WorldWideScience

Sample records for sophomore math classes

  1. Promoting children's health through physically active math classes: a pilot study.

    Science.gov (United States)

    Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W

    2011-03-01

    School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.

  2. Supporting English Language Learners in Math Class, Grades 6-8

    Science.gov (United States)

    Melanese, Kathy; Chung, Luz; Forbes, Cheryl

    2011-01-01

    This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…

  3. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Science.gov (United States)

    Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.

    2017-06-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  4. Supporting English Language Learners in Math Class, Grades K-2

    Science.gov (United States)

    Bresser, Rusty; Melanese, Kathy; Sphar, Christine

    2009-01-01

    More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades K-2" outlines the challenges ELL students face when learning math and provides a wealth of specific…

  5. Supporting English Language Learners in Math Class, Grades 3-5

    Science.gov (United States)

    Bresser, Rusty; Melanese, Kathy; Sphar, Christine

    2009-01-01

    More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades 3-5" outlines the challenges ELL students face when learning math and provides a wealth of specific…

  6. Maintaining Students’ Involvement in a Math Lecture Using Countdown Timers

    Directory of Open Access Journals (Sweden)

    Ann Krizzel A. Aban

    2015-12-01

    Full Text Available Involving students in a lecture is an important but not an easy task that every lecturer must encourage. This task becomes even greater in a math class that is composed of eighty to a hundred sixty students. In 2007, the University of the Philippines Los Baños (UPLB started offering some of its basic math courses in lecture-recitation set-up. This shift and many other factors drove most math instructors of UPLB to widely use presentation software, such as the PowerPoint (PPT, to deliver their lectures. The non-stop use of these softwares, however, seems to have negative effects on the students when it comes to maintaining their involvement in a lecture discussion for they tend to be more passive spectators. On the other hand, adding countdown timers strategically on some parts of the discussion seems to lessen such negative effects. This study determined the effectiveness of using countdown timers in maintaining students’ involvement in a lecture of MATH 27 (Analytic Geometry and Calculus II, a course in UPLB commonly taken by sophomore students. Results show that the effectiveness of countdown timers, as perceived by the students, is independent to students’ genders and degree programs, but is dependent to the colleges where the students belong to. Also, some effects of countdown timers are significantly correlated to various data from students’ profiles. It was concluded in the study that the use of countdown timers is effective in maintaining student’s involvement in MATH 27 lectures and might also be useful in other math lecture classes

  7. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Directory of Open Access Journals (Sweden)

    Marcos D. Caballero

    2017-04-01

    Full Text Available Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1 at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  8. Effectiveness of a Class-Wide Peer-Mediated Elementary Math Differentiation Strategy

    Science.gov (United States)

    Lloyd, Jason D.

    2017-01-01

    Approximately 60% of classroom students have insufficient math skills. Within a Multi-Tiered Systems of Support (MTSS) framework, teachers can implement core differentiation strategies targeted at improving math skills of an entire class of students. Differentiation programs are developed in order to target academic skills of groups of students…

  9. Talking Math, Blogging Math

    OpenAIRE

    Mathews, Linda Marie

    2009-01-01

    Talking Math, Blogging Math is a curriculum designed to aid middle school Pre- Algebra students' mathematical problem-solving through the use of academic language instruction, explanatory proofs, and online technology (blogging). Talking Math, Blogging Math was implemented over a period of ten weeks during the 2008 - 2009 school year. The school where the curriculum was implemented is a non-traditional classroom-based charter school. The 7th, 8th and 9th grade students attended class twice a ...

  10. Measurement of math beliefs and their associations with math behaviors in college students.

    Science.gov (United States)

    Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara

    2014-12-01

    Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.

  11. Evaluating the Benefits of Providing Archived Online Lectures to In-Class Math Students

    Science.gov (United States)

    Cascaval, Radu C.; Fogler, Kethera A.; Abrams, Gene D.; Durham, Robert L.

    2008-01-01

    The present study examines the impact of a novel online video lecture archiving system on in-class students enrolled in traditional math courses at a mid-sized, primarily undergraduate, university in the West. The archiving system allows in-class students web access to complete video recordings of the actual classroom lectures, and sometimes of…

  12. MathPatch - Raising Retention and Performance in an Intro-geoscience Class by Raising Students' Quantitative Skills

    Science.gov (United States)

    Baer, E. M.; Whittington, C.; Burn, H.

    2008-12-01

    The geological sciences are fundamentally quantitative. However, the diversity of students' mathematical preparation and skills makes the successful use of quantitative concepts difficult in introductory level classes. At Highline Community College, we have implemented a one-credit co-requisite course to give students supplemental instruction for quantitative skills used in the course. The course, formally titled "Quantitative Geology," nicknamed "MathPatch," runs parallel to our introductory Physical Geology course. MathPatch teaches the quantitative skills required for the geology class right before they are needed. Thus, students learn only the skills they need and are given opportunities to apply them immediately. Topics include complex-graph reading, unit conversions, large numbers, scientific notation, scale and measurement, estimation, powers of 10, and other fundamental mathematical concepts used in basic geological concepts. Use of this course over the past 8 years has successfully accomplished the goals of increasing students' quantitative skills, success and retention. Students master the quantitative skills to a greater extent than before the course was implemented, and less time is spent covering basic quantitative skills in the classroom. Because the course supports the use of quantitative skills, the large number of faculty that teach Geology 101 are more comfortable in using quantitative analysis, and indeed see it as an expectation of the course at Highline. Also significant, retention in the geology course has increased substantially, from 75% to 85%. Although successful, challenges persist with requiring MathPatch as a supplementary course. One, we have seen enrollments decrease in Geology 101, which may be the result of adding this co-requisite. Students resist mandatory enrollment in the course, although they are not good at evaluating their own need for the course. The logistics utilizing MathPatch in an evening class with fewer and longer

  13. Early Millennials: The Sophomore Class of 2002 a Decade Later. Statistical Analysis Report. NCES 2017-437

    Science.gov (United States)

    Chen, Xianglei; Lauff, Erich; Arbeit, Caren A.; Henke, Robin; Skomsvold, Paul; Hufford, Justine

    2017-01-01

    This Statistical Analysis Report tracks a cohort of 2002 high school sophomores over 10 years, examining the extent to which cohort members had reached such life course milestones as finishing school, starting a job, leaving home, getting married, and having children. The analyses in this report are based on data from the Education Longitudinal…

  14. When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

    Science.gov (United States)

    Lyons, Ian M.; Beilock, Sian L.

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929

  15. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Directory of Open Access Journals (Sweden)

    Ian M Lyons

    Full Text Available Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs, math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula. Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  16. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  17. A Comparative Study of Student Math Skills: Perceptions, Validation, and Recommendations

    Science.gov (United States)

    Jones, Thomas W.; Price, Barbara A.; Randall, Cindy H.

    2011-01-01

    A study was conducted at a southern university in sophomore level production classes to assess skills such as the order of arithmetic operations, decimal and percent conversion, solving of algebraic expressions, and evaluation of formulas. The study was replicated using business statistics and quantitative analysis classes at a southeastern…

  18. Literacy Specialists in Math Class! Closing the Achievement Gap on State Math Assessments

    Science.gov (United States)

    DiGisi, Lori L.; Fleming, Dianne

    2005-01-01

    Sixth and eighth grade students who are English language learners must be able to read and interpret 39 math word problems in order to successfully calculate the answers on the Massachusetts state math assessment (MCAS). The first year that MCAS was administered, many ELL students read the questions, found them confusing, and left them blank,…

  19. Engineering students at typically invisible transition points: A focus on admissions and the sophomore year

    Science.gov (United States)

    Holloway, Elizabeth M.

    As of 2012, women are approximately 19% of all engineering undergraduate students nationally (American Society for Engineering Education, 2012). Women's representation in engineering has not changed significantly over the last 20 years, despite increased attention, increased funding, and increased programmatic activities intended to encourage more women to become engineers. Research around the world continues to seek identification of the reasons for the underrepresentation of women in engineering. This prior work has focused primarily on two broad areas: recruiting, that is, preparation, socialization, exposure, and experiences prior to college; and retention, that is, experiences in higher education. Retention studies and programmatic responses to those studies mostly have been confined to the collegiate first year, a time of historically high attrition. Little attention has been paid to the university admissions process, one of the gateways to engineering studies. Little attention also has been paid to the experiences of college sophomores, whose attrition rates approach those of first-year college students. The first section of this dissertation presents a statistical analysis that indicated a bias in favor of men in the admission process. Success factor modeling suggested a different set of admission criteria could mitigate this bias. After recommendations to change admission criteria were implemented, the percent of female enrollment in engineering increased and statistical analysis confirmed that bias was substantially neutralized. The second section of this dissertation presents three frameworks for understanding how sophomores may be defined. The processes of conceptualizing and operationalizing what it means to be a sophomore impact the types of issues that can be investigated about student attrition, the findings that result from those investigations, and the ability to make cross institutional or programmatic comparisons using a clearly stated

  20. Predictors of Participation of Sophomore Medical Students in a Health-Promoting Intervention: An Observational Study.

    Directory of Open Access Journals (Sweden)

    Thomas Kötter

    Full Text Available Medical students and doctors have to be particularly stress-resilient, as both medical education and practice are considered very stressful. Specific stressors can lead to increased risks of developing, for example, depression, anxiety and burnout. Relaxation techniques have proven to be effective for the prevention of these outcomes in student populations. However, only a very few medical students practice relaxation techniques regularly early on in their studies. Furthermore, it is unclear which students make use of stress-management offers and hence whether vulnerable students are generally reachable. Therefore, the aim of our study was to explore predictors of participating in a voluntary stress management course for sophomore medical students. One cohort of freshmen at a German medical school was surveyed at the end of the freshman year [t1] and at the end of the sophomore year [t2]. In addition to sociodemographic information, we captured perceived study stress, self-rated general health and mental health and dimensions of study-related behaviour and experience as potential predictors of participation at t1. During the sophomore year, we offered the participants a progressive muscle relaxation (PMR beginners' course. At t2, we registered participation status. We used binary logistic regression analyses in order to assess correlations between potential predictors and participation. About one third of the whole class took part in the course. The main reason for non-participation was "no time". Being female and higher levels of anxiety were the strongest predictors of course participation. Career ambition (the higher, the less likely to participate and emotional distancing (the higher, the more likely to participate were further significant predictors. Future interventions should be attractive to both male and female medical students. Ideally, for every hour of stress management teaching, the curriculum should be cut by at least the same

  1. Basic Math Skills and Performance in an Introductory Economics Class

    Science.gov (United States)

    Ballard, Charles L.; Johnson, Marianne F.

    2004-01-01

    The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…

  2. Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents

    Science.gov (United States)

    Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.

    2012-01-01

    Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…

  3. Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.

    Science.gov (United States)

    Pizzie, Rachel G; Kraemer, David J M

    2017-11-01

    Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Students as Math Level Designers

    DEFF Research Database (Denmark)

    Jensen, Erik Ottar; Hanghøj, Thorkild; Schoenau-Fog, Henrik

    The short paper presents preliminary findings from a pilot study on how students become motivated through design of learning games in math. The research is carried out in a Danish public school with two classes of 5th graders (N = 42 students). Over the course of two weeks, the students work...... with a design template for a runner game in the Unity 3D game design engine. The students are introduced to the concept of “flow” (Csikszentmihalyi, 1991) as a game design principle and are asked to design levels for a math runner game, which are both engaging as well as a meaningful way of learning math....... In this way, the students are positioned as “math level designers”, which means that they both have to redesign the difficulty of the runner game as well as the difficulty of the mathematical questions and possible answers....

  5. The Effect of Cooperative Groups on Math Anxiety

    Science.gov (United States)

    Batton, Melissa

    2010-01-01

    Research indicates that many students have difficulty with mathematics, which can be attributed to many factors including math anxiety. Students who experience math anxiety have poor attitudes towards mathematics and perform below grade level based on class and statewide assessments. The purpose of this quasi-experimental quantitative study was to…

  6. Why Aren't More Minorities Taking Advanced Math?

    Science.gov (United States)

    Walker, Erica N.

    2007-01-01

    Black and Latino students are still underepresented in upper-level math classes in the United States, a fact which has serious implications for their academic achievement and futures. Walker provides six suggestions for how educators can encourage more black and Latino students to successfully take higher level math courses: (1) Expand our…

  7. The math excellence workshop

    International Nuclear Information System (INIS)

    Lasser, Susan J.S.; Snelsire, Robert W.

    1992-01-01

    This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)

  8. The math excellence workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lasser, Susan J.S.; Snelsire, Robert W [College of Engineering, Clemson University, Clemson, SC (United States)

    1992-07-01

    This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)

  9. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.

    Science.gov (United States)

    Casad, Bettina J; Hale, Patricia; Wachs, Faye L

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.

  10. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    Science.gov (United States)

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000

  11. Parent-Child Math Anxiety and Math-Gender Stereotypes Predict Adolescents’ Math Education Outcomes

    Directory of Open Access Journals (Sweden)

    Bettina J Casad

    2015-11-01

    Full Text Available Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children’s math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa for performance beliefs and outcomes (self-efficacy and GPA. Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and for boys, and for boys with GPA. These findings address gaps in the literature on the role of parents’ math anxiety in the effects of children’s math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents’ math anxiety and dispelling gender stereotypes in math classrooms.

  12. Working memory, math performance, and math anxiety.

    Science.gov (United States)

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  13. Race and Academic Achievement in Racially Diverse High Schools: Opportunity and Stratification.

    Science.gov (United States)

    Muller, Chandra; Riegle-Crumb, Catherine; Schiller, Kathryn S; Wilkinson, Lindsey; Frank, Kenneth A

    2010-04-01

    BACKGROUND/CONTEXT: Brown v Board of Education fundamentally changed our nation's schools, yet we know surprisingly little about how and whether they provide equality of educational opportunity. Although substantial evidence suggests that African American and Latino students who attend these schools face fewer learning opportunities than their White counterparts, until now, it has been impossible to examine this using a representative sample because of lack of data. PURPOSE/OBJECTIVE/RESEARCH QUESTION/FOCUS OF STUDY: This study uses newly available data to investigate whether racially diverse high schools offer equality of educational opportunity to students from different racial and ethnic groups. This is examined by measuring the relative representation of minority students in advanced math classes at the beginning of high school and estimating whether and how this opportunity structure limits the level of achievement attained by African American and Latino students by the end of high school. SETTING: This study uses data from the Adolescent Health and Academic Achievement Study (AHAA) and its partner study, the National Longitudinal Study of Adolescent Health (Add Health), a stratified, nationally representative study of students in U.S. high schools first surveyed in 1994-1995. POPULATION/PARTICIPANTS/SUBJECTS: Two samples of racially diverse high schools were used in the analysis: one with African Americans, Whites, and Asians (26 schools with 3,149 students), and the other with Latinos, Whites, and Asians (22 schools with 2,775 students). RESEARCH DESIGN: Quantitative analyses first assess how high schools vary in the extent to which minority students are underrepresented in advanced sophomore math classes. Hierarchical multilevel modeling is then used to estimate whether racial-ethnic differences in representation in advanced math have an impact on African American and Latino students' achievement by the end of high school, relative to the Whites and Asians

  14. A Pilot Study Examining the Effects of Time Constraints on Student Performance in Accounting Classes

    Science.gov (United States)

    Morris, David E., Sr.; Scott, John

    2017-01-01

    The purpose of this study was to examine the effects, if any, of time constraints on the success of accounting students completing exams. This study examined how time allowed to take exams affected the grades on examinations in three different accounting classes. Two were sophomore classes and one was a senior accounting class. This limited pilot…

  15. The Flipped Classroom for Teaching Organic Chemistry in Small Classes: Is It Effective?

    Science.gov (United States)

    Fautch, Jessica M.

    2015-01-01

    The flipped classroom is a pedagogical approach that moves course content from the classroom to homework, and uses class time for engaging activities and instructor-guided problem solving. The course content in a sophomore level Organic Chemistry I course was assigned as homework using video lectures, followed by a short online quiz. In class,…

  16. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    OpenAIRE

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math de...

  17. Analyzing the Cooking Behavior of Sophomore Female Students : In relation to the ability for preparation of cooking

    OpenAIRE

    Imakawa, Shinji

    2012-01-01

    The aim of this study was to clarify the Dandori-ryoku (the ability for preparation in cooking) by analyzing the practical cooking behavior of sophomore female students. Ten sophomore female students were participated in the experiment to cook three kinds of food (cooking rice, making miso soup and fried vegetables). The behavior of the participants during cooking were videotaped and analyzed in detail later especially in relation to Dandori-ryoku. Such behaviors as “starting from cooking ric...

  18. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A

    2015-12-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.

  19. A Study of Chinese Undergraduates' MI Distribution in EFL Class

    Science.gov (United States)

    Liu, Ning

    2008-01-01

    This paper initiates an investigation of the college students' MI (multiple intelligences) distribution in English class. The participants are a group of Chinese sophomores from different majors: city planning, tourism, software engineering, financial administration and arts of English. With a view to make the investigation more specified in…

  20. Do student self-efficacy and teacher-student interaction quality contribute to emotional and social engagement in fifth grade math?

    Science.gov (United States)

    Martin, Daniel P; Rimm-Kaufman, Sara E

    2015-10-01

    This study examined (a) the contribution of math self-efficacy to students' perception of their emotional and social engagement in fifth grade math classes, and (b) the extent to which high quality teacher-student interactions compensated for students' low math self-efficacy in contributing to engagement. Teachers (n = 73) were observed three times during the year during math to measure the quality of teacher-student interactions (emotional, organizational, and instructional support). Fifth graders (n = 387) reported on their math self-efficacy at the beginning of the school year and then were surveyed about their feelings of engagement in math class three times during the year immediately after the lessons during which teachers were observed. Results of multi-level models indicated that students initially lower in math self-efficacy reported lower emotional and social engagement during math class than students with higher self-efficacy. However, in classrooms with high levels of teacher emotional support, students reported similar levels of both emotional and social engagement, regardless of their self-efficacy. No comparable findings emerged for organizational and instructional support. The discussion considers the significance of students' own feelings about math in relation to their engagement, as well as the ways in which teacher and classroom supports can compensate for students lack of agency. The work has implications for school psychologists and teachers eager to boost students' engagement in math class. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  1. Female teachers' math anxiety affects girls' math achievement.

    Science.gov (United States)

    Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C

    2010-02-02

    People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.

  2. Detecting Math Anxiety with a Mixture Partial Credit Model

    Science.gov (United States)

    Ölmez, Ibrahim Burak; Cohen, Allan S.

    2017-01-01

    The purpose of this study was to investigate a new methodology for detection of differences in middle grades students' math anxiety. A mixture partial credit model analysis revealed two distinct latent classes based on homogeneities in response patterns within each latent class. Students in Class 1 had less anxiety about apprehension of math…

  3. A Vicarious Learning Activity for University Sophomores in a Multiculturalism Course

    Science.gov (United States)

    Chennault, Ronald E.

    2005-01-01

    How can one teach a course about multiculturalism to a broad spectrum of university sophomores in a way that is research-based, pedagogically sound, and appealing--all in ten weeks? In this article, the author states that a course he teaches, "Multiculturalism in Education," examines cultural differences as they relate to social inequalities in…

  4. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance.

    Science.gov (United States)

    Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.

  5. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Science.gov (United States)

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID

  6. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Necka

    2015-10-01

    Full Text Available Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap to assess individuals’ self-math overlap. This nonverbal single-item measure showed that identifying oneself with math (having higher self-math overlap was strongly associated with lower math anxiety (r=-.610. We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be

  7. The impact of metacognitive strategies and self-regulating processes of solving math word problems

    Directory of Open Access Journals (Sweden)

    Eda Vula

    2017-09-01

    Full Text Available This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners’ achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems. Two hundred sixty-three learners, of three classes of third graders (N=130 and four classes of fifth graders (N=133 of the elementary cycle from two urban schools of Kosovo, participated in the study. Almost half of the total number of the third and fifth-graderswere exposed to metacognitive instruction. The rest of the learners were included in control classes in which they performed tasks without having been given any specific guidance, based exclusively on traditional methods and respective textbooks. All the learners were tested in math word problems twice, before the intervention and after it. Research findings have shown that metacognitive strategies and self-regulating processes that learners use to control their actions, to reason, and to reflect, are one of the main resources that influence their success in solving a math word problem. Although the difference between the pre-test and the post-test resultswas statistically significant solely with the fifth-grade experimental classes, yet an improved performance was observed in third-grade experimental learners’ classes compared to control classes. Theoretical and practical implications of the research are discussed in the end of the study.

  8. The impact of metacognitive strategies and self-regulating processes of solving math word problems

    OpenAIRE

    Eda Vula; Rrezarta Avdyli; Valbona Berisha; Blerim Saqipi; Shpetim Elezi

    2017-01-01

    This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners’ achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems. Two hundred sixty-three learners, of three classes of third graders (N=130) and four classes of fifth ...

  9. Math anxiety and math performance in children: The mediating roles of working memory and math self-concept.

    Science.gov (United States)

    Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago

    2017-12-01

    Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.

  10. Problem Solvers: Teacher Leader Teams with Content Specialist to Strengthen Math Instruction

    Science.gov (United States)

    Zrike, Sara; Connolly, Christine

    2015-01-01

    In early November 2013, the authors started talking about visiting the Hurley School, a dual-language school in Boston, Massachusetts. The Hurley School had spent considerable time transitioning to the Common Core State Standards on literacy, but little time addressing the shifts in math. They worried that math classes were no longer rigorous…

  11. Manufacturing Math Classes: An Instructional Program Guide for Manufacturing Workers.

    Science.gov (United States)

    McBride, Pamela G.; And Others

    This program guide documents a manufacturing job family curriculum that develops competence in generic work force education skills through three courses: Reading Rulers, Charts, and Gauges and Math for Manufacturing Workers I and II. An annotated table of contents lists a brief description of the questions answered in each section. An introduction…

  12. 100 commonly asked questions in math class answers that promote mathematical understanding, grades 6-12

    CERN Document Server

    Posamentier, Alfred S (Steven); Germain-Williams, Terri L (Lynn); Paris, Elaine S; Lehmann, Ingmar H (Horst)

    2013-01-01

    100 ways to get students hooked on math! That one question got you stumped? Or maybe you have the answer, but it's not all that compelling. Al Posamentier and his coauthors to the rescue with this handy reference containing fun answers to students'100 most frequently asked math questions. Even if you already have the answers, Al's explanations are certain to keep kids hooked. The big benefits? You'll discover high-interest ways to Teach to the Common Core's math content standards Promote inquiry and process in mathematical thinking Build procedural skills and conceptual understanding Encourage

  13. Supporting the Transition of Sophomores, Transfers, and Seniors: Opportunities for Residence Life Professionals

    Science.gov (United States)

    Kranzow, Jeannine; Foote, Stephanie M.; Hinkle, Sara E.

    2015-01-01

    College students transitioning to their sophomore year, those transferring to a new institution, and seniors transitioning out of higher education face various challenges and struggles. The literature on the transitions associated with these student populations indicates that they need sustained support in a few key areas that include student and…

  14. Weight Changes, Exercise, and Dietary Patterns during Freshman and Sophomore Years of College.

    Science.gov (United States)

    Racette, Susan B.; Deusinger, Susan S.; Strube, Michael J.; Highstein, Gabrielle R.; Deusinger, Robert H.

    2005-01-01

    Weight gain and behavioral patterns during college may contribute to overweight and obesity in adulthood. The aims of this study were to assess weight, exercise, and dietary patterns of 764 college students (53% women, 47% men) during freshman and sophomore years. Students had their weight and height measured and completed questionnaires about…

  15. Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.

    Science.gov (United States)

    Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L

    2015-09-01

    A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.

  16. Invariant generalized ideal classes – structure theorems for p-class ...

    Indian Academy of Sciences (India)

    l-classes d'idéaux dans les extensionscycliques relatives de degré premierl, Annales de ... de classes relatives, Annales de l'Institut Fourier, 43, 1 (1993). ...... ley's formula which needs the knowledge of the Herbrand quotient of EK) and where ...... Séminaire de Théorie de Nombres, Paris 1988–1990, Progress in Math.

