sanchez, Joseph F; Wimmers, Larry E; Hearn, David J; Abuikhdair, Fatimeh J; Barnhart, Kathryn R; Duley, Michelle L; Ernst, Sarah E G; Kenerson, Briana A; Serafin, Aubrey J; Hemm, Matthew R

    2018-04-12

    The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins-a 45% success rate. Modeling of detected versus non-detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically-significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Towson University.

  11. Engineering Escherichia coli for methanol conversion.

    Science.gov (United States)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Multiple loci affecting photoreactivation in Escherichia coli

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Hausrath, S.G.

    1979-01-01

    Sutherland et al. mapped a phr gene in Escherichia coli at 17 min and found that induction of an E. coli stain lysogenic for a lambda phage carrying this gene increased photoreactivating enzyme levels 2,000-fold. Recently, Smith and Youngs and Sancar and Rupert located a phr gene at 15.9 min. We have therefore investigated the properties of photoreactivating enzyme and cellular photoreactivation in cells containing deletions of the gene at 17 min. Cells with this deletion photoreactivated ultraviolet-induced killing at a rate 20% of normal; they also contained approximately 20% of the normal photoreactivating enzyme level. The residual enzyme in these cells was characterized to determine whether the reduced cellular photoreactivation rate and photoreactivating enzyme levels resulted from reduced numbers of normal enzymes or from an altered enzyme. Photoreactivating enzymes from strains carrying a deletion of the region at 17 min has an apparent K/sub m/ about two- to threefold higher than normal enzyme and showed markedly increased heat lability. The gene at 17 min thus contains information determining the function of the E. coli photoreactivating enzyme rather than the quantity of the enzyme. It is proposed that the gene at 17 min be termed phrA and that located at 15.9 min be termed phrB

  13. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  14. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Tiamulin resistance mutations in Escherichia coli.

    Science.gov (United States)

    Böck, A; Turnowsky, F; Högenauer, G

    1982-01-01

    Forty "two-step" and 13 "three-step" tiamulin-resistant mutants of Escherichia coli PR11 were isolated and tested for alteration of ribosomal proteins. Mutants with altered ribosomal proteins S10, S19, L3, and L4 were detected. The S19, L3, and L4 mutants were studied in detail. The L3 and L4 mutations did not segregate from the resistance character in transductional crosses and therefore seem to be responsible for the resistance. Extracts of these mutants also exhibited an increased in vitro resistance to tiamulin in the polyuridylic acid and phage R17 RNA-dependent polypeptide synthesis systems, and it was demonstrated that this was a property of the 50S subunit. In the case of the S19 mutant, genetic analysis showed segregation between resistance and the S19 alteration and therefore indicated that mutation of a protein other than S19 was responsible for the resistance phenotype. The isolated ribosomes of the S19, L3, and L4 mutants bound radioactive tiamulin with a considerably reduced strength when compared with those of wild-type cells. The association constants were lower by factors ranging from approximately 20 to 200. When heated in the presence of ammonium chloride, these ribosomes partially regained their avidity for tiamulin. Images PMID:7050084

  16. Photoinactivation of mcr-1 positive Escherichia coli

    Science.gov (United States)

    Caires, C. S. A.; Leal, C. R. B.; Rodrigues, A. C. S.; Lima, A. R.; Silva, C. M.; Ramos, C. A. N.; Chang, M. R.; Arruda, E. J.; Oliveira, S. L.; Nascimento, V. A.; Caires, A. R. L.

    2018-01-01

    The emergence of plasmid-mediated colistin resistance in Enterobacteriaceae, mostly in Escherichia coli due to the mcr-1 gene, has revealed the need to develop alternative approaches in treating mcr-1 positive bacterial infections. This is because colistin is a broad-spectrum antibiotic and one of the ‘last-resort’ antibiotics for multidrug resistant bacteria. The present study evaluated for the first time, to the best of our knowledge, the efficacy of photoinactivation processes to kill a known mcr-1 positive E. coli strain. Eosin methylene-blue (EMB) was investigated as a photoantimicrobial agent for inhibiting the growth of a mcr-1 positive E. coli strain obtained from a patient with a diabetic foot infection. The photoantimicrobial activity of EMB was also tested in a non-multidrug resistant E. coli strain. The photoinactivation process was tested using light doses in the 30-45 J cm-2 range provided by a LED device emitting at 625 nm. Our findings demonstrate that a mcr-1 positive E. coli strain is susceptible to photoinactivation. The results show that the EMB was successfully photoactivated, regardless of the bacterial multidrug resistance; inactivating the bacterial growth by oxidizing the cells in accordance with the generation of the oxygen reactive species. Our results suggest that bacterial photoinactivation is an alternative and effective approach to kill mcr-1 positive bacteria.

  17. Profiling of Escherichia coli Chromosome database.

    Science.gov (United States)

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers.

  18. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Shobrak

    2014-12-01

    Full Text Available Emergence and distribution of multi-drug resistant (MDR bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor. Also, hemolysin production (a virulence factor was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  19. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Science.gov (United States)

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  20. Nanotextile membranes for bacteria Escherichia coli capturing

    Directory of Open Access Journals (Sweden)

    Jaroslav Lev

    2010-01-01

    Full Text Available The article describes an experimental study dealing with the possibility of nanotextile materials usa­ge for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP. As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

  1. Synthesis of avenanthramides using engineered Escherichia coli.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun Young; Kang, Hyunook; Yeo, Won Seok; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2018-03-22

    Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns

  2. Complete Genome Sequence of Escherichia coli Strain WG5

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Misiakou, Maria-Anna; van der Helm, Eric

    2018-01-01

    Escherichia coli strain WG5 is a widely used host for phage detection, including somatic coliphages employed as standard ISO method 10705-1 (2000). Here, we present the complete genome sequence of a commercial E. coli WG5 strain.......Escherichia coli strain WG5 is a widely used host for phage detection, including somatic coliphages employed as standard ISO method 10705-1 (2000). Here, we present the complete genome sequence of a commercial E. coli WG5 strain....

  3. Findings of Escherichia coli and Enterococcus spp. in homemade cheese

    Directory of Open Access Journals (Sweden)

    Tambur Zoran

    2007-01-01

    Full Text Available During the period from February until March 2004, 108 samples of soft cheese originating from markets of Pancevo, Subotica and Belgrade were examined. Microbiological analyses of the cheese samples to the presence of Escherichia coli was performed using methods described in the Regulations on methods for performing microbiological analyses and super analyses of consumer articles, while the presence of bacteria Enteroccocus spp. was performed on the dexter agar. From 108 samples of soft cheese from the territories of Pancevo, Belgrade and Subotica were isolated: Enterococcus spp. from 96% and Escherichia coli from 69%, cheese samples. Verocytotoxic E.coli was not isolated from any of the taken cheese samples.

  4. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Science.gov (United States)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  5. Differential expression of the Escherichia coli autoaggregation factor antigen 43

    DEFF Research Database (Denmark)

    Schembri, Mark; Hjerrild, Louise; Gjermansen, Morten

    2003-01-01

    Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Due to its excellent cell-to-cell aggregation characteristics, Ag43 expression confers clumping and fluffing of cells and promotes biofilm formation. Ag43 expression is repressed by the cellular redox...

  6. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  7. Escherichia coli bacteraemia in patients with and without haematological malignancies

    DEFF Research Database (Denmark)

    Olesen, B; Kolmos, H J; Orskov, F

    1998-01-01

    We compared serotypes, virulence factors and susceptibility to antibiotics of Escherichia coli strains isolated from 282 patients with bacteraemia. Thirty-five of these were neutropenic patients with haematological malignancy and 247 were patients with a normal or raised total white blood cell co...

  8. Changes in Escherichia coli resistance to co-trimoxazole in ...

    African Journals Online (AJOL)

    In Thyolo district, Malawi, an operational research study is being conducted on the efficacy and feasibility of co-trimoxazole prophylaxis in preventing deaths in HIV-positive patients with tuberculosis (TB). A series of cross-sectional studies were carried out to determine i) whether faecal Escherichia coli (E.coli) resistance to ...

  9. Effects of recombinant human collagen VI from Escherichia coli on ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... In this study, we reported the cloning and over expression of a gene coding for human collagen peptide. (CP6) in Escherichia coli and investigated the protective effects of CP6 on UVA-irradiated human skin fibroblasts cells. The collagen peptide (CP6) was highly soluble and the expression level was.

  10. Escherichia coli growth modeling using neural network | Shamsudin ...

    African Journals Online (AJOL)

    technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.

  11. DNA supercoiling depends on the phosphorylation potential in Escherichia coli

    DEFF Research Database (Denmark)

    Van Workum, M.; van Dooren, S.J.M; Oldenburg, N

    1996-01-01

    ATP/ADP ratios were varied in different ways and the degree of negative supercoiling was determined in Escherichia coli. Independent of whether the ATP/ADP ratio was reduced by a shift to anaerobic conditions, by addition of protonophore (dinitrophenol) or by potassium cyanide addition, DNA super...

  12. Effect of visible range electromagnetic radiations on Escherichia coli ...

    African Journals Online (AJOL)

    Background: Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of ...

  13. Modulation of allele leakiness and adaptive mutability in Escherichia ...

    Indian Academy of Sciences (India)

    It is shown that partial phenotypic suppression of two ochre mutations (argE3 and lacZU118) and an amber mutation (in argE) by sublethal concentrations of streptomycin in an rpsL+ (streptomycin-sensitive) derivative of the Escherichia coli strain AB1157 greatly enhances their adaptive mutability under selection.

  14. Properties of in situ Escherichia coli -D-glucuronidase (GUS ...

    African Journals Online (AJOL)

    A study of the activity of Escherichia coli -D-glucuronidase (GUS) in polluted stagnant and running water samples was performed with an objective of assessing the viability of a direct marker enzyme assay as a suitable alternative to membrane filtration for the indication of faecal pollution in water intended for drinking ...

  15. QSAR study of benzimidazole derivatives inhibition on escherichia ...

    African Journals Online (AJOL)

    The paper describes a quantitative structure-activity relationship (QSAR) study of IC50 values of benzimidazole derivatives on escherichia coli methionine aminopeptidase. The activity of the 32 inhibitors has been estimated by means of multiple linear regression (MLR) and artificial neural network (ANN) techniques.

  16. Multiple-Resistant Commensal Escherichia Coli from Nigerian ...

    African Journals Online (AJOL)

    Purpose: The antimicrobial susceptibility and virulence traits of 150 strains of Escherichia coli ... and ethical approval was obtained from the Health .... persist in the guts by virtue of the ability of such ... cases of diarrhoea in Ile-Ife and environs.

  17. Cytokine response to Escherichia coli in gnotobiotic pigs

    Czech Academy of Sciences Publication Activity Database

    Šplíchal, Igor; Šplíchalová, Alla; Trebichavský, Ilja

    2008-01-01

    Roč. 53, č. 2 (2008), s. 161-164 ISSN 0015-5632 R&D Projects: GA ČR GA523/05/0249 Institutional research plan: CEZ:AV0Z50200510 Keywords : germ-free pigs * escherichia coli * cytokine response Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  18. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    Science.gov (United States)

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  19. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    Science.gov (United States)

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  20. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  1. Production of 3-O-xylosyl quercetin in Escherichia coli

    DEFF Research Database (Denmark)

    Pandey, Ramesh Prasad; Malla, Sailesh; Simkhada, Dinesh

    2013-01-01

    Quercetin, a flavonol aglycone, is one of the most abundant flavonoids with high medicinal value. The bioavailability and pharmacokinetic properties of quercetin are influenced by the type of sugars attached to the molecule. To efficiently diversify the therapeutic uses of quercetin, Escherichia ...

  2. Kwantitatief gevoeligheidsonderzoek met intra- en extramurale isolaten van Escherichia coli

    NARCIS (Netherlands)

    de Neeling AJ; de Jong J; Overbeek BP; de Bruin RW; Dessens-Kroon M; van Klingeren B

    1990-01-01

    Three Dutch laboratories for medical microbiology collected a total number of 1432 strains of Escherichia coli. Of these 995 were obtained from routine samples taken in clinic and policlinic, 290 had been sent spontaneously by general practitioners for microbiological examination and 147 had been

  3. Growth modeling of uropathogenic Escherichia coli in ground chicken meat

    Science.gov (United States)

    Extraintestinal Pathogenic Escherichia coli (ExPEC), including Uropathogenic E. coli (UPEC), are common contaminants in poultry meat, and are a major pathogen associated with inflammatory bowel disease, ulcerative colitis, sepsis, and urinary tract infections. The purpose of this study was to determ...

  4. in Escherichia coli with native cholesterol oxidase expressed

    African Journals Online (AJOL)

    The structure and bio-activity of an endogenous cholesterol oxidase from Brevibacterium sp. was compared to the same enzyme exogenously expressed in Escherichia coli BL21 (DE3) with and without N- or C-terminal his-tags. The different proteins were purified with affinity and subtractive protocols. The specific activity of ...

  5. Sequencing of Escherichia coli that cause persistent and transient Mastitis

    Science.gov (United States)

    The genomes of two strains of Escherichia coli that cause bovine mastitis were sequenced. These strains are known to be associated with persistent and transient mastitis: strain ECA-B causes a transient infection, and ECC-M leads to a persistent infection....

  6. Escherichia coli. A sanitary methodology for faecal water pollution tests

    International Nuclear Information System (INIS)

    Bonadonna, L.

    2001-01-01

    Among the traditional indictors of faecal water pollution, Escherichia coli has shown to fit better with the definition of indicator organism. Till now its recovery has been time-consuming and needs confirmation tests. In this report more rapid and direct methods, based on enzymatic reactions, are presented [it

  7. Antimicrobial susceptibilities of avian Escherichia coli isolates in ...

    African Journals Online (AJOL)

    Colibacillosis is a poultry disease of economic importance in Iran and all around the world. The aim of this study is to test the antibiotic sensitivity of Escherichia coli strains which were isolated in Tabriz. A total of 100 E. coli strains isolated from avian colibacillosis of 50 farms from 2008 to 2009 in Tabriz, were investigated for ...

  8. Antibiotic resistance profile of Escherichia coli isolated from five ...

    African Journals Online (AJOL)

    Information on the resistance profiles of clinical and non clinical human bacteria isolates in the developing countries can serve as important means of understanding the human pathogens drug resistance interactions in the zone. Escherichia coli isolated from five geopolitical zones of Nigeria were screened for anti-microbial ...

  9. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  10. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  11. Prevalence of Aeromonas species and Escherichia coli in stool ...

    African Journals Online (AJOL)

    Background: Diarrhoea is one of the main causes of mortality and morbidity in childhood. Bacterial diarrhoea is a common disorder. Aeromonas species and Escherichia coli (E. coli) are some of the aetiological agents associated with diarrhoea in children. Objective: To determine the prevalence of Aeromonas species and ...

  12. Isolation and genomic characterization of Escherichia coli O157:NM ...

    African Journals Online (AJOL)

    Human diseases caused by Escherichia coli O157:NM and E. coli O157:H7 strains have been reported throughout the world. In developed countries, serotype O157:H7 represents the major cause of human diseases; however, there have been increasing reports of non-O157 Shiga toxin (Stx)-producing E. coli strains ...

  13. Adsorption of Escherichia coli Using Bone Char | Rezaee | Journal ...

    African Journals Online (AJOL)

    The aim of study was providing a novel adsorbent for the removal of Escherichia coli (E.coli) as a microbial model from contaminated air especially in hospital units using bone char (BC). The BC was prepared from cattle animal bone by pyrolysis in a furnace at 450°C for 2 h. The characteristics of BC have been determined ...

  14. Occurrence of Escherichia coli in Brassica rapa L. chinensis ...

    African Journals Online (AJOL)

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106 samples including Chinese ...

  15. Biofilm production and antibiotic susceptibility profile of Escherichia ...

    African Journals Online (AJOL)

    Samie.Amidou

    2012-04-26

    Apr 26, 2012 ... Full Length Research Paper. Biofilm production and antibiotic susceptibility profile of Escherichia coli isolates from HIV and AIDS patients in the Limpopo Province. Samie, A. and Nkgau, T. F.. Department of Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, Limpopo, South Africa.

  16. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798)

    OpenAIRE

    Dimitrova, Daniela; Engelbrecht, Kathleen C.; Putonti, Catherine; Koenig, David W.; Wolfe, Alan J.

    2017-01-01

    ABSTRACT Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E.?coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496?bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid.

  17. Physiological responses of Escherichia coli to far-ultraviolet radiation

    International Nuclear Information System (INIS)

    Swenson, P.A.

    1976-01-01

    The following topics are reviewed: photochemical damage to DNA; measurement of cell survival; DNA repair processes and genetics of radiation sensitivity; degradation of DNA and RNA; biochemical and physiological consequences; reactivation of bacteriophage in Escherichia coli cells; filament formation; influence of growth phase on survival after uv irradiation; and post-uv-irradiation treatment

  18. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli

    DEFF Research Database (Denmark)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    2017-01-01

    ). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate...

  19. The incidence and antibiotics susceptibility of Escherichia coli O157 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... The incidence of Escherichia coli 0157: H7 was assessed in meat samples from slaughtered cattle in. Ibadan metropolis by culturing ... high quality farm to fork wholesome and safe meat for public consumption in Nigeria. Key words: EHEC .... Prevalence and in vitro antimicrobial susceptibility. Trop. Vet. 26.

  20. Prevalence of Escherichia coli virulence genes in patients with ...

    African Journals Online (AJOL)

    In this study, we investigated the prevalence of the virulence genes specific for five major pathogroups of diarrheagenic Escherichia coli (DEC) in primary cultures from diarrhoeagenic patients in Burkina Faso. Methodology: From September 2016 to Mars 2017, a total of 211 faecal samples from diarrhoeagenic patients from ...

  1. Comparative Genomics of Escherichia coli Strains Causing Urinary Tract Infections

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Hancock, Viktoria; Schembri, Mark A.

    2011-01-01

    The virulence determinants of uropathogenic Escherichia coli have been studied extensively over the years, but relatively little is known about what differentiates isolates causing various types of urinary tract infections. In this study, we compared the genomic profiles of 45 strains from a range...

  2. Effect of phytoplankton on Escherichia coli survival in laboratory microcosms

    Science.gov (United States)

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. Nuisance algae commonly grow in low- or no-flow irrigation water source The objecti...

  3. Neonatal infections caused by Escherichia coli at the National ...

    African Journals Online (AJOL)

    Background: Escherichia coli (E.coli) has been implicated as a common cause of both early and late onset neonatal infections. The emergence of different strains of E.coli that are multiply resistant to commonly used antibiotics has made continuous antibiotics surveillance relevant. Knowledge about common infections ...

