WorldWideScience

Sample records for sorbent materials phase

  1. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    Science.gov (United States)

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  2. Solid-phase extraction of the alcohol abuse biomarker phosphatidylethanol using newly synthesized polymeric sorbent materials containing quaternary heterocyclic groups.

    Science.gov (United States)

    Duarte, Mariana; Jagadeesan, Kishore Kumar; Billing, Johan; Yilmaz, Ecevit; Laurell, Thomas; Ekström, Simon

    2017-10-13

    Phosphatidylethanol (PEth) is an interesting biomarker finding increased use for detecting long term alcohol abuse with high specificity and sensitivity. Prior to detection, sample preparation is an unavoidable step in the work-flow of PEth analysis and new protocols may facilitate it. Solid-phase extraction (SPE) is a versatile sample preparation method widely spread in biomedical laboratories due to its simplicity of use and the possibility of automation. In this work, SPE was used for the first time to directly extract PEth from spiked human plasma and spiked human blood. A library of polymeric SPE materials with different surface functionalities was screened for PEth extraction in order to identify the surface characteristics that control PEth retention and recovery. The plasma samples were diluted 1:10 (v/v) in water and spiked at different concentrations ranging from 0.3 to 5μM. The library of SPE materials was then evaluated using the proposed SPE method and detection was done by LC-MS/MS. One SPE material efficiently retained and recovered PEth from spiked human plasma. With this insight, four new SPE materials were formulated and synthesized based on the surface characteristics of the best SPE material found in the first screening. These new materials were tested with spiked human blood, to better mimic a real clinical sample. All the newly synthetized materials outperformed the pre-existing commercially available materials. Recovery values for the new SPE materials were found between 29.5% and 48.6% for the extraction of PEth in spiked blood. A material based on quaternized 1-vinylimidazole with a poly(trimethylolpropane trimethacrylate) backbone was found suitable for PEth extraction in spiked blood showing the highest analyte recovery in this experiment, 48.6%±6.4%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero, E-mail: carlos.herrero@usc.es

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption–elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L{sup −1}, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64–22.9 μg Pb L{sup −1}). - Highlights: • Lead determination in urine using a solid phase extraction procedure followed by ETAAS • Carbon nanotubes as SPE adsorbent for Pb in urine • Matrix elimination for the Pb determination in urine by using SPE based on carbon nanotubes • The detection limit was 0.08 μg Pb L{sup −1}.

  4. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  5. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    Science.gov (United States)

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Primary secondary amine as a sorbent material in dispersive solid-phase extraction clean-up for the determination of indicator polychlorinated biphenyls in environmental water samples by gas chromatography with electron capture detection.

    Science.gov (United States)

    Guo, Yuanming; Hu, Hongmei; Li, Tiejun; Xue, Lijian; Zhang, Xiaoning; Zhong, Zhi; Zhang, Yurong; Jin, Yanjian

    2017-08-01

    A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid-liquid extracted with an automated Jipad-6XB vertical oscillator using n-hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid-phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85-112, 76-116, and 72-108%, respectively, and with relative standard deviations of 3.3-4.5, 3.4-5.6, and 3.1-4.8% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction and solid-phase extraction clean-up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sorbent suppliers

    International Nuclear Information System (INIS)

    Vedder, M.

    1994-01-01

    Sorbents are used to absorb or contain spilled and leaking chemicals, oils, lubricants and other process fluids. They are commonly used around the base of machinery in industrial applications, and in remediating oil spills on land and water. Sorbents are made from biodegradable, inorganic or synthetic materials. Organic materials include corn cobs, wood pulp, paper fiber and cotton. Inorganic materials include clay, perlite, expanded silicates and expanded mica. Synthetic sorbents are made from petroleum- or plastic-based materials such as polyurethane, polyethylene or polypropylene. Sorbents are available in a variety of forms, including pads, rolls, booms, pillows and loose particulate

  9. Evaluation of silk-floss fiber and dog fur as sorbent materials for the petroleum sector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Lucas P. dos [Universidade Federal do Parana (PGMec/UFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Dubiella, Juliana [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Programa Institucional de Bolsas de Iniciacao Cientifica; Perotta, Larissa [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Programa Interdisciplinar em Engenharia de Petroleo e Gas Natural; Satyanarayana, Kestur G. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Flores-Sahagun, Thais Sydenstricker [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    In this study silk-floss and dog fur were tested as sorbent materials for oils and the results were compared with peat, a commercial sorbent. Sorption tests were carried out in dry and aqueous systems, with and without stirring for different periods of time (5-1440 min). Density, hydrophobicity, buoyancy and water uptake by the fibers of the impregnated sorbents have been determined. The use of silk-floss and dog fur was also tested in columns to purify water containing toluene, benzene, motor oil or sunflower oil. Breakthrough curves during 120 min were drawn for each material with the samples (oily water or water containing benzene or toluene) and were analyzed by ultraviolet spectroscopy. It was concluded that the silk-floss is the best sorbent material (65.3 g oil/g sorbent) followed by the dog fur (34.6 g oil/g sorbent) and peat (19.5 g oil/g sorbent), for sorption time of 1 h in dynamic condition. The efficiency of the pollutant removal from water with the use of adsorption columns was high for both materials although the use of dog fur was preferable because of the slight superiority in efficiency compared to silk-floss and also, due to the easier packing of the dog fur in the column. (author)

  10. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Lee D. Wilson

    2011-08-01

    Full Text Available Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid have been evaluated. The sorption properties of granular activated carbon (GAC were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g, CDI-X copolymers (< 101 m2/g, and granular activated carbon (GAC ~103 m2/g. The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i surface area of the sorbent; (ii CD content and accessibility; and (iii and the chemical nature of the sorbent material.

  11. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  12. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    OpenAIRE

    Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.

    2011-01-01

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X cop...

  13. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.

    Science.gov (United States)

    Annunciado, T R; Sydenstricker, T H D; Amico, S C

    2005-11-01

    Oil spills are a global concern due to their environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85goil/g sorbent (in 24hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application.

  14. Experimental investigation of various vegetable fibers as sorbent materials for oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Annunciado, T.R.; Sydenstricker, T.H.D.; Amico, S.C. [Federal University of Parana, Curitiba, (Brazil). Department of Mechanical Engineering

    2005-11-15

    Oil spills are a global concern due to their environmental and economical impact. various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85 g oil/g sorbent (in 24 hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application. (author)

  15. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  16. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II)

    Science.gov (United States)

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-01

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.

  17. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

  18. A novel molybdenum disulfide nanosheet self-assembled flower-like monolithic sorbent for solid-phase extraction with high efficiency and long service life.

    Science.gov (United States)

    Ran, Fanpeng; Liu, Hongmei; Wang, Xiaoqi; Guo, Yong

    2017-07-21

    A novel material consisting of molybdenum disulfide (MoS 2 ) nanosheet that self-assemble into flower-like microspheres which aggregate to form a monolithic matrix with a micro or nano-scaled mesopore structure was successfully synthesized and used as an efficient sorbent for solid-phase extraction (SPE) due to its large specific adsorption area and good stability. The extraction properties of the as-prepared sorbent were evaluated by high-performance liquid chromatography with variable wavelength detection (HPLC-VWD) by analyzing four flavonoids (apigenin, quercetin, luteolin, and kaempferol). Under optimal conditions, the LODs and LOQs were found to be in the ranges of 0.1-0.25 and 0.4-0.5μgL -1 , respectively, and wide linear ranges were obtained with correlation coefficients (R) ranging from 0.9991 to 0.9996. Compared with commercial C18 and Alumina-N sorbents, the as-prepared sorbent showed high extraction efficiency at different concentrations of flavonoids. After 100 uses, the extraction ability of the self-assembled MoS 2 nanosheet monolithic sorbent had no evident decline, denoting a long service life. Finally, the SPE-HPLC-VWD method using the as-prepared sorbent was applied to flavonoid analysis in beverage samples with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange

    2017-10-01

    Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.

  20. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    Science.gov (United States)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  1. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  2. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent.

    Science.gov (United States)

    Du, Li-Jing; Yi, Ling; Ye, Li-Hong; Chen, Yu-Bo; Cao, Jun; Peng, Li-Qing; Shi, Yu-Ting; Wang, Qiu-Yan; Hu, Yu-Han

    2018-02-16

    A simple and effective method of miniaturized solid-phase extraction (mini-SPE) was developed for the simultaneous purification and enrichment of macrolide antibiotics (MACs) (i.e. azithromycin, clarithromycin, erythromycin, lincomycin and roxithromycin) from honey and skim milk. Mesoporous MCM-41 silica was synthesized and used as sorbent in mini-SPE. Several key parameters affecting the performance of mini-SPE procedure were thoroughly investigated, including sorbent materials, amount of sorbent and elution solvents. Under the optimized condition, satisfactory linearity (r 2  > 0.99), acceptable precision (RSDs, 0.3-7.1%), high sensitivity (limit of detection in the range of 0.01-0.76 μg/kg), and good recoveries (83.21-105.34%) were obtained. With distinct advantages of simplicity, reliability and minimal sample requirement, the proposed mini-SPE procedure coupled with ultrahigh performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry could become an alternative tool to analyze the residues of MACs in complex food matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    Science.gov (United States)

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  4. Using sorbent waste materials to enhance treatment of micro-point source effluents by constructed wetlands

    Science.gov (United States)

    Green, Verity; Surridge, Ben; Quinton, John; Matthews, Mike

    2014-05-01

    Sorbent materials are widely used in environmental settings as a means of enhancing pollution remediation. A key area of environmental concern is that of water pollution, including the need to treat micro-point sources of wastewater pollution, such as from caravan sites or visitor centres. Constructed wetlands (CWs) represent one means for effective treatment of wastewater from small wastewater producers, in part because they are believed to be economically viable and environmentally sustainable. Constructed wetlands have the potential to remove a range of pollutants found in wastewater, including nitrogen (N), phosphorus (P), biochemical oxygen demand (BOD) and carbon (C), whilst also reducing the total suspended solids (TSS) concentration in effluents. However, there remain particular challenges for P and N removal from wastewater in CWs, as well as the sometimes limited BOD removal within these treatment systems, particularly for micro-point sources of wastewater. It has been hypothesised that the amendment of CWs with sorbent materials can enhance their potential to treat wastewater, particularly through enhancing the removal of N and P. This paper focuses on data from batch and mesocosm studies that were conducted to identify and assess sorbent materials suitable for use within CWs. The aim in using sorbent material was to enhance the combined removal of phosphate (PO4-P) and ammonium (NH4-N). The key selection criteria for the sorbent materials were that they possess effective PO4-P, NH4-N or combined pollutant removal, come from low cost and sustainable sources, have potential for reuse, for example as a fertiliser or soil conditioner, and show limited potential for re-release of adsorbed nutrients. The sorbent materials selected for testing were alum sludge from water treatment works, ochre derived from minewater treatment, biochar derived from various feedstocks, plasterboard and zeolite. The performance of the individual sorbents was assessed through

  5. Electrospun PVDF fibers and a novel PVDF/CoFe2O4 fibrous composite as nanostructured sorbent materials for oil spill cleanup

    Science.gov (United States)

    Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu

    2017-12-01

    In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.

  6. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    Science.gov (United States)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  7. Sorbent materials for rapid remediation of wash water during radiological event relief

    Energy Technology Data Exchange (ETDEWEB)

    Jolin, William C.; Kaminski, Michael

    2016-11-01

    Procedures for removing harmful radiation from interior and exterior surfaces of homes and businesses after a nuclear or radiological disaster may generate large volumes of radiologically contaminated waste water. Rather than releasing this waste water to potentially contaminate surrounding areas, it is preferable to treat it onsite. Retention barrels are a viable option because of their simplicity in preparation and availability of possible sorbent materials. This study investigated the use of aluminosilicate clay minerals as sorbent materials to retain 137Cs, 85Sr, and 152Eu. Vermiculite strongly retained 137Cs, though other radionuclides displayed diminished affinity for the surface. Montmorillonite exhibited increased affinity to sorb 85Sr and 152Eu in the presence of higher concentrations of 137Cs. To simulate flow within retention barrels, vermiculite was mixed with sand and used in small-scale column experiments. The GoldSim contaminate fate module was used to model breakthrough and assess the feasibility of using clay minerals as sorbent materials in retention barrels. The modeled radionuclide breakthrough profiles suggest that vermiculite-sand and montmorillonite-sand filled barrels could be used for treatment of contaminated water generated from field operations.

  8. Feasibility Study for the Use of Green, Bio-Based, Efficient Reactive Sorbent Material to Neutralize Chemical Warfare Agents

    Science.gov (United States)

    2012-08-02

    REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the

  9. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  10. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Herrero Latorre, C.; Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.

    2012-01-01

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  11. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    Science.gov (United States)

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Novel sorbent materials for environmental remediation via Pyrolysis of biomass

    Science.gov (United States)

    Zabaniotou, Anastasia

    2013-04-01

    One of the major challenges facing society at this moment is the transition from a non-sustainable, fossil resources-based economy to a sustainable bio-based economy. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. The high-value products enhance profitability, the high-volume fuel helps meet national energy needs, and the power production reduces costs and avoids greenhouse-gas emissions From pyrolysis, besides gas and liquid products a solid product - char, is derived as well. This char contains the non converted carbon and can be used for activated carbon production and/or as additive in composite material production. Commercially available activated carbons are still considered expensive due to the use of non-renewable and relatively expensive starting material such as coal. The present study describes pyrolysis as a method to produce high added value carbon materials such as activated carbons (AC) from agricultural residues pyrolysis. Olive kernel has been investigated as the precursor of the above materials. The produced activated carbon was characterized by proximate and ultimate analyses, BET method and porosity estimation. Furthermore, its adsorption of pesticide compound in aqueous solution by was studied. Pyrolysis of olive kernel was conducted at 800 oC for 45min in a fixed reactor. For the production of the activated carbon the pyrolytic char was physically activated under steam in the presence of CO2 at 970oC for 3 h in a bench scale reactor. The active carbons obtained from both scales were characterized by N2 adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The surface area of the activated carbons was found to increase up to 1500 m2/g at a burn-off level of 60-65wt.%, while SEM analysis

  13. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    International Nuclear Information System (INIS)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G.

    2016-01-01

    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  14. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    Energy Technology Data Exchange (ETDEWEB)

    Samanidou, Victoria, E-mail: samanidu@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kehagia, Maria [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kabir, Abuzar, E-mail: akabir@fiu.edu [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); Furton, Kenneth G. [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States)

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  15. F- and H-Area Seepage Basins Water Treatment System Process Optimization and Alternative Chemistry Ion Exchange/Sorbent Material Screening Clearwell Overflow Study

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    2000-08-30

    This study investigated alternative ion exchange/sorbent materials and polishing chemistries designed to remove specific radionuclides not removed during the neutralization/precipitation/clarification process.

  16. Study of inorganic sorbents as materials for underground repositories in China

    International Nuclear Information System (INIS)

    Zhixiong, W.

    1989-01-01

    Since 1983, the construction of nuclear power plants has been taking place in Zhejiang and Guangdong provinces of China. The project is a part of the radwaste disposal plan of China. The project under the contract with IAEA studies absorption kinetics and mechanism of backfill material and selection of proper backfill material for the radwaste disposal plan. There are varieties of clay minerals as inorganic sorbents in China, such as zeolite, illite montomorillonite, kolinite, and so on. Bentonite is the first selected material for the research project. Bentonite is a common montonorillonite clay with good mechanical properties and chemical stability under certain conditions in a repository capacity. There are many huge bentonite deposits in China. China's LILW disposal will be possibly selected in the bentonite district. The investigation of China's bentonite will include the properties of China's sites, the study of migration of radionuclides and the geochemistry of actinides elements. Various bentonites of China have been studied to select one of good quality. The project is significant to assess the barrier ability of bentonite. The project also made the primary work for zeolite as a sorbent which has been used for the disposal of LILW liquid in China. Clinopliotite has been used in China's hydraulic fracture test of the radwaste liquid

  17. A Longitudinal Study of Decomposition Odour in Soil Using Sorbent Tubes and Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Katelynn A. Perrault

    2014-07-01

    Full Text Available Odour profiling of decomposed remains is important for understanding the mechanisms that cadaver dogs and forensically-relevant insects use to locate decomposed remains. The decomposition odour profile is complex and has been documented in outdoor terrestrial environments. The purpose of this study was to perform longitudinal analysis of the volatile organic compound (VOC profile in soils associated with decomposed remains across all stages of decomposition. Two VOC collection techniques (sorbent tubes and solid phase microextraction were used to collect a wider analyte range and to investigate differences in collection techniques. Pig carcasses were placed in an outdoor research facility in Australia to model the decomposition process and VOCs were collected intermittently over two months. VOCs of interest were identified over the duration of the trial, showing distinct trends in compound evolution and disappearance. The collection techniques were complementary, representing different subsets of VOCs from the overall profile. Sorbent tubes collected more decomposition-specific VOCs and these compounds were more effective at characterising the matrix over an extended period. Using both collection techniques improves the likelihood of identifying the complete VOC profile of decomposition odour. Such information is important for the search and recovery of victim remains in various stages of decomposition.

  18. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    Science.gov (United States)

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Preliminary Study of Biodegradable Waste as Sorbent Material for Oil-Spill Cleanup

    Science.gov (United States)

    Idris, J.; Eyu, G. D.; Mansor, A. M.; Ahmad, Z.; Chukwuekezie, C. S.

    2014-01-01

    Oil spill constitutes a major source of fresh and seawater pollution as a result of accidental discharge from tankers, marine engines, and underwater pipes. Therefore, the need for cost-effective and environmental friendly sorbent materials for oil spill cleanup cannot be overemphasized. The present work focuses on the preliminary study of empty palm fruit bunch fibre as a promising sorbent material. The morphology of the unmodified empty palm fruit bunch, EPFB fibre, was examined using an optical microcopy, scanning electron microcopy coupled with EDX and X-ray diffraction. The effects of oil volume, fibre weight, and time on oil absorption of EPFB fibre were evaluated with new engine oil from the model oil. The results show that EPFB fibre consists of numerous micro pores, hydrophobic, and partially crystalline and amorphous with approximately 13.5% carbon. The oil absorbency of the fibre increased with the increase in oil volume, immersion time, and fibre weight. However, sorption capacity decreased beyond 3 g in 100 mL. Additionally unmodified EPFB fibre showed optimum oil sorption efficiency of approximately 2.8 g/g within three days of immersion time. PMID:24693241

  20. New sorbent materials for selective extraction of cocaine and benzoylecgonine from human urine samples.

    Science.gov (United States)

    Bujak, Renata; Gadzała-Kopciuch, Renata; Nowaczyk, Alicja; Raczak-Gutknecht, Joanna; Kordalewska, Marta; Struck-Lewicka, Wiktoria; Waszczuk-Jankowska, Małgorzata; Tomczak, Ewa; Kaliszan, Michał; Buszewski, Bogusław; Markuszewski, Michał J

    2016-02-20

    An increase in cocaine consumption has been observed in Europe during the last decade. Benzoylecgonine, as a main urinary metabolite of cocaine in human, is so far the most reliable marker of cocaine consumption. Determination of cocaine and its metabolite in complex biological samples as urine or blood, requires efficient and selective sample pretreatment. In this preliminary study, the newly synthesized sorbent materials were proposed for selective extraction of cocaine and benzoylecgonine from urine samples. Application of these sorbent media allowed to determine cocaine and benzoylecgonine in urine samples at the concentration level of 100ng/ml with good recovery values as 81.7%±6.6 and 73.8%±4.2, respectively. The newly synthesized materials provided efficient, inexpensive and selective extraction of both cocaine and benzoylecgonine from urine samples, which can consequently lead to an increase of the sensitivity of the current available screening diagnostic tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT

    International Nuclear Information System (INIS)

    Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

    2007-01-01

    This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method

  2. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    OpenAIRE

    Afrida Kurnia Putri; Wang-Hsien Ding; Han-Wen Kuo

    2012-01-01

    A characterization of activated carbon (ACs) prepared from rice husks (RHs) under base treated condition as a new sorbent for solid-phase extraction (SPE) to extract 4-nonylphenol isomers (4-NPs) in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance inte...

  3. Humic acid-bonded silica as a novel sorbent for solid-phase extraction of benzo[a]pyrene in edible oils

    International Nuclear Information System (INIS)

    Luo Dan; Yu Qiongwei; Yin Hongrui; Feng Yuqi

    2007-01-01

    A novel solid-phase extraction (SPE) sorbent, humic acid-bonded silica (HAS), was prepared. Humic acids (HAs) were grafted onto silica matrices via an amide linkage between humyl chloride and the amido terminus of 3-aminopropyltrimethoxysilane (APTS)-silica gel. The resulting material was characterized by Fourier transform infrared spectrometer, elemental analysis, and nitrogen adsorption analysis. This sorbent exhibits an excellent adsorption capacity for some electron-abundant analytes owing to its peculiar structure. In this paper, we choose benzo[a]pyrene (BaP) in oil as a probe to validate the adsorption capacity of the material. Thus a fast, cheap and simple SPE method with humic acid-bonded silica cartridge for edible oil clean-up, followed by high-performance liquid chromatography (HPLC) with fluorescence detection was established. The effects of experimental variables, such as washing and elution solvents, and the amount of sorbents have been studied. The recoveries of BaP in edible oils spiked at 0.2-100 μg kg -1 were in the range of 78.8-102.7% with relative standard deviations ranging between 1.3 and 9.3%; the limit of detection was -0.06 μg kg -1

  4. Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent.

    Science.gov (United States)

    Xu, Li; Lee, Hian Kee

    2008-05-30

    A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.

  5. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: MODIFIED MONOSODIUM TITANATE PHASE III FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.

    2010-09-01

    This document provides a final report of Phase III testing activities for the development of modified monosodium titanate (mMST), which exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included characterization of the crystalline phases present at varying temperatures, solids settling characteristics, quantification of the peroxide content; evaluation of the post-synthesis gas release under different conditions; the extent of desorption of {sup 85}Sr, Np, and Pu under washing conditions; and the effects of age and radiation on the performance of the mMST. Key findings and conclusions include the following. The peroxide content of several mMST samples was determined using iodometric titration. The peroxide content was found to decrease with age or upon extended exposure to elevated temperature. A loss of peroxide was also measured after exposure of the material to an alkaline salt solution similar in composition to the simulated waste solution. To determine if the loss of peroxide with age affects the performance of the material, Sr and actinide removal tests were conducted with samples of varying age. The oldest sample (4 years and 8 months) did show lower Sr and Pu removal performance. When compared to the youngest sample tested (1 month), the oldest sample retained only 15% of the DF for Pu. Previous testing with this sample indicated no decrease in Pu removal performance up to an age of 30 months. No loss in Np removal performance was observed for any of the aged samples, and no uptake of uranium occurred at the typical sorbent loading of 0.2 g/L. Additional testing with a uranium only simulant and higher mMST loading (3.0 g/L) indicated a 10% increase of uranium uptake for a sample aged 3 years and 8 months when compared to the results of the same sample measured at an age of 1 year and 5 months. Performance testing with both baseline-MST and mMST that had been irradiated in a gamma source to

  6. Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns.

    Science.gov (United States)

    Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2013-10-01

    Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of ultrasound-assisted in situ sorbent formation solid-phase extraction method for determination of arsenic in water, food and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou

    2015-01-01

    A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.

  8. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    Directory of Open Access Journals (Sweden)

    Afrida Kurnia Putri

    2012-10-01

    Full Text Available A characterization of activated carbon (ACs prepared from rice husks (RHs under base treated condition as a new sorbent for solid-phase extraction (SPE to extract 4-nonylphenol isomers (4-NPs in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance interaction of non-polar sorbent with analyte in the water matrices. In this case, silanol groups from ash content may affect the extraction efficiency for 4-NPs. The ACs made from RHs were chemically impregnated with ZnCl2 and carbonized at 800oC. To investigate the role of silica, three types of ACs were prepared, i.e., untreated ACs (AC–Si, contain silica, base treated ACs (AC–B–Si, remain some silica inside, and ACs made by base treated RHs (AC–B, no silica, the surface area obtained from these treatments were 1352 m2/g, 1666 m2/g, and 1712m2/g respectively.  ACs made by base treatment has the highest surface area (related to BET, which indicat that silica removal process promotes the formation of open pore system on ACs and enhances the surface area of ACs. However, extraction efficiency measured by GC-MS in SPE process showed the reversal trends (i.e., AC–Si= 32.08%, AC–B–Si= 82.63%, AC–B=51.78%, among them the AC–B–Si sorbent reveal the best performance in SPE process. It is indicated that although silica usually exhibits low specific surface area, but control presence of silica as a polar functional group has a positive influence in the interaction between non-polar sorbent and 4-NPs.

  9. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides

    International Nuclear Information System (INIS)

    Ling, Xu; Zhang, Wenpeng; Chen, Zilin

    2016-01-01

    The authors show that carbon fiber bundles electrochemically modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a viable sorbent for online solid-phase microextraction (SPME) of the sulfonamides (sulfadiazine, sulfadimidine and sulfamethoxazole) prior to their determination by HPLC. The fibers were packed in a tube loop made from polyether ether ketone (PEEK) that was coupled to the HPLC system for online SPME. Preconcentration factors can reach values of up to 300, and the limit of detection (at an S/N ration of 3) can be as low as 0.05 ng⋅mL −1 . The method was applied to the analysis of the sulfonamides in spiked rat plasma with intra-day and inter-day RSDs of <3.33 and <4.57 %, and with recoveries in the range from 91.7 to 97.8 % in spiked plasma. The in-tube SPME was also applied to the determination of the 3 sulfonamides in rat plasma after oral administration (tablet powder) with high sensitivity. In addition to its efficient extraction, the PEEK tube based SPME has chemical and mechanical stability under even harsh conditions. (author)

  10. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    Science.gov (United States)

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    International Nuclear Information System (INIS)

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4 degree C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range

  12. New hybrid materials as Zn(II) sorbents in water samples

    International Nuclear Information System (INIS)

    Perez-Quintanilla, Damian; Sanchez, Alfredo; Hierro, Isabel del; Fajardo, Mariano; Sierra, Isabel

    2010-01-01

    Mesoporous silicas have been chemically modified with 5-mercapto-1-methyltetrazole (MTTZ) obtaining hybrid materials denominated MTTZ-MSU-2 and MTTZ-HMS. These materials were employed as Zn(II) sorbents from aqueous media at room temperature. The effect of several variables (stirring time, pH, presence of other metals) has been studied using batch and column techniques. Flame atomic absorption spectrometry (FAAS) was used to determinate Zn(II) concentration in the filtrate or in the eluted solution after the adsorption process. The results indicate that under pH 8, the maximum adsorption value was 0.94 ± 0.01 and 0.72 ± 0.01 mmol Zn(II)/g for MTTZ-MSU-2 and MTTZ-HMS, respectively. In tap water samples, a preconcentration factor of 200 was obtained. On the basis of these results, it can be concluded that it is possible to modify chemically MSU-2 and HMS with 5-mercapto-1-methyltetrazole and to use the resulting modified mesoporous silica as an effective adsorbent for Zn(II) in aqueous media.

  13. Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water.

    Science.gov (United States)

    Zhang, Shijuan; Lu, Fengli; Ma, Xiaoyun; Yue, Mingbo; Li, Yanxin; Liu, Jiammin; You, Jinmao

    2018-07-06

    MCM-48 mesoporous silica was functionalized with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, a quaternary ammonium salt with a long hydrophobic chain, to prepare a new sorbent for the dispersive solid-phase extraction (DSPE) of seven endocrine disrupting compounds (EDCs) including 4-hexylphenol, 4-octylphenol, 4-nonylphenol, bisphenol A, estrone, 17β-estradiol and estriol in water. A series of differently functionalized MCM-48 materials were also synthesized, and they served as reference materials to study the mechanism. The developed DSPE method was combined with HPLC with fluorescence detection to evaluate the adsorption performance. The results indicated that the quaternary ammonium-functionalized MCM-48 mesoporous silica can be used as ideal sorbent for EDCs in water with recoveries of higher than 95% due to the electrostatic interactions and hydrophobic effect. Hydrogen bonding and π-π interactions in other synthesized materials could lead to about 25-30% increase in recoveries, but the results for polyhydroxy compounds were still not satisfying. The quaternary ammonium-functionalized MCM-48 mesoporous silica was successfully applied to the DSPE of EDCs in real water samples. The optimum extraction conditions were sorbent amount, 15 mg; desorption time; 5 min; elution volume, 0.8 mL; sample pH 3.0; and salt addition, 5 g/L. The limits of detection were in the range of 1.2-2.6 ng/L, while the limits of quantitation were in the range of 4.3-8.3 ng/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Phase-change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  15. Composite materials based on inorganic sorbents and extractants - new sorbents for several radionuclides removal from liquid radioactive wastes

    International Nuclear Information System (INIS)

    Kopyrin, A.A.

