Development of three dimensional solid modeler
International Nuclear Information System (INIS)
Zahoor, R.M.A.
1999-01-01
The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)
Three dimensional transport model for toroidal plasmas
International Nuclear Information System (INIS)
Copenhauer, C.
1980-12-01
A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory
Multiscale modeling of three-dimensional genome
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Modeling emissions for three-dimensional atmospheric chemistry transport models.
Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus
2018-01-24
Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple
Three-dimensional model analysis and processing
Yu, Faxin; Luo, Hao; Wang, Pinghui
2011-01-01
This book focuses on five hot research directions in 3D model analysis and processing in computer science: compression, feature extraction, content-based retrieval, irreversible watermarking and reversible watermarking.
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Three-dimensional model for fusion processes
International Nuclear Information System (INIS)
Olson, A.P.
1984-01-01
Active galactic nuclei (AGN) emit unusual spectra of radiation which is interpreted to signify extreme distance, extreme power, or both. The status of AGNs was recently reviewed by Balick and Heckman. It seems that the greatest conceptual difficulty with understanding AGNs is how to form a coherent phenomenological model of their properties. What drives the galactic engine. What and where are the mass-flows of fuel to this engine. Are there more than one engine. Do the engines have any symmetry properties. Is observed radiation isotropically emitted from the source. If it is polarized, what causes the polarization. Why is there a roughly spherical cloud of ionized gas about the center of our own galaxy, the Milky Way. The purpose of this paper is to discuss a new model, based on fusion processes which are not axisymmetric, uniform, isotropic, or even time-invariant. Then, the relationship to these questions will be developed. A unified model of fusion processes applicable to many astronomical phenomena will be proposed and discussed
[Three-dimensional modeling of mandibular distraction].
Morgon, L A; Trunde, F; Coudert, J L; Disant, F
2003-12-01
Facial hemi-atrophy affects 1 in 4000 or 5000 children. We propose treating this deformation of the 1st branchial arch with the "bone distraction" lengthening technique first described by Ilizarov in the 1950s, which has already been employed with the mandible. We have modelled mandibular distraction in facial hemi-atrophy patients and discuss the benefits of such pre-surgical planning encompassing the assistance of pre- and post-operative as well as surgically coordinated orthodontic therapy. Using X scanner views of a 5 year-old girl patient, we have developed a distraction-simulation software, which makes the pathological side harmonious with the healthy side along the medial sagittal plane. In order to obtain facial symmetry, put bones in balance, and orient the occlusal plane horizontally, essential requisites of occlusal stability, it is necessary: to employ a 2 or 3-dimensional distractor, to pre-plan the distraction and screw positioning, to set up a fixed orthodontic treatment plan prior to beginning distraction therapy.
Standalone visualization tool for three-dimensional DRAGON geometrical models
International Nuclear Information System (INIS)
Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.
2008-01-01
DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)
Kiraly, Laszlo
2018-04-01
Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting.
Three-dimensional models of the tracheostoma using stereolithography
Grolman, W.; Schouwenburg, P. F.; Verbeeten, B.; de Boer, M. F.; Meeuwis, C. A.
1995-01-01
The availability of an accurate three-dimensional (3-D) model of the tracheostoma and trachea of the laryngectomy patient would be of great help in prototyping of endotracheal prostheses. Stereolithography has been described for skull and jaw models but never for soft-tissue reconstructions of the
Mathematical modeling of three-dimensional images in emission tomography
International Nuclear Information System (INIS)
Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.
2002-01-01
The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out
Three-dimensional computer models of electrospinning systems
Directory of Open Access Journals (Sweden)
Smółka Krzysztof
2017-12-01
Full Text Available Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.
Three dimensional simulated modelling of diffusion capacitance of ...
African Journals Online (AJOL)
A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...
Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion
Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang
2018-06-01
Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.
Three-dimensional Modeling of Type Ia Supernova Explosions
Khokhlov, Alexei
2001-06-01
A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.
Development of three dimensional ocean current model for coastal region
International Nuclear Information System (INIS)
Kobayashi, Takuya
1999-12-01
In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)
A Three-dimensional Topological Model of Ternary Phase Diagram
International Nuclear Information System (INIS)
Mu, Yingxue; Bao, Hong
2017-01-01
In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)
Magnetic properties of three-dimensional Hubbard-sigma model
International Nuclear Information System (INIS)
Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.
1989-11-01
It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)
Recurrence relations in the three-dimensional Ising model
International Nuclear Information System (INIS)
Yukhnovskij, I.R.; Kozlovskij, M.P.
1977-01-01
Recurrence relations between the coefficients asub(2)sup((i)), asub(4)sup((i)) and Psub(2)sup((i)), Psub(4)sup((i)) which characterize the probabilities of distribution for the three-dimensional Ising model are studied. It is shown that for large arguments z of the Makdonald functions Ksub(ν)(z) the recurrence relations correspond to the known Wilson relations. But near the critical point for small values of the transfer momentum k this limit case does not take place. In the pointed region the argument z tends to zero, and new recurrence relations take place
The value of multivariate model sophistication
DEFF Research Database (Denmark)
Rombouts, Jeroen; Stentoft, Lars; Violante, Francesco
2014-01-01
We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ in their spec....... In addition to investigating the value of model sophistication in terms of dollar losses directly, we also use the model confidence set approach to statistically infer the set of models that delivers the best pricing performances.......We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ...
A three-dimensional constitutive model for shape memory alloy
International Nuclear Information System (INIS)
Zhou, Bo; Yoon, Sung-Ho; Leng, Jin-Song
2009-01-01
Shape memory alloy (SMA) has a wide variety of practical applications due to its unique super-elasticity and shape memory effect. It is of practical interest to establish a constitutive model which predicts its phase transformation and mechanical behaviors. In this paper, a new three-dimensional phase transformation equation, which predicts the phase transformation behaviors of SMA, is developed based on the results of a differential scanning calorimetry (DSC) test. It overcomes both limitations: that Zhou's phase transformation equations fail to describe the phase transformation from twinned martensite to detwinned martensite of SMA and Brinson's phase transformation equation fails to express the influences of phase transformation peak temperatures on the phase transformation behaviors of SMA. A new three-dimensional constitutive equation, which predicts the mechanical behaviors associated with the super-elasticity and shape memory effect of SMA, is developed on the basis of thermodynamics and solid mechanics. Results of numerical simulations show that the new constitutive model, which includes the new phase transformation equation and constitutive equation, can predict the phase transformation and mechanical behaviors associated with the super-elasticity and shape memory effect of SMA precisely and comprehensively. It is proved that Brinson's constitutive model of SMA can be considered as one special case of the new constitutive model
Three-dimensional modeler for animated images display system
International Nuclear Information System (INIS)
Boubekeur, Rania
1987-01-01
The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr
A three-dimensional viscous topography mesoscale model
Energy Technology Data Exchange (ETDEWEB)
Eichhorn, J; Flender, M; Kandlbinder, T; Panhans, W G; Trautmann, T; Zdunkowski, W G [Mainz Univ. (Germany). Inst. fuer Physik der Atmosphaere; Cui, K; Ries, R; Siebert, J; Wedi, N
1997-11-01
This study describes the theoretical foundation and applications of a newly designed mesoscale model named CLIMM (climate model Mainz). In contrast to terrain following coordinates, a cartesian grid is used to keep the finite difference equations as simple as possible. The method of viscous topography is applied to the flow part of the model. Since the topography intersects the cartesian grid cells, the new concept of boundary weight factors is introduced for the solution of Poisson`s equation. A three-dimensional radiosity model was implemented to handle radiative transfer at the ground. The model is applied to study thermally induced circulations and gravity waves at an idealized mountain. Furthermore, CLIMM was used to simulate typical wind and temperature distributions for the city of Mainz and its rural surroundings. It was found that the model in all cases produced realistic results. (orig.) 38 refs.
Three-dimensional modeling of nuclear steam generator
International Nuclear Information System (INIS)
Bogdan, Z.; Afgan, N.