  4. neonatal infections caused by escherichia coli at the national

    African Journals Online (AJOL)

    boaz

    Background: Escherichia coli (E.coli) has been implicated as a common cause of both early and late onset neonatal infections. The emergence of different strains of E.coli that are multiply resistant to commonly used antibiotics has made continuous antibiotics surveillance relevant. Knowledge about common infections ...

  5. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...

  6. Search for Enterohaemorrhagic Escherichia coli O157:H7 and ...

    African Journals Online (AJOL)

    Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 and Salmonella enterica are important zoonotic bacteria responsible for enteric infections in humans. The present study investigated the possible role of kittens in the zoonotic transmission of antimicrobial resistant EHEC O157 and Salmonella enterica to human using ...

  7. Antibiotic Sensitivity Profile of Escherichia coli Isolated from Poultry ...

    African Journals Online (AJOL)

    A cross sectional study involving 300 cloaca swabs from apparently healthy birds from 8 small-medium scale poultry farms in Ibadan Oyo State was carried out. A total of 201 (67%) Escherichia coli isolates were recovered from the birds and they were subjected to in-vitro antibiotic sensitivity test by agar gel diffusion method.

  8. Increasing the permeability of Escherichia coli using MAC13243

    DEFF Research Database (Denmark)

    Muheim, Claudio; Götzke, Hansjörg; Eriksson, Anna U.

    2017-01-01

    molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N...

  9. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Ulett, G.C.

    2006-01-01

    Escherichia coli 83972 is a clinical asymptomatia bacteriuric isolate that is able to colonize the human urinary bladder without inducing an immune response. Here we demonstrate that one of the mechanisms by which this strain has become attenuated is through the mutation of its genes encoding type...

  10. Catheter Related Escherichia hermannii Sepsis in a Haemodialysis Patient

    DEFF Research Database (Denmark)

    Utke Rank, Cecilie; Kristensen, Peter Lommer; Hansen, Dennis Schrøder

    2016-01-01

    Escherichia hermannii is an extremely rare etiological agent of invasive infection, and thus, the bacterium was initially considered non-pathogenic. However, in five previously reported case reports E. hermannii has been implicated as the sole pathogen. Our case report describes blood stream infe...

  11. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  12. Expression of green fluorescent protein (GFPuv) in Escherichia coli ...

    African Journals Online (AJOL)

    Administrator

    The recombinant green fluorescent protein (GFPuv) was expressed by transformed cells of Escherichia coli DH5-α grown in LB/amp broth at 37oC, for 8 h and 24 h. To evaluate the effectiveness of different parameters to improve the expression of GFPuv by E. coli, four variable culturing conditions were set up for assays by ...

  13. Complete Genome Sequence of Enterotoxigenic Escherichia coli Siphophage Seurat.

    Science.gov (United States)

    Doan, Dung P; Lessor, Lauren E; Hernandez, Adriana C; Kuty Everett, Gabriel F

    2015-02-26

    Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in developing countries. Bacteriophage therapy has the potential to aid in the prevention and treatment of ETEC-related illness. To that end, we present here the complete genome of ETEC siphophage Seurat and describe its major features. Copyright © 2015 Doan et al.

  14. Protein export in bacillus subtilis and escherichia coli

    NARCIS (Netherlands)

    Dijl, Jan Maarten van

    1990-01-01

    The export of heterologous proteins in Bacillus subtilis and Escherichia coli is often inefficient. Frequently observed problems are: 1) accumulation of the precursor form of the exported protein in the cytoplasm or in the membrane; 2), inefficient or incorrect processing of the precursor; 3),

  15. Escherichia coli and virus isolated from ''sticky kits''

    DEFF Research Database (Denmark)

    Jørgensen, M.; Scheutz, F.; Strandbygaard, Bertel

    1996-01-01

    A total of 121 Escherichia coli strains isolated from 3-week-old mink kits were serotyped and examined for virulence factors. 56 strains were isolated from healthy kits while 65 were from ''sticky kits''. Among these, 34 different serotypes were detected. No difference in serotypes or the presenc...

  16. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J.; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; van Minh, Pham; Wagenaar, Jaap A.; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an outbreak of E.

  17. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    Science.gov (United States)

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  18. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    Science.gov (United States)

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  19. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference. Keywords: Transcriptome, Growth fitness, Escherichia coli, Microarray

  20. Escherichia fergusonii Associated with Pneumonia in a Beef Cow

    Directory of Open Access Journals (Sweden)

    Guillermo M. Rimoldi

    2013-01-01

    Full Text Available An adult Angus cow developed hyperthermia, prostration, and respiratory distress, dying 36 hours after the onset of clinical signs. The main finding during postmortem examination was a severe focally extensive pneumonia. Icterus and a chronic mastitis were also noticed. Histologic examination of the lungs detected fibrinonecrotic pneumonia, with large number of oat cells and intralesional Gram-negative bacterial colonies. Samples from lung lesions were collected, and a pure growth of Escherichia fergusonii was obtained. E. fergusonii is a member of Enterobacteriaceae, related to Escherichia coli and Salmonella sp. In veterinary medicine, E. fergusonii has been reported in calves and sheep with clinical cases suggestive of salmonellosis; in a horse and a goat with enteritis and septicemia; and in ostriches with fibrinonecrotic typhlitis. To our knowledge, this report represents the first description of E. fergusonii associated with an acute pneumonia in cattle.

  1. Tranformasi Fragmen Dna Kromosom Xanthomonas Campestris ke dalam Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Wibowo Mangunwardoyo

    2002-04-01

    Full Text Available Research on DNA transformation of Xanthomonas campestris into Escherichia coli DH5αα using plasmid vector Escherichia coli (pUC19. was carried out. DNA chromosome was isolated using CTAB method, alkali lysis method was used to isolate DNA plasmid. Both of DNA plasmid and chromosome were digested using restriction enzyme EcoRI. Competent cell was prepared with CaCl2 and heat shock method for transformation procedure. The result revealed transformation obtain 5 white colonies, with transformation frequency was 1,22 x 10-8 colony/competent cell. Electrophoresis analysis showed the DNA fragment (insert in range 0.5 – 7,5 kb. Further research should be carried out to prepare the genomic library to obtain better result of transformant.

  2. Respiration shutoff in Escherichia coli after far-uv irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.; Norton, I.L.

    1984-01-01

    Damage to DNA of Escherichia coli by uv, ionizing radiation and chemicals causes a number of responses that require the recA + and lexA + gene products. The responses include error prone repair (as indicated by mutagenesis), filamentation and induction of prophage lambda. Another important rec/lex response, shutoff of respiration, which occurs 60 min after exposure to uv, is studied. Objective is to understand the genetic and biochemical bases of the shutoff process and its control

  3. flu, a metastable gene controlling surface properties of Escherichia coli.

    OpenAIRE

    Diderichsen, B

    1980-01-01

    flu, a gene of Escherichia coli K-12, was discovered and mapped between his and shiA. It is shown that flu is a metastable gene that changes frequently between the flu+ and flu states. flu+ variants give stable homogeneous suspensions, are piliated, and form glossy colonies. flu variants aggregate, fluff and sediment from suspensions, are nonpiliated, and form frizzy colonies. flu+ and flu variants can be isolated from most strains. Implications of these observations are discussed, and it is ...

  4. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Chinen, Isabel; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  5. Two Tales of Prokaryotic Genomic Diversity: Escherichia coli and Halophiles

    Directory of Open Access Journals (Sweden)

    Lejla Pašić

    2014-01-01

    Full Text Available Prokaryotes are generally characterized by vast genomic diversity that has been shaped by mutations, horizontal gene transfer, bacteriocins and phage predation. Enormous genetic diversity has developed as a result of stresses imposed in harsh environments and the ability of microorganisms to adapt. Two examples of prokaryotic diversity are presented: on intraspecies level, exemplified by Escherichia coli, and the diversity of the hypersaline environment, with the discussion of food-related health issues and biotechnological potential.

  6. SENSITIVITY TEST OF Escherichia coli AGAINST EXTRACT Tinospora crispa

    OpenAIRE

    Lucia Ratna Winata Muslimin; abdul wahid jamaluddin

    2017-01-01

    In general, a bacterium such as Escherichia coli produces a kind of toxic protein which can disrupt intestinal wall. Livestock reacts to these toxins by pumping lots of water into the intestine in order to rinse or flush these toxins. As a result, the livestocks have diarrhea as a body response to remove the toxin in the digestive system. In the presence of these problems, breeders take a measure such as using antibiotics freely. Among breeders, antibiotics are often used freely ...

  7. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  8. Nosocomial acquisition of Escherichia coli by infants delivered in hospitals.

    Science.gov (United States)

    Fujita, K; Murono, K

    1996-04-01

    The delivery of infants in hospitals is desirable for obstetric reasons, but exposes the neonates to the microbiological hazards of a maternity unit. When neonates are born and cared for in hospital, the Escherichia coli strains that colonize the intestine tend to be acquired from the environment or from other babies, and are potentially pathogenic. The colonization of the infant with maternal flora should be promoted by strict rooming-in of mother and baby, or by delivery at home.

  9. Removal of Escherichia coli from biological effluents using natural ...

    African Journals Online (AJOL)

    Ability for disinfecting sterile biological effluents inoculated with Escherichia coli ATCC 25922 at concentrations of 105 CFU/m., using a natural mineral aggregate (NMA) and artificial mineral aggregates (AMAfs) consisting of individual oxides as Fe2O3, Cu2O y Ag2O and combined oxides as Fe2O3-Cu2O, Fe2O3-Ag2O, ...

  10. Optimizing the feeding operation of recombinant Escherichia coli ...

    African Journals Online (AJOL)

    Recombinant Escherichia coli BL21 was used to produce human-like collagen in fed-batch culture. After building and analyzing the kinetic models of fed-batch cultures, the maximum specific growth rate, Yx/s and Yp/s were 0.411 h-1 , 0.428 g·g-1 and 0.0716 g/g, respectively. The square error of cell growth models, glucose ...

  11. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798).

    Science.gov (United States)

    Dimitrova, Daniela; Engelbrecht, Kathleen C; Putonti, Catherine; Koenig, David W; Wolfe, Alan J

    2017-07-06

    Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid. Copyright © 2017 Dimitrova et al.

  12. Distribution of Diverse Escherichia coli between Cattle and Pasture

    OpenAIRE

    NandaKafle, Gitanjali; Seale, Tarren; Flint, Toby; Nepal, Madhav; Venter, Stephanus N.; Brözel, Volker S.

    2017-01-01

    Escherichia coli is widely considered to not survive for extended periods outside the intestines of warm-blooded animals; however, recent studies demonstrated that E. coli strains maintain populations in soil and water without any known fecal contamination. The objective of this study was to investigate whether the niche partitioning of E. coli occurs between cattle and their pasture. We attempted to clarify whether E. coli from bovine feces differs phenotypically and genotypically from isola...

  13. Prevalence of Antibiotic-Resistant Strains of Escherichia coli in ...

    African Journals Online (AJOL)

    A total of six bacteria species Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumonia, Staphylococcus aureus, Enterobacter aerogenes were ... Énumération de nombre de plaque standard a été effectuée par la méthode de la plaque de propagation sur des échantillons d'eau dilués en série.

  14. Genes and proteins of Escherichia coli K-12.

    Science.gov (United States)

    Riley, M

    1998-01-01

    GenProtEC is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins, representing groups of paralogous genes, with PAM values, percent identity of amino acids, length of alignment and percent aligned. GenProtEC can be accessed at the URL http://www.mbl.edu/html/ecoli.html

  15. Predictors Of Non-Escherichia Coli Urinary Tract Infection.

    Science.gov (United States)

    Shaikh, Nader; Wald, Ellen R; Keren, Ron; Gotman, Nathan; Ivanova, Anastasia; Carpenter, Myra A; Moxey-Mims, Marva; Hoberman, Alejandro

    2016-11-01

    We aimed to determine which children are prone to non-Escherichia coli urinary tract infection (UTIs). We included 769 children with UTI. We found that circumcised males, Hispanic children, children without fever and children with grades 3 and 4 vesicoureteral reflux were more likely to have a UTI caused by organisms other than E. coli. This information may guide clinicians in their choice of antimicrobial therapy.

  16. Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed; Blank, L.M.; Oldiges, M.

    2010-01-01

    Metabolic cofactors such as NADH and ATP play important roles in a large number of cellular reactions, and it is of great interest to dissect the role of these cofactors in different aspects of metabolism. Toward this goal, we overexpressed NADH oxidase and the soluble F1-ATPase in Escherichia coli...... of redox and energy metabolism and should help in developing metabolic engineering strategies in E. coli....

  17. Ribosome slowed by mutation to streptomycin resistance. [Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Galas, D J; Branscomb, E W

    1976-08-12

    The effect of mutation to streptomycin resistance on the speed of polypeptide elongation in Escherichia coli was investigated. Translation speed was determined by measuring the time required for the first newly synthesized ..beta..-galactosidase molecules to appear after induction of the lactose operon. The results showed that ribosome speed is not a fixed parameter inherent to the protein synthetic apparatus, but a variable determined by the kinetics of translation and ultimately by the structure of the ribosome. (HLW)

  18. Compilation and analysis of Escherichia coli promoter DNA sequences.

    OpenAIRE

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter ...

  19. [Virulence markers of Escherichia coli O1 strains].

    Science.gov (United States)

    Makarova, M A; Kaftyreva, L A; Grigor'eva, N S; Kicha, E V; Lipatova, L A

    2011-01-01

    To detect virulence genes in clinical isolates of Escherichia coli O1 using polymerase chain reaction (PCR). One hundred and twenty strains of E.coli O1 strains isolated from faeces of patients with acute diarrhea (n = 45) and healthy persons (n = 75) were studied. PCR with primers for rfb and fliC genes, which control synthesis of O- and H- antigens respectively, was used. Fourteen virulence genes (pap, aaf, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, st, and aer) were detected by PCR primers. K1-antigen was determined by Pastorex Meningo B/E. coli O1 kit (Bio-Rad). rfb gene controlling O-antigen synthesis in serogroup O1 as well as fliC gene controlling synthesis of H7 and K1 antigens were detected in all strains. Thus all E. coli strains had antigenic structure O1:K1 :H-:F7. Virulence genes aafl, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, and st were not detected. All strains owned pap and aer genes regardless of the presence of acute diarrhea symptoms. It was shown that E. coli O1:KI:H-:F7 strains do not have virulence genes which are characteristic for diarrhea-causing Escherichia. In accordance with the presence of pap and aer genes they could be attributed to uropathogenic Escherichia (UPEC) or avian-pathogenic Escherichia (APEC). It is necessary to detect virulence factors in order to determine E. coli as a cause of intestinal infection.

  20. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  1. Antibiotic resistance of Verotoxigenic Escherichia coli isolated from vegetables

    Directory of Open Access Journals (Sweden)

    mojtaba boniadian

    2017-01-01

    Full Text Available Introduction: Human gastrointestinal disease caused by verotoxigenic Escherichia coli has been diagnosed for recent decades. Escherichia coli O157:H7 is the most important serotype of verotoxigenic Escherichia coli that cause hemolytic uremic syndrome and hemorrhagic colitis in humans. This study was conducted to determine the occurrence of verotoxigenic E. coli and antibiotic resistance of the isolates from vegetables. Materials and methods: A total of 500 fresh vegetable samples were collected randomly from retail shops in Shahrekord, Iran. E. coli was isolated and identified using bacteriological and biochemical tests. PCR method was used to identify the rbfE, stx1, stx2 and eae genes. Also, antibiotic resistance of the isolates was determined by disk diffusion method. Results: The results represented that among 25 isolates possess virulence genes, 40, 12 and 4% of the isolates contained eaeA, STx2, and both genes, respectively. But none of them contained H7, STx1, and rfbE genes. The antibiotic resistance pattern demonstrated that the isolates were highly resistant to Gentamycin and cefotoxime. Discussion and conclusion: The results of this study showed that the presence of verotoxigenic E.coli in vegetables; and high resistance of the isolates to antibiotics could be hazardous for public health.

  2. Genomic diversity of Escherichia isolates from diverse habitats.

    Directory of Open Access Journals (Sweden)

    Seungdae Oh

    Full Text Available Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90 that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein. These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.

  3. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  4. Escherichia coli. A sanitary methodology for faecal water pollution tests; Escherichia coli nelle acque. Significato sanitario e metodologie di analisi

    Energy Technology Data Exchange (ETDEWEB)

    Bonadonna, L. [Istituto Superiore di Sanita' , Rome (Italy)

    2001-02-01

    Among the traditional indictors of faecal water pollution, Escherichia coli has shown to fit better with the definition of indicator organism. Till now its recovery has been time-consuming and needs confirmation tests. In this report more rapid and direct methods, based on enzymatic reactions, are presented. [Italian] Per talune peculiari caratteristiche, Escherichia coli sembra meglio soddisfare i requisiti insiti nella definizione di organismo indicatore, rispetto ai tradizionali indicatori di contaminazione fecale dell'acqua. Finora, i substrati disponibili per il suo rilevamento necessitano tutti di almeno una prova di conferma. Di qui l'esigenza di indicare metodi di rilevamento a riposta piu' rapida, anche in relazione all'inserimento, nelle piu' recenti normative nazionali ed europee, del microrganismo tra i parametri microbiologici da ricercare.

  5. Cancerous patients and outbreak of Escherichia coli: an important issue in oncology

    OpenAIRE

    Joob, Beuy; Wiwanitkit, Viroj

    2014-01-01

    The widespread of the Escherichia coli outbreak in Europe becomes an important public concern at global level. The infection can be serious and might result in death. The retrospective literature review on this specific topic is performed. In this specific brief article, the author presented and discussed on the problem of Escherichia coli infection in the cancerous patients. This is an actual important issue in medical oncology for the scenario of Escherichia coli epidemic.

  6. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli:

    DEFF Research Database (Denmark)

    Sherlock, Orla; Schembri, Mark; Reisner, A.

    2004-01-01

    Diarrhea-causing Escherichia coli strains are responsible for numerous cases of gastrointestinal disease and constitute a serious health problem throughout the world. The ability to recognize and attach to host intestinal surfaces is an essential step in the pathogenesis of such strains. AIDA...... binds to mammalian cells. Here, we show that AIDA possesses self-association characteristics and can mediate autoaggregation of E. coli cells. We demonstrate that intercellular AIDA-AIDA interaction is responsible for bacterial autoaggregation. Interestingly, AIDA-expressing cells can interact...

  7. Cellular localization of the Escherichia coli SpoT protein.

    OpenAIRE

    Gentry, D R; Cashel, M

    1995-01-01

    The SpoT protein of Escherichia coli serves as a source of degradation as well as an apparent source of synthesis of (p)ppGpp. Since the subcellular localization of SpoT might be a clue to its function, we have used SpoT-specific antisera to analyze cell extracts fractionated on sucrose gradients. We find that the SpoT protein is not bound to ribosomes or to either inner or outer membrane fractions. Although the SpoT protein is found in large aggregates, its localization is probably cytosolic.