  17. Ideas on Manipulative Math for Young Children.

    Science.gov (United States)

    Murray, Anne

    2001-01-01

    Presents a case study of one kindergarten class in which the mathematics center is the popular area in the room. Focuses on how math is best understood if activities follow the five-C formula: collaborative, concrete, comprehensive, connecting, and cavorting. Describes how children used manipulatives to construct mathematics concepts…

  18. Online Options for Math-Advanced Students

    Science.gov (United States)

    Wessling, Suki

    2012-01-01

    Once upon a time, a student well advanced past grade level in math would have had few choices. Advanced students would invariably outpace the skills of their elementary teachers, and due to age wouldn't have options such as going to the middle school or community college for classes. Soon thereafter, students would enter middle school only to find…

  19. Universals and Specifics of Math Self-Concept, Math Self-Efficacy, and Math Anxiety across 41 PISA 2003 Participating Countries

    Science.gov (United States)

    Lee, Jihyun

    2009-01-01

    The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…

  20. College Math Assessment: SAT Scores vs. College Math Placement Scores

    Science.gov (United States)

    Foley-Peres, Kathleen; Poirier, Dawn

    2008-01-01

    Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…

  1. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  2. Taking Math Anxiety out of Math Instruction

    Science.gov (United States)

    Shields, Darla J.

    2007-01-01

    To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…

  3. Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology

    Science.gov (United States)

    Redish, Edward F.; Kuo, Eric

    2015-07-01

    Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we suggest that a fundamental issue has received insufficient exploration: the fact that in science, we don't just use math, we make meaning with it in a different way than mathematicians do. In this reflective essay, we explore math as a language and consider the language of math in physics through the lens of cognitive linguistics. We begin by offering a number of examples that show how the use of math in physics differs from the use of math as typically found in math classes. We then explore basic concepts in cognitive semantics to show how humans make meaning with language in general. The critical elements are the roles of embodied cognition and interpretation in context. Then, we show how a theoretical framework commonly used in physics education research, resources, is coherent with and extends the ideas of cognitive semantics by connecting embodiment to phenomenological primitives and contextual interpretation to the dynamics of meaning-making with conceptual resources, epistemological resources, and affect. We present these ideas with illustrative case studies of students working on physics problems with math and demonstrate the dynamical nature of student reasoning with math in physics. We conclude with some thoughts about the implications for instruction.

  4. The Impact of Structured Note Taking Strategies on Math Achievement of Middle School Students

    Science.gov (United States)

    Wilkinson, Gregory Ashley

    2012-01-01

    Student math achievement continues to be a national, state, and local concern. Research suggests that note taking can improve academic achievement, but current research has failed to report how low achievers might benefit from using note taking during math classes. The purpose of this study was to determine if teaching students structured note…

  5. Emerging Scholars: The Class of 2008

    Science.gov (United States)

    Forde, Dana; Lum, Lydia; Nealy, Michelle J.; Pluviose, David; Roach, Ronald; Rogers, Ibram; Rolo, Mark Anthony; Seymour, Add, Jr., Valdata, Patricia; Watson, Jamal

    2008-01-01

    This year's crop of "Emerging Scholars"--The Class of 2008--includes a math biologist who was only the second woman to receive the Alfred P. Sloan Fellowship in math; a geneticist who recently became one of 20 winners of the National Science Foundation's Presidential Early Career Awards for Scientists and Engineers; and an extensively published…

  6. A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults

    Science.gov (United States)

    Hocker, Tami

    2017-01-01

    This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…

  7. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    OpenAIRE

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individual...

  8. The influence of experiencing success in math on math anxiety, perceived math competence, and math performance

    NARCIS (Netherlands)

    Jansen, B.R.J.; Louwerse, J.; Straatemeier, M.; van der Ven, S.H.G.; Klinkenberg, S.; van der Maas, H.L.J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a

  9. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  10. Single Sex Math Classes: What and for Whom? One School's Experiences.

    Science.gov (United States)

    Durost, Richard A.

    1996-01-01

    Presque Isle (Maine) High School has offered a section of all-girls algebra for seven years. The intent was to narrow the gap between 11th-grade boys' and girls' math achievement scores and create a more comfortable learning atmosphere for girls. The achievement score gap has decreased from 72 to 16 points. (MLH)

  11. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2010-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159

  12. Motivation and Math Anxiety for Ability Grouped College Math Students

    Science.gov (United States)

    Helming, Luralyn

    2013-01-01

    The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…

  13. When approximate number acuity predicts math performance: The moderating role of math anxiety

    Science.gov (United States)

    Libertus, Melissa E.

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939

  14. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    Science.gov (United States)

    Braham, Emily J; Libertus, Melissa E

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  15. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    Directory of Open Access Journals (Sweden)

    Emily J Braham

    Full Text Available Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  16. Math in plain english literacy strategies for the mathematics classroom

    CERN Document Server

    Benjamin, Amy

    2013-01-01

    Do word problems and math vocabulary confuse students in your mathematics classes? Do simple keywords like ""value"" and ""portion"" seem to mislead them? Many words that students already know can have a different meaning in mathematics. To grasp that difference, students need to connect English literacy skills to math. Successful students speak, read, write, and listen to each other so they can understand, retain, and apply mathematics concepts. This book explains how to use 10 classroom-ready literacy strategies in concert with your mathematics instruction. You'll learn how to develop stude

  17. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  18. Parents' Beliefs about Children's Math Development and Children's Participation in Math Activities

    OpenAIRE

    Susan Sonnenschein; Claudia Galindo; Shari R. Metzger; Joy A. Thompson; Hui Chih Huang; Heather Lewis

    2012-01-01

    This study explored associations between parents’ beliefs about children’s development and children’s reported math activities at home. Seventy-three parents were interviewed about the frequency of their children’s participation in a broad array of math activities, the importance of children doing math activities at home, how children learn math, parents’ role in their children’s math learning, and parents’ own math skills. Although the sample consisted of African Americans, Chinese, Latino, ...

  19. A Case Study: Syllabus, Methodology and Assessment with Oral EL Classes for Non-English Majors

    Institute of Scientific and Technical Information of China (English)

    FengLianyi

    2004-01-01

    In response to the school curriculum reform,approximately 1200 out of the 3000 sophomores of non-English major in our university selected oral English as the optional course for the autumn semester study of 2003. The high demand for the spoken English classes is a challenge to the English teachers concerned. However how to conduct oral English lessons effectively in a considerably big-sized class of 35 plus with varied language aptitudes and personality traits calls forth a good topic for research studies.

  20. The Influence of Experiencing Success in Math on Math Anxiety, Perceived Math Competence, and Math Performance

    Science.gov (United States)

    Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…

  1. Effects of 6 weeks motor-enrichment-intervention to improve math performance in preadolescent children

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Beck, Mikkel Malling; Lind, Rune Rasmussen

    al., 2015). We conducted a six-week cluster-randomized intervention study of motor-enriched mathematics for Danish schoolchildren (n= 148, age= 7.5 ± 0.02). We investigated whether low intensity motor activity congruently integrated during solving of math problems could enhance math performance....... Three groups were included: 1) Control group with normal math teaching, CON (used pencil, paper but refrained from additional motor activity). 2) Fine-motor-enriched-group, FM (motor-manipulating LEGO bricks integrated in the lessons). 3) Gross-motor-enriched-group, GM (full-body movements integrated...... in the lessons). In FM and GM, all math classes (six lessons pr. week) had motor activity integrated in the math lessons and the teachers of all groups followed a detailed description for the conduction of the lessons. This aimed at ensuring homogeneity between groups concerning the taught themes. The children...

  2. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    OpenAIRE

    Krystle O'Leary; Cheryll L. Fitzpatrick; Darcy Hallett

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through...

  3. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School

    Science.gov (United States)

    Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.

    2013-01-01

    Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…

  4. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.

    Science.gov (United States)

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  5. Math Anxiety Is Related to Some, but Not All, Experiences with Math.

    Science.gov (United States)

    O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  6. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    Directory of Open Access Journals (Sweden)

    Krystle O'Leary

    2017-12-01

    Full Text Available Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  7. What Literacy Means in Math Class: Teacher Team Explores Ways to Remake Instruction to Develop Students' Skills

    Science.gov (United States)

    Ippolito, Jacy; Dobbs, Christina L.; Charner-Laird, Megin

    2017-01-01

    Secondary teachers and leaders, many of whom are implementing the Common Core State Standards, are seeking guidance about how to implement disciplinary literacy practices. Of the four core subjects taught in secondary schools--English, history, math, and science--the authors have found through their work with secondary teachers that math teachers…

  8. Modern maths

    CERN Multimedia

    Thom,R

    1974-01-01

    Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève

  9. Free Fall Misconceptions: Results of a Graph Based Pre-Test of Sophomore Civil Engineering Students

    Science.gov (United States)

    Montecinos, Alicia M.

    2014-01-01

    A partially unusual behaviour was found among 14 sophomore students of civil engineering who took a pre test for a free fall laboratory session, in the context of a general mechanics course. An analysis contemplating mathematics models and physics models consistency was made. In all cases, the students presented evidence favoring a correct free…

  10. An Investigation on Elementary School Students' Level of Math Learning, Using Math E-Books (A Case Study: Pishtazan Computer Primary School, 4th Zone of Tehran

    Directory of Open Access Journals (Sweden)

    Arezoo Naseri

    2016-11-01

    Full Text Available Since the focus on technology exists in all schools and classes, teachers need to know how to apply it in their teaching practices. The use of ICT in education is an undeniable necessity. Since the use of information and communication technology can smooth the paths of teaching-learning process for students, the researchers in this study tried to apply one of the information and communication technology tools, called electronic books (E-books in teaching math. The aim of this study is to examine elementary school students' level of math learning, using math e-books with the focus on teaching multiplication (Case Study: Pishtazan computer primary school, the 4th zone of Tehran. Using a quasi-experimental study, 61 third grade students from two primary schools for girls located in the 4th education zone of Tehran were selected. Math tests were used to collect data. Using T-test for independent samples, the results showed that level of math learning was higher in the students who have been trained with the help of e-book, compared to the students who have been trained through traditional teaching method.

  11. Mathematicians in Schools: Uncovering Maths' Beautiful Secrets

    Science.gov (United States)

    Welch, Bronwyn

    2016-01-01

    Mathematics professionals are working with teachers revealing the reality and beauty that happens in the world of math and to show that this is essentially a "human endeavour," embedded in much of what people do and the ways in which they think. In this article, the author shares vignettes of primary classes working with mathematicians…

  12. Maths in Prison

    Directory of Open Access Journals (Sweden)

    Catherine Patricia Byrne

    2015-08-01

    Full Text Available I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT. This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a prison maths teacher.

  13. Teaching Inquiry with Linked Classes and Learning Communities

    Science.gov (United States)

    Piercey, Victor; Cullen, Roxanne

    2017-01-01

    In order to improve problem-solving dispositions, a section of an inquiry-based math sequence for first-year business students was linked with a section of our general education English sequence. We describe how the linked classes worked and compare some preliminary results from linked and unlinked sections of the math sequence.

  14. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    Science.gov (United States)

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973

  15. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    Directory of Open Access Journals (Sweden)

    Lital Daches Cohen

    2017-11-01

    Full Text Available Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a mother’s math anxiety and maternal behaviors (environmental factors; (b children’s arithmetic skills (cognitive factors; and (c intrinsic math motivation (personal factor. A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  16. The relation between math self-concept, test and math anxiety, achievement motivation and math achievement in 12 to 14-year-old typically developing adolescents

    OpenAIRE

    Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.

    2017-01-01

    :This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test, achievement motivation test, and the math experience questionnaire. A significant positive correlation was found between math self-concept and math achievement in all four math domains (measurement, rela...

  17. A Case Study of the In-Class Use of a Video Game for Teaching High School History

    Science.gov (United States)

    Watson, William R.; Mong, Christopher J.; Harris, Constance A.

    2011-01-01

    This study examines the case of a sophomore high school history class where "Making History", a video game designed with educational purposes in mind, is used in the classroom to teach about World War II. Data was gathered using observation, focus group and individual interviews, and document analysis. The high school was a rural school…

  18. A Grounded Theory Investigation Into Sophomore Students' Recall of Depression During Their Freshman Year in College: A Pilot Study.

    Science.gov (United States)

    Brandy, Julie M; Kessler, Theresa A; Grabarek, Christina H

    2018-04-17

    Using a grounded theory approach, the current descriptive qualitative design was conducted with sophomore students to understand the meaning participants gave their freshman experiences with depression. Twelve participants were recruited using scripted class announcements across campus. After informed consent, interviews began with the question: What was the experience of your freshman year in college? All interviews were completed with the primary investigator and transcribed verbatim. Interviews were analyzed using constant comparative methodology. Data collection continued until saturation was achieved. Four major categories emerged, including the category of symptoms and emotions. This category included the subcategories expressions of stress, changes in eating habits, sleep issues, and procrastination. Descriptive examples of each were found throughout the interview data. With greater understanding of living with depression as a college freshman, health care and college student affairs professionals will have additional evidence to guide their practices. [Journal of Psychosocial Nursing and Mental Health Services, xx(x),xx-xx.]. Copyright 2018, SLACK Incorporated.

  19. Tai Chi/ Yoga Effects on Anxiety, Heartrate, EEG and Math Computations

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria

    2010-01-01

    Objective To determine the immediate effects of a combined form of tai chi/yoga. Design 38 adults participated in a 20-minute tai chi/yoga class. The session was comprised of standing tai chi movements, balancing poses and a short tai chi form and 10 minutes of standing, sitting and lying down yoga poses. Main outcome measures The pre- and post- tai chi/ yoga effects were assessed using the State Anxiety Inventory (STAI), EKG, EEG and math computations. Results Heartrate increased during the session, as would be expected for this moderate intensity exercise. Changes from pre to post session assessments suggested increased relaxation including decreased anxiety and a trend for increased EEG theta activity. Conclusions The increased relaxation may have contributed to the increased speed and accuracy noted on math computations following the tai chi/yoga class. PMID:20920810

  20. Tai chi/yoga effects on anxiety, heartrate, EEG and math computations.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria

    2010-11-01

    To determine the immediate effects of a combined form of Tai chi/yoga. 38 adults participated in a 20-min Tai chi/yoga class. The session was comprised of standing Tai chi movements, balancing poses and a short Tai chi form and 10 min of standing, sitting and lying down yoga poses. The pre- and post- Tai chi/yoga effects were assessed using the State Anxiety Inventory (STAI), EKG, EEG and math computations. Heartrate increased during the session, as would be expected for this moderate-intensity exercise. Changes from pre to post-session assessments suggested increased relaxation including decreased anxiety and a trend for increased EEG theta activity. The increased relaxation may have contributed to the increased speed and accuracy noted on math computations following the Tai chi/yoga class. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. A Comparison of iPads and Worksheets on Math Skills of High School Students with Emotional Disturbance

    Science.gov (United States)

    Haydon, Todd; Hawkins, Renee; Denune, Hillary; Kimener, Lauren; McCoy, Dacia; Basham, James

    2012-01-01

    The authors used an alternating treatments design to compare the effects of a worksheet condition and an iPad condition on math fluency and active academic engagement during a high school math class in an alternative school setting. Following group instruction, the three participants engaged in independent seatwork either by completing problems on…

  2. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  3. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    Science.gov (United States)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

  4. Maths in Prison

    OpenAIRE

    Catherine Patricia Byrne

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a ...

  5. Maths in Prison

    OpenAIRE

    Byrne, Catherine; Carr, Michael

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a p...

  6. Multidimensional assessment of self-regulated learning with middle school math students.

    Science.gov (United States)

    Callan, Gregory L; Cleary, Timothy J

    2018-03-01

    This study examined the convergent and predictive validity of self-regulated learning (SRL) measures situated in mathematics. The sample included 100 eighth graders from a diverse, urban school district. Four measurement formats were examined including, 2 broad-based (i.e., self-report questionnaire and teacher ratings) and 2 task-specific measures (i.e., SRL microanalysis and behavioral traces). Convergent validity was examined across task-difficulty, and the predictive validity was examined across 3 mathematics outcomes: 2 measures of mathematical problem solving skill (i.e., practice session math problems, posttest math problems) and a global measure of mathematical skill (i.e., standardized math test). Correlation analyses were used to examine convergent validity and revealed medium correlations between measures within the same category (i.e., broad-based or task-specific). Relations between measurement classes were not statistically significant. Separate regressions examined the predictive validity of the SRL measures. While controlling all other predictors, a SRL microanalysis metacognitive-monitoring measure emerged as a significant predictor of all 3 outcomes and teacher ratings accounted for unique variance on 2 of the outcomes (i.e., posttest math problems and standardized math test). Results suggest that a multidimensional assessment approach should be considered by school psychologists interested in measuring SRL. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Advanced Math Equals Career Readiness. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…

  8. A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins

    Science.gov (United States)

    Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2016-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…

  9. The Effectiveness of Using STAR Math to Improve PSSA Math Scores

    Science.gov (United States)

    Holub, Sherry L.

    2017-01-01

    This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…

  10. Advanced Math Course Taking: Effects on Math Achievement and College Enrollment

    Science.gov (United States)

    Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.

    2015-01-01

    Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…

  11. Trajectories of Math Achievement and Perceived Math Competence over High School and Postsecondary Education: Effects of an All-Girl Curriculum in High School

    Science.gov (United States)

    Shapka, Jennifer D.

    2009-01-01

    This study investigated the benefits of all-girls' classroom instruction in math and/or science during Grades 9 and/or 10, within the context of a public co-educational high school. There were 118 participants in this longitudinal investigation: 26 girls in the all-girl classes, as well as 42 girls and 50 boys in the regular co-educational…

  12. Encouraging Competence in Basic Mathematics in Hydrology using The Math You Need

    Science.gov (United States)

    Fredrick, K. C.

    2011-12-01

    California University of Pennsylvania has experienced significant growth in interest of its Earth Science programs over the last few years. With the burgeoning shale gas exploration and drilling, along with continued environmental problems, students and parents recognize the potential for jobs in the region in the Geosciences. With this increase in student interest has come an increase in the number of majors including a greater number of first-year students entering the major right from high school. Hydrology, is an important course within the Earth Science department curriculum. It is required by all Geology, Meteorology, and Earth and Space Science Education majors. It also serves majors from the Biology program, but is not required. This mix of students based on major expectations, grade level, and background leads to a varied distribution of math competencies. Many students enter unprepared for the rigors of a physics-based Hydrology course. The pre-requisites for the course are Introduction to Geology, a mostly non-quantitative survey course, and College Algebra. However, some students are more confident in their math skills because they have completed some level of Calculus. Regardless of the students' perceived abilities, nearly all struggle early on in the course because they have never used math within the context of Hydrology (or Science for that matter) , including continuity, conservation, and fluid dynamics. In order to make sure students have the basic skills to understand the science, it has been necessary to dedicate significant class time to such topics as Unit Conversions, Scientific Notation, Significant Figures, and basic Graphing. The Math You Need (TMYN) is an online tool, which requires students to complete instructor-selected questions to assess student competence in fundamental math topics. Using Geology as the context for the questions in the database, TMYN is ideal for introductory-level courses, but can also be effective as a review

  13. Consumer Education in Any Class

    Science.gov (United States)

    Wingo, Rosetta F.

    1977-01-01

    Examples are offered of how the classroom teacher can blend consumer education into typewriting, business English, business math, and other classes by intentionally focusing on principles and concepts or by including it incidentally when the opportunity arises. (TA)

  14. Affective and Motivational Factors Mediate the Relation between Math Skills and Use of Math in Everyday Life

    Science.gov (United States)

    Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122

  15. Affective and motivational factors mediate the relation between math skills and use of math in everyday life

    Directory of Open Access Journals (Sweden)

    Brenda RJ Jansen

    2016-04-01

    Full Text Available This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations. Data from a Dutch nation-wide research on math among adults (N = 521 were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life.

  16. Math and Gender: Is Math a Route to a High-Powered Career?

    DEFF Research Database (Denmark)

    Joensen, Juanna Schrøter; Nielsen, Helena Skyt

    There is a large gender gap in advanced math coursework in high school that many believe exists because girls are discouraged from taking math courses. In this paper, we exploit an institutional change that reduced the costs of acquiring advanced high school math to determine if access is, in fact......, the mechanism - in particular for girls at the top of the math ability distribution. By estimating marginal treatment effects of acquiring advanced math qualifications, we document substantial beneficial wage effects from encouraging even more females to opt for these qualifications. Our analysis suggests...... that the beneficial effect comes from accelerating graduation and attracting females to high-paid or traditionally male-dominated career tracks and to CEO positions. Our results may be reconciled with experimental and empirical evidence suggesting there is a pool of unexploited math talent among high ability girls...

  17. Flipping a Calculus Class: One Instructor's Experience

    Science.gov (United States)

    Palmer, Katrina

    2015-01-01

    This paper describes one instructor's experiences during a year of flipping four calculus classes. The first exploration attempts to understand student expectations of a math class and their preference towards a flipped classroom. The second examines success of students from a flipped classroom, and the last investigates relationships with student…

  18. Degrees of Freedom: Diversifying Math Requirements for College Readiness and Graduation (Report 1 of a 3-Part Series)

    Science.gov (United States)

    Burdman, Pamela

    2015-01-01

    Since the mid-20th century, the standard U.S. high school and college math curriculum has been based on two years of algebra and a year of geometry, preparing students to take classes in pre-calculus followed by calculus. Students' math pursuits have been differentiated primarily by how far or how rapidly they proceed along a clearly defined…

  19. An Inquiry into Flipped Learning in Fourth Grade Math Instruction

    Science.gov (United States)

    D'addato, Teresa; Miller, Libbi R.

    2016-01-01

    The objective of this action research project was to better understand the impact of flipped learning on fourth grade math students in a socioeconomically disadvantaged setting. A flipped instructional model was implemented with the group of students enrolled in the researcher's class. Data was collected in the form of classroom observations,…

  20. Principals in Partnership with Math Coaches

    Science.gov (United States)

    Grant, Catherine Miles; Davenport, Linda Ruiz

    2009-01-01

    One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…

  1. Counseling the Math Anxious

    Science.gov (United States)

    Tobias, Sheila; Donady, Bonnie

    1977-01-01

    Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)

  2. Are Face-to-Face Classes More Effective than Online Classes? An Empirical Examination

    Science.gov (United States)

    Ganesh, Gopala; Paswan, Audhesh; Sun, Qin

    2015-01-01

    Using data from a unique undergraduate marketing math course offered in both traditional and online formats, this study looks at four dimensions of course evaluation: overall evaluation, perceived competence, perceived communication, and perceived challenge. Results indicate that students rate traditional classes better on all four dimensions.…

  3. Completing the Remedial Sequence and College-Level Credit-Bearing Math: Comparing Binary, Cumulative, and Continuation Ratio Logistic Regression Models

    Science.gov (United States)

    Davidson, J. Cody

    2016-01-01

    Mathematics is the most common subject area of remedial need and the majority of remedial math students never pass a college-level credit-bearing math class. The majorities of studies that investigate this phenomenon are conducted at community colleges and use some type of regression model; however, none have used a continuation ratio model. The…

  4. The Effects of Guided Discussion on Math Anxiety Levels, Course Performance, and Retention in a College Algebra Internet Class

    Science.gov (United States)

    Emig, Christa

    2009-01-01

    The study sought to test the hypotheses that effective, guided discussions that facilitate meaningful dialogue about math anxiety would reduce levels of math anxiety in college algebra students, and would enhance course performance and course retention at a large community college in South Texas. The study was quantitative with a qualitative…

  5. GRE math tests

    CERN Document Server

    Kolby, Jeff

    2014-01-01

    Twenty-three GRE Math Tests! The GRE math section is not easy. There is no quick fix that will allow you to ""beat"" the section. But GRE math is very learnable. If you study hard and master the techniques in this book, your math score will improve--significantly! The GRE cannot be ""beaten."" But it can be mastered--through hard work, analytical thought, and by training yourself to think like a test writer. Many of the problems in this book are designed to prompt you to think like a test writer. For example, you will find ""Duals."" These are pairs of similar problems in which only one prop

  6. Do class size effects differ across grades?

    DEFF Research Database (Denmark)

    Nandrup, Anne Brink

    size cap that creates exogenous variation in class sizes. Significant (albeit modest) negative effects of class size increases are found for children on primary school levels. The effects on math abilities are statistically different across primary and secondary school. Larger classes do not affect......This paper contributes to the class size literature by analyzing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enroled in Danish public schools. Identification is based on a government-imposed class...