1985-01-01
In this paper mathematical model for steady-state simulation of thermodynamic and hydraulic behaviour of U-tube nuclear steam generator is described. The model predicts three-dimensional distribution of temperatures, pressures, steam qualities and velocities in the steam generator secondary loop. In this analysis homogeneous two phase flow model is utilized. Foe purpose of the computer implementation of the mathematical model, a special flow distribution code NUGEN was developed. Calculations are performed with the input data and geometrical characteristics related to the D-4 (westinghouse) model of U-tube nuclear steam generator built in Krsko, operating under 100% load conditions. Results are shown in diagrams giving spatial distribution of pertinent variables in the secondary loop. (author)
Bioprinted three dimensional human tissues for toxicology and disease modeling.
Nguyen, Deborah G; Pentoney, Stephen L
2017-03-01
The high rate of attrition among clinical-stage therapies, due largely to an inability to predict human toxicity and/or efficacy, underscores the need for in vitro models that better recapitulate in vivo human biology. In much the same way that additive manufacturing has revolutionized the production of solid objects, three-dimensional (3D) bioprinting is enabling the automated production of more architecturally and functionally accurate in vitro tissue culture models. Here, we provide an overview of the most commonly used bioprinting approaches and how they are being used to generate complex in vitro tissues for use in toxicology and disease modeling research. Copyright © 2017 Elsevier Ltd. All rights reserved.
ANS main control complex three-dimensional computer model development
International Nuclear Information System (INIS)
Cleaves, J.E.; Fletcher, W.M.
1993-01-01
A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use
A three-dimensional model of a gap junction
International Nuclear Information System (INIS)
Xylouris, K.; Wittum, G.
2009-01-01
Gap junctions are effective electric couplings between neurons and form a very important way of communication between them. Since they can be considered as the points on the neuron's membrane on which for example dendrites of different cells become one piece, in three dimensions they can be modelled by observing this property in the created geometry. Thus they can be easily made part in an already existing 3-dimensional model for signal propagation on the neuron's membrane, if the geometries are chosen in such a way respect the blending of the membranes. A small network of two cells was created, which blend in their dendrites and a simulation of the three-dimensional model was carried out which reveals the fast transmission of the signal from one cell to the other.
Three-dimensional temporomandibular joint modeling and animation.
Cascone, Piero; Rinaldi, Fabrizio; Pagnoni, Mario; Marianetti, Tito Matteo; Tedaldi, Massimiliano
2008-11-01
The three-dimensional (3D) temporomandibular joint (TMJ) model derives from a study of the cranium by 3D virtual reality and mandibular function animation. The starting point of the project is high-fidelity digital acquisition of a human dry skull. The cooperation between the maxillofacial surgeon and the cartoonist enables the reconstruction of the fibroconnective components of the TMJ that are the keystone for comprehension of the anatomic and functional features of the mandible. The skeletal model is customized with the apposition of the temporomandibular ligament, the articular disk, the retrodiskal tissue, and the medial and the lateral ligament of the disk. The simulation of TMJ movement is the result of the integration of up-to-date data on the biomechanical restrictions. The 3D TMJ model is an easy-to-use application that may be run on a personal computer for the study of the TMJ and its biomechanics.
Mano, Tomohiro; Ohtsuki, Tomi
2017-11-01
The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.
TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES
International Nuclear Information System (INIS)
Fortney, J. J.; Shabram, M.; Showman, A. P.; Lian, Y.; Lewis, N. K.; Freedman, R. S.; Marley, M. S.
2010-01-01
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 μm is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the three-dimensional atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the dayside, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the model's optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which are an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with James Webb Space Telescope.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
Three-dimensional in vitro cancer models: a short review
International Nuclear Information System (INIS)
Wang, Chengyang; Sun, Wei; Tang, Zhenyu; Li, Lingsong; Zhao, Yu; Yao, Rui
2014-01-01
The re-creation of the tumor microenvironment including tumor–stromal interactions, cell–cell adhesion and cellular signaling is essential in cancer-related studies. Traditional two-dimensional (2D) cell culture and animal models have been proven to be valid in some areas of explaining cancerous cell behavior and interpreting hypotheses of possible mechanisms. However, a well-defined three-dimensional (3D) in vitro cancer model, which mimics tumor structures found in vivo and allows cell–cell and cell–matrix interactions, has gained strong interest for a wide variety of diagnostic and therapeutic applications. This communication attempts to provide a representative overview of applying 3D in vitro biological model systems for cancer related studies. The review compares and comments on the differences in using 2D models, animal models and 3D in vitro models for cancer research. Recent technologies to construct and develop 3D in vitro cancer models are summarized in aspects of modeling design, fabrication technique and potential application to biology, pathogenesis study and drug testing. With the help of advanced engineering techniques, the development of a novel complex 3D in vitro cancer model system will provide a better opportunity to understand crucial cancer mechanisms and to develop new clinical therapies. (topical review)
A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL
International Nuclear Information System (INIS)
Miesch, Mark S.; Dikpati, Mausumi
2014-01-01
We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans
THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS
Directory of Open Access Journals (Sweden)
Usman Ghani
2010-10-01
Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.
Three-dimensional decomposition models for carbon productivity
International Nuclear Information System (INIS)
Meng, Ming; Niu, Dongxiao
2012-01-01
This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.
Three-dimensional models of metal-poor stars
International Nuclear Information System (INIS)
Collet, R
2008-01-01
I present here the main results of recent realistic, three-dimensional (3D), hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of local thermodynamic equilibrium (LTE) with the results of analogous line formation calculations performed with classical, 1D, hydrostatic model atmospheres. The low surface temperatures encountered in the upper photospheric layers of 3D model atmospheres of very metal-poor stars cause spectral lines of neutral metals and molecules to appear stronger in 3D than in 1D calculations. Hence, 3D elemental abundances derived from such lines are significantly lower than estimated by analyses with 1D models. In particular, differential 3D-1D LTE abundances for C, N and O derived from CH, NH and OH lines are found to be in the range -0.5 to - 1 dex. Large negative differential 3D-1D corrections to the Fe abundance are also computed for weak low-excitation Fe i lines. The application of metal-poor 3D models to the spectroscopic analysis of extremely iron-poor halo stars is discussed.
Three dimensional modelling for the target asteroid of HAYABUSA
Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.
Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.
A three-dimensional computational model of collagen network mechanics.
Directory of Open Access Journals (Sweden)
Byoungkoo Lee
Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.
Development of an interactive anatomical three-dimensional eye model.
Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D
2015-01-01
The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.
A comprehensive three-dimensional model of the cochlea
International Nuclear Information System (INIS)
Givelberg, Edward; Bunn, Julian
2003-01-01
The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics
Three-dimensional transient electromagnetic modeling in the Laplace Domain
International Nuclear Information System (INIS)
Mizunaga, H.; Lee, Ki Ha; Kim, H.J.
1998-01-01
In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data
[Preparation of simulate craniocerebral models via three dimensional printing technique].
Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T
2016-08-09
Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.
ALGE3D: A Three-Dimensional Transport Model
Maze, G. M.
2017-12-01
Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.
A three dimensional model of a vane rheometer
International Nuclear Information System (INIS)
Nazari, Behzad; Moghaddam, Ramin Heidari; Bousfield, Douglas
2013-01-01
Highlights: • FEM was used to calculate the isothermal flow parameters in a vane geometry. • Velocity, pressure and then stress fields were obtained. • Using total stress, shaft torque was calculated to compare with experimental data. • A modified cell Reynolds number and power number were used to study flow pattern. • A comparison between 2D and 3D modeling was done based on calculated torques. -- Abstract: Vane type geometries are often used in rheometers to avoid slippage between the sample and the fixtures. While yield stress and other rheological properties can be obtained with this geometry, a complete analysis of this complex flow field is lacking in the literature. In this work, a finite element method is used to calculate the isothermal flow parameters in a vane geometry. The method solves the mass and momentum continuity equations to obtain velocity, pressure and then stress fields. Using the total stress numerical data, we calculated the torque applied on solid surfaces. The validity of the computational model was established by comparing the results to experimental results of shaft torque at different angular velocities. The conditions where inertial terms become important and the linear relationship between torque and stress are quantified with dimensionless groups. The accuracy of a two dimensional analysis is compared to the three dimensional results
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)
2017-08-11
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our
A Three-Dimensional Model of the Yeast Genome
Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony
Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.