    1999-01-01

    A short review of recent investigation concerned with liquid radioactive waste treatment by means of composite materials. It is considered different aspects of technology of selective radionuclides removal and its direction connected with usage of composites. Results of research works in this line carried out under the direction of author are presented. (author)

  16. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  17. Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication: Influence of pH and anoxia.

    Science.gov (United States)

    Mucci, Maíra; Maliaka, Valentini; Noyma, Natalia Pessoa; Marinho, Marcelo Manzi; Lürling, Miquel

    2018-04-01

    Managing eutrophication remains a challenge to water managers. Currently, the manipulation of biogeochemical processes (i.e., geo-engineering) by using phosphorus-adsorptive techniques has been recognized as an appropriate tool to manage the problem. The first step in finding potential mitigating materials is conducting a sequence of upscaling studies that commence with controlled laboratory experiments. Here, the abilities of 10 possible solid-phase-sorbents (SPS) to adsorb P were examined. Four materials adsorbed P, and two of these materials were modified, i.e., a lanthanum-modified-bentonite (LMB) and an aluminum-modified-zeolite (AMZ), and had the highest adsorption capacities of 11.4 and 8.9mgPg -1 , respectively. Two natural materials, a red soil (RS) and a bauxite (BAU), were less efficient with adsorption capacities of 2.9 and 3.4mgPg -1 , respectively. Elemental composition was not related to P adsorption. Since SPS might be affected by pH and redox status, we also tested these materials at pH values of 6, 7, 8 and 9 and under anoxic condition. All tested materials experienced decreased adsorption capacities under anoxic condition, with maximum adsorptions of 5.3mgPg -1 for LMB, 5.9mgPg -1 for AMZ, 0.2mgPg -1 for RS and 0.2mgPg -1 for BAU. All materials were able to adsorb P across the range of pH values that were tested. The maximum adsorption capacities of LMB and RS were highest at pH6, AMZ was higher at a pH of 9 and BAU at a pH of 8. Thus, pH influenced P adsorption differently. Given the effects of pH and anoxia, other abiotic variables should also be considered. Considering the criteria that classify a useful SPS (i.e., effective, easy to produce, cheap and safe), only the two modified materials that were tested seem to be suitable for upscaling to enclosure studies with anoxic sediments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  19. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  20. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  1. Phase change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  2. Evaluation of Cortaderia selloana (Capim-dos-pampas) blankets as sorbent materials for oil spills in simulated hydro equipment; Estudo do desempenho de tecidos e mantas para utilizacao como sorventes para petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, T.F.; Sydenstricker, T.H.D. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)], e-mail: thais@demec.ufpr.br; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2006-07-01

    Oil spills in aquatic environments may cause serious economy losses and severe environmental impact which both drive the development of commercial systems (e.g. sorbents) to control these accidents. One way of using sorbents is to encapsulate them with an involucre or cover, i.e. producing blankets. The focus of this research is to evaluate the key characteristics of interest (aerial density, water and oil sorption, mechanical strength and cost) of different materials to use as covers for blankets and to prepare blankets and compare their performance when made with various core materials, such as Cortaderia selloana fibers and different commercial sorbents. A simulated aqueous body with stream was used for the sorption experiments, where the oil and water phases were circulated and forced to pass under the blankets. On the sorption tests, the fibers of Cortaderia selloana reached a performance lower to that of commercial sorbents, mainly due to their low density and high volume (difficult packing), nevertheless a clear trend was noted, heavier blankets with higher sorption periods lead to higher sorption. (author)

  3. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  5. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  6. Carbon Nanotubes as a New Solid Phase Extraction Sorbent for Analysis of Environmental Pollutants

    OpenAIRE

    Constantin, Bele

    2010-01-01

    SPE is an increasingly useful technique for sample concentration and clean-up in environmental applications and can be easily incorporated into automated analytical procedures. The future of SPE is closely related to improvement of sorbents that can be more effective in obtaining high enrichment efficiency of analytes. The unusual properties of CNTs, their large sorption capacity, wide surface area and the presence of a wide spectrum of surface functional groups have generated a great interes...

  7. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is reviewed under the headings: introduction; occurrence and some systematics of omega phase; crystallography; physical properties; kinetics of formation, synthesis and metastability of omega phase; electronic structure of omega phase; electronic basis for omega phase stability; omega phase formation under combined thermal and pressure treatment in alloys; transformation mechanisms and models for diffuse omega phase; conclusion. The following elements of nuclear interest (or their alloys) are included: Zr, Hf, Nb, V, Mo. (U.K.)

  8. The use of solid sorbents for direct accumulation of organic compounds from water matrices : a review of solid-phase extraction techniques

    NARCIS (Netherlands)

    Liska, I.; Krupcik, J.; Leclercq, P.A.

    1989-01-01

    The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These

  9. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions

    International Nuclear Information System (INIS)

    Angheloiu, George O.; Hänscheid, Heribert; Reiners, Christoph; Anderson, William D.; Kellum, John A.

    2013-01-01

    Background: Contrast-induced acute kidney injury is a severe condition resulting from the use of radiology contrast in patients with predisposing factors. Hypothesis: We hypothesized that a novel system including a device containing polymer resin sorbent beads and a custom-made suctioning catheter could efficiently remove contrast from an in vitro novel model of circulatory system (MOCS) mimicking the cerebral circulation. Methods: A custom-made catheter was built and optimized for cerebral venous approach. The efficiency of a system made of a polymer resin sorbent beads column (CST 401, Cytosorbents) and this particular catheter was tested in the MOCS running a solution composed of 0.9% saline and radio-contrast. During two series of 18 cycles of first-pass experiments we assessed the catheter's suctioning efficiency and the system's ability to clear radio-contrast injected into the MOCS's cerebral arterial segment. We also assessed the functioning and reliability of the MOCS. Results: Mean suctioning efficiency of the catheter was 84% ± 24%. The polymer sorbent column contrast removal rate was initially 96% and gradually decreased with subsequent cycles in a linear fashion during an experiment lasting approximately 90 minutes. The MOCS had a reliability of 0.9946×min −1 where 1 × min −1 was the optimum value. Conclusion: A system including a polymer resin sorbent beads column and a custom-made suctioning catheter had an excellent initial efficiency in quickly removing contrast from an artificial MOCS mimicking the cerebral circulation. MOCS is an inexpensive and relatively reliable custom-made system that can be used for training or testing purposes

  10. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions

    Energy Technology Data Exchange (ETDEWEB)

    Angheloiu, George O., E-mail: goangheloiu@drmc.org [Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Cardiology, Dubois Regional Medical Center, Dubois, PA (United States); Hänscheid, Heribert; Reiners, Christoph [Department of Nuclear Medicine, University of Würzburg, Würzburg (Germany); Anderson, William D. [Cardiology Department, Exempla Healthcare, Denver, CO (United States); Kellum, John A. [CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2013-07-15

    Background: Contrast-induced acute kidney injury is a severe condition resulting from the use of radiology contrast in patients with predisposing factors. Hypothesis: We hypothesized that a novel system including a device containing polymer resin sorbent beads and a custom-made suctioning catheter could efficiently remove contrast from an in vitro novel model of circulatory system (MOCS) mimicking the cerebral circulation. Methods: A custom-made catheter was built and optimized for cerebral venous approach. The efficiency of a system made of a polymer resin sorbent beads column (CST 401, Cytosorbents) and this particular catheter was tested in the MOCS running a solution composed of 0.9% saline and radio-contrast. During two series of 18 cycles of first-pass experiments we assessed the catheter's suctioning efficiency and the system's ability to clear radio-contrast injected into the MOCS's cerebral arterial segment. We also assessed the functioning and reliability of the MOCS. Results: Mean suctioning efficiency of the catheter was 84% ± 24%. The polymer sorbent column contrast removal rate was initially 96% and gradually decreased with subsequent cycles in a linear fashion during an experiment lasting approximately 90 minutes. The MOCS had a reliability of 0.9946×min{sup −1} where 1 × min{sup −1} was the optimum value. Conclusion: A system including a polymer resin sorbent beads column and a custom-made suctioning catheter had an excellent initial efficiency in quickly removing contrast from an artificial MOCS mimicking the cerebral circulation. MOCS is an inexpensive and relatively reliable custom-made system that can be used for training or testing purposes.

  11. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters.

    Science.gov (United States)

    Iannicelli-Zubiani, Elena Maria; Cristiani, Cinzia; Dotelli, Giovanni; Gallo Stampino, Paola; Pelosato, Renato; Mesto, Ernesto; Schingaro, Emanuela; Lacalamita, Maria

    2015-12-01

    Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is covered in sections, entitled: introduction; occurrence and some systematics of omega phase (omega phase in Ti, Zr and Hf under high pressures; omega phase in Group IV transition metal alloys; omega in other systems; omega embryos at high temperatures); crystallography (omega structure; relationship of ω-structure to bcc (β) and hcp (α) structures); physical properties; kinetics of formation, synthesis and metastability of omega phase (kinetics of α-ω transformation under high pressures; kinetics of β-ω transformation; synthesis and metastability studies); electronic structure of omega phase (electronic structure models; band structure calculations; theoretical results and experimental studies); electronic basis for omega phase stability (unified phase diagram; stability of omega phase); omega phase formation under combined thermal and pressure treatment in alloys (Ti-V alloys under pressure - a prototype case study; P-X phase diagrams for alloys; transformation mechanisms and models for diffuse omega phase (is omega structure a charge density distortion of the bcc phase; nature of incommensurate ω-structure and models for diffuse scattering); conclusion. (U.K.)

  13. Neodymium Recovery by Chitosan/Iron(III Hydroxide [ChiFer(III] Sorbent Material: Batch and Column Systems

    Directory of Open Access Journals (Sweden)

    Hary Demey

    2018-02-01

    Full Text Available A low cost composite material was synthesized for neodymium recovery from dilute aqueous solutions. The in-situ production of the composite containing chitosan and iron(III hydroxide (ChiFer(III was improved and the results were compared with raw chitosan particles. The sorbent was characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy-energy dispersive X-ray analyses (SEM-EDX. The equilibrium studies were performed using firstly a batch system, and secondly a continuous system. The sorption isotherms were fitted with the Langmuir, Freundlich, and Sips models; experimental data was better described with the Langmuir equation and the maximum sorption capacity was 13.8 mg g-1 at pH 4. The introduction of iron into the biopolymer matrix increases by four times the sorption uptake of the chitosan; the individual sorption capacity of iron (into the composite was calculated as 30.9 mg Nd/g Fe. The experimental results of the columns were fitted adequately using the Thomas model. As an approach to Nd-Fe-B permanent magnets effluents, a synthetic dilute effluent was simulated at pH 4, in order to evaluate the selectivity of the sorbent material; the overshooting of boron in the column system confirmed the higher selectivity toward neodymium ions. The elution step was carried out using MilliQ-water with the pH set to 3.5 (dilute HCl solution.

  14. A polyaniline-magnetite nanocomposite as an anion exchange sorbent for solid-phase extraction of chromium(VI) ions

    International Nuclear Information System (INIS)

    Rezvani, Mehdi; Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Shekari, Nafiseh

    2014-01-01

    This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g −1 . The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L −1 , and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples. (author)

  15. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  16. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  17. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples.

    Science.gov (United States)

    da Silva, Meire Ribeiro; Mauro Lanças, Fernando

    2018-03-10

    Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag Gmb

  18. A comparative study of homemade C18 and commercial C18 sorbents for preconcentration of lead by minicolumn solid phase extraction

    International Nuclear Information System (INIS)

    Maltez, H.F.; Curtius, A.J.; Carasek, E.; Melo, L.F.C.; Sales Fontes Jardim, I.C.; Nascimento de Queiroz do, S.C.

    2004-01-01

    A comparative study of commercial C 18 chemically immobilized on silica and homemade C 18 , as sorbents for Pb complexed with 0,0-diethyl-dithiophosphate (DDTP) in a flow injection preconcentration system is reported. The homemade C 18 sorbent was obtained by sorption of poly(methyloctadecylsiloxane) (PMODS) on the silica support followed by immobilization using thermal treatment. The method follows the concept of green chemistry, since there are no toxic residues after synthesis. The complexed Pb was formed in 1.0 mol L -1 HCI medium and retained on the minicolumn filled with the sorbents. The elution was carried out using ethanol, and the richest 210 μL fraction was collected and analyzed by flame atomic absorption spectrometry. Chemical and flow variables were optimized for each sorbent. The results demonstrated that the performance of the proposed homemade C 18 sorbent for preconcentration of Pb complexed with DDTP is very similar to commercial C 18 chemically bonded on silica. By processing 25 mL, the enrichment factors were 129 and 125 for commercial C 18 and homemade C 18 , respectively. The limit of detection for commercial and homemade C 18 was 0.2 μg L -1 and 0.6 μg L -1 , respectively. The relative standard deviation (RSD) was lower than 1.2 % for both sorbents for a Pb concentration of 100 μg L -1 . The method was also applied successfully to the analysis of water samples, and the accuracy was tested by recovery measurements on spiked samples and biological reference material. (author)

  19. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  20. Evaluation of bi-functionalized mesoporous silicas as reversed phase/cation-exchange mixed-mode sorbents for multi-residue solid phase extraction of veterinary drug residues in meat samples.

    Science.gov (United States)

    Casado, Natalia; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2017-04-01

    A SBA-15 type mesoporous silica was synthesized and bi-functionalized with octadecylsilane (C18) or octylsilane (C8), and sulfonic acid (SO 3 - ) groups in order to obtain materials with reversed-phase/strong cation-exchange mixed-mode retention mechanism. The resulting hybrid materials (SBA-15-C18-SO 3 - and SBA-15-C8-SO 3 - ) were comprehensively characterized. They showed high surface area, high pore volume and controlled porous size. Elemental analysis of the materials revealed differences in the amount of C18 and C8. SBA-15-C18-SO 3 - contained 0.19mmol/g of C18, while SBA-15-C8-SO 3 - presented 0.54mmol/g of C8. The SO 3 - groups anchored to the silica surface of the pore walls were 0.20 and 0.09mmol/g, respectively. The bi-functionalized materials were evaluated as SPE sorbents for the multi-residue extraction of 26 veterinary drug residues in meat samples using ultra-high-performance liquid chromatography coupled to mass spectrometry detector (UHPLC-MS/MS). Different sorbent amounts (100 and 200mg) and organic solvents were tested to optimize the extraction procedure. Both silicas showed big extraction potential and were successful in the extraction of the target analytes. The mixed-mode retention mechanism was confirmed by comparing both silicas with SBA-15 mesoporous silica mono-functionalized with C18 and C8. Best results were achieved with 200mg of SBA-15-C18-SO 3 - obtaining recoveries higher than 70% for the majority of analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    Science.gov (United States)

    Olson, Edwin S.; Pavlish, John Henry

    2017-05-30

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  2. A new certified reference material for benzene measurement in air on a sorbent tube: development and proficiency testing

    Energy Technology Data Exchange (ETDEWEB)

    Caurant, A. [Laboratoire National de Metrologie et d' Essais, Paris (France); Universite Paris 12 et CNRS (UMR 7583), Faculte des Sciences et Technologie, Laboratoire Inter-universitaire des Systemes Atmospheriques, Unite Mixte de Recherche Universite Paris 7 (France); Lalere, B.; Schbath, M.C.; Stumpf, C.; Sutour, C.; Mace, T.; Vaslin-Reimann, S. [Laboratoire National de Metrologie et d' Essais, Paris (France); Quisefit, J.P.; Doussin, J.F. [Universite Paris 12 et CNRS (UMR 7583), Faculte des Sciences et Technologie, Laboratoire Inter-universitaire des Systemes Atmospheriques, Unite Mixte de Recherche Universite Paris 7 (France)

    2010-11-15

    A certified matrix reference material (CRM) for the measurement of benzene in ambient air has been developed at Laboratoire National de Metrologie et d'Essais. The production of these CRMs was conducted using a gravimetric method fully traceable to the International System of Units. The CRMs were prepared by sampling an accurate mass of a gaseous primary reference material of benzene, using a high-precision laminar flowmeter and a mass flow controller, with a PerkinElmer sampler filled with Carbopack trademark X sorbent. The relative standard deviations obtained for the preparation of a batch of 20 tubes loaded with 500 ng of benzene were below 0.2%. Each CRM is considered independent from the others and with its own certified value and an expanded uncertainty estimated to be within 0.5%, lower than the uncertainties of benzene CRMs already available worldwide. The stability of these materials was also established up to 12 months. These CRMs were implemented during proficiency testing, to evaluate the analytical performances of seven French laboratories involved in benzene air monitoring. (orig.)

  3. Polymeric Sorbent with Controlled Surface Polarity: An Alternate for Solid-Phase Extraction of Nerve Agents and Their Markers from Organic Matrix.

    Science.gov (United States)

    Roy, Kanchan Sinha; Purohit, Ajay Kumar; Chandra, Buddhadeb; Goud, D Raghavender; Pardasani, Deepak; Dubey, Devendra Kumar

    2018-06-05

    Extraction and identification of lethal nerve agents and their markers in complex organic background have a prime importance from the forensic and verification viewpoint of the Chemical Weapons Convention (CWC). Liquid-liquid extraction with acetonitrile and commercially available solid phase silica cartridges are extensively used for this purpose. Silica cartridges exhibit limited applicability for relatively polar analytes, and acetonitrile extraction shows limited efficacy toward relatively nonpolar analytes. The present study describes the synthesis of polymeric sorbents with tunable surface polarity, their application as a solid-phase extraction (SPE) material against nerve agents and their polar as well as nonpolar markers from nonpolar organic matrices. In comparison with the acetonitrile extraction and commercial silica cartridges, the new sorbent showed better extraction efficiency toward analytes of varying polarity. The extraction parameters were optimized for the proposed method, which included ethyl acetate as an extraction solvent and n-hexane as a washing solvent. Under optimized conditions, method linearity ranged from 0.10 to 10 μg mL -1 ( r 2 = 0.9327-0.9988) for organophosphorus esters and 0.05-20 μg mL -1 ( r 2 = 0.9976-0.9991) for nerve agents. Limits of detection (S:N = 3:1) in the SIM mode were found in the range of 0.03-0.075 μg mL -1 for organophosphorus esters and 0.015-0.025 μg mL -1 for nerve agents. Limits of quantification (S:N = 10:1) were found in the range of 0.100-0.25 μg mL -1 for organophosphorus esters and 0.05-0.100 μg mL -1 for nerve agents in the SIM mode. The recoveries of the nerve agents and their markers ranged from 90.0 to 98.0% and 75.0 to 95.0% respectively. The repeatability and reproducibility (with relative standard deviations (RSDs) %) for organophosphorus esters were found in the range of 1.35-8.61% and 2.30-9.25% respectively. For nerve agents, the repeatability range from 1.00 to 7.75% and reproducibility

  4. The antimicrobial efficiency of silver activated sorbents

    International Nuclear Information System (INIS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-01-01

    aqueous phase and microbial cell removal caused by the Ag + -ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  5. Novos sorventes baseados em poli (metiloctilsiloxano sobre sílica para uso em extração em fase sólida New sorbents based on poly(methyloctylsiloxane immobilized on silica for use in solid-phase extraction

    Directory of Open Access Journals (Sweden)

    Sonia C. N. Queiroz

    2006-07-01

    Full Text Available This paper presents an easy and practical procedure to obtain silica-based C-8 type sorbents for use in solid-phase extraction. The materials are prepared by depositing poly(methyloctylsiloxane, PMOS, on the silica support. Two different treatments for immobilization were used: thermal treatment or gamma irradiation. Suitable recoveries were obtained after pre-concentration of dilute solutions, at the ng/L level, of a mixture of pesticides, indicating the good performance of the materials.

  6. Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface

    Science.gov (United States)

    Pavlova, Julia A.; Ivanov, Andrei V.; Maksimova, Natalia V.; Pokholok, Konstantin V.; Vasiliev, Alexander V.; Malakho, Artem P.; Avdeev, Victor V.

    2018-05-01

    Due to the macropore structure and the hydrophobic properties, exfoliated graphite (EG) is considered as a perspective sorbent for oil and liquid hydrocarbons from the water surface. However, there is the problem of EG collection from the water surface. One of the solutions is the modification of EG by a magnetic compound and the collection of EG with sorbed oil using the magnetic field. In this work, the method of the two-stage preparation of exfoliated graphite with ferrite phases is proposed. This method includes the impregnation of expandable graphite in the mixed solution of iron (III) chloride and cobalt (II) or nickel (II) nitrate in the first stage and the thermal exfoliation of impregnated expandable graphite with the formation of exfoliated graphite containing cobalt and nickel ferrites in the second stage. Such two-stage method makes it possible to obtain the sorbent based on EG modified by ferrimagnetic phases with high sorption capacity toward oil (up to 45-51 g/g) and high saturation magnetization (up to 42 emu/g). On the other hand, this method allows to produce the magnetic sorbent in a short period of time (up to 10 s) during which the thermal exfoliation is carried out in the air atmosphere.

  7. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  8. A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples.

    Science.gov (United States)

    Jia, Xiuna; Zhao, Pan; Ye, Xiu; Zhang, Lianjun; Wang, Ting; Chen, Qinyu; Hou, Xiaohong

    2017-07-01

    As a novel material, metal-organic framework/graphite oxide (MIL-101(Cr)@GO) has great potential for the pretreatment of trace analytes. In the present study, MIL-101(Cr)@GO was synthesized using a solvothermal synthesis method at the nanoscale and was applied as sorbent in the dispersive micro-solid phase extraction (DMSPE) for the enrichment of the trace sulfonamides (SAs) from milk samples for the first time. Several experimental parameters including kinds of sorbents, the effect of pH, the amount of MIL-101(Cr)@GO, ionic strength, adsorption time, desorption solvent and desorption time were investigated. Under the optimal conditions, the linear ranges were from 0.1 to 10μg/L, 0.2-20μg/L or 0.5-50μg/L for the analytes with regression coefficients (r) from 0.9942 to 0.9999. The limits of detection were between 0.012 and 0.145μg/L. The recoveries ranged from 79.83% to 103.8% with relative standard deviations (RSDs)MIL-101(Cr)@GO exhibited remarkable advantages compared to MIL-101(Cr), MIL-100(Fe), activated carbon and other sorbent materials used in pretreatment methods. A simple, rapid, sensitive, inexpensive and less solvent consuming method of DMSPE-ultra-high performance liquid chromatography-tandem mass spectrometry (DMSPE-UHPLC-MS/MS) was successfully applied to the pre-concentration and determination of twelve SAs in milk samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Phase transformations im smart materials

    International Nuclear Information System (INIS)

    Newnham, R.E.

    1998-01-01

    One of the qualities that distinguishes living systems from inanimate matter is the ability to adapt to changes in the environment. Smart materials have the ability to perform both sensing and actuating functions and are, therefore, capable of imitating this rudimentary aspect of life. Four of the most widely used smart materials are piezoelectric Pb(Zr, Ti)O 3 , electrostrictive Pb(Mg, Nb)O 3 , magnetostrictive (Tb, Dy)Fe 2 and the shape-memory alloy NiTi. All four are ferroic with active domain walls and two phase transformations, which help to tune the properties of these actuator materials. Pb(Zr, Ti)O 3 is a ferroelectric ceramic which is cubic at high temperature and becomes ferroelectric on cooling through the Curie temperature. At room temperature, it is poised on a rhombohedral-tetragonal phase boundary which enhances the piezoelectric coefficients. Terfenol, (Tb, Dy)Fe 2 , is also cubic at high temperature and then becomes magnetic on cooling through its Curie temperature. At room temperature, it too is poised on a rhombohedral-tetragonal transition which enhances its magnetostriction coefficients. Pb(Mg, Nb)O 3 and nitinol (NiTi) are also cubic at high temperatures and on annealing transform to a partially ordered state. On further cooling, Pb(Mg, Nb)O 3 passes through a diffuse phase transformation at room temperature where it exhibits very large dielectric and electrostrictive coefficients. Just below room temperature, it transforms to a ferroelectric rhombohedral phase. The partially ordered shape-memory alloy NiTi undergoes an austenitic (cubic) to martensitic (mono-clinic) phase change just above room temperature. It is easily deformed in the martensitic state but recovers its original shape when reheated to austenite

  10. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    Science.gov (United States)

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  11. The selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene by solid-phase extraction with MgO microspheres as sorbents.

    Science.gov (United States)

    Jin, Jing; Li, Yun; Zhang, Zhiping; Su, Fan; Qi, Peipei; Lu, Xianbo; Chen, Jiping

    2011-12-23

    A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    Science.gov (United States)

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparison of several solid-phase extraction sorbents for continuous determination of amines in water by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2009-08-15

    A semiautomatic method has been proposed for the determination of different types of amines in water samples including anilines, chloroanilines, N-nitrosamines and aliphatic amines. The analytes were retained on a solid-phase extraction sorbent column and after elution, 1 microL of the extract was analysed by gas chromatography coupled with electron impact ionization mass spectrometry. A systematic overview is given of the advantages and disadvantages of several sorbents (LiChrolut EN, Oasis HLB, RP-C(18), graphitized carbon black, fullerenes and nanotubes) in the retention of amine compounds and based on sensitivity, selectivity and reliability. The retention efficiency for the studied amines was higher (ca. 100%) with LiChrolut EN and Oasis HLB than it was with RP-C(18) and fullerenes (53 and 62%, respectively, on average). Detection limits of 0.5-16 ng L(-1) for the 27 amines studied were obtained when using a sorbent column containing 75 mg of LiChrolut EN for 100mL of sample, the RSD being lower than 6.5%. The method was applied with good accuracy and precision in the determination of amines in various types of water including river, pond, tap, well, drinking, swimming pool and waste.

  14. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.

    Science.gov (United States)

    Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana

    2016-03-16

    A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.

  15. Polymers in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.C.; Brites, M.J.; Alexandre, J.H. [National Lab. for Energy and Geology, Lisbon (Portugal)

    2010-07-01

    Phase Change Materials (PCMs) which are the core of latent heat thermal energy storage systems are currently an area of investigation of increasing interest. Several substances differing in physical and chemical characteristics as well as in thermal behavior have been studied as PCMS{sup 1-3}. In order to meet the requisites of particular systems, auxiliary materials are often used with specific functions. This bibliographic survey shows that polymeric materials have been proposed either as the PCM itself in solid-liquid or solid-solid transitions or to perform auxiliary functions of shape stabilisation and microencapsulation for solid-liquid PCMs. The PCMs have an operating temperature ranging from around 0 C (for the system water/polyacrilamid) to around 127 C (for crosslinked HDPE). (orig.)

  16. The carbonaceous sorbent based on the secondary silica-containing material from oil extraction industry

    Science.gov (United States)

    Starostina, I. V.; Stolyarov, D. V.; Anichina, Ya N.; Porozhnyuk, E. V.

    2018-01-01

    The object of research in this work is the silica-containing waste of oil extraction industry - the waste kieselghur (diatomite) sludge from precoat filtering units, used for the purification of vegetable oils from organic impurities. As a result of the thermal modification of the sludge, which contains up to 70% of organic impurities, a finely-dispersed low-porous carbonaceous mineral sorption material is formed. The modification of the sludge particles surface causes the substantial alteration of its physical, chemical, adsorption and structural properties - the organic matter is charred, the particle size is reduced, and on the surface of diatomite particles a carbon layer is formed, which deposits in macropores and partially occludes them. The amount of mesopores is increased, along with the specific surface of the obtained product. The optimal temperature of sludge modification is 500°C. The synthesized carbonaceous material can be used as an adsorbing agent for the purification of wastewater from heavy metal ions. The sorption capacity of Cu2+ ions amounted to 14.2 mg·g-1 and for Ni2+ ions - 17.0 mg·g-1. The obtained values exceed the sorption capacity values of the initial kieselghur, used as a filtering charge, for the researched metal ions.

  17. Phase transformations in engineering materials

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.

    1996-01-01

    Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement

  18. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  19. Aspects pertinent to the usefulness of a solid phase radio-immuno-sorbent assay for the detection of spermatozoa antibodies in sera of infertility patients

    International Nuclear Information System (INIS)

    Hinrichs-Reiche, I.