  7. Clinical peer mentoring: partnering BSN seniors and sophomores on a dedicated education unit.

    Science.gov (United States)

    Harmer, Bonnie McKay; Huffman, Jaime; Johnson, Barbara

    2011-01-01

    The authors describe a clinical peer mentoring (CPM) program that partnered 16 pairs of senior (mentors) and sophomore (novices) BSN students to provide patient care on a dedicated education unit at a VA Medical Center. Situated learning theory and Tanner's Clinical Judgment Model provided frameworks for CPM implementation. Survey findings suggested novices and mentors perceived improvements in self-confidence, prioritization, time management, clinical judgment, and evidence-based practice use. Many mentors spontaneously expressed an interest in becoming a preceptor or nurse educator. Copyright © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

  8. Sq4r Method and Reading Comprehension Development Among the Sophomore Business Studnets

    OpenAIRE

    Panjaitan, Nelson; Palandeng, Rachel

    2011-01-01

    This paper is an experimental study that involves the SophomoreEnglish students' of Business Department of Adventist University of IndonesiaBandung was the subject of the research.The purposes of this study is to find whether there is a significant improvementby using SQ4R method on the Business students, and to describe the advantages andthe weakness of the SQ4R method based on research result.The people who have used the SQ4R method said that SQ4R is one of the simpleways in reading compreh...

  9. On the Leaky Math Pipeline: Comparing Implicit Math-Gender Stereotypes and Math Withdrawal in Female and Male Children and Adolescents

    Science.gov (United States)

    Steffens, Melanie C.; Jelenec, Petra; Noack, Peter

    2010-01-01

    Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…

  10. Academic and Social Functioning Associated with Attention-Deficit/Hyperactivity Disorder: Latent Class Analyses of Trajectories from Kindergarten to Fifth Grade.

    Science.gov (United States)

    DuPaul, George J; Morgan, Paul L; Farkas, George; Hillemeier, Marianne M; Maczuga, Steve

    2016-10-01

    Children with attention-deficit/hyperactivity disorder (ADHD) are known to exhibit significantly lower academic and social functioning than other children. Yet the field currently lacks knowledge about specific impairment trajectories experienced by children with ADHD, which may constrain early screening and intervention effectiveness. Data were analyzed from a nationally representative U.S. cohort in the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K) for 590 children (72.7 % male) whose parents reported a formal diagnosis of ADHD. Children's math, reading, and interpersonal skills were assessed at 5 time points between kindergarten and fifth grade. Growth mixture model analyses indicated 4 latent trajectory classes for reading, 8 classes for math, and 4 classes for interpersonal skills. Membership in reading and math trajectory classes was strongly related; overlaps with interpersonal skills classes were weaker. Trajectory class membership was correlated with demographic characteristics and behavioral functioning. Children with ADHD display substantial heterogeneity in their reading, math, and interpersonal growth trajectories, with some groups of children especially likely to display relatively severe levels of academic and social impairment over time. Early screening and intervention to address impairment, particularly reading difficulties, among kindergarten students with ADHD is warranted.

  11. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    Science.gov (United States)

    Hart, Sara A; Ganley, Colleen M; Purpura, David J

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  12. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    Directory of Open Access Journals (Sweden)

    Sara A Hart

    Full Text Available There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  13. Reciprocal Relations among Motivational Frameworks, Math Anxiety, and Math Achievement in Early Elementary School

    Science.gov (United States)

    Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.

    2018-01-01

    School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…

  14. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.

    Science.gov (United States)

    Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  15. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies

    Directory of Open Access Journals (Sweden)

    Paul Bosch

    2018-01-01

    Full Text Available We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  16. The relation between math self-concept, test and math anxiety, achievement motivation and math achievement in 12 to 14-year-old typically developing adolescents

    NARCIS (Netherlands)

    Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.

    2017-01-01

    :This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test,

  17. Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance

    Science.gov (United States)

    Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.

    2011-01-01

    This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…

  18. Advanced Math: Closing the Equity Gap. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    Minority and low-income students are less likely to have access to, enroll in and succeed in higher-level math courses in high school than their more advantaged peers. Under these circumstances, higher-level math courses function not as the intellectual and practical boost they should be, but as a filter that screens students out of the pathway to…

  19. The Relationship between Listening Strategies Used by Egyptian EFL College Sophomores and Their Listening Comprehension and Self-Efficacy

    Science.gov (United States)

    Kassem, Hassan M.

    2015-01-01

    The present study explored listening strategy use among a group of Egyptian EFL college sophomores (N = 84). More specifically, it aimed to identify 1) the strategies used more often by participants, 2) the relationship between listening strategy use, and listening comprehension and self-efficacy, and 3) differences in listening comprehension and…

  20. Finite groups with three conjugacy class sizes of some elements

    Indian Academy of Sciences (India)

    Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.

  1. The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement

    Science.gov (United States)

    Soni, Akanksha; Kumari, Santha

    2017-01-01

    The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…

  2. Math Safari.

    Science.gov (United States)

    Nelson, Vaunda; Stanko, Anne

    1992-01-01

    Describes Math Safari, a mathematical, scientific, geographic, informational adventure for fourth grade students. It integrates all curriculum areas and other skills by using information children must find in books to pose math problems about animals. It encourages cooperative learning, critical reading, analysis, and use of research skills. (SM)

  3. Attentional Bias in Math Anxiety

    Directory of Open Access Journals (Sweden)

    Orly eRubinsten

    2015-10-01

    Full Text Available Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety as well (i.e., a persistent negative reaction to math. Twenty seven participants (14 with high levels of math anxiety and 13 with low levels of math anxiety were presented with a novel computerized numerical version of the well established dot probe task. One of 6 types of prime stimuli, either math related or typically neutral, were presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks. Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in math anxiety. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words. These findings suggest that attentional bias is linked to unduly intense math anxiety symptoms.

  4. Math Performance as a Function of Math Anxiety and Arousal Performance Theory

    Science.gov (United States)

    Farnsworth, Donald M., Jr.

    2009-01-01

    While research continues to link increased math anxiety with reduced working memory, the exact nature of the relationship remains elusive. In addition, research regarding the extent of the impact math anxiety has on working memory is contradictory. This research clarifies the directional nature of math anxiety as it pertains to working memory, and…

  5. Math Stuff

    CERN Document Server

    Pappas, Theoni

    2002-01-01

    Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to

  6. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness. REL 2015-096

    Science.gov (United States)

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2015-01-01

    The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…

  7. Exploring Three-Phase Systems and Synchronous Motors: A Low-Voltage and Low-Cost Experiment at the Sophomore Level

    Science.gov (United States)

    Schubert, T. F., Jr.; Jacobitz, F. G.; Kim, E. M.

    2011-01-01

    In order to meet changing curricular and societal needs, a three-phase system and synchronous motor laboratory experience for sophomore-level students in a wide variety of engineering majors was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum, and in that it focuses primarily on basic…

  8. Gender stereotype endorsement differentially predicts girls' and boys' trait-state discrepancy in math anxiety.

    Science.gov (United States)

    Bieg, Madeleine; Goetz, Thomas; Wolter, Ilka; Hall, Nathan C

    2015-01-01

    Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary) math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait vs. state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain) was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2-3 weeks (N within = 6207). As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students' self-concept (i.e., a lower discrepancy for students with higher self-concepts). Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed.

  9. Gender stereotype endorsement differentially predicts girls' and boys' trait-state discrepancy in math anxiety

    Directory of Open Access Journals (Sweden)

    Madeleine eBieg

    2015-09-01

    Full Text Available Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait versus state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2-3 weeks (Nwithin = 6207. As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students’ self-concept (i.e., a lower discrepancy for students with higher self-concepts. Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed.

  10. The Effects of Math Anxiety

    Science.gov (United States)

    Andrews, Amanda; Brown, Jennifer

    2015-01-01

    Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…

  11. Early Math Interest and the Development of Math Skills

    Science.gov (United States)

    Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.

    2012-01-01

    Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…

  12. Math

    CERN Document Server

    Robertson, William C

    2006-01-01

    Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.

  13. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children’s Math Skills

    Science.gov (United States)

    Ganley, Colleen M.; Purpura, David J.

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925

  14. Understand electrical and electronics maths

    CERN Document Server

    Bishop, Owen

    1993-01-01

    Understand Electrical and Electronics Maths covers elementary maths and the aspects of electronics. The book discusses basic maths including quotients, algebraic fractions, logarithms, types of equations and balancing of equations. The text also describes the main features and functions of graphs and the solutions to simpler types of electronics problems. The book then tackles the applications of polar coordinates in electronics, limits, differentiation and integration, and the applications of maths of rates of change in electronics. The activities of an electronic circuit; techniques of math

  15. Une méthodologie pour décrire des déroulements de séances de classe à partir de vidéo dans des recherches sur les pratiques d’enseignants de mathématiques au collège et au lycée

    OpenAIRE

    Robert, Aline

    2017-01-01

    1. Introduction 1.1. Type de recherches concernées et vidéo Notre intérêt premier de chercheur en didactique des mathématiques est l’apprentissage des élèves en mathématiques (au collège et au lycée), en relation avec l’enseignement dispensé en classe. La démarche globale qui est suivie donne une place centrale aux contenus mathématiques précis, autour desquels s’organisent les différentes recherches. Nous allons précisément dégager systématiquement ici ce qui relève spécifiquement de notre c...

  16. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  17. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  18. Efficacy Expectations and Vocational Interests as Mediators between Sex and Choice of Math/Science College Majors: A Longitudinal Study

    Science.gov (United States)

    Lapan; Shaughnessy; Boggs

    1996-12-01

    A longitudinal study was conducted to test the mediational role of efficacy expectations in relation to sex differences in the choice of a math/science college major. Data on 101 students were gathered prior to their entering college and then again after they had declared a major 3 years later. Path analytic results support the importance of both math self-efficacy beliefs and vocational interest in mathematics in predicting entry into math/science majors and mediating sex differences in these decisions. Also, students who described themselves as more extroverted were less likely to take additional math classes in high school. Students with stronger artistic vocational interests chose majors less related to math and science. School personnel are strongly encouraged to develop programs that challenge the crystallization of efficacy beliefs and vocational interest patterns before students enter college.

  19. Solving America's Math Problem

    Science.gov (United States)

    Vigdor, Jacob

    2013-01-01

    Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…

  20. Teaching Math Their Way.

    Science.gov (United States)

    Tankersley, Karen

    1993-01-01

    Teachers at a K-8 urban school in Phoenix, Arizona, worked to develop an effective math program that generated student interest and positive self-esteem. They eventually set aside classroom and large enclosed porch area to house math manipulative lab, where children could learn new concepts at concrete level. Results are excitement about math and…

  1. Effect of a supportive-educative program in the math class for stress, anxiety, and depression in female students in the third level of junior high school: An action research.

    Science.gov (United States)

    Emamjomeh, Seyedeh Mahtab; Bahrami, Masoud

    2015-01-01

    Students in junior high school, particularly in the third level, are prone to a variety of stressors. This in turn might lead to stress, anxiety, depression, and other health-related problems. There are a very limited number of action research studies to identify the effect of stress management techniques among students. Therefore, a study was conducted to assess the effect of a program used in the math class to decrease the student's level of stress, anxiety, and depression. This was an action research study, which was conducted in region three of the Education and Training Office of Isfahan, in the year 2012. Fifty-one students in a junior high school were selected and underwent a comprehensive stress management program. This program was prepared in collaboration with the students, their parents, teachers, and managers of the school, and was implemented approximately during a four-month period. The student's stress, anxiety, and depression were measured before and after the program using the DASS-21 questionnaire. The t-test identified that the mean scores of stress, anxiety, and depression after the intervention were significantly lower than the corresponding scores before the program. One-way analysis of variance (ANOVA) also showed that the students from the veterans (Janbaz) families had higher levels of stress compared to their classmates, who belonged to the non-veteran families (PEducation and implementation of stress management techniques including cognitive and behavioral interventions along with active and collaborative methods of learning in the math class might be useful both inside and outside the class, for better management of stress and other health-related problems of students.

  2. Nurses' maths: researching a practical approach.

    Science.gov (United States)

    Wilson, Ann

    To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.

  3. Math Anxiety and Math Performance in Children: The Mediating Roles of Working Memory and Math Self-Concept

    Science.gov (United States)

    Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago

    2017-01-01

    Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…

  4. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies.

    Science.gov (United States)

    Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L

    2016-01-01

    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Attitude Differences between Male and Female Students at Clovis Community College and Their Relationships to Math Anxiety: A Case Study.

    Science.gov (United States)

    Hendershot, Richard Lane

    The purpose of this study was to examine the attitudes of males and females at Clovis Community College towards math anxiety and to look for possible factors that could be used to assist in the assignment of students to various math classes. The subjects in the study were fifty male students and fifty female students. Subjects responded to a math…

  6. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    Science.gov (United States)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  7. Three brief assessments of math achievement.

    Science.gov (United States)

    Steiner, Eric T; Ashcraft, Mark H

    2012-12-01

    Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.

  8. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…

  9. Dr Math at your service

    CSIR Research Space (South Africa)

    Butgereit, L

    2012-10-01

    Full Text Available In this presentation the author explains how the Dr Math service works; how tutors are recruited to act as Dr Math; and how school pupils can reach Dr Math for help with their mathematics homework....

  10. GRE math workbook

    CERN Document Server

    Madore, Blair

    2015-01-01

    Reflective of the current GRE, this third edition includes a description of the General Math Exam explaining structure, questions types, and scoring, strategies for problem solving, two full-length math sample sections structured to reflect the actual exam, answers thoroughly explained, and more.

  11. "It Was My Understanding That There Would Be No Math": Using Thematic Cases to Teach Undergraduate Research Methods

    Science.gov (United States)

    Oldmixon, Elizabeth A.

    2018-01-01

    Undergraduates frequently approach research methods classes with trepidation and skepticism, owing in part to math-phobia and confusion over how methodology is relevant to their interests. These self-defeating barriers to learning undermine the efficacy of methods classes. This essay discusses a strategy for overcoming these barriers--use of a…

  12. Mathematics anxiety: separating the math from the anxiety.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-09-01

    Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.

  13. Changes in Math Prerequisites and Student Performance in Business Statistics: Do Math Prerequisites Really Matter?

    OpenAIRE

    Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles

    2007-01-01

    We use a binary probit model to assess the impact of several changes in math prerequisites on student performance in an undergraduate business statistics course. While the initial prerequisites did not necessarily provide students with the necessary math skills, our study, the first to examine the effect of math prerequisite changes, shows that these changes were deleterious to student performance. Our results helped convince the College of Business to change the math prerequisite again begin...

  14. Locus of Control and Career Interest of Sophomore Accountancy Students: Basis for Employment Path

    Directory of Open Access Journals (Sweden)

    Jovielyn Mañibo

    2014-02-01

    Full Text Available This academic undertaking sought to determine the relationship between the locus of control and career interest of the respondents towards their future employment. The objectives of the study were to determine the respondents’ locus of control and career interest; to find if there is a significant relationship between the respondents’ locus of control and career interest and to develop an action plan that will gauge the students’ employment success as to their chosen field. In measuring and finding the relationship between the variables of the study, the researchers employed the quantitative method in the analysis of data using the questionnaires for locus of control (LOC and Career Cluster Interest Survey (CCIS as dominant tools. The participants chosen from this study were 74sophomore Accountancy students for Second Semester, School Year 2012 – 2013. Based from the results, most of the respondents (74 sophomore accountancy students have an external locus of control with career interest on education and training, human services, and finance. The computed rvalues indicates slight positive correlation, however, careers on government services, manufacturing , public administration, health science, human services showed significant correlation to internal (positive and external (negative locus of control. .Likewise, the Counseling and Testing Center of the university should conduct cognitive training targeting reasoning and speed of processing that can improve sense of personal control over one’s life and facilitate career orientation during the student- applicants’ admission as regards to their National Career Assessment Examination (NCAE results. With the findings of the study, a program design was created to gauge students employment path.

  15. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability.

    Science.gov (United States)

    Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J

    2013-05-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    Science.gov (United States)

    Tsui, Joanne M.; Mazzocco, Michèle M. M.

    2009-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180

  17. Affective and motivational factors mediate the relation between math skills and use of math in everyday life

    NARCIS (Netherlands)

    Jansen, B.R.J.; Schmitz, E.A.; van der Maas, H.L.J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence

  18. Addressing Math Anxiety in the Classroom

    Science.gov (United States)

    Finlayson, Maureen

    2014-01-01

    In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…

  19. Turning Negatives into Positives: The Role of an Instructional Math Course on Preservice Teachers' Math Beliefs

    Science.gov (United States)

    Looney, Lisa; Perry, David; Steck, Andy

    2017-01-01

    Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…

  20. Helping Students Get Past Math Anxiety

    Science.gov (United States)

    Scarpello, Gary

    2007-01-01

    Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…

  1. Group Activities for Math Enthusiasts

    Science.gov (United States)

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  2. The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores

    Science.gov (United States)

    Bennett, Angela Stephens

    2010-01-01

    One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…

  3. All Students Need Advanced Mathematics. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  4. Addressing the Math-Practice Gap in Elementary School: Are Tablets a Feasible Tool for Informal Math Practice?

    Science.gov (United States)

    Stacy, Sara T; Cartwright, Macey; Arwood, Zjanya; Canfield, James P; Kloos, Heidi

    2017-01-01

    Students rarely practice math outside of school requirements, which we refer to as the "math-practice gap". This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children's informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student's age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice.

  5. The Analysis of Learning Obstacle and Students Learning Motivation of Prospective Math Teachers in Basic Physics Class

    Science.gov (United States)

    Kurniawan, D. T.; Suhandi, A.; Kaniawati, I.; Rusdiana, D.

    2017-02-01

    Learning motivation revealed as a whole intrinsic factor that created, maintained and supported students to achieve the goal of learning. As the bigger motivation came with bigger success, motivation was considered as the main key to reach what students have planned. There were intrinsic and extrinsic factors that influence both the students and lecturers’ motivation. The factors in one hand, were essential to be defined by the lecturers in order to maintain and enhance the students’ enthusiasm. On the other hand, they also encouraged and thrilled the students to learn. The study aimed to expose and describe the motivational tendency and to knowledge and analyze learning obstacles faced by the students in basic physics class on students of prospective math teachers in FKIP Unswagati Cirebon. In addition, the study focused on the description of the six motivational components stated by Glyn and Koballa. The six were intrinsic motivation, extrinsic motivation, the relevance of studying physics for subjective purposes, willpower, self assessment and anxiety. Class responses were determined through questionnaire with four main indicators; the causes of being less popular subject, the cause of being disfavored subject, the description of the way the students draw the examination on basic physics subject and the academic background of the students. The results showed that 54% students stated that physics was disfavored because the subject was difficult to understand, 49% stated that the cause of being disfavored of the subject was because physics required complicated mathematics. Most of the students preferred to have game based activities that boosted thinking skill. According to the analysis of the students’ motivation, the findings revealed that the students’ had high level of anxiety in learning the subject. They mostly expressed their anxiety appeared from the material density and text book based assignments.

  6. Reducing Math Anxiety: Findings from Incorporating Service Learning into a Quantitative Reasoning Course at Seattle University

    Directory of Open Access Journals (Sweden)

    Allison Henrich

    2011-07-01

    Full Text Available How might one teach mathematics to math-anxious students and at the same time reduce their math anxiety? This paper describes what we found when we incorporated a service learning component into a quantitative reasoning course at Seattle University in Fall 2010 (20 students and Spring 2011 (28 students. The course is taken primarily by humanities majors, many of whom would not take a course in math if they didn’t need to satisfy the university’s core requirement. For the service learning component, each student met with and tutored children at local schools for 1-2 hours per week (total about 15 service hours, kept a weekly journal reflecting on the experience, and wrote a five-page final paper on the importance and reasonable expectations of mathematics literacy. The autobiographies, self-description at the beginning of the class, focus group interviews at the end of the term, journal entries, final essays, and student evaluations indicated that the students gained confidence in their mathematical abilities, a greater interest in mathematics, and a broader sense of the importance of math literacy in modern society. One notable finding was that students discovered that the act of manufacturing enthusiasm about math as a tool for tutoring the children made them more enthusiastic about math in their own courses.

  7. The role of expressive writing in math anxiety.

    Science.gov (United States)

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Using Brief Guided Imagery to Reduce Math Anxiety and Improve Math Performance: A Pilot Study

    Science.gov (United States)

    Henslee, Amber M.; Klein, Brandi A.

    2017-01-01

    The objective of this study was to investigate whether brief guided imagery could provide a short-term reduction in math anxiety and improve math performance. Undergraduates (N = 581) were screened for math anxiety, and the highest and lowest quartiles were recruited to participate in a lab-based study. Participants were assigned to a brief guided…

  9. Math and Movement: Practical Ways to Incorporate Math into Physical Education

    Science.gov (United States)

    Wade, Marcia

    2016-01-01

    Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…

  10. Engaging Math-Avoidant College Students

    Directory of Open Access Journals (Sweden)

    M. Paul Latiolais

    2009-07-01

    Full Text Available This paper is an informal, personal account of how we, as two college teachers, became interested in math anxiety, decided to explore it amongst students at our institution in order to inform our teaching, and became convinced that the massive problem is math avoidance. We tried discussion groups, but few students attended, although those that did made useful suggestions. Thus informed, we designed an innovative course, Confronting College Mathematics as a Humanities course with the possibility of credit toward the math requirement, but it was undersubscribed in its first offering and had to be canceled. How can we get college students who avoid math to break through the barrier of math avoidance? We have now begun to explore a new approach: Second Life, where students can engage math—and quantitative literacy—virtually, and anonymously.

  11. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  12. Collaboration between Mathematics Facilitators and Preschool Teachers Using the Innovative "Senso-Math" Preschool Program

    Science.gov (United States)

    Hassidov, Dina; Ilany, Bat-Sheva

    2018-01-01

    This article presents a mixed-method study of the innovative "Senso-Math" preschool program and the reactions of both the facilitators, who underwent a special training program, and the preschool teachers in whose classes the program was implemented. The goal of the program is to enhance mathematical development in preschool children…

  13. The neurodevelopmental basis of math anxiety.

    Science.gov (United States)

    Young, Christina B; Wu, Sarah S; Menon, Vinod

    2012-05-01

    Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.

  14. More math into Latex

    CERN Document Server

    Grätzer, George

    2007-01-01

    For close to two decades, Math into Latex has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided with important updates on articles and books. An important new topic is discussed: transparencies (computer projections). Key features of More Math into Latex, 4th edition: Installation instructions for PC and Mac users; An example-based, visual approach and a gentle introduction with the Short Course; A detailed exposition of multiline math formulas with a Visual Guide; A unified appr

  15. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  16. Basic Maths Practice Problems For Dummies

    CERN Document Server

    Beveridge, Colin

    2012-01-01

    Fun, friendly coaching and all the practice you need to tackle maths problems with confidence and ease In his popular Basic Maths For Dummies, professional maths tutor Colin Beveridge proved that he could turn anyone - even the most maths-phobic person - into a natural-born number cruncher. In this book he supplies more of his unique brand of maths-made- easy coaching, plus 2,000 practice problems to help you master what you learn. Whether you're prepping for a numeracy test or an employability exam, thinking of returning to school, or you'd just like to be one of those know-it-alls who says

  17. Attentional bias in math anxiety.

    Science.gov (United States)

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.

  18. Innovative Teaching Games: Climbing the Hills of Math Skills. California Demonstration Mathematics Program.

    Science.gov (United States)

    Pittsburg Unified School District, CA.

    The card games in this publication are an alternative activity to help students master computational skills. Games for operations with whole numbers, fractions, decimals, percents, integers, and square roots are included. They can be used to introduce math topics and for practice and review, with either the whole class or in small groups with 2 to…

  19. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and usefulness: insights from the Polish adaptation

    Directory of Open Access Journals (Sweden)

    Krzysztof eCipora

    2015-11-01

    Full Text Available Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS, known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations.We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857 was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety.The current study shows transcultural validity of math anxiety assessment with the AMAS.

  20. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and Usefulness: Insights from the Polish Adaptation.

    Science.gov (United States)

    Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS.

  1. Restructuring the CS 1 classroom: Examining the effect of open laboratory-based classes vs. closed laboratory-based classes on Computer Science 1 students' achievement and attitudes toward computers and computer courses

    Science.gov (United States)

    Henderson, Jean Foster

    The purpose of this study was to assess the effect of classroom restructuring involving computer laboratories on student achievement and student attitudes toward computers and computer courses. The effects of the targeted student attributes of gender, previous programming experience, math background, and learning style were also examined. The open lab-based class structure consisted of a traditional lecture class with a separate, unscheduled lab component in which lab assignments were completed outside of class; the closed lab-based class structure integrated a lab component within the lecture class so that half the class was reserved for lecture and half the class was reserved for students to complete lab assignments by working cooperatively with each other and under the supervision and guidance of the instructor. The sample consisted of 71 students enrolled in four intact classes of Computer Science I during the fall and spring semesters of the 2006--2007 school year at two southern universities: two classes were held in the fall (one at each university) and two classes were held in the spring (one at each university). A counterbalanced repeated measures design was used in which all students experienced both class structures for half of each semester. The order of control and treatment was rotated among the four classes. All students received the same amount of class and instructor time. A multivariate analysis of variance (MANOVA) via a multiple regression strategy was used to test the study's hypotheses. Although the overall MANOVA model was statistically significant, independent follow-up univariate analyses relative to each dependent measure found that the only significant research factor was math background: Students whose mathematics background was at the level of Calculus I or higher had significantly higher student achievement than students whose mathematics background was less than Calculus I. The results suggest that classroom structures that

  2. Beyond adoption status: Post-adoptive parental involvement and children's reading and math performance from kindergarten to first grade.