  8. Escherichia coli O26 IN RAW BUFFALO MILK: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Rella

    2013-02-01

    Full Text Available Escherichia coli O26 is considered to be one of the most important food-borne pathogen. In this study, 120 buffalo milk samples collected in Lazio and in Apulia regions were tested for the presence of E. coli O26. One buffalo milk sample (0,8% tested positive for E. coli O26; the isolate was positive at the verocytotoxicity test and it showed resistance properties to different antimicrobial classes. These preliminary results highlight the need to monitor the foods of animal origin used for production and eaten by a wide range of persons, respect VTEC organism.

  9. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  10. DNA microarray analysis of fim mutations in Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Ussery, David; Workman, Christopher

    2002-01-01

    Bacterial adhesion is often mediated by complex polymeric surface structures referred to as fimbriae. Type I fimbriae of Escherichia coli represent the archetypical and best characterised fimbrial system. These adhesive organelles mediate binding to D-mannose and are directly associated...... we have used DNA microarray analysis to examine the molecular events involved in response to fimbrial gene expression in E. coli K-12. Observed differential expression levels of the fim genes were in good agreement with our current knowledge of the stoichiometry of type I fimbriae. Changes in fim...

  11. 4-thiouridine and photoprotection in Escherichia coli K12

    International Nuclear Information System (INIS)

    Thomas, Gilles; Favre, Alain

    1977-01-01

    A high level of protection is observed in the Escherichia coli K 12 strain AB 1157 rec A 1 nuv + whose transfer RNA contains 4-thiouridine. In contrast, the photoprotection level is low and observed at higher doses in a strain which differs from the former by a single mutation nuv - , (lack of 4-thiouridine). This nucleoside is therefore an important chromophore leading to photoprotection. This conclusion is corroborated by the similarity of the action spectra for 8-13 link formation in tRNA and for photoprotection [fr

  12. UV irradiation alters deoxynucleoside triphosphate pools in Escherichia coli

    International Nuclear Information System (INIS)

    Das, S.K.; Loeb, L.A.

    1984-01-01

    UV irradiation of exponentially growing Escherichia coli increased intracellular concentration of dATP and dTTP without significantly changing the concentrations of dGTP and dCTP. These selective increases in dATP and dTTP pools are seen in wild-type E. coli K12 and AB1157, as well as in recA and umuC strains, and are proportional to UV dose. The possible significance of these findings with respect to induction of the SOS response and nontargeted mutagenesis are discussed. (orig.)

  13. A stochastic killing system for biological containment of Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, P.; Jensen, Lars Bogø; Molin, Søren

    1995-01-01

    Bacteria with a stochastic conditional lethal containment system have been constructed. The invertible switch promoter located upstream of the fimA gene from Escherichia coli was inserted as expression cassette in front of the Lethal gef gene deleted of its own natural promoter. The resulting...... fusion was placed on a plasmid and transformed to E. coli. The phenotype connected with the presence of such a plasmid was to reduce the population growth rate with increasing significance as the cell growth rate was reduced. In very fast growing cells, there was no measurable effect on growth rate. When...

  14. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  15. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Kruse, Thomas; Møller-Jensen, Jakob; Løbner-Olesen, Anders

    2003-01-01

    The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow...... cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell...... that MreB filaments participate in directional chromosome movement and segregation....

  16. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level....... Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter...

  17. Stabilization of Escherichia coli uridine phosphorylase by evolution and immobilization

    CSIR Research Space (South Africa)

    Visser, Daniel F

    2010-08-01

    Full Text Available nucleoside phosphorylase (BHPNP1) from the thermotolerant alkalophile Bacillus halodurans with the Escherichia coli uridine phosphorylase (EcUP) (EC 2.4.2.3) in a one-pot cascade reaction can produce 5-MU in high yield [2, 3]. The optimal operating... reaction temperature of 60?C is within the thermostability range of BHPNP, but the stability of the UP is only 40?C. This requires higher enzyme loading to offset the rate of thermal deactivation. Moreover, due to the low solubility of the reaction...

  18. Spontaneous Escherichia coli Meningitis Associated with Hemophagocytic Lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Kuo-Hsuan Chang

    2006-01-01

    Full Text Available Spontaneous Escherichia coli meningitis has not been previously reported in association with hemophago-cytic lymphohistiocytosis (HLH. A previously healthy 72-year-old woman was admitted due to fever, nuchal rigidity, disturbed consciousness and splenomegaly. Anemia, thrombocytopenia and hyperfer-ritinemia developed on the 8th day of hospitalization. Cultures of cerebrospinal fluid and blood grew E. coli. Abundant macrophages overwhelmed erythrocytes in the bone marrow aspirate, confirming the presence of hemophagocytosis. E. coli meningitis was managed with a 40-day course of antibiotic treatment. However, the severity of anemia and thrombocytopenia progressed despite intensive transfusion therapy. The patient died of HLH on the 60th day of hospitalization.

  19. Causes, prevention and treatment of Escherichia coli infections.

    Science.gov (United States)

    Gould, Dinah

    Escherichia coli is a normal inhabitant of the human gastrointestinal tract and can cause healthcare-associated infections. The organism is most frequently responsible for urinary tract infections and it is the bacterium most often implicated in the cause of diarrhoea in people travelling overseas. In recent years, a strain called Ecoli O157 has gained notoriety for causing foodborne infection, which can have severe health consequences, especially in young children. This article describes the range of different infections caused by Ecoli in healthcare settings and the community and discusses the characteristics of the different strains of the bacteria that explain variations in their pathogenicity.

  20. Genes and proteins of Escherichia coli (GenProtEc).

    Science.gov (United States)

    Riley, M; Space, D B

    1996-01-01

    GenProtEc is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins with PAM values, percent identity of amino acids, length of alignment and percent aligned. The database is available as a PKZip file by ftp from mbl.edu/pub/ecoli.exe. The program runs under MS-DOS on IMB-compatible machines. GenProtEc can also be accessed through the World Wide Web at URL http://mbl.edu/html/ecoli.html.

  1. FimH-mediated autoaggregation of Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Christiansen, G.; Klemm, Per

    2001-01-01

    Autoaggregation is a phenomenon thought to contribute to colonization of mammalian hosts by pathogenic bacteria. Type 1 fimbriae are surface organelles of Escherichia coli that mediate D-mannose-sensitive binding to various host surfaces. This binding is conferred by the minor fimbrial component...... FimH. In this study, we have used random mutagenesis to identify variants of the FimH adhesin that confer the ability of E. coli to autoaggregate and settle from liquid cultures. Three separate autoaggregating clones were identified, all of which contained multiple amino acid changes located within...

  2. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    Science.gov (United States)

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-11

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.

  3. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    OpenAIRE

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-01

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to ...

  4. Escherichia coli : host interactions in the pathogenesis of canine pyometra

    OpenAIRE

    Henriques, Sofia Correia Rosa de Barros

    2016-01-01

    Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas Canine pyometra develops as a result of a complex interaction of etiological and physiopathological factors, such as the virulence and type of the bacteria and the individual host defence mechanisms. Since Escherichia coli is the most common bacterium isolated from uterus of bitches with pyometra, one main objective of this work was to characterize E. coli virulence potential, and...

  5. Prevalence of Antibiotic Resistance in Escherichia coli Isolated from Poultry Meat Supply in Isfahan

    Directory of Open Access Journals (Sweden)

    Farhad Safarpordehkordi

    2014-08-01

    Conclusions: Despite the high contamination rate of chicken meat with Escherichia coli, majority of isolates had high resistance to common antibiotics. Complete cooking of meat and avoid indiscriminate prescribing of antibiotics, preventing the occurrence of food poisoning due to resistant Escherichia coli.

  6. the occurrence of escherichia coli o157:h7 in market and abattoir

    African Journals Online (AJOL)

    user

    Escherichia coli O157:H7 is a newly emerging pathogen frequently associated with the consumption of foods of ... KEY WORDS: E. coli O157:H7, Pathogen, Abattoir, Market, and Infections ..... pathogen. Escherichia coli O157:H7 as a model of.

  7. Lon gene and photoprotection in Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Waksman, G.; Thomas, G.; Favre, A. (Institut de Recherche en Biologie Moleculaire, Group de Photobiologie Moleculaire, Paris (France))

    1984-03-01

    Photoprotection, i.e. the increased resistance of the cells preilluminated with near ultraviolet light (300-380 nm) to the lethal action of 254nm radiations requires either an integrated prophage or a recA mutation in Escherichia coli K12 strains. Significant photoprotection occurs in an Escherichia coli K12 recA/sup +/ cell containing the lon allele responsible for filamentous growth after 254nm irradiation. The Fil phenotype can be suppressed by the sfiA or sfiB suppressor genes. Since the E. coli K12 recA/sup +/ lon sfiB strain exhibits no more photoprotection, it is concluded that in lon strains photoprotection is due to the abolition of the 254nm induced filamentation by the near ultraviolet treatment. In addition, near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis. This effect is observed only in nuv/sup +/ cells that contain 4-thiouridine the chromophore responsible for photoprotection. It is proposed that in lon (lysogenic strains) photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle).

  8. Inactivation of Escherichia coli in soil by solarization

    International Nuclear Information System (INIS)

    Wu, S.; Nishihara, M.; Kawasaki, Y.; Yokoyama, A.; Matsuura, K.; Koga, T.; Ueno, D.; Inoue, K.; Someya, T.

    2009-01-01

    Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g −1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces. (author)

  9. Environmental Escherichia coli: Ecology and public health implications - A review

    Science.gov (United States)

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  10. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  11. The lon gene and photoprotection in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Waksman, G.; Thomas, G.; Favre, A.

    1984-01-01

    Photoprotection, i.e. the increased resistance of the cells preilluminated with near ultraviolet light (300-380 nm) to the lethal action of 254nm radiations requires either an integrated prophage or a recA mutation in Escherichia coli K12 strains. Significant photoprotection occurs in an Escherichia coli K12 recA + cell containing the lon allele responsible for filamentous growth after 254nm irradiation. The Fil phenotype can be suppressed by the sfiA or sfiB suppressor genes. Since the E. coli K12 recA + lon sfiB strain exhibits no more photoprotection, it is concluded that in lon strains photoprotection is due to the abolition of the 254nm induced filamentation by the near ultraviolet treatment. In addition, near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis. This effect is observed only in nuv + cells that contain 4-thiouridine the chromophore responsible for photoprotection. It is proposed that in lon (lysogenic strains) photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle). (author)

  12. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chro......Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division......, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple......-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive...

  13. MUTATIONAL SYNERGISM BETWEEN RADIATIONS AND METHYLATED PURINES IN ESCHERICHIA COLI

    Science.gov (United States)

    Doneson, Ira N.; Shankel, Delbert M.

    1964-01-01

    Doneson, Ira N. (University of Kansas, Lawrence), and Delbert M. Shankel. Mutational synergism between radiations and methylalted purines in Escherichia coli. J. Bacteriol. 87:61–67. 1964.—A synergistic mutational effect was demonstrated between low doses of ultraviolet light and the methylated purines caffeine, theophylline, and theobromine. Caffeine produced the greatest effect and theobromine the least effect. The magnitude of the synergism was inversely related to the ultraviolet dosage. A large percentage of the synergistic effect could be “photoprevented” by exposure of the ultraviolet-treated cells to white light prior to exposure to the analogues. The consequence of the combined treatment occurred only when the chemical treatment followed the ultraviolet treatment. Furthermore, it was necessary to administer the chemical treatment soon after the ultraviolet treatment or the mutants were “lost.” When cells were treated with low dosages of ultraviolet light and of X irradiation (X ray), the result was merely additive, and combinations of X ray and chemical treatment yielded no synergism. Synchronous growth studies indicated that a particular growth stage of the organisms was most susceptible to the synergistic effect. The mutation studied was that of Escherichia coli B/r to high-level streptomycin resistance. PMID:14102875

  14. Viabilidad de Escherichia coli en presencia de diferentes contaminantes

    Directory of Open Access Journals (Sweden)

    Antonio Rivera T

    2006-04-01

    Full Text Available La contaminación en ríos condiciona la presencia de microorganismos adaptados al ecosistema entre ellos a patógenos de importancia en salud pública. Objetivo: Determinar la viabilidad de Escherichia coli en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Materiales y métodos: Se tomaron muestras de agua del río Alseseca, que luego se sembró en medios de cultivo selectivos para enterobacterias, seleccionándose las colonias del género Escherichia, las cuales fueron sembradas en el medio de orientación CHROMagar ECC. Las muestras de E. coli se evaluaron en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Resultados: El grupo experimental presentó viabilidad en presencia de los cuatro compuestos, el grupo control positivo presentó nula viabilidad, la comparación entre los grupos mostró diferencia significativa (p< 0,05. Conclusión: Los aislamientos de E. coli mostraron viabilidad, implicando riesgos para el ecosistemas y la salud, ya que el río Alseseca atraviesa por el municipio de Puebla donde existen núcleos poblacionales importantes.

  15. Growth of the modeling of Escherichia coli in milk

    International Nuclear Information System (INIS)

    Mbangu, N.; Malakasa, M.; Ekalakala, T.; N'dendje, B.; Abedi, M.; Muzembe, K.; Bandejile, M.

    2010-01-01

    Escherichia coli is a contaminant potential of milk. Collective toxinfections implying the bacterium and milk were announced of share the world. However, no identified work proposed a mathematical expression of the growth of the bacterium in milk. The interest of such a step is however undeniable. Under specified conditions, the mathematical formulation of the growth provides the means of considering the population bacterial when the analyses cannot be carried out. It also makes it possible to test the negatiable instruments of the unfavourable circumstances supposed suchas chain breakage of cold on the development of the microbial charge. This work established mathematical expressions of the growth of Escherichia coli in milk for part of its range of temperature of growth suboptimale i.e. between 25 and 35 Deg C. It was not possible to generalize these expressions for predictions on all the range of temperature suboptimal. This work also made it possible to highlight a deviation of the behavoir of the bacterium compared to the model of Ratkowsky without however that it is not possible to provide a univocal explanantion of it. Varoius assumptions were put forth referring to either a singularity of the behavior of the bacterium or a skew of the value of its minimal temperature of growth

  16. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  17. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  18. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da; Jesus, E.F.O. de; Lopes, R.T.; Carlin, N.; Toledo, E.S.

    2007-01-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ( 60 Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  19. Expression of maize prolamins in Escherichia Coli. [Zea mays L

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Szu-zhen; Esen, Asim

    1985-12-02

    A cDNA expression library of developing corn (Zea mays L.) endosperm has been constructed using plasmid pUC8 as vector and Escherichia coli strain DH1 as host. The expression library was screened with non-radioactive immunological probes to detect the expression of gamma-zein and alpha-zein. When anti-gamma-zein antibody was used as the probe, 23 colonies gave positive reactions. The lengths of cDNA inserts of the 23 colonies were found to be 250-900 base pairs. When anti-alpha zein antibody was used, however, fewer colonies gave positive reactions. The library was also screened by colony-hybridization with /sup 32/P-labeled DNA probes. Based on immunological and hybridization screening of the library and other evidence, it was conclude that alpha-zein was either toxic to E. coli cells or rapidly degraded whereas gamma-zein and its fragments were readily expressed. 21 references.

  20. Mechanisms of the radioprotective effect of cysteamine in Escherichia coli

    International Nuclear Information System (INIS)

    Korystov, Yu.N.; Vexler, F.B.

    1988-01-01

    The values of the oxygen effect (m) and the maximal protective effect of cysteamine (DMF*) were estimated for four Escherichia coli strains: AB1157 (wild type), AB1886 (uvrA), AB2463 (recA), and p3478 (polA). A correlation made between DMF* and m as well as the kinetics of the increase of DMF with oxygen depletion showed that the protective effect of cysteamine is realized by three mechanisms: (i) anoxia achieved by oxygen reduction, with the DMF varying from 2.2 to 4.2 for different E. coli strains (this protection is the major contribution to the entire mechanism); (ii) lowering of the indirect radiation effect; i.e., for 50 mM cysteamine DMF does not exceed 1.1; and (iii) increase of the efficiency of enzymatic repair. The latter effect of cysteamine is registered only with the wild-type E. coli, the DMF being not less than 1.4

  1. Impact of cranberry on Escherichia coli cellular surface characteristics

    International Nuclear Information System (INIS)

    Johnson, Brandy J.; Lin Baochuan; Dinderman, Michael A.; Rubin, Robert A.; Malanoski, Anthony P.; Ligler, Frances S.

    2008-01-01

    The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.

  2. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA

    DEFF Research Database (Denmark)

    Link, Todd M; Valentin-Hansen, Poul; Brennan, Richard G

    2009-01-01

    (A) RNA, A(15). The structure reveals a unique RNA binding mechanism. Unlike uridine-containing sequences, which bind to the "proximal" face, the poly(A) tract binds to the "distal" face of Hfq using 6 tripartite binding motifs. Each motif consists of an adenosine specificity site (A site), which......Hfq is a small, highly abundant hexameric protein that is found in many bacteria and plays a critical role in mRNA expression and RNA stability. As an "RNA chaperone," Hfq binds AU-rich sequences and facilitates the trans annealing of small RNAs (sRNAs) to their target mRNAs, typically resulting...... in the down-regulation of gene expression. Hfq also plays a key role in bacterial RNA decay by binding tightly to polyadenylate [poly(A)] tracts. The structural mechanism by which Hfq recognizes and binds poly(A) is unknown. Here, we report the crystal structure of Escherichia coli Hfq bound to the poly...

  3. Two proline porters in Escherichia coli K-12.

    Science.gov (United States)

    Stalmach, M E; Grothe, S; Wood, J M

    1983-11-01

    Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus.

  4. Sickness behavior in dairy cows during Escherichia coli mastitis

    DEFF Research Database (Denmark)

    Fogsgaard, Katrine Kop; Røntved, Christine Maria; Sørensen, Peter

    2012-01-01

    The consequences of mastitis in terms of dairy cow behavior are relatively unknown. Future assessment of dairy cow welfare during mastitis will be facilitated by knowledge about the potential of mastitis to induce sickness behavior. Our aim was to examine behavior of dairy cows in the period from 2...... d before (d −2 and −1) to 3 d (d 0, 1, and 2) after experimental intramammary challenge with Escherichia coli. Effects of experimentally induced mastitis on behavior were examined in 20 primiparous Danish Holstein-Friesian cows, all 3 to 6 wk after calving and kept in tie stalls. After evening....... This knowledge can be useful for the development of welfare assessment protocols, early disease detection, and for future work aimed at understanding the behavioral needs of dairy cows suffering from mastitis....