A three-dimensional model for solar prominences
International Nuclear Information System (INIS)
Demoulin, P.; Priest, E.R.; Anzer, U.
1989-01-01
Prominences have been modelled largely as one-or two-dimensional structures, and yet observations show them to possess important variations in the third dimension along the prominence axis with great arches with feet reaching down towards the solar surface. As an initial attempt to understand this structure we consider a three-dimensional linear force-free field model for the global magnetic field around a quiescent prominence. It consists of a fundamental together with a harmonic that is periodic along the prominence. At the solar surface there is a series of flux concentrations spaced out periodically on both sides of the prominence. Between a pair of oppositely directed flux concentration, the magnetic field in the prominence is stronger and tends to be less highly sheared than elsewhere. This modulation of the field strength and shear angle along the prominence decreases with height and almost disappears above 10 Mm. Prominence fields that increase with height occur when the shear is large and the length-scale for field variations perpendicular to the prominence exceeds that along it. The variation of the prominence height along the prominence is calculated and it is suggested that feet occur where the prominence sags down to low heights. For prominences of Normal polarity this tends to occur near supergranule centres where the transverse field is least, whereas for those of Inverse polarity it usually takes place near the chromospheric network where the transverse field is greatest. The effect of concentrating the base flux by including extra harmonics is also included. For Normal polarity prominences it tends to make the foot wider, and for Inverse polarity configurations, it usually creates deeper and narrower feet
Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions
Milanič, Matija; Majaron, Boris
2011-12-01
We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.
Three-dimensional Electromagnetic Modeling of the Hawaiian Swell
Avdeev, D.; Utada, H.; Kuvshinov, A.; Koyama, T.
2004-12-01
An anomalous behavior of the geomagnetic deep sounding (GDS) responses at the Honolulu geomagnetic observatory has been reported by many researchers. Kuvshinov et al (2004) found that the predicted GDS Dst C-response does not match the experimental data -- 10-20% disagreement occurs for all periods of 2 to 30 days, qualitatively implying a more resistive, rather than conductive, structure beneath the Hawaiian Islands. Simpson et al. (2000) found that the GDS Sq C-response at the Honolulu observatory is about 4 times larger than that at a Hawaii island site, again suggesting a more resistive (than elsewhere around) structure beneath the observatory. Constable and Heinson (2004, http://mahi.ucsd.edu/Steve/swell.pdf), presenting a 2-D interpretation of the magnetotelluric (MT) and GDS responses recently obtained at 7 seafloor sites to the south of the Hawaii Islands, concluded that the dataset require the presence of a narrow conducting plume just beneath the islands. The main motivation of our work is to reveal the reason of the anomalous behavior of the Honolulu response. Obviously, the cause may be due to heterogeneity of either the conductivity or the source field. We examine this problem in some detail with reference to the Constable and Heinson's seafloor dataset, as well as the available dataset from the Honolulu observatory. To address the problem we apply numerical modeling using the three-dimensional (3-D) forward modeling code of Avdeev et al. (1997, 2002). With this code we simulate various regional 3-D conductivity models that may produce EM responses that better fit the experimental datasets, at least qualitatively. Also, to explain some features of the experimental long-period GDS responses we numerically studied a possible effect in the responses caused by the equatorial electrojet. Our 3-D modeling results show that, in particular: (1) The GDS responses are better explained by models with a resistive lithosphere whereas the MT data are better fit by
Three-Dimensional Analysis and Modeling of a Wankel Engine
Raju, M. S.; Willis, E. A.
1991-01-01
A new computer code, AGNI-3D, has been developed for the modeling of combustion, spray, and flow properties in a stratified-charge rotary engine (SCRE). The mathematical and numerical details of the new code are described by the first author in a separate NASA publication. The solution procedure is based on an Eulerian-Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas-mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite-volume, Steger-Warming flux vector splitting scheme. The liquid-phase equations are solved in Lagrangian coordinates. The engine configuration studied was similar to existing rotary engine flow-visualization and hot-firing test rigs. The results of limited test cases indicate a good degree of qualitative agreement between the predicted and measured pressures. It is conjectured that the impulsive nature of the torque generated by the observed pressure nonuniformity may be one of the mechanisms responsible for the excessive wear of the timing gears observed during the early stages of the rotary combustion engine (RCE) development. It was identified that the turbulence intensities near top-dead-center were dominated by the compression process and only slightly influenced by the intake and exhaust processes. Slow mixing resulting from small turbulence intensities within the rotor pocket and also from a lack of formation of any significant recirculation regions within the rotor pocket were identified as the major factors leading to incomplete combustion. Detailed flowfield results during exhaust and intake, fuel injection, fuel vaporization, combustion, mixing and expansion processes are also presented. The numerical procedure is very efficient as it takes 7 to 10 CPU hours on a CRAY Y-MP for one entire engine cycle when the computations are performed over a 31 x16 x 20 grid.
Three dimensional heat transport modeling in Vossoroca reservoir
Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias
2017-04-01
Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to
3D-Ising model as a string theory in three-dimensional euclidean space
International Nuclear Information System (INIS)
Sedrakyan, A.
1992-11-01
A three-dimensional string model is analyzed in the strong coupling regime. The contribution of surfaces with different topology to the partition function is essential. A set of corresponding models is discovered. Their critical indices, which depend on two integers (m,n) are calculated analytically. The critical indices of the three-dimensional Ising model should belong to this set. A possible connection with the chain of three dimensional lattice Pott's models is pointed out. (author) 22 refs.; 2 figs
Olszewski, Raphael; Szymor, Piotr; Kozakiewicz, Marcin
2014-12-01
Our study aimed to determine the accuracy of a low-cost, paper-based 3D printer by comparing a dry human mandible to its corresponding three-dimensional (3D) model using a 3D measuring arm. One dry human mandible and its corresponding printed model were evaluated. The model was produced using DICOM data from cone beam computed tomography. The data were imported into Maxilim software, wherein automatic segmentation was performed, and the STL file was saved. These data were subsequently analysed, repaired, cut and prepared for printing with netfabb software. These prepared data were used to create a paper-based model of a mandible with an MCor Matrix 300 printer. Seventy-six anatomical landmarks were chosen and measured 20 times on the mandible and the model using a MicroScribe G2X 3D measuring arm. The distances between all the selected landmarks were measured and compared. Only landmarks with a point inaccuracy less than 30% were used in further analyses. The mean absolute difference for the selected 2016 measurements was 0.36 ± 0.29 mm. The mean relative difference was 1.87 ± 3.14%; however, the measurement length significantly influenced the relative difference. The accuracy of the 3D model printed using the paper-based, low-cost 3D Matrix 300 printer was acceptable. The average error was no greater than that measured with other types of 3D printers. The mean relative difference should not be considered the best way to compare studies. The point inaccuracy methodology proposed in this study may be helpful in future studies concerned with evaluating the accuracy of 3D rapid prototyping models. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Three-dimensional semi-idealized model for estuarine turbidity maxima in tidally dominated estuaries
Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.
2017-01-01
We develop a three-dimensional idealized model that is specifically aimed at gaining insight in the physical mechanisms resulting in the formation of estuarine turbidity maxima in tidally dominated estuaries. First, the three-dimensional equations for water motion and suspended sediment
Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction
Directory of Open Access Journals (Sweden)
Tetsuro Tominaga
2016-04-01
Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.
Three-dimensional simplicial quantum gravity and generalized matrix models
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1990-11-01
We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)
[Research progress of three-dimensional digital model for repair and reconstruction of knee joint].