    Science.gov (United States)

    Tan, Tony Xing; Kim, Eun Sook; Baggerly, Jennifer; Mahoney, E Emily; Rice, Jessica

    2017-01-01

    In this study, we went beyond adoption status to examine the associations between postadoption parental involvement and children's reading and math performance from kindergarten to first grade. Secondary data on a sample of adopted children and nonadopted children were drawn from the Early Childhood Longitudinal Study-Kindergarten Class of 1998 to 1999 (ECLS-K). Weighted data on the children's reading performance were available for 13,900 children (181 were adopted); weighted data on the children's math performance were available for 14,128 children (184 were adopted). Descriptive data showed no group difference in reading scores at all 3 Waves but adopted children scored lower than nonadopted children in math at Wave 2 (Spring of kindergarten) and Wave 3 (Spring of first grade). However, controlling for 6 covariates, latent growth modeling showed that adoption status was unrelated to Wave 1 reading and math scores or subsequent growth rate. Rather, parents' beliefs on skills needed to succeed in kindergarten were a significant predictor of reading and math performance at Wave 1 and subsequent growth rates, and parents' educational expectation was a significant predictor of growth rate in reading and math. Our findings highlight the importance of parental involvement in adopted children's learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Classroom Learning Environment and Gender: Do They Explain Math Self-Efficacy, Math Outcome Expectations, and Math Interest during Early Adolescence?

    Science.gov (United States)

    Deacon, Mary M.

    2011-01-01

    Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…

  4. An investigation of boys’ and girls’ emotional experience of math, their math performance, and the relation between these variables

    NARCIS (Netherlands)

    Erturan, S; Jansen, B.

    2015-01-01

    GGender differences in children’s emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages

  5. Teaching information literacy skills to sophomore-level biology majors.

    Science.gov (United States)

    Thompson, Leigh; Blankinship, Lisa Ann

    2015-05-01

    Many undergraduate students lack a sound understanding of information literacy. The skills that comprise information literacy are particularly important when combined with scientific writing for biology majors as they are the foundation skills necessary to complete upper-division biology course assignments, better train students for research projects, and prepare students for graduate and professional education. To help undergraduate biology students develop and practice information literacy and scientific writing skills, a series of three one-hour hands-on library sessions, discussions, and homework assignments were developed for Biological Literature, a one-credit, one-hour-per-week, required sophomore-level course. The embedded course librarian developed a learning exercise that reviewed how to conduct database and web searches, the difference between primary and secondary sources, source credibility, and how to access articles through the university's databases. Students used the skills gained in the library training sessions for later writing assignments including a formal lab report and annotated bibliography. By focusing on improving information literacy skills as well as providing practice in scientific writing, Biological Literature students are better able to meet the rigors of upper-division biology courses and communicate research findings in a more professional manner.

  6. A descriptive study of high school Latino and Caucasian students' values about math, perceived math achievement and STEM career choice

    Science.gov (United States)

    Rodriguez Flecha, Samuel

    The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students

  7. Barron's SAT math workbook

    CERN Document Server

    Leff MS, Lawrence S

    2016-01-01

    This completely revised edition reflects all of the new questions and question types that will appear on the new SAT, scheduled to be administered in Spring 2016. Includes hundreds of revised math questions and answer explanations, math strategies, test-taking tips, and much more.

  8. SAT math prep course

    CERN Document Server

    Kolby, Jeff

    2011-01-01

    Comprehensive Prep for SAT Math Every year, students pay 1,000 and more to test prep companies to prepare for the math section of the new SAT. Now you can get the same preparation in a book. Features: * Comprehensive Review: Twenty-three chapters provide complete review of SAT math. * Practice: Includes 164 examples and more than 500 exercises! Arranged from easy to medium to hard to very hard. * Diagnostic Test: The diagnostic test measures your strengths and weaknesses and directs you to areas you need to study more. * Performance: If your target is a 700+ score, this is the book!

  9. Math Is Like a Scary Movie? Helping Young People Overcome Math Anxiety

    Science.gov (United States)

    Kulkin, Margaret

    2016-01-01

    Afterschool teachers who tutor students or provide homework help have a unique opportunity to help students overcome the social or emotional barriers that so often block learning. They can embrace a creative and investigative approach to math learning. Margaret Kulkin's interest in being a math attitude "myth-buster" led her to apply to…

  10. Math Practice and Its Influence on Math Skills and Executive Functions in Adolescents with Mild to Borderline Intellectual Disability

    Science.gov (United States)

    Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…

  11. Enhancing Mathematical Communication for Virtual Math Teams

    Science.gov (United States)

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  12. Math-Gender Stereotypes in Elementary School Children

    Science.gov (United States)

    Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.

    2011-01-01

    A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…

  13. An Investigation of Boys' and Girls' Emotional Experience of Math, Their Math Performance, and the Relation between These Variables

    Science.gov (United States)

    Erturan, Selin; Jansen, Brenda

    2015-01-01

    Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…

  14. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    Science.gov (United States)

    Tsui, Joanne M.; Mazzocco, Michele M. M.

    2006-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…

  15. La maison des mathématiques

    CERN Document Server

    Villani, Cédric; Moncorgé, Vincent

    2014-01-01

    Comment travaillent les mathématiciens ? C'est peut-être en se promenant dans les couloirs de la première des " maisons des mathématiques " de France, l'institut Henri Poincaré, que l'on trouvera quelques réponses. Le mathématicien Cédric Villani et le physicien Jean-Philippe Uzan nous invitent à découvrir cette discipline et ses acteurs. Au fil des pages on suit, à travers de superbes images signées du photographe Vincent Moncorgé, la façon dont se fabrique cette science qui reste souvent mystérieuse. Toutes les dimensions, scientifique, esthétique et poétique, des mathématiques sont convoquées grâce à des regards croisés : la diversité des inspirations des chercheurs, la source de leur créativité, l'imaginaire littéraire et artistique des mathématiques, la drôle de tribu des mathématiciens. Un voyage au cœur de cette " auberge espagnole " des mathématiques, campus " à la française " accueillant des centaines de chercheurs du monde entier, devenu un lieu d'émulation et d'éc...

  16. Opportunities for Learning Math in Elementary School: Implications for SES Disparities in Procedural and Conceptual Math Skills

    Science.gov (United States)

    Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa

    2015-01-01

    The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…

  17. Developmental Math Programs in California Community College: An Analysis of Math Boot Camp at Cosumnes River College

    Science.gov (United States)

    Powell, Torence J.

    2017-01-01

    The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…

  18. Math anxiety and exposure to statistics in messages about genetically modified foods: effects of numeracy, math self-efficacy, and form of presentation.

    Science.gov (United States)

    Silk, Kami J; Parrott, Roxanne L

    2014-01-01

    Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.

  19. Improving quantitative skills in introductory geoscience courses at a four-year public institution using online math modules

    Science.gov (United States)

    Gordon, E. S.

    2011-12-01

    Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.

  20. Les grands problèmes mathématiques ils orientent l'avenir des maths

    CERN Document Server

    2012-01-01

    Les mathématiques ont leurs sept merveilles ! Il s’agit des sept problèmes du millénaire, mis à prix à un million de dollars chacun par l’Institut Clay de mathématiques en 2000. Mais l’intelligence des mathématiciens est aussi mise à l’épreuve par bien d’autres problèmes, tels ceux de Hilbert. Découvrez dans ce numéro comment ces énigmes orientent l’avenir de la discipline ouvrant la voie à de nouvelles connaissances fondamentales.

  1. Math starters 5- to 10-minute activities aligned with the common core math standards, grades 6-12

    CERN Document Server

    Muschla, Judith A; Muschla, Erin

    2013-01-01

    A revised edition of the bestselling activities guide for math teachers Now updated with new math activities for computers and mobile devices-and now organized by the Common Core State Standards-this book includes more than 650 ready-to-use math starter activities that get kids quickly focused and working as soon as they enter the classroom. Ideally suited for any math curriculum, these high-interest problems spark involvement in the day's lesson, help students build skills, and allow teachers to handle daily management tasks without wasting valuable instructional time. A newly updated edit

  2. Our Move: Using Chess to Improve Math Achievement for Students Who Receive Special Education Services

    Science.gov (United States)

    Barrett, David C.; Fish, Wade W.

    2011-01-01

    This causal-comparative study evaluated a 30-week chess instructional program implemented within special education math classes for students in the sixth, seventh, and eighth grades in a suburban middle school located in the southwestern United States. An analysis of covariance (ANCOVA) was utilized to compare the adjusted means for the comparison…

  3. Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety.

    Science.gov (United States)

    Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L

    2011-08-01

    In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved

  4. Educational Investment, Family Context, and Children's Math and Reading Growth from Kindergarten through the Third Grade

    Science.gov (United States)

    Cheadle, Jacob E.

    2008-01-01

    Drawing on longitudinal data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999, this study used IRT modeling to operationalize a measure of parental educational investments based on Lareau's notion of concerted cultivation. It used multilevel piece-wise growth models regressing children's math and reading achievement…

  5. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  6. Culture and math.

    Science.gov (United States)

    Tcheang, Lili

    2014-01-01

    Cultural differences have been shown across a number of different cognitive domains from vision, language, and music. Mathematical cognition is another domain that is an integral part of modern society and because there are a fixed number of ways in which many math operations can be performed, it is also an apposite tool for cultural comparisons. This discussion examines the literature on mathematical processing in accordance with culture, summarizing the brain regions involved across various mathematical tasks. In doing so, we provide a clear picture of the anatomical similarities and differences between cultures when performing different math tasks. This information is useful to explore the possibility of enhancement of mathematical skills, where different strategies may be applicable in accordance with culture. It also contributes to the evolutionary development of different math skills and the growing theory that anatomical and behavioral studies must account for the cultural identity of their sample.

  7. Trajectories of Self-Perceived Math Ability, Utility Value and Interest across Middle School as Predictors of High School Math Performance

    Science.gov (United States)

    Petersen, Jennifer Lee; Hyde, Janet Shibley

    2017-01-01

    Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…

  8. Neural correlates of math anxiety - an overview and implications.

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  9. Enhancing Mathematical Communication for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-06-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies the online math discourse that takes place during sessions of virtual math teams working on open-ended problem-solving tasks. In particular, it investigates methods of group cognition that are employed by teams in this setting. The VMT environment currently integrates social networking, synchronous text chat, a shared whiteboard for drawing, web browsers and an asynchronous wiki for exchanging findings within the larger community. A simple version of MathML is supported in the whiteboard, chat and wiki for displaying mathematical expressions. The VMT Project is currently integrating the dynamic mathematics application, GeoGebra, into its collaboration environment. This will create a multi-user version of GeoGebra, which can be used in concert with the chat, web browsers, curricular topics and wiki repository.

  10. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Science.gov (United States)

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  11. Phylogeny of the TRAF/MATH domain.

    Science.gov (United States)

    Zapata, Juan M; Martínez-García, Vanesa; Lefebvre, Sophie

    2007-01-01

    The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.

  12. Math Tracks: What Pace in Math Is Best for the Middle School Child?

    Science.gov (United States)

    Morrison, Michelle

    2011-01-01

    Mathematics is a critical part of academic preparation of the middle school child, or, as Dr. Maria Montessori would refer to them, children in the third plane of development. Montessori educators are sincere in their endeavors not only to prepare young students for further studies of math and the application of math in their world and careers,…

  13. Bioreactors in Everyday Life: Ethanol and the Maize Craze

    Science.gov (United States)

    Bowman, Silas

    2010-01-01

    This project served as a capstone event for the United States Military Academy sophomore Calculus II course. This multi-disciplinary problem-solving exercise motivated the link between math and biology and many other fields of study. The seven-lesson block of instruction was developed to show students how mathematics play a role in every…

  14. Math at home adds up to achievement in school.

    Science.gov (United States)

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  15. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability

    NARCIS (Netherlands)

    Jansen, B.R.J.; Lange, E.; van der Molen, M.J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this

  16. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Directory of Open Access Journals (Sweden)

    Zhan Shi

    Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  17. The Sum of All Fears: The Effects of Math Anxiety on Math Achievement in Fifth Grade Students and the Implications for School Counselors

    Science.gov (United States)

    Ruff, Sarah E.; Boes, Susan R.

    2014-01-01

    Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…

  18. Math you can really use--every day

    CERN Document Server

    Herzog, David Alan

    2007-01-01

    Math You Can Really Use--Every Day skips mind-numbing theory and tiresome drills and gets right down to basic math that helps you do real-world stuff like figuring how much to tip, getting the best deals shopping, computing your gas mileage, and more. This is not your typical, dry math textbook. With a comfortable, easygoing approach, it: Covers math you''ll need for balancing your checkbook, choosing or managing credit cards, comparing options for mortgages, insurance, and investments, and moreIncludes the basics on fractions, decimals, percentages, measurements, and geometric mathClues you in on simple shortcutsIncludes examples plus pop quizzes with answers to help you solidify your understanding Features tear-out guides you can take with you for tipping and converting measurements Want to know how much 20% off is in dollars and cents? Want to figure out how much gas is going to cost for your road trip? This is the math book you''ll really use!

  19. Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work

    Science.gov (United States)

    Bull, Heather

    2009-01-01

    Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…

  20. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness

    Science.gov (United States)

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2016-01-01

    To raise math success rates in middle school, many schools and districts have implemented summer math programs designed to improve student preparation for algebra content in grade 8. However, little is known about the effectiveness of these programs. While students who participate typically experience learning gains, there is little rigorous…

  1. The Algebra Teacher's Activity-a-Day, Grades 6-12 Over 180 Quick Challenges for Developing Math and Problem-Solving Skills

    CERN Document Server

    Thompson, Frances McBroom

    2010-01-01

    Fun-filled math problems that put the emphasis on problem-solving strategies and reasoning. The Algebra Teacher's Activity-a-Day offers activities for test prep, warm-ups, down time, homework, or just for fun. These unique activities are correlated with national math education standards and emphasize problem-solving strategies and logical reasoning skills. In many of the activities, students are encouraged to communicate their different approaches to other students in the class.: Filled with dozens of quick and fun algebra activities that can be used inside and outside the classroom; Designed

  2. Cognitive consistency and math-gender stereotypes in Singaporean children.

    Science.gov (United States)

    Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu

    2014-01-01

    In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.

    Science.gov (United States)

    Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon

    2017-08-29

    With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.

  4. Avoidance temperament and social-evaluative threat in college students' math performance: a mediation model of math and test anxiety.

    Science.gov (United States)

    Liew, Jeffrey; Lench, Heather C; Kao, Grace; Yeh, Yu-Chen; Kwok, Oi-man

    2014-01-01

    Standardized testing has become a common form of student evaluation with high stakes, and limited research exists on understanding the roles of students' personality traits and social-evaluative threat on their academic performance. This study examined the roles of avoidance temperament (i.e., fear and behavioral inhibition) and evaluative threat (i.e., fear of failure and being viewed as unintelligent) in standardized math test and course grades in college students. Undergraduate students (N=184) from a large public university were assessed on temperamental fear and behavioral inhibition. They were then given 15 minutes to complete a standardized math test. After the test, students provided data on evaluative threat and their math performance (scores on standardized college entrance exam and average grades in college math courses). Results indicate that avoidance temperament was linked to social-evaluative threat and low standardized math test scores. Furthermore, evaluative threat mediated the influence of avoidance temperament on both types of math performance. Results have educational and clinical implications, particularly for students at risk for test anxiety and underperformance. Interventions targeting emotion regulation and stress management skills may help individuals reduce their math and test anxieties.

  5. Can Low-Cost Online Summer Math Programs Improve Student Preparation for College-Level Math? Evidence from Randomized Experiments at Three Universities

    Science.gov (United States)

    Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine

    2017-01-01

    Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…

  6. Evaluation of the MIND Research Institute's Spatial-Temporal Math (ST Math) Program in California

    Science.gov (United States)

    Wendt, Staci; Rice, John; Nakamoto, Jonathan

    2014-01-01

    The MIND Research Institute contracted with the Evaluation Research Program at WestEd to conduct an independent assessment of mathematics outcomes in elementary school grades across California that were provided with the ST Math program. Spatial-Temporal (ST) Math is a game-based instructional software designed to boost K-5 and secondary-level…

  7. Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.

    Science.gov (United States)

    Buelow, Melissa T; Frakey, Laura L

    2013-06-01

    Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.

  8. Saxon Math. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2017

    2017-01-01

    "Saxon Math" is a curriculum for students in grades K-12. The amount of new math content students receive each day is limited and students practice concepts every day. New concepts are developed, reviewed, and practiced cumulatively rather than in discrete chapters or units. This review focuses on studies of "Saxon Math"'s…

  9. Investigating Validity of Math 105 as Prerequisite to Math 201 among Undergraduate Students, Nigeria

    Science.gov (United States)

    Zakariya, Yusuf F.

    2016-01-01

    In this study, the author examined the validity of MATH 105 as a prerequisite to MATH 201. The data for this study was extracted directly from the examination results logic of the university. Descriptive statistics in form of correlations and linear regressions were used to analyze the obtained data. Three research questions were formulated and…

  10. Math Education at a Crossroads

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    With an enrollment of 550 students once a year the first year course Math1 at the Technical University of Denmark is one of the largest courses at university level in Denmark. Since its re-formation 6 years ago a number of interesting valuable assets concerning undergraduate math education...

  11. From Mxit to Dr Math

    CSIR Research Space (South Africa)

    Botha, Adèle

    2013-02-01

    Full Text Available In 2007, Laurie Butgereit, a researcher at the CSIR Meraka Institute, started to use Mxit as a communication channel to tutor her son in mathematics. Her son and a number of his friends logged in, and Dr Math was born. At the inception of Dr Math...

  12. Math Branding in a Community College Library

    Science.gov (United States)

    Brantz, Malcolm; Sadowski, Edward B.

    2010-01-01

    As a strategy to promote the Arapahoe Community College Library's collections and services, the Library undertook to brand itself as a math resource center. In promoting one area of expertise, math was selected to help address the problem of a large portion of high school graduates' inability to work at college-level math. A "Math…

  13. PUMAS: The On-line journal of Math and Science Examples for Pre-College Education

    Science.gov (United States)

    Trainer, Melissa G.; Kahn, Ralph A.

    2015-11-01

    PUMAS - “Practical Uses of Math And Science” - is an on-line collection of brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including every day life. The examples are written primarily by scientists, engineers, and other content experts having practical experience with the material. They are aimed mainly at classroom teachers to enrich their presentation of math and science topics. The goal of PUMAS is to capture, for the benefit of pre-college education, the flavor of the vast experience that working scientists have with interesting and practical uses of math and science. There are currently over 80 examples in the PUMAS collection, and they are organized by curriculum topics and tagged with relevant grade levels and curriculum topic benchmarks. The published examples cover a wide range of subject matter: from demonstrating why summer is hot, to describing the fluid dynamics of a lava lamp, to calculating the best age to collect Social Security Benefits. The examples are available to all interested parties via the PUMAS web site: http://pumas.nasa.gov/.We invite the community to participate in the PUMAS collection. We seek scientists and scientific thinkers to provide innovative examples of practical uses for teachers to use to enrich the classroom experience, and content experts to participate in peer-review. We also seek teachers to review examples for originality, accuracy of content, clarity of presentation, and grade-level appropriateness. Finally, we encourage teachers to mine this rich repository for real-world examples to demonstrate the value of math in science in everyday life.

  14. Neural correlates of math anxiety – an overview and implications

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  15. Neural correlates of math anxiety – An overview and implications

    Directory of Open Access Journals (Sweden)

    Christina eArtemenko

    2015-09-01

    Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i math anxiety elicits emotion- and pain-related activation during and before math activities, (ii that the negative emotional response to math anxiety impairs processing efficiency, and (iii that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  16. Firefighter Math - a web-based learning tool

    Science.gov (United States)

    Dan Jimenez

    2010-01-01

    Firefighter Math is a web based interactive resource that was developed to help prepare wildland fire personnel for math based training courses. The website can also be used as a refresher for fire calculations including slope, flame length, relative humidity, flow rates, unit conversion, etc. The website is designed to start with basic math refresher skills and...

  17. Numbers and other math ideas come alive

    CERN Document Server

    Pappas, Theoni

    2012-01-01

    Most people don't think about numbers, or take them for granted. For the average person numbers are looked upon as cold, clinical, inanimate objects. Math ideas are viewed as something to get a job done or a problem solved. Get ready for a big surprise with Numbers and Other Math Ideas Come Alive. Pappas explores mathematical ideas by looking behind the scenes of what numbers, points, lines, and other concepts are saying and thinking. In each story, properties and characteristics of math ideas are entertainingly uncovered and explained through the dialogues and actions of its math

  18. How Math Anxiety Relates to Number–Space Associations

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570

  19. How math anxiety relates to number-space associations

    Directory of Open Access Journals (Sweden)

    Carrie Georges

    2016-09-01

    Full Text Available Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioural evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  20. How Math Anxiety Relates to Number-Space Associations.

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  1. Order of Administration of Math and Verbal Tests: An Ecological Intervention to Reduce Stereotype Threat on Girls' Math Performance

    Science.gov (United States)

    Smeding, Annique; Dumas, Florence; Loose, Florence; Régner, Isabelle

    2013-01-01

    In 2 field experiments, we relied on the very features of real testing situations--where both math and verbal tests are administered--to examine whether order of test administration can, by itself, create vs. alleviate stereotype threat (ST) effects on girls' math performance. We predicted that taking the math test before the verbal test would be…

  2. "Math Anxiety" Explored in Studies

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    Math problems make more than a few students--and even teachers--sweat, but new brain research is providing insights into the earliest causes of the anxiety so often associated with mathematics. Experts argue that "math anxiety" can bring about widespread, intergenerational discomfort with the subject, which could lead to anything from fewer…

  3. A Motivational Technique for Business Math

    Science.gov (United States)

    Voelker, Pamela

    1977-01-01

    The author suggests the use of simulation and role playing as a method of motivating students in business math. Examples of career-oriented business math simulation games are counting change, banking, payrolls, selling, and shopping. (MF)

  4. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Science.gov (United States)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  5. What Math Teachers Need Most

    Science.gov (United States)

    Nelson, Barbara Scott; Sassi, Annette

    2007-01-01

    The combination of new instructional methods and new accountability pressures puts many in a quandary in evaluating math instruction. There is much for principals to learn about how and under what conditions new instructional methods work in math classrooms, how to support teachers as they develop new instructional skills, and how to integrate a…

  6. Math Fact Strategies Research Project

    Science.gov (United States)

    Boso, Annie

    2011-01-01

    An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…

  7. Developing Mathematical Resilience of Prospective Math Teachers

    Science.gov (United States)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  8. Does Geographic Setting Alter the Roles of Academically Supportive Factors? African American Adolescents' Friendships, Math Self-Concept, and Math Performance

    Science.gov (United States)

    Jones, Martin H.; Irvin, Matthew J.; Kibe, Grace W.

    2012-01-01

    The study is one of few to examine how living in rural, suburban, or urban settings may alter factors supporting African Americans adolescents' math performance. The study examines the relationship of math self-concept and perceptions of friends' academic behaviors to African American students' math performance. Participants (N = 1,049) are…

  9. How to Make the Most of Math Manipulatives.

    Science.gov (United States)

    Burns, Marilyn

    1996-01-01

    A discussion of how to use math manipulatives to teach elementary students focuses on essential program elements: what math manipulatives are and why they are used, common questions about math manipulatives, how one teacher introduced the geoboard into the classroom, and pattern block activities. (SM)

  10. Math Learning Begins at Home

    Science.gov (United States)

    Eason, Sarah H.; Levine, Susan C.