  5. Purification and characterization of Escherichia coli MreB protein.

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J

    2013-02-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.

  6. Purification and Characterization of Escherichia coli MreB Protein*

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J.

    2013-01-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161

  7. Induced clustering of Escherichia coli by acoustic fields.

    Science.gov (United States)

    Gutiérrez-Ramos, Salomé; Hoyos, Mauricio; Ruiz-Suárez, J C

    2018-03-16

    Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.

  8. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection

    DEFF Research Database (Denmark)

    Agger, Morten; Scheutz, Flemming; Villumsen, Steen

    2015-01-01

    OBJECTIVES: A consensus has existed on not to treat verocytotoxin-producing Escherichia coli (VTEC)-infected individuals with antibiotics because of possible subsequent increased risk of developing haemolytic uraemic syndrome (HUS). The aim of this systematic review is to clarify the risk...... associated with antibiotic treatment during acute VTEC infection and in chronic VTEC carrier states. METHODS: A systematic search in PubMed identified 1 meta-analysis, 10 clinical studies and 22 in vitro/in vivo studies. RESULTS: Four clinical studies found an increased risk of HUS, four studies found...... no altered risk of HUS and two studies found a protective effect of antibiotics. In vitro and clinical studies suggest that DNA synthesis inhibitors should be avoided, whereas evidence from in vitro studies indicates that certain protein and cell wall synthesis inhibitors reduce the release of toxins from...

  9. ROS mediated selection for increased NADPH availability in Escherichia coli.

    Science.gov (United States)

    Reynolds, Thomas S; Courtney, Colleen M; Erickson, Keesha E; Wolfe, Lisa M; Chatterjee, Anushree; Nagpal, Prashant; Gill, Ryan T

    2017-11-01

    The economical production of chemicals and fuels by microbial processes remains an intense area of interest in biotechnology. A key limitation in such efforts concerns the availability of key co-factors, in this case NADPH, required for target pathways. Many of the strategies pursued for increasing NADPH availability in Escherichia coli involve manipulations to the central metabolism, which can create redox imbalances and overall growth defects. In this study we used a reactive oxygen species based selection to search for novel methods of increasing NADPH availability. We report a loss of function mutation in the gene hdfR appears to increase NADPH availability in E. coli. Additionally, we show this excess NADPH can be used to improve the production of 3HP in E. coli. © 2017 Wiley Periodicals, Inc.

  10. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  11. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming......The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion...

  12. Sedimentation and gravitational instability of Escherichia coli Suspension

    Science.gov (United States)

    Salin, Dominique; Douarche, Carine

    2017-11-01

    The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.

  13. DNA turnover and strand breaks in Escherichia coli

    International Nuclear Information System (INIS)

    Hanawalt, P.; Grivell, A.; Nakayama, H.

    1975-01-01

    The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02 percent of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA. DNA turnover is enhanced severalfold in strands containing 5-bromodeoxyuridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised

  14. The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    Science.gov (United States)

    Winkler, James D; Halweg-Edwards, Andrea L; Erickson, Keesha E; Choudhury, Alaksh; Pines, Gur; Gill, Ryan T

    2016-12-16

    The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of information. To address this issue, we introduce the Resistome database: a literature-curated collection of Escherichia coli genotypes-phenotypes containing over 5,000 mutants that resist hundreds of compounds and environmental conditions. We use the Resistome to understand our current state of knowledge regarding resistance and to detect potential synergy or antagonism between resistance phenotypes. Our data set represents one of the most comprehensive collections of genomic data related to resistance currently available. Future development will focus on the construction of a combined genomic-transcriptomic-proteomic framework for understanding E. coli's resistance biology. The Resistome can be downloaded at https://bitbucket.org/jdwinkler/resistome_release/overview .

  15. Bactericidal activity of ciprofloxacin upon Escherichia coli and Acinetobacter baumanni.

    Science.gov (United States)

    Zemelman, R; Vejar, C; Bello, H; Domínguez, M; González, G

    1992-01-01

    The mechanisms of bactericidal activity of ciprofloxacin (mechanisms A and B) upon cells of a strain of Escherichia coli and one strain of Acinetobacter baumannii were investigated under different conditions. The killing of E. coli cells by ciprofloxacin was significantly reduced by chloramphenicol, but this antibiotic showed almost no activity upon killing of A. baumannii cells by this quinolone. Similar results were obtained when rifampicin was added to ciprofloxacin. Bactericidal activity of ciprofloxacin upon nondividing cells of E. coli was lower and that upon non-dividing cells of A. baumannii was not affected when compared with activity of ciprofloxacin upon dividing cells of both microorganisms. These results demonstrate that the antibacterial activity of ciprofloxacin upon A. baumannii is independent of protein and ARN synthesis, a fact which suggests that this quinolone exerts only bactericidal mechanism B upon A. baumannii. This finding might explain, at least in part, the lower susceptibility of this microorganism to ciprofloxacin.

  16. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  17. Incidence of Escherichia coli in black walnut meats.

    Science.gov (United States)

    Meyer, M T; Vaughn, R H

    1969-11-01

    Examination of commercially shelled black walnut meats showed inconsistent numbers of total aerobic bacteria, coliforms, and Escherichia coli; variation occurred among different meat sizes and within each meat size. The incidence of E. coli on meats of commercially hulled black walnuts depended on the physical condition of the nuts. Apparently tightly sealed ones contained only a few or none, whereas those with visibly separated sutures and spoiled meats yielded the most. This contamination was in part correlated to a hulling operation. Large numbers of E. coli on the husk of the walnuts contaminated the hulling water, subsequently also contaminating the meats by way of separated sutures. Chlorination of the hulling wash water was ineffective. Attempts were made to decontaminate the walnut meats without subsequent deleterious changes in flavor or texture. A treatment in coconut oil at 100 C followed by removal of excess surface oil by centrifugation was best.

  18. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible...... to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  19. Impact of antibiotic restriction on resistance levels of Escherichia coli

    DEFF Research Database (Denmark)

    Boel, Jonas; Andreasen, Viggo; Jarløv, Jens Otto

    2016-01-01

    as a retrospective controlled interrupted time series (ITS) at two university teaching hospitals, intervention and control, with 736 and 552 beds, respectively. The study period was between January 2008 and September 2014. We used ITS analysis to determine significant changes in antibiotic use and resistance levels......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS......OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted...

  20. Analysis of genes involved in glycogen degradation in Escherichia coli.

    Science.gov (United States)

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Detection of Escherichia albertii from chicken meat and giblets.

    Science.gov (United States)

    Maeda, Eriko; Murakami, Koichi; Sera, Nobuyuki; Ito, Kenitiro; Fujimoto, Shuji

    2015-07-01

    Escherichia albertii occasionally causes food-borne outbreaks of gastroenteritis in humans; however, little is known about the vehicle of transmission. To screen retail chicken products for the presence of E. albertii, 104 retail chicken products were investigated. Portions of enrichment cultures that were PCR-positive for E. albertii (n=3) were sub-cultured on agar medium. Only 2 strains obtained from 2 chicken giblet samples were identified as E. albertii by multi locus sequence typing. Antimicrobial susceptibility testing showed that 1 strain was resistant to streptomycin and sulfisoxazole. Both strains harbored the virulence genes cdt and eae. This study is the first description of E. albertii isolation from retail food, suggesting that chicken products are a potential vehicle of E. albertii transmission.

  2. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    Science.gov (United States)

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  3. Is Escherichia coli urinary tract infection a zoonosis?

    DEFF Research Database (Denmark)

    Jacobsen, L.; Garneau, P.; Bruant, G.

    2012-01-01

    Recently, it has been suggested that the Escherichia coli causing urinary tract infection (UTI) may come from meat and animals. The purpose was to investigate if a clonal link existed between E. coli from animals, meat and UTI patients. Twenty-two geographically and temporally matched B2 E. coli...... from UTI patients, community-dwelling humans, broiler chicken meat, pork, and broiler chicken, previously identified to exhibit eight virulence genotypes by microarraydetection of approximately 300 genes, were investigated for clonal relatedness by PFGE. Nine isolates were selected and tested...... for in vivo virulence in the mouse model of ascending UTI. UTI and community-dwelling human strains were closely clonally related to meat strains. Several human derived strains were also clonally interrelated. All nine isolates regardless of origin were virulent in the UTI model with positive urine, bladder...

  4. ESBL-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius

    Urinary tract infection (UTI) is one the most common bacterial infections and is regularly treated in primary health care. The most common cause of UTI is extraintestinal pathogenic Escherichia coli (ExPEC) already present in the intestinal microflora, often as the dominating strain. Resistance...... in E.coli is increasing and especially isolates producing Extended-Spectrum Beta-Lactamases (ESBL) have been reported worldwide. Treatment of UTI is usually initiated by the general practitioners and a significant proportion of clinical isolates are now resistant to first line antibiotics. The global...... to investigate (i) antibiotics involved in selection of ESBL-producing E.coli, in an experimental mouse model in vivo, (ii) risk factors for UTI with ESBL-producing E.coli and (iii) to describe the phylogenetic composition of E.coli populations with different resistance patterns. We found that different...

  5. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    Science.gov (United States)

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  6. Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge.

    Science.gov (United States)

    Zhang, Wenjing; Li, Shuo; Wang, Shuang; Lei, Liancheng; Yu, Xipeng; Ma, Tianyi

    2018-03-01

    Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na + or Ca 2+ , will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca 2+ than monovalent Na + . As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.

  7. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    Science.gov (United States)

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  8. Photoreactivable sector of lethal damage in ultraviolet-irradiated Escherichia coli cells

    International Nuclear Information System (INIS)

    Balgavy, P.

    1976-01-01

    The photoreactivable sector of lethal damage in Escherichia coli Bsub(s-1), Escherichia coli B/r Hcr - and Escherichia coli B/r Hcr + cells after ultraviolet irradiation at 254 nm is 0.823 +- 0.004, 0.70 +- 0.01 and 0.53 +- 0.06, respectively, at 99% confidence limits. For the low values of the photoreactivable sector in the B/r Hcr - and B/r Hcr + strains are likely to be responsible dark repair processes which eliminate lethal damage, brought about by pyrimidine dimers, preferably in comparison with lethal damage caused by photoproducts of another type. (author)

  9. Isolation, genotyping, and antimicrobial resistance of zoonotic shiga toxin-producing escherichia coli

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen linked to outbreaks of human gastroenteritis with diverse clinical spectra. Traditional culture and isolation methods, including selective enrichment and differential plating, have enabled the effective recovery of STEC. Ruminants ...

  10. Two mechanisms coordinate replication termination by the Escherichia coli Tus–Ter complex

    KAUST Repository

    Pandey, Manjula; Elshenawy, Mohamed; Jergic, Slobodan; Takahashi, Masateru; Dixon, Nicholas E.; Hamdan, Samir; Patel, Smita S.

    2015-01-01

    The Escherichia coli replication terminator protein (Tus) binds to Ter sequences to block replication forks approaching from one direction. Here, we used single molecule and transient state kinetics to study responses of the heterologous phage T7

  11. Effects of substitutions at position 180 in the Escherichia coli RNA ...

    Indian Academy of Sciences (India)

    Escherichia coli RNA polymerase, two mutant variants of the protein with substitutions for either alanine or glutamic .... promoter signals utilized for in vitro transcription assays and ..... free recombinant protein using a self-cleavable affinity tag.

  12. A Canadian Multicentre Case-Control Study of Sporadic Escherichia coli 0157:H7 Infection

    Directory of Open Access Journals (Sweden)

    Donna Holton

    1999-01-01

    Full Text Available OBJECTIVE: To evaluate further risk factors for Escherichia coli 0157:H7 infection including consumer preferences related to the consumption of ground beef and the role of person-to-person transmission of this infection.

  13. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    Science.gov (United States)

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  14. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers - is it feasible?

    Science.gov (United States)

    Fecal pollution is measured in surface waters using culture-based measurements of enterococci and Escherichia coli bacteria. Source apportionment of these two fecal indicator bacteria is an urgent need for prioritizing remediation efforts and quantifying health risks associated...

  15. Hemagglutinin Typing as an Aid in Identification of Biochemically Atypical Escherichia coli Strains

    OpenAIRE

    Crichton, Pamela B.; Ip, S. M.; Old, D. C.

    1981-01-01

    Tests for the presence of mannose-sensitive and mannose-resistant, eluting hemagglutinins and fimbriae were helpful in indicating whether biochemically atypical strains of the tribe Escherichieae might be escherichiae or shigellae.

  16. Hemagglutinin Typing as an Aid in Identification of Biochemically Atypical Escherichia coli Strains

    Science.gov (United States)

    Crichton, Pamela B.; Ip, S. M.; Old, D. C.

    1981-01-01

    Tests for the presence of mannose-sensitive and mannose-resistant, eluting hemagglutinins and fimbriae were helpful in indicating whether biochemically atypical strains of the tribe Escherichieae might be escherichiae or shigellae. PMID:7334072

  17. Low resolution solution structure of the Apo form of Escherichia coli haemoglobin protease Hbp.

    NARCIS (Netherlands)

    scott, D.J.; Grossman, J.G.; Tame, J.R.H.; Byron, O.; Wilson, K.S.; Otto, B.R.

    2002-01-01

    We have studied the solution properties of the apo form of the haemoglobin protease or "haemoglobinase", Hbp, a principal component of an important iron acquisition system in pathogenic Escherichia coli. Experimental determination of secondary structure content from circular dichroism (CD)

  18. The Escherichia coli antiterminator protein BglG stabilizes the 5 ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Antitermination; mRNA stability; RNA binding protein ... factor, Rho, and the pBR322 copy number protein, Rop, have been .... Transcription analysis using the oligo- ..... Retarded RNA turnover in Escherichia coli a means of main-.

  19. Antibacterial activity of Tribulus terrestris methanol extract against clinical isolates of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Batoei Sara

    2016-06-01

    Full Text Available Introduction:Tribulus terrestris L. is traditionally used for treatment of urinary tract infections. Escherichia coli, as the most prominent agent of urinary tract infections, can be sensitive to T. terrestris extract.

  20. Identification of Genes Important for Growth of Asymptomatic Bacteriuria Escherichia coli in Urine

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; de Evgrafov, Mari Cristina Rodriguez; Phan, Minh Duy

    2012-01-01

    Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence...

  1. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  2. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran

    Science.gov (United States)

    Jafari, A; Aslani, MM; Bouzari, S

    2012-01-01

    Diarrheagenic Escherichia coli have developed different strategies for establishment of infection in their host. Understanding these pathogenic mechanisms has led to the development of specific diagnostic tools for identification and categorization of E. coli strains into different pathotypes. This review aims to provide an overview of the various categories of diarrheagenic Escherichia coli and the data obtained in Iran pertaining to these pathotypes. PMID:23066484

  3. Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli

    Science.gov (United States)

    2016-08-01

    RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI 1. INTRODUCTION 1.1 Background Vaccinia virus (VACV) is the active component of the...the preparation of the recombinant VACV L1R protein fragment by denaturing , refolding, and purifying material expressed into inclusion bodies in...PURIFICATION AND CHARACTERIZATION OF RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI ECBC-TR-1370

  4. Immobilizing live Escherichia coli for AFM studies of surface dynamics

    International Nuclear Information System (INIS)

    Lonergan, N.E.; Britt, L.D.; Sullivan, C.J.

    2014-01-01

    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-L-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-L-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-L-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-L-lysine surfaces in a lower ionic strength buffer supplemented with Mg 2+ and Ca 2+ was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-L-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane stabilization while

  5. High mutation rates limit evolutionary adaptation in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kathleen Sprouffske

    2018-04-01

    Full Text Available Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.

  6. Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David Nunn

    2010-09-30

    The current Verenium cellulosic ethanol process is based on the dilute-acid pretreatment of a biomass feedstock, followed by a two-stage fermentation of the pentose sugar-containing hydrolysate by a genetically modified ethanologenic Escherichia coli strain and a separate simultaneous saccharification-fermentation (SSF) of the cellulosic fraction by a genetically modified ethanologenic Klebsiella oxytoca strain and a fungal enzyme cocktail. In order to reduce unit operations and produce a fermentation beer with higher ethanol concentrations to reduce distillation costs, we have proposed to develop a simultaneous saccharification co-fermentation (SScF) process, where the fermentation of the pentose-containing hydrolysate and cellulosic fraction occurs within the same fermentation vessel. In order to accomplish this goal, improvements in the ethanologens must be made to address a number of issues that arise, including improved hydrolysate tolerance, co-fermentation of the pentose and hexose sugars and increased ethanol tolerance. Using a variety of approaches, including transcriptomics, strain adaptation, metagenomics and directed evolution, this work describes the efforts of a team of scientists from Verenium, University of Florida, Massachusetts Institute of Technology and Genomatica to improve the E. coli and K. oxytoca ethanologens to meet these requirements.

  7. Attachment of Escherichia coli and enterococci to particles in runoff.

    Science.gov (United States)

    Soupir, Michelle L; Mostaghimi, Saied; Dillaha, Theo

    2010-01-01

    Association of Escherichia coli and enterococci with particulates present in runoff from erodible soils has important implications for modeling the fate and transport of bacteria from agricultural sources and in the selection of management practices to reduce bacterial movement to surface waters. Three soils with different textures were collected from the Ap horizon (silty loam, silty clay loam, and loamy fine sand), placed in portable box plots, treated with standard cowpats, and placed under a rainfall simulator. Rainfall was applied to the plots until saturation-excess flow occurred for 30 min, and samples were collected 10, 20, and 30 min after initiation of the runoff event. The attachment of E. coli and enterococci to particles present in runoff was determined by a screen filtration and centrifugation procedure. Percentage of E. coli and enterococci attached to particulates in runoff ranged from 28 to 49%, with few statistically significant differences in attachment among the three soils. Similar partitioning release patterns were observed between E. coli and enterococci from the silty loam (r = 0.57) and silty clay loam soils (r = 0.60). At least 60% of all attached E. coli and enterococci were associated particles within an 8- to 62-microm particle size category. The results indicate that the majority of fecal bacteria attach to and are transported with manure colloids in sediment-laden flow regardless of the soil texture.