Tong, Lu; Li, Yanlin; Hu, Meng
2013-01-01
To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.
Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction
Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi
2016-01-01
The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face ...
Continuum modeling of three-dimensional truss-like space structures
Nayfeh, A. H.; Hefzy, M. S.
1978-01-01
A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Three-dimensional modeling with finite element codes
Energy Technology Data Exchange (ETDEWEB)
Druce, R.L.
1986-01-17
This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.
Three dimensional grain boundary modeling in polycrystalline plasticity
Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman
2018-05-01
At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.
Directory of Open Access Journals (Sweden)
Inge A Hoevenaren
Full Text Available Using three-dimensional (3D stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings.A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1. Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method.The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers than the female hand.This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored.
Three-Dimensional Modeling of Glass Lens Molding
DEFF Research Database (Denmark)
Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard
2015-01-01
The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...
Three dimensional hair model by means particles using Blender
Alvarez-Cedillo, Jesús Antonio; Almanza-Nieto, Roberto; Herrera-Lozada, Juan Carlos
2010-09-01
The simulation and modeling of human hair is a process whose computational complexity is very large, this due to the large number of factors that must be calculated to give a realistic appearance. Generally, the method used in the film industry to simulate hair is based on particle handling graphics. In this paper we present a simple approximation of how to model human hair using particles in Blender. [Figure not available: see fulltext.
Three-dimensional models of metal-poor stars
Collet, R.
2008-01-01
I present here the main results of recent realistic, 3D, hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of loc...
String tension in the three-dimensional Abelian Higgs model
International Nuclear Information System (INIS)
Farakos, K.; Koutsoumbas, G.; Sarantakos, S.
1988-01-01
We measure the expectation values of the Wilson loops for the radially active Abelian Higgs model in three dimensions with Higgs charge q = 1 and q = 2. We observe a drastic fall-off of the area term as we pass to the Higgs phase, as well as a peak of the perimetric term at the phase transition. Implications of our results for other Higgs models are also discussed. (orig.)
Three-dimensional modelling of metal evaporated tape
International Nuclear Information System (INIS)
Kay, G.E.
1999-06-01
As developments in magnetic recording increase, the demands for high density recording media continue to rise. One particular medium developed towards meeting these needs is the commercially successful metal evaporated (ME) tape. To provide a deeper understanding of the magnetic processes occurring in recording media, theoretical studies are carried out to complement experimental observations. Therefore, this thesis is concerned with developing a micromagnetic model to simulate the magnetic behaviour of ME tape. ME tape consists of bundles of granular columns which are tilted towards the film normal. The morphology of the film influences the magnetic behaviour and a 3D model is developed in this thesis to represent the columnar structure and the granular nature of ME tape. A Monte Carlo algorithm, consisting of a 'move and grow' procedure, is developed to generate an irregular system of spherical grains whose radii were generated from a log-normal distribution. This structure provides the foundation for modelling columns of ME tape. Initially an isolated column of ME tape was investigated. Grains were considered to be single domain and the dynamic process of the magnetic moments was explored by the Landau-Lifschitz equation. The model demonstrated that as the strength of the exchange coupling parameter increased, then moments which were strongly coupled resisted large negative fields and square hysteresis loops with a high coercivity were produced. Reversal of the moments was observed to be initiated at the ends of a column and then propagated throughout the column. This was attributed to large demagnetising fields and was particularly evident in the model with aligned easy axes. If the easy axes were randomly orientated then more disorder was present in the model and moments rotated incoherently. This produced hysteresis loops that were less square than those of the aligned model. The results also showed how the microstructure influenced the reversal processes
Semantic description of three-dimensional models of Bologna porches
Directory of Open Access Journals (Sweden)
Massimo Ballabeni
2015-07-01
Full Text Available The study is part of a broader search coordinated by the Department of Architecture of the University of Bologna, the Cineca and the city of Bologna for the nomination of the city porticoes in the UNESCO World Heritage Site. The study describes, first, the problems and the methods adopted for the survey, the numerical modeling and visualization of the arcades models. In addition, the paper aims to describe a method for the semantic studying of the porticoes architecture and the segmentation of the models. The goal is also to establish an integrated approach to the semantic cataloguing of the Bologna arcades based on historical, material, formal, dimensional and theoretical data, and to make this information easily readable and communicable.
The Acceptance of Exceptionality: A Three Dimensional Model.
Martin, Larry L.; Nivens, Maryruth K.
A model extrapolates from E. Kubler-Ross' conception of the stages of grief to apply to parent and family reactions when an exceptionality is identified. A chart lists possible parent feelings and reactions, possible school reactions to the parent in grief, and the child's reactions during each of five stages: denial, rage and anger, bargaining,…
Three-Dimensional Models for Teaching Neuroanatomy to Blind Students.
Pietsch, Paul
1980-01-01
An audio/tactile course enables blind college students to understand the anatomy of the human brain. Models were designed which allow tactile exploration of the visual fields, retina, optic nerves, and the subdivisions of the tracts and radiations in the brain. (Author/PHR)
Three dimensional plastic model of the skull from CT images by using photocurable polymer
International Nuclear Information System (INIS)
Goto, Masaaki; Katsuki, Takeshi; Uchida, Yuuki; Ihara, Kouichiro; Noguchi, Nobuhiro
1992-01-01
Three dimensional analysis in medicine is increasingly becoming a valuable tool in preoperative planning, educating to students, and explaining to patients. Recently three dimensional reconstruction technology has been coupled with computerized resin hardening processes to create acrylic models from the three dimensional reconstruction data. We have fabricated two anatomical models of the skull by the computer controlled resin hardening device. Three dimensional data were created by the three-dimensional reformation system (TRI). As data entry and storage process, contour of bone tissue is manually drawn from each serial CT photographic image of transverse skull sections. These traces are then input to the frame memory by way of the video camera. The computer stores the X, Y coordinates of points along an outline as it is traced. A depth value into the structure, assigned to each section, provides the Z coordinate, that is, the third dimension. Wire frame image is generated by using the storage data. The final image produced by hidden surface removal and shading is displayed on a full color graphic display monitor. Anatomical resin models were generated by a photo hardening device which is controlled by a minicomputer and three dimensional reconstruction data. He-Cd laser beam (wave length: 325 nm) conducted through the fibers scans the bottom of the monometer liquid surface according to the each CT contour data. The elevator moves up after the polymerization of the liquid has been performed in one slice. This device is suitable for the creation of human anatomical structure because the branched form and hollow model can be made easily. Three dimensional resin models are more useful for simulation surgery, education, and explanation than computer aided three-dimensional images. (author)
Directory of Open Access Journals (Sweden)
S. Dong
2018-04-01
Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.
Dong, S.; Yan, Q.; Xu, Y.; Bai, J.
2018-04-01
In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.
Generation of three-dimensional prototype models based on cone beam computed tomography
Energy Technology Data Exchange (ETDEWEB)
Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)
2009-03-15
The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)
Generation of three-dimensional prototype models based on cone beam computed tomography
International Nuclear Information System (INIS)
Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.
2009-01-01
The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)
Three-dimensional modeling of chloroprene rubber surface topography upon composition
Energy Technology Data Exchange (ETDEWEB)
Žukienė, Kristina, E-mail: kristina.zukiene@ktu.lt [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Jankauskaitė, Virginija [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Petraitienė, Stase [Department of Applied Mathematics, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)
2014-02-15
In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.