    2017-01-01

    Children demonstrate gaps in the math knowledge that they possess by the time they begin school, and these gaps have been found to predict long-term outcomes not only in math but also in reading. Consequently, it is important to identify what accounts for these early differences and how they can be addressed to ensure that all children enter…

  11. Basic math and pre-algebra practice problems for dummies

    CERN Document Server

    Zegarelli, Mark

    2013-01-01

    1001 Basic Math & Pre- Algebra Practice Problems For  Dummies   Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per

  12. Math Academy: Are You Game? Explorations in Probability. Supplemental Math Materials for Grades 3-6

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the themed program "Are You Game? Math Academy--Explorations in Probability," which teachers can use to…

  13. Primary maths anyone can feed skittles to sharks

    CERN Document Server

    Tiley-Nunn, Nick

    2014-01-01

    Primary maths is stereotypically loved by a few hairy oddballs, tolerated by most sane primary practitioners; loathed by many. With the right approach, however; the right mindset and sense of the impossible being achievable, maths can be moulded into the diamond in the rough of the primary curriculum. Enter Nick Tiley-Nunn: Britain's most imaginative, most exciting primary maths specialist. Over years of practice he has generated ideas about the teaching of maths that are so distinct, so far out and so utterly brilliant that any primary teacher struggling to grasp the nettle of teaching long division will emerge from communing with his ideas not just with some clichéd sense that ‘maths can be fun', but that it can be brilliant, life-enhancing and truly hilarious. This book presents ideas for primary maths teaching so wildly creative and so full of the joy of life that any classroom of kids will be grateful you read it.

  14. Training the approximate number system improves math proficiency.

    Science.gov (United States)

    Park, Joonkoo; Brannon, Elizabeth M

    2013-10-01

    Humans and nonhuman animals share an approximate number system (ANS) that permits estimation and rough calculation of quantities without symbols. Recent studies show a correlation between the acuity of the ANS and performance in symbolic math throughout development and into adulthood, which suggests that the ANS may serve as a cognitive foundation for the uniquely human capacity for symbolic math. Such a proposition leads to the untested prediction that training aimed at improving ANS performance will transfer to improvement in symbolic-math ability. In the two experiments reported here, we showed that ANS training on approximate addition and subtraction of arrays of dots selectively improved symbolic addition and subtraction. This finding strongly supports the hypothesis that complex math skills are fundamentally linked to rudimentary preverbal quantitative abilities and provides the first direct evidence that the ANS and symbolic math may be causally related. It also raises the possibility that interventions aimed at the ANS could benefit children and adults who struggle with math.

  15. Specific Cognitive Predictors of Early Math Problem Solving

    Science.gov (United States)

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  16. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    Science.gov (United States)

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  17. Math word problems for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Covers percentages, probability, proportions, and moreGet a grip on all types of word problems by applying them to real lifeAre you mystified by math word problems? This easy-to-understand guide shows you how to conquer these tricky questions with a step-by-step plan for finding the right solution each and every time, no matter the kind or level of problem. From learning math lingo and performing operations to calculating formulas and writing equations, you''ll get all the skills you need to succeed!Discover how to: * Translate word problems into plain English* Brush up on basic math skills* Plug in the right operation or formula* Tackle algebraic and geometric problems* Check your answers to see if they work

  18. Business math for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Now, it is easier than ever before to understand complex mathematical concepts and formulas and how they relate to real-world business situations. All you have to do it apply the handy information you will find in Business Math For Dummies. Featuring practical practice problems to help you expand your skills, this book covers topics like using percents to calculate increases and decreases, applying basic algebra to solve proportions, and working with basic statistics to analyze raw data. Find solutions for finance and payroll applications, including reading financial statements, calculating wages and commissions, and strategic salary planning. Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You'll be able to read graphs and tables and apply statistics and data analysis. You'll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You'll learn ho...

  19. A Correlation of Community College Math Readiness and Student Success

    Science.gov (United States)

    Brown, Jayna Nicole

    Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p college students' math competencies and degree achievement.

  20. Carnegie Math Pathways 2015-2016 Impact Report: A Five-Year Review. Carnegie Math Pathways Technical Report

    Science.gov (United States)

    Hoang, Hai; Huang, Melrose; Sulcer, Brian; Yesilyurt, Suleyman

    2017-01-01

    College math is a gateway course that has become a constraining gatekeeper for tens of thousands of students annually. Every year, over 500,000 students fail developmental mathematics, preventing them from achieving their college and career goals. The Carnegie Math Pathways initiative offers students an alternative. It comprises two Pathways…

  1. Inhibition Performance in Children with Math Disabilities

    OpenAIRE

    Winegar, Kathryn Lileth

    2013-01-01

    This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...

  2. Teachers’ ability in using math learning media

    Science.gov (United States)

    Masniladevi; Prahmana, R. C. I.; Helsa, Y.; Dalais, M.

    2017-12-01

    The studies aim to enhance teachers’ knowledge and skill in making math instructional media, develop math instructional media, train and assist the use of instructional media in learning math in the classroom. The method used in the activities adopted the pattern of preventive implementation, planning stage, program implementation, observation and evaluation and reflection. The research results show that the evaluation of teachers’ ability is still in average category. The result required more intensive training.

  3. Number-specific and general cognitive markers of preschoolers' math ability profiles.

    Science.gov (United States)

    Gray, Sarah A; Reeve, Robert A

    2016-07-01

    Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Simple arithmetic: not so simple for highly math anxious individuals.

    Science.gov (United States)

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  5. Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development

    Science.gov (United States)

    Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.

    2018-01-01

    Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…

  6. Building a Math-Positive Culture: How to Support Great Math Teaching in Your School (ASCD Arias)

    Science.gov (United States)

    Seeley, Cathy L.

    2016-01-01

    Cathy L. Seeley, former president of the National Council of Teachers of Mathematics, turns the spotlight on administrative leaders who are seeking to improve their math programs, offering an overview of what an effective program looks like and examples of actions to take to achieve that goal. "Building a Math-Positive Culture" addresses…

  7. Neural correlates of math anxiety – an overview and implications

    OpenAIRE

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...

  8. Using the Intel Math Kernel Library on Peregrine | High-Performance

    Science.gov (United States)

    Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier

  9. Robin Hood effects on motivation in math: Family interest moderates the effects of relevance interventions.

    Science.gov (United States)

    Häfner, Isabelle; Flunger, Barbara; Dicke, Anna-Lena; Gaspard, Hanna; Brisson, Brigitte M; Nagengast, Benjamin; Trautwein, Ulrich

    2017-08-01

    Using a cluster randomized field trial, the present study tested whether 2 relevance interventions affected students' value beliefs, self-concept, and effort in math differently depending on family background (socioeconomic status, family interest (FI), and parental utility value). Eighty-two classrooms were randomly assigned to either 1 of 2 intervention conditions or a control group. Data from 1,916 students (M age = 14.62, SD age = 0.47) and their predominantly Caucasian middle-class parents were obtained via separate questionnaires. Multilevel regression analyses with cross-level interactions were used to investigate differential intervention effects on students' motivational beliefs 6 weeks and 5 months after the intervention. Socioeconomic status, FI, and parental utility values were investigated as moderators of the intervention effects. The intervention conditions were especially effective in promoting students' utility, attainment, intrinsic value beliefs, and effort 5 months after the intervention for students whose parents reported lower levels of math interest. Furthermore, students whose parents reported low math utility values especially profited in terms of their utility and attainment math values 5 months after the intervention. No systematic differential intervention effects were found for socioeconomic status. These results highlight the effectiveness of relevance interventions in decreasing motivational gaps between students from families with fewer or more motivational resources. Findings point to the substantial importance of motivational family resources, which have been neglected in previous research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Teachers and Counselors: Building Math Confidence in Schools

    Directory of Open Access Journals (Sweden)

    Joseph M. Furner

    2017-08-01

    Full Text Available Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is important that all students feel confident in their ability to do mathematics in an age that relies so heavily on problem solving, technology, science, and mathematics. It really is a school's obligation to see that their students value and feel confident in their ability to do math, because ultimately a child's life: all decisions they will make and careers choices may be determined based on their disposition toward mathematics. This paper raises some interesting questions and provides some strategies (See Appendix A for teachers and counselors for addressing the issue of math anxiety while discussing the importance of developing mathematically confident young people for a high-tech world of STEM.

  11. Metacognitive awareness and math anxiety in gifted students

    Directory of Open Access Journals (Sweden)

    Hakan Sarıcam

    2015-12-01

    Full Text Available The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary School Students and The Metacognitive Awareness Inventory for Children were used. For analysing the data, Spearman correlation analysis, the Mann Whitney U test, and linear regression analysis were used. According to the findings: firstly, gifted students’ metacognitive awareness scores were higher than those of non-gifted students. On the other hand, non-gifted students’ maths anxiety levels were higher than those of gifted students. Secondly, there was negative correlation between metacognitive awareness and math anxiety. Finally, the findings of linear regression analysis indicated that metacognitive awareness is explained by 48% total variance of maths anxiety in gifted students.

  12. Briefing paper for universities on Core Maths

    OpenAIRE

    Glaister, Paul

    2015-01-01

    This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...

  13. Instant Math Storymats with Hands-on Activities for Building Essential Primary Math Skills, Grades K-2.

    Science.gov (United States)

    Spann, Mary Beth

    This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…

  14. Metacognition and Confidence: Comparing Math to Other Academic Subjects

    Directory of Open Access Journals (Sweden)

    Shanna eErickson

    2015-06-01

    Full Text Available Two studies addressed student metacognition in math, measuring confidence accuracy about math performance. Underconfidence would be expected in light of pervasive math anxiety. However, one might alternatively expect overconfidence based on previous results showing overconfidence in other subject domains. Metacognitive judgments and performance were assessed for biology, literature, and mathematics tests. In Study 1, high school students took three different tests and provided estimates of their performance both before and after taking each test. In Study 2, undergraduates similarly took three shortened SAT II Subject Tests. Students were overconfident in predicting math performance, indeed showing greater overconfidence compared to other academic subjects. It appears that both overconfidence and anxiety can adversely affect metacognitive ability and can lead to math avoidance. The results have implications for educational practice and other environments that require extensive use of math.

  15. Childcare Quality and Preschoolers' Math Development

    Science.gov (United States)

    Choi, Ji Young; Dobbs-Oates, Jennifer

    2014-01-01

    This study examined the associations between four types of childcare quality (i.e. teacher-child closeness, frequency of math-related activities, and teacher education and experience) and preschoolers' residualised gain in math over the course of six months. Additionally, potential interactions between teacher-child closeness and other indicators…

  16. More than Counting: Whole Math Activities for Preschool and Kindergarten.

    Science.gov (United States)

    Moomaw, Sally; Hieronymus, Brenda

    This book presents extensive sampling of a "whole math" curriculum for preschool and kindergarten children ages 3 and older. An introductory chapter is followed by seven curriculum chapters that discuss math manipulatives, collections, grid games, path games, graphing, math and gross-motor play, and the "math suitcase." Each chapter is divided…

  17. Math Anxiety and the "Math Gap": How Attitudes toward Mathematics Disadvantages Students as Early as Preschool

    Science.gov (United States)

    Geist, Eugene

    2015-01-01

    This study was conducted to examine the attitudes of Head Start teachers toward mathematics and how it may influence how and what they teach in the classroom. In general, the findings of this study can be summarized as this: 1) Math anxiety affects how teachers assess their ability at mathematics. The more math anxiety they report, the lower they…

  18. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    Science.gov (United States)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  19. Five Keys for Teaching Mental Math

    Science.gov (United States)

    Olsen, James R.

    2015-01-01

    After studying the Common Core State Standards for Mathematics (CCSSM) and brain-based learning research, James Olsen believes mental math instruction in secondary school mathematics (grades 7-12) and in teacher education programs needs increased attention. The purpose of this article is to share some keys for teaching mental math. Olsen also…

  20. Mini-Portfolio on Math and Science.

    Science.gov (United States)

    Teaching PreK-8, 1996

    1996-01-01

    Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…

  1. Decreasing Math Anxiety in College Students

    Science.gov (United States)

    Perry, Andrew B.

    2004-01-01

    This paper examines the phenomenon of mathematics anxiety in contemporary college and university students. Forms of math anxiety range from moderate test anxiety to extreme anxiety including physiological symptoms such as nausea. For each of several types of math anxiety, one or more case studies is analyzed. Selected strategies for coping with…

  2. Contextual Factors Related to Math Anxiety in Second-Grade Children

    Science.gov (United States)

    Jameson, Molly M.

    2014-01-01

    As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…

  3. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  4. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers

    Directory of Open Access Journals (Sweden)

    Emily Szkudlarek

    2018-05-01

    Full Text Available Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1 compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2 to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158 were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that

  5. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.

    Science.gov (United States)

    Szkudlarek, Emily; Brannon, Elizabeth M

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic

  6. The Influence of Math Anxiety, Math Performance, Worry, and Test Anxiety on the Iowa Gambling Task and Balloon Analogue Risk Task.

    Science.gov (United States)

    Buelow, Melissa T; Barnhart, Wesley R

    2017-01-01

    Multiple studies have shown that performance on behavioral decision-making tasks, such as the Iowa Gambling Task (IGT) and Balloon Analogue Risk Task (BART), is influenced by external factors, such as mood. However, the research regarding the influence of worry is mixed, and no research has examined the effect of math or test anxiety on these tasks. The present study investigated the effects of anxiety (including math anxiety) and math performance on the IGT and BART in a sample of 137 undergraduate students. Math performance and worry were not correlated with performance on the IGT, and no variables were correlated with BART performance. Linear regressions indicated math anxiety, physiological anxiety, social concerns/stress, and test anxiety significantly predicted disadvantageous selections on the IGT during the transition from decision making under ambiguity to decision making under risk. Implications for clinical evaluation of decision making are discussed. © The Author(s) 2015.

  7. Tutoring math platform accessible for visually impaired people.

    Science.gov (United States)

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Basic math and pre-algebra for dummies

    CERN Document Server

    Zegarelli, Mark

    2014-01-01

    Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that

  9. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Tangible Math

    Science.gov (United States)

    Scarlatos, Lori L.

    2006-01-01

    Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…

  11. What to Do About Canada's Declining Math Scores?

    OpenAIRE

    Anna Stokke

    2015-01-01

    The declining performance of Canadian students on international math assessments should worry Canadians and their provincial governments. Strong mathematics knowledge is required for success in the workforce, and early achievement in math is one of the best predictors of later academic success and future career options. Between 2003 and 2012, all but two Canadian provinces showed statistically significant declines in math scores on international exams administered by the Organization for Econ...

  12. Development of the Instructional Model of Reading English Strategies for Enhancing Sophomore Students' Learning Achievements in the Institute of Physical Education in the Northeastern Region of Thailand

    Science.gov (United States)

    Whankhom, Prawit; Phusawisot, Pilanut; Sayankena, Patcharanon

    2016-01-01

    The aim of this research is to develop and verify the effectiveness of an instructional model of reading English strategies for students of Mahasarakham Institute of Physical Education in the Northeastern region through survey. Classroom action research techniques with the two groups of sample sizes of 34 sophomore physical students as a control…

  13. Math anxiety in second and third graders and its relation to mathematics achievement.

    Science.gov (United States)

    Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement

  14. The role of early language abilities on math skills among Chinese children.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects and formal math (calculations including addition and subtraction skills, language abilities and nonverbal intelligence.Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children's language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children's language abilities and formal math skills was partially mediated by informal math skills.The current findings indicate 1 Children's language abilities are of strong predictive values for both informal and formal math skills; 2 Language abilities impacts formal math skills partially through the mediation of informal math skills.

  15. What Types of Instructional Shifts Do Students Experience? Investigating Active Learning in Science, Technology, Engineering, and Math Classes across Key Transition Points from Middle School to the University Level

    Directory of Open Access Journals (Sweden)

    Kenneth Akiha

    2018-01-01

    Full Text Available Despite the need for a strong Science, Technology, Engineering, and Math (STEM workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon moving from secondary to post-secondary STEM courses. This study compares classroom observation data collected using the Classroom Observation Protocol for Undergraduate STEM from over 450 middle school, high school, introductory-level university, and advanced-level university classes across STEM disciplines. We find similarities between middle school and high school classroom instruction, which are characterized by a large proportion of time spent on active-learning instructional strategies, such as small-group activities and peer discussion. By contrast, introductory and advanced university instructors devote more time to instructor-centered teaching strategies, such as lecturing. These instructor-centered teaching strategies are present in classes regardless of class enrollment size, class period length, or whether or not the class includes a separate laboratory section. Middle school, high school, and university instructors were also surveyed about their views of what STEM instructional practices are most common at each educational level and asked to provide an explanation of those perceptions. Instructors from all levels struggled to predict the level of lecturing practices and often expressed uncertainty about what instruction looks like at levels other than their own. These findings suggest that more opportunities need to be created for instructors across multiple levels of the education system to share their active-learning teaching practices and

  16. Mathematizing: An Emergent Math Curriculum Approach for Young Children

    Science.gov (United States)

    Rosales, Allen C.

    2015-01-01

    Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…

  17. The Misplaced Math Student: Lost in Eighth-Grade Algebra. The 2008 Brown Center Report on American Education. Special Release

    Science.gov (United States)

    Loveless, Tom

    2008-01-01

    This new study is being released as an advance excerpt of the 2008 Brown Center Report on American Education. This new report finds that the nation's push to challenge more students by placing them in advanced math classes in eighth grade has had unintended and damaging consequences, as some 120,000 middle-schoolers are now struggling in advanced…

  18. Math anxiety in second and third graders and its relation to mathematics achievement

    Directory of Open Access Journals (Sweden)

    Sarah eWu

    2012-06-01

    Full Text Available Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in 2nd and 3rd graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA, a new measure for assessing math anxiety in 2nd and 3rd graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Wechsler Individual Achievement Test (WIAT-II. Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were significantly correlated with scores on the Math Reasoning subtest, which involves more complex verbal problem solving, but not with the Numerical Operations subtest which assesses basic computation skills. Our results suggest that math anxiety has a pronounced effect on more demanding calculations. Our results further suggest that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.

  19. Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102

    Science.gov (United States)

    Blazer, Christie

    2011-01-01

    Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…

  20. Math Game(s) - an alternative (approach) to teaching math?

    NARCIS (Netherlands)

    Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.

    2009-01-01

    Getting students to read, digest and practice material is difficult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the

  1. Membangun Karakter Anak Usia Dini melalui Pembelajaran Math Character

    Directory of Open Access Journals (Sweden)

    Titin Faridatun Nisa’

    2016-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui penerapan pembelajaran math character untuk membangun karakter Anak Usia Dini (AUD dan kesulitan-kesulitan yang dialami guru dalam penerapan pembelajaran math character. Target penelitian ini adalah terbentuknya karakter anak usia dini melalui pembelajaran math character. Jenis penelitian ini adalah penelitian deskriptif dengan metode penelitian kualitatif. Teknik pengumpulan informasi penelitian ini dengan metode observasi dan wawancara. Analisis data penelitian ini menggunakan analisis deskriptif. Hasil penelitian menunjukkan bahwa penerapan pembelajaran math character dapat membangun delapan belas nilai-nilai karakter AUD. Kesulitan-kesulitan yang dialami guru dalam pembentukan karakter AUD melalui pembelajaran math character meliputi tema yang digunakan termasuk tema baru, siswa belum terbiasa dengan pembelajaran berbasis sentra, usia siswa bervariasi, dan adanya ikut campur wali siswa dalam kegiatan pembelajaran di kelas sehingga siswa menjadi kurang mandiri.

  2. Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak

    Directory of Open Access Journals (Sweden)

    Galuh Boy Hertantyo

    2014-11-01

    Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.

  3. Randomized controlled trial of computerized alcohol intervention for college students: role of class level.

    Science.gov (United States)

    Strohman, Ashleigh Sweet; Braje, Sopagna Eap; Alhassoon, Omar M; Shuttleworth, Sylvie; Van Slyke, Jenna; Gandy, Sharareh

    2016-01-01

    Because of their ability to reach a much wider audience than face-to-face counseling or psychoeducation, computer-delivered interventions for risky or potentially problematic use have been increasing on college campuses. However, there are very few studies that examine who benefits most from such interventions. The purpose of this study was to determine if participation in Alcohol-Wise, a computerized intervention, is associated with changes in alcohol drinking behavior and its consequences, perceptions of college drinking norms, and expectancies. It was hypothesized that class level (i.e. freshman/sophomore versus junior/senior) would moderate the effectiveness of Alcohol-Wise. College students (n = 58) were randomly assigned to one of two conditions: (i) the computer-delivered intervention or (ii) wait-list control. Measures were completed at baseline and approximately 30-days later. At follow-up, freshman and sophomore students in the intervention group showed significant reduction in peak number of standard drinks and blood alcohol concentration, but the effect was not observed for juniors and seniors. The intervention group reported more accurate estimates of drinking norms at follow-up relative to controls. There were no significant changes over time in alcohol expectancies in either group. This study provides support for the potential usefulness of Alcohol-Wise intervention at reducing short-term drinking among underclassmen but not upperclassmen in a 4-year college setting. These findings suggest that computerized interventions may be more effective when provided early, but not later, in a student's college career.

  4. Formula for Success: Engaging Families in Early Math Learning

    Science.gov (United States)

    Global Family Research Project, 2017

    2017-01-01

    Early math ability is one of the best predictors of children's later success in school. Because children's learning begins in the home, families are fundamental in shaping children's interest and skills in math. The experience of learning and doing math, however, looks different from the instruction that was offered when most adults were in…

  5. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    Science.gov (United States)

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  6. Football to improve math and reading performance

    NARCIS (Netherlands)

    Van Klaveren, Chris; De Witte, Kristof

    2015-01-01

    Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates ‘Playing for Success’ (PfS), an extended

  7. Insecure attachment is associated with math anxiety in middle childhood.

    Science.gov (United States)

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  8. Insecure attachment is associated with math anxiety in middle childhood

    Directory of Open Access Journals (Sweden)

    Guy eBosmans

    2015-10-01

    Full Text Available Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect-regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63 filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  9. Students' Confidence in the Ability to Transfer Basic Math Skills in Introductory Physics and Chemistry Courses at a Community College

    Science.gov (United States)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month…

  10. Technical Math For Dummies

    CERN Document Server

    Schoenborn, Barry

    2010-01-01

    Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses you’ll encounter as you work toward getting your degree, certifacation, or�license in the skilled trades. You’ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. You’ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, you’ll find out how to perform basic arithmetic

  11. District Finds the Right Equation to Improve Math Instruction

    Science.gov (United States)

    Holmstrom, Annette

    2010-01-01

    The math problem is common to most U.S. school districts, and education leaders are well aware that U.S. math achievement lags far behind many other countries in the world. University Place (Washington) School District Superintendent Patti Banks found the conspicuous income gap for math scores even more disturbing. In her school district, only 23%…

  12. The influence of math anxiety on symbolic and non-symbolic magnitude processing.

    Science.gov (United States)

    Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  13. The influence of math anxiety on symbolic and non-symbolic magnitude processing

    Directory of Open Access Journals (Sweden)

    Julia Felicitas Dietrich

    2015-10-01

    Full Text Available Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS, which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  14. Math Academy: Play Ball! Explorations in Data Analysis & Statistics. Book 3: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2008-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…

  15. Math Academy: Dining Out! Explorations in Fractions, Decimals, & Percents. Book 4: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…

  16. The Conundrum of Social Class: Disparities in Publishing among STEM Students in Undergraduate Research Programs at a Hispanic Majority Institution

    Science.gov (United States)

    Grineski, Sara; Daniels, Heather; Collins, Timothy; Morales, Danielle X.; Frederick, Angela; Garcia, Marilyn

    2018-01-01

    Research on the science, technology, engineering, and math (STEM) student development pipeline has largely ignored social class and instead examined inequalities based on gender and race. We investigate the role of social class in undergraduate student research publications. Data come from a sample of 213 undergraduate research participants…

  17. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  18. Representation of numerical magnitude in math-anxious individuals.

    Science.gov (United States)

    Colomé, Àngels

    2018-01-01

    Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.

  19. Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.

    Science.gov (United States)

    Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana

    2016-06-01

    Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.

  20. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  1. Response to intervention in math

    CERN Document Server

    Riccomini, Paul J

    2010-01-01

    Boost academic achievement for all students in your mathematics classroom! This timely resource leads the way in applying RTI to mathematics instruction. The authors describe how the three tiers can be implemented in specific math areas and illustrate RTI procedures through case studies. Aligned with the NMAP final report and IES practice guide, this book includes: Intervention strategies for number sense, fractions, problem solving, and more Procedures for teaching math using systematic and explicit instruction for assessment, instructional planning, and evaluation Essential components to con

  2. Math Problem

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2012-01-01

    Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…

  3. Talking Maths

    Science.gov (United States)

    Murray, Jenny

    2006-01-01

    Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…

  4. The Relationship between Cognitive Reserve and Math Abilities

    Directory of Open Access Journals (Sweden)

    Giorgio Arcara

    2017-12-01

    Full Text Available Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations, in a group of healthy older people (aged 65–98 years. Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq, and assessed with the Numerical Activities of Daily Living battery (NADL, which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.