    1987-01-01

    The solid phase Radio-Immuno-Sorbent Assay (RISA) is a highly sensitive and valid test to detect 125-iodinetagged antibodies to spermatozoa that allows qualitative and quantitative evaluations of sperm-incapacitating immunglobulin Ig G in sera from patients believed to be infertile for immunological reasons. The study failed to reveal any correlations between the results of RISA and those of micro-sperm-agglutination or micro-sperm-immobilisation tests. There was a major body of evidence pointing to possible links between female isoimmunity and male autoimmunity. (TRV) [de

  20. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials.

    Science.gov (United States)

    DeGreeff, Lauryn E; Furton, Kenneth G

    2011-09-01

    Human remains detection canines are used in locating deceased humans in diverse scenarios and environments based on odor produced during the decay process of the human body. It has been established that human remains detection canines are capable of locating human remains specifically, as opposed to living humans or animal remains, thus suggesting a difference in odor between the different sources. This work explores the collection and determination of such odors using a dynamic headspace concentration device. The airflow rate and three sorbent materials-Dukal cotton gauze, Johnson & Johnson cotton-blend gauze, and polyester material-used for odor collection were evaluated using standard compounds. It was determined that higher airflow rates and openly woven material, e.g., Dukal cotton gauze, yielded significantly less total volatile compounds due to compound breakthrough through the sorbent material. Collection from polymer- and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in compound collection as well. Volatiles, including cyclic and straight-chain hydrocarbons, organic acids, sulfides, aldehydes, ketones, and alcohols, were collected from a population of 27 deceased bodies from two collection locations. The common compounds between the subjects were compared and the odor profiles were determined. These odor profiles were compared with those of animal remains and living human subjects collected in the same manner. Principal component analysis showed that the odor profiles of the three sample types were distinct.

  1. Investigation of solid phase sorbents for the pre- concentration of pads from aqueous medium and their quantitation by high performance liquid chromatography-UV detection

    International Nuclear Information System (INIS)

    Waqar, F.; Jan, S.; Muhammad, B.; Ahmad, S.; Riaz, M.; Akram, N.

    2005-01-01

    A solid phase extraction method was optimized for the pre-concentration of polyaromatic hydrocarbons (PAHs) in water samples. Graphite powder and Lab scale locally synthesized styrene divinylbenzene (SDVB) Copolymer were used as sorbents for the extraction of PAHs and compared with commercially used C18 solid phase extraction cartridge (SPE). Various parameters were optimized to evaluate the extraction efficiencies, the best results were obtained by proper conditioning of extraction cartridges and desorption with suitable solvent. Percentage recoveries were enhanced by rinsing the sample bottles with acetonitrile and combining the rinse with the sample extract. Quantitative analysis was performed by High performance Liquid chromatography (HPLC) with UV detection. Many other parameters, including optimization of mobile phase, selection of HPLC Columns, sample-loading flow rate on extraction cartridge and weight of sorbent were performed to get optimal results. Percent recoveries obtained with synthesized copolymer were comparable with commercial cartridge, while graphite powder showed excellent retention but very poor recoveries. Obtained recoveries of selected PAHs were ranged from 80-87% with relative standard deviation <6%. Developed method was applied for the analysis of drinking water samples(author)

  2. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  3. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  4. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  5. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.

    Science.gov (United States)

    Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R

    2013-07-01

    The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preconcentration of Trace Neonicotinoid Insecticide Residues Using Vortex-Assisted Dispersive Micro Solid-Phase Extraction with Montmorillonite as an Efficient Sorbent

    Directory of Open Access Journals (Sweden)

    Khwankaew Moyakao

    2018-04-01

    Full Text Available In this work, we investigated montmorillonite for adsorption of neonicotinoid insecticides in vortex-assisted dispersive micro-solid phase extraction (VA-d-μ-SPE. High-performance liquid chromatography with photodiode array detection was used for quantification and determination of neonicotinoid insecticide residues, including thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid. In this method, the solid sorbent was dispersed into the aqueous sample solution and vortex agitation was performed to accelerate the extraction process. Finally, the solution was filtered from the solid sorbent with a membrane filter. The parameters affecting the extraction efficiency of the proposed method were optimized, such as amount of sorbent, sample volume, salt addition, type and volume of extraction solvent, and vortex time. The adsorbing results show that montmorillonite could be reused at least 4 times and be used as an effective adsorbent for rapid extraction/preconcentration of neonicotinoid insecticide residues. Under optimum conditions, linear dynamic ranges were achieved between 0.5 and 1000 ng mL−1 with a correlation of determination (R2 greater than 0.99. Limit of detection (LOD ranged from 0.005 to 0.065 ng mL−1, while limit of quantification (LOQ ranged from 0.008 to 0.263 ng mL−1. The enrichment factor (EF ranged from 8 to 176-fold. The results demonstrated that the proposed method not only provided a more simple and sensitive method, but also can be used as a powerful alternative method for the simultaneous determination of insecticide residues in natural surface water and fruit juice samples.

  7. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids.

    Science.gov (United States)

    Asgharinezhad, Ali Akbar; Karami, Sara; Ebrahimzadeh, Homeira; Shekari, Nafiseh; Jalilian, Niloofar

    2015-10-15

    In this study, polypyrrole/magnetic nanoparticles composites in the presence of two different dopants were synthesized with the aid of chemical oxidative polymerization process for dispersive-μ-solid phase extraction (D-μ-SPE). The synthesized magnetic sorbents were characterized by various techniques. The results exhibited that the nanocomposite modified by polypyrrole with sodium perchlorate as a dopant demonstrated higher extraction efficiency for citalopram (CIT) and sertraline (STR) as the model compounds. This nanosorbent in combination with high performance liquid chromatography-UV detection was applied for extraction, preconcentration and determination of CIT and STR in urine and plasma samples. The effect of various parameters on the extraction efficiency including: sample pH, amount of sorbent, sorption time, eluent and its volume, salt content, and elution time were investigated and optimized. The opted conditions were: sample pH, 9.0; sorbent dosage, 10mg; sorption time, 7 min; elution solvent and its volume, 0.06 mol L(-1) HCl in methanol, 120 μL; elution time, 2 min and without addition of salt to the sample. The calibration curves were linear in the concentration range of 1-800 μg L(-1). The limits of detection (LODs) were obtained in the range of 0.2-1.0 μg L(-1) for CIT and 0.3-0.7 μg L(-1) for STR, respectively. The percent of extraction recoveries and relative standard deviations (n=5) were in the range of 93.4-99, 4.8-8.4 for CIT and 94-98.4, 4.3-9.2 for STR, respectively. Finally, the applicability of the method was successfully confirmed by the extraction and determination of CIT and STR in human urine and plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Metal-organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study.

    Science.gov (United States)

    Wang, Ting; Wang, Jian; Zhang, Conglu; Yang, Zhao; Dai, Xinpeng; Cheng, Maosheng; Hou, Xiaohong

    2015-08-07

    An attractive metal-organic framework (MOF) MIL-101(Cr) material was synthesized at the nanoscale and applied as a sorbent in the porous membrane-protected micro-solid-phase extraction (μ-SPE) device for the pre-concentration of phthalate esters (PAEs) in drinking water samples for the first time. Parameters influencing the extraction efficiency, such as the selection of sorbent materials, pH adjustment, the effect of salt, magnetic-stirring extraction time, the desorption solvent and the desorption time, were investigated. Under the optimum conditions, the limits of detection from gas chromatography-mass spectrometric analysis for PAEs varied from 0.004 to 0.02 μg L(-1). The linear ranges were from 0.1 to 50 μg L(-1) or from 0.2 to 50 μg L(-1) for the analytes with the relative standard deviations fluctuating from 0.8 to 10.9% (n = 5). The enrichment factors (EFs) for the target PAEs were varied from 143 to 187. MIL-101(Cr) exhibited remarkable advantages compared to activated carbon and MIL-100(Fe). On the other hand, the computational method was first used to predict the adsorption of MIL-101(Cr) towards PAEs. The molecular interactions and the free binding energies between MIL-101(Cr) and PAEs were observed and calculated in terms of the molecular modeling method. MIL-101(Cr) showed high potential in the analysis of PAEs at trace levels in drinking water. The computational result was consistent with the detected enrichment factors. The computational modeling accurately predicted the extraction efficiency of MOF-based material towards the target analytes. Therefore, the combination of experimental and computational study provided a new strategy on the trace contaminant analysis.

  9. Graphene-Derivatized Silica Composite as Solid-Phase Extraction Sorbent Combined with GC–MS/MS for the Determination of Polycyclic Musks in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2018-02-01

    Full Text Available Polycyclic musks (PCMs have recently received growing attention as emerging contaminants because of their bioaccumulation and potential ecotoxicological effects. Herein, an effective method for the determination of five PCMs in aqueous samples is presented. Reduced graphene oxide-derivatized silica (rGO@silica particles were prepared from graphene oxide and aminosilica microparticles and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. PCMs were preconcentrated using rGO@silica as the solid-phase extraction sorbent and quantified by gas chromatography–tandem mass spectrometry. Several experimental parameters, such as eluent, elution volume, sorbent amount, pH, and sample volume were optimized. The correlation coefficient (R ranged from 0.9958 to 0.9992, while the limits of detection and quantitation for the five PCMs were 0.3–0.8 ng/L and 1.1–2.1 ng/L, respectively. Satisfactory recoveries were obtained for tap water (86.6–105.9% and river water samples (82.9–107.1%, with relative standard deviations <10% under optimal conditions. The developed method was applied to analyze PCMs in tap and river water samples from Beijing, China. Galaxolide (HHCB and tonalide (AHTN were the main PCM components detected in one river water sample at concentrations of 18.7 for HHCB, and 11.7 ng/L for AHTN.

  10. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography.

    Science.gov (United States)

    Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee

    2016-01-04

    A facile method of extraction using porous membrane protected micro-solid phase extraction (μ-SPE) with a graphene-based sorbent followed by high performance liquid chromatography-ultraviolet detector was developed. The reduced graphene oxide (r-GO) (1mg), synthesized from graphite oxide, was enclosed in a polypropylene bag representing the μ-SPE device, which was used for the extraction of estrogens such as estrone, 17β-estradiol, 17α-ethynylestradiol and diethylstilbestrol in water. The r-GO obtained was identified and characterized by Fourier transform infrared, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. The sorbent was loaded with sodium dodecyl sulfate by sonication to prevent agglomeration in aqueous solution. With this method, low limits of detection of between 0.24 and 0.52 ng L(-1) were achieved. For estrogen analysis a linear calibration range of 0.01-100 μg L(-1) was obtained, with the coefficients of determination (r(2)) higher than 0.992. This proposed method was successfully applied to determine estrogens in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances.

    Science.gov (United States)

    Zhang, Junjie; Wei, Yanli; Li, Huizhen; Zeng, Eddy Y; You, Jing

    2017-08-01

    Extensive use of neonicotinoid insecticides has raised great concerns about their ecological risk. A reliable method to measure trace neonicotinoids in complicated aquatic environment is a premise for assessing their aquatic risk. To effectively remove matrix interfering substances from field water samples before instrumental analysis with HPLC/MS/MS, a multi-sorbent solid phase extraction method was developed using Box-Behnken design. The optimized method employed 200mg HLB/GCB (w/w, 8/2) as the sorbents and 6mL of 20% acetone in acetonitrile as the elution solution. The method was applied for measuring neonicotinoids in water at a wide range of concentrations (0.03-100μg/L) containing various amounts of matrix components. The recoveries of acetamiprid, imidacloprid, thiacloprid and thiamethoxam from the spiked samples ranged from 76.3% to 107% while clothianidin and dinotefuran had relatively lower recoveries. The recoveries of neonicotinoids in water with various amounts of matrix interfering substances were comparable and the matrix removal rates were approximately 50%. The method was sensitive with method detection limits in the range of 1.8-6.8ng/L for all target neonicotinoids. Finally, the developed method was validated by measurement of trace neonicotinoids in natural water. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development and thermochemical characterizations of vermiculite/SrBr_2 composite sorbents for low-temperature heat storage

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Wang, R.Z.; Zhao, Y.J.; Li, T.X.; Riffat, S.B.; Wajid, N.M.

    2016-01-01

    Novel EVM/SrBr_2 composite sorbents with different salt contents were developed for low-temperature thermal energy storage (TES). Simulative sorption experiment was conducted to obtain the sorption kinetics diagram and identify threshold salt content that composite sorbents can hold without solution leakage. Distribution of salt embedded in EVM was observed by extreme-resolution scanning electron microscopy (ER-SEM). Thermochemical characterizations including desorption performance and desorption heat were fully investigated by analyzing simultaneous thermal analyzer (STA) results. Results reveal that sorption process of composite sorbents is divided into three parts: water adsorption of EVM, water adsorption of SrBr_2 crystal and liquid-gas absorption of SrBr_2 solution. Since SrBr_2 solution can be hold in macrospores of EVM, water uptake and energy storage density are greatly increased. It appears that the composite sorbent of EVMSrBr_240 is a promising material for thermal energy storage, with water uptake of 0.53 g/g, mass energy storage density of 0.46 kWh/kg and volume energy storage density of 105.36 kWh/m"3. - Highlights: • Vermiculite/SrBr_2 composite sorbents were developed for thermal energy storage. • Water uptake of composite sorbents is divided into three phases. • Energy storage density of each sorption phase is evaluated via calculations. • EVMSrBr_240 is chosen as optimal sorbent without solution leakage.

  13. Mesoporous silica based MCM-41 as solid-phase extraction sorbent combined with micro-liquid chromatography-quadrupole-mass spectrometry for the analysis of pharmaceuticals in waters.

    Science.gov (United States)

    Dahane, S; Martínez Galera, M; Marchionni, M E; Socías Viciana, M M; Derdour, A; Gil García, M D

    2016-05-15

    This paper reports the first application of the silica based mesoporous material MCM-41 as a sorbent in solid phase extraction, to pre-concentrate pharmaceuticals of very different polarity (atenolol, nadolol, pindolol, timolol, bisoprolol, metoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, diclofenac, tolfenamic acid, flufenamic acid and meclofenamic acid) in surface waters. The analytes were extracted from 100mL water samples at pH 2.0 (containing 10(-3) mol/L of sodium chloride) by passing the solution through a cartridge filled with 100 mg of MCM-41. Following elution, the pharmaceuticals were determined by micro-liquid chromatography and triple quadrupole-mass spectrometry. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. Matrix effect was found in real waters for most analytes and was overcome using the standard addition method, which compared favorably with the matrix matched calibration method. The detection limits in solvent (acetonitrile:water 10:90, v/v) ranged from 0.01 to 1.48 μg/L and in real water extracts from 0.10 to 3.85 μg/L (0.001-0.0385 μg/L in the water samples). The quantitation limits in solvent were in the range 0.02-4.93 μg/L, whereas in real water extracts were between 0.45 and 10.00 μg/L (0.0045 and 0.1000 μg/L in the water samples). When ultrapure water samples were spiked at two concentration levels of each pharmaceutical (0.1 and 0.2 μg/L) and quantified using solvent based calibration graphs, recoveries were near 100%. However, recoveries for most pharmaceuticals were comparable or better than de described above, when river water samples (spiked at the same concentration levels) were quantified by the standard addition method and slightly worse using the matrix matched calibration method. Five real samples (two rivers, one dam and two fountain water samples) were analyzed by the developed method, atenolol

  14. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  15. Reversible switching in phase-change materials

    OpenAIRE

    Wojciech Wełnic; Matthias Wuttig

    2008-01-01

    Phase-change materials are successfully employed in optical data storage and are becoming a promising candidate for future electronic storage applications. Despite the increasing technological interest, many fundamental properties of these materials remain poorly understood. However, in the last few years the understanding of the material properties of phase-change materials has increased significantly. At the same time, great advances have been achieved in technological applications in elect...

  16. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  17. Microextraction by Packed Sorbent (MEPS and Solid-Phase Microextraction (SPME as Sample Preparation Procedures for the Metabolomic Profiling of Urine

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2014-01-01

    Full Text Available For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS and solid-phase microextraction (SPME, completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones.

  18. Multifunctional Composite Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  19. Non-carbon sorbents for mercury removal from flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, G.O.; Dubovik, M.; Cesario, M. [TDA Research Inc., Wheat Ridge, CO (United States)

    2005-07-01

    TDA Research Inc. is developing a new sorbent that can effectively remove mercury from flue gases. It is made of non-carbon based materials and will therefore not alter the properties of the fly ash. The sorbent can be produced as an injectable powder. The paper summarises the initial testing results of the new sorbent. The sorbent exhibited 7.5 to 11.0 mg/g mercury absorption capacity under representative flue gas streams depending on the operating temperature and gas hourly space velocity. The sorbent also showed resistance to sulfur poisoning by sulfur dioxide. 6 refs., 3 figs., 1 tab.

  20. Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography.

    Science.gov (United States)

    Cordero-Vaca, María; Trujillo-Rodríguez, María J; Zhang, Cheng; Pino, Verónica; Anderson, Jared L; Afonso, Ana M

    2015-06-01

    Four different crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were evaluated in an automated direct-immersion solid-phase microextraction method (automated DI-SPME) in combination with gas chromatography (GC). The crosslinked PIL coatings were based on vinyl-alkylimidazolium- (ViCnIm-) or vinylbenzyl-alkylimidazolium- (ViBzCnIm-) IL monomers, and di-(vinylimidazolium)dodecane ((ViIm)2C12-) or di-(vinylbenzylimidazolium)dodecane ((ViBzIm)2C12-) dicationic IL crosslinkers. In addition, a PIL-based hybrid coating containing multi-walled carbon nanotubes (MWCNTs) was also studied. The studied PIL coatings were covalently attached to derivatized nitinol wires and mounted onto the Supelco assembly to ensure automation when acting as SPME coatings. Their behavior was evaluated in the determination of a group of water pollutants, after proper optimization. A comparison was carried out with three common commercial SPME fibers. It was observed that those PILs containing a benzyl group in their structures, either in the IL monomer and crosslinker (PIL-1-1) or only in the crosslinker (PIL-0-1), were the most efficient sorbents for the selected analytes. The validation of the overall automated DI-SPME-GC-flame ionization detector (FID) method gave limits of detection down to 135 μg · L(-1) for p-cresol when using the PIL-1-1 and down to 270 μg · L(-1) when using the PIL-0-1; despite their coating thickness: ~2 and ~5 μm, respectively. Average relative recoveries with waters were of 85 ± 14 % and 87 ± 15 % for PIL-1-1 and PIL-0-1, respectively. Precision values as relative standard deviation were always lower than 4.9 and 7.6 % (spiked level between 10 and 750 μg · L(-1), as intra-day precision). Graphical Abstract Automated DI-SPME-GC-FID using crosslinked-PILs sorbent coatings for the determination of waterpollutants.

  1. Intelligent Radiative Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An opportunity to boost energy efficiency in homes and buildings exists through the design of functional radiative properties in glass and other building materials....

  2. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  3. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives.

    Science.gov (United States)

    Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi

    2014-08-01

    A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.

  4. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. From phase-change materials to thermoelectrics?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthias N.; Rosenthal, Tobias; Oeckler, Oliver [Dept. of Chemistry, Ludwig Maximilian Univ. Munich (Germany); Stiewe, Christian [German Aerospace Center, Cologne (Germany)

    2010-07-01

    Metastable tellurides play an important role as phase-change materials in data storage media and non-volatile RAM devices. The corresponding crystalline phases with very simple basic structures are not stable as bulk materials at ambient conditions, however, for a broad range of compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-type high-temperature phases are characterized by a large number of vacancies randomly distributed over the cation position, which order as 2D vacancy layers upon cooling. Short-range order in quenched samples produces pronounced nanostructures by the formation of twin domains and finite intersecting vacancy layers. As phase-change materials are usually semimetals or small-bandgap semiconductors and efficient data storage requires low thermal conductivity, bulk materials with similar compositions and properties can be expected to exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have shown that germanium antimony tellurides with compositions close to those used as phase-change materials in rewritable Blu-Ray Discs, e.g. (GeTe){sub 12}Sb{sub 2}Te{sub 3}, exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 C if a nanodomain structure is induced by rapidly quenching the cubic high-temperature phase. Structural changes have been elucidated by X-ray diffraction and high-resolution electron microscopy. (orig.)

  6. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  7. Phase change materials in energy sector - applications and material requirements

    Science.gov (United States)

    Kuta, Marta; Wójcik, Tadeusz M.

    2015-05-01

    Phase change materials (PCMs) have been applying in many areas. One of them is energy field. PCMs are interesting for the energy sector because their use enables thermal stabilization and storage of large amount of heat. It is major issue for safety of electronic devices, thermal control of buildings and vehicles, solar power and many others energy domains. This paper contains preliminary results of research on solid-solid phase change materials designed for thermal stabilisation of electronic devices.

  8. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  9. Crystallization kinetics of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Sontheimer, Tobias; Wuttig, Matthias [I. Physikalisches Institut (1A), RWTH Aachen (Germany)

    2008-07-01

    Phase change materials are fascinating materials. They can be rapidly switched between two metastable states, the amorphous and crystalline phase, which show pronounced contrast in their optical and electrical properties. They are already widely used as the active layer in rewritable optical media and are expected to be used in the upcoming phase change random access memory (PRAM). Here we show measurements of the crystallization kinetics of chalcogenide materials that lead to a deeper understanding of these processes. This work focuses mainly on the Ge-Sb-Te system but also includes Ag-In-Te materials. The crystallization behaviour of these materials was investigated with an ex-situ annealing method employing the precise oven of a differential scanning calorimeter and imaging techniques employing atomic force microscopy and optical microscopy.

  10. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  12. A novel approach to mitigating sulphur dioxide emissions and producing a mercury sorbent material using oil-sands fluid coke

    International Nuclear Information System (INIS)

    Morris, E.; Jia, C.Q.; Tong, S.

    2008-01-01

    Pyrometallurgical smelting operations are a major source of sulphur dioxide (SO 2 ) which is a precursor to acid rain and increased levels of UV-B penetration in boreal lakes. Mercury is also released in copper smelter off-gas, which can bioaccumulate and cause neurological disorders and death in humans. Fluid coke is produced in massive quantities as a by-product of bitumen upgrading at Syncrude Canada's facility in Fort McMurray, Alberta. Oilsands fluid coke can be used to reduce SO 2 and produce elemental sulphur as a co-product. This process was dubbed SOactive. The reaction physically activates the fluid coke to produce a sulphur-impregnated activated carbon (SIAC) which is known as ECOcarbon. Some studies have indicated that SIAC is well suited for the removal of vapour phase mercury, mainly due to the formation of stable mercuric sulphide species. This paper discussed the findings made to date in relation to the SOactive process and the characterization of ECOcarbons. The paper discussed the use of fluid coke for reducing SO 2 emissions while producing elemental sulphur as well as coke-SO 2 -oxygen (O 2 ) and coke-SO 2 -water (H 2 O) systems. The paper also examined the production of SIAC products for use in capturing vapour phase mercury. The paper presented the materials and methodology, including an illustration of the apparatus used in reduction of SO 2 and activation of fluid coke. It was concluded that more work is still needed to analyse the effect of O 2 and SO 2 reduction and SIAC properties under smelter flue gas conditions. 10 refs., 1 tab., 8 figs

  13. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    Science.gov (United States)

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Phase transformations, stability, and materials interactions

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Brewer, L.; Cost, J.R.; Shewmon, P.

    1977-07-01

    The proceedings of the Materials Sciences Workshop on Phase Transformations, Stability, and Materials Interactions are divided into sections according to the following topics: (I) workshop scope and priorities; (II) study group reports--ERDA mission needs; (III) study group reports--technical area research priorities

  15. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  16. Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Neng-Zhi [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China); Liu, Ping [School of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi 530021 (China); Su, Xiao-Chuan; Liao, Yan-Hua; Lei, Ning-Sheng [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China); Liang, Yong-Hong [School of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi 530021 (China); Zhou, Shao-Huan; Lin, Wen-Si; Chen, Jie [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China); Feng, Yu-Qi [Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072 (China); Tang, Yang, E-mail: tycarson2@163.com [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China)

    2017-06-01

    Aflatoxins (AFs) are highly toxic, mutagenic, carcinogenic, and teratogenic secondary metabolites produced by the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus. AFs tend to contaminate a wide range of foods which is a serious and recurring food safety problem worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, IAC method is limited in the large-scale food analysis because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a promising solid-phase extraction (SPE) method based on commercially available humic acid-bonded silica (HAS) sorbent, followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) analysis. In HAS-SPE, AFs can be captured by the HAS sorbent with both hydrophobic and hydrophilic interactions, whereas the oil matrix was captured only with the hydrophobic interactions. The oil matrix can be sufficiently washed off with isopropanol, while the AFs were still retained on the SPE packing, thus achieving selective extraction of AFs and clean-up of oil matrices. Under the optimal conditions of HAS-SPE, satisfactory recoveries ranging from 82% to 106% for four AFs (B{sub 1}, B{sub 2}, G{sub 1}, and G{sub 2}) were achieved in various oil matrices, containing blended oil, tea oil, rapeseed oil, peanut oil, sunflower seed oil, corn oil, blended olive oil, rice oil, soybean oil, and sesame oil. Only minor matrix effects ranging from 99% to 105% for four AFs were observed. Moreover, the LODs of AFs between 0.012 and 0.035 μg/kg completely meet the regulatory levels fixed by the EU, China or other countries. The methodology was further validated for assaying the naturally contaminated peanut oils, and consistent results between the HAS-SPE and the referenced IAC were

  17. Tributyl phosphate removal from reprocessing off-gas streams using a selected sorbent

    International Nuclear Information System (INIS)

    Parker, G.B.

    1980-01-01

    Laboratory experiments used small laboratory-scale columns packed with selected sorbent materials to remove tributyl phosphate (TBP) and iodine at conditions approaching those in actual reprocessing off-gas streams. The sorbent materials for TBP removal were placed upstream of iodine sorbent materials to protect the iodine sorbent from the deleterious effects of TBP. Methyl iodide in an airstream containing 30% TBP in normal paraffin hydrocarbons (NPH) and water vapor was metered to two packed columns of sorbents simultaneously (in parallel). One column contained a segment of 8-in. x 14-in. mesh alumina sorbent for TBP removal, the other did not. The measure of the effectiveness of TBP sorbent materials for TBP removal was determined by comparing the iodine retention of the iodine sorbent materials in the two parallel columns. Results from an 18 wt % Ag substituted mordenite iodine sorbent indicated that the iodine retention capacity of the sorbent was reduced 60% by the TBP and that the column containing iodine sorbent material protected by the alumina TBP sorbent retained 30 times more iodine than the column without TBP sorbent. TBP concentration was up to 500 mg/m 3 . Similar experiments using a 7 wt % Ag impregnated silica gel indicated that the TBP vapor had little effect on the iodine retention of the silica gel material. The stoichiometric maximum amount of iodine was retained by the silica gel material. Further experiments were conducted assessing the effects of NO 2 on iodine retention of this 7 wt % Ag sorbent. After the two columns were loaded with iodine in the presence of TBP (in NPH), one column was subjected to 2 vol % NO 2 in air. From visual comparison of the two columns, it appeared that the NO 2 regenerated the silica gel iodine sorbent and that iodine was washed off the silica gel iodine sorbent leaving the sorbent in the original state

  18. Development of an aflatoxin B1 specific molecularly imprinted solid phase extraction sorbent for the selective pre-concentration of toxic aflatoxin B1 from child weaning food, Tsabana

    Directory of Open Access Journals (Sweden)

    Semong Oratile

    2017-03-01

    Full Text Available This paper presents the synthesis, optimization and application of a molecularly imprinted polymer (MIP sorbent for the selective extraction and pre-concentration of the potent toxin, aflatoxin B1 (AFB1, from the child weaning food, Tsabana (manufactured in Serowe, Botswana. As a food safety regulatory measure, Tsabana must be cleared of hazardous aflatoxins, especially AFB1, before consumption. This is because AFB1 is the most common and potent of the aflatoxins commonly found in cereals. Accurate analysis of AFB1 is challenging because it exists in very low concentrations in complex, ‘dirty’ matrices such as food, making it difficult to detect using analytical instruments, even if these analytical techniques have sensitivities at the femto level. The MIP extraction sorbent synthesized in this paper deals with these challenges by selectively pre-concentrating AFB1 from real Tsabana samples, successfully achieving a pre-concentration factor of 5 and therefore significantly increasing ABF1 signal intensity for easier detection. Further advantages of this system include the short time (25.0 minutes and reasonable optimal MIP dose (20.0 mg needed for maximum AFB1 extraction by the sorbent. Scanning electron microscopy revealed that the prepared AFB1 powder particles have spherical geometries and reasonably small sizes (800 nm, two advantageous physical characteristics that are associated with excellent sorbent materials.