Development Report on the Idaho National Laboratory Sitewide Three-Dimensional Aquifer Model
Energy Technology Data Exchange (ETDEWEB)
Thomas R. Wood; Catherine M. Helm-Clark; Hai Huang; Swen Magnuson; Travis McLing; Brennon Orr; Michael J. Rohe; Mitchell A. Plummer; Robert Podgorney; Erik Whitmore; Michael S. Roddy
2007-09-01
A sub-regional scale, three-dimensional flow model of the Snake River Plain Aquifer was developed to support remediation decisions for Waste Area Group 10, Operable Unit 10 08 at the Idaho National Laboratory (INL) Site. This model has been calibrated primarily to water levels and secondarily to groundwater velocities interpreted from stable isotope disequilibrium studies and the movement of anthropogenic contaminants in the aquifer from facilities at the INL. The three-dimensional flow model described in this report is one step in the process of constructing a fully three-dimensional groundwater flow and contaminant transport model as prescribed in the Idaho National Engineering and Environmental Laboratory Operable Unit 10-08 Sitewide Groundwater Model Work Plan. An updated three-dimensional hydrogeologic conceptual model is presented along with the geologic basis for the conceptual model. Sediment-dominated three-dimensional volumes were used to represent the geology and constrain groundwater flow as part of the conceptual model. Hydrological, geochemical, and geological data were summarized and evaluated to infer aquifer behavior. A primary observation from development and evaluation of the conceptual model was that relative to flow on a regional scale, the aquifer can be treated with steady-state conditions. Boundary conditions developed for the three-dimensional flow model are presented along with inverse simulations that estimate parameterization of hydraulic conductivity. Inverse simulations were performed using the pilot-point method to estimate permeability distributions. Thermal modeling at the regional aquifer scale and at the sub-regional scale using the inverted permeabilities is presented to corroborate the results of the flow model. The results from the flow model show good agreement with simulated and observed water levels almost always within 1 meter. Simulated velocities show generally good agreement with some discrepancies in an interpreted low
International Nuclear Information System (INIS)
Thorne, P.D.; Chamness, M.A.; Spane, F.A. Jr.; Vermeul, V.R.; Webber, W.D.
1993-12-01
The ground water underlying parts of the Hanford Site (Figure 1.1) contains radioactive and chemical contaminants at concentrations exceeding regulatory standards (Dresel et al. 1993). The Hanford Site Ground-Water Surveillance Project, operated by Pacific Northwest Laboratory (PNL), is responsible for monitoring the movement of these contaminants to ensure that public health and the environment are protected. To support the monitoring effort, a sitewide three-dimensional ground-water flow model is being developed. This report provides an update on the status of the conceptual model that will form the basis for constructing a numerical three-dimensional flow model for, the site. Thorne and Chamness (1992) provide additional information on the initial development of the three-dimensional conceptual model
Energy Technology Data Exchange (ETDEWEB)
Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.
Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor.
Pang, Tianting; Wang, Yan; Yang, Hui; Wang, Tianlei; Cai, Wangfeng
2018-04-21
A dynamic model of semi-batch three-dimensional electrode reactor was established based on the limiting current density, Faraday's law, mass balance and a series of assumptions. Semi-batch experiments of phenol degradation were carried out in a three-dimensional electrode reactor packed with activated carbon under different conditions to verify the model. The factors such as the current density, the electrolyte concentration, the initial pH value, the flow rate of organic and the initial organic concentration were examined to know about the pollutant degradation in the three-dimensional electrode reactor. The various concentrations and logarithm of concentration of phenol with time were compared with the dynamic model. It was shown that the calculated data were in good agreement with experimental data in most cases. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three-Dimensional Computer-Assisted Two-Layer Elastic Models of the Face.
Ueda, Koichi; Shigemura, Yuka; Otsuki, Yuki; Fuse, Asuka; Mitsuno, Daisuke
2017-11-01
To make three-dimensional computer-assisted elastic models for the face, we decided on five requirements: (1) an elastic texture like skin and subcutaneous tissue; (2) the ability to take pen marking for incisions; (3) the ability to be cut with a surgical knife; (4) the ability to keep stitches in place for a long time; and (5) a layered structure. After testing many elastic solvents, we have made realistic three-dimensional computer-assisted two-layer elastic models of the face and cleft lip from the computed tomographic and magnetic resonance imaging stereolithographic data. The surface layer is made of polyurethane and the inner layer is silicone. Using this elastic model, we taught residents and young doctors how to make several typical local flaps and to perform cheiloplasty. They could experience realistic simulated surgery and understand three-dimensional movement of the flaps.
International Nuclear Information System (INIS)
Gupta, S.K.; Cole, C.R.; Bond, F.W.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow
Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters
Bischi, G. I.; Tramontana, F.
2010-10-01
We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.
Three dimensional force prediction in a model linear brushless dc motor
Energy Technology Data Exchange (ETDEWEB)
Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)
1994-11-01
Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.
Ground-water solute transport modeling using a three-dimensional scaled model
International Nuclear Information System (INIS)
Crider, S.S.
1987-01-01
Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport
DEFF Research Database (Denmark)
Khan, Mohammad Rezwan; Kær, Søren Knudsen
2016-01-01
A three-dimensional multiphysics-based thermal model of a battery pack is presented. The model is intended to demonstrate the cooling mechanism inside the battery pack. Heat transfer (HT) and computational fluid dynamics (CFD) physics are coupled for both time-dependent and steady-state simulatio...
DEFF Research Database (Denmark)
Røge, Mads Sønderstrup; Andersen, Thomas Lykke
The present report presents results from a three-dimensional model test study carried out at Aalborg University in the period June 2015 – August 2015. The objectives of the model tests were to study the stability of the Xbloc armoured breakwaters at Punta Catalina under short-crested wave attack...
Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space
International Nuclear Information System (INIS)
William S. Winters
2002-01-01
This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied
Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection
International Nuclear Information System (INIS)
Hesse, Michael; Kuznetsova, Masha; Schindler, Karl; Birn, Joachim
2005-01-01
A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field
A three-dimensional breakdown model of SOI lateral power transistors with a circular layout
International Nuclear Information System (INIS)
Guo Yufeng; Wang Zhigong; Sheu Gene
2009-01-01
This paper presents an analytical three-dimensional breakdown model of SOI lateral power devices with a circular layout. The Poisson equation is solved in cylindrical coordinates to obtain the radial surface potential and electric field distributions for both fully- and partially-depleted drift regions. The breakdown voltages for N + N and P + N junctions are derived and employed to investigate the impact of cathode region curvature. A modified RESURF criterion is proposed to provide a design guideline for optimizing the breakdown voltage and doping concentration in the drift region in three dimensional space. The analytical results agree well with MEDICI simulation results and experimental data from earlier publications. (semiconductor devices)
International Nuclear Information System (INIS)
Knyazikhin, Yu.; Kranigk, J.; Miessen, G.; Panfyorov, O.; Vygodskaya, N.; Gravenhorst, G.
1996-01-01
Solar irradiance is a major environmental factor governing biological and physiological processes in a vegetation canopy. Solar radiation distribution in a canopy and its effect are three-dimensional in nature. However, most of the radiation models up to now have been one-dimensional. They can be successfully applied to large-scale studies of forest functioning. The one-dimensional modelling technique, however, does not provide adequate interpretation of small scale processes leading to forest growth. In this article we discuss a modelling strategy for the simulation of three-dimensional radiation distribution in a vegetation canopy of a small area (about 0.25–0.3 ha). We demonstrate its realisation to predict the three-dimensional radiative regime of phytosynthetically active radiation in a real coniferous stand located on hilly surroundings. Our model can be used to investigate the influence of different climatic conditions, forest management methods and field sites on the solar energy available for forest growth in small heterogeneous areas. Further, a three-dimensional process-oriented model helps to derive global variables affecting bio-physiological processes in a vegetation canopy shifting from small scale studies of the functioning of forests to regional, continental, and global scale problems. (author)
The Two- and Three-Dimensional Models of the HK-WISC: A Confirmatory Factor Analysis.
Chan, David W.; Lin, Wen-Ying
1996-01-01
Confirmatory analyses on the Hong Kong Wechsler Intelligence Scale for Children (HK-WISC) provided support for composite score interpretation based on the two- and three-dimensional models across age levels. Test sample was comprised of 1,100 children, ranging in age from 5 to 15 years at all 11 age levels specified by the HK-WISC. (KW)
Recurrence relations and time evolution in the three-dimensional Sawada model
International Nuclear Information System (INIS)
Lee, M.H.; Hong, J.