  5. The Relationship between Cognitive Reserve and Math Abilities.

    Science.gov (United States)

    Arcara, Giorgio; Mondini, Sara; Bisso, Alice; Palmer, Katie; Meneghello, Francesca; Semenza, Carlo

    2017-01-01

    Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations), in a group of healthy older people (aged 65-98 years). Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq), and assessed with the Numerical Activities of Daily Living battery (NADL), which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.

  6. Football to Improve Math and Reading Performance

    Science.gov (United States)

    Van Klaveren, Chris; De Witte, Kristof

    2015-01-01

    Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates "Playing for Success" (PfS), an extended school day program for underachieving…

  7. Metacognitive awareness and math anxiety in gifted students

    OpenAIRE

    Hakan Sarıcam; Üzeyir Ogurlu

    2015-01-01

    The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary S...

  8. Explaining Math Achievement: Personality, Motivation, and Trust

    Science.gov (United States)

    Kilic-Bebek, Ebru

    2009-01-01

    This study investigated the statistical significance of student trust next to the well-tested constructs of personality and motivation to determine whether trust is a significant predictor of course achievement in college math courses. Participants were 175 students who were taking undergraduate math courses in an urban public university. The…

  9. Penguin Math

    Science.gov (United States)

    Green, Daniel; Kearney, Thomas

    2015-01-01

    Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…

  10. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.

    Science.gov (United States)

    Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N

    2016-02-01

    This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.

  11. News from the Library: Zentralblatt MATH: it's not all about maths

    CERN Multimedia

    CERN Library

    2011-01-01

    The CERN Library provides access to numerous and diverse information services of interest to the CERN community. Among them, Zentralblatt MATH stands out from our offer of online databases.   Zentralblatt MATH covers more than 3 million articles published in about 3500 journals, from 1826 to the present. Most bibliographic records are linked to the online published article. It covers all areas of pure and applied mathematics and also theoretical computer science, mathematical quantum and statistical physics, classical, solid and fluid mechanics, and general relativity and astronomy. Therefore, this database is useful in many disciplines beyond mathematics. It is daily updated and allows advanced search functionalities. Among others things, it includes the content of the Electronic Research Archive for Mathematics, the European Mathematical Information Service, and the Mathematics Preprint Search System. Please note the "Online Ordering" button next to every bibliographic recor...

  12. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring.

    Science.gov (United States)

    Supekar, Kaustubh; Iuculano, Teresa; Chen, Lang; Menon, Vinod

    2015-09-09

    Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. Significance statement: Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate

  13. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  14. The effects of using diagramming as a representational technique on high school students' achievement in solving math word problems

    Science.gov (United States)

    Banerjee, Banmali

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (pvocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL

  15. Combining Basic Business Math and Electronic Calculators.

    Science.gov (United States)

    Merchant, Ronald

    As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…

  16. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  17. Relationship between Affective Dimension and Math Learning

    Directory of Open Access Journals (Sweden)

    Ronny Gamboa Araya

    2014-05-01

    Full Text Available Math has become an obstacle to achieve educational goals for a large number of students; thus it has transcended the academic world and has become a cognitive and emotional impairment.  What students feel, perceive, believe, and how they act directly influences this.  In addition, what teachers feel and perceive, their expectations, beliefs and attitudes towards the discipline also play an important role in how they teach and in the affective dimension of their students.  Based on theoretical aspects from various authors, this paper is aimed at addressing some elements regarding the affective dimension, and at showing elements pertaining to teachers and students, and their relationship with math learning and teaching.  It was concluded that the role of the affective dimension in math learning must be addressed by math educators in order to understand the process from the perspective of the actors associated with it, both students and teachers, as well as to achieve a change in the discipline by improving the beliefs and attitudes of students and teachers.

  18. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  19. String-math 2012

    CERN Document Server

    Katz, Sheldon; Klemm, Albrecht; Morrison, David R

    2015-01-01

    This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.

  20. Productive failure in learning math.

    Science.gov (United States)

    Kapur, Manu

    2014-06-01

    When learning a new math concept, should learners be first taught the concept and its associated procedures and then solve problems, or solve problems first even if it leads to failure and then be taught the concept and the procedures? Two randomized-controlled studies found that both methods lead to high levels of procedural knowledge. However, students who engaged in problem solving before being taught demonstrated significantly greater conceptual understanding and ability to transfer to novel problems than those who were taught first. The second study further showed that when given an opportunity to learn from the failed problem-solving attempts of their peers, students outperformed those who were taught first, but not those who engaged in problem solving first. Process findings showed that the number of student-generated solutions significantly predicted learning outcomes. These results challenge the conventional practice of direct instruction to teach new math concepts and procedures, and propose the possibility of learning from one's own failed problem-solving attempts or those of others before receiving instruction as alternatives for better math learning. © 2014 Cognitive Science Society, Inc.

  1. Speaking the same language in physics and math

    Science.gov (United States)

    Harvey, Marci

    2012-02-01

    "Hey, is that the same thing as a derivative from calculus?" "Isn't that a quadratic equation?" These are some of the math-related questions my physics students ask every year. Some students realize that determining velocity from a position-time graph is the same thing as taking the first derivative in calculus or they recognize a quadratic equation has a t2 term. Why can all students not make the connection between the two? I wonder if we, as teachers of two different subjects, are making this learning more difficult because we have different terminology for identical concepts. We have an opportunity to create a learning environment that offers multiple opportunities to improve student comprehension. Teachers can connect the concepts from various classes into a cohesive set of information that can be used for higher-level thinking and processing skills.

  2. Elementary School Math Instruction: Can Reading Specialists Assist?

    Science.gov (United States)

    Heinrichs, Audrey S.

    1987-01-01

    Discusses the contradictions found in recommendations for direction instruction or informal math language development, and some suggestions for practical resolution of disagreements, to enable school reading specialists to provide both background and practical help to classroom instructors teaching math. (HTH)

  3. Enhanced learning of proportional math through music training and spatial-temporal training.

    Science.gov (United States)

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  4. Learning to Be a Math Teacher: What Knowledge Is Essential?

    Science.gov (United States)

    Reid, Mary; Reid, Steven

    2017-01-01

    This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…

  5. Effects of methylphenidate on acute math performance in children with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha

    2013-11-01

    Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.

  6. Math Academy: Let's Go to the Mall! Explorations in Combinatorics. Book 5: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2008-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Let's Go to the Mall! Explorations in Combinatorics," which teachers can use to enhance…

  7. Taking Math Outside of the Classroom: Math in the City

    Science.gov (United States)

    Radu, Petronela

    2013-01-01

    Math in the City is an interdisciplinary mathematics course offered at University of Nebraska-Lincoln in which students engage in a real-world experience to understand current major societal issues of local and national interest. The course is run in collaboration with local businesses, research centers, and government organizations, that provide…

  8. Supporting Early Math--Rationales and Requirements for High Quality Software

    Science.gov (United States)

    Haake, Magnus; Husain, Layla; Gulz, Agneta

    2015-01-01

    There is substantial evidence that preschooler's performance in early math is highly correlated to math performance throughout school as well as academic skills in general. One way to help children attain early math skills is by using targeted educational software and the paper discusses potential gains of using such software to support early math…

  9. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    Science.gov (United States)

    Suárez-Pellicioni, Macarena; Núñez-Peña, Maria Isabel; Colomé, Àngels

    2015-01-01

    Attentional bias toward threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias toward math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA) and 20 low math-anxious (LMA) individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score) than the LMA one, which constitutes the first demonstration of an attentional bias toward math-related words in HMA individuals. PMID:26539137

  10. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    Directory of Open Access Journals (Sweden)

    MACARENA eSUÁREZ PELLICIONI

    2015-10-01

    Full Text Available Attentional bias towards threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias towards math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA and 20 low math-anxious (LMA individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score than the LMA one, which constitutes the first demonstration of an attentional bias towards math-related words in HMA individuals.

  11. Math and science illiteracy: Social and economic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.L.

    1994-05-01

    Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.

  12. Are Psychology Students Getting Worse at Math?: Trends in the Math Skills of Psychology Statistics Students across 21 Years

    Science.gov (United States)

    Carpenter, Thomas P.; Kirk, Roger E.

    2017-01-01

    Statistics is an important subject in psychology and social science education. However, inadequate mathematical skills can pose a barrier to learning statistics. Some educators have suggested that students' math skills are declining. The present research examined trends in the math skills of psychology undergraduates across 21 years. Students…

  13. Girls Talk Math - Engaging Girls Through Math Media

    Science.gov (United States)

    Bernardi, Francesca; Morgan, Katrina

    2017-11-01

    ``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.

  14. Math on MXit: the medium is the message

    CSIR Research Space (South Africa)

    Butgereit, L

    2007-07-01

    Full Text Available Homework is a necessary evil in the path of learning mathematics at school. Mathematics homework is traditionally seen as difficult and boring. In the case of difficult homework, “math clubs” and “math extra lessons” are often perceived as even more...

  15. Math Garden: A new educational and scientific instrument

    NARCIS (Netherlands)

    Straatemeier, M.

    2014-01-01

    This dissertation describes the research concerning the construction of a new educational and scientific instrument. This instrument, Math Garden, is a web application in which children can practice arithmetic by playing math games in which items are tailored to their ability level. At the same

  16. MathSci

    OpenAIRE

    De Robbio, Antonella

    1997-01-01

    This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...

  17. Restructuring Schools To Be Math Friendly to Females.

    Science.gov (United States)

    Karp, Karen; Shakeshaft, Charol

    1997-01-01

    The gender gap in math Scholastic Aptitude Test scores, attributable to course avoidance, lack of confidence, and unbalanced classroom instruction, can have serious consequences for young women, such as limited university selection, limited career choices, and lower lifetime salaries. Solutions include hiring math specialists, establishing role…

  18. Solitary Wave Solutions to a Class of Modified Green-Naghdi Systems

    Science.gov (United States)

    Duchêne, Vincent; Nilsson, Dag; Wahlén, Erik

    2017-12-01

    We provide the existence and asymptotic description of solitary wave solutions to a class of modified Green-Naghdi systems, modeling the propagation of long surface or internal waves. This class was recently proposed by Duchêne et al. (Stud Appl Math 137:356-415, 2016) in order to improve the frequency dispersion of the original Green-Naghdi system while maintaining the same precision. The solitary waves are constructed from the solutions of a constrained minimization problem. The main difficulties stem from the fact that the functional at stake involves low order non-local operators, intertwining multiplications and convolutions through Fourier multipliers.

  19. An Integration of Math with Auto Technician Courses

    Science.gov (United States)

    Valenzuela, Hector

    2012-01-01

    This article describes the development of the contextualized math, the course design, student teaching and daily interaction with the students, and the implementation aspects of the research project designed to develop contextualized mathematics and integrate it into the Auto Technician courses. The applied math curriculum was integrated into…

  20. Is there a Causal Effect of High School Math on Labor Market Outcomes?

    DEFF Research Database (Denmark)

    Joensen, Juanna Schrøter; Nielsen, Helena Skyt

    Outsourcing of jobs to low-wage countries has increased the focus onthe accumulation of skills - such as Math skills - in high-wage countries.In this paper, we exploit a high school pilot scheme to identify the causaleffect of advanced high school Math on labor market outcomes. The pilotscheme...... reduced the costs of choosing advanced Math because it allowedfor at more flexible combination of Math with other courses. We findclear evidence of a causal relationship between Math and earnings for thestudents who are induced to choose Math after being exposed to the pilotscheme. The effect partly stems...

  1. Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety

    OpenAIRE

    Wanda Nugroho Yanuarto

    2016-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...

  2. Americans Need Advanced Math to Stay Globally Competitive. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    No student who hopes to compete in today's rapidly evolving global economy and job market can afford to graduate from high school with weak mathematical skills, which include the ability to use logic, reason, and solve problems. The benefits associated with improving the math performance of American students also extend to the larger U.S. economy.…

  3. Feedback Design Patterns for Math Online Learning Systems

    Science.gov (United States)

    Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil

    2017-01-01

    Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…

  4. Strengthening maths learning dispositions through ‘math clubs’

    OpenAIRE

    Mellony Graven

    2016-01-01

    In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sense-making maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3-6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low l...

  5. Class-A mode-locked lasers: Fundamental solutions

    Science.gov (United States)

    Kovalev, Anton V.; Viktorov, Evgeny A.

    2017-11-01

    We consider a delay differential equation (DDE) model for mode-locked operation in class-A semiconductor lasers containing both gain and absorber sections. The material processes are adiabatically eliminated as these are considered fast in comparison to the delay time for a long cavity device. We determine the steady states and analyze their bifurcations using DDE-BIFTOOL [Engelborghs et al., ACM Trans. Math. Software 28, 1 (2002)]. Multiple forms of coexistence, transformation, and hysteretic behavior of stable steady states and fundamental periodic regimes are discussed in bifurcation diagrams.

  6. Singapore Math®. What Works Clearinghouse Intervention Report. Updated December 2015

    Science.gov (United States)

    What Works Clearinghouse, 2015

    2015-01-01

    This report on "Singapore Math®" updates the 2009 WWC review of the curriculum to include seven new studies. Despite the additional research, no studies meet WWC design standards and therefore, no conclusions can be made about the effectiveness of "Singapore Math®." [For the 2009 report, "Singapore Math," see…

  7. Using social media as a strategy to address 'sophomore slump' in second year nursing students: A qualitative study.

    Science.gov (United States)

    Tower, Marion; Blacklock, Eddie; Watson, Bernadette; Heffernan, Catherine; Tronoff, Glenyss

    2015-11-01

    An important contributing factor to the shortfall in the nursing workforce is the high attrition rate of students from nursing programmes. Recently, researchers have begun to examine the 'sophomore slump' phenomenon, related to students' sense of low self-efficacy associated with learning in their second year of study, that may be related to attrition. Academic success is heavily influenced by self-efficacy, or a student's belief in their ability to be successful. Strategies that enhance self-efficacy include peer learning, which increases students' engagement and reinforces self-regulated learning. Social networking sites such as Facebook provide students the opportunity to take part in peer learning and may promote students' self-efficacy. The aim of the study was to develop a Facebook forum that utilised peer learning, to build self-efficacy related to learning, of students commencing into the second year of a three year nursing programme. Students commencing into year two of a Bachelor of Nursing programme were invited to join a Facebook forum to support their study. One hundred and ninety-eight students accepted the invitation. Data was collected over a twelve-week period. Text from the Facebook forum was downloaded and analysed thematically. Analysis suggests that Facebook forums may be a useful peer learning strategy to build students' self-efficacy related to study in the second year of nursing study. Students shared mastery experiences, provided modelling experiences, and used verbal persuasion to reframe problems which suggested that it helped build students' self-efficacy, and alleviated some of the physiological response associated with stress. The findings suggest that social media platforms are important tools by which students can engage in peer learning to build self-efficacy around their nursing studies. This may in part help address the 'sophomore slump' phenomenon, enhance students' learning experiences more widely, and impact on students

  8. Acting Like a Mathematician: A Project to Encourage Inquiry Early in the Math Major

    Science.gov (United States)

    Camenga, Kristin A.

    2017-01-01

    Inquiry is promoted as a way to engage students so that they learn more deeply; inquiry is also an end in itself, introducing students to the research process and the behaviors of a mathematician. This article reflects on an individual exploratory project used in a sophomore-level number theory course, examining how it supported student inquiry…

  9. Metacognitive Awareness and Math Anxiety in Gifted Students

    Science.gov (United States)

    Saricam, Hakan; Ogurlu, Üzeyir

    2015-01-01

    The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students' metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students…

  10. A meta-analysis of math performance in Turner syndrome.

    Science.gov (United States)

    Baker, Joseph M; Reiss, Allan L

    2016-02-01

    Studies investigating the relationship between Turner syndrome and math learning disability have used a wide variation of tasks designed to test various aspects of mathematical competencies. Although these studies have revealed much about the math deficits common to Turner syndrome, their diversity makes comparisons between individual studies difficult. As a result, the consistency of outcomes among these diverse measures remains unknown. The overarching aim of this review is to provide a systematic meta-analysis of the differences in math and number performance between females with Turner syndrome and age-matched neurotypical peers. We provide a meta-analysis of behavioral performance in Turner syndrome relative to age-matched neurotypical populations on assessments of math and number aptitude. In total, 112 comparisons collected across 17 studies were included. Although 54% of all statistical comparisons in our analyses failed to reject the null hypothesis, our results indicate that meaningful group differences exist on all comparisons except those that do not require explicit calculation. Taken together, these results help elucidate our current understanding of math and number weaknesses in Turner syndrome, while highlighting specific topics that require further investigation. © 2015 Mac Keith Press.

  11. The Value of the Math Circle for Gifted Middle School Students

    Science.gov (United States)

    Burns, Barbara; Henry, Julie; McCarthy, Dianne; Tripp, Jennifer

    2017-01-01

    Math Circles are designed to allow students to explore mathematics using a problem-solving/inquiry approach. Many of the students attending our Math Circle are mathematically talented and curious. This study examines the perspectives of the students and their families in determining why students attend Math Circle, what they enjoy about Math…

  12. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    Science.gov (United States)

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  13. The Efficiency of Delone Coverings of the Canonical Tilings MATH {cal T}(*(A_4)) -> T^*(A4) and MATH {cal T}(*(D_6)) -> T^*(D6)

    Science.gov (United States)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings MATH {cal T}(*(A_4)) -> T^*(A4) and MATH {cal T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering MATH {cal C}(s_{{cal) T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling MATH {cal T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling MATH {cal T}(*(D_6)) -> T^*(D6), MATH {cal C}_{{cal T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling MATH {cal T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  14. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement

    OpenAIRE

    Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure f...

  15. The "Parrot Math" Attack on Memorization

    Directory of Open Access Journals (Sweden)

    Bill Quirk

    2013-01-01

    Full Text Available Constructivist math educators regularly cite Parrot Math by Thomas C. O'Brien. Although this paper promotes constructivist "activity-based" learning over direct instruction, it's primary claim to fame is the open hostility to memorization. Professor O'Brien rejects "memorization and parrot-like drill " in favor of "children's invented strategies." He references a paper by Kamii and Dominick as evidence of "considerable research" showing that mastery of the standard algorithms of arithmetic is harmful for children. [See The Bogus Research in Kamii and Dominick's Harmful Algorithms Papers

  16. Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety

    Directory of Open Access Journals (Sweden)

    Wanda Nugroho Yanuarto

    2016-08-01

    Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. The purpose of this study is to provide some treatments to overcome students’ anxiety in math classroom at The University of Muhammadiyah Purwokerto, Indonesia especially in Math Department, but before it has attempted to investigate the factors that students’ anxiety can possibly stem from, both within the classroom environment and out of classroom in the wilder social context.

  17. The Effects of Head Start on Children's Kindergarten Retention, Reading and Math Achievement in Fall Kindergarten--An Application of Propensity Score Method and Sensitivity Analysis

    Science.gov (United States)

    Dong, Nianbo

    2009-01-01

    Using data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), this paper applied optimal propensity score matching method to evaluate the effects of Head Start on children's kindergarten retention, reading and math achievement in fall kindergarten comparing with center-based care. Both parametric and nonparametric…

  18. Effects of Online Visual and Interactive Technological Tool (OVITT) on Early Adolescent Students' Mathematics Performance, Math Anxiety and Attitudes toward Math

    Science.gov (United States)

    Orabuchi, Nkechi

    2013-01-01

    This study reported the results of a 3-month quasi-experimental study that determined the effectiveness of an online visual and interactive technological tool on sixth grade students' mathematics performance, math anxiety and attitudes towards math. There were 155 sixth grade students from a middle school in the North Texas area who participated…

  19. The Math Promise: Celebrating at Home and School

    Science.gov (United States)

    Legnard, Danielle; Austin, Susan

    2014-01-01

    The Math Promise is a contract that family members make with one another. They commit to spending mathematical time together; getting to know each other's mathematical thinking and understanding; and finding time to play math games, solve problems, and notice mathematics in their daily lives. Whether parents and children are cooking in the…

  20. Review of Math for Life by Jeffrey Bennett

    Directory of Open Access Journals (Sweden)

    Eric Gaze

    2012-07-01

    Full Text Available Math for Life: Crucial Ideas You Didn’t Learn in School by Jeffrey Bennett is a general interest mathematics book focused on the topic of innumeracy, the mathematics required to be numerate and why quantitative literacy is important for an educated citizenry. This book raises the very important question of why the mathematics we need to navigate our daily world is given such short shrift in our K-12 math education system. Math for Life is directed at multiple constituencies. For those wishing to develop their quantitative literacy, it provides a primer of the crucial topics, explained with compelling examples in an accessible easy-to-read style. For educators, it provides a valuable synopsis of what the math education curriculum should have at its core. I conclude the review with an analysis of the book’s contributions to these varied domains. In particular, I call into question the algebra-centric high school curriculum and explore possible alternatives to the current myopic focus on calculus in our broken mathematics education system.

  1. Insecure attachment is associated with math anxiety in middle childhood

    OpenAIRE

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children?s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hy...

  2. Where's the Math?

    Science.gov (United States)

    Texas Child Care, 2003

    2003-01-01

    Offers examples of materials and activities that promote and guide math-learning opportunities in all areas of the classroom. Materials and activities relate to: (1) art center; (2) science and discovery center; (3) blocks; (4) library and writing centers; (5) music and movement; (6) manipulatives; (7) dramatic play; (8) outdoor play; and (9)…

  3. Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology

    Science.gov (United States)

    Redish, Edward F.; Kuo, Eric

    2015-01-01

    Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we…

  4. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    Science.gov (United States)

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  5. Impact of University Lecturers' Intervention in School MathTeaching

    Indian Academy of Sciences (India)

    Some schools in the neighbourhood of Sefako MakgathoHealth Sciences University (SMU) in South Africa persistentlyyielded poor mathematics results in the past years. Thiswas of concern since maths is the main subject for manyopportunities, including admissiontoSMUstudy programmes.Some SMU maths lecturers ...

  6. Math-A-Day A Book of Days for Your Mathematical Year

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    Pappas has come up with yet another way to make math part of your life. MATH -A-DAY is not a calendar and not a reference book, but a compendium of mathematical information that will give you your math fix everyday.Each day -kick starts your brain with a problem or puzzle with detailed solutions includedhas a mathematical quote to inspire the other side of your brainfeatures a historical or current math note on a host of mathematica ideashas its date expressed in another number systemStart off your day with it. · Take it to meetings. · Share it with friends.

  7. Maths4Stats: Educating teachers

    Directory of Open Access Journals (Sweden)

    Renette J. Blignaut

    2013-02-01

    Full Text Available The inadequate nature of the education infrastructure in South Africa has led to poor academic performance at public schools. Problems within schools such as under-qualified teachers and poor teacher performance arise due to the poorly constructed education system in our country. The implementation in 2012 of the Curriculum and Assessment Policy Statement (CAPS at public schools in South Africa saw the further crippling of some teachers, as they were unfamiliar with parts of the CAPS subject content. The Statistics and Population Studies department at the University of the Western Cape was asked to join the Maths4Stats project in 2012. This project was launched by Statistics South Africa in an effort to assist in training the teachers in statistical content within the CAPS Mathematics curricula. The University of the Western Cape’s team would like to share their experience of being part of the Maths4Stats training in the Western Cape. This article focuses on how the training sessions were planned and what the outcomes were. With the knowledge gained from our first Maths4Stats experience, it is recommended that future interventions are still needed to ensure that mathematics teachers become well-informed and confident to teach topics such as data handling, probability and regression analysis.

  8. Is there a Causal Effect of High School Math on Labor Market Outcomes?

    DEFF Research Database (Denmark)

    Joensen, E. Juanna Schröter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear...... evidence of a causal relationship between math and earnings for students who are induced to choose math after being exposed to the pilot scheme. The effect partly stems from the fact that these students end up with a higher education....

  9. Math Academy: Can You See It in Nature? Explorations in Patterns & Functions. Book 2: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to students. This booklet contains the "Math Academy--Can You See It in Nature? Explorations in Patterns & Functions," which a teacher can use to…

  10. Preschool acuity of the approximate number system correlates with school math ability.

    Science.gov (United States)

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2011-11-01

    Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. 2011 Blackwell Publishing Ltd.