  19. Simple test guidelines for screening oilspill sorbents for toxicity

    International Nuclear Information System (INIS)

    Blenkinsopp, S.A.; Sergy, G.; Doe, K.; Jackman, P.; Huybers, A.

    1998-01-01

    Environment Canada's Emergencies Science Division has established a program to develop a standard test method suitable for evaluating the toxicity of common sorbent materials. Sorbents are used to absorb or adsorb spilled oil and other hazardous materials. They vary widely in composition and packaging. They are often treated with oleophilic and hydrophobic compounds to improve performance and have been used in large quantities during oil spills. Until now, their potential toxicity has never been considered. Three tests have been evaluated to determine how appropriate they are in screening the toxicity of sorbents. Seven toxicity test recommendations for sorbents were presented. 7 refs., 3 tabs., 2 figs

  20. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  1. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  2. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  3. Ternary mixed-mode silica sorbent of solid-phase extraction for determination of basic, neutral and acidic drugs in human serum.

    Science.gov (United States)

    Jin, Shupei; Qiao, Yinghua; Xing, Jun

    2018-06-01

    In this study, a ternary mixed-mode silica sorbent (TMSS) with octamethylene, carboxyl, and amino groups was prepared via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction and a subsequent reduction of azide to primary amine. While used in solid-phase extraction (SPE), the retention behavior of TMSS towards a total of nine kinds of basic, neutral, and acidic drugs was investigated in detail. The results revealed that hydrophobic, ion-exchange interaction, and electrostatic repulsion between TMSS and the analytes were closely related to the retention behavior of TMSS. Besides, the log K ow value of the analyte was also a factor influencing the retention behavior of analytes on TMSS. The nine analytes could be retained by TMSS simultaneously and then, were eluted into two fractions according to the acid-base property of the analytes for further determinations. The acidic and neutral analytes were in one fraction, and the basic ones in the other fraction. When used to treat the human serum spiked with the nine drugs, TMSS offered higher recoveries than BakerBond CBA and comparable recoveries to Oasis WCX. It should be noted TMSS had better purifying capability for human serum than Oasis WCX. Under the optimized SPE conditions, a method of SPE hyphenated to high-performance liquid chromatography-ultraviolet detection (HPLC-UV) for determination of the basic, neutral, and acidic drugs spiked in human serum was established. For the nine drugs, the linear ranges were all between 5.0 and 1000 μg L -1 with correlation coefficients (R 2 ) above 0.9990, and the limits of detection (LODs) were in the range of 0.8-2.3 μg L -1 . The intra-day and inter-day relative standard deviations (RSDs) were less than 5.3 and 8.8%, respectively. Graphical abstract Treating drugs in human serum by SPE with ternary mixed-mode silica sorbent.

  4. Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils.

    Science.gov (United States)

    Zhou, Neng-Zhi; Liu, Ping; Su, Xiao-Chuan; Liao, Yan-Hua; Lei, Ning-Sheng; Liang, Yong-Hong; Zhou, Shao-Huan; Lin, Wen-Si; Chen, Jie; Feng, Yu-Qi; Tang, Yang

    2017-06-01

    Aflatoxins (AFs) are highly toxic, mutagenic, carcinogenic, and teratogenic secondary metabolites produced by the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus. AFs tend to contaminate a wide range of foods which is a serious and recurring food safety problem worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, IAC method is limited in the large-scale food analysis because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a promising solid-phase extraction (SPE) method based on commercially available humic acid-bonded silica (HAS) sorbent, followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) analysis. In HAS-SPE, AFs can be captured by the HAS sorbent with both hydrophobic and hydrophilic interactions, whereas the oil matrix was captured only with the hydrophobic interactions. The oil matrix can be sufficiently washed off with isopropanol, while the AFs were still retained on the SPE packing, thus achieving selective extraction of AFs and clean-up of oil matrices. Under the optimal conditions of HAS-SPE, satisfactory recoveries ranging from 82% to 106% for four AFs (B 1 , B 2 , G 1 , and G 2 ) were achieved in various oil matrices, containing blended oil, tea oil, rapeseed oil, peanut oil, sunflower seed oil, corn oil, blended olive oil, rice oil, soybean oil, and sesame oil. Only minor matrix effects ranging from 99% to 105% for four AFs were observed. Moreover, the LODs of AFs between 0.012 and 0.035 μg/kg completely meet the regulatory levels fixed by the EU, China or other countries. The methodology was further validated for assaying the naturally contaminated peanut oils, and consistent results between the HAS-SPE and the referenced IAC were obtained. In

  5. Dispersive solid-phase extraction for the determination of trace organochlorine pesticides in apple juices using reduced graphene oxide coated with ZnO nanocomposites as sorbent.

    Science.gov (United States)

    Sun, Ting; Sun, Hefeng; Zhao, Feng

    2017-09-01

    In this work, reduced graphene oxide coated with ZnO nanocomposites was used as an efficient sorbent of dispersive solid-phase extraction and successfully applied for the extraction of organochlorine pesticides from apple juice followed by gas chromatography with mass spectrometry. Several experimental parameters affecting the extraction efficiencies, including the amount of adsorbent, extraction time, and the pH of the sample solution, as well as the type and volume of eluent solvent, were investigated and optimized. Under the optimal experimental conditions, good linearity existed in the range of 1.0-200.0 ng/mL for all the analytes with the correlation coefficients (R 2 ) ranging from 0.9964 to 0.9994. The limits of detection of the method for the compounds were 0.011-0.053 ng/mL. Good reproducibilities were acquired with relative standard deviations below 8.7% for both intraday and interday precision. The recoveries of the method were in the range of 78.1-105.8% with relative standard deviations of 3.3-6.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of particle morphology of biochanin A molecularly imprinted polymers and their properties as a potential sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowska, Anna M.; Poliwoda, Anna, E-mail: Anna.Poliwoda@uni.opole.pl; Wieczorek, Piotr P.

    2015-04-01

    Molecularly imprinted polymers (MIPs) with biochanin A as a template were obtained using a bulk polymerization with non-covalent imprinting approach. The polymers were prepared in acetonitrile as porogen, using ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The synthesis, with an application of 1′,1′-azobis(cyclohexanecarbonitrile) (ACHN) as an initiator, has been performed thermally. During the synthesis process the effect of different functional monomers such as methacrylic acid (MAA), acrylamide (AA) and 4-vinylpyridine (4-VP) was investigated. The application of nitrogen sorption porosimetry, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) permitted the characterization and evaluation of synthesized polymers. The adsorption capacity of obtained MIPs was checked by using the binding testing. All synthesized polymers were evaluated as solid-phase extraction (SPE) sorbents for isolation and preconcentration of biochanin A and its analogues, daidzein and genistein. The MIPs exhibited higher affinity for biochanin A over competitive compounds. - Highlights: • The molecularly imprinted polymers with biochanin A as a template were synthesized. • The surface of synthesized monoliths was formed mainly from mesopores (73–77%). • Biochanin A was effectively concentrated in each of the synthesized polymers (recovery > 89.8%). • The results show potential ability of synthesized MIPs in analysis of phytoestrogens in real samples.

  7. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry.

    Science.gov (United States)

    Casado, Natalia; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Sierra, Isabel

    2016-08-12

    A quick, sensitive and selective analytical reversed-phase multi-residue method using ultra-high performance liquid chromatography coupled to an ion-trap mass spectrometry detector (UHPLC-IT-MS/MS) operating in both positive and negative ion mode was developed for the simultaneous determination of 23 veterinary drug residues (β-blockers, β-agonists and Non-Steroidal Anti-inflammatory Drugs (NSAIDs)) in meat samples. The sample treatment involved a liquid-solid extraction followed by a solid-phase extraction (SPE) procedure. SBA-15 type mesoporous silica was synthetized and modified with octadecylsilane, and the resulting hybrid material (denoted as SBA-15-C18) was applied and evaluated as SPE sorbent in the purification of samples. The materials were comprehensively characterized, and they showed a high surface area, high pore volume and a homogeneous distribution of the pores. Chromatographic conditions and extraction procedure were optimized, and the method was validated according to the Commission Decision 2002/657/EC. The method detection limits (MDLs) and the method quantification limits (MQLs) were determined for all the analytes in meat samples and found to range between 0.01-18.75μg/kg and 0.02-62.50μg/kg, respectively. Recoveries for 15 of the target analytes ranged from 71 to 98%. In addition, for comparative purpose SBA-15-C18 was evaluated towards commercial C18 amorphous silica. Results revealed that SBA-15-C18 was clearly more successful in the multi-residue extraction of the 23 mentioned analytes with higher recovery values. The method was successfully tested to analyze prepacked preparations of mince bovine meat. Traces of propranolol, ketoprofen and diclofenac were detected in some samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  9. Sorbent Scoping Studies

    International Nuclear Information System (INIS)

    Chancellor, Christopher John

    2016-01-01

    The Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  10. Sorbent Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Carlsbad, NM (United States). Difficult Waste Team

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  11. Sorbent selection and design considerations for uranium trapping

    International Nuclear Information System (INIS)

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01

    The efficient removal of UF 6 from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications

  12. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  13. Quality criteria for phase change materials selection

    International Nuclear Information System (INIS)

    Vitorino, Nuno; Abrantes, João C.C.; Frade, Jorge R.

    2016-01-01

    Highlights: • Selection criteria of phase change materials for representative applications. • Selection criteria based on reliable solutions for latent heat transfer. • Guidelines for the role of geometry and heat transfer mechanisms. • Performance maps based on PCM properties, operating conditions, size and time scales. - Abstract: Selection guidelines are primary criterion for optimization of materials for specific applications in order to meet simultaneous and often conflicting requirements. This is mostly true for technologies and products required to meet the main societal needs, such as energy. In this case, gaps between supply and demand require strategies for energy conversion and storage, including thermal storage mostly based on phase change materials. Latent heat storage is also very versatile for thermal management and thermal control by allowing high storage density within narrow temperature ranges without strict dependence between stored thermal energy and temperature. Thus, this work addressed the main issues of latent heat storage from a materials selection perspective, based on expected requirements of applications in thermal energy storage or thermal regulation. Representative solutions for the kinetics of latent heat charge/discharge were used to derive optimization guidelines for high energy density, high power, response time (from fast response to thermal inertia), etc. The corresponding property relations were presented in graphical forms for a wide variety of prospective phase change materials, and for wide ranges of operating conditions, and accounting for changes in geometry and mechanisms.

  14. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system.

    Science.gov (United States)

    Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo

    2017-12-15

    A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cleanup of Savannah River Plant solvent using solid sorbents

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1985-04-01

    The degradation products produced in Purex solvent by exposure to nitric acid and radiation can be divided into two groups: those which are removed by scrubbing with sodium carbonate solutions and those which are not; these latter materials are called secondary degradation products. This study investigated the use of solid sorbents for removal of the secondary degradation products from first-cycle Savannah River Plant solvent that had been previously washed with sodium carbonate solution. Silica gel, activated charcoal, macroreticular resin, attapulgite clay and activated alumina were the sorbents investigated in preliminary testing. Activated alumina was found to be most effective for improving phase separation of the solvent from sodium carbonate solutions and for increasing the interfacial tension. The activated alumina was also the sorbent most useful for removing complexants which retain plutonium at low acidity, but it was less effective in removing anionic surfactants and ruthenium. We found that the capacity of the activated alumina was greatly improved by drying the solvent before treatment

  16. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  17. Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent.

    Science.gov (United States)

    Ma, Wanwan; Row, Kyung Ho

    2018-07-20

    A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge.

    Science.gov (United States)

    Cerqueira, Maristela B R; Caldas, Sergiane S; Primel, Ednei G

    2014-04-04

    Recent studies have shown a decrease in the concentration of pesticides, pharmaceuticals and personal care products (PCPs) in water after treatment. A possible explanation for this phenomenon is that these compounds may adhere to the sludge; however, investigation of these compounds in drinking water treatment sludge has been scarce. The sludge generated by drinking water treatment plants during flocculation and decantation steps should get some special attention not only because it has been classified as non-inert waste but also because it is a very complex matrix, consisting essentially of inorganic (sand, argil and silt) and organic (humic substances) compounds. In the first step of this study, three QuEChERS methods were used, and then compared, for the extraction of pesticides (atrazine, simazine, clomazone and tebuconazole), pharmaceuticals (amitriptyline, caffeine, diclofenac and ibuprofen) and PCPs (methylparaben, propylparaben, triclocarban and bisphenol A) from drinking water treatment sludge. Afterwards, the study of different sorbents in the dispersive solid phase extraction (d-SPE) step was evaluated. Finally, a new QuEChERS method employing chitin, obtained from shrimp shell waste, was performed in the d-SPE step. After having been optimized, the method showed limits of quantification (LOQ) between 1 and 50 μg kg(-1) and the analytical curves showed r values higher than 0.98, when liquid chromatography tandem mass spectrometry was employed. Recoveries ranged between 50 and 120% with RSD≤15%. The matrix effect was evaluated and compensated with matrix-matched calibration. The method was applied to drinking water treatment sludge samples and methylparaben and tebuconazole were found in concentration

  19. Determination of enrofloxacin by room-temperature phosphorimetry after solid phase extraction on an acrylic polymer sorbent

    Science.gov (United States)

    de Souza, Cabrini F.; Martins, Renata K. S.; da Silva, Andrea R.; da Cunha, Alessandra L. M. C.; Aucélio, Ricardo Q.

    A phosphorimetric method was developed to enable the determination of enrofloxacin using photochemical derivatization which was used to both improve detection limits and to minimize the uncertainty of measurements. Phosphorescence was induced on cellulose containing TlNO3. Absolute limit of detection at the ng range and linear analytical response over three orders of magnitude were achieved. A metrological study was made to obtain the combined uncertainty value and to identify that the precision was mainly affected by the changing of substrates when measuring the signal from each replicate. Pharmaceutical formulations containing enrofloxacin were successfully analyzed by the method and the results were similar to the ones achieved using a HPLC method. A solid phase extraction on an acrylic polymer was optimized to separate enrofloxacin from interferents such as diclofenac and other components from biological matrices, which allowed the successful use of the method in urine analysis.

  20. Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4-Ag core-shell nanoparticles: Characterization and application

    International Nuclear Information System (INIS)

    Tahmasebi, Elham; Yamini, Yadollah

    2012-01-01

    Graphical abstract: Self assembling of bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid on Fe 3 O 4 -Ag core-shell nanoparticles and application of it for solid phase extraction of PAHs. Highlights: ► A novel sorbent for magnetic solid-phase extraction of PAHs was introduced. ► Silver was coated on Fe 3 O 4 nanoparticles (MNPs) by reduction of AgNO 3 with NaBH 4 . ► Bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid self-assembled on silver coated MNPs. ► Size, morphology, composition and properties of the nanoparticles were characterized. ► Extraction efficiency of the sorbent was investigated by extraction of five PAHs. - Abstract: A novel sorbent for magnetic solid-phase extraction by self-assembling of organosulfur compound, (bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid), onto the silver-coated Fe 3 O 4 nanoparticles was introduced. Due to the formation of covalent bond of S-Ag, the new coating on the silver surface was very stable and showed high thermal stability (up to 320 °C). The size, morphology, composition, and properties of the prepared nanoparticles have also been characterized and determined using scanning electron microscopy (SEM), energy-dispersive X-ray analyzer (EDX), dynamic light scattering (DLS), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). Extraction efficiency of the new sorbent was investigated by extraction of five polycyclic aromatic hydrocarbons (PAHs) as model compounds. The optimum extraction conditions for PAHs were obtained as of extraction time, 20 min; 50 mg sorbent from 100 mL of the sample solution, and elution with 100 μL of 1-propanol under fierce vortex for 2 min. Under the optimal conditions, the calibration curves were obtained in the range of 0.05–100 μg L −1 (R 2 > 0.9980) and the LODs (S/N = 3) were obtained in the range of 0.02–0.10 μg L −1 . Relative standard deviations (RSDs) for intra- and inter-day precision were 2.6–4.2% and 3.6–8

  1. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  2. The role of graphene-based sorbents in modern sample preparation techniques.

    Science.gov (United States)

    de Toffoli, Ana Lúcia; Maciel, Edvaldo Vasconcelos Soares; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2018-01-01

    The application of graphene-based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene-based material, their properties, synthesis routes, and the most important applications in both off-line and on-line sample preparation techniques. The discussion of the off-line approaches includes methods derived from conventional solid-phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on-line approaches focus on the use of graphene-based material mainly in on-line solid phase extraction, its variation called in-tube solid-phase microextraction, and on-line microdialysis systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  4. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  5. Laboratory studies and model simulations of sorbent material behavior for an in-situ passive treatment barrier

    International Nuclear Information System (INIS)

    Aloysius, D.; Fuhrmann, M.

    1995-01-01

    This paper presents a study combining laboratory experiments and model simulations in support of the design and construction of a passive treatment barrier (or filter wall) for retarding the migration of Sr-90 within a water-bearing surficial sand and gravel layer. Preliminary evaluation was used to select materials for column testing. A one-dimensional finite-difference model was used to simulate the laboratory column results and extrapolation of the calibrated model was then used to assess barrier performance over extended time frames with respect to Sr-90 breakthrough and loading on the filter media. The final results of the study showed that 20 by 50 mesh clinoptilolite will attenuate Sr-90 with a maximum life expentancy of approximately 10 years. This time period is based on allowable limits of Sr-90 activity on the filter media and is also a function of site-specific conditions

  6. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials

    International Nuclear Information System (INIS)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.

    2012-01-01

    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is 2 +, Cr 3 +. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca 2 +, Mg 2 +, Na + , K + ), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr x .Fe 1 -x) (OH) 3 which favor Cr sorption. (Author) 26 refs.

  7. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  8. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    Science.gov (United States)

    2017-12-13

    Textiles modified in this manner have been shown to reduce or eliminate transport of chemical warfare agents and simulants across the fabric barrier...B.J. Johnson; B.J. Melde; M.H. Moore; A.P. Malanoski; J.R. Taft, "Improving sorbents for glycerol capture in biodiesel refinement," Materials 10

  9. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  10. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  11. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  12. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  13. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    materials to seven that were deemed thermodynamically viable for the process. Molecular modeling was used to guide sorbent synthesis through first principles simulations of adsorption and regeneration. Molecular dynamics simulations also modeled the impact of gas phase impurities common in gasified coal streams (e.g., H{sub 2}S) on the adsorption process. The role of inert dopants added for mechanical durability to active sorbent materials was also investigated through molecular simulations. Process simulations were conducted throughout the project to help determine the overall feasibility of the process and to help guide laboratory operating conditions. A large component of the program was the development of sorbent synthesis methods. Three different approaches were used: mechanical alloying (MA), flame spray pyrolysis (FSP), and ultrasonic spray pyrolysis (USP). Sorbents were characterized by a host of analytical techniques and screened for SEWGS performance using a thermogravimetric analyzer (TGA). A feedback loop from screening efforts to sorbent synthesis was established and used throughout the project lifetime. High temperature, high pressure reactor (HTPR) systems were constructed to test the sorbents at conditions mimicking the SEWGS process as identified through process modeling. These experiments were conducted at the laboratory scale to examine sorbents for their CO{sub 2} capacity, conversion of CO to CO{sub 2}, and impacts of adsorption and regeneration conditions, and syngas composition (including impurities and H2O:CO ratio). Results from the HTPR testing showed sorbents with as high as 0.4 g{sub CO{sub 2}}/g{sub sorbent} capacity with the ability to initially shift the WGS completely towards CO{sub 2}/H{sub 2}. A longer term experiment with a simple syngas matrix and N{sub 2}/steam regeneration stream showed a USP sorbent to be stable through 50 adsorption-regeneration cycles, though the sorbent tested had a somewhat diminished initial capacity. The program

  14. Material Engineering for Phase Change Memory

    Science.gov (United States)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory

  15. Magnetocaloric materials and first order phase transitions

    DEFF Research Database (Denmark)

    Neves Bez, Henrique

    and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...... heat capacity, magnetization and entropy change measurements. By measuring bulky particles (with a particle size in the range of 5001000 μm) of La(Fe,Mn,Si)13Hz with first order phase transition, it was possible to observe very sharp transitions. This is not the case for finer ground particles which......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...

  16. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  17. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  18. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  19. Sol-gel-graphene-based fabric-phase sorptive extraction for cow and human breast milk sample cleanup for screening bisphenol A and residual dental restorative material before analysis by HPLC with diode array detection.

    Science.gov (United States)

    Samanidou, Victoria; Filippou, Olga; Marinou, Eirini; Kabir, Abuzar; Furton, Kenneth G

    2017-06-01

    Fabric-phase sorptive extraction has already been recognized as a simple and green alternative to the conventional sorbent-based sorptive microextraction techniques, using hybrid organic-inorganic sorbent coatings chemically bonded to a flexible fabric surface. Herein, we have investigated the synergistic combination of the advanced material properties offered by sol-gel graphene sorbent and the simplicity of Fabric phase sorptive extraction approach in selectively extracting bisphenol A and residual monomers including bisphenol A glycerolatedimethacrylate, urethane dimethacrylate, and triethylene glycol dimethacrylate derived dental restorative materials from cow and human breast milk samples. Different coatings were evaluated. Final method development employed sol-gel graphene coated media. The main experimental parameters influencing extraction of the compounds, such as sorbent chemistry used, sample loading conditions, elution solvent, sorption stirring time, elution time, impact of protein precipitation, amount of sample, and matrix effect, were investigated and optimized. Absolute recovery values from standard solutions were 50% for bisphenol A, 78% for T triethylene glycol dimethacrylate, 110% for urethane dimethacrylate, and 103% for bisphenol A glycerolatedimethacrylate, while respective absolute recovery values from milk were 30, 52, 104, and 42%. Method validation was performed according to European Decision 657/2002/EC in terms of selectivity, sensitivity, linearity, accuracy, and precision. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhanced capture of elemental mercury by bamboo-based sorbents

    International Nuclear Information System (INIS)

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-01-01

    Highlights: ► The KI-modified BC has excellent capacity for elemental mercury removal. ► The chemisorption plays a dominant role for the modified BC materials. ► The BC-I has strong anti-poisoning ability with the presence of NO or SO 2 . - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO 2 on gas-phase Hg 0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents’ BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO 2 could inhibit Hg 0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  1. Novel Sorbent to Clean Up Biogas for CHPs

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gökhan O. [TDA Research, Incorporated, Wheat Ridge, CO (United States); Jayataman, Ambalavanan [TDA Research, Incorporated, Wheat Ridge, CO (United States); Schaefer, Matthew [TDA Research, Incorporated, Wheat Ridge, CO (United States); Ware, Michael [TDA Research, Incorporated, Wheat Ridge, CO (United States); Hunt, Jennifer [FuelCell Energy, Inc., Danbury, CT (United States); Dobek, Frank [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  2. Anomalous phase change characteristics in Fe-Te materials

    International Nuclear Information System (INIS)

    Fu, X. T.; Song, W. D.; Ji, R.; Ho, H. W.; Wang, L.; Hong, M. H.

    2012-01-01

    Phase change materials have become significantly attractive due to its unique characteristics for its extensive applications. In this paper, a kind of phase change material, which consists of Fe and Te components, is developed. The crystallization temperature of the Fe-Te materials is 180 deg. C for Fe 1.19 Te and can be adjusted by the Fe/Te ratio. High-speed phase change in the Fe-Te materials has been demonstrated by nanosecond laser irradiation. Comparing to conventional phase change materials, the Fe-Te materials exhibit an anomalous optical property that has higher reflectivity at amorphous than crystalline state, which is useful for data storage design.

  3. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials; Aplicaciones de los minerales arcillosos de Cayo Guan, Cuba, como adsorbentes de metales pesados y materia prima ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.

    2012-11-01

    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is <0.6 % when the temperature of 1400 degree centigrade is achieved. We have designed a program to calculate compositions of porcelain stoneware prepared from these modified clays adding low-cost raw materials that facilitate the formation of glassy phase ((potassium feldspar and glass cullet) and/or increase the silica (sand and diatomaceous earth used as filters in the brewing industry). With one of these compositions, prepared in the laboratory (60 % of clay, 30 % feldspar and 10 % of diatomaceous earth), calcined at 1250 degree centigrade with a heating rate of 15 degree centigrade/min, the results were: water absorption 0.8 %, and linear shrinkage 21 % without any deformation observed. These clays have been treated with acid to eliminate its high iron content and study its application as an sorbent of heavy metals as Cd{sup 2}+, Cr{sup 3}+. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca{sup {sub 2}} +, Mg{sup 2} +, Na{sup +}, K{sup +}), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr{sub x}.Fe{sub 1}-x) (OH){sub 3} which favor Cr sorption

  4. Modified Activated Carbon Prepared from Acorn Shells as a New Solid-Phase Extraction Sorbent for the Preconcentration and Determination of Trace Amounts of Nickel in Food Samples Prior to Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ebrahimi, Bahram

    2017-03-01

    A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.

  5. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  6. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  7. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  8. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  9. Polythiophene-coated Fe{sub 3}O{sub 4} superparamagnetic nanocomposite: Synthesis and application as a new sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tahmasebi, Elham [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Moradi, Morteza; Esrafili, Ali [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2013-04-03

    Graphical abstract: In the present work, polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs) have been successfully synthesized. The synthesized Fe{sub 3}O{sub 4}@PTh NPs were applied as an efficient sorbent for extraction and pre-concentration of several typical plasticizer compounds from environmental water samples. Highlights: ► A novel polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs) was synthesized. ► The synthesized Fe{sub 3}O{sub 4}@PTh NPs were characterized by using different instruments. ► The Fe{sub 3}O{sub 4}@PTh NPs were applied as a sorbent for extraction of several plasticizers. ► After extraction, separation of NPs from solution was achieved by a magnetic field. ► The proposed procedure was applied to analysis of the analytes in real water samples. -- Abstract: In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe{sub 3}O{sub 4}@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe{sub 3}O{sub 4}@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount

  10. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Akbarzade, Samaneh; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein; Ghorbani, Mahdi

    2018-01-01

    A selective and sensitive magnetic dispersive solid-phase microextraction (MDSPME) coupled with gas chromatography-mass spectrometry was developed for extraction and determination of organophosphorus pesticides (Sevin, Fenitrothion, Malathion, Parathion, and Diazinon) in fruit juice and real water samples. Zero valent Fe-reduced graphene oxide quantum dots (rGOQDs@ Fe) as a new and effective sorbent were prepared and applied for extraction of organophosphorus pesticides using MDSPME method. In order to study the performance of this new sorbent, the ability of rGOQDs@ Fe was compared with graphene oxide and magnetic graphene oxide nanocomposite by recovery experiments of the organophosphorus pesticides. Several affecting parameters in the microextraction procedure, including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. Under the optimal conditions, the method showed a wide linear dynamic range with R-square between 0.9959 and 0.9991. The limit of detections, the intraday and interday relative standard deviations (n = 5) were less than 0.07 ngmL -1 , 4.7, and 8.6%, respectively. The method was successfully applied for extraction and determination of organophosphorus pesticides in real water samples (well, river and tap water) and fruit juice samples (apple and grape juice). The obtained relative recoveries were in the range of 82.9%-113.2% with RSD percentages of less than 5.8% for all the real samples.

  11. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  12. Recovery evaluation of organophosphorus pesticides from bee pollen by matrix solid-phase dispersion extraction using sorbents based on silica and titania

    International Nuclear Information System (INIS)

    Torres-Perea, C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Medina-Peralta, S; Moguel-Ordóñez, Y B

    2013-01-01

    This work focused on the evaluation of the recovery of organophosphorus pesticides from bee pollen after matrix solid phase-dispersion extraction (MSPD). Materials based on silica, titania and titania modified with polivylnylimidazole or polyestirene were used as adsorbents for the extraction of pesticides. Small amounts of fortified pollen (0.1 g, at 1 micro-g/g of pesticides), adsorbent (0.4 g) and solvent elution (1 mL de acetonitrile – ACN) were used in the extractions. For recovery evaluation, pollen extracts were analyzed by gas chromatography coupled with mass spectrometry.

  13. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  14. New polymer bounces into sorbent market

    International Nuclear Information System (INIS)

    Roy, K.A.

    1991-01-01

    Spectacular spills like the Exxon Valdez capture headlines and dominate conversation, but most releases involve quantities too small to attract media attention. For these spills, companies often rely on sorbents to collect the oil and dispose it. These devices come in a variety of shapes, sizes and absorbent materials, including a new generation of products that offers solid results-literally. This paper reports on the Solidifier which absorbs oil, as well as chlorinated solvents, hydrocarbons and PCBs, and, as the name implies, solidifies into a rubber-like material. A polymer used extensively in the rubber industry is the key to the sorbent's success. Oil and other contaminants, act like catalysts. They dissolve into the polymer, causing its molecules to bond together and form a rubber-like mass. No. 2 diesel fuel oil can be bounced on the floor after it solidifies

  15. Application of phase-change materials in memory taxonomy

    OpenAIRE

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other...