1984-01-01
Time-dependent behavior of the three-dimensional Sawada model is obtained by a method of recurrence relations. Exactly calculated quantities are the time evolution of the density-fluctuation operator and its random force. As an application, their linear coefficients, the relaxation and memory functions are used to obtain certain dynamic quantities, e.g., the mobility
Articular contact in a three-dimensional model of the knee
Blankevoort, L.; Kuiper, J. H.; Huiskes, R.; Grootenboer, H. J.
1991-01-01
This study is aimed at the analysis of articular contact in a three-dimensional mathematical model of the human knee-joint. In particular the effect of articular contact on the passive motion characteristics is assessed in relation to experimentally obtained joint kinematics. Two basically different
Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study
Digital Repository Service at National Institute of Oceanography (India)
Vijith, V.; Shetye, S.R.; Baetens, K.; Luyten, P.; Michael, G.S.
-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We...
Exact quantum cross sections for a three dimensional angle dependent model for three body reactions.
Baer, M.; Kouri, D. J.
1971-01-01
Exact quantum mechanical reactive cross sections are reported for a three dimensional angle dependent model surface. The surface simulates an atom-heteronuclear diatom system A + BC leading to AB + C where atom B is much heavier than A or C. The molecules BC and AB are taken to be rotating vibrators which can dissociate. Results for two angle dependent potentials are given.
On two-dimensionalization of three-dimensional turbulence in shell models
DEFF Research Database (Denmark)
Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.
2010-01-01
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....
Fusing range and intensity images for generating dense models of three-dimensional environments
DEFF Research Database (Denmark)
Ellekilde, Lars-Peter; Miró, Jaime Valls; Dissanayake., Gamini
This paper presents a novel strategy for the construction of dense three-dimensional environment models by combining images from a conventional camera and a range imager. Ro- bust data association is ?rst accomplished by exploiting the Scale Invariant Feature Transformation (SIFT) technique...
Magnetic properties of the three-dimensional Ising model with an interface amorphization
International Nuclear Information System (INIS)
Benyoussef, A.; El Kenz, A.; Saber, M.
1993-09-01
A three-dimensional ferromagnetic Ising model with an interface amorphization is investigated with the use of the effective field theory. Phase diagrams and reduced magnetization curves of interface and bulks are studied. We obtain a number of characteristic behaviour such as the possibility of the reentrant phenomena and a large depression of interface magnetization. (author). 21 refs, 5 figs
Bakker, Mark
2001-05-01
An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.
Three-dimensional dose-response models of risk for radiation injury carcinogenesis
International Nuclear Information System (INIS)
Raabe, O.G.
1988-01-01
The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies
Hamabe, A; Ito, M
2017-05-01
To help understand the three-dimensional (3D) spatial relationships among the highly complex structures of the pelvis, we made a novel 3D pelvic model with a 3D printing system. We created two pelvic models including the muscles, vessels, nerves, and urogenital organs; the first based on the pelvic anatomy of a healthy male volunteer and the second on the pelvic anatomy of a female volunteer with rectal cancer. The models clearly demonstrated the complicated spatial relationships between anatomical structures in the pelvis. Surgeons could use these models to improve their spatial understanding of pelvic anatomy, which could consequently improve the safety and efficiency of laparoscopic rectal cancer surgery.
Development of a three dimensional circulation model based on fractional step method
Directory of Open Access Journals (Sweden)
Mazen Abualtayef
2010-03-01
Full Text Available A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.
Mizutani, Hiroya; Ono, Satoshi; Ushiku, Tetsuo; Kudo, Yotaro; Ikemura, Masako; Kageyama, Natsuko; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Someya, Takao; Fukayama, Masashi; Koike, Kazuhiko; Onodera, Hiroshi
2018-02-01
Although high-resolution three-dimensional imaging of endoscopically resected gastrointestinal specimens can help elucidating morphological features of gastrointestinal mucosa or tumor, there are no established methods to achieve this without breaking specimens apart. We evaluated the utility of transparency-enhancing technology for three-dimensional assessment of gastrointestinal mucosa in porcine models. Esophagus, stomach, and colon mucosa samples obtained from a sacrificed swine were formalin-fixed and paraffin-embedded, and subsequently deparaffinized for analysis. The samples were fluorescently stained, optically cleared using transparency-enhancing technology: ilLUmination of Cleared organs to IDentify target molecules method (LUCID), and visualized using laser scanning microscopy. After observation, all specimens were paraffin-embedded again and evaluated by conventional histopathological assessment to measure the impact of transparency-enhancing procedures. As a result, microscopic observation revealed horizontal section views of mucosa at deeper levels and enabled the three-dimensional image reconstruction of glandular and vascular structures. Besides, paraffin-embedded specimens after transparency-enhancing procedures were all assessed appropriately by conventional histopathological staining. These results suggest that transparency-enhancing technology may be feasible for clinical application and enable the three-dimensional structural analysis of endoscopic resected specimen non-destructively. Although there remain many limitations or problems to be solved, this promising technology might represent a novel histopathological method for evaluating gastrointestinal cancers. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
DEFF Research Database (Denmark)
Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.
2018-01-01
A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...
Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides
International Nuclear Information System (INIS)
Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.
1980-02-01
This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution
Evidence Meshes for Three-Dimensional Modeling, Visualization, and Navigation, Phase I
National Aeronautics and Space Administration — As robots are tasked with ever more complex missions, they demand more sophisticated models of the environments in which they must work. Rough-terrain mobility, site...
Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q
2017-06-06
Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.
Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang
In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.
A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System
Directory of Open Access Journals (Sweden)
Ralph Bucher
2002-01-01
Full Text Available This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a cell and the signal time of arrival (TOA from the mobile to each station. The detailed derivation of the steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C + + program using real numbers was used as a benchmark for the accuracy and precision of the VHDL model. The model can be easily synthesized for low power hardware implementation.
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
Directory of Open Access Journals (Sweden)
Changsheng Zhu
2018-03-01
Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
A computational model for three-dimensional jointed media with a single joint set
International Nuclear Information System (INIS)
Koteras, J.R.
1994-02-01
This report describes a three-dimensional model for jointed rock or other media with a single set of joints. The joint set consists of evenly spaced joint planes. The normal joint response is nonlinear elastic and is based on a rational polynomial. Joint shear stress is treated as being linear elastic in the shear stress versus slip displacement before attaining a critical stress level governed by a Mohr-Coulomb faction criterion. The three-dimensional model represents an extension of a two-dimensional, multi-joint model that has been in use for several years. Although most of the concepts in the two-dimensional model translate in a straightforward manner to three dimensions, the concept of slip on the joint planes becomes more complex in three dimensions. While slip in two dimensions can be treated as a scalar quantity, it must be treated as a vector in the joint plane in three dimensions. For the three-dimensional model proposed here, the slip direction is assumed to be the direction of maximum principal strain in the joint plane. Five test problems are presented to verify the correctness of the computational implementation of the model
Application of data mining in three-dimensional space time reactor model
International Nuclear Information System (INIS)
Jiang Botao; Zhao Fuyu
2011-01-01
A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial
Fast three-dimensional core optimization based on modified one-group model
Energy Technology Data Exchange (ETDEWEB)
Freire, Fernando S. [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Dept. GCN-T], e-mail: freire@eletronuclear.gov.br; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: aquilino@con.ufrj.br, e-mail: fernando@con.ufrj.br
2009-07-01
The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)
Fast three-dimensional core optimization based on modified one-group model
International Nuclear Information System (INIS)
Freire, Fernando S.; Martinez, Aquilino S.; Silva, Fernando C. da
2009-01-01
The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)
Three-dimensional modelling of a dc non-transferred arc plasma torch
International Nuclear Information System (INIS)
Li Heping; Chen Xi
2001-01-01
Three-dimensional (3D) modelling results are presented concerning a direct current (dc) non-transferred arc plasma torch with axisymmetrical geometrical configuration and axisymmetrical boundary conditions. It is shown that the arc is locally attached at the anode surface of the plasma torch, and the heat transfer and plasma flow within the torch are of 3D features. The predicted arc root location at the anode surface and arc voltage of the torch are very consistent with corresponding experimental results. (author)
Tyszka, J M
1997-01-01
Three-dimensional models can be generated from slice images, such as those obtained from computed tomography (CT) and magnetic resonance imaging (MRI) using a variety of techniques. A popular method for rendering 3D anatomical models is the creation of polygonal mesh surfaces representing the boundary between tissues. Mesh surfaces can be rendered extremely quickly using conventional personal computers, without recourse to more expensive graphic workstations. The dissemination of three-dimensional (3D) models across the Internet has been made significantly easier by the definition of the Virtual Reality Markup Language (VRML) format. The VRML definition allows the parameters and relationships of 3D objects to be described in a text format. The text file can be transfered from a host computer to a remote client computer through the World Wide Web and viewed using readily available software (See Appendix). VRML is based on the definition of primitive 3D objects such as polygons and spheres. Consequently, the transition from a mesh surface derived from a clinical image data set to a VRML object is relatively simple, allowing for convenient and cost-effective dissemination of 3D clinical models across the internet.