  8. Enzyme organization in the proline biosynthetic pathway of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Gamper, H; Moses, V

    1974-01-01

    The conversion of glutamic acid to proline by an Escherichia coli extract was studied. The activity was dependent upon the presence of ATP and NADPH and was largely unaffected by the presence of NH/sub 3/ or imidazole. The first two pathway enzymes appear to exist as a complex which stabilizes a labile intermediate postulated as ..gamma..-glutamyl phosphate. Attempted synthesis of this compound was unsuccessful due to its spontaneous cyclization to 2-pyrrolidone 5-carboxylate. Dissociation of the enzyme complex upon dilution of the extract is presumed responsible for an experimentally observed dilution effect. E. coli pro/sub A//sup -/ and pro/sub B//sup -/ auxotroph extracts failed to complement one another in the biosynthesis of proline. This is attributed to the lack of a dynamic equilibrium between the complex and its constituent enzymes. In vivo studies with E. coli showed no evidence for metabolic channeling in the final reaction of proline synthesis, the reduction of ..delta../sup 1/-pyrroline 5-carboxylate.

  9. Incidence of Escherichia coli O157:H7 in Thailand

    International Nuclear Information System (INIS)

    Sukhumungoon, P.

    2015-01-01

    Entero hemorrhagic Escherichia coli (EHEC) especially serotype O157:H7 is one of the important food-borne pathogens because it is able to produce crucial toxins Shiga. However, the outbreak of this organism in Thailand has not been reported. Antibody to O157 antigen was detected in some Thai populations and Shiga toxin-producing E. coli were detected in low numbers of clinical specimens. Interestingly, some E. coli that showed positive to O157 fimbriae probe and lack of virulence gene were isolated from certain patients and one isolate of E. coli O157:H7 which possessed stx1, stx2v was detected in a normal child. In addition, the incidence of E. coli O157:H7 strains were monitored by the samples from cattle and retail beef in Thailand although their inability to produce toxins or produce in a low concentration was demonstrated. This review discusses the incidences of E. coli O157 in clinical and environmental samples of Thailand including the transmission possibility of this bacterium across the Thai border through food trade. (author)

  10. On the control of ribosomal protein biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Pichon, J.; Marvaldi, J.; Coeroli, C.; Cozzone, A.; Marchis-Mouren, G.

    1977-01-01

    The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel + and rel - cells, under valyl-tRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer of the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel + strain appear more labelled than those from the rel - strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene

  11. Response of Escherichia coli to Prolonged Berberine Exposure.

    Science.gov (United States)

    Budeyri Gokgoz, Nilay; Avci, Fatma Gizem; Yoneten, Kubra Karaosmanoglu; Alaybeyoglu, Begum; Ozkirimli, Elif; Sayar, Nihat Alpagu; Kazan, Dilek; Sariyar Akbulut, Berna

    2017-07-01

    Berberine is a plant-derived alkaloid possessing antimicrobial activity; unfortunately, its efflux through multidrug resistance pumps reduces its efficacy. Cellular life span of Escherichia coli is generally shorter with prolonged berberine exposure; nevertheless, about 30% of the cells still remain robust following this treatment. To elucidate its mechanism of action and to identify proteins that could be involved in development of antimicrobial resistance, protein profiles of E. coli cells treated with berberine for 4.5 and 8 hours were compared with control cells. A total of 42 proteins were differentially expressed in cells treated with berberine for 8 hours when compared to control cells. In both 4.5 and 8 hours of berberine-treated cells, carbohydrate and peptide uptake regimens remained unchanged, although amino acid maintenance regimen switched from transport to synthesis. Defect in cell division persisted and this condition was confirmed by images obtained from scanning electron microscopy. Universal stress proteins were not involved in stress response. The significant increase in the abundance of elongation factors could suggest the involvement of these proteins in protection by exhibiting chaperone activities. Furthermore, the involvement of the outer membrane protein OmpW could receive special attention as a protein involved in response to antimicrobial agents, since the expression of only this porin protein was upregulated after 8 hours of exposure.

  12. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. CHARACTERIZATION AND ANTIBIOGRAM OF ENTEROPATHOGENIC ESCHERICHIA COLI ISOLATED FROM POULTRY

    Directory of Open Access Journals (Sweden)

    M. Sarkar

    2013-12-01

    Full Text Available One hundred sixty two samples from different poultry farms of West Bengal, India were screened for the presence of pathogenic Escherichia coli and 109 (67.3% were found positive. Out of forty six faecal samples from ailing birds suffering from acute colibacillosis, thirty one i.e. 67.2% were positive whereas postmortem sample of intestines (62 and liver tissues (54 revealed approx 72.6% and 61.1% positivity for E. coli. Biochemical characteristic of the isolates were positive to indole, MR, nitrate and non-reactive to VP, citrate & urease test. In serotyping of the E. coli isolates mostly revealed O2, O8, O9, O19, O37, O47, O55, O69, O86, O101, O103, O109, O133, O151 and O173. The serotypes viz. O2, O8, O9, O55, O101 and O133 showed acute pathogenicity in swiss mice followed by O19, O37, O47, O69, O86, O103, O109, O151 and O173 as moderately pathogenic serotypes. Among the antimicrobial drugs tested, the sensitive drugs were cefixime (93.6%, enrofloxacin (91.8%, nitrofurantoin (88.1% and azithromycin (85.3%. The resistant drugs were tetracycline (100%, nalidixic acid (97.2%, metronidazole (92.6%, penicillin G (88.9%, gatifloxacin (77.9% and bacitracin (76.2% .

  14. Mutagenic DNA repair in Escherichia coli. Pt. 2

    International Nuclear Information System (INIS)

    Doubleday, O.P.; Bridges, B.A.; Green, M.H.L.

    1975-01-01

    The photoreversibility of UV-induced mutations to Trp + in strain Escherichia coli WP2 uvr A trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair. The results are discussed in the light of current models of UV mutagenesis. (orig.) [de

  15. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    Science.gov (United States)

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Endonuclease IV of Escherichia coli is induced by paraquat

    International Nuclear Information System (INIS)

    Chan, E.; Weiss, B.

    1987-01-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H 2 O 2 produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, γ rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O 2 . The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H 2 O 2 -inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals

  17. Endonuclease IV of Escherichia coli is induced by paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  18. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  19. Characterization of the YdeO regulon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yuki Yamanaka

    Full Text Available Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.

  20. Escherichia coli PII protein: purification, crystallization and oligomeric structure.

    Science.gov (United States)

    Vasudevan, S G; Gedye, C; Dixon, N E; Cheah, E; Carr, P D; Suffolk, P M; Jeffrey, P D; Ollis, D L

    1994-01-17

    The Escherichia coli signal transduction protein PII, product of the glnB gene, was overproduced and purified. The predicted molecular weight of the protein based on the correct nucleotide sequence is 12,427 and is very close to the value 12,435 obtained by matrix-assisted laser desorption mass spectrometry. Hexagonal crystals of the unuridylylated form of PII with dimensions 0.2 x 0.2 x 0.3 mm were grown and analysed by X-ray diffraction. The crystals belong to space group P6(3) with a = b = 61.6 A, c = 56.3 A and Vm of 2.5 for one subunit in the asymmetric unit. A low-resolution electron density map showed electron density concentrated around a three-fold axis, suggesting the molecule to be a trimer. A sedimentation equilibrium experiment of the meniscus depletion type was used to estimate a molecular weight of 35,000 +/- 1,000 for PII in solution. This result is consistent with the native protein being a homotrimer.

  1. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2009-04-01

    Full Text Available One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans. Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  2. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Science.gov (United States)

    Hu, Pingzhao; Janga, Sarath Chandra; Babu, Mohan; Díaz-Mejía, J Javier; Butland, Gareth; Yang, Wenhong; Pogoutse, Oxana; Guo, Xinghua; Phanse, Sadhna; Wong, Peter; Chandran, Shamanta; Christopoulos, Constantine; Nazarians-Armavil, Anaies; Nasseri, Negin Karimi; Musso, Gabriel; Ali, Mehrab; Nazemof, Nazila; Eroukova, Veronika; Golshani, Ashkan; Paccanaro, Alberto; Greenblatt, Jack F; Moreno-Hagelsieb, Gabriel; Emili, Andrew

    2009-04-28

    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  3. Escherichia coli ST131, an Intriguing Clonal Group

    Science.gov (United States)

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  4. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    Science.gov (United States)

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  5. Adherent-invasive Escherichia coli in inflammatory bowel disease.

    Science.gov (United States)

    Palmela, Carolina; Chevarin, Caroline; Xu, Zhilu; Torres, Joana; Sevrin, Gwladys; Hirten, Robert; Barnich, Nicolas; Ng, Siew C; Colombel, Jean-Frederic

    2018-03-01

    Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli , and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Teuta Pilizota

    Full Text Available All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15-20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.

  7. Penicillin-binding site on the Escherichia coli cell envelope

    International Nuclear Information System (INIS)

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-01-01

    The binding of 35 S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin

  8. Expanded flux variability analysis on metabolic network of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong; XIE ZhengWei; OUYANG Qi

    2009-01-01

    Flux balance analysis,based on the mass conservation law in a cellular organism,has been extensively employed to study the interplay between structures and functions of cellular metabolic networks.Consequently,the phenotypes of the metabolism can be well elucidated.In this paper,we introduce the Expanded Flux Variability Analysis (EFVA) to characterize the intrinsic nature of metabolic reactions,such as flexibility,modularity and essentiality,by exploring the trend of the range,the maximum and the minimum flux of reactions.We took the metabolic network of Escherichia coli as an example and analyzed the variability of reaction fluxes under different growth rate constraints.The average variability of all reactions decreases dramatically when the growth rate increases.Consider the noise effect on the metabolic system,we thus argue that the microorganism may practically grow under a suboptimal state.Besides,under the EFVA framework,the reactions are easily to be grouped into catabolic and anabolic groups.And the anabolic groups can be further assigned to specific biomass constitute.We also discovered the growth rate dependent essentiality of reactions.

  9. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  10. Ensemble modeling for aromatic production in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Matthew L Rizk

    2009-09-01

    Full Text Available Ensemble Modeling (EM is a recently developed method for metabolic modeling, particularly for utilizing the effect of enzyme tuning data on the production of a specific compound to refine the model. This approach is used here to investigate the production of aromatic products in Escherichia coli. Instead of using dynamic metabolite data to fit a model, the EM approach uses phenotypic data (effects of enzyme overexpression or knockouts on the steady state production rate to screen possible models. These data are routinely generated during strain design. An ensemble of models is constructed that all reach the same steady state and are based on the same mechanistic framework at the elementary reaction level. The behavior of the models spans the kinetics allowable by thermodynamics. Then by using existing data from the literature for the overexpression of genes coding for transketolase (Tkt, transaldolase (Tal, and phosphoenolpyruvate synthase (Pps to screen the ensemble, we arrive at a set of models that properly describes the known enzyme overexpression phenotypes. This subset of models becomes more predictive as additional data are used to refine the models. The final ensemble of models demonstrates the characteristic of the cell that Tkt is the first rate controlling step, and correctly predicts that only after Tkt is overexpressed does an increase in Pps increase the production rate of aromatics. This work demonstrates that EM is able to capture the result of enzyme overexpression on aromatic producing bacteria by successfully utilizing routinely generated enzyme tuning data to guide model learning.

  11. Escherichia coli Shiga Toxin Mechanisms of Action in Renal Disease

    Directory of Open Access Journals (Sweden)

    Tom G. Obrig

    2010-12-01

    Full Text Available Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS. D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.

  12. Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein.

    Science.gov (United States)

    Kacar, Betül; Ge, Xueliang; Sanyal, Suparna; Gaucher, Eric A

    2017-03-01

    The ability to design synthetic genes and engineer biological systems at the genome scale opens new means by which to characterize phenotypic states and the responses of biological systems to perturbations. One emerging method involves inserting artificial genes into bacterial genomes and examining how the genome and its new genes adapt to each other. Here we report the development and implementation of a modified approach to this method, in which phylogenetically inferred genes are inserted into a microbial genome, and laboratory evolution is then used to examine the adaptive potential of the resulting hybrid genome. Specifically, we engineered an approximately 700-million-year-old inferred ancestral variant of tufB, an essential gene encoding elongation factor Tu, and inserted it in a modern Escherichia coli genome in place of the native tufB gene. While the ancient homolog was not lethal to the cell, it did cause a twofold decrease in organismal fitness, mainly due to reduced protein dosage. We subsequently evolved replicate hybrid bacterial populations for 2000 generations in the laboratory and examined the adaptive response via fitness assays, whole genome sequencing, proteomics, and biochemical assays. Hybrid lineages exhibit a general adaptive strategy in which the fitness cost of the ancient gene was ameliorated in part by upregulation of protein production. Our results suggest that an ancient-modern recombinant method may pave the way for the synthesis of organisms that exhibit ancient phenotypes, and that laboratory evolution of these organisms may prove useful in elucidating insights into historical adaptive processes.

  13. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  14. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    Science.gov (United States)

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  15. Expression of fully functional tetrameric human hemoglobin in Escherichia coli

    International Nuclear Information System (INIS)

    Hoffman, S.J.; Looker, D.L.; Roehrich, J.M.; Cozart, P.E.; Durfee, S.L.; Tedesco, J.L.; Stetler, G.L.

    1990-01-01

    Synthesis genes encoding the human α- and β-globin polypeptides have been expressed from a single operon in Escherichia coli. The α- and β-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to >5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of α- and β-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C 4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A 0 and comigrates with hemoglobin A 0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A 0 . The authors have also expressed the α- and β-globin genes separately and found that the expression of the α-globin gene alone results in a marked decrease in the accumulation of α-globin in the cell. Separate expression of the β-globin gene results in high levels of insoluble β-globin. These observations suggest that the presence of α- and β-globin in the same cell stabilizes α-globin and aids the correct folding of β-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein

  16. Distribution of Diverse Escherichia coli between Cattle and Pasture.

    Science.gov (United States)

    NandaKafle, Gitanjali; Seale, Tarren; Flint, Toby; Nepal, Madhav; Venter, Stephanus N; Brözel, Volker S

    2017-09-27

    Escherichia coli is widely considered to not survive for extended periods outside the intestines of warm-blooded animals; however, recent studies demonstrated that E. coli strains maintain populations in soil and water without any known fecal contamination. The objective of this study was to investigate whether the niche partitioning of E. coli occurs between cattle and their pasture. We attempted to clarify whether E. coli from bovine feces differs phenotypically and genotypically from isolates maintaining a population in pasture soil over winter. Soil, bovine fecal, and run-off samples were collected before and after the introduction of cattle to the pasture. Isolates (363) were genotyped by uidA and mutS sequences and phylogrouping, and evaluated for curli formation (Rough, Dry, And Red, or RDAR). Three types of clusters emerged, viz. bovine-associated, clusters devoid of cattle isolates and representing isolates endemic to the pasture environment, and clusters with both. All isolates clustered with strains of E. coli sensu stricto, distinct from the cryptic species Clades I, III, IV, and V. Pasture soil endemic and bovine fecal populations had very different phylogroup distributions, indicating niche partitioning. The soil endemic population was largely comprised of phylogroup B1 and had a higher average RDAR score than other isolates. These results indicate the existence of environmental E. coli strains that are phylogenetically distinct from bovine fecal isolates, and that have the ability to maintain populations in the soil environment.

  17. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  18. Incidence of Escherichia coli  - Glucuronidase Positive on Goat Milk

    Directory of Open Access Journals (Sweden)

    Zorica Voşgan

    2016-11-01

    Full Text Available Papers on beta- glucuronidase sensitivity and specificity for identifying Escherichia coli in sources of environment, food, water, etc. have been published since 1976. In this study we conducted a review of the incidence of E. coli β- glucuronidase -positive in goat milk, obtained by hand milking throughout the lactation: spring, summer, autumn. The presence of E. coli in milk is considered both as a health indicator and a pathogenic factor capable of causing food poisoning. The determination of the E. coli β-glucuronidase-positive was carried using TBX medium by cultivating colonies typical blue at 440C. The absence of E. coli in milk yielded during the spring, when the animal milking is done three times a day, was found in the performed analyses; the same was observed during fall, when the milk production is lower and the milking is done once a day. The load of E. coli β-glucuronidase-positive was averaging 66.67 CFU/ml of goat milk, during the middle lactation period (July-August, in conditions of higher temperature. During this period, milking is done in the mountain zone, where the transhumance of animals takes place in summer. The presence of the species E. coli was also confirmed by microscopic examination. Attention should be paid to hygiene and milk should be immediately cooled, during hot weather, as E. coli can be a source of food poisoning.

  19. Interaction of Escherichia coli with growing salad spinach plants.

    Science.gov (United States)

    Warriner, Keith; Ibrahim, Faozia; Dickinson, Matthew; Wright, Charles; Waites, William M

    2003-10-01

    In this study, the interaction of a bioluminescence-labeled Escherichia coli strain with growing spinach plants was assessed. Through bioluminescence profiles, the direct visualization of E. coli growing around the roots of developing seedlings was accomplished. Subsequent in situ glucuronidase (GUS) staining of seedlings confirmed that E. coli had become internalized within root tissue and, to a limited extent, within hypocotyls. When inoculated seeds were sown in soil microcosms and cultivated for 42 days, E. coli was recovered from the external surfaces of spinach roots and leaves as well as from surface-sterilized roots. When 20-day-old spinach seedlings (from uninoculated seeds) were transferred to soil inoculated with E. coli, the bacterium became established on the plant surface, but internalization into the inner root tissue was restricted. However, for seedlings transferred to a hydroponic system containing 10(2) or 10(3) CFU of E. coli per ml of the circulating nutrient solution, the bacterium was recovered from surface-sterilized roots, indicating that it had been internalized. Differences between E. coli interactions in the soil and those in the hydroponic system may be attributed to greater accessibility of the roots in the latter model. Alternatively, the presence of a competitive microflora in soil may have restricted root colonization by E. coli. The implications of this study's findings with regard to the microbiological safety of minimally processed vegetables are discussed.

  20. Characterization of diarrhoeagenic Escherichia coli isolates in Jordanian children.

    Science.gov (United States)

    Shehabi, Asem A; Bulos, Najawa-Kuri; Hajjaj, Kamal G

    2003-01-01

    In a prospective study carried out among Jordanian children in Amman, a total of 73/250 (29.2%) stool specimens were positive for 1 or more diarrhoeagenic Escherichia coli strains using a multiplex polymerase chain reaction method. This study indicated that diarrhoeagenic E. coli isolates were found frequently more in stools of children with diarrhoea (34%) than without diarrhoea (23.1%), but without any significant difference (p > 0.05). The predominant diarrhoeagenic E. coli strains associated with diarrhoea were enteropathogenic E. coli (11.3%), followed by enterotoxigenic E. coli (9.8%) and enteroaggrative E. coli (9%), whereas in the control group these were 4.3%, 11.1% and 6%, respectively. Enteroinvasive E. coli strains (2.9%) were found only in stools of children with diarrhoea. This study revealed the absence of enterohaemorrhagic E. coli in both diarrhoeal and control stools, and found that diarrhoeagenic E. coli isolates were highly resistance to tetracycline (55%), co-trimoxazole (60%) and ampicillin (89%), which are commonly used antibiotics in Jordan.