  16. Dispersive micro-solid phase extraction of aromatic amines based on an efficient sorbent made from poly(1,8-diaminonaphtalen) and magnetic multiwalled carbon nanotubes composite.

    Science.gov (United States)

    Jalilian, Niloofar; Ebrahimzadeh, Homeira; Asgharinezhad, Ali Akbar

    2017-05-26

    In this work, the extraction of aromatic amines with an efficient magnetic multiwalled carbon nanotubes/Fe 3 O 4 @Poly(1,8-diaminonaphtalen) (MWCNTs/Fe 3 O 4 @PDAN) composite followed by HPLC-DAD was presented. Imprimis, the comparison among different magnetic nanosorbents including Fe 3 O 4 , MWCNTs/Fe 3 O 4 , Fe 3 O 4 @PDAN and MWCNTs/Fe 3 O 4 @PDAN was conducted. The obtained results, exhibited that the MWCNTs/Fe 3 O 4 @PDAN composite has the highest extraction efficiency for target analytes (3-nitroaniline, 4-chloroaniline, 4-bromoaniline and 3,4-dichloroaniline). This sorbent was characterized by Fourier transform infrared spectroscopy, X-ray dispersive spectroscopy, thermogravimetry analysis, scanning electron microscopy, transition electron microscopy, vibrating sample magnetometry and X-ray diffraction. Design of experiment approach was applied to find out the optimal experimental conditions. The optimal extraction conditions were: pH of the sample, 10; sorbent amount, 10mg; sorption time, 15min; salt concentration, 10% w/w; type and volume of the eluent, 0.01molL -1 HCl in acetonitrile, 145μL; elution time; 2min. Under the optimal extraction conditions detection limits and linear dynamic ranges were achieved in the range of 0.1-0.25μgL -1 and 0.25-500μgL -1 , respectively. The percent of extraction recovery and relative standard deviations (n=5) were in the range of 31.2-82.8% and 3.4-5.6%, respectively. Finally, the applicability of the method was successfully confirmed by the extraction and determination of target analytes in various water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electrics Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT)

  18. Experimental and molecular docking investigation on metal-organic framework MIL-101(Cr) as a sorbent for vortex assisted dispersive micro-solid-phase extraction of trace 5-nitroimidazole residues in environmental water samples prior to UPLC-MS/MS analysis.

    Science.gov (United States)

    Lu, Nan; Wang, Ting; Zhao, Pan; Zhang, Lianjun; Lun, Xiaowen; Zhang, Xueli; Hou, Xiaohong

    2016-11-01

    In the presented work, metal-organic framework (MOF) material MIL-101(Cr) (MIL, Matérial Institute Lavoisier) was used as a sorbent for vortex assisted dispersive micro-solid-phase extraction (VA-D-μ-SPE) of trace amount of metronidazole (MNZ), ronidazole (RNZ), secnidazole (SNZ), dimetridazole (DMZ), tinidazole (TNZ), and ornidazole (ONZ) in different environmental water samples. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was used to quantify the target analytes. The extraction conditions, including type of sorbents, amount of MIL-101(Cr), solution pH, extraction method, extraction time, effect of salt, and elution conditions were investigated. Upon the optimal conditions, the developed method showed an excellent extraction performance with the average recovery ranging from 75.2 to 98.8 %. Good sensitivity levels were achieved with the detection limits of 0.03∼0.06 μg/L and the quantitation limits of 0.09∼0.20 μg/L. The linear ranges were varied from 0.1 to 20 for SNZ and ONZ and from 0.2 to 40 μg/L for MNZ, RNZ, DMZ, and TNZ (r 2  > 0.992), and repeatability of the method was satisfactory with the relative standard deviations (RSD) extraction and determination of 5-nitroimidazoles (5-NDZs) in 12 real water samples, showing the positive findings of MNZ and TNZ ranging from 0.3 to 1.0 μg/L. Furthermore, molecular docking was applied to explain the molecular interactions and free binding energies between MIL-101(Cr) and 5-NDZs, providing a deep insight into the adsorption mechanism. The proposed method exhibited the advantages of simplicity, rapidly, less solvent consumption, ease of operation, higher sensitivity, and lower matrix effect. Graphical abstract Schematic diagram of the extraction process and molecular docking investigation.

  19. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    Science.gov (United States)

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Core-shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples.

    Science.gov (United States)

    Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban

    2018-10-15

    In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  2. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  3. Phase change materials in non-volatile storage

    OpenAIRE

    Ielmini, Daniele; Lacaita, Andrea L.

    2011-01-01

    After revolutionizing the technology of optical data storage, phase change materials are being adopted in non-volatile semiconductor memories. Their success in electronic storage is mostly due to the unique properties of the amorphous state where carrier transport phenomena and thermally-induced phase change cooperate to enable high-speed, low-voltage operation and stable data retention possible within the same material. This paper reviews the key physical properties that make this phase so s...

  4. Latent Heat Storage Through Phase Change Materials

    Indian Academy of Sciences (India)

    IAS Admin

    reducing storage volume for different materials. The examples are numerous: ... Latent heat is an attractive way to store solar heat as it provides high energy storage density, .... Maintenance of the PCM treated fabric is easy. The melted PCM.

  5. Universal Orbital Material Processing Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need for sustainable space operations and full utilization of the International Space Station (ISS) and specifically to advance the "Materials,...

  6. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  7. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  8. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  9. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  10. Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances

    Directory of Open Access Journals (Sweden)

    Pijarowski Piotr Marek

    2014-06-01

    Full Text Available A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.

  11. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    Science.gov (United States)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  12. Phase change materials: science and applications

    National Research Council Canada - National Science Library

    Raoux, Simone; Wuttig, Matthias

    2009-01-01

    ... are the Ovonic threshold switch, the multi-state Ovonic Universal Memory (OUM), and the Ovonic cognitive device which emulates the biological neurons with its plasticity and synaptic activity. The field of amorphous and disordered materials created not only a basic new area of science, but also important new technologies. It should be kept in mind that...

  13. Application of phase-change materials in memory taxonomy.

    Science.gov (United States)

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  14. Analysis of {sup 14}CO{sub 2} trapped {sup 14}C Sorbent, and {sup 14}C and {sup 3}H Radioactivity Determination in Resins and Oils from Nuclear Power Plants Using a Combustion Method

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun; Kim, Chang Jong; Choi, Geun Sik; Chung, Kun Ho; Kang, Mun Ja [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Tritium ({sup 3}H, T) generated in the heavy water and C fourteen ({sup 14}C) originated from the graphite moderator or structural materials of the nuclear power plant can cause acute and/or chronic harmful effects by inhalation and ingestion of these radionuclides owing to their binding affinity toward biomolecules and gas phase. {sup 3}H and {sup 14}C radioactivity in ion exchange resins and oils from nuclear power plants were determined by an oxidation (combustion) method. The 0.1 M HNO{sub 3} solution and the {sup 14}C sorbent trapped the {sub 3}H and {sup 14}C respectively in the gas from the combustion of samples. All samples were burned without ash in the combustion system. The reaction of CO{sub 2} and {sup 14}C sorbent was investigated by FT-IR analysis. The study demonstrated the different reaction mechanism according to the CO{sub 2} concentration. In the FT-IR study, it is clearly confirmed that CO{sub 2} from the burned 1 g of sample can be trapped in the {sup 14}C sorbent completely. During the reaction of CO{sub 2} and {sup 14}C sorbent, the temperature and the viscosity of {sup 14}C sorbent increased due to the decrease of enthalpy change and the bonding between each molecules of the sorbent. We expect that our FT-IR study could motivate the development of {sup 14}C sorbent and confirm the {sup 14}C trapping performance of the {sup 14}C sorbent.

  15. Modified carbon nanotubes as a sorbent for solid-phase extraction of gold, and its determination by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Moghaddam, Firouzeh Hassani; Behzadi, Mansoureh; Naghizadeh, Matin; Taher, Mohammad Ali

    2015-01-01

    A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L −1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L −1 ) is ±3.8 %, the detection limit is 31 pg L −1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g −1 . The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %. (author)

  16. Oil spill sorbents: Testing protocol and certification listing program

    International Nuclear Information System (INIS)

    Cooper, D.; Gausemel, I.

    1993-01-01

    Environment Canada's Emergencies Engineering Division is spearheading a program in conjunction with the Canadian General Standards Board that would see the development of a certification and listing program in addition to a national standard for the testing of sorbent materials. Funding for this program is provided by Environment Canada (EC), Canadian Coast Guard (CCG), Marine Spill Response Corporation (MSRC), US Coast Guard (USCG), and US Minerals Management Service (MMS). The test methods are based upon those defined by the American Society for Testing and Materials and previous test methods developed by Environment Canada for our series of reports entitled Selection Criteria and Laboratory Evaluation of Oil Spill Sorbents. This series, which was started in 1975, encompasses a number of commercially available oil spill sorbents tested with different petroleum products and hydrocarbon solvents. The testing program will categorize the sorbents according to their operating characteristics. The main categories are oil spills on water, oil spills on land, and industrial use. The characteristics to be evaluated with the new test protocols include initial and maximum sorption capacities, water pickup, buoyancy, reuse potential, retention profile, disintegration (material integrity), and ease of application and retrieval. In the near future are plans to incorporate changes to the test that would involve increasing the list of test liquids to encompass spills in an industrial setting, in addition to testing sorbent booms and addressing the disposal problem

  17. Nickel nanostructured materials from liquid phase photodeposition

    International Nuclear Information System (INIS)

    Giuffrida, Salvatore; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio; Nigro, Raffaella Lo; Favazza, Maria; Votrico, Enrico; Bongiorno, Corrado; Fragala, Ignazio L.

    2007-01-01

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac) 2 (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl 2 was formed from CCl 4 solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl 2 films

  18. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  19. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  20. Synthesis and test of sorbents based on calcium aluminates for SE-SR

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Di Michele, A.; Gallorini, F.; Petrillo, C.; Sacchetti, F.

    2014-01-01

    Highlights: • Synthesis strategy of CaO incorporation into calcium aluminates was approached. • Three innovative sorbents (M1, M2, M3) were synthesized and characterized. • Sorption capacity of developed sorbents was evaluated in multi-cycle processes. • M3 sorbent showed best performance, much higher than conventional CaO ones. • M3 sorbent functionality in SE-SR process was verified. - Abstract: Greenhouse gases emission of power generation plants will be continuously tightened to achieve European targets in terms of CO 2 emissions. In particular, the switching to a sustainable power generation using fossil fuels will be strongly encouraged in the future. In this context, sorption-enhanced steam reforming (SE-SR) is a promising process because it can be implemented as a CCS pre-combustion methodology. The purpose of this study is to develop and test innovative materials in order to overcome main limitations of standard CaO sorbent, usually used in the SE-SR process. The investigated innovative sorbents are based on incorporation of CaO particles into inert materials which significantly reduce the performance degradation. In particular, sorbent materials based on calcium aluminates were considered, investigating different techniques of synthesis. All synthesized materials were packed, together with the catalyst, in a fixed bed reactor and tested in sorption/regeneration cycles. Significant improvements were obtained respect to standard CaO regarding sorption capacity stability exhibited by the sorbent

  1. Sputter-Resistant Materials for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  2. Low Cost, Light Weight Materials for Mirrors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the phase I program Northwestern and APS, Inc., have manufactured several different materials systems that are lighter than Beryllium and stiffer than...

  3. Organic Phase Change Materials And Their Textile Applications: An Overview

    OpenAIRE

    Sarıer, Nihal; Önder, Emel

    2012-01-01

    An organic phase change material (PCM) possesses the ability to absorb and release large quantity of latent heat during a phase change process over a certain temperature range. The use of PCMs in energy storage and thermal insulation has been tested scientifically and industrially in many applications. The broad based research and development studies concentrating on the characteristics of known organic PCMs and new materials as PCM candidates, the storage methods of PCMs, as well as the reso...

  4. The phase field technique for modeling multiphase materials

    Science.gov (United States)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  5. TRUEX process solvent cleanup with solid sorbents

    International Nuclear Information System (INIS)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs

  6. Nickel nanostructured materials from liquid phase photodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, Salvatore, E-mail: sgiuffrida@unict.it; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Nigro, Raffaella Lo [IMM-CNR (Italy); Favazza, Maria; Votrico, Enrico [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Bongiorno, Corrado [IMM-CNR (Italy); Fragala, Ignazio L. [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy)

    2007-08-15

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac){sub 2} (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl{sub 2} was formed from CCl{sub 4} solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl{sub 2} films.

  7. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Advanced materials for future Phase II LHC collimators

    CERN Document Server

    Dallocchio, A; Arnau Izquierdo, G; Artoos, K

    2009-01-01

    Phase I collimators, equipped with Carbon-Carbon jaws, effectively met specifications for the early phase of LHC operation. However, the choice of carbon-based materials is expected to limit the nominal beam intensity mainly because of the high RF impedance and limited efficiency of the collimators. Moreover, C/C may be degraded by high radiation doses. To overcome these limitations, new Phase II secondary collimators will complement the existing system. Their extremely challenging requirements impose a thorough material investigation effort aiming at identifying novel materials combining very diverse properties. Relevant figures of merit have been identified to classify materials: Metal-diamonds composites look a promising choice as they combine good thermal, structural and stability properties. Molybdenum is interesting for its good thermal stability. Ceramics with non-conventional RF performances are also being evaluated. The challenges posed by the development and industrialization of these materials are ...

  9. IMMOBILIZATION OF MICROALGAE ON THE SURFACE OF NEW CROSS-LINKED POLYETHYLENIMINE-BASED SORBENTS.

    Science.gov (United States)

    Vasilieva, Svetlana; Shibzukhova, Karina; Morozov, Alexey; Solovchenko, Alexei; Bessonov, Ivan; Kopitsyna, Maria; Lukyanov, Alexander; Chekanov, Konstantin; Lobakova, Elena

    2018-04-11

    We report on the use of the polyethylenimine-based (PEI) sorbents for immobilization and harvesting of microalgae (MA) cells. Specific materials assessed were porous solid polymers from highly-branched PEI synthesized by cross-linking with epichlorohydrin (ECH) or diethylene glycol diglycidyl ether (DGDE). We estimated the effect of PEI/cross-linker ratio on the MA attachment and biocompatibility of the sorbents with the MA cells. A decrease in the cross-linker percentage resulted in the enhancement of the immobilization efficiency but impaired the cell viability as was manifested by inhibition of the photosynthetic activity of the MA cells. The rate of Chlorella vulgaris cell attachment to the sorbents with ECH was faster as compared to that of the PEI-DGDE-based polymers. The cells immobilized on the PEI-ECH sorbents showed a more profound decline in their viability (assessed via photosynthetic activity). The sorbents with 60% of DGDE were characterized by high immobilization efficiency. These sorbents supported a prolonged cultivation of the immobilized MA without impairing their viability and metabolic activity. We conclude that the sorbents with a lower percentage of DGDE (<30%) and sorbents with ECH are suitable for harvesting of the MA cells intended for immediate downstream processing, potentially without the cell desorption. To the best of our knowledge, this is the first report on successful application of PEI-based sorbents in microalgal biotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  11. Ecologically pure sorbents for power system of Myanmar

    Science.gov (United States)

    Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.

    2017-11-01

    Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.

  12. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  13. Sorbent application on the base of chitosan for radionuclides separation

    International Nuclear Information System (INIS)

    Pivarciova, L.

    2016-01-01

    Radioactive waste contains enormous amounts of radionuclides, which pollute the environment and can cause serious chemical and radiological toxicity threats to lower and higher living organism. Alternative process for the removal of heavy metal ions and radionuclides is sorption, which utilizes various certain natural materials of biological origin. Amino-polysaccharide-based sorbents e.g. chitosan represent suitable materials for binding of metal oxo-anion species because of numerous functional groups -OH and -NH_2 because of their suitable H-bond donor and acceptor sites. The sorbents on the base chitosan prepared through chemical modification were used for removal and separation certain radionuclides from aqueous media. The aim of this work was the study of physicochemical properties of prepared sorbents. The specific surface of sorbents was characterized with BET methods. Point of zero charge was identified with potentiometric titration. The size of particles and shape of sorbents were determined by scanning electron microscope. The sorption experiments for selected radionuclides were conducted under static and dynamic conditions. The effect of various parameters on the sorption "9"9"mTc, "6"0Co and the effect of pH on the separation of radionuclide mixture in the solution were studied. (author)

  14. Aging mechanisms in amorphous phase-change materials.

    Science.gov (United States)

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  15. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    OpenAIRE

    Lim Chong C.; Al-Kayiem Hussain H.; Sing Chin Y.

    2014-01-01

    Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material f...

  16. Application of sunflower stalk-carbon nitride nanosheets as a green sorbent in the solid-phase extraction of polycyclic aromatic hydrocarbons followed by high-performance liquid chromatography.

    Science.gov (United States)

    Marzi Khosrowshahi, Elnaz; Razmi, Habib

    2018-02-08

    A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Simple Vortex-Assisted Magnetic Dispersive Solid Phase Microextraction System for Preconcentration and Separation of Triazine Herbicides from Environmental Water and Vegetable Samples Using Fe₃O₄@MIL-100(Fe) Sorbent.

    Science.gov (United States)

    Nasrollahpour, Atefe; Moradi, Seyyed Ershad

    2018-04-04

    A vortex-assisted magnetic dispersive solid phase microextraction coupled with high-performance liquid chromatography has been developed for the extraction and determination of triazine herbicides by using magnetic metal organic frameworks [Fe₃O₄@MIL-100(Fe)] in environmental water and vegetable samples. The Fe₃O₄@MIL-100(Fe) composite has been characterized by using X-ray diffraction spectroscopy, tunneling electron microscopy, thermogravimetric measurement, and Brunauer-Emmett-Teller analysis. The method is based on the sorption of triazine herbicides on Fe₃O₄@MIL-100(Fe) because of the complex formation between iron oxide nanoparticles and triazine herbicides beside π-π interactions between organic parts of Fe₃O₄@MIL-100(Fe) and triazine herbicides. The experimental parameters for the preconcentration of triazine herbicides, such as the type and volume of the eluent, pH, time of the sorption and desorption, and the amount of the sorbent, were optimized. Under the optimized conditions, the method was linear over the concentration range of 0.0061 to 70 ng/mL for each triazine herbicide, and the correlation coefficients ranged from 0.9988 to 0.9997. The limit of detection of the method at a signal-to-noise ratio of 3 was 2.0 to 5.3 ng/mL. The relative standard deviations for inter- and intraday assays were in the range of 5.8 to 10.2% and 3.8 to 6.3%, respectively.

  18. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  19. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  20. A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples.

    Science.gov (United States)

    Ziaei, Ehsan; Mehdinia, Ali; Jabbari, Ali

    2014-11-19

    New mercapto-grafted graphene oxide-magnetic chitosan (GO-MC) has been developed as a novel biosorbent for the preconcentration and extraction of mercury ion from water samples. A facile and ecofriendly synthesis procedure was also developed for modification of GO-MC with 3-mercaptopropyltrimethoxysilane. The prepared nanocomposite material (mercapto/GO-MC) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDX). The mercury analysis was performed by continuous-flow cold vapor atomic absorption spectrometry. The parameters affecting the extraction and preconcentration processes were carried out. The optimum conditions were found to be 60mg of sorbent, pH of 6.5, 10min for adsorption time, 3mL of HCl (0.1mol L(-1))/thiourea (2% w/v) as the eluent and 250mL for breakthrough volume. An excellent linearity was achieved in the range of 0.12-80ng mL(-1) (R(2)=0.999) at a preconcentration factor of 80. The limit of detection and quantification were achieved as 0.06ng mL(-1) and 0.12ng mL(-1), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 4.7%. Furthermore, real water samples were analyzed and good recoveries were obtained from 95 to 100%. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  2. Mixed and Doped Solid Sorbents for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-14

    The objectives of this presentation are to capture CO2 we need materials with optimal performance and low costs; establish a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; computational synthesis new materials to fit industrial needs; and explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage.

  3. Novel materials and methods for solid-phase extraction and liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  4. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  5. Trace and ultratrace determination of heavy metal ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2014-04-01

    In this paper, the adsorptive properties of graphene nanosheets were used for simultaneous preconcentration of cobalt, nickel, copper and lead ions from water samples. The developed methodology is based on dispersive micro-solid phase extraction (DMSPE) which is miniaturized and a simplified version of classical solid phase extraction technique. In proposed procedure only 200 μL of suspension containing graphene (0.2 mg), ammonium pyrrolidine dithiocarbamate (APDC) (0.8 mg) and Triton-X-100 (0.1 mg) is rapidly injected to 50 mL of water sample. Then, graphene nanosheets with adsorbed metal-APDC chelates are collected on membrane filter and measured using energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The various parameters including pH, amount of APDC, sample volume, amount of Triton-X-100 and sorption time were optimized in order to obtain the best recoveries. The experiment shows that Co, Ni, Cu and Pb can be simultaneously preconcentrated at pH of 5 with high recoveries (97%, 96%, 99% and 96% for Co, Ni, Cu and Pb, respectively) and very good precision (RSDs within 2.6–3.4%). Due to the excellent enrichment factors ranging from 400 to 2500 the proposed DMSPE–EDXRF procedure offers low detection limits. For optimized measurement conditions (voltage and current of X-ray tube, primary beam filter) the detection limits are even 0.08, 0.07, 0.08 and 0.20 ng mL{sup −1} for Co, Ni, Cu and Pb, respectively. - Highlights: • Excellent detection limits using EDXRF • A new preconcentration procedure combining DMSPE and EDXRF measurement • Graphene as a promising and efficient solid sorbent in DMSPE • Simple, fast, inexpensive and environmental friendly method.

  6. Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples.

    Science.gov (United States)

    Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang

    2016-10-01

    A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  8. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  9. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-12-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  10. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  11. Cold storage with phase change material for building ventilation

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    This paper presents an experimental and numerical analysis of building coolingusing night-time cold accumulation in phase change material (PCM), otherwise known as the "free-cooling" or "passive-cooling" principle. The phase change materials were used in ceilings and floors. The free-cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22 °C as the PCM to store cold during the ni...

  12. Optimization of a phase change material wallboard for building use

    International Nuclear Information System (INIS)

    Kuznik, Frederic; Virgone, Joseph; Noel, Jean

    2008-01-01

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction

  13. Optimization of a phase change material wallboard for building use

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph [Thermal Sciences Center of Lyon, CNRS, UMR 5008, INSA de Lyon, Universite Lyon 1, Bat Freyssinet, 40 Rue des Arts, 69621 Villeurbanne Cedex (France); Noel, Jean [Free-lance Scientific Software Developer, 15 Place Carnot, 69002 Lyon (France)

    2008-08-15

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction. (author)

  14. Experimental research on combustion fluorine retention using calcium-based sorbents during coal combustion (II)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Q.; Ma, X.; Liu, J.; Wu, X.; Zhou, J.; Cen, K. [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering

    2008-12-15

    Fluoride pollution produced by coal burning can be controlled with the calcium-based sorbent combustion fluorine technique in which calcium-based sorbents are mixed with the coal or sprayed into the combustion chamber. In a fixed bed tube furnace combustion experiment using one calcium-based natural mineral, limestone and one calcium-based building material, it was shown that the calcium-based sorbent particle grain size and pore structure have a big influence on the combustion fluorine retention effect. Reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development. 8 refs., 1 fig., 5 tabs.

  15. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  16. Octahedral molecular sieve sorbents and catalysts

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  17. Encapsulation of phase change materials using rice-husk-char

    International Nuclear Information System (INIS)

    Gondora, Wayne; Doudin, Khalid; Nowakowski, Daniel J.; Xiao, Bo; Ding, Yulong; Bridgwater, Tony; Yuan, Qingchun

    2016-01-01

    Highlights: • Rice-husk-char particles are successfully used in the encapsulation of phase change materials. • Carbon-based phase change microcapsules aim at using the high thermal conductivity of carbon materials. • Carbon from biomass can be used in low and intermediate heat harvest and storage. • Carbon in biomass is captured and to be used in improving energy efficiency. - Abstract: This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg"−"1 or 120.0 MJ m"−"3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.

  18. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  19. State of the art on phase change material slurries

    International Nuclear Information System (INIS)

    Youssef, Ziad; Delahaye, Anthony; Huang Li; Trinquet, François; Fournaison, Laurence; Pollerberg, Clemens; Doetsch, Christian

    2013-01-01

    Highlights: ► A bibliographic study on PCM slurries. ► Clathrate Hydrate slurry, Microencapsulated PCM Slurry, shape-stabilized PCM slurries and Phase Change Material Emulsions. ► Formation, thermo-physical, rheological, heat transfers properties and applications of these four PCS systems. ► The use of thermal energy storage and distribution based on PCM slurries can improve the refrigerating machine performances. - Abstract: The interest in using phase change slurry (PCS) media as thermal storage and heat transfer fluids is increasing and thus leading to an enhancement in the number of articles on the subject. In air-conditioning and refrigeration applications, PCS systems represent a pure benefit resulting in the increase of thermal energy storage capacity, high heat transfer characteristics and positive phase change temperatures which can occur under low pressures. Hence, they allow the increase of energy efficiency and reduce the quantity of thermal fluids. This review describes the formation, thermo-physical, rheological, heat transfer properties and applications of four PCS systems: Clathrate hydrate slurry (CHS), Microencapsulated Phase Change Materials Slurry (MPCMS), shape-stabilized PCM slurries (SPCMSs) and Phase Change Material Emulsions (PCMEs). It regroups a bibliographic summary of important information that can be very helpful when such systems are used. It also gives interesting and valuable insights on the choice of the most suitable PCS media for laboratory and industrial applications.

  20. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  1. Phase Change Materials and the perception of wetness.

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  2. Performance enhancement of hermetic compressor using phase change materials

    Science.gov (United States)

    Mahmoud, I. M.; Rady, M. A.; Huzayyin, A. S.

    2015-08-01

    The present study is motivated by the need for the research of simple measures for increasing energy efficiency of hermetic compressor. The measure is the application of phase change materials for performance enhancement. The first experimental study should be guide for choice of PCM. It has been performed to investigate the effects of thermostat setting temperature on the performance of hermetic compressor. The effects of thermostat setting temperature with and without load on power consumption have been analyzed. Performance enhancement using phase change materials (PCMs) has been studied by employing a phase change material Rubitherm-42 (RT-42) on the top surface of compressor. Choice of PCM material is based on basic compressor performance measured in the first part of the present study. Experiments have been carried out for different load values and different quantities of PCM. The quantity and phase change characteristic of PCM are essential parameters that determine the percentage of performance enhancement in term of energy consumption. Reduction of energy consumption of about 10% has been achieved in the present study by using PCM. The present study shows that how to reduce the electrical power consumption to enhance compressor heat dissipation method to improve efficiency.

  3. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  4. 21 CFR 876.5600 - Sorbent regenerated dialysate delivery system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... dialyzer. The device is used with the extracorporeal blood system and the dialyzer of the hemodialysis... dialysate conditions. The sorbent cartridge may include absorbent, ion exchange and catalytic materials. (b...

  5. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Science.gov (United States)

    2015-03-26

    materials like crystalline semiconductors, graphene , and composites, the materials discussed here could have a significant impact. This thesis investigates...diagnosis [124], crystallinity of pharmaceutical materials [125], materials diagnosis for restoration of paintings [126], and materials research [127...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order

  6. Deep Bed Iodine Sorbent Testing FY 2011 Report

    International Nuclear Information System (INIS)

    Soelberg, Nick; Watson, Tony

    2011-01-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  7. Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination.