Directory of Open Access Journals (Sweden)
Aditya Dev
2013-06-01
Full Text Available The Shikimate pathway is an attractive target for herbicides and antimicrobial agents because it is essential in microbes and plants but absent in animals. The 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS is the first enzyme of this pathway, which is involved in the condensation of phosphoenolpyruvate (PEP and D-erythrose 4-phosphate (E4P to produce 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP. DAHPS enzymes have been divided into two types, class I and class II, based on their primary amino acid sequence and three dimensional structures. The plant DAHPS belongs to class II and is regulated differently than DAHPS from microorganisms. To understand the structural basis of such differences in DAHPS from plants and its catalytic mechanism, we have used sequence analysis, homology modeling and docking approach to generate the three dimensional models of DAHP synthase from Brachypodium distachyon (Bd-DAHPS complexed with substrate PEP for the first time. The three dimensional models of Bd-DAHPS provides a detailed knowledge of the active site and the important secondary structural regions that play significant roles in the regulatory mechanism and further may be helpful for design of specific inhibitors towards herbicide development.
Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind
Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.
2009-06-01
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Pseudo three-dimensional modeling of particle-fuel packing using distinct element method
International Nuclear Information System (INIS)
Yuki, Daisuke; Takata, Takashi; Yamaguchi, Akira
2007-01-01
Vibration-based packing of sphere-pac fuel is a key technology in a nuclear fuel manufacturing. In the production process of sphere-pac fuel, a Mixed Oxide (MOX) fuel is formed to spherical form and is packed in a cladding tube by adding a vibration force. In the present study, we have developed a numerical simulation method to investigate the behavior of the particles in a vibrated tube using the Distinct Element Method (DEM). In general, the DEM requires a significant computational cost. Therefore we propose a new approach in which a small particle can move through the space between three larger particles even in the two-dimensional simulation. We take into account an equivalent three-dimensional effect in the equations of motion. Thus it is named pseudo three-dimensional modeling. (author)
Three dimensional global modeling of atmospheric CO2. Final technical report
International Nuclear Information System (INIS)
Fung, I.; Hansen, J.; Rind, D.
1983-01-01
A modeling effort has been initiated to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO 2 variations. The approach uses a three-dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO 2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO 2 at the surface. This report identifies the 3-D model employed in this study and discusses biosphere, ocean and fossil fuel sources and sinks. Some preliminary model results are presented. 14 figures
Comparison of three-dimensional ocean general circulation models on a benchmark problem
International Nuclear Information System (INIS)
Chartier, M.
1990-12-01
A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method
A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell
Wei, Lin; Yuan, Xianxia; Jiang, Fangming
2018-05-01
In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.
Integration of a Three-Dimensional Process-Based Hydrological Model into the Object Modeling System
Directory of Open Access Journals (Sweden)
Giuseppe Formetta
2016-01-01
Full Text Available The integration of a spatial process model into an environmental modeling framework can enhance the model’s capabilities. This paper describes a general methodology for integrating environmental models into the Object Modeling System (OMS regardless of the model’s complexity, the programming language, and the operating system used. We present the integration of the GEOtop model into the OMS version 3.0 and illustrate its application in a small watershed. OMS is an environmental modeling framework that facilitates model development, calibration, evaluation, and maintenance. It provides innovative techniques in software design such as multithreading, implicit parallelism, calibration and sensitivity analysis algorithms, and cloud-services. GEOtop is a physically based, spatially distributed rainfall-runoff model that performs three-dimensional finite volume calculations of water and energy budgets. Executing GEOtop as an OMS model component allows it to: (1 interact directly with the open-source geographical information system (GIS uDig-JGrass to access geo-processing, visualization, and other modeling components; and (2 use OMS components for automatic calibration, sensitivity analysis, or meteorological data interpolation. A case study of the model in a semi-arid agricultural catchment is presented for illustration and proof-of-concept. Simulated soil water content and soil temperature results are compared with measured data, and model performance is evaluated using goodness-of-fit indices. This study serves as a template for future integration of process models into OMS.
A three-dimensional meso-scale modeling for helium bubble growth in metals
International Nuclear Information System (INIS)
Suzudo, T.; Kaburaki, H.; Wakai, E.
2007-01-01
A three-dimensional meso-scale computer model using a Monte-Carlo simulation method has been proposed to simulate the helium bubble growth in metals. The primary merit of this model is that it enables the visual comparison between the microstructure observed by the TEM imaging and those by calculations. The modeling is so simple that one can control easily the calculation by tuning parameters. The simulation results are confirmed by the ideal gas law and the capillary relation. helium bubble growth, meso-scale modeling, Monte-Carlo simulation, the ideal gas law and the capillary relation. (authors)
Evans, Conor
2015-03-01
Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.
Three-dimensional dose-response models of competing risks and natural life span
International Nuclear Information System (INIS)
Raabe, O.G.
1987-01-01
Three-dimensional dose-rate/time/response surfaces for chronic exposure to carcinogens, toxicants, and ionizing radiation dramatically clarify the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. An illustration with computer graphics shows the contributions with the passage of time of the competing risks of death from radiation pneumonitis/fibrosis, lung cancer, and natural aging consequent to the inhalation of plutonium-239 dioxide by beagles. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each fatal effect. Radiation pneumonitis predominates at high dose rates and lung cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for lung cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to the planning and evaluation of epidemiological analyses and experimental studies involving chronic exposure to toxicants
SMEs and new ventures need business model sophistication
DEFF Research Database (Denmark)
Kesting, Peter; Günzel-Jensen, Franziska
2015-01-01
, and Spreadshirt, this article develops a framework that introduces five business model sophistication strategies: (1) uncover additional functions of your product, (2) identify strategic benefits for third parties, (3) take advantage of economies of scope, (4) utilize cross-selling opportunities, and (5) involve...
A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.
Charny, C K; Levin, R L
1991-10-01
Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.
Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya
2014-01-01
Thoracoscopic pulmonary segmentectomy of the lung is sometime adopted for the lung cancer, but a problem with segmentectomy is variable anatomy. Recently, we are exploring the impact of three-dimensional models using rapid-prototyping technique. It is useful for decision making, surgical planning, and intraoperative orientation for surgical treatment in patient with lung cancer who underwent pulmonary segmentectomy. These newly created models allow us to clearly identify the surgical margin and the intersegmental plane, vessels, and bronchi related to the cancer in the posterior segment. To the best of our knowledge, there are few reports describing a pulmonary model so far.
A three-dimensional phase space dynamical model of the Earth's radiation belt
International Nuclear Information System (INIS)
Boscher, D. M.; Beutier, T.; Bourdarie, S.
1996-01-01
A three dimensional phase space model of the Earth's radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained
Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A
2011-10-01
Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.