  1. Chromosome Replication in Escherichia coli: Life on the Scales

    Science.gov (United States)

    Norris, Vic; Amar, Patrick

    2012-01-01

    At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept. PMID:25371267

  2. Recombination Phenotypes of Escherichia coli greA Mutants

    Directory of Open Access Journals (Sweden)

    Poteete Anthony R

    2011-03-01

    Full Text Available Abstract Background The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. Results Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. Conclusion These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.

  3. Noncomplementing diploidy resulting from spontaneous zygogenesis in Escherichia coli.

    Science.gov (United States)

    Gratia, Jean-Pierre

    2005-09-01

    With the aim of understanding sexual reproduction and phenotypic expression, a novel type of mating recently discovered in Escherichia coli was investigated. Termed spontaneous zygogenesis (or Z-mating), it differs from F-mediated conjugation. Its products proved phenotypically unstable, losing part of the phenotype for which they were selected. Inactivation of a parental chromosome in the zygote is strongly suggested by fluctuation tests, respreading experiments, analysis of reisolates, and segregation of non-viable cells detected by epifluorescence staining. Some phenotypically haploid subclones were interpreted as stable noncomplementing diploids carrying an inactivated co-replicating chromosome. Pedigree analysis indicated that the genetic composition of such cells consisted of parental genomes or one parental plus a recombinant genome. Inactivation of a chromosome carrying a prophage resulted in the disappearance of both the ability to produce phage particles and the immunity to superinfection. Phage production signalled transient reactivation of such a chromosome and constituted a sensitive test for stable noncomplementing diploidy. Chromosome inactivation thus appears to be a spontaneous event in bacteria.

  4. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  5. Adsorption kinetics of Escherichia Coli on different Carbon Nanoforms

    Directory of Open Access Journals (Sweden)

    Md. Shamimul Haque Choudhury

    2012-03-01

    Full Text Available Adsorption of Escherichia coli (E. Coli bacterial cells on different carbon nanoforms (i.e. Single walled carbon nanotube (SWCNT, Multiwalled Carbon nanotube (MWCNT, graphite and mixedFullerene aggregates is studied. The diffusivities of pure cultures of E. Coli cells in SWCNT aggregates, MWCN aggregates, Graphite aggregates and Mixed Fullerenes was observed to be 1.5×10-9 cm2/s, 0.55×10-9 cm2/s, 0.8×10-9 cm2/s, and 1.016×10-9 cm2/s, respectively. In addition to batch adsorption studies, optical microscopy studies were also performed. The results suggest that diffusion kinetics ofbacterial cells depends on the concentration and average diameter of the nano-carbon aggregates and also on the type of material used. Diffusivity of E. Coli. in SWCNT was observed to be highest and isabout three times greater than for MWCNT, about two times greater than for graphite and about 1.5 times greater than for Fullerene aggregates. SWCNT seems to be best candidates (amongst the othermaterials studied for adsorption of microorganisms – paying their way for application towards microorganisms filters and for biosensors (where it is desired to simultaneously detect and capture bio-threat agents.

  6. Chemotactic response and adaptation dynamics in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Diana Clausznitzer

    2010-05-01

    Full Text Available Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.

  7. Serum Antibodies Protect against Intraperitoneal Challenge with Enterotoxigenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xinghong Yang

    2011-01-01

    Full Text Available To assess whether anticolonization factor antigen I (CFA/I fimbriae antibodies (Abs from enterotoxigenic Escherichia coli (ETEC can protect against various routes of challenge, BALB/c mice were immunized with a live attenuated Salmonella vaccine vector expressing CFA/I fimbriae. Vaccinated mice elicited elevated systemic IgG and mucosal IgA Abs, unlike mice immunized with the empty Salmonella vector. Mice were challenged with wild-type ETEC by the oral, intranasal (i.n., and intraperitoneal (i.p. routes. Naïve mice did not succumb to oral challenge, but did to i.n. challenge, as did immunized mice; however, vaccinated mice were protected against i.p. ETEC challenge. Two intramuscular (i.m. immunizations with CFA/I fimbriae without adjuvant conferred 100% protection against i.p. ETEC challenge, while a single 30 μg dose conferred 88% protection. Bactericidal assays showed that ETEC is highly sensitive to anti-CFA/I sera. These results suggest that parenteral immunization with purified CFA/I fimbriae can induce protective Abs and may represent an alternative method to elicit protective Abs for passive immunity to ETEC.

  8. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  9. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Antimutagenic effect of isocyanates and related compounds in escherichia coli

    International Nuclear Information System (INIS)

    Kawazoe, Yutaka; Kato, Masanari

    1982-01-01

    Isocyanates and isothiocyanates have been suggested to inactivate enzymes involved in the metabolic activation of chemical carcinogens and the repair of DNA damage. These compounds decrease the mutability of a tester strain of Escherichia coli B under UV irradiation. This paper deals with the antimutagenicity of acylating agents, including isocyanates and isothiocyanates, and some anti-oxidants which are suspected to be anticarcinogenic. The results can be summarized as follows. (1) The antimutagenic effect observed in the present study operates on UV-induced mutagenesis but not on X-ray-induced mutagenesis. (2) This effect operates only on the wild-type strain, H/r30R, but not on Hs30R deficient in the excision repair system. (3) This effect may function through giving the irradiated cells a greater chance to carry out excision repair by prolonging the lag-period before entry into the S-phase. (4) The carbamoylating ability of isocyanates and isothiocyanates may be responsible for the antimutagenicity, but other type of reactivities may also be involved. These antimutagens also participate in inactivating enzymes relevant to the metabolic activation of mutagens, resulting in a decrease in the frequency of chemically induced mutagenesis. (author)

  11. Molecular prophage typing of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kwon, Hyuk-Joon; Seong, Won-Jin; Kim, Jae-Hong

    2013-03-23

    Escherichia coli prophages confer virulence and resistance to physico-chemical, nutritional, and antibiotic stresses on their hosts, and they enhance the evolution of E. coli. Thus, studies on profiles of E. coli prophages are valuable to understand the population structure and evolution of E. coli pathogenicity. Large terminase genes participate in phage genome packaging and are one of the cornerstones for the identification of prophages. Thus, we designed primers to detect 16 types of large terminase genes and analyzed the genomes of 48 E. coli and Shigella reference strains for the prophage markers. We also investigated the distribution of the 16 prophage markers among 92 avian pathogenic E. coli (APEC) strains. APEC strains were classified into 61 prophage types (PPTs). Each strain was different from the reference strains as measured by the PPTs and from the frequency of each prophage marker. Investigation of the distribution of prophage-related serum resistance (bor), toxin (stx1 and cdtI), and T3SS effector (lom, espK, sopE, nleB, and ospG) genes revealed the presence of bor (44.1%), lom (95.5%) and cdtI (9.1%) in APEC strains with related prophages. Therefore, the molecular prophage typing method may be useful to understand population structure and evolution of E. coli pathogenicity, and further studies on the mobility of the prophages and the roles of virulence genes in APEC pathogenicity may be valuable. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Outbreaks of virulent diarrheagenic Escherichia coli - are we in control?

    Directory of Open Access Journals (Sweden)

    Werber Dirk

    2012-02-01

    Full Text Available Abstract Shiga toxin-producing Escherichia coli (STEC are the most virulent diarrheagenic E. coli known to date. They can be spread with alarming ease via food as exemplified by a large sprout-borne outbreak of STEC O104:H4 in 2011 that was centered in northern Germany and affected several countries. Effective control of such outbreaks is an important public health task and necessitates early outbreak detection, fast identification of the outbreak vehicle and immediate removal of the suspected food from the market, flanked by consumer advice and measures to prevent secondary spread. In our view, opportunities to improve control of STEC outbreaks lie in early clinical suspicion for STEC infection, timely diagnosis of all STEC at the serotype-level and integrating molecular subtyping information into surveillance systems. Furthermore, conducting analytical studies that supplement patients' imperfect food history recall and performing, as an investigative element, product tracebacks, are pivotal but underutilized tools for successful epidemiologic identification of the suspected vehicle in foodborne outbreaks. As a corollary, these tools are amenable to tailor microbiological testing of suspected food. Please see related article: http://www.biomedcentral.com/1741-7015/10/12

  13. PENGARUH PERASAN DAUN BELIMBING WULUH (Averrhoa bilimbi TERHADAP PERTUMBUHAN BAKTERI Escherichia coli PATOGEN

    Directory of Open Access Journals (Sweden)

    Fitrotin Azizah

    2017-12-01

    abstract  (Averrhoa bilimbi is one of the plants that can be used as an antibacterial, good flowers, stems, leaves and stems have benefits and efficacy. Chemical constituents of the leaves starfruit are tannins, flavonoids, saponins. The active ingredient in the leaves starfruit is tannin. Escherichia coli is a bacterium that causes diarrhea. From the above discussion, the authors raised the theme of Influence starfruit juice of the leaves on the growth of pathogenic E. coli bacteria. Formulation of the problem researchers is whether there is influence starfruit juice of the leaves on the growth of Escherichia coli pathogens. This study aims to determine the concentration that could inhibit and kill Esherichia coli Escherichia coli. This research is experimental. The sample used is leaf green starfruit not so young in a fresh state taken in the area around the boarding author Sutorejo 11B stay. In this study, the sample size for each treatment as much as 3 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% and C (control. Independent variables are starfruit juice of the leaves, while the dependent variable growth of Escherichia coli. When the study carried out in January and July 2012. Data on the effect of starfruit juice of the leaves on the growth of Escherichia coli tested by laboratory examination and data collection techniques using Chi-Square 0:05. Based on the results it appears that at a concentration of 100% and 90% were able to kill the bacteria Escherichia coli, whereas the inhibitory power ranging from a concentration of 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%. From Chi-Square test was obtained λ2 count Escherichia coli pathogenic bacteria. Keyword : Leaves starfruit, E. Coli

  14. Longitudinal characterization of Escherichia coli in healthy captive nonhuman primates

    Directory of Open Access Journals (Sweden)

    Jonathan B Clayton

    2014-11-01

    Full Text Available The gastrointestinal (GI tracts of nonhuman primates are well known to harbor Escherichia coli, a known commensal of humans and animals. While E. coli is a normal inhabitant of the mammalian gut, it also exists in a number of pathogenic forms or pathotypes, including those with predisposition for the GI tract, as well the urogenital tract. Diarrhea in captive nonhuman primates (NHPs has long been a problem in both zoo settings and research colonies, including the Como Zoo. It is an animal welfare concern, as well as a public health concern. E. coli has not been extensively studied in correlation with diarrhea in captive primates; therefore, a study was performed during the summer of 2009 in collaboration with a zoo in Saint Paul, MN, which was experiencing an increased incidence and severity of diarrhea among their NHP collection. Fresh fecal samples were collected weekly from each member of the primate collection, between June and August of 2009, and E. coli were isolated. A total of 33 individuals were included in the study, representing eight species. E. coli isolates were examined for their genetic relatedness, phylogenetic relationships, plasmid replicon types, virulence gene profiles, and antimicrobial susceptibility profiles. A number of isolates were identified containing virulence genes commonly found in several different E. coli pathotypes, and there was evidence of clonal transmission of isolates between animals and over time. Overall, the manifestation of chronic diarrhea in the Como Zoo primate collection is a complex problem whose solution will require regular screening for microbial agents and consideration of environmental causes. This study provides some insight towards the sharing of enteric bacteria between such animals.

  15. Deactivation of Escherichia coli by the plasma needle

    International Nuclear Information System (INIS)

    Sladek, R E J; Stoffels, E

    2005-01-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10 4 -10 5 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively

  16. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    Science.gov (United States)

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Starved Escherichia coli preserve reducing power under nitric oxide stress

    Energy Technology Data Exchange (ETDEWEB)

    Gowers, Glen-Oliver F. [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Robinson, Jonathan L. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States); Brynildsen, Mark P., E-mail: mbrynild@princeton.edu [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States)

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availability in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.

  18. Copper Homeostasis in Escherichia coli and Other Enterobacteriaceae.

    Science.gov (United States)

    Rensing, Christopher; Franke, Sylvia

    2007-04-01

    An interesting model for studying environmental influences shaping microbial evolution is provided by a multitude of copper resistance and copper homeostasis determinants in enteric bacteria. This review describes these determinants and tries to relate their presence to the habitat of the respective organism, as a current hypothesis predicts that the environment should determine an organism's genetic makeup. In Escherichia coli there are four regulons that are induced in the presence of copper. Two, the CueR and the CusR regulons, are described in detail. A central component regulating intracellular copper levels, present in all free-living enteric bacteria whose genomes have so far been sequenced, is a Cu(I)translocating P-type ATPase. The P-type ATPase superfamily is a ubiquitous group of proteins involved in the transport of charged substrates across biological membranes. Whereas some components involved in copper homeostasis can be found in both anaerobes and aerobes, multi-copper oxidases (MCOs) implicated in copper tolerance in E. coli, such as CueO and the plasmid-based PcoA, can be found only in aerobic organisms. Several features indicate that CueO, PcoA, and other related MCOs are specifically adapted to combat copper-mediated oxidative damage. In addition to these well-characterized resistance operons, there are numerous other genes that appear to be involved in copper binding and trafficking that have not been studied in great detail. SilE and its homologue PcoE, for example, are thought to effect the periplasmic binding and sequestration of silver and copper, respectively.

  19. Killing of Escherichia coli using the gas diffusion electrode system.

    Science.gov (United States)

    Xu, W Y; Li, P; Dong, B

    2010-01-01

    To be best of our knowledge, this study is one of the first investigations to be performed into the potential benefits of gas diffusion electrode (GDE) system in controlling inactivation of E. coli. This study mainly focused on the dual electrodes disinfection with gas diffusion cathode, using Escherichia coli as the indicator microorganisms. The effects of Pt load W(Pt) and the pore-forming agent content W(NH(4)HCO(3)) in GDE, operating conditions such as pH value, oxygen flow rate Q(O(2)), salt content and current density on the disinfection were investigated, respectively. The experimental results showed that the disinfection improved with increasing Pt load W(Pt), but its efficiency at Pt load of 3 per thousand was equivalent to that at Pt load of 4 per thousand. Addition of the pore-forming agent in the appropriate amount improved the disinfection while drop of pH value resulted in the rapid rise of the germicidal efficacy and the disinfection shortened with increasing oxygen flow rate Q(O(2)). The system is more suitable for highly salt water. The germicidal efficacy increased with current density. However, the accelerating rate was different: it first increased with the current density, then decreased, and reached a maximum at current density of 6.7-8.3 mA/cm(2). The germicidal efficacy in the cathode compartment was about the same as in the anode compartment indicating the contribution of direct oxidation and indirect treatment of E. coli by the hydroxyl radical was similar to the oxidative indirect effect of the generated H(2)O(2). This technology is expensive in operating cost, further research is required to advance the understanding and reduce the operating cost of this technology.

  20. The upper surface of an Escherichia coli swarm is stationary.

    Science.gov (United States)

    Zhang, Rongjing; Turner, Linda; Berg, Howard C

    2010-01-05

    When grown in a rich medium on agar, many bacteria elongate, produce more flagella, and swim in a thin film of fluid over the agar surface in swirling packs. Cells that spread in this way are said to swarm. The agar is a solid gel, with pores smaller than the bacteria, so the swarm/agar interface is fixed. Here we show, in experiments with Escherichia coli, that the swarm/air interface also is fixed. We deposited MgO smoke particles on the top surface of an E. coli swarm near its advancing edge, where cells move in a single layer, and then followed the motion of the particles by dark-field microscopy and the motion of the underlying cells by phase-contrast microscopy. Remarkably, the smoke particles remained fixed (diffusing only a few micrometers) while the swarming cells streamed past underneath. The diffusion coefficients of the smoke particles were smaller over the virgin agar ahead of the swarm than over the swarm itself. Changes between these two modes of behavior were evident within 10-20 microm of the swarm edge, indicating an increase in depth of the fluid in advance of the swarm. The only plausible way that the swarm/air interface can be fixed is that it is covered by a surfactant monolayer pinned at its edges. When a swarm is exposed to air, such a monolayer can markedly reduce water loss. When cells invade tissue, the ability to move rapidly between closely opposed fixed surfaces is a useful trait.

  1. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  2. Toxicity mechanism of carbon nanotubes on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Young, Yu-Fu [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lee, Hui-Ju [Department of Life Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Shen, Yi-Shan; Tseng, Shih-Hao; Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tai, Nyan-Hwa, E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chang, Hwan-You, E-mail: hychang@mx.nthu.edu.tw [Department of Life Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer F-MWCNTs possess higher antibiotic performance than that of the F-SWCNTs. Black-Right-Pointing-Pointer E. coli cells were pierced when incubated with F-MWCNTs and trapped when incubated with F-SWCNTs. Black-Right-Pointing-Pointer The rigidity and moment of CNTs play important role on the antibiotic effect. - Abstract: The influences of carbon nanomaterials on bacteria were investigated using three types of dispersed and functionalized carbon nanomaterials (F-CNMs), viz. functionalized carbon nanopowder (F-CNP), functionalized single-walled carbon nanotubes (F-SWCNTs), and functionalized multi-walled carbon nanotubes (F-MWCNTs). F-CNMs with different aspect ratios were used to study the influence of material configuration on the viability of Escherichia coli (E. coli). Although these materials were functionalized to improve their dispersibility, the original morphologies and chemical properties of the materials were maintained. Traditional bacteria quantitative plating analysis was conducted, and the results of which revealed that the F-CNP and the F-SWCNTs showed a less significant effect on the viability of E. coli, while the F-MWCNTs obviously inhibited cell viability. A Fourier transform infrared spectroscopy and a scanning electron microscopy were used to verify the functionalization of the F-CNMs and to examine the interaction of F-CNMs with E. coli, respectively; in addition, we adopted chemiluminescence assays to measure the concentration of adenosine triphosphate (ATP) released from the damaged cells. The results showed that the ATP of the F-MWCNTs sample is two-fold higher than that of the control, indicating direct piercing of E. coli by F-MWCNTs leads to bacteria death. Furthermore, F-SWCNTs were concluded to have less influence on the viability of E. coli because ultra-long F-SWCNTs used in this study performed less rigidity to pierce the cells.