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-15

    A simple and rapid dispersive micro-solid phase extraction (DMSPE) combined with mode-mismatched thermal lens spectrometry as well as fiber optic linear array spectrophotometry was developed for the separation, extraction and determination of sulfadiazine. Graphene oxide was synthesized using the modified Hummers method and functionalized with iron oxide nanoparticles by means of a simple one step chemical coprecipitation method. The synthesized iron oxide functionalized graphene oxide was utilized as an efficient sorbent in DMSPE of sulfadiazine. The retained analyte was eluted by using 180µL of a 6:4 mixture of methanol/acetic acid solution and was spectrophotometrically determined based on the formation of an azo dye through coupling with thenoyltrifluoroacetone. Under the optimized conditions, with the application of spectrophotometry technique and with a sample volume of 100mL, the method exhibited a linear dynamic range of 3-80µg L(-1) with a detection limit of 0.82µg L(-1), an enrichment factor of 200 as well as the relative standard deviations of 2.6% and 4.3% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. Whereas, through the application of the thermal lens spectrometry and a sample volume of 10mL, the method exhibited a linear dynamic range of 1-800µg L(-1) with a detection limit of 0.34µg L(-1) and the relative standard deviations of 3.1% and 5.4% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. The method was successfully applied to the determination of sulfadiazine in milk, honey and water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  9. Round-Robin Test of Paraffin Phase-Change Material

    Science.gov (United States)

    Vidi, S.; Mehling, H.; Hemberger, F.; Haussmann, Th.; Laube, A.

    2015-11-01

    A round-robin test between three institutes was performed on a paraffin phase-change material (PCM) in the context of the German quality association for phase-change materials. The aim of the quality association is to define quality and test specifications for PCMs and to award certificates for successfully tested materials. To ensure the reproducibility and comparability of the measurements performed at different institutes using different measuring methods, a round-robin test was performed. The sample was unknown. The four methods used by the three participating institutes in the round-robin test were differential scanning calorimetry, Calvet calorimetry and three-layer calorimetry. Additionally, T-history measurements were made. The aim of the measurements was the determination of the enthalpy as a function of temperature. The results achieved following defined test specifications are in excellent agreement.

  10. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  11. Direct modification of hydrogen/deuterium-terminated diamond particles with polymers to form reversed and strong cation exchange solid phase extraction sorbents.

    Science.gov (United States)

    Yang, Li; Jensen, David S; Vail, Michael A; Dadson, Andrew; Linford, Matthew R

    2010-12-03

    We describe direct polymer attachment to hydrogen and deuterium-terminated diamond (HTD and DTD) surfaces using a radical initiator (di-tert-amyl peroxide, DTAP), a reactive monomer (styrene) and a crosslinking agent (divinylbenzene, DVB) to create polystyrene encapsulated diamond. Chemisorbed polystyrene is sulfonated with sulfuric acid in acetic acid. Surface changes were followed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). Finally, both polystyrene-modified DTD and sulfonated styrene-modified DTD were used in solid phase extraction (SPE). Percent recovery and column capacity were investigated for both phenyl (polystyrene) and sulfonic acid treated polystyrene SPE columns. These diamond-based SPE supports are stable under basic conditions, which is not the case for silica-based SPE supports. Copyright © 2010. Published by Elsevier B.V.

  12. Equilibrium, kinetics and thermodynamics studies of chitosan-based solid phase nanoparticles as sorbent for lead (II) cations from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shaker, Medhat A., E-mail: drmashaker@yahoo.com [Current address: Chemistry Department, Faculty of Science, University of Jeddah, Jeddah (Saudi Arabia); Permanent address: Chemistry Department, Faculty of Science, Damanhour University, Damanhour (Egypt)

    2015-07-15

    Ternary nanoparticles of chitosan, non-viable biomass (Pseudomonas sp.) and gelatin, CPG were synthesized by chemical crosslinking method and applied as a novel and cost-effective solid phase to adsorb Pb(II) cations from aqueous solution. Characterization of the fabricated CPG nanoparticles and their complexation behavior were extensively interrogated by dynamic light scattering (DLS), FTIR, TGA, XRD and SEM techniques. The extent of adsorption was found to be a function of medium pH, contact time, initial Pb(II) concentration and temperature. The Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson models were used to illustrate the isotherms of the adsorption system. The adsorption of Pb(II) cations onto CPG best-fits the Langmuir isotherm model which predicts two stoichiometric temperature-independent adsorption sites, A and B with variable capacities, 35.4 and 91.1 mg g{sup −1}, respectively and removal capacity above 90%. Thermodynamic studies revealed that the adsorption process was physical, spontaneous, and endothermic. The adsorption rate is influenced by temperature and the adsorption kinetic is well confirmed with pseudo-second-order equation compared with three other investigated kinetic models. Present study indicated potential applications of CPG nanoparticles as excellent natural and promising solid phase for Pb(II) extraction in wastewater treatment. - Graphical abstract: Display Omitted - Highlights: • Kinetics and thermodynamics of Pb{sup 2+} biosorption onto CPG nanoparticles are studied. • Adsorption kinetic data are best modeled using second-order rate equations. • The Pb{sup 2}adsorption onto CPG was physical diffusion controlled reaction. • The experimental equilibrium results well fit the Langmuir model. • The thermodynamics show endothermic, favorable and spontaneous adsorption processes.

  13. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  14. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  15. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  17. Magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs from environmental water samples using polyamidoamine dendrimer functionalized with magnetite nanoparticles as a sorbent.

    Science.gov (United States)

    Alinezhad, Heshmatollah; Amiri, Amirhassan; Tarahomi, Mehrasa; Maleki, Behrooz

    2018-06-01

    A novel polyamidoamine dendrimer functionalized with Fe 3 O 4 nanoparticles (Fe 3 O 4 @PAMAM) had been fabricated and used as magnetic solid-phase extraction (MSPE) adsorbent. The Fe 3 O 4 @PAMAM nanocomposites were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron spectroscopy, elemental analytical, and thermal gravimetric analysis. The MSPE method coupled with high-performance liquid chromatography with an ultraviolet detection system was applied for the separation/analysis of non-steroidal anti-inflammatory drugs (NSAIDs). Major parameters affecting the extraction efficiency of the selected drugs were optimized. Under optimal conditions, the enrichment factors for the proposed method were 701835. The linear range, limit of detection, correlation coefficient (r), and relative standard deviation (RSD) were found to be 0.15-500 ng mL -1 , 0.050.08 ng mL -1 , 0.99320.9967, and 4.5-7.0% (n = 5, 0.2, 10 and 300 ng mL -1 ), respectively. The method was successfully applied to the determination of NSAIDs in the real water samples. The recoveries of spiked water samples were in the range of 93.6-98.9% with RSDs varying from 6.1% to 9.0%, showing the good accuracy of the method. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  19. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  20. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  1. Dual phase magnetic material component and method of forming

    Science.gov (United States)

    Dial, Laura Cerully; DiDomizio, Richard; Johnson, Francis

    2017-04-25

    A magnetic component having intermixed first and second regions, and a method of preparing that magnetic component are disclosed. The first region includes a magnetic phase and the second region includes a non-magnetic phase. The method includes mechanically masking pre-selected sections of a surface portion of the component by using a nitrogen stop-off material and heat-treating the component in a nitrogen-rich atmosphere at a temperature greater than about 900.degree. C. Both the first and second regions are substantially free of carbon, or contain only limited amounts of carbon; and the second region includes greater than about 0.1 weight % of nitrogen.

  2. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples.

    Science.gov (United States)

    Yan, Zhiming; Wu, Mei; Hu, Biqing; Yao, Minna; Zhang, Lan; Lu, Qiaomei; Pang, Jie

    2018-03-23

    In this work, metal-organic framework particles incorporated fibers (UiO-66/PAN nanofibers) were used as adsorbent in pipette tip solid phase extraction (PT-SPE) for the first time. The UiO-66/PAN nanofibers were fabricated by a facile electrospinning method and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption experiments. The UiO-66/PAN nanofibers were applied to assemble a novel PT-SPE cartridge for determination of four phytohormones followed by high performance liquid chromatography (HPLC). Several experimental parameters such as kinds of UiO-66/PAN nanofibers, the amount of UiO-66/PAN nanofibers, the effect of solution pH, ionic strength and desorption conditions were intensively investigated. Under the optimal conditions, the linear ranges of the phytohormones were in the range of 0.06-60 ng/mL with correlation coefficients above 0.992. The limits of detection were between 0.01 ng/mL to 0.02 ng/mL. The interday and intraday precision (RSD) for three replicate extractions of the four phytohormones (15 ng/mL for each) was in the range of 1.5-5.6%. The established method was successfully applied for the determination of phytohormones in watermelon and mung bean sprouts samples. The results showed that the electrostatic interaction between the positively charged UiO-66 and anionic forms of phytohormones played an important role in the extraction of the phytohormones. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  4. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  5. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  6. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  7. Phase field modeling of rapid crystallization in the phase-change material AIST

    Science.gov (United States)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  8. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    OpenAIRE

    Alves, Vanessa N.; Borges, Simone S. O.; Coelho, Nivia M. M.

    2011-01-01

    This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extr...

  9. Solid phase extraction for multiresidue analysis of anabolic steroids and related substances from calf urine using C18 and alumina columns

    NARCIS (Netherlands)

    Koole, A; Franke, JP; de Zeeuw, RA

    1999-01-01

    A solid phase extraction method for anabolic steroids and related substances in calf urine is reported, that is suitable as a screening method for illegal growth promoters. Two types of sorbent were used: a reversed phase C18 material and a polar alumina material. After overnight enzymatic

  10. The role of phase change materials for the sustainable energy

    Directory of Open Access Journals (Sweden)

    Kuta Marta

    2016-01-01

    Full Text Available Unceasing global economic development leads to continuous increase of energy demand. Considering the limited conventional resources of energy as well as impact on the environment associated with its use, it is important to focus on the rational management of energy resources and on supporting the development of new technologies related to both conventional and renewable energy resources. In a number of cases the use of phase change materials (PCMs turns out to be a reasonable solution. This paper contains a summary of well-studied and known, previously used solutions based on phase change materials as well as novel possibilities, which are under development. It has been decided to investigate this topic due to the wide range of highly effective solutions. The review is focused on selected applications of PCMs for technologies which are designed to improve energy efficiency and on PCMs used in technologies based on renewable energy sources.

  11. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    Science.gov (United States)

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  12. Microencapsulated Phase-Change Materials For Storage Of Heat

    Science.gov (United States)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  13. Phase change - memory materials - composition, structure, and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.

    2007-01-01

    Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007

  14. Artefacts in geometric phase analysis of compound materials.

    Science.gov (United States)

    Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M

    2015-10-01

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Reconfigurable optical manipulation by phase change material waveguides.

    Science.gov (United States)

    Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua

    2017-05-25

    Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge 2 Sb 2 Te 5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.

  16. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available load is carried by the g phase, which is a ductile material; at high temperatures the g phase is weak, and 0966-9795/00/$ - see front matter #2000 Elsevier Science Ltd. All rights reserved. PII: S0966-9795(00)00030-3 Intermetallics 8 (2000) 979?985 www...-temperature phase of ZrO2 containing 4.5 mol% per cent Y2O3 has the cubic ?uorite structure. A 980 F.R.N. Nabarro / Intermetallics 8 (2000) 979?985 face-centred cube of Zr atoms, with 4 Zr atoms in the unit cell, contains a simple cube of 8 O-atoms. On cooling...

  17. Technology assessment guide for application of engineered sorbent barriers to low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.; Depner, J.P.

    1989-06-01

    An engineered sorbent barrier (ESB) uses sorbent materials (such as activated carbon or natural zeolites) to restrict migration of radionuclides from low-level waste sites. The permeability of the ESB allows moisture to pass while the sorbent material traps or absorbs contaminants. In contrast, waste sites with impermeable barriers could fill with water, especially those waste sites in humid climates. A sorbent barrier can be a simple, effective, and inexpensive method for restricting radionuclide migration. This report provides information and references to be used in assessing the sorbent barrier technology for low-level waste disposal. The ESB assessment is based on sorbent material and soil properties, site conditions, and waste properties and inventories. These data are used to estimate the thickness of the barrier needed to meet all performance requirements for the waste site. This document addresses the following areas: (1) site information required to assess the need and overall performance of a sorbent barrier; (2) selection and testing of sorbent materials and underlying soils; (3) use of radionuclide transport models to estimate the required barrier thickness and long-term performance under a variety of site conditions; (4) general considerations for construction and quality assurance; and (5) cost estimates for applying the barrier. 37 refs., 6 figs., 2 tabs.

  18. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  19. Controllable biomimetic adhesion using embedded phase change material

    International Nuclear Information System (INIS)

    Krahn, J; Sameoto, D; Menon, C

    2011-01-01

    In many cases, such as in the instance of climbing robots or temporary adhesives, there is the need to be able to dynamically control the level of adhesion a biomimetic dry adhesive can provide. In this study, the effect of changing the backing layer stiffness of a dry adhesive is examined. Embedding a phase change material within the backing of a synthetic dry adhesive sheet allows the stiffness to be tailored at different points of a preload and adhesion cycle. Larger contact areas and more equal load sharing between adhesive fibres can be achieved by increasing the backing layer stiffness after initial deformation when the adhesive backing is loaded in its softened state. Adhesion behaviour is examined when the backing layer is maintained in solid and softened phases during complete load cycles and for load cycles under the condition of contact with the softened phase backing followed by pull-off during the solid phase. Absolute adhesion force is increased for trials in which a soft backing layer hardens prior to pull-off. This effect is due to the increased contact area made between the rounded probe and the softened material during preloading and the more equal load sharing condition during pull-off when the backing layer becomes stiff again

  20. Molecular simulation of capillary phase transitions in flexible porous materials

    Science.gov (United States)

    Shen, Vincent K.; Siderius, Daniel W.; Mahynski, Nathan A.

    2018-03-01

    We used flat-histogram sampling Monte Carlo to study capillary phase transitions in deformable adsorbent materials. Specifically, we considered a pure adsorbate fluid below its bulk critical temperature within a slit pore of variable pore width. The instantaneous pore width is dictated by a number of factors, such as adsorbate loading, reservoir pressure, fluid-wall interaction, and bare adsorbent properties. In the slit pores studied here, the bare adsorbent free energy was assumed to be biparabolic, consisting of two preferential pore configurations, namely, the narrow pore and the large pore configurations. Four distinct phases could be found in the adsorption isotherms. We found a low-pressure phase transition, driven primarily by capillary condensation/evaporation and accompanied by adsorbent deformation in response. The deformation can be a relatively small contraction/expansion as seen in elastic materials, or a large-scale structural transformation of the adsorbent. We also found a high-pressure transition driven by excluded volume effects, which tends to expand the material and thus results in a large-scale structural transformation of the adsorbent. The adsorption isotherms and osmotic free energies can be rationalized by considering the relative free energy differences between the basins of the bare adsorbent free energy.

  1. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  2. Phase diagrams of superconducting materials: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Flukiger, R.

    1981-01-01

    Because a large number of investigations on superconducting material have been made on insufficiently characterized samples, and with temperature phase diagrams which contained serious errors, phase diagrams are studied. It is seen that the variation of critical temperature as a function of chemical composition for a given compound can be used as a supplementary tool in determining composition with greater accuracy. The consequent search for higher critical temperature value in specified materials has led to a new concept in determining high temperature phase diagrams. Most of this paper is devoted to the study of bulk binary, pseudobinary, or ternary superconductors at their equilibrium state. As will be shown in several cases, these data serve as standard values and are of great help in understanding the superconducting behavior in materials produced by non-equilibrium methods, i.e., splat-cooling, thin film preparation by either sputtering, co-evaporation, or CVD, and diffusion processes in multifilamentary composite wires. An example for the departure from thermal equilibrium is the retention of metastable composition by a fast quenching rate

  3. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  4. Phase change materials and the perception of wetness.

    Science.gov (United States)

    Tiest, Wouter M Bergmann; Kosters, N Dolfine; Kappers, Astrid M L; Daanen, Hein A M

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead of cold. In order to investigate if this phenomenon occurs when manipulating textiles, nine subjects were asked to touch or manipulate PCM-treated and untreated fabrics. In 75% of the cases, the subjects indicated that the treated material felt wetter than the untreated material independent of the way the textiles were manipulated. We conclude that incorporating PCMs in textiles may lead to a feeling of wetness which might be uncomfortable. Therefore, we recommend investigating a change in cooling properties to minimise this feeling. This article describes a psychophysical experiment into the sensation of wetness of textiles treated with phase change materials. It was found that in 75% of the cases, subjects found the treated fabric to feel wetter than the untreated. This may affect the comfort of wearing clothes made of these textiles.

  5. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  6. Phase analysis of nano-phase materials using selected area electron diffraction in the TEM

    International Nuclear Information System (INIS)

    Labar, J. L.

    2002-01-01

    In analogy to X-ray power diffraction (XRD), we are developing a method to help phase identification when examining a large number of grains simultaneously by electron diffraction. Although XRD is well established, it can not be used for small quantities of materials (volumes below 1 mm 3 ). Examining a usual TEM sample with thickness of 100 nm and using a selected area of 1 mm in diameter, the selected area electron diffraction pattern (SAED) carries information about several thousands of grains from a material with an average grain size of about 10 nm. The accuracy of XRD can not be attained by electron diffraction (ED). However, simultaneous visual observation of the nanostructure is an additional benefit of TEM (beside the small amount of needed material). The first step of the development project was the development of a computer program ('ProcessDiffraction') that processes digital versions of SAED patterns and presents them in an XRD-like form (intensity vs. scattering vector). In the present version (V2.0.3) phase identification is carried out by comparing the measured distribution to 'Markers', i.e. data of known phases. XRD data cards are used if the detailed structure of a phase is not known. Kinematic electron diffraction intensities are calculated for phases with known atomic positions (Author)

  7. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  8. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    Science.gov (United States)

    Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey

    2017-11-01

    The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  9. The effect of preparation of biogenic sorbent on zinc sorption

    Directory of Open Access Journals (Sweden)

    Jana Jenčárová

    2011-12-01

    Full Text Available The aim of this study is to prepare biogenic sulphides by using bacteria for the removal of zinc cations from their solutions. Theproduction was realized in a bioreactor under anaerobic conditions at 30 °C. Sorbents were prepared by sulphate-reducing bacteria indifferent nutrient medium modifications, under two modes of bacteria cultivation. Created precipitates of iron sulphides were removedfrom the liquid phase of the cultivation medium by filtration, dried and used for the sorption experiments.

  10. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J.

    2010-01-01

    This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952

  11. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Directory of Open Access Journals (Sweden)

    Edward J. Anthony

    2010-08-01

    Full Text Available This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.

  12. Waste Derived Sorbents and Their Potential Roles in Heavy Metal Remediation Applications

    Directory of Open Access Journals (Sweden)

    Chiang Y. W.

    2013-04-01

    Full Text Available Inorganic waste materials that have the suitable inherent characteristics could be used as precursors for the synthesis of micro- and mesoporous materials, which present great potential to be re-utilized as sorbent materials for heavy metal remediation. Three inorganic waste materials were studied in the present work: water treatment residuals (WTRs from an integrated drinking water/wastewater treatment plant, and fly ash and bottom ash samples from a municipal solid waste incinerator (MSWI. These wastes were converted into three sorbent materials: ferrihydrite-like materials derived from drying of WTRs, hydroxyapatite-like material derived from ultrasound assisted synthesis of MSWI fly ash with phosphoric acid solution, and a zeolitic material derived from alkaline hydrothermal conversion of MSWI bottom ash. The performance of these materials, as well as their equivalent commercially available counterparts, was assessed for the adsorption of multiple heavy metals (As, Cd, Co, Ni, Pb, Zn from synthetic solutions, contaminated sediments and surface waters; and satisfactory results were obtained. In addition, it was observed that the combination of sorbents into sorbent mixtures enhanced the performance levels and, where applicable, stabilized inherently mobile contaminants from the waste derived sorbents.

  13. Sb-Te Phase-change Materials under Nanoscale Confinement

    Science.gov (United States)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  14. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Najafi, Ali; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-09-01

    Several crosslinked polymeric ionic liquid (PIL)-based sorbent coatings of different nature were prepared by UV polymerization onto nitinol wires. They were evaluated in a direct-immersion solid-phase microextraction (DI-SPME) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The studied PIL coatings contained either vinyl alkyl or vinylbenzyl imidazolium-based (ViCnIm- or ViBCnIm-) IL monomers with different anions, as well as different dicationic IL crosslinkers. The analytical performance of these PIL-based SPME coatings was firstly evaluated for the extraction of a group of 10 different model analytes, including hydrocarbons and phenols, while exhaustively comparing the performance with commercial SPME fibers such as polydimethylsyloxane (PDMS), polyacrylate (PA) and polydimethylsiloxane/divinylbenzene (PDMS/DVB), and using all fibers under optimized conditions. Those fibers exhibiting a high selectivity for polar compounds were selected to carry out an analytical method for a group of 5 alkylphenols, including bisphenol-A (BPA) and nonylphenol (n-NP). Under optimum conditions, average relative recoveries of 108% and inter-day precision values (3 non-consecutive days) lower than 19% were obtained for a spiked level of 10µgL(-1). Correlations coefficients for the overall method ranged between 0.990 and 0.999, and limits of detection were down to 1µgL(-1). Tap water, river water, and bottled water were analyzed to evaluate matrix effects. Comparison with the PA fiber was also performed in terms of analytical performance. Partition coefficients (logKfs) of the alkylphenols to the SPME coating varied from 1.69 to 2.45 for the most efficient PIL-based fiber, and from 1.58 to 2.30 for the PA fiber. These results agree with those obtained by the normalized calibration slopes, pointing out the affinity of these PILs-based coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine.

    Science.gov (United States)

    Rocío-Bautista, Priscilla; Martínez-Benito, Carla; Pino, Verónica; Pasán, Jorge; Ayala, Juan H; Ruiz-Pérez, Catalina; Afonso, Ana M

    2015-07-01

    Three metal-organic frameworks (MOFs), specifically HKUST-1, MOF-5, and MIL-53(Al), have been synthetized, characterized, studied and compared in a vortex-assisted dispersive micro-solid-phase extraction (VA-D-µ-SPE) procedure in combination with high-performance liquid chromatography (HPLC) with diode-array detection (DAD) for determining seven parabens in environmental waters (tap water, swimming pool water, and water coming from a spa pool), human urine (from two volunteers), and cosmetic creams (two commercial brands). Experimental parameters, such as nature and amount of MOF, sample volume, nature of elution solvent and its amount, vortex and centrifugation time, among others, were properly optimized. HKUST-1 was the most adequate MOF to work with. Detection limits for the overall method down to 0.1 μgL(-1) for butylparaben (BPB) and benzylparaben (BzPB) were obtained, with determination coefficients (R(2)) higher than 0.9966 for a range of 0.5-147 μgL(-1) (depending on the paraben), average relative recoveries (RR, in %) of 80.3% at the low spiked level (7 μgL(-1)), and relative standard deviation (RSD) values below 10% also at the low spiked level. The strength of the affinity between HKUST-1 and parabens was evaluated, and it ranged from 33.5% for isopropylparaben (iPPB) to 77.0% for isobutylparaben (iBPB). When analyzing complex environmental waters, RR values of 78%, inter-day precision values (as RSD) lower than 15%, and intra-day precision values lower than 7.8% were obtained, despite the observed matrix effect. When analyzing cosmetic creams, parabens were detected, with contents ranging from 0.14 ± 0.01 μgg(-1) for EPB in the healing cream analyzed to 1.12 ± 0.07 mgg(-1) for MPB in the mask cream analyzed, with precision values (RSD) lower than 12% and RR values from 63.7% for propylparaben (PPB) to 121% for iPPB. When analyzing human urine, no parabens were detected but the method could be performed with RSD values lower than 19%. These

  16. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  17. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  18. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  19. Artefacts in geometric phase analysis of compound materials

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Jonathan J.P., E-mail: j.j.p.peters@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Beanland, Richard; Alexe, Marin [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Cockburn, John W.; Revin, Dmitry G.; Zhang, Shiyong Y. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Sanchez, Ana M., E-mail: a.m.sanchez@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2015-10-15

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. - Highlights: • GPA is shown to produce incorrect strains when applied to images of compound materials. • A mathematical description is laid out for why GPA can produce artefacts. • The artefact is demonstrated using experimental and simulated data. • A ‘rule’ is set to avoid this artefact in GPA.

  20. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  1. Study of Phase Change Materials Applied to CPV Receivers

    Directory of Open Access Journals (Sweden)

    Zun-Hao Shih

    2015-01-01

    Full Text Available There are lots of factors which can directly affect output efficiency of photovoltaic device. One of them is high temperature which would cause adverse effect to solar cell. When solar cell is operated in high temperature, the cell’s output efficiency will become low. Therefore, improving thermal spreading of solar cell is an important issue. In this study, we focused on finding new materials to enhance the thermal dispreading and keep the temperature of solar cell as low as possible. The new materials are different from conventional metal ones; they are called “phase change materials (PCMs” which are mainly applied to green buildings. We chose two kinds of PSMs to study their thermal dispreading ability and to compare them with traditional aluminum material. These two kinds of PCMs are wax and lauric acid. We made three aluminum-based cuboids as heat sinking units and two of them were designed with hollow space to fill in the PCMs. We applied electric forward bias on solar cells to simulate the heat contributed from the concentrated sunlight. Then we observed the thermal distribution of these three kinds of thermal spreading materials. Two levels of forward biases were chosen to test the samples and analyze the experiment results.

  2. Enhanced laminated composite phase change material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, J.; Zhou, T. [Centre for Sustainable Energy Technologies (CSET), The University of Nottingham Ningbo, 199 Taikang East Road, Ningbo 315100 (China)

    2011-02-15

    This paper summarises studies undertaken towards the development of a laminated composite aluminium/hexadecane phase change material (PCM) drywall based on previous analytical work. The study also covered the selection and testing of various types of adhesive materials and identified Polyvinyl acetate (PVA) material as a suitable bonding material. For the purpose of comparison pure hexadecane and composite aluminium/hexadecane samples were developed and tested. The test results revealed faster thermal response by the aluminium/hexadecane sample regarding the rate of heat flux and also achieved about 10% and 15% heat transfer enhancements during the charging and discharging periods respectively. Its measured effective thermal conductivity also increased remarkably to 1.25 W/mK as compared with 0.15 W/mK for pure hexadecane. However there was about 5% less total cumulative thermal energy discharged at the end of the test which indicates that its effective thermal capacity was reduced by the presence of the aluminium particles. The study has shown that some of the scientific and technical barriers associated with the development of laminated composite PCM drywall systems can be overcome but further investigations of effects of adhesive materials are needed. (author)

  3. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  4. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  5. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  6. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  7. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Luckas, Jennifer Maria

    2012-01-01

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  8. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  9. Sorbent Nanotechnologies for Water Cleaning

    Science.gov (United States)

    Ahmed, Snober

    Despite decades of regulatory efforts to mitigate water pollution, many chemicals, particularly heavy metals, still present risks to human health. In addition to direct exposure, certain metals such as mercury threaten public health due to its persistence, bioaccumulation and bioamplification throughout the food chain. A number of U.S. Federal and State regulations have been established to reduce the levels of mercury in water. Activated carbon (AC) has been widely explored for the removal of mercury. However, AC suffers from many limitations inherent to its chemical properties, and it becomes increasingly challenging to meet current and future regulations by simply modifying AC to enhance its performance. Recently, the performance of nanosorbents have been studied in order to removal pollutants. Nanosorbents utilize the ultra-high reactive surface of nanoparticles for rapid, effective and even permanent sequestration of heavy metals from water and air, thus showed promising results as compared to AC. The goal of this thesis research is to develop nanomaterial-based sorbents for the removal of mercury from water. It describes the development of a new solid-support assisted growth of selenium nanoparticles, their use for water remediation, and the development of a new nanoselenium-based sorbent sponge for fast and efficient mercury removal. The nanoselenium sorbent not only shows irreversible interaction with mercury but also exhibits remarkable properties by overcoming the limitations of AC. The nanoselenium sponge was shown to remove mercury to undetectable levels within one minute. This new sponge technology would have an impact on inspiring new stringent regulations and lowering costs to help industries meet regulatory requirements, which will ultimately help improve air and water quality, aquatic life and public health.

  10. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  11. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  12. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  13. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  14. Sorbents for waste water purification from radionuclides and other toxic substances

    International Nuclear Information System (INIS)

    Maddalone, R.F.; MakKlenason, L.Ts.

    1996-01-01

    The TRW firm (USA) developed the system for sorption and disposal of radionuclides, heavy metals and organic substances, based on utilization of carbon sorbents. The sorbent is produced through processing natural coal by alkali-salt solution and has a large specific pores surface (up to 1000 m 2 /g). The sorbent carboxyl ionogenic groups are able of absorbing heavy metals cations from waste waters. Sorption by uranium constituted 30 mg/l. The sorbent with absorbed substances may be burnt (it contains no sulfur) or delivered for vitrification. The volume of disposed materials constitutes in comparison with existing techniques for uranium isotopes 420000 : 1. The costs are reduced up to 0.26 doll/m 2 of reprocessed water. 2 refs., 2 figs., 4 tabs

  15. Application of fibrous complexing sorbents for trace elements preconcentration and separation

    International Nuclear Information System (INIS)

    Zakhartchenko, E.A.; Myasoedova, G.V.