  11. Classroom Environment, Achievement Goals and Maths Performance: Gender Differences

    Science.gov (United States)

    Gherasim, Loredana Ruxandra; Butnaru, Simona; Mairean, Cornelia

    2013-01-01

    This study investigated how gender shapes the relationships between classroom environment, achievement goals and maths performance. Seventh-grade students ("N"?=?498) from five urban secondary schools filled in achievement goal orientations and classroom environment scales at the beginning of the second semester. Maths performance was…

  12. Social Capital, Information, and Socioeconomic Disparities in Math Coursework

    Science.gov (United States)

    Crosnoe, Robert; Schneider, Barbara

    2011-01-01

    Analysis of the National Education Longitudinal Study revealed that socioeconomically advantaged students persist in high school math at higher rates than their disadvantaged peers, even when they have the same initial placements and skill levels. These disparities are larger among students with prior records of low academic status because students from more privileged backgrounds persist in math coursework even when their prior performance predicts they will not. Among students with low middle school math performance, those from socioeconomically disadvantaged families appear to benefit from having consultants for coursework decisions, so that they make up ground with their socioeconomically advantaged peers. PMID:21743762

  13. Business Math without Tears.

    Science.gov (United States)

    Merchant, Ronald

    1980-01-01

    Describes a new course at Spokane Falls Community College which builds on and reviews basic business math and electronic calculator skills. Material is self-paced and includes work with metrics. Discusses student evaluation of the course and type of equipment used. (CT)

  14. Determinants of Grades in Maths for Students in Economics

    DEFF Research Database (Denmark)

    Cappellari, Lorenzo; Lucifora, Claudio; Pozzoli, Dario

    attended are signi cantly associated with maths grades. Ceteris paribus, females typically do better than males. Since students can postpone the exam or repeat it when they fail, we also analyze the determinants of the elapsed time to pass the exam using survival analysis. Modeling simultaneously maths...

  15. HeartMath and Ubuntu integral healing approaches for social ...

    African Journals Online (AJOL)

    HeartMath and Ubuntu integral healing approaches for social coherence and physical activity. Stephen D. Edwards. Abstract. This research was motivated by many social health problems confronting planet earth. Its aim is to introduce HeartMath and Ubuntu as complimentary, integral healing approaches for promoting ...

  16. Cognitive and Academic Profiles Associated with Math Disability Subtypes

    Science.gov (United States)

    Kubas, Hanna A.; Schmid, Amy D.; Drefs, Michelle A.; Poole, Jennifer M.; Holland, Sara; Fiorello, Catherine A.

    2014-01-01

    Children with math disabilities (MD) represent a heterogeneous group and often display deficits in one or more cognitive domains. Math proficiency requires a number of different cognitive processes, including quantitative knowledge, working memory, processing speed, fluid reasoning, and executive functions. Assessment practices that do not address…

  17. The Reliability of Randomly Generated Math Curriculum-Based Measurements

    Science.gov (United States)

    Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.

    2015-01-01

    "Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…

  18. Placing Math Reform: Locating Latino English Learners in Math Classrooms and Communities

    Science.gov (United States)

    Erbstein, Nancy

    2015-01-01

    This article explores how place matters in public school reform efforts intended to promote more equitable opportunities and outcomes. Qualitative case studies of three California middle schools' eighth grade math reforms and the resulting opportunities for Latino English learners are presented, using the conceptual frameworks of critical human…

  19. Not Just Numbers: Creating a Partnership Climate to Improve Math Proficiency in Schools

    Science.gov (United States)

    Sheldon, Steven B.; Epstein, Joyce L.; Galindo, Claudia L.

    2009-01-01

    Although we know that family involvement is associated with stronger math performance, little is known about what educators are doing to effectively involve families and community members, and whether this measurably improves math achievement at their schools. This study used data from 39 schools to assess the effects of family and community involvement activities on school levels of math achievement. The study found that better implementation of math-related practices of family and community involvement predicted stronger support from parents for schools’ partnership programs, which, in turn, helped estimate the percentage of students scoring proficient on math achievement tests. PMID:20200592

  20. New Tools to Convert PDF Math Contents into Accessible e-Books Efficiently.

    Science.gov (United States)

    Suzuki, Masakazu; Terada, Yugo; Kanahori, Toshihiro; Yamaguchi, Katsuhito

    2015-01-01

    New features in our math-OCR software to convert PDF math contents into accessible e-books are shown. A method for recognizing PDF is thoroughly improved. In addition, contents in any selected area including math formulas in a PDF file can be cut and pasted into a document in various accessible formats, which is automatically recognized and converted into texts and accessible math formulas through this process. Combining it with our authoring tool for a technical document, one can easily produce accessible e-books in various formats such as DAISY, accessible EPUB3, DAISY-like HTML5, Microsoft Word with math objects and so on. Those contents are useful for various print-disabled students ranging from the blind to the dyslexic.

  1. Threats and Supports to Female Students' Math Beliefs and Achievement.

    Science.gov (United States)

    McKellar, Sarah E; Marchand, Aixa D; Diemer, Matthew A; Malanchuk, Oksana; Eccles, Jacquelynne S

    2018-03-23

    This study examines how student perceptions of teacher practices contribute to female high school students' math beliefs and achievement. Guided by the expectancy-value framework, we hypothesized that students' motivation beliefs and achievement outcomes in mathematics are fostered by teachers' emphasis on the relevance of mathematics and constrained by gender-based differential treatment. To examine these questions, structural equation modeling was applied to a longitudinal panel of 518 female students from the Maryland Adolescent Development in Context Study. While controlling for prior achievement and race, gendered differential treatment was negatively associated with math beliefs and achievement, whereas relevant math instruction was positively associated with these outcomes. These findings suggest inroads that may foster positive math motivational beliefs and achievement among young women. © 2018 Society for Research on Adolescence.

  2. U.S. Math Performance in Global Perspective: How Well Does Each State Do at Producing High-Achieving Students? PEPG Report No.: 10-19

    Science.gov (United States)

    Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger

    2010-01-01

    To see how well U.S. schools do at producing high-achieving math students, the authors compare the percentage of U.S. public and private school students in the graduating Class of 2009 who were highly accomplished in mathematics in each of the 50 states and in 10 urban districts to percentages of high achievers in 56 other countries. Their…

  3. Comparing computer adaptive and curriculum-based measures of math in progress monitoring.

    Science.gov (United States)

    Shapiro, Edward S; Dennis, Minyi Shih; Fu, Qiong

    2015-12-01

    The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening assessments (i.e., the computer adaptive test or the CBM assessment just before the administration of the state assessment). Repeated measurement of mathematics once per month across a 7-month period using a Computer Adaptive Test (STAR-Math) and Curriculum-Based Measurement (CBM, AIMSweb Math Computation, AIMSweb Math Concepts/Applications) was collected for a maximum total of 250 third, fourth, and fifth grade students. Results showed STAR-Math in all 3 grades and AIMSweb Math Concepts/Applications in the third and fifth grades had primarily linear growth patterns in mathematics. AIMSweb Math Computation in all grades and AIMSweb Math Concepts/Applications in Grade 4 had decelerating positive trends. Predictive validity evidence showed the strongest relationships were between STAR-Math and outcomes for third and fourth grade students. The blockwise multiple regression by grade revealed that slopes accounted for only a very small proportion of additional variance above and beyond what was explained by the scores obtained on a single point of assessment just prior to the administration of the state assessment. (c) 2015 APA, all rights reserved).

  4. Visual Attention and Math Performance in Survivors of Childhood Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Richard, Annette E; Hodges, Elise K; Heinrich, Kimberley P

    2018-01-24

    Attentional and academic difficulties, particularly in math, are common in survivors of childhood acute lymphoblastic leukemia (ALL). Of cognitive deficits experienced by survivors of childhood ALL, attention deficits may be particularly responsive to intervention. However, it is unknown whether deficits in particular aspects of attention are associated with deficits in math skills. The current study investigated relationships between math calculation skills, performance on an objective measure of sustained attention, and parent- and teacher-reported attention difficulties. Twenty-four survivors of childhood ALL (Mage = 13.5 years, SD= 2.8 years) completed a computerized measure of sustained attention and response control and a written measure of math calculation skills in the context of a comprehensive clinical neuropsychological evaluation. Parent and teacher ratings of inattention and impulsivity were obtained. Visual response control and visual attention accounted for 26.4% of the variance observed among math performance scores after controlling for IQ (p < .05). Teacher-rated, but not parent-rated, inattention was significantly negatively correlated with math calculation scores. Consistency of responses to visual stimuli on a computerized measure of attention is a unique predictor of variance in math performance among survivors of childhood ALL. Objective testing of visual response control, rather than parent-rated attentional problems, may have clinical utility in identifying ALL survivors at risk for math difficulties. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Assessing the Effect of Language Demand in Bundles of Math Word Problems

    Science.gov (United States)

    Banks, Kathleen; Jeddeeni, Ahmad; Walker, Cindy M.

    2016-01-01

    Differential bundle functioning (DBF) analyses were conducted to determine whether seventh and eighth grade second language learners (SLLs) had lower probabilities of answering bundles of math word problems correctly that had heavy language demands, when compared to non-SLLs of equal math proficiency. Math word problems on each of four test forms…

  6. Girls' math performance under stereotype threat: the moderating role of mothers' gender stereotypes.

    Science.gov (United States)

    Tomasetto, Carlo; Alparone, Francesca Romana; Cadinu, Mara

    2011-07-01

    Previous research on stereotype threat in children suggests that making gender identity salient disrupts girls' math performance at as early as 5 to 7 years of age. The present study (n = 124) tested the hypothesis that parents' endorsement of gender stereotypes about math moderates girls' susceptibility to stereotype threat. Results confirmed that stereotype threat impaired girls' performance on math tasks among students from kindergarten through 2nd grade. Moreover, mothers' but not fathers' endorsement of gender stereotypes about math moderated girls' vulnerability to stereotype threat: performance of girls whose mothers strongly rejected the gender stereotype about math did not decrease under stereotype threat. These findings are important because they point to the role of mothers' beliefs in the development of girls' vulnerability to the negative effects of gender stereotypes about math. PsycINFO Database Record (c) 2011 APA, all rights reserved

  7. Reaching the Next Stephen Hawking: Five Ways to Help Students with Disabilities in Advanced Placement Science Classes

    Science.gov (United States)

    Howard, Lori A.; Potts, Elizabeth A.; Linz, Ed

    2013-01-01

    As the federal government encourages all students to attempt advanced math and science courses, more students with disabilities are enrolling in Advanced Placement (AP) science classes. AP science teachers can better serve these students by understanding the various types of disabilities (whether physical, learning, emotional, or behavioral),…

  8. Math anxiety and its relationship with basic arithmetic skills among primary school children

    OpenAIRE

    Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko

    2017-01-01

    Background Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. Aims In this study, we aimed to examine the prevalence of math anxiety and its relationship with bas...

  9. Experiences of Visually Impaired Students in Community College Math Courses

    Science.gov (United States)

    Swan, S. Tomeka

    Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this qualitative study six blind and visually impaired students attended three community colleges in one Mid-Atlantic state. They shared their experiences inside the mathematics classroom. Five of the students were enrolled in developmental level math, and one student was enrolled in college level math. The conceptual framework used to explore how blind and visually impaired students persist and succeed in math courses was Piaget's theory on constructivism. The data from this qualitative study was obtained through personal interviews. Based on the findings of this study, blind and visually impaired students need the following accommodations in order to succeed in community college math courses: Accommodating instructors who help to keep blind and visually impaired students motivated and facilitate their academic progress towards math completion, tutorial support, assistive technology, and a positive and inclusive learning environment.

  10. Contact dynamics math model

    Science.gov (United States)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  11. Conservation Abilities, Visuospatial Skills, and Numerosity Processing Speed: Association With Math Achievement and Math Difficulties in Elementary School Children.

    Science.gov (United States)

    Lambert, Katharina; Spinath, Birgit

    The aim of the present study was to investigate the associations between elementary school children's mathematical achievement and their conservation abilities, visuospatial skills, and numerosity processing speed. We also assessed differences in these abilities between children with different types of learning problems. In Study 1 ( N = 229), we investigated second to fourth graders and in Study 2 ( N = 120), third and fourth graders. Analyses revealed significant contributions of numerosity processing speed and visuospatial skills to math achievement beyond IQ. Conservation abilities were predictive in Study 1 only. Children with math difficulties showed lower visuospatial skills and conservation abilities than children with typical achievement levels and children with reading and/or spelling difficulties, whereas children with combined difficulties explicitly showed low conservation abilities. These findings provide further evidence for the relations between children's math skills and their visuospatial skills, conservation abilities, and processing speed and contribute to the understanding of deficits that are specific to mathematical difficulties.

  12. Math Game(s) - an alternative (approach) to teaching math?

    OpenAIRE

    Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.

    2009-01-01

    Getting students to read, digest and practice material is difficult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the opportunities offered by computer graphics, visual programming and game design as an alternative for traditional methods of teaching mathemathics. In particular, games may be deployed both as intruments to d...

  13. A mandatory course in scientific writing for undergraduate medical students.

    Science.gov (United States)

    Roland, C G; Cox, B G

    1976-02-01

    All students at Mayo Medical School take a course in scientific writing during their sophomore and junior years. Early in the sophomore year they receive a self-instructional text designed to help them avoid 15 common writing faults. Comparison of pretest and posttest results for two classes, with a total of 89 students, indicates significant improvement (p less than .001). Later in his sophomore year, each student writes a minithesis; and during his junior year he reports on work done in a clinical or laboratory research project, preparing it as a paper submissible to a scientific journal. Professional editors work as preceptors with the students, critiquing their manuscripts, which are revised until they receive satisfactory ratings.

  14. Do high school students with different styles have different level of math anxiety?

    OpenAIRE

    Shirvani, Hosin; Guerra, Federico

    2015-01-01

    This study included 240 mostly Hispanic students from one high school. The study used a learning style survey and a math anxiety survey to find students’ learning styles and level of math anxiety. The study examined whether students with three learning styles (auditory, visual, and kinesthetic) had a different level of math anxiety. The study found that children with kinesthetic learning style had higher math anxiety than the other two types. The study also examined whether there were differe...

  15. Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure.

    Science.gov (United States)

    Pinxten, Maarten; Marsh, Herbert W; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan

    2014-03-01

    The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. This study aims at exploring differential effects of enjoyment and competence beliefs on two external validity criteria in the field of mathematics. Data analysed in this study were part of a large-scale longitudinal research project. Following a five-wave design, math enjoyment, math competence beliefs, math achievement, and perceived math effort expenditure measures were repeatedly collected from a cohort of 4,724 pupils in Grades 3-7. Confirmatory factor analysis (CFA) was used to test the internal factor structure of the math self-concept. Additionally, a series of nested models was tested using structural equation modelling to examine longitudinal reciprocal interrelations between math competence beliefs and math enjoyment on the one hand and math achievement and perceived math effort expenditure on the other. Our results showed that CFA models with separate factors for math enjoyment and math competence beliefs fit the data substantially better than models without it. Furthermore, differential relationships between both constructs and the two educational outcomes were observed. Math competence beliefs had positive effects on math achievement and negative effects on perceived math effort expenditure. Math enjoyment had (mild) positive effects on subsequent perceived effort expenditure and math competence beliefs. This study provides further support for the affect-competence separation. Theoretical issues regarding adequate conceptualization and practical consequences for practitioners are discussed. © 2013 The British Psychological Society.

  16. Factors which deter potential science/math teachers from teaching; changes necessary to ameliorate their concerns

    Science.gov (United States)

    Evans, Robert H.

    In light of the perceived national need for more science and math teachers, this study was conceived to:1.Identify teaching oriented students among freshmen at a mid-western engineering school, who have chosen NOT to become teachers;2.Find out what reasons these potential science and math teachers have for deciding not to pursue teaching careers;3.Determine what amelioration of these problems would be necessary for them to no longer be factors which would inhibit students from becoming teachers.Of a random sample of 110 students drawn from a freshman class, 98 participated fully in the study. Each participant took Holland's Self-Directed Search to determine teaching orientation and author-constructed instruments to assess their concerns about teaching.Results showed teaching oriented students avoided teaching due to low starting salaries, lack of job security, low maximum salaries, not wanting to do the work teacher's do, poor job availability and discouragement by family and friends. Starting salaries of 21,693 and salaries of 32,600 for a teacher with a B.A. and 10 years experience were among the changes deemed necessary to make teaching attractive.

  17. Shall we introduce narrative investigation practices in math teaching?

    Directory of Open Access Journals (Sweden)

    Rosália Maria Ribeiro de Aragão

    2005-06-01

    Full Text Available This is a discussion of epistemological, methodological and theoretical elements of research in current Math Education and that of the teacher-reflective-researcher practice in contemporary society. The objectives of such discussion are: a to introduce basic notions to understand the relation between researcher and the object of investigation; and b to direct Math teachers to undertake research from the very beginning of their trawling. In order to achieve research goals, teachers in trainning can both study classroom dynamics through the testimony of the students as well as analyze meanings in practices of narrative investigation. It is recommended that such practices are incorporated to daily Math teaching and learning processes

  18. Social class and the STEM career pipeline an ethnographic investigation of opportunity structures in a high-poverty versus affluent high school

    Science.gov (United States)

    Nikischer, Andrea B.

    This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and college choice, for top-performing math and science students. Differences in these structures and processes as they play out in two representative high schools that vary by social class and racial/ethnic makeup are examined. This comparative ethnography includes 36 school and classroom observations, 56 semi-structured individual interviews, and a review of relevant documents, all gathered during the focal students' junior year of high school. Three data chapters are presented, discussing three distinct, yet interconnected themes. In the first, I examine the ways in which chronic attendance problems and classroom distractions negatively impact math and science instruction time and lead to an instruction (time) deficit. In the second, I compare the math and science course and extra-curricular offerings at each school, and discuss the significant differences between sites regarding available STEM exposure and experience, also known as "STEM educational dose" (Wai, et al., 2010). In the third, I investigate available guidance counseling services and STEM and college-linking at each site. Perceived failures in the counseling services available are discussed. This dissertation is grounded in the literature on differences in academic achievement based on school setting, the nature/distribution of knowledge based on social class, and STEM opportunity structures. The concepts of "social capital" and "STEM capital" are engaged throughout. Ultimately, I argue through this dissertation that segregation by race, and most importantly social class, both between and within districts, damages the STEM pipeline for high-performing math and

  19. Essential math and calculations for pharmacy technicians

    CERN Document Server

    Reddy, Indra K

    2003-01-01

    Working with Roman and Arabic NumeralsUsing Fractions and Decimals in Pharmacy MathUsing Ratios, Proportions and Percentages in Dosage CalculationsApplying Systems of MeasurementsInterpreting Medication OrdersIdentifying Prescription Errors and OmissionsWorking with Liquid Dosage FormsWorking with Solid Dosage FormsAdjusting IsotonicityWorking with Buffer and Ionization ValuesDealing with ReconstitutionsDetermining Milliequivalent StrengthsCalculating Caloric Values Determining IV Flow RatesWorking with Insulin and Heparin ProductsAppendices: A: Working with Temperature ConversionsB: Working with Capsule Dosage FormsC: Dealing with Pediatric Dosages D: Understanding Essential Business Math.

  20. Language, reading, and math learning profiles in an epidemiological sample of school age children.

    Science.gov (United States)

    Archibald, Lisa M D; Oram Cardy, Janis; Joanisse, Marc F; Ansari, Daniel

    2013-01-01

    Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.

  1. Language, reading, and math learning profiles in an epidemiological sample of school age children.

    Directory of Open Access Journals (Sweden)

    Lisa M D Archibald

    Full Text Available Dyscalculia, dyslexia, and specific language impairment (SLI are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.

  2. Impact of Delivery Modality, Student GPA, and Time-Lapse since High School on Successful Completion of College-Level Math after Taking Developmental Math

    Science.gov (United States)

    Acosta, Diane; North, Teresa Lynn; Avella, John

    2016-01-01

    This study considered whether delivery modality, student GPA, or time since high school affected whether 290 students who had completed a developmental math series as a community college were able to successfully complete college-level math. The data used in the study was comprised of a 4-year period historical student data from Odessa College…

  3. Evaluating Number Sense in Community College Developmental Math Students

    Science.gov (United States)

    Steinke, Dorothea A.

    2017-01-01

    Community college developmental math students (N = 657) from three math levels were asked to place five whole numbers on a line that had only endpoints 0 and 20 marked. How the students placed the numbers revealed the same three stages of behavior that Steffe and Cobb (1988) documented in determining young children's number sense. 23% of the…

  4. Remediation of Math Anxiety in Preservice Elementary School Teachers

    Science.gov (United States)

    Dunkle, Susan M.

    2010-01-01

    The purpose of this study was to measure the level of math anxiety in preservice elementary teachers, and then to determine if remediation methods would lower the measured level of anxiety in these same preservice teachers. The 10-day study provided an intense remediation using a time-series design to measure change on the Revised Math Anxiety…

  5. Math and Science Gateways to California's Fastest Growing Careers

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…

  6. A longitudinal analysis of sex differences in math and spatial skills in primary school age children☆

    Science.gov (United States)

    Lachance, Jennifer A.; Mazzocco, Michèle M.M.

    2009-01-01

    We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851

  7. Multi-User GeoGebra for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-05-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.

  8. Cognitive Prediction of Reading, Math, and Attention: Shared and Unique Influences.

    Science.gov (United States)

    Peterson, Robin L; Boada, Richard; McGrath, Lauren M; Willcutt, Erik G; Olson, Richard K; Pennington, Bruce F

    The current study tested a multiple-cognitive predictor model of word reading, math ability, and attention in a community-based sample of twins ages 8 to 16 years ( N = 636). The objective was to identify cognitive predictors unique to each skill domain as well as cognitive predictors shared among skills that could help explain their overlap and thus help illuminate the basis for comorbidity of related disorders (reading disability, math disability, and attention deficit hyperactivity disorder). Results indicated that processing speed contributes to the overlap between reading and attention as well as math and attention, whereas verbal comprehension contributes to the overlap between reading and math. There was no evidence that executive functioning skills help account for covariation among these skill domains. Instead, specific executive functions differentially related to certain outcomes (i.e., working memory to math and inhibition to attention). We explored whether the model varied in younger versus older children and found only minor differences. Results are interpreted within the context of the multiple deficit framework for neurodevelopmental disorders.

  9. Impaired math achievement in patients with acute vestibular neuritis.

    Science.gov (United States)

    Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W

    2017-12-01

    Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Macro-méthodologie et didactique des mathématiques

    OpenAIRE

    Fluckiger, Annick

    2017-01-01

    La didactique des mathématiques née, dans les années soixante, d’une réflexion menée sur les moyens d’améliorer l’enseignement des mathématiques, a eu l’ambition de se constituer en science (science des conditions spécifiques de la diffusion des connaissances mathématiques utiles au fonctionnement des institutions humaines selon Brousseau). Elle a alors été amenée à se doter de moyens d’études appropriés pour englober l’ensemble des recherches sur la diffusion des connaissances. La diversific...

  11. Das habt ihr schon im Mathe gelernt! Stimmt das wirklich?

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Uhden, Olaf; Höttecke, Dietmar

    2016-01-01

    Mathematics is widely considered to be a prerequisite for learning physics. However, it is quite naive to believe that learning basic math is sufficient to use mathematics as a reasoning tool to think about the physical world. The main reason is that using mathematics in physics is substantially...... different than in math. In this paper we show how the way physicists make use of some basic mathematical concepts (e.g. multiplication, division and functions) is specific to physics by identifying their historical genesis and contrasting with the way these concepts are usually taught in math lessons. We...

  12. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  13. The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement

    Science.gov (United States)

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…

  14. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Science.gov (United States)

    2012-06-20

    ... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...

  15. Financial Statement Math

    OpenAIRE

    2007-01-01

    game tool Game Tool Interactive Media Element The purpose of this interactive exercise is to help you understand the math in the income statement and balance sheet., Give the proper mathematical computations in order to correctly prepare the income statement and the balance sheet.The exercise is divided into 3 parts: The income Statement, The Balance Sheet - Assets, The Balance Sheet - Liabilities, GB3050 Financial Reporting and Analysis

  16. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  17. Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.

    Science.gov (United States)

    Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey

    2018-03-01

    People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.

  18. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Math anxiety and its relationship to inhibitory abilities and perceived emotional intelligence

    Directory of Open Access Journals (Sweden)

    Maria-José Justicia-Galiano

    2016-01-01

    Full Text Available Math anxiety has been found to be an emotional problem that has a negative effect on students' academic performance across different levels of education. This type of anxiety could be related to certain cognitive and emotional processes. A first objective was to examine the relationship between math anxiety and certain inhibitory abilities responsible of eliminating intrusive thoughts or preventing them access to consciousness. A second aim was to determine the extent in which math anxiety and students' self-perceptions of their own emotional abilities are related. To this end, 187 first-year undergraduate psychology students were administered different measures to assess math anxiety, statistics anxiety, inhibitory abilities, and perceived emotional intelligence. The results showed that students with high math anxiety were more likely to experience intrusive thoughts, were less effective at suppressing these thoughts, and reported lower scores in understanding and regulating their emotions. These cognitive mechanisms and emotional abilities are of relevance to better understand the nature of this type of anxiety.