  3. Toxicity mechanism of carbon nanotubes on Escherichia coli

    International Nuclear Information System (INIS)

    Young, Yu-Fu; Lee, Hui-Ju; Shen, Yi-Shan; Tseng, Shih-Hao; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2012-01-01

    Highlights: ► F-MWCNTs possess higher antibiotic performance than that of the F-SWCNTs. ► E. coli cells were pierced when incubated with F-MWCNTs and trapped when incubated with F-SWCNTs. ► The rigidity and moment of CNTs play important role on the antibiotic effect. - Abstract: The influences of carbon nanomaterials on bacteria were investigated using three types of dispersed and functionalized carbon nanomaterials (F-CNMs), viz. functionalized carbon nanopowder (F-CNP), functionalized single-walled carbon nanotubes (F-SWCNTs), and functionalized multi-walled carbon nanotubes (F-MWCNTs). F-CNMs with different aspect ratios were used to study the influence of material configuration on the viability of Escherichia coli (E. coli). Although these materials were functionalized to improve their dispersibility, the original morphologies and chemical properties of the materials were maintained. Traditional bacteria quantitative plating analysis was conducted, and the results of which revealed that the F-CNP and the F-SWCNTs showed a less significant effect on the viability of E. coli, while the F-MWCNTs obviously inhibited cell viability. A Fourier transform infrared spectroscopy and a scanning electron microscopy were used to verify the functionalization of the F-CNMs and to examine the interaction of F-CNMs with E. coli, respectively; in addition, we adopted chemiluminescence assays to measure the concentration of adenosine triphosphate (ATP) released from the damaged cells. The results showed that the ATP of the F-MWCNTs sample is two-fold higher than that of the control, indicating direct piercing of E. coli by F-MWCNTs leads to bacteria death. Furthermore, F-SWCNTs were concluded to have less influence on the viability of E. coli because ultra-long F-SWCNTs used in this study performed less rigidity to pierce the cells.

  4. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  5. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    Science.gov (United States)

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. papA gene of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kariyawasam, Subhashinie; Nolan, Lisa K

    2011-12-01

    P fimbrial adhesins may be associated with the virulence of avian pathogenic Escherichia coli (APEC). However, most APECs are unable to express P fimbriae even when they are grown under conditions that favor P fimbrial expression. This failure can be explained by the complete absence of the pap operon or the presence of an incomplete pap operon in Pap-negative APEC strains. In the present study, we analyzed the pap operon, specifically the papA gene that encodes the major fimbrial shaft, to better understand the pap gene cluster at the genetic level. First, by PCR, we examined a collection of 500 APEC strains for the presence of 11 genes comprising the pap operon. Except for papA, all the other genes of the operon were present in 38% to 41.2% of APEC, whereas the papA was present only in 10.4% of the APEC tested. Using multiplex PCR to probe for allelic variants of papA, we sought to determine if the low prevalence of papA among APEC was related to genetic heterogeneity of the gene itself. It was determined that the papA of APEC always belongs to the F11 allelic variant. Finally, we sequenced the 'papA region' from two papA-negative strains, both of which contain all the other genes of the pap operon. Interestingly, both strains had an 11,104-bp contig interruptingpapA at the 281-bp position. This contig harbored a streptomycin resistance gene and a classic Tn10 transposon containing the genes that confer tetracycline resistance. However, we noted that the papA gene of every papA-negative APEC strain was not interrupted by an 11,104-bp contig. It is likely that transposons bearing antibiotic resistance genes have inserted within pap gene cluster of some APEC strains, and such genetic events may have been selected for by antibiotic use.

  7. Synanthropic rodents as possible reservoirs of shigatoxigenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Ximena eBlanco Crivelli

    2012-11-01

    Full Text Available Shigatoxigenic Escherichia coli (STEC strains are worldwide zoonotic pathogen responsible for different cases of human disease including hemolytic uremic syndrome (HUS. Transmission of STEC to humans occurs through the consumption of food and water contaminated by faeces of carriers and by person-to-person contact.The objective of this study was twofold: (a to investigate whether synanthropic rodents are possible reservoirs of STEC in the urban area and (b whether a particular genus out of synanthropic rodent is the principal carrier of STEC.One hundred forty-five rodents were captured in Buenos Aires City. Screening for stx1/stx2 and rfbO157 was done by PCR from the confluence zone. STEC isolates were further characterized with biochemical tests by standard methods. Additional virulence factors (eae, ehxA and saa were also determined by PCR. Forty-one of the rodents were necropsied and sample of kidney and small and large intestine were taken for histopathological diagnosis. The samples sections were stained with hematoxylin-eosin, and observed by light microscopy to evaluate the systemic involvement of these species in natural infections. STEC was isolated from seven out of twenty seven suspect animals at screening. The following genotypes were found in the STEC strains: stx1/stx2/ehxA (1, stx2 (4, stx2/ehxA (1, stx2/ehxA/eae (1. Neither gross nor microscopic lesions compatible with those produced by Shiga toxin were observed in the studied organs of necropsied rodents.The bivariate analysis including the hundred forty-five rodents data showed that the isolation of STEC is associated positively to Rattus genus. This synanthropic species may play a role in the transmissibility of the agent thus being a risk to the susceptible population. Their control should be included specifically in actions to dismiss the contamination of food and water by STEC in the urban area, as additional strategies for epidemiological control.

  8. Genetic determinants of heat resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ryan eMercer

    2015-09-01

    Full Text Available Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 min; or as heat sensitive. A ~14 kb genomic island containing 16 predicted open reading frames encoding putative heat shock proteins and proteases was identified only in highly heat resistant strains. The genomic island was termed the locus of heat resistance (LHR. This putative operon is flanked by mobile elements and possesses >99% sequence identity to genomic islands contributing to heat resistance in Cronobacter sakazakii and Klebsiella pneumoniae. An additional 41 LHR sequences with >87% sequence identity were identified in 11 different species of β- and γ-proteobacteria. Cloning of the full length LHR conferred high heat resistance to the heat sensitive E. coli AW1.7ΔpHR1 and DH5α. The presence of the LHR correlates perfectly to heat resistance in several species of Enterobacteriaceae and occurs at a frequency of 2% of all E. coli genomes, including pathogenic strains. This study suggests the LHR has been laterally exchanged among the β- and γ-proteobacteria and is a reliable indicator of high heat resistance in E. coli.

  9. High mutation rates limit evolutionary adaptation in Escherichia coli

    Science.gov (United States)

    Wagner, Andreas

    2018-01-01

    Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild. PMID:29702649

  10. Brote causado por Escherichia coli en Chalco, México

    Directory of Open Access Journals (Sweden)

    Cortés-Ortiz Iliana Alejandra

    2002-01-01

    Full Text Available Objetivo. Identificar el agente causal del brote de diarrea asociado con el desbordamiento del canal de aguas negras en Chalco. Material y métodos. Estudio retrospectivo y transversal, efectuado en el Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE, de la Secretaría de Salud, con 1 550 hisopos rectales para el aislamiento e identificación bioquímica de V. cholerae y enterobacterias, obtenidos de la población del Valle de Chalco, que presentó diarrea y vómito durante el desastre natural acontecido el 31 de mayo de 2000. El análisis de los resultados se efectuó por la diferencia entre las proporciones de dos poblaciones (prueba de Ji cuadrada. Las cepas de E. coli se hibridaron por "colony blot" para los grupos ETEC, EIEC, EPEC y EHEC. Resultados. El 0.45% correspondió a Salmonella: S. agona, S. infantis, S. enteritidis, S. muenchen, S. typhimurium; 0.06% a Shigella flexneri 3a, y 76.6% a E. coli: 62.2% a ETEC (44.6 % con LT, 11.2% con ST, y 44.1% con ambas sondas, 0.84% a EIEC (sonda ial, 0.84% a EPEC (sonda bundle-forming pilus BFP, 0.08% a E. coli enterohemorrágica no-O157:H7 (sonda pCVD419, y 36.02% no hibridó. No se encontró asociación entre E. coli patógena con la edad y género. Conclusiones. Escherichia coli podría ser responsable del brote de diarrea. Es importante conocer el agente etiológico del brote para encaminar las estrategias en el estudio y control sanitario del mismo.

  11. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  12. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  13. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  14. No evidence for a bovine mastitis Escherichia coli pathotype.

    Science.gov (United States)

    Leimbach, Andreas; Poehlein, Anja; Vollmers, John; Görlich, Dennis; Daniel, Rolf; Dobrindt, Ulrich

    2017-05-08

    Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function

  15. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    International Nuclear Information System (INIS)

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  16. Response of Escherichia coli growth rate to osmotic shock.

    Science.gov (United States)

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  17. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    Science.gov (United States)

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  18. Mutations in Escherichia coli that effect sensitivity to oxygen

    International Nuclear Information System (INIS)

    Jamison, C.S.; Adler, H.I.

    1987-01-01

    Fifteen oxygen-sensitive (Oxy/sup s/) mutants of Escherichia coli were isolated after exposure to UV light. The mutants did not form macroscopic colonies when plated aerobically. They did form macroscopic colonies anaerobically. Oxygen, introduced during log phase, inhibited the growth of liquid cultures. The degree of inhibition was used to separate the mutants into three classes. Class I mutants did not grow after exposure to oxygen. Class II mutants were able to grow, but at a reduced rate and to a reduced final titer, when compared with the wild-type parent. Class III mutants formed filaments in response to oxygen. Genetic experiments indicated that the mutations map to six different chromosomal regions. The results of enzymatic assays indicated that 7 of the 10 class I mutants have low levels of catalase, peroxidase, superoxide dismutase, and respiratory enzymes when compared with the wild-type parent. Mutations in five of the seven class I mutants which have the low enzyme activities mapped within the region 8 to 13.5 min. P1 transduction data indicated that mutations in three of these five mutants, Oxy/sup s/-6, Oxy/sup s/-14, and Oxy/sup s/-17, mapped to 8.4 min. The correlation of low enzyme levels and mapping data suggest that a single gene may regulate several enzymes in response to oxygen. The remaining three class I mutants had wild-type levels of catalase, peroxidase, and superoxide dismutase, but decreased respiratory activity. The class II and III mutants had enzyme activities similar to those of the wild-type parent

  19. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  20. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.

    Science.gov (United States)

    Wu, Sheng-Yi; Rothery, Richard A; Weiner, Joel H

    2015-10-09

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase*

    Science.gov (United States)

    Wu, Sheng-Yi; Rothery, Richard A.; Weiner, Joel H.

    2015-01-01

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser719, NarG-His1163, and NarG-His1184); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His1092 and NarG-His1098). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of −88 and −36 mV, respectively). Ala variants of His1092 and His1098 also elicit large ΔEm values of −143 and −101 mV, respectively. An Arg variant of His1092 elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. PMID:26297003

  2. Deactivation of Escherichia coli by the plasma needle

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, R E J; Stoffels, E [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-06-07

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10{sup 4}-10{sup 5} colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  3. ANALISIS KANDUNGAN BORAKS DAN Escherichia coli PADA JAJANAN BAKSO SAPI YANG DIPERDAGANGKAN DI KOTA BANJARBARU

    Directory of Open Access Journals (Sweden)

    Nur Rahmi

    2016-09-01

    Full Text Available This study aims to determine how the content of borax and Escherichia coli on meatballs snacks and the factors that affect the food security of meatballs snacks by using Easy Method of Borax Test and Method of Most Probable Number (MPN for Escherichia coli bacteria contamination. This research was conducted in Banjarbaru on 5 villages, and sampling technique used is stratified sampling. The results of the study showed that from 32 samples taken from five village location, it was not identified any borax based on PERMENKES No. 033 of 2012, while for the examination of Escherichia coli, there are 14 samples of meatballs (43.75% which were eligible, and 18 samples of meatballs (56.25% which containEscherichia coli ranges from 3.6 to 62 CFU /g or not meeting the criteria of ISO 7388: 2009. The factor that might not trigger the addition of borax is that the traders have a good knowledge and attitude toward borax which regarded as a toxic substance and can be harmful to health. Factors that cause microbial contamination of Escherichia coli on meatballs snacks is the lack of food hygiene and sanitation in the food processing, cooked food storage, transport, serving, sanitation facilities, and personnel handlers compared with the good supply of foodstuffs and food ingredients storage.

  4. Elimination of Escherichia coli and Salmonella in Clam by Using Zeolite in a Station of Depuration.

    Science.gov (United States)

    Gdoura, Morsi; Sellami, Hanen; Khannous, Lamia; Ketata, Najib; Neila, Idriss Ben; Traore, Al Ibrahim; Chekir, Zouhair; Gdoura, Radhouane

    2017-09-01

      The application of natural zeolite for water and wastewater treatment has been carried out and is still a promising technique in environmental cleaning processes. Natural zeolite can be used to improve the purification process of clams (Ruditapes decussatus). Thus, our study aimed at improving the clam purification system in order to reduce Escherichia coli and eliminate Salmonella in samples artificially contaminated with this bacterium using a natural zeolite to replace the biological filter. The results showed that zeolite used in a depuration system improved the clam purification process. Moreover, natural zeolite exhibited high performance in the adsorption of bacteria and allowed to reduce the Escherichia coli abundance in 24 h, thus ensuring purified clams conformity with the ISO 16649-3 standard. These results indicate the beneficial effects of using zeolite in the adsorption of bacteria and the reduction in the abundance of Escherichia coli and set the Salmonella from marine organisms.

  5. D10 value determination for Escherichia coli O157:H7 in different cultivations

    International Nuclear Information System (INIS)

    Oliveira, Sergio Eduardo M. de; Pires, Luis Fernando G.; Vital, Helio de C.

    2002-01-01

    Escherichia coli serum type O157:H7 is a highly pathogenic bacterium. Inside the human body, that microorganism causes a disease that leads to bloody diarrhea, stoppage of kidney functions and clots in the brain. That type of infection has been related to the consumption of different varieties of foods, mainly meat and other products of animal origin. Irradiation is an efficient method for elimination of pathogenic and spoiling microorganisms in foods. Thus, this work investigates the use of gamma irradiation for elimination of Escherichia coli O157:H7. For that purpose, inoculated samples in trypticase soy broth and saline solution 0,85% media were exposed to several gamma radiation doses. Counting the number of surviving bacteria yielded the following D 10 values for Escherichia coli O157:H7: 98±7 Gy, in trypticase soy broth and 49±4 Gy in saline solution 0,85% medium. (author)

  6. The propagation of Escherichia Coli and of conservative tracers. A comparison

    International Nuclear Information System (INIS)

    Alexander, I.; Seiler, K.P.

    1982-01-01

    The propagation of Escherichia Coli (ATCC 11229, Gelsenkirchen) is compared with that of conservative tracers in groundwater. The experiments were performed with injection quantities of 10 7 , 10 8 , 10 10 and 10 11 of Escherichia Coli. Both, bacteria and conservative tracers pass their maximum at the same instant in the observation gauges. With injection quantities of more than 10 8 , the propagation of the Escherichia Coli sets in at the same time as it begins with the dyes. When the quantities range below 10 8 , the propagation begins after that of conservative tracers, because Coli bacteria were measured with a lower degree of detecting sensitivity than the tracers. With Coli injection quantities ranging above 10 10 , an increased filtering of these bacteria can be observed. Coli bacteria propagate more laterally than conservative tracers, however it could not be proved that this lateral propagation depends on the bacteria concentration. (orig.) [de

  7. The antibacterial effect of four mouthwashes against streptococcus mutans and escherichia coli.

    Science.gov (United States)

    Ghapanchi, Janan; Lavaee, Fatemeh; Moattari, Afagh; Shakib, Mahmood

    2015-04-01

    To evaluate the antimicrobial properties of several mouthwash concentrations on oral Streptococcus mutans and Escherichia coli. The study was conducted at Shiraz Medicine School in 2011. Serial dilutions of Chlorohexidin, Oral B and Persica and Irsha (2,4,8,16,64,128) were prepared in Muller-Hinton media. Minimum inhibitory concentration was visually determined and defined as the lowest concentration of each oral washing which inhibited > 95% growth reduction compared to the growth control well. Chlorhexidine, Oral B and Irsha mouthwash inhibited Streptococcus mutans even with diluted concentrations. Also, Chlorhexidine and Oral B prohibited Escherichia coli with different potencies. But Persica had no antimicrobial activity against either Escherichia coli or Streptococcus mutans. Chlorhexidine, Irsha, and Oral B mouthwashes can be used for antimicrobial effects, especially on Streptococcus mutans. This chemical activity of mouthwashes is an adjuvant for mechanical removing of plaque. However, the antimicrobial effect of Persicaremains controversial.

  8. Bacteraemia Caused by Escherichia Coli in Cancer Patients at a Specialist Center in Pakistan

    International Nuclear Information System (INIS)

    Parveen, A.; Sultan, F.; Saleem, S.; Nazeer, S. H.; Raza, A.; Zafar, W.; Nizamuddin, S.; Mahboob, A.