    2003-01-01

    This article demonstrates the application of the 'filled' fibrous sorbents for preconcentration and separation of platinum metals, as well as heavy metals and radionuclides. The POLYORGS complexing sorbents and ion-exchangers were used as fillers. Dynamic preconcentration conditions should be set for complete sorption of the elements: diameter and mass of the sorbent disk or the column as well as flow rate of the solution. These conditions depend on specific features of materials to be analysed and the requirements of the experimental task or detection method. Extensive alteration of features as well as perfect kinetic properties and high selectivity of the 'filled' sorbents confirm their applicability for trace elements preconcentration and separation in technology and analytical chemistry. (authors)

  16. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  18. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  19. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  20. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  1. Phase transition transistors based on strongly-correlated materials

    Science.gov (United States)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  2. Long-Term Stability Testing Results Using Surrogates And Sorbents For Savannah River Site Organic And Aqueous Wastestreams - 10016

    International Nuclear Information System (INIS)

    Burns, H.

    2009-01-01

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate wastestreams (both volatile and nonvolatile), a volatile organic surrogate with a residual aqueous phase, an aqueous surrogate, and an aqueous surrogate with a residual organic phase. The Savannah River Site (SRS) Legacy and F-Canyon plutonium/uranium extraction (PUREX) process waste surrogates constituted the volatile organic surrogates, and various oils constituted the nonvolatile organic surrogates. The aqueous surrogates included a rainwater surrogate and an aqueous organic surrogate. MSE also evaluated the PUREX surrogate with a residual aqueous component with and without aqueous type sorbent materials. Solidification of the various surrogate wastestreams listed above was performed from 2004 to 2006 at the MSE Test Facility located in Butte, Montana. This paper summarizes the comparison of the initial liquid release test (LRT) values with LRT results obtained during subsequent sampling events in an attempt to understand and define the long-term stability characteristics for the solidified wastestreams.

  3. Automated first-principles mapping for phase-change materials.

    Science.gov (United States)

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review

    Science.gov (United States)

    Lemos, V. A.; Santos, M. S.; Santos, E. S.; Santos, M. J. S.; dos Santos, W. N. L.; Souza, A. S.; de Jesus, D. S.; das Virgens, C. F.; Carvalho, M. S.; Oleszczuk, N.; Vale, M. G. R.; Welz, B.; Ferreira, S. L. C.

    2007-01-01

    The first publication on the use of polyurethane foam (PUF) for sorption processes dates back to 1970, and soon after the material was applied for separation processes. The application of PUF as a sorbent for solid phase extraction of inorganic analytes for separation and pre-concentration purposes is reviewed. The physical and chemical characteristics of PUF (polyether and polyester type) are discussed and an introduction to the characterization of these sorption processes using different types of isotherms is given. Separation and pre-concentration methods using unloaded and loaded PUF in batch and on-line procedures with continuous flow and flow injection systems are presented. Methods for the direct solid sampling analysis of the PUF after pre-concentration are discussed as well as approaches for speciation analysis. Thermodynamic proprieties of some extraction processes are evaluated and the interpretation of determined parameters, such as enthalpy, entropy and Gibbs free energy in light of the physico-chemical processes is explained.

  5. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.

    Science.gov (United States)

    Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren

    2012-04-30

    Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Application of engineered sorbent barriers Summary of Laboratory Data for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.

    1989-09-01

    Laboratory studies were conducted in FY 1988 Pacific Northwest Laboratory to determine the effect of contact time, pH, solution to solid ratio, and particle size on the performance of a number of materials in adsorbing radioactive cobalt, strontium, and cesium. The laboratory studies were conducted to provide background information useful in designing an engineered sorbent barrier, which restricts the migration of radionuclides from low-level waste sites. Understanding how the variables affect the adsorption of ions on the sorbent materials is the key to estimating the performance of sorbent barriers under a variety of conditions. The scope of the studies was limited to three radionuclides and four sorbent materials, but the general approach can be used to evaluate other radionuclides and conditions. The sorbent materials evaluated in this study included clinoptilolite, activated carbon, bentonite clay, and Savannah River soil. The clinoptilolite and activated carbon were identified in previous studies as the most cost-effective materials for sorption of the three radionuclides under consideration. The bentonite clay was evaluated as a component of the barrier that could be used to modify the permeability of the barrier system. The Savannah River soil was used to represent soil from a humid site. 3 refs., 14 figs., 1 tab.

  7. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  8. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  9. Modeling of subcooling and solidification of phase change materials

    Science.gov (United States)

    Günther, Eva; Mehling, Harald; Hiebler, Stefan

    2007-12-01

    Phase change materials (PCM) are able to store thermal energy in small temperature intervals very efficiently due to their high latent heat. Particularly high storage capacity is found in salt hydrates. Salt hydrates however often show subcooling, thus inhibiting the release of the stored heat. In the state of the art simulations of PCM, the effect of subcooling is almost always neglected. This is a practicable approach for small subcooling, but it is problematic for subcooling in the order of the driving temperature gradient on unloading the storage. In this paper, we first present a new algorithm to simulate subcooling in a physically proper way. Then, we present a parametric study to demonstrate the main features of the algorithm and a comparison of computed and experimentally obtained data. The new algorithm should be particularly useful in simulating applications with low cooling rates, for example building applications.

  10. Color printing enabled by phase change materials on paper substrate

    Directory of Open Access Journals (Sweden)

    Hong-Kai Ji

    2017-12-01

    Full Text Available We have coated phase change materials (PCMs on rough and flexible substrates to achieve multicolor changeable devices. The principle of the device is based on an earlier discovery that lights have strong interference effect in PCM films, leading to various colors by reflection. In this work, paper substrates are laminated by parylene layers to protect the device from water before coated with functional PCM films. The PCM-based color printing (PCP on paper is not affected by rough surfaces and shows a similar color appearance as that on smooth surfaces. In particular, the color-printed device can be patterned by UV lithography to display a clear and tunable optical image, and it exhibits a low sensitivity to the angle of view. Such PCP has potential applications for low-cost, disposable, and flexible displays.

  11. Plastic phase change material and articles made therefrom

    Science.gov (United States)

    Abhari, Ramin

    2016-04-19

    The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds are provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.

  12. Color printing enabled by phase change materials on paper substrate

    Science.gov (United States)

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Liu, Nian; Xu, Ming; Miao, Xiang-Shui

    2017-12-01

    We have coated phase change materials (PCMs) on rough and flexible substrates to achieve multicolor changeable devices. The principle of the device is based on an earlier discovery that lights have strong interference effect in PCM films, leading to various colors by reflection. In this work, paper substrates are laminated by parylene layers to protect the device from water before coated with functional PCM films. The PCM-based color printing (PCP) on paper is not affected by rough surfaces and shows a similar color appearance as that on smooth surfaces. In particular, the color-printed device can be patterned by UV lithography to display a clear and tunable optical image, and it exhibits a low sensitivity to the angle of view. Such PCP has potential applications for low-cost, disposable, and flexible displays.

  13. Enhancement of reactivity in Li4SiO4-based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture

    International Nuclear Information System (INIS)

    Wang, Ke; Zhao, Pengfei; Guo, Xin; Li, Yimin; Han, Dongtai; Chao, Yang

    2014-01-01

    Highlights: • The Li 4 SiO 4 sorbent from nano-sized rice husk ash was prepared and characterized. • The Aerosil and Quartz were comparably used for synthesized Li 4 SiO 4 . • The structure of sorbent was depended on the morphology of heated silicon materials. • The pretreatment sorbent showed increase in the CO 2 uptake and kinetic behavior. • This promising sorbent also maintained higher capacities during the multiple cycles. - Abstract: Using the cost-effective, renewable and nano-sized of citric acid pretreatment rice husk ash (CRHA) as silicon source, high efficient Li 4 SiO 4 (lithium orthosilicate)-based sorbents (CRHA-Li 4 SiO 4 ) for high-temperature CO 2 capture were prepared through the solid-state reaction at lower temperature (700 °C). Two typical raw materials (nano-structured Aerosil and crystalline Quartz powders) were used to synthesize Li 4 SiO 4 sorbents (Aerosil-Li 4 SiO 4 and Quartz-Li 4 SiO 4 ) for comparison purposes. The phase composition behavior, surface area, and morphology of the silicon sources, heat treated raw materials and as-received Li 4 SiO 4 sorbents were studied by analytical techniques. The CO 2 adsorption capacity and adsorption–desorption performance were tested by the thermo-gravimetric analyses (CO 2 atmosphere) and a fixed bed reactor, respectively. Compared with the case of its original samples, the morphology of heat treated raw materials had a greater effect on the phase composition, microstructure, special surface area and CO 2 adsorption properties of their resulting sorbents. Although the calcined Quartz sample maintained the structure of micron particles, its reactivity was not enough to react completely with Li 2 CO 3 . Due to the greater reactivity of nanoparticles, Aerosil-Li 4 SiO 4 presented pure of Li 4 SiO 4 whereas it obtained large particles with dense morphology, which was coming from the pronounced fusing of silica nanoparticles during the calcined process. Conversely, CRHA-Li 4 SiO 4

  14. Force law in material media, hidden momentum and quantum phases

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-01-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  15. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  16. Analysis of wallboard containing a phase change material

    Science.gov (United States)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  17. Phase Change Energy Storage Material Suitable for Solar Heating System

    Science.gov (United States)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  18. Sorbents for the oxidation and removal of mercur

    Science.gov (United States)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2017-09-12

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  19. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  20. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  1. Matrix-compatible sorbent coatings based on structurally-tuned polymeric ionic liquids for the determination of acrylamide in brewed coffee and coffee powder using solid-phase microextraction.

    Science.gov (United States)

    Cagliero, Cecilia; Nan, He; Bicchi, Carlo; Anderson, Jared L

    2016-08-12

    Nine crosslinked polymeric ionic liquid (PIL)-based SPME sorbent coatings were designed and screened in this study for the trace level determination of acrylamide in brewed coffee and coffee powder using gas chromatography-mass spectrometry (GC-MS). The structure of the ionic liquid (IL) monomer was tailored by introducing different functional groups to the cation and the nature of the IL crosslinker was designed by altering both the structure of the cation as well as counteranions. The extraction efficiency of the new PIL coatings towards acrylamide was investigated and compared to a previously reported PIL sorbent coating. All PIL fibers exhibited excellent analytical precision and linearity. The PIL fiber coating consisting of 50% 1,12-di(3-vinylbenzylbenzimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide as IL crosslinker in 1-vinyl-3-(10-hydroxydecyl)imidazolium bis[(trifluoromethyl)sulfonyl]imide IL monomer resulted in a limit of quantitation of 0.5μgL(-1) with in-solution SPME sampling. The hydroxyl moiety appended to the IL cation was observed to significantly increase the sensitivity of the PIL coating toward acrylamide. The quantitation of acrylamide in brewed coffee and coffee powder was performed using the different PIL-based fibers by the method of standard addition after a quenching reaction using ninhydrin to inhibit the formation of interfering acrylamide in the GC inlet, mainly by asparagine thermal degradation. Excellent repeatability with relative standard deviations below 10% were obtained on the real coffee samples and the structure of the coatings appeared intact by scanning electron microscopy after coffee sampling proving the matrix-compatibility of the PIL sorbent coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.

    2018-04-01

    In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.

  3. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  4. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  5. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  6. Si-Sb-Te materials for phase change memory applications

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Ren Kun; Zhou Xilin; Cheng Yan; Wu Liangcai; Liu Bo

    2011-01-01

    Si-Sb-Te materials including Te-rich Si 2 Sb 2 Te 6 and Si x Sb 2 Te 3 with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si x Sb 2 Te 3 shows better thermal stability than Ge 2 Sb 2 Te 5 or Si 2 Sb 2 Te 6 in that Si x Sb 2 Te 3 does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si x Sb 2 Te 3 improves. The 10 years retention temperature for Si 3 Sb 2 Te 3 film is ∼ 393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si x Sb 2 Te 3 films also show improvement on thickness change upon annealing and adhesion on SiO 2 substrate compared to those of Ge 2 Sb 2 Te 5 or Si 2 Sb 2 Te 6 films. However, the electrical performance of PCRAM cells based on Si x Sb 2 Te 3 films with x > 3.5 becomes worse in terms of stable and long-term operations. Si x Sb 2 Te 3 materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.

  7. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  8. Multiresidue analysis of oestrogenic compounds in cow, goat, sheep and human milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Ángel

    2018-03-01

    In this work, the suitability of Fe 3 O 4 nanoparticles coated with polydopamine was evaluated as sorbent for the extraction of a group of 21 compounds with oestrogenic activity including seven phytoestrogens, six mycotoxins as well as four synthetic and four natural oestrogens from different types of milk, including sheep milk, in which the evaluation of oestrogenic compounds have never been developed before. Extraction was carried out using magnetic micro-dispersive solid-phase extraction after a previous deproteinisation step. Separation, determination and quantification of the target analytes were achieved by ultra-high-performance liquid chromatography coupled to triple quadrupole-tandem mass spectrometry. The methodology was validated for five milk samples using 17β-estradiol-2,4,16,16,17-d 5 as internal standard for natural and synthetic oestrogens, β-zearalanol-10,10,11,12,12-d 5 for mycotoxins and prunetin for phytoestrogens. Recovery values ranged from 70 to 120% for the five types of matrices with relative standard deviation values lower than 18%. Limits of quantification of the method were in the range 0.55-11.8 μg L -1 for all samples. Graphical abstract General scheme of the multiresidue analysis of oestrogenic compounds in milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in μ-dSPE.

  9. Fractionation analysis of oxyanion-forming metals and metalloids in leachates of cement-based materials using ion exchange solid phase extraction.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2009-05-15

    A simple and versatile solid phase extraction (SPE) method has been developed to determine the anionic species of As, Cr, Mo, Sb, Se and V in leachates of cement mortar and concrete materials in the pH range 3-13. The anionic fractions of these elements were extracted using a strong anion exchanger (SAX) and their concentrations were determined as the difference in element concentration between the sample and the SAX effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used off-line to analyse solutions before and after passing through the SAX. The extraction method has been developed by optimizing sorbent type, sorbent conditioning and sample percolation rate. Breakthrough volumes and effect of matrix constituents were also studied. It was found that a polymer-based SAX conditioned with a buffer close to the sample pH or in some cases deionised water gave the best retention of the analytes. Optimal conditions were also determined for the quantitative elution of analytes retained on the SAX. Extraction of the cement mortar and concrete leachates showed that most of the elements had similar distribution of anions in both leachate types, and that the distribution was strongly pH dependent. Cr, Mo and V exist in anionic forms in strongly basic leachates (pH>12), and significant fractions of anionic Se were also detected in these solutions. Cr, Mo, Se and V were not determined as anions by the present method in the leachates of pH<12. Anionic As and Sb were found in small fractions in most of the leachates.

  10. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya; Kyoungjin An, Alicia; Guo, Jiaxin; Lee, Eui-Jong; Usman Farid, Muhammad; Jeong, Sanghyun

    2016-01-01

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  11. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  13. Low-Cost Sorbents: A Literature Summary

    National Research Council Canada - National Science Library

    Bailey, Susan

    1997-01-01

    The capital and regeneration costs of activated carbon and ion exchange media suggest that better process economics may be achieved with disposable sorbents for the treatment of metals-contaminated...

  14. Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Songgang Qiu

    2018-03-01

    Full Text Available The suitability of stainless steel 316L and Inconel 625 for use in a latent heat thermal energy storage (TES system was investigated. A NaCl–NaF eutectic mixture with a melting temperature of 680 °C was used as the phase change material (PCM. Containers were filled with the PCM prior to heating to 750 °C, then examined after 100 and 2500 h of high-temperature exposure by analyzing the material surface and cross-section areas. A small amount of corrosion was present in both samples after 100 h. Neither sample suffered significant damage after 2500 h. The undesirable inter-granular grain boundary attack found in SS316L samples was in the order of 1–2 µm in depth. On Inconel 625 sample surface, an oxide complex formed, resisting material dissolution into the PCM. The surface morphology of tested samples remained largely unchanged after 2500 h, but the corrosion pattern changed from an initially localized corrosion penetration to a more uniform type. After 2500 h, the corrosion depth of Inconel 625 remained at roughly 1–2 µm, indicating that the corrosion rate decelerated. Both materials demonstrated good compatibility with the chosen NaF–NaCl eutectic salt, but the low corrosion activity in Inconel 625 samples shows a performance advantage for long term operation.

  15. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    Science.gov (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  16. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  17. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  18. Bonding in phase change materials: concepts and misconceptions

    Science.gov (United States)

    Jones, R. O.

    2018-04-01

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with ‘valence’ and the word ‘bond’ itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). ‘Metallic’ (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular ‘resonance’ and ‘resonant bonding’.

  19. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  20. Novel D2EHPA-polysiloxane-based sorbent for titanium (IV) extraction and separation

    International Nuclear Information System (INIS)

    Mendoza R, L. G.; Rodriguez de San Miguel, E.; Pardo G, D. Y.; De Gyves, J.; Sanchez G, J. P.

    2011-01-01

    In this work the synthesis, characterization and evaluation of a novel sorbent material used for the solid-phase extraction of titanium (IV) from hydrochloric acid medium is described. The material was prepared by the sol-gel route incorporating bis(2-ethylhexyl phosporic acid) (D2EHPA) as extractant within a polymeric matrix based on polysiloxanes and characterized through Ftir-Atr, XRD, 29 Si and 31 P NMR, TGA and DSC. In studies of titanium sorption and desorption in batch mode several factors related with the extraction and back-extraction operations were evaluated, such as: contact time, titanium concentration, nature and composition of the aqueous media, and extractant concentration in the sorbent. The maximum sorption was observed at 30 min of contact time in a 1 mol L -1 HCl + 0.1% KCl medium, while the maximum desorption was observed at 60 min in a 1.5 mol L -1 H 2 SO 4 + 20% v/v H 2 O 2 medium when titanium concentration was 70 mg L -1 . Under optimal conditions the recovered percent of titanium was nearly 90%. In addition, the characterization of the extraction equilibrium was performed. The selectivity of the method was studied adding Al(III), Fe(III) and V(v) to the extraction medium. A high selectivity for Ti over Al and Fe was observed, even at high concentrations of the interferences; 50% of Ti, only 7% of Fe, 3% of Al and less than 1% of V were recovered under the established conditions. The method was finally applied for titanium recovery from a certified fly ash sample generated from a municipal incineration plant. (Author)

  1. Novel D2EHPA-polysiloxane-based sorbent for titanium (IV) extraction and separation

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza R, L. G.; Rodriguez de San Miguel, E.; Pardo G, D. Y.; De Gyves, J. [UNAM, Facultad de Quimica, Departamento de Quimica Analitica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Sanchez G, J. P., E-mail: degyves@unam.mx [Instituto Mexicano del Petroleo, Laboratorio de Evaluacion Molecular, Eje Central Norte Lazaro Cardenas No. 152, Apdo. Postal 14-805, 07730 Mexico D. F. (Mexico)

    2011-07-01

    In this work the synthesis, characterization and evaluation of a novel sorbent material used for the solid-phase extraction of titanium (IV) from hydrochloric acid medium is described. The material was prepared by the sol-gel route incorporating bis(2-ethylhexyl phosporic acid) (D2EHPA) as extractant within a polymeric matrix based on polysiloxanes and characterized through Ftir-Atr, XRD, {sup 29}Si and {sup 31}P NMR, TGA and DSC. In studies of titanium sorption and desorption in batch mode several factors related with the extraction and back-extraction operations were evaluated, such as: contact time, titanium concentration, nature and composition of the aqueous media, and extractant concentration in the sorbent. The maximum sorption was observed at 30 min of contact time in a 1 mol L{sup -1} HCl + 0.1% KCl medium, while the maximum desorption was observed at 60 min in a 1.5 mol L{sup -1} H{sub 2}SO{sub 4} + 20% v/v H{sub 2}O{sub 2} medium when titanium concentration was 70 mg L{sup -1}. Under optimal conditions the recovered percent of titanium was nearly 90%. In addition, the characterization of the extraction equilibrium was performed. The selectivity of the method was studied adding Al(III), Fe(III) and V(v) to the extraction medium. A high selectivity for Ti over Al and Fe was observed, even at high concentrations of the interferences; 50% of Ti, only 7% of Fe, 3% of Al and less than 1% of V were recovered under the established conditions. The method was finally applied for titanium recovery from a certified fly ash sample generated from a municipal incineration plant. (Author)

  2. The spectroscopic study of building composites containing natural sorbents.

    Science.gov (United States)

    Król, M; Mozgawa, W

    2011-08-15

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  4. Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup

    Directory of Open Access Journals (Sweden)

    Ola Abdelwahab

    2014-03-01

    Full Text Available Oil spills have a global concern due to its environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. However, plant biomass is renewable resource that can be converted into useful materials and energy. Luffa, an agricultural waste, was used as a sorbent material. The present study examines the adsorption capacity of raw luffa fibers for different types of oil and water pickup. The investigation revealed that the efficiency of fibers to remove crude oil from sea water was related to the surface properties of the fibers, concentration of the oil, amount of the fibers, as well as the temperature of the crude oil. The results show high sorption efficiency of luffa fibers for different kinds of oil. This sorbent also exhibited a good reusability since the decrease in sorption efficiency did not exceed 50% of the initial value after three sorption cycles.

  5. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    International Nuclear Information System (INIS)

    Maginn, Edward J.

    2009-01-01

    The primary objective of the Notre Dame component of the project was computational in nature. The goal was to provide a design tool for the synthesis of optimized sorbents for the removal of cesium, strontium and actinides from nuclear waste solutions. Molecular modeling enables us to observe and better understand the molecular level interactions that govern the selectivity of specific radionuclides in a particular sorbent. The research focused on the development and validation of a suitable and transferable model for all the cations and ion exchangers of interest, nd then subsequent simulations which determined the siting and mobility of water and cations. Speciic accomplishments include: (1) improving existing intermolecular force fields to accurately model the sorbents of interest; (2) utilizing energy-minimizations and molecular dynamics simulations for structural prediction of CST and niobium-substituted CST materials; (3) determining Na+/water positions in polyoxoniobate materials using molecular dynamics simulations; and (4) developing Hybrid Monte Carlo methods for improved structural prediction.

  6. Phase-change material as a thermal storage media

    Energy Technology Data Exchange (ETDEWEB)

    El Chazly, Nihad M; Khattab, Nagwa M [Dokki, Cairo (Egypt)

    2000-07-01

    Heat storage based on the sensible heating of media such as water, rock and earth represent the first generation of solar energy storage subsystems and technology for their utilization. However, recently the heat storage based on the latent heat associated with a change in phase of a material offers many advantages over sensible heat storage. The most important characteristic of such a subsystem is its a sufficient storage capacity. An idealized model visualizing a thermal capacitor using a phase change material is constructed and subjected to simulated solar system environmental conditions. The proposed model is of a flat plate geometry consisting of two panels compartments forming the body of the capacitor containing the paraffin, leaving at their inner surfaces a thin passage allowing the water flow. The whole structure was assumed to be insulated to minimize heat loss. An analysis of the model is conducted using Goodman technique to generate data about the temperature distribution, the melt thickness, and the heat stored in the PCM under conditions of: ( i ) constant mass flow rate tests for various water inlet temperatures and ( ii ) constant water inlet temperature for various mass flow rate. A FORTRAN computer program was constructed to perform the analysis. It was found the water outlet temperature increases with time until it becomes nearly equals to the inlet temperature. Increasing the mass flow rate for a given inlet temperature, decreases the time required for outlet temperature to reach a given value. Increasing inlet temperature for a given mass flow rate gives a very rapid decrease in the time required for the outlet water temperature to reach a given value. Instantaneous rate of heat storage was determined from the inlet-to- exit temperature differential and measured flow rate. This rate was then integrated numerically to determine the cumulative total energy stored as a function of time. It was found that the instantaneous rate of heat storage

  7. Development of Phase Change Materials for RF Switch Applications

    Science.gov (United States)

    King, Matthew Russell

    For decades chalcogenide-based phase change materials (PCMs) have been reliably implemented in optical storage and digital memory platforms. Owing to the substantial differences in optical and electronic properties between crystalline and amorphous states, device architectures requiring a "1" and "0" or "ON" and "OFF" states are attainable with PCMs if a method for amorphizing and crystallizing the PCM is demonstrated. Taking advantage of more than just the binary nature of PCM electronic properties, recent reports have shown that the near-metallic resistivity of some PCMs allow one to manufacture high performance RF switches and related circuit technologies. One of the more promising RF switch technologies is the Inline Phase Change Switch (IPCS) which utilizes GeTe as the active material. Initial reports show that an electrically isolated, thermally coupled thin film heater can successfully convert GeTe between crystalline and amorphous states, and with proper design an RF figure of merit cutoff frequency (FCO) of 12.5 THz can be achieved. In order to realize such world class performance a significant development effort was undertaken to understand the relationship between fundamental GeTe properties, thin film deposition method and resultant device properties. Deposition pressure was found to be the most important deposition process parameter, as it was found to control Ge:Te ratio, oxygen content, Ar content, film density and surface roughness. Ultimately a first generation deposition process produced GeTe films with a crystalline resistivity of 3 ohm-mum. Upon implementing these films into IPCS devices, post-cycling morphological analysis was undertaken using STEM and related analyses. It was revealed that massive structural changes occur in the GeTe during switching, most notably the formation of an assembly of voids along the device centerline and large GeTe grains on either side of the so-called active region. Restructuring of this variety was tied to

  8. MULTIFUNCTIONAL, SELF-HEALING HYBRIDSIL MATERIALS FOR EVA SPACE SUIT PRESSURE GARMENT SYSTEMS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A Phase II SBIR transition of NanoSonic's high flex HybridSil space suit bladder and glove materials will provide a pivotal funding bridge toward Phase III...

  9. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  10. Study of improving the thermal response of a construction material containing a phase change material

    Science.gov (United States)

    Laaouatni, A.; Martaj, N.; Bennacer, R.; Elomari, M.; El Ganaoui, M.

    2016-09-01

    The use of phase change materials (PCMs) for improving the thermal comfort in buildings has become an attractive application. This solution contributes to increasing the thermal inertia of the building envelope and reducing power consumption. A building element filled with a PCM and equipped with ventilation tubes is proposed, both for increasing inertia and contributing to refreshing building envelope. A numerical simulation is conducted by the finite element method in COMSOL Multiphysics, which aims to test the thermal behaviour of the developed solution. An experimental study is carried out on a concrete block containing a PCM with ventilation tubes. The objective is to see the effect of PCM coupled with ventilation on increasing the inertia of the block. The results show the ability of this new solution to ensure an important thermal inertia of a building.

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    carbonation cycle, CO{sub 2} removal rates declined from 20% to about 8% over the course of three hours. Following calcination, a second carbonation cycle was conducted, at a lower temperature with a lower water vapor content. CO{sub 2} removal and sorbent capacity utilization declined under these conditions. Modifications were made to the reactor to permit addition of extra water for testing in the next quarter. Thermodynamic analysis of the carbonation reaction suggested the importance of other phases, intermediate between sodium carbonate and sodium bicarbonate, and the potential for misapplication of thermodynamic data from the literature. An analysis of initial rate data from TGA experiments suggested that the data may fit a model controlled by the heat transfer from the sorbent particle surface to the bulk gas.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    (sub 2) removal rates declined from 20% to about 8% over the course of three hours. Following calcination, a second carbonation cycle was conducted, at a lower temperature with a lower water vapor content. CO(sub 2) removal and sorbent capacity utilization declined under these conditions. Modifications were made to the reactor to permit addition of extra water for testing in the next quarter. Thermodynamic analysis of the carbonation reaction suggested the importance of other phases, intermediate between sodium carbonate and sodium bicarbonate, and the potential for misapplication of thermodynamic data from the literature. An analysis of initial rate data from TGA experiments suggested that the data may fit a model controlled by the heat transfer from the sorbent particle surface to the bulk gas

  13. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  14. Thermodynamics of organic molecule adsorption on sorbents modified with 5-hydroxy-6-methyluracil by inverse gas chromatography.