  20. Math Teachers' Attitudes towards Photo Math Application in Solving Mathematical Problem Using Mobile Camera

    Science.gov (United States)

    Hamadneh, Iyad M.; Al-Masaeed, Aslan

    2015-01-01

    This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…

  1. Self-Reflection and Math Performance in an Online Learning Environment

    Science.gov (United States)

    Choi, Jinnie; Walters, Alyssa; Hoge, Pat

    2017-01-01

    According to recent reports, K-12 full-time virtual school students have shown lower performance in math than their counterparts in brick-and-mortar schools. However, research is lacking in what kind of programmatic interventions virtual schools might be particularly well-suited to provide to improve math performance. Engaging students in…

  2. Do the Math: Course Redesign's Impact on Learning and Scheduling

    Science.gov (United States)

    Squires, John; Faulkner, Jerry; Hite, Carl

    2009-01-01

    The math department at Cleveland State Community College embarked upon course redesign in 2008. As a result of this project, student engagement, learning, and success rates have increased dramatically. By including both developmental and college level math courses in the redesign, the department has been able to implement innovative scheduling and…

  3. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  4. Effects of Math Anxiety on Student Success in Higher Education

    Science.gov (United States)

    Nunez-Pena, M. I.; Suarez-Pellicioni, M.; Bono, R.

    2013-01-01

    This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding…

  5. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    Science.gov (United States)

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D

    2017-12-01

    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Working memory training is associated with long term attainments in math and reading comprehension

    Directory of Open Access Journals (Sweden)

    Stina eSöderqvist

    2015-11-01

    Full Text Available Training working memory (WM using computerized programs has been shown to improve functions directly linked to WM such as following instructions and attention. These functions influence academic performance, which leads to the question of whether WM training can transfer to improved academic performance. We followed the academic performance of two age-matched groups during two years. As part of the curriculum in grade 4 (age 9-10, all students in one classroom (n = 20 completed Cogmed Working Memory Training (CWMT whereas children in the other classroom (n = 22 received education as usual. Performance on nationally standardized tests in math and reading comprehension was used as outcome measures at baseline and two years later. At baseline both classes were normal/high performing according to national standards. At grade 6, reading comprehension had improved to a significantly greater extent for the training group compared to the control group (medium effect size, Cohen’s d = 0.66, p = 0.045. For math performance the same pattern was observed with a medium effect size (Cohen’s d = 0.58 reaching statistical trend levels (p = 0.091. Moreover, the academic attainments were found to correlate with the degree of improvements during training (p-values 1 year effects of WM training on academic performance. We found performance on both reading and math to be positively impacted after completion of CWMT. Since there were no baseline differences between the groups, the results may reflect an influence on learning capacity, with improved WM leading to a boost in students’ capacity to learn. This study is also the first to investigate the effects of CWMT on academic performance in typical or high achieving students. The results suggest that WM training can help optimize the academic potential of high performers.

  7. Meeting a Math Achievement Crisis

    Science.gov (United States)

    Jennings, Lenora; Likis, Lori

    2005-01-01

    An urban community spotlighted declining mathematics achievement and took some measures, in which the students' performance increased substantially. The Benjamin Banneker Charter Public School in Cambridge, Massachusetts, engaged the entire community and launched the campaign called "Math Everywhere", which changed Benjamin Banneker's…

  8. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary

  9. Investigation of Predictive Power of Mathematics Anxiety on Mathematics Achievement in Terms of Gender and Class Variables

    Directory of Open Access Journals (Sweden)

    Mustafa İLHAN

    2013-12-01

    Full Text Available This research aims to explore predictive power of mathematics anxiety in terms of gender and class variables. For this purpose relational model was used in the study. Working group of the research consists of 348 secondary school second stage students, 175 of whom are girls and 175 are boys, having education in four elementary schools in central district of Diyarbakır province, during 2011-2012 Academic Year, first Semester. “Math Anxiety Scale for Primary School Students” to determine students’ mathematics anxiety was used. Averages of students’ mathematics notes in the first term of 2011- 2012 academic year are taken as the achievement scores of mathematics. The collected data has been analyzed by SPSS 17.0. The relationship between mathematics achievement and math anxiety was analyzed with pearson correlation. The predictor power of math anxiety for mathematics achievement was determined by the regression analysis. According the research findings %17 of the total variance of mathematics achievement can be explained by math anxiety. It has been determined that predictive power of mathematics anxiety on mathematics success is higher in girls than boys. Furthermore, it has been determined in the research that predictive power of mathematics anxiety on mathematics success increases, as students proceed towards the next grade.

  10. 78 FR 2379 - Agency Information Collection Activities; Comment Request; Impact Evaluation of Math Professional...

    Science.gov (United States)

    2013-01-11

    ...; Comment Request; Impact Evaluation of Math Professional Development AGENCY: IES/NCES, Department of... of Math Professional Development. OMB Control Number: 1850-NEW. Type of Review: New information... requests clearance to recruit and collect data from districts, schools, and teachers for a study of math...

  11. Vertical Integration: Results from a Cross-Course Student Collaboration

    Science.gov (United States)

    Sloan, Thomas; Lewis, David

    2011-01-01

    The authors report the results of a cross-class project involving sophomore-level students in an Operations Analysis (OA) class with junior-level students in an Operations Management (OM) class. The students formed virtual teams and developed a simulation model of a call center. The OM students provided the management expertise, while the OA…

  12. The effects of gender composition on women's experience in math work groups.

    Science.gov (United States)

    Grover, Sarah S; Ito, Tiffany A; Park, Bernadette

    2017-06-01

    The present studies tested a model outlining the effects of group gender composition on self- and others' perceptions of women's math ability in a truly interactive setting with groups composed entirely of naïve participants (N = 158 4-person groups across 3 studies). One woman in each group was designated to be the "expert" by having her complete a tutorial that gave her task-relevant knowledge for a subsequent group task. Group gender composition was hypothesized to influence perceptions of women's math ability through intrapersonal processes (stereotype threat effects on performance) and interpersonal processes (social cohesion between the expert and other group members). Group composition affected the experts' performance in the group math task, but importantly, it also affected their social cohesion with group members. Moreover, both of these effects-lowered performance and poorer social cohesion in male-dominated groups-made independent contributions in accounting for group gender composition effects on perceptions of women's math ability (Studies 1 and 2). Boundary conditions were examined in a 3rd study. Women who had a history of excelling in math and had chosen a math-intensive STEM major were selected to be the designated experts. We predicted and found this would be sufficient to eliminate the effect of group gender composition on interpersonal processes, and correspondingly the effect on women's perceived math ability. Interestingly (and consistent with past work on stereotype threat effects among highly domain-identified individuals), there were continued performance differences indicative of effects on intrapersonal processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Math and Economics: Implementing Authentic Instruction in Grades K-5

    Science.gov (United States)

    Althauser, Krista; Harter, Cynthia

    2016-01-01

    The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…

  14. See ya later calculator simple math tricks you can do in your head

    CERN Document Server

    Portable Press, Editors of

    2017-01-01

    See Ya Later Calculator demystifies numbers and math. With these simple, precise, and downright magical math tricks, readers can do everyday math faster than it takes to dig out their phone and find the calculator app. Clear, step-by-step, easily memorizable directions demonstrate more than 125 math operations anyone can do in their head. Plus, it features do-it-yourself math projects, puzzles, and even a bonus section for advanced mathophiles. Get ready to tackle fun problems such as… How to easily square any number How to add three-digit numbers How to use a mirror to measure the height of a building. How to make a ruler out of a dollar bill How to use geometry to paint walls, cut floor tiling, and do other home renovations How to subtract numbers…by adding And lots more...no calculator required.

  15. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  16. Math Error Types and Correlates in Adolescents with and without Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Agnese Capodieci

    2017-10-01

    Full Text Available Objective: The aim of this study was to examine the types of errors made by youth with and without a parent-reported diagnosis of attention deficit and hyperactivity disorder (ADHD on a math fluency task and investigate the association between error types and youths’ performance on measures of processing speed and working memory.Method: Participants included 30 adolescents with ADHD and 39 typically developing peers between 14 and 17 years old matched in age and IQ. All youth completed standardized measures of math calculation and fluency as well as two tests of working memory and processing speed. Math fluency error patterns were examined.Results: Adolescents with ADHD showed less proficient math fluency despite having similar math calculation scores as their peers. Group differences were also observed in error types with youth with ADHD making more switch errors than their peers.Conclusion: This research has important clinical applications for the assessment and intervention on math ability in students with ADHD.

  17. Math Error Types and Correlates in Adolescents with and without Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Capodieci, Agnese; Martinussen, Rhonda

    2017-01-01

    Objective: The aim of this study was to examine the types of errors made by youth with and without a parent-reported diagnosis of attention deficit and hyperactivity disorder (ADHD) on a math fluency task and investigate the association between error types and youths' performance on measures of processing speed and working memory. Method: Participants included 30 adolescents with ADHD and 39 typically developing peers between 14 and 17 years old matched in age and IQ. All youth completed standardized measures of math calculation and fluency as well as two tests of working memory and processing speed. Math fluency error patterns were examined. Results: Adolescents with ADHD showed less proficient math fluency despite having similar math calculation scores as their peers. Group differences were also observed in error types with youth with ADHD making more switch errors than their peers. Conclusion: This research has important clinical applications for the assessment and intervention on math ability in students with ADHD.

  18. Interactive geometry inside MathDox

    NARCIS (Netherlands)

    Cuypers, H.; Hendriks, M.; Knopper, J.W.

    2010-01-01

    In this paper we describe how we envision using interactive geometry inside MathDox pages. In particular, by some examples we discuss how users and mathematical services (offered by various mathematical software packages) can interact with the geometric objects available. This not only includes

  19. Preschool children's mathematical knowledge: The effect of teacher "math talk.".

    Science.gov (United States)

    Klibanoff, Raquel S; Levine, Susan C; Huttenlocher, Janellen; Vasilyeva, Marina; Hedges, Larry V

    2006-01-01

    This study examined the relation between the amount of mathematical input in the speech of preschool or day-care teachers and the growth of children's conventional mathematical knowledge over the school year. Three main findings emerged. First, there were marked individual differences in children's conventional mathematical knowledge by 4 years of age that were associated with socioeconomic status. Second, there were dramatic differences in the amount of math-related talk teachers provided. Third, and most important, the amount of teachers' math-related talk was significantly related to the growth of preschoolers' conventional mathematical knowledge over the school year but was unrelated to their math knowledge at the start of the school year. Copyright 2006 APA, all rights reserved.

  20. The Anti-Anxiety Curriculum: Combating Math Anxiety in the Classroom

    Science.gov (United States)

    Geist, Eugene

    2010-01-01

    Negative attitudes toward mathematics and what has come to be know as "math anxiety" are serious obstacles for children in all levels of schooling today. In this paper, the literature is reviewed and critically assessed in regards to the roots of math anxiety and its especially detrimental effect on children in "at-risk" populations such as low…

  1. Executive Function Buffers the Association between Early Math and Later Academic Skills

    Directory of Open Access Journals (Sweden)

    Andrew D. Ribner

    2017-05-01

    Full Text Available Extensive evidence has suggested that early academic skills are a robust indicator of later academic achievement; however, there is mixed evidence of the effectiveness of intervention on academic skills in early years to improve later outcomes. As such, it is clear there are other contributing factors to the development of academic skills. The present study tests the role of executive function (EF (a construct made up of skills complicit in the achievement of goal-directed tasks in predicting 5th grade math and reading ability above and beyond math and reading ability prior to school entry, and net of other cognitive covariates including processing speed, vocabulary, and IQ. Using a longitudinal dataset of N = 1292 participants representative of rural areas in two distinctive geographical parts of the United States, the present investigation finds EF at age 5 strongly predicts 5th grade academic skills, as do cognitive covariates. Additionally, investigation of an interaction between early math ability and EF reveals the magnitude of the association between early math and later math varies as a function of early EF, such that participants who have high levels of EF can “catch up” to peers who perform better on assessments of early math ability. These results suggest EF is pivotal to the development of academic skills throughout elementary school. Implications for further research and practice are discussed.

  2. It is not known the impact or implications of a study skills class and its effect on high school students in relation to performance on math and science Georgia High School Graduation Test

    Science.gov (United States)

    Smith, Mary E.

    The Georgia State Board of Education has put in place requirements that high school students must meet in order to advance to a higher grade level and to achieve credits for graduation. Georgia requires all ninth, tenth, eleventh, and twelfth graders to take an end-of-course test after completing class time for academic core subjects. The student's final grade in the end-of-course test course will be calculated using the course grade as 85% and the end-of-course test score as 15%. The student must have a final course grade of 70 or above to pass the course and to earn credit toward graduation. Students in Georgia are required to take the Georgia High School Graduation Test. The tests consist of five parts, writing, math, science, social studies and language arts. Students must make a minimum score of 500 which indicates the student was proficient in mastering the objectives for that particular section of the test. Not all students finish high school in four years due to obstacles that occur. Tutorial sessions are provided for those that wish to participate. High schools may offer study skills classes for students that need extra help in focusing their attention on academic courses. Study skill courses provide the student with techniques that he or she may find useful in organizing thoughts and procedures that direct the student towards success.

  3. Mediators of methylphenidate effects on math performance in children with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Froehlich, Tanya E; Antonini, Tanya N; Brinkman, William B; Langberg, Joshua M; Simon, John O; Adams, Ryan; Fredstrom, Bridget; Narad, Megan E; Kingery, Kathleen M; Altaye, Mekibib; Matheson, Heather; Tamm, Leanne; Epstein, Jeffery N

    2014-01-01

    Stimulant medications, such as methylphenidate (MPH), improve the academic performance of children with attention-deficit hyperactivity disorder (ADHD). However, the mechanism by which MPH exerts an effect on academic performance is unclear. We examined MPH effects on math performance and investigated possible mediation of MPH effects by changes in time on-task, inhibitory control, selective attention, and reaction time variability. Children with ADHD aged 7 to 11 years (N = 93) completed a timed math worksheet (with problems tailored to each individual's level of proficiency) and 2 neuropsychological tasks (Go/No-Go and Child Attention Network Test) at baseline, then participated in a 4-week, randomized, controlled, titration trial of MPH. Children were then randomly assigned to their optimal MPH dose or placebo for 1 week (administered double-blind) and repeated the math and neuropsychological tasks (posttest). Baseline and posttest videorecordings of children performing the math task were coded to assess time on-task. Children taking MPH completed 23 more math problems at posttest compared to baseline, whereas the placebo group completed 24 fewer problems on posttest versus baseline, but the effects on math accuracy (percent correct) did not differ. Path analyses revealed that only change in time on-task was a significant mediator of MPH's improvements in math productivity. MPH-derived math productivity improvements may be explained in part by increased time spent on-task, rather than improvements in neurocognitive parameters, such as inhibitory control, selective attention, or reaction time variability.

  4. Gender differences in the causal relation between adolescents' maths self-concept and scholastic performance

    Directory of Open Access Journals (Sweden)

    Cristina Antunes

    2007-05-01

    Full Text Available Mathematics is a core subject in every school curriculum and it is strongly correlated with maths self-concept, which is defined as the subjective feelings and beliefs about one's competence in maths. In general, boys tend to report higher maths self-concept than girls, but the difference between boys and girls' maths scholastic performance is low or even inexistent. Some authors maintain that academic self-concept can play an important role as a motivational variable, promoting self-confidence and investment in the learning process. This study examined the causal relations between maths self-concept and maths scholastic performance in four cohorts of boys and girls within a three-wave longitudinal study. The first two cohorts were composed of 187 girls and 139 boys attending grades 7 and 8 at Time 1 and the third and fourth cohorts were composed of 167 girls and 123 boys attending grades 9 and 10 at Time 1. Structural Equation Modelling was used to test the fit of several models of causal relations. The results revealed that for the first two cohorts the best models were reciprocal and skill-development for both boys and girls. However, for the older students, a reciprocal model gave a best fit for the boys, but for the girls there was only one significant effect from maths self-concept to maths scholastic performance. Results are discussed on the basis of gender-related differential learning expectancies.

  5. Intuition et déduction en mathématiques

    CERN Document Server

    Leclercq, Bruno

    2015-01-01

    À la fin du XVIIIe siècle, Emmanuel Kant pouvait encore voir dans les mathématiques le modèle même des jugements synthétiques a priori, c'est-à-dire dotés d'un contenu intuitif propre quoique non dérivé de l'expérience sensible. Des géométries non-euclidiennes à la théorie des transfinis de Cantor, les mathématiques du XIXe siècle vont cependant faire triompher des systèmes mathématiques résolument déductifs et non plus intuitifs. Sur fond d'interrogations quant à la légitimité de ces développements récents, interrogations renforcées par la découverte de paradoxes, d'âpres débats vont alors o

  6. Learning to Love Math: Teaching Strategies that Change Student Attitudes and Get Results

    Science.gov (United States)

    Willis, Judy

    2010-01-01

    Has it ever seemed to you that some students are hardwired to dislike math? If so, then here's a book that explains how negative attitudes toward math get established in the brain and what you can do to turn those attitudes around. Math teacher and neurologist Judy Willis gives you over 50 strategies you can use right away in any grade level to:…

  7. The role of social support in students' perceived abilities and attitudes toward math and science.

    Science.gov (United States)

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

  8. Relation of Opportunity to Learn Advanced Math to the Educational Attainment of Rural Youth

    Science.gov (United States)

    Irvin, Matthew; Byun, Soo-yong; Smiley, Whitney S.; Hutchins, Bryan C.

    2017-01-01

    Our study examined the relation of advanced math course taking to the educational attainment of rural youth. We used data from the Educational Longitudinal Study of 2002. Regression analyses demonstrated that when previous math achievement is accounted for, rural students take advanced math at a significantly lower rate than urban students.…

  9. Math on MXit: using MXit as a medium for mathematics education

    CSIR Research Space (South Africa)

    Butgereit, L

    2007-04-01

    Full Text Available It is common cause that the average mathematics mark among high school learners in South Africa has declined. Traditional “math clubs” and “math extra lessons” often do not work because of a number of reasons including 1) it being “uncool...

  10. Exposing the Myth: Advanced Math Does Not Increase Drop out Rates. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    A common argument against raising math course-taking requirements for all students is that it will cause more students to drop out of high school. But most students who drop out for academic reasons do so not because they are being "too challenged," but rather because they are not being challenged enough. It is important to raise the rigor and…

  11. A bispectral q-hypergeometric basis for a class of quantum integrable models

    Science.gov (United States)

    Baseilhac, Pascal; Martin, Xavier

    2018-01-01

    For the class of quantum integrable models generated from the q-Onsager algebra, a basis of bispectral multivariable q-orthogonal polynomials is exhibited. In the first part, it is shown that the multivariable Askey-Wilson polynomials with N variables and N + 3 parameters introduced by Gasper and Rahman [Dev. Math. 13, 209 (2005)] generate a family of infinite dimensional modules for the q-Onsager algebra, whose fundamental generators are realized in terms of the multivariable q-difference and difference operators proposed by Iliev [Trans. Am. Math. Soc. 363, 1577 (2011)]. Raising and lowering operators extending those of Sahi [SIGMA 3, 002 (2007)] are also constructed. In the second part, finite dimensional modules are constructed and studied for a certain class of parameters and if the N variables belong to a discrete support. In this case, the bispectral property finds a natural interpretation within the framework of tridiagonal pairs. In the third part, eigenfunctions of the q-Dolan-Grady hierarchy are considered in the polynomial basis. In particular, invariant subspaces are identified for certain conditions generalizing Nepomechie's relations. In the fourth part, the analysis is extended to the special case q = 1. This framework provides a q-hypergeometric formulation of quantum integrable models such as the open XXZ spin chain with generic integrable boundary conditions (q ≠ 1).

  12. Launching Kindergarten Math Clubs: The Implementation of High 5s in New York City

    Science.gov (United States)

    Jacob, Robin; Erickison, Anna; Mattera, Shira K.

    2018-01-01

    Early math has been shown to predict not only longer-term math achievement, but also future reading achievement, high school completion, and college attendance. Yet effects from early math programs often fade out as children move into more varied instructional contexts in elementary school. This fade-out suggests the need for an alignment of math…

  13. The Effect of an Educator's Teaching Style on the Math Anxiety of Adult Learners

    Science.gov (United States)

    Hosch, Mary L.

    2014-01-01

    Many adults are obstructed from specialized professions based on their anxiety of math. Math anxiety has been extensively researched for over 3 decades. Scholars have attempted to define its origins as well as the means to eliminate its often-debilitating effect on learners. Research indicates that learners with math anxiety often give up career…

  14. The Effect of Math Modeling on Student’s Emerging Understanding

    Directory of Open Access Journals (Sweden)

    Andrzej Sokolowski

    2015-09-01

    Full Text Available This study investigated the effects of applying mathematical modeling on revising students’ preconception of the process of optimizing area enclosed by a string of a fixed length. A group of 28 high school pre-calculus students were immersed in modeling activity that included direct measurements, data collecting, and formulating algebraic representation for the data. The lab conduct was enriched by scientific inquiry elements such as hypothesis stating and its verification. While 86% of the students (N=24 falsely hypothesized that the rectangular areas enclosed by a string of a fixed length will remain constant before engaging in the lab, the subsequent tasks of the modeling activity prompted the students to correct their ways of thinking. The study showed that the modeling processes provide ample means of revising students’ perception to establish firm conceptual background for inducing a more rigorous algebraic approach to solving problems in math classes. Suggestions for further studies follow.

  15. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    OpenAIRE

    Su?rez-Pellicioni, Macarena; N??ez-Pe?a, Maria Isabel; Colom?, ?ngels

    2015-01-01

    Attentional bias towards threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias towards math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present s...

  16. Upward Bound: An Untapped Fountain Of Youth Wanting To Learn About Math And Science

    Science.gov (United States)

    Gillis-Davis, J. J.; Sherman, S. B.; Gillis-Davis, L. C.; Svelling, K. L.

    2009-12-01

    We developed a two-phased curricula aimed at high school students in Hawaii’s Upward Bound (UB) programs. The course, called “Tour Through the Solar System”, was tested in the summer 2008-2009 programs of two of the four Hawaii UB programs. Authorized by Congress in 1965, UB is a federal program funded by the U.S. Department of Education to serve students underrepresented in higher education. Students enrolled in UB are predominantly low income, or from families in which neither parent holds a bachelor’s degree. UB programs make a measurable improvement in retaining high school students in the education pipeline in part by using innovative educational and outreach programs to spark students’ interest in learning while building academic self-confidence. Curricula developed for UB are sustainable because there are 964 programs in the United States, and U territories. Education and outreach products can be presented at regional and national meetings, which directors of the UB programs attend. Broad regulations and varied instruction formats allow curriculum developers a flexible and creative framework for developing classes. For instance, regulations stipulate that programs must provide participants with academic instruction in mathematics, laboratory sciences, composition, literature, and foreign languages in preparation for college entrance. UB meets these guidelines through school-year academic activities and a six-week summer school program. In designing our curricula the primary goals were to help students learn how to learn and encourage them to develop an interest in the fields of science, technology, engineering and math using NASA planetary data sets in a Problem-Based Learning (PBL) environment. Our focus on planetary science stems from our familiarity with the data sets, our view that NASA data sets are a naturally inspirational tool to engage high school students, and its cross-disciplinary character: encompassing geology, chemistry, astronomy

  17. Determination of Niacinamide in Lotions and Creams Using Liquid-Liquid Extraction and High-Performance Liquid Chromatography

    Science.gov (United States)

    Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III

    2015-01-01

    Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…

  18. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement.

    Science.gov (United States)

    Haist, Frank; Wazny, Jarnet H; Toomarian, Elizabeth; Adamo, Maha

    2015-02-01

    A central question in cognitive and educational neuroscience is whether brain operations supporting nonlinguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or "formal" math knowledge. Here, we conducted a developmental functional magnetic resonance imaging (MRI) study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6-12 years old), 14 adolescents (13-17 years old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development. © 2014 Wiley Periodicals, Inc.

  19. Math anxiety: who has it, why it develops, and how to guard against it.

    Science.gov (United States)

    Maloney, Erin A; Beilock, Sian L

    2012-08-01

    Basic math skills are important for success in school and everyday life. Yet many people experience apprehension and fear when dealing with numerical information, termed math anxiety. Recently, researchers have started to probe the antecedents of math anxiety, revealing some surprising insights into its onset, risk factors, and remediation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.