    2015-01-01

    Objective: To analyse the antimicrobial susceptibility patterns of Escherichia coli bacteraemia among cancer patients, and to assess the risk factors and outcomes of multidrug-resistant Escherichia coli bacteraemia. Methods: The retrospective study was conducted at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, and comprised medical records of patients with Escherichia coli bacteraemia presenting between December 2012 and November 2013. Multivariable logistic regression analyses were used to determine the factors associated with the development and 30-day mortality of multidrug-resistant Escherichia coli bacteraemia. Results: Out of 1603 episodes of bacteraemia, 227(35.6 percent) were caused by E.coli, of which 98(43.2 percent) were multidrug-resistant. In multivariable analysis, age less than 18 years (adjusted odds ratio 3.92; 95 percent confidence interval 1.43-10.68), presence of central venous catheter (adjusted odds ratio 2.12; 95 percent confidence interval 1.04-4.33) and exposure to piperacillin/tazobactam within 90 days prior to infection (adjusted odds ratio 2.37; 95 percent confidence interval 1.15-4.86) were identified as independent risk factors for acquisition of multidrug-resistant Escherichia coli bacteraemia. The overall 30 day mortality rate was 35.2 percent (80/227). Risk factors for mortality were intensive care unit admission (adjusted odds ratio 3.95; 95 percent confidence interval 1.79-8.71) and profound neutropenia (adjusted odds ratio 4.03; 95 percent confidence interval 1.55-10.49). Conclusion: Bloodstream infections with multidrug-resistant Escherichia coli were common in cancer patients. However it was not a predictor of mortality. (author)

  9. Antibiofilm Effects of Lactobacilli against Ciprofloxacin-Resistant Uropathogenic Escherichia coli strains in Pasteurized Milk

    Directory of Open Access Journals (Sweden)

    Mahsa Yeganeh

    2017-11-01

    Full Text Available  Background and Objective: Uropathogenic Escherichia coli-induced urinary tract infections are the most common uropathogenic Escherichia coli etiological agent. In addition, most of biofilms created by these bacteria can be regarded as a serious problem in the food industry. Foodborne diseases have always been considered an emerging public health concern throughout the world. Many outbreaks have been found to be associated with biofilms. Thus, the aim of the present study is to investigate the anti-adhesive effects of lactic acid bacteria against strains of Ciprofloxacin-Resistant Uropathogenic Escherichia coli using microbial techniques in pasteurized milk.Material and Methods: In this study, strains of Lactobacillus plantarum, Lactobacillus casei and Lactobacillus acidophilus were provided from Pasteur Institute of Iran. Twenty strains of Uropathogenic Escherichia coli-Induced Urinary Tract Infections were isolated from patients with urinary tract infection in Shahid Labbafinejad hospital of Iran. Eight strains with ability of biofilm formation were selected for microbial tests. All of these eight strains were resistant to ciprofloxacin. Disk diffusion method was used to assess the susceptibility of all isolates to the ten common antibiotics. Eight samples of Uropathogenic Escherichia coli were inoculated in pasteurized milk. The microtitre plate 100 method was used to detect anti-adhesive activity of lactobacilli supernatant.Results and Conclusion: Results showed that the eight human isolates were resistant to antibiotics. Isolate of number 4 was the most susceptible strains to antibiofilm effects of lactobacilli in the pasteurized milk. The anti-adhesive effects of lactobacilli on Uropathogenic were confirmed in all microbial tests. In this study, Lactobacillus plantarum revealed the highest inhibitory activity against Uropathogenic Escherichia coli 4 strain with inhibition zones of 42 mm. This strain was reported as a proper probiotic

  10. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ken Noguchi

    Full Text Available BACKGROUND: Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2 production involves consumption of 2H(+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5 that are three pH units lower than the pH limit of growth (pH 5-6. Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. METHODS AND PRINCIPAL FINDINGS: We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2 to 2H(+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3 decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2 did not significantly affect acid survival. The pH-dependence of H(2 production and consumption was tested using a H(2-specific Clark-type electrode. Hyd-3-dependent H(2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2 consumption was maximal at alkaline pH. H(2 production, was unaffected by a shift in external or internal pH. H(2 production was associated with hycE expression levels as a function of external pH. CONCLUSIONS: Anaerobic growing

  11. Quality control of inclusion bodies in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Schweder Thomas

    2010-05-01

    Full Text Available Abstract Background Bacterial inclusion bodies (IBs are key intermediates for protein production. Their quality affects the refolding yield and further purification. Recent functional and structural studies have revealed that IBs are not dead-end aggregates but undergo dynamic changes, including aggregation, refunctionalization of the protein and proteolysis. Both, aggregation of the folding intermediates and turnover of IBs are influenced by the cellular situation and a number of well-studied chaperones and proteases are included. IBs mostly contain only minor impurities and are relatively homogenous. Results IBs of α-glucosidase of Saccharomyces cerevisiae after overproduction in Escherichia coli contain a large amount of (at least 12 different major product fragments, as revealed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE. Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight Mass-Spectrometry (MALDI-ToF MS identification showed that these fragments contain either the N- or the C-terminus of the protein, therefore indicate that these IBs are at least partially created by proteolytic action. Expression of α-glucosidase in single knockout mutants for the major proteases ClpP, Lon, OmpT and FtsH which are known to be involved in the heat shock like response to production of recombinant proteins or to the degradation of IB proteins, clpP, lon, ompT, and ftsH did not influence the fragment pattern or the composition of the IBs. The quality of the IBs was also not influenced by the sampling time, cultivation medium (complex and mineral salt medium, production strategy (shake flask, fed-batch fermentation process, production strength (T5-lac or T7 promoter, strain background (K-12 or BL21, or addition of different protease inhibitors during IB preparation. Conclusions α-glucosidase is fragmented before aggregation, but neither by proteolytic action on the IBs by the common major proteases, nor during downstream IB

  12. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Science.gov (United States)

    Noguchi, Ken; Riggins, Daniel P; Eldahan, Khalid C; Kitko, Ryan D; Slonczewski, Joan L

    2010-04-12

    Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2) production involves consumption of 2H(+), hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5) that are three pH units lower than the pH limit of growth (pH 5-6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2) to 2H(+). Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H(2) production and consumption was tested using a H(2)-specific Clark-type electrode. Hyd-3-dependent H(2) production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2) consumption was maximal at alkaline pH. H(2) production, was unaffected by a shift in external or internal pH. H(2) production was associated with hycE expression levels as a function of external pH. Anaerobic growing cultures of E. coli generate H(2) via Hyd-3 at low external pH, and

  13. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Monteiro Gabriel A

    2009-10-01

    Full Text Available Abstract Background Efflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy. The development of methods for the early detection and quantification of drug transport across the bacterial cell wall is a tool essential to understand and overcome this type of drug resistance mechanism. This approach was developed to study the transport of the efflux pump substrate ethidium bromide (EtBr across the cell envelope of Escherichia coli K-12 and derivatives, differing in the expression of their efflux systems. Results EtBr transport across the cell envelope of E. coli K-12 and derivatives was analysed by a semi-automated fluorometric method. Accumulation and efflux of EtBr was studied under limiting energy supply (absence of glucose and low temperature and in the presence and absence of the efflux pump inhibitor, chlorpromazine. The bulk fluorescence variations were also observed by single-cell flow cytometry analysis, revealing that once inside the cells, leakage of EtBr does not occur and that efflux is mediated by active transport. The importance of AcrAB-TolC, the main efflux system of E. coli, in the extrusion of EtBr was evidenced by comparing strains with different levels of AcrAB expression. An experimental model was developed to describe the transport kinetics in the three strains. The model integrates passive entry (influx and active efflux of EtBr, and discriminates different degrees of efflux between the studied strains that vary in the activity of their efflux systems, as evident from the calculated efflux rates: = 0.0173 ± 0.0057 min-1; = 0.0106 ± 0.0033 min-1; and = 0.0230 ± 0.0075 min-1. Conclusion The combined use of a semi-automated fluorometric method and an experimental model allowed quantifying EtBr transport in E. coli strains that differ in their overall efflux activity. This methodology can be used for the early detection of differences in

  14. Rapid Identification of Different Escherichia coli Sequence Type 131 Clades.

    Science.gov (United States)

    Matsumura, Yasufumi; Pitout, Johann D D; Peirano, Gisele; DeVinney, Rebekah; Noguchi, Taro; Yamamoto, Masaki; Gomi, Ryota; Matsuda, Tomonari; Nakano, Satoshi; Nagao, Miki; Tanaka, Michio; Ichiyama, Satoshi

    2017-08-01

    Escherichia coli sequence type 131 (ST131) is a pandemic clonal lineage that is responsible for the global increase in fluoroquinolone resistance and extended-spectrum-β-lactamase (ESBL) producers. The members of ST131 clade C, especially subclades C2 and C1-M27, are associated with ESBLs. We developed a multiplex conventional PCR assay with the ability to detect all ST131 clades (A, B, and C), as well as C subclades (C1-M27, C1-nM27 [C1-non-M27], and C2). To validate the assay, we used 80 ST131 global isolates that had been fully sequenced. We then used the assay to define the prevalence of each clade in two Japanese collections consisting of 460 ESBL-producing E. coli ST131 (2001-12) and 329 E. coli isolates from extraintestinal sites (ExPEC) (2014). The assay correctly identified the different clades in all 80 global isolates: clades A ( n = 12), B ( n = 12), and C, including subclades C1-M27 ( n = 16), C1-nM27 ( n = 20), C2 ( n = 17), and other C ( n = 3). The assay also detected all 565 ST131 isolates in both collections without any false positives. Isolates from clades A ( n = 54), B ( n = 23), and C ( n = 483) corresponded to the O serotypes and the fimH types of O16-H41, O25b-H22, and O25b-H30, respectively. Of the 483 clade C isolates, C1-M27 was the most common subclade (36%), followed by C1-nM27 (32%) and C2 (15%). The C1-M27 subclade with bla CTX-M-27 became especially prominent after 2009. Our novel multiplex PCR assay revealed the predominance of the C1-M27 subclade in recent Japanese ESBL-producing E. coli isolates and is a promising tool for epidemiological studies of ST131. Copyright © 2017 American Society for Microbiology.

  15. Secretion of d-alanine by Escherichia coli.

    Science.gov (United States)

    Katsube, Satoshi; Sato, Kazuki; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2016-07-01

    Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [3H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [3H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential.

  16. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    Science.gov (United States)

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  17. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Harry L. T. Mobley

    2015-12-01

    Full Text Available Urinary tract infection (UTI is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC. Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA, into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot

  18. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  19. Postreplication repair gap filling in an Escherichia coli strain deficient in dnaB gene product

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1975-01-01

    Gaps in daughter-strand DNA synthesized after exposure of Escherichia coli E279 to ultraviolet light are filled during reincubation at 30 0 C for 20 min. Escherichia coli E279 is phenotypically DnaB - when incubated at 43 0 C. Cells incubated at 43 0 C were tested for their ability to complete postreplication repair gap filling. It is concluded that the dnaB gene product is essential for postreplication repair gap filling and that the inhibition seen is not initially the result of degradation

  20. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  1. Carriage of stx2a differentiates clinical and bovine-biased strains of Escherichia coli O157.

    Directory of Open Access Journals (Sweden)

    Smriti Shringi

    Full Text Available Shiga toxin (Stx are cardinal virulence factors of enterohemorrhagic E. coli O157:H7 (EHEC O157. The gene content and genomic insertion sites of Stx-associated bacteriophages differentiate clinical genotypes of EHEC O157 (CG, typical of clinical isolates from bovine-biased genotypes (BBG, rarely identified among clinical isolates. This project was designed to identify bacteriophage-mediated differences that may affect the virulence of CG and BBG.Stx-associated bacteriophage differences were identified by whole genome optical scans and characterized among >400 EHEC O157 clinical and cattle isolates by PCR.Optical restriction maps of BBG strains consistently differed from those of CG strains only in the chromosomal insertion sites of Stx2-associated bacteriophages. Multiplex PCRs (stx1, stx2a, and stx2c as well as Stx-associated bacteriophage-chromosomal insertion site junctions revealed four CG and three BBG that accounted for >90% of isolates. All BBG contained stx2c and Stx2c-associated bacteriophage-sbcB junctions. All CG contained stx2a and Stx2a-associated bacteriophage junctions in wrbA or argW.Presence or absence of stx2a (or another product encoded by the Stx2a-associated bacteriophage is a parsimonious explanation for differential virulence of BBG and CG, as reflected in the distributions of these genotypes in humans and in the cattle reservoir.

  2. Difference in melting profiles of gamma irradiated DNA from chicken erythrocytes and from Escherichia coli B/r

    International Nuclear Information System (INIS)

    Kopff, J.; Miller, G.; Leyko, W.

    1977-01-01

    Effects of gamma irradiation on melting curves of DNA from chicken erythrocytes and Escherichia coli B/r were compared. Considerable changes, following gamma irradiation in the case of chicken erythrocytes DNA and no changes in the case of DNA from Escherichia coli B/r were observed. To explain the lack of changes in gamma irradiated samples of DNA from Escherichia coli B/r it was assumed that the original effects of irradiation were obscured by the process of renaturation of DNA. To exclude the above mentioned effect, examination of gamma irradiated DNA from Escherichia coli B/r was carried out with the addition of formaldehyde immediately after irradiation of the sample. Using this procedure changes of melting profiles of DNA from Escherichia coli B/r were demonstrated. (author)

  3. From lin-Benzoguanines to lin-Benzohypoxanthines as Ligands for Zymomonas mobilis tRNA-Guanine Transglycosylase: Replacement of Protein-Ligand Hydrogen Bonding by Importing Water Clusters.

    NARCIS (Netherlands)

    Barandun, L.J.; Immekus, F.; Kohler, P.C.; Tonazzi, S.; Wagner, B.; Wendelspiess, S.; Ritschel, T.; Heine, A.; Kansy, M.; Klebe, G.; Diederich, F.

    2012-01-01

    The foodborne illness shigellosis is caused by Shigella bacteria that secrete the highly cytotoxic Shiga toxin, which is also formed by the closely related enterohemorrhagic Escherichia coli (EHEC). It has been shown that tRNA-guanine transglycosylase (TGT) is essential for the pathogenicity of

  4. Vaccines for preventing enterotoxigenic Escherichia coli (ETEC) diarrhoea.

    Science.gov (United States)

    Ahmed, Tanvir; Bhuiyan, Taufiqur R; Zaman, K; Sinclair, David; Qadri, Firdausi

    2013-07-05

    Infection with enterotoxigenic Escherichia coli (ETEC) bacteria is a common cause of diarrhoea in adults and children in developing countries and is a major cause of 'travellers' diarrhoea' in people visiting or returning from endemic regions. A killed whole cell vaccine (Dukoral®), primarily designed and licensed to prevent cholera, has been recommended by some groups to prevent travellers' diarrhoea in people visiting endemic regions. This vaccine contains a recombinant B subunit of the cholera toxin that is antigenically similar to the heat labile toxin of ETEC. This review aims to evaluate the clinical efficacy of this vaccine and other vaccines designed specifically to protect people against diarrhoea caused by ETEC infection. To evaluate the efficacy, safety, and immunogenicity of vaccines for preventing ETEC diarrhoea. We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, and http://clinicaltrials.gov up to December 2012. Randomized controlled trials (RCTs) and quasi-RCTs comparing use of vaccines to prevent ETEC with use of no intervention, a control vaccine (either an inert vaccine or a vaccine normally given to prevent an unrelated infection), an alternative ETEC vaccine, or a different dose or schedule of the same ETEC vaccine in healthy adults and children living in endemic regions, intending to travel to endemic regions, or volunteering to receive an artificial challenge of ETEC bacteria. Two authors independently assessed each trial for eligibility and risk of bias. Two independent reviewers extracted data from the included studies and analyzed the data using Review Manager (RevMan) software. We reported outcomes as risk ratios (RR) with 95% confidence intervals (CI). We assessed the quality of the evidence using the GRADE approach. Twenty-four RCTs, including 53,247 participants, met the inclusion criteria. Four studies assessed the protective

  5. Diarrheagenic Escherichia coli and acute and persistent diarrhea in returned travelers

    NARCIS (Netherlands)

    Schultsz, C.; van den Ende, J.; Cobelens, F.; Vervoort, T.; van Gompel, A.; Wetsteyn, J. C.; Dankert, J.

    2000-01-01

    To determine the role of diarrheagenic Escherichia coli in acute and persistent diarrhea in returned travelers, a case control study was performed. Enterotoxigenic E. coli (ETEC) was detected in stool samples from 18 (10.7%) of 169 patients and 4 (3.7%) of 108 controls. Enteroaggregative E. coli

  6. Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain

    NARCIS (Netherlands)

    Ang, C. Wim; Bouts, Antonia H. M.; Rossen, John W. A.; van der Kuip, Martijn; van Heerde, Marc; Bökenkamp, Arend

    2016-01-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E.

  7. Escherichia coli can be transformed by a liposome-mediated lipofection method.

    Science.gov (United States)

    Kawata, Yoshikazu; Yano, Shin-ichi; Kojima, Hiroyuki

    2003-05-01

    Transformation of Escherichia coli is a basic technique for genetic engineering. We used a liposome-mediated lipofection method to transform electrocompetent E. coli cells which has little natural competence of foreign DNA without electroporation treatment, and got transformants with simple and quick treatment by a plasmid or a transposon and transposase complex.

  8. Complete Genome Sequences of Two Escherichia coli O145:H28 Outbreak Strains of Food Origin

    OpenAIRE

    Cooper, Kerry K.; Mandrell, Robert E.; Louie, Jacqueline W.; Korlach, Jonas; Clark, Tyson A.; Parker, Craig T.; Huynh, Steven; Chain, Patrick S. G.; Ahmed, Sanaa; Carter, Michelle Qiu

    2014-01-01

    Escherichia coli O145:H28 strain RM12581 was isolated from bagged romaine lettuce during a 2010 U.S. lettuce-associated outbreak. E. coli O145:H28 strain RM12761 was isolated from ice cream during a 2007 ice cream-associated outbreak in Belgium. Here we report the complete genome sequences and annotation of both strains.

  9. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  10. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  11. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  12. Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites

    DEFF Research Database (Denmark)

    Quan, Selwyn; Skovgaard, Ole; McLaughlin, Robert E

    2015-01-01

    Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth...

  13. Evolved Escherichia coli Strains for Amplified, Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Gul, Nadia; Linares, Daniel M.; Ho, Franz Y.; Poolman, Bert

    2014-01-01

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several

  14. Induction of genetic recombination in the lambda bacteriophage by ultraviolet radiation of the Escherichia Coli cells

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1986-12-01

    In this work there are reported the results that show that although the stimulation of the recombination of the Lambda bacteriophage, by UV irradiation of the cells of Escherichia Coli, it looks to be the result of the high expression of the functions of the SOS system, doesn't keep some relationship with the high concentration of protein reached RecA. (Author)

  15. Enzymatic Comparisons of Aspergillus niger PhyA and Escherichia coli AppA2 Phytases

    Science.gov (United States)

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  16. Recto-anal junction (RAJ) microbiota composition in Escherichia coli O157:H7 shedding cattle

    Science.gov (United States)

    Introduction: Cattle are the asymptomatic reservoirs of Escherichia coli O157:H7 (O157) that tend to preferentially colonize the bovine recto-anal junction (RAJ). Therefore, understanding the taxonomic profile, microbial diversity, and microbiota-O157 interactions at the RAJ could give insights into...

  17. Restricted diffusion of DNA segments within the isolated Escherichia coli nucleoid.

    NARCIS (Netherlands)

    Cunha, S.; Woldringh, C.L.; Odijk, T.

    2005-01-01

    To study the dynamics and organization of the DNA within isolated Escherichia coli nucleoids, we track the movement of a specific DNA region. Labeling of such a region is achieved using the Lac-O/Lac-I system. The Lac repressor-GFP fusion protein binds to the DNA section where tandem repeats of the

  18. The Enzymology of Protein Translocation across the Escherichia coli Plasma Membrane

    NARCIS (Netherlands)

    Wickner, William; Driessen, Arnold J.M.; Hartl, Franz-Ulrich

    1991-01-01

    Converging physiological, genetic, and biochemical studies have established the salient features of preprotein translocation across the plasma membrane of Escherichia coli. Translocation is catalyzed by two proteins, a soluble chaperone and a membrane-bound translocase. SecB, the major chaperone for

  19. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    Science.gov (United States)

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  20. Antibacterial activity of some commonly used food commodities against escherichia coli, salmonella typhi and staphylococcus aureus

    International Nuclear Information System (INIS)

    Siddiqui, A.; Ansari, A.

    2009-01-01

    The activity of commonly used spices and salt, sugar and pickles against Escherichia coli, Salmonella typhi and staphlococcus aureus was tested. The antibacterial activity was found to be in descending order like coriander>pickles>salt and sugar>clove>black pepper>red chilli against S. typhi and garlic>clove>onion>ginger against S. aureus. (author)