    Science.gov (United States)

    Gus'kov, Vladimir Yu; Gainullina, Yulia Yu; Ivanov, Sergey P; Kudasheva, Florida Kh

    2014-08-22

    The thermodynamic features of organic molecule adsorption from the gaseous phase of sorbents modified with 5-hydroxy-6-methyluracil (HMU) were studied. Molar internal energy and entropy of adsorption variation analyses showed that with every type surface, except for silica gel, layers of supramolecular structure have cavities equal in size with the ones revealed in HMU crystals by X-ray diffraction. Adsorption thermodynamics on HMU-modified sorbents depended on the amount of impregnated HMU and on the polarity, but not the porosity, of the initial sorbent. Polarity of the modified surface increased as a function of HMU quantity and initial sorbent mean pore size, but become appreciably lower if the initial surface is capable of hydrogen bonding. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  16. New poly(styrene/divinylbenzene) based stationary phases for the solid phase extraction of pesticides and the chromatography of carbohydrates

    International Nuclear Information System (INIS)

    Wartusch, I.

    2002-02-01

    The introduced sorbents based on poly(styrene/divinylbenzene) are studied regarding their extraction behavior of pesticides out of water. The sorbents are prepared with different porogens like n-octanol, n-decanol, n-dodecanol and acetone. The comparison of the extraction properties of these substances shows that the use of n-octanol as a porogen leads to the best recoveries. Furthermore this sorbent is compared to a stationary phase prepared via ring opening metathesis polymerization (ROMP) and to commercially available silica-C18. It is shown that the poly(styrene/divinylbenzene) based material on average yields higher recoveries as the other materials. Only the extraction of relatively polar pesticides works better with the ROMP based sorbent. For the chromatography of carbohydrates nonporous particles with diameters of about 3 μm were synthesized via poly(styrene/divinylbenzene) using the activated swelling method. Quaternary ammonia functional groups were introduced into the poly(styrene/divinylbenzene) particles via their nitration, reduction and quaternization. The applicability of these stationary phases for anion exchange chromatography is shown by separation of different kinds of sugars using a pulsed amperometric detection system. Monosaccharides are isocratically separated using an eluent containing sodium hydroxide, separations of disaccharides and oligosaccharides are performed using sodium acetate gradients. Linearity, detection limits and reproducibility of the system are investigated by the analysis of glucose, sucrose and fructose out of the real samples Coca Cola and apple juice. (author)

  17. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    Science.gov (United States)

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  18. Application of inorganic sorbents for sewage purification from copper

    International Nuclear Information System (INIS)

    Yelizarova, I.A.; Tomchuk, T.K.; Kalinin, N.F.; Vol'khin, V.V.; Levichek, M.S.; Gulyaeva, E.I.

    1986-01-01

    Article presents the results of elaboration of synthesis methods of sorbent on the base of phosphate and magnesium hydroxide. As a result of study the technology of sorbent production with optimal properties was elaborated.

  19. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Long Life Moving-Bed Zinc Titanate Sorbent

    International Nuclear Information System (INIS)

    Copeland, Robert J.; Cesario, Mike; Feinberg, Daniel A.; Sibold, Jack; Windecker, Brian; Yang, Jing

    1997-01-01

    The objective of this work was to develop and test long-life sorbents for hot gas cleanup. Specifically, we measured the sulfur loading at space velocities typically used for absorption of H 2 S and regenerated the sorbent with diluted air for multiple cycles. Based on the experimental results, we prepared a conceptual design of the sorbent-fabrication system, and estimated the cost of sorbent production and of sulfur removal

  1. Bulk Nano-structured Materials for Turbomachinery Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort seeks to exploit some of the tremendous benefits that could be attained from a revolutionary new approach to grain refinement in bulk...

  2. Experimentation of netlike hydro gel nitrogen containing polymer sorbents for biological liquids purification

    International Nuclear Information System (INIS)

    Karieva, Z.M.; Karimova, N. Kh.

    2003-01-01

    The high efficiency of hydrogels synthesized earlier in comparison with Pharmacopoeia sorbents are interesting to study comprehensively for the number of the toxins of biological liquids. Taking into considerations the high electoral sorption ability of ethynilpiperidol polymers to the hydro phobic interaction it may be suggested that they have a high detoxication ability. The detoxication characteristics of studied polymers have advantages over the known sorbents. Experiences with animals showed that in identical conditions of experiment in application of netlike polymers the survival grew 90%. Synthesis and investigations of netlike hydrogels polymer materials on nitrogen containing monomers of ethynil piperidol were given in the work. (author)

  3. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  4. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  5. Multifunctional Carbon Electromagnetic Materials - Motors & Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposal is to apply multifunctional carbon electromagnetic materials, including carbon nanotube electrical thread (replaces copper wire) and...

  6. Non-Catalytic Self Healing Composite Material Solution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  7. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  8. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.

    Science.gov (United States)

    Guilharduci, Viviane Vasques da Silva; Martelli, Patrícia Benedini; Gorgulho, Honória de Fátima

    2017-01-01

    This work evaluates the efficiency of sugarcane bagasse-based sorbents in the sorption of oil from engine washing wastewater. The sorbents were obtained from sugarcane bagasse in the natural form (SB-N) and modified with either acetic anhydride (SB-Acet) or 3-aminopropyltriethoxysilane (SB-APTS). The results showed that the sorption capacity of these materials decreased in the following order: SB-APTS > SB-N > SB-Acet. The superior oil sorption capacity observed for SB-APTS was attributed to the polar amino end groups in the silane structure, which acted to increase the hydrophilic character of the fibers. However, all the sorbents obtained in this study were able to clean a real sample of wastewater from engine washing, leading to significant reductions in suspended matter, sediment, anionic surfactants, and turbidity.

  9. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. Topical Report 5: Sorbent Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-05-31

    ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

  11. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  12. Influence of lignin on properties of wood-inorganic sorbents

    International Nuclear Information System (INIS)

    Remez, V.P.; Charina, M.V.; Klass, S.M.; Shubin, A.S.; Tkachev, K.V.; Isaeva, O.F.

    1986-01-01

    Present article is devoted to influence of lignin on properties of wood-inorganic sorbents. The influence of component composition of matrix on sorption properties of sorbents and their stability in different mediums is studied. The dependence of sorption capacity of sorbent on component matrix composition and its porous structure is defined.

  13. Development of ductile cementitious composites incorporating microencapsulated phase change materials

    NARCIS (Netherlands)

    Savija, B.; Lukovic, M.; Chaves Figueiredo, S.; de Mendoca Filho, Fernando Franca; Schlangen, H.E.J.G.

    2017-01-01

    Abstract In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cementitious composite

  14. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    Science.gov (United States)

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  15. Anaerobic co-digestion of cork based oil sorbent and cow manure or sludge

    NARCIS (Netherlands)

    Cavaleiro, A.J.; Neves, T.M.; Guedes, A.P.; Alves, M.M.; Pinto, P.; Silva, S.P.; Machado de Sousa, Diana

    2015-01-01

    Cork, a material with great economic, social and environmental importance in Portugal, is also a good oil sorbent that can be used in the remediation of oil spills. The oil-impregnated cork can be easily removed, but requires further treatment. In the case of vegetable oil spills, anaerobic

  16. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan; Qi, Genggeng; Wang, Peng; Giannelis, Emmanuel P.

    2012-01-01

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adsorption of gaseous RuO4 by various sorbents. II

    International Nuclear Information System (INIS)

    Vujisic, L.; Nikolic, R.

    1983-01-01

    Sorption of gaseous RuO 4 on impregnated Alcoa Alumina H-151, impregnated charcoal, silica gel and HEPA filter was investigated. The results obtained on various sorbents are compared and discussed in connection with possibilities to use the chosen material in air cleaning systems

  18. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  20. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  1. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  2. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    Science.gov (United States)

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  4. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  5. Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials.

    Science.gov (United States)

    Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T

    2017-11-01

    The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.

  6. Materials Information for Science and Technology (MIST): Project overview: Phase 1 and 2 and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-11-01

    The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science and Technology (MIST). This report documents the first two phases of the project. The emphasis of the first phase was on determining what information was needed and how it could impact user productivity. The second phase data from the Aerospace Metal Handbook on a set of alloys was digitized and incorporated in the system.

  7. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  8. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  9. Analysis of writing and erasing behaviours in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hyot, B. E-mail: bhyot@cea.fr; Poupinet, L.; Gehanno, V.; Desre, P.J

    2002-09-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes.

  10. Analysis of writing and erasing behaviours in phase change materials

    International Nuclear Information System (INIS)

    Hyot, B.; Poupinet, L.; Gehanno, V.; Desre, P.J.

    2002-01-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes

  11. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  12. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  13. Raman Mapping for the Investigation of Nano-phased Materials

    Science.gov (United States)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  14. Alternative materials for FDOT sign structures : phase I literature review.

    Science.gov (United States)

    2012-05-01

    Inspections of tubular sign structures by the Florida Department of Transportation (FDOT) have : revealed occurrences of premature corrosion on the inside of galvanized steel tubes. As a result, FDOT : engineers are seeking alternative materials that...

  15. Advanced Thermal Interface Material Systems for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M increase thermal cycles before degradation and efforts to ensure ease of...

  16. Integrated Computational Material Engineering Technologies for Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuesTek Innovations, a pioneer in Integrated Computational Materials Engineering (ICME) and a Tibbetts Award recipient, is teaming with University of Pittsburgh,...

  17. Additively Manufactured Multi-Material Insert, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Parabilis Space Technologies is pleased to propose development of a novel additive manufacturing method which enables the use of multiple dissimilar materials in an...

  18. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  19. Modeling of Impact Properties of Auxetic Materials Phase 2

    Science.gov (United States)

    2014-03-01

    over the more conventional engineering materials, such as higher indentation resistance, higher fracture toughness and greater resistance to impact...entrant materials were fixed at L=H=1.0 mm from which the rib lengths and thickness for each test case could be calculated using Equations (5) and (6...specimen. In all finite element models, the horizontal (2h) and diagonal (l) ribs shown in Figure 2 were idealized by ten and five shell elements

  20. Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point

    International Nuclear Information System (INIS)

    O’Connor, William E.; Warzoha, Ronald; Weigand, Rebecca; Fleischer, Amy S.; Wemhoff, Aaron P.

    2014-01-01

    Highlights: • Liquid-phase thermal properties for five phase change materials were estimated. • Various liquid phase and phase transition thermal properties were measured. • The thermal diffusivity was found using a best path to prediction approach. • The thermal diffusivity predictive method shows 15% agreement for organic PCMs. - Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs. The BPP method determines which of the tens of thousands of combinations of 22 different available theoretical techniques provides best agreement with thermal diffusivity values based on reported or measured density, heat capacity, and thermal conductivity for each of five PCMs (heneicosane, tricosane, tetracosane, oleic acid, and linoleic acid) in the liquid phase near the melting point. Separate BPPs were calibrated for alkanes based on heneicosane and tetracosane, and for the unsaturated acids. The alkane and unsaturated acid BPPs were then tested on a variety of similar materials, showing agreement with reported/measured thermal diffusivity within ∼15% for all materials. The alkane BPP was then applied to find that increasing the length of alkane chains decreases the PCM thermal

  1. Doped SbTe phase change material in memory cells

    NARCIS (Netherlands)

    in ‘t Zandt, M.A.A.; Jedema, F.J.; Gravesteijn, Dirk J; Gravesteijn, D.J.; Attenborough, K.; Wolters, Robertus A.M.

    2009-01-01

    Phase Change Random Access Memory (PCRAM) is investigated as replacement for Flash. The memory concept is based on switching a chalcogenide from the crystalline (low ohmic) to the amorphous (high ohmic) state and vice versa. Basically two memory cell concepts exist: the Ovonic Unified Memory (OUM)

  2. The materialization phase in the colour rope picture

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-11-01

    The initial phase of ultra-relativistic nucleus-nucleus collisions where matter in form of quarks and real gluons is created is described in terms of a phenomenological strings with multiple colour charge sources at their ends. Consequences upon different observables are reviewed and discussed. (orig.)

  3. Control surface wettability with nanoparticles from phase-change materials

    NARCIS (Netherlands)

    Ten Brink, G. H.; van het Hof, P. J.; Chen, B.; Sedighi, M.; Kooi, B. J.; Palasantzas, G.

    2016-01-01

    The wetting state of surfaces can be controlled physically from the highly hydrophobic to hydrophilic states using the amorphous-to-crystalline phase transition of Ge2Sb2Te5 (GST) nanoparticles as surfactant. Indeed, contact angle measurements show that by increasing the surface coverage of the

  4. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  5. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  6. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  7. Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes.

    Science.gov (United States)

    Endo, Satoshi; Grathwohl, Peter; Haderlein, Stefan B; Schmidt, Torsten C

    2009-01-15

    Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of n- and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear (Freundlich exponents 0.2-0.7) and strong (Koc values being up to 10(5) times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. Sorption by CGs was generally stronger and more nonlinear for n-octane than for cyclooctane, which suggests a strong dependence of sorption on the 3-D structure of sorbate molecules. The n-octane-to-cyclooctane sorption coefficient ratios (Kn/Kc) for adsorption to CGs were > or = 1, being distinctly different from those for absorption to the OM-rich materials (Kn/Kc soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound.

  8. Stowing of radioactive materials package during land transport. Third phase

    International Nuclear Information System (INIS)

    Gilles, P.; Chevalier, G.; Pouard, M.; Jolys, J.C.; Draulans, J.; Lafontaine, I.

    1984-01-01

    Phase 3 of this study is mainly experimental. The study is based on the work performed during 2 former studies: phase 1: definition and analysis of reference accidental conditions, and phase 2: selection of some reference accidents and computation of the deceleration forces. The main goal of the study is to draw up a reference document, giving some guidances for the stowing of packages on conveyances for land transportation. The third phase includes four frontal impact tests. The reference package used is a French IL-37 container weighing about 1.3 t. The first test was performed using a truck, loaded with two IL-37 containers and launched at a speed of 50 km/h against a fixed obstacle. The deceleration curve the behaviour of each package and the behaviour of stowing systems are compared with the theoretical results. Various measurements were made during the test: vehicle impact speed; vehicle deceleration, measured at different points on the frame, package deceleration, displacement of attachment points. The impact was filmed from different angles. The second test was performed in the same impact conditions but with a waggon instead of a truck, and loaded with one container. The front of the waggon was equipped with special shock absorbers to obtain the same deceleration as recorded during the truck impact (first test). In the third test the stowing systems were reinforced by a nylon one in order to obtain information of stowing systems of that type and to increase the energy absorption capacity. In the fourth test in addition to being stowed the package was also chocked. The results obtained have shown that it is possible to maintain a package on a truck platform even during a severe frontal impact

  9. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  10. Analyse of possibilities of increasing housing energy efficiency by application of phase-changing materials

    Directory of Open Access Journals (Sweden)

    Vučeljić-Vavan Sanja

    2009-01-01

    Full Text Available Refurbishment of existing building stock using energy-saving phase-changing smart materials and technologies, in addition to improved indoor climatic conditions, offer an opportunity for increasing housing energy efficiency and value. This fast developing technology becomes increasingly cost-effective with much shorter payback periods. However, it is undertaken only on a limited scale; because of lack of knowledge about their changeable properties and dynamism in that they behave in response to energy fields. Main characteristics, which make them different form others, are: immediacy transience, self-actuation, selectivity and directness. Phase change processes invariably involve the absorbing, storing or releasing of large amounts of energy in the form of latent heat. These processes are reversible and phase-changing materials can undergo an unlimited number of cycles without degradation. Since phase-changing materials can be designed to absorb or release energy at predictable temperatures, they have naturally been explored for use in architecture as a way of helping deal with the thermal environment in a building. Technologies based on sealing phase-changing materials into small pellets have achieved widespread use in connection with radiant floor heating systems, phase change wallboards, mortar or facade systems. Thermal characteristics of existing buildings can be improved on increasing their thermal-stored mass by implementation products of phase-changing smart materials. In addition to contributing to carbon reduction and energy security, using phase-changing materials in the building sector stimulates innovations.

  11. Relaxed energy for transversely isotropic two-phase materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav; Padovani, C.

    2002-01-01

    Roč. 67, 3 (2002), s. 187-204 ISSN 0374-3535 R&D Projects: GA ČR GA201/00/1516 Institutional research plan: CEZ:AV0Z1019905 Keywords : double-well materials * transverse isotropy * quasiconvexity Subject RIV: BA - General Mathematics Impact factor: 0.615, year: 2002

  12. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  13. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  14. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  15. Concentration and immobilization of 137Cs from liquid radioactive waste using sorbents based on hydrated titanium and zirconium oxides

    Science.gov (United States)

    Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.

  16. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    Science.gov (United States)

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  17. A universal preconditioner for simulating condensed phase materials

    Energy Technology Data Exchange (ETDEWEB)

    Packwood, David; Ortner, Christoph, E-mail: c.ortner@warwick.ac.uk [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Kermode, James, E-mail: j.r.kermode@warwick.ac.uk [Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Mones, Letif [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Bernstein, Noam [Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Woolley, John [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gould, Nicholas [Scientific Computing Department, STFC-Rutherford Appleton Laboratory Chilton, Oxfordshire OX11 0QX (United Kingdom); Csányi, Gábor, E-mail: gc121@cam.ac.uk [Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-04-28

    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.

  18. Synthesis and characteristics of composite phase change humidity control materials

    DEFF Research Database (Denmark)

    Qin, Menghao; Chen, Zhi

    2017-01-01

    ) and the thermal gravimetric analysis (TGA) were used to determine the thermal properties and thermal stability. Both the moisture transfer coefficient and moisture buffer value (MBV) of different PCHCMs were measured by the improved cup method. The DSC results showed that the SiO2 shell can reduce the super...... synthesized with methyl triethoxysilane by the sol–gel method. The vesuvianite, sepiolite and zeolite were used as hygroscopic materials. The scanning electron microscopy (SEM) was used to measure the morphology profiles of the microcapsules and PCHCM. The differential scanning calorimetry (DSC...

  19. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  20. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  1. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2015-02-01

    The overall objective of this study was to determine the suitability of recycled concrete aggregate : (RCA) from road projects as bottom conditioning material for on-bottom oyster aquaculture in the : Chesapeake Bay. During this Phase of the study, t...

  2. Next Generation , Lightweight, Durable Boot Materials to Provide Active & Passive Thermal Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase I SBIR program is to leverage lightweight, durable materials developed by NanoSonic for use within extra vehicular activity (EVA)...

  3. Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to continue efforts from the 2015 NASA SBIR Phase I topic H14.03 ?Reversible Copolymer Materials for FDM 3D Printing...

  4. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  5. Synchrotron radiation : characteristics and application in structural studies and phase transformations of materials

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1984-01-01

    The main characteristics of the synchrotron radiation for studying atomic structure and phase transformations in materials are presented. Some specific applications in alloys, glass and solids are described. (E.G.) [pt

  6. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  7. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2014-11-01

    The overall objective of this study was to determine the suitability of recycled concrete : aggregate (RCA) from road projects as bottom conditioning material for on-bottom oyster : aquaculture in the Chesapeake Bay. During this Phase of the study, t...

  8. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: doseng_1982@hotmail.com; Xu Lingling; Shang Hongbo; Zhang Zhibin [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m.

  9. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    International Nuclear Information System (INIS)

    Chen Liang; Xu Lingling; Shang Hongbo; Zhang Zhibin

    2009-01-01

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g -1 , the particle diameter was 20-35 μm

  10. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  11. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kang, Seo-Young [International Environmental Research Center (IERC), Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lee, Sang-Hyup [Water Environment Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2011-10-15

    Highlights: {yields} SBA-15 grafted with aminopropyl, hydroxymethyl, and trimethylsilyl groups as sorbents. {yields} Sorbents for removal of a mixture of 12 pharmaceuticals from water. {yields} Hydroxymethyl-SBA-15 shows similar adsorption efficiency like SBA-15. {yields} Aminopropyl-SBA-15 makes increase for clofibric acid, diclofenac, decrease for atenolol, estrone, trimethoprim. {yields} Trimethylsilyl-SBA-15 makes increase for 9 compounds; 7 compounds from 70.6% to 98.9%. - Abstract: Mesoporous silica SBA-15 and its postfunctionalized counterparts with hydroxymethyl (HM-SBA-15), aminopropyl (AP-SBA-15), and trimethylsilyl (TMS-SBA-15) were prepared and characterized by powder X-ray diffraction, N{sub 2} adsorption-desorption measurement, Fourier-transform infrared spectroscopy, and elemental analysis. The removal of a mixture of 12 selected pharmaceuticals was investigated by batch adsorption experiments onto SBA-15 and the grafted materials. SBA-15 showed to have moderate adsorption affinity with amino-containing (atenolol, trimethoprim) and hydrophobic pharmaceuticals, but it displayed minimal adsorption affinity toward hydrophilic compounds. HM-SBA-15 was analogous with SBA-15 in terms of the adsorption efficiency toward all pharmaceuticals. AP-SBA-15 exhibited an increase in the adsorption of two acidic compounds (clofibric acid, diclofenac) but a decrease in the adsorption of estrone and the two amino-containing compounds. Among the grafted materials, TMS-SBA-15 had the highest adsorption affinity toward most pharmaceuticals. Moreover, the adsorption of nine pharmaceuticals to TMS-SBA-15 was significantly higher than that to SBA-15; seven of which showed the removal percentages from 70.6% to 98.9% onto TMS-SBA-15. The number of pharmaceuticals showing high adsorption efficiency onto TMS-SBA-15 did not alter significantly as the pH changed in the range of 5.5-7.6. The results suggest that TMS-SBA-15 is a promising material for the removal of pharmaceuticals

  12. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water

    International Nuclear Information System (INIS)

    Bui, Tung Xuan; Kang, Seo-Young; Lee, Sang-Hyup; Choi, Heechul

    2011-01-01

    Highlights: → SBA-15 grafted with aminopropyl, hydroxymethyl, and trimethylsilyl groups as sorbents. → Sorbents for removal of a mixture of 12 pharmaceuticals from water. → Hydroxymethyl-SBA-15 shows similar adsorption efficiency like SBA-15. → Aminopropyl-SBA-15 makes increase for clofibric acid, diclofenac, decrease for atenolol, estrone, trimethoprim. → Trimethylsilyl-SBA-15 makes increase for 9 compounds; 7 compounds from 70.6% to 98.9%. - Abstract: Mesoporous silica SBA-15 and its postfunctionalized counterparts with hydroxymethyl (HM-SBA-15), aminopropyl (AP-SBA-15), and trimethylsilyl (TMS-SBA-15) were prepared and characterized by powder X-ray diffraction, N 2 adsorption-desorption measurement, Fourier-transform infrared spectroscopy, and elemental analysis. The removal of a mixture of 12 selected pharmaceuticals was investigated by batch adsorption experiments onto SBA-15 and the grafted materials. SBA-15 showed to have moderate adsorption affinity with amino-containing (atenolol, trimethoprim) and hydrophobic pharmaceuticals, but it displayed minimal adsorption affinity toward hydrophilic compounds. HM-SBA-15 was analogous with SBA-15 in terms of the adsorption efficiency toward all pharmaceuticals. AP-SBA-15 exhibited an increase in the adsorption of two acidic compounds (clofibric acid, diclofenac) but a decrease in the adsorption of estrone and the two amino-containing compounds. Among the grafted materials, TMS-SBA-15 had the highest adsorption affinity toward most pharmaceuticals. Moreover, the adsorption of nine pharmaceuticals to TMS-SBA-15 was significantly higher than that to SBA-15; seven of which showed the removal percentages from 70.6% to 98.9% onto TMS-SBA-15. The number of pharmaceuticals showing high adsorption efficiency onto TMS-SBA-15 did not alter significantly as the pH changed in the range of 5.5-7.6. The results suggest that TMS-SBA-15 is a promising material for the removal of pharmaceuticals from aqueous phase

  13. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  14. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    International Nuclear Information System (INIS)

    Vaikkinen, A.; Kotiaho, T.; Kostiainen, R.; Kauppila, T.J.

    2010-01-01

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  15. Field experiments on the use of phase changing materials, insulation materials and passive solar radiation in the built environment

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.; McCarthy, J.; Foliente, G.

    2008-01-01

    This paper describes the development of an experimental research facility to assess the effectiveness of Phase Change Materials (PCM), that can be used for passive solar heating. Four test boxes are constructed representing the conventional and future Dutch building practices regarding insulation

  16. THE EFFECT OF PHASE CHANGE MATERIALS ON THE TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    HERROELEN Thomas

    2016-05-01

    Full Text Available PCM’s need some important properties to have use such as high heat storage capacity, easy availability and low cost and can have different effects such as flavour, softness or exchange of heat. They are put inside of microcapsules, so they can be inbedded inside the strain, otherwise it wouldn’t be so effective. So basically the microcapsules consist of a core that’s the PCM and a polymer shell. This shell needs to be strong enough to hold the PCM and also withstand up to a certain level of heat and mechanical damage. This study investigates the tensile strength of fabrics composed by fibres, some of these fibres have benn inbedded phase change microcapsules (PCM’s. The investigated fabrics are divided by composition and by structure. By knitting the fabrics in different structures you could be able to investigate which knitting way could be the most effective to have a high tensile strength. Tensile strength tests are performed on specimens with different structures but also with different compositions which could indicate that some strains are tougher then others and more specifically if the PCM’s have a different effect on them.

  17. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  18. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  19. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    Science.gov (United States)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  20. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  1. Evaluation of waste concrete road materials for use in oyster aquaculture - Phase 3.

    Science.gov (United States)

    2016-08-01

    This project was the final phase of a three-phase project. The primary objective was to determine the suitability of recycled concrete aggregate (RCA) from road projects as a bottom conditioning material for on-bottom oyster aquaculture in the Chesap...

  2. Bias dependent specic contact resistance of phase change material to metal contacts

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha; Wolters, Robertus A.M.

    2010-01-01

    Knowledge of contact resistance of phase change materials (PCM) to metal electrodes is important for scaling, device modeling and optimization of phase change random access memory (PCRAM) cells. In this article, we report the systematic determination of the speci_c contact resistance (_c) with

  3. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  4. Sequential injection/bead injection lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald; Miró, Manuel

    2003-01-01

    are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material...

  5. Design rules for phase-change materials in data storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lencer, Dominic; Salinga, Martin [I. Physikalisches Institut IA, RWTH Aachen University, 52056 Aachen (Germany); Wuttig, Matthias [I. Physikalisches Institut IA, RWTH Aachen University, 52056 Aachen (Germany); Juelich-Aachen Research Alliance, Section Fundamentals of Future Information Technology (JARA-FIT), 52056 Aachen (Germany)

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and discusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Design rules for phase-change materials in data storage applications.

    Science.gov (United States)

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    OpenAIRE

    Lin Zheng; Wei Zhang; Fei Liang; Shuang Lin; Xiangyu Jin

    2017-01-01

    The paper presents the different properties of phase change material (PCM) and Microencapsulated phase change material (MEPCM) employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC) tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compar...

  10. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    Science.gov (United States)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  11. Crack propagation in touch ductile materials. Phase II

    International Nuclear Information System (INIS)

    Venter, R.D.; Sinclair, A.N.; McCammond, D.

    1989-06-01

    The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability

  12. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  13. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  14. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  15. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents

    International Nuclear Information System (INIS)

    Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A.

    2008-01-01

    New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO 4 3- from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO 4 3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration

  16. Interface Characterization of Metals and Metal-nitrides to Phase Change Materials

    NARCIS (Netherlands)

    Roy, Deepu; Gravesteijn, Dirk J; Wolters, Robertus A.M.

    2011-01-01

    We have investigated the interfacial contact properties of the CMOS compatible electrode materials W, TiW, Ta, TaN and TiN to doped-Sb2Te phase change material (PCM). This interface is characterized both in the amorphous and in the crystalline state of the doped-Sb2Te. The electrical nature of the

  17. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  18. Does nanoparticles dispersed in a phase change material improve melting characteristics?

    NARCIS (Netherlands)

    Farsani, Rouhollah Yadollahi; Raisi, Afrasiab; Nadooshan, Afshin Ahmadi; Vanapalli, Srinivas

    2017-01-01

    Nanoparticles dispersed in a phase change material alter the thermo-physical properties of the base material, such as thermal conductivity, viscosity, and specific heat capacity. These properties combined with the configuration of the cavity, and the location of the heat source, influence the

  19. Constitutive modeling of two phase materials using the Mean Field method for homogenization

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2010-01-01

    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent

  20. Research framework for an experimental study on phase change materials in scaled models of dutch dwellings

    NARCIS (Netherlands)

    Muthing, F.; Entrop, A.G.; Brouwers, H.J.H.

    2009-01-01

    In modern Dutch dwellings, about 10% of the annual use of primary energy is used for cooling, whereas about 50% of the primary energy is used for heating. With the technology of Phase Change Materials (PCMs) energy savings can be made in both areas. PCMs are materials with a high latent heat