Development of a three-dimensional local scale atmospheric model with turbulence closure model
International Nuclear Information System (INIS)
Yamazawa, Hiromi
1989-05-01
Through the study to improve SPEEDI's capability, a three-dimensional numerical atmospheric model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) was developed to apply it to the transport and diffusion evaluation over complex terrains. The detailed description of the atmospheric model was given. This model consists of five prognostic equations; the momentum equations of horizontal components with the so-called Boussinesq and hydrostatic assumptions, the conservation equations of heat, turbulence kinetic energy and turbulence length scale. The coordinate system used is the terrain following z * coordinate system which allows the existence of complex terrain. The minute formula of the turbulence closure calculation, the surface layer process, the ground surface heat budget, and the atmospheric and solar radiation were also presented. The time integration method used in this model is the Alternating Direction Implicit (A.D.I.) method with a vertically and horizontally staggered grid system. The memory storage needed to execute this model with 31 x 31 x 16 grid points, five layers in soil and double precision variables is about 5.3 MBytes. The CPU time is about 2.2 x 10 -5 s per one step per one grid point with a vector processor FACOM VP-100. (author)
Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries
DEFF Research Database (Denmark)
Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik
2017-01-01
Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...
DEFF Research Database (Denmark)
Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund
2014-01-01
Ni-3YSZ in the operating temperature through numerical micromechanical modeling. Three-dimensional microstructures of Ni-3YSZ anode supports are reconstructed from a two-dimensional image stack obtained via focused ion beam tomography. Time-dependent stress distributions in the microscopic scale...... are computed by the finite element method. The macroscopic creep response of the porous anode support is determined based on homogenization theory. It is shown that micromechanical modeling provides an effective tool to study the effect of microstructures on the macroscopic properties....
Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects
Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)
1999-01-01
The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix
THREE DIMENSIONAL MODELING VIA PHOTOGRAPHS FOR DOCUMENTATION OF A VILLAGE BATH
Directory of Open Access Journals (Sweden)
H. B. Balta
2013-07-01
Full Text Available The aim of this study is supporting the conceptual discussions of architectural restoration with three dimensional modeling of monuments based on photogrammetric survey. In this study, a 16th century village bath in Ulamış, Seferihisar, and Izmir is modeled for documentation. Ulamış is one of the historical villages within which Turkish population first settled in the region of Seferihisar – Urla. The methodology was tested on an antique monument; a bath with a cubical form. Within the limits of this study, only the exterior of the bath was modeled. The presentation scale for the bath was determined as 1 / 50, considering the necessities of designing structural interventions and architectural ones within the scope of a restoration project. The three dimensional model produced is a realistic document presenting the present situation of the ruin. Traditional plan, elevation and perspective drawings may be produced from the model, in addition to the realistic textured renderings and wireframe representations. The model developed in this study provides opportunity for presenting photorealistic details of historical morphologies in scale. Compared to conventional drawings, the renders based on the 3d models provide an opportunity for conceiving architectural details such as color, material and texture. From these documents, relatively more detailed restitution hypothesis can be developed and intervention decisions can be taken. Finally, the principles derived from the case study can be used for 3d documentation of historical structures with irregular surfaces.
On the use of effective stress in three-dimensional hydro-mechanical coupled model
International Nuclear Information System (INIS)
Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.
2014-01-01
In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)
Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.
Jones, Daniel B; Sung, Robert; Weinberg, Crispin; Korelitz, Theodore; Andrews, Robert
2016-04-01
Three-dimensional (3D) printing has been used in the manufacturing industry for rapid prototyping and product testing. The aim of our study was to assess the feasibility of creating anatomical 3D models from a digital image using 3D printers. Furthermore, we sought face validity of models and explored potential opportunities for using 3D printing to enhance surgical education and clinical practice. Computed tomography and magnetic resonance images were reviewed, converted to computer models, and printed by stereolithography to create near exact replicas of human organs. Medical students and surgeons provided feedback via survey at the 2014 Surgical Education Week conference. There were 51 respondents, and 95.8% wanted these models for their patients. Cost was a concern, but 82.6% found value in these models at a price less than $500. All respondents thought the models would be useful for integration into the medical school curriculum. Three-dimensional printing is a potentially disruptive technology to improve both surgical education and clinical practice. As the technology matures and cost decreases, we envision 3D models being increasingly used in surgery. © The Author(s) 2015.
Three-dimensional two-phase mass transport model for direct methanol fuel cells
International Nuclear Information System (INIS)
Yang, W.W.; Zhao, T.S.; Xu, C.
2007-01-01
A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance
Liu, Jianjun; Song, Rui; Cui, Mengmeng
2014-01-01
A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384
Experiment and modeling of paired effect on evacuation from a three-dimensional space
Energy Technology Data Exchange (ETDEWEB)
Jun, Hu [MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China); Huijun, Sun, E-mail: hjsun1@bjtu.edu.cn [MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); Juan, Wei [Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China); Xiaodan, Chen [College of Information Science and Technology, Chengdu University, Chengdu 610106 (China); Lei, You [Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China); College of Information Science and Technology, Chengdu University, Chengdu 610106 (China); Musong, Gu [Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China)
2014-10-24
A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation. - Highlights: • A novel three-dimensional evacuation model was presented with stair factor. • The paired effect and variety velocities were considered in evacuation model. • The cellular automata model is improved by repulsive force.
Three dimensional modeling of laterally loaded pile groups resting in sand
Directory of Open Access Journals (Sweden)
Amr Farouk Elhakim
2016-04-01
Full Text Available Many structures often carry lateral loads due to earth pressure, wind, earthquakes, wave action and ship impact. The accurate predictions of the load–displacement response of the pile group as well as the straining actions are needed for a safe and economic design. Most research focused on the behavior of laterally loaded single piles though piles are most frequently used in groups. Soil is modeled as an elastic-perfectly plastic model using the Mohr–Coulomb constitutive model. The three-dimensional Plaxis model is validated using load–displacement results from centrifuge tests of laterally loaded piles embedded in sand. This study utilizes three dimensional finite element modeling to better understand the main parameters that affect the response of laterally loaded pile groups (2 × 2 and 3 × 3 pile configurations including sand relative density, pile spacing (s = 2.5 D, 5 D and 8 D and pile location within the group. The fixity of the pile head affects its load–displacement under lateral loading. Typically, the pile head may be unrestrained (free head as the pile head is allowed to rotate, or restrained (fixed head condition where no pile head rotation is permitted. The analyses were performed for both free and fixed head conditions.
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
Experiment and modeling of paired effect on evacuation from a three-dimensional space
International Nuclear Information System (INIS)
Jun, Hu; Huijun, Sun; Juan, Wei; Xiaodan, Chen; Lei, You; Musong, Gu
2014-01-01
A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation. - Highlights: • A novel three-dimensional evacuation model was presented with stair factor. • The paired effect and variety velocities were considered in evacuation model. • The cellular automata model is improved by repulsive force
A coupled three dimensional model of vanadium redox flow battery for flow field designs
International Nuclear Information System (INIS)
Yin, Cong; Gao, Yan; Guo, Shaoyun; Tang, Hao
2014-01-01
A 3D (three-dimensional) model of VRB (vanadium redox flow battery) with interdigitated flow channel design is proposed. Two different stack inlet designs, single-inlet and multi-inlet, are structured in the model to study the distributions of fluid pressure, electric potential, current density and overpotential during operation of VRB cell. Electrolyte flow rate and stack channel dimension are proved to be the critical factors affecting flow distribution and cell performance. The model developed in this paper can be employed to optimize both VRB stack design and system operation conditions. Further improvements of the model concerning current density and electrode properties are also suggested in the paper. - Highlights: • A coupled three-dimensional model of vanadium redox flow cell is proposed. • Interdigitated flow channels with two different manifold designs are simulated. • Manifold structure affects uniformity of distribution patterns significantly. • Increased electrolyte flow rate improves cell performance for both designs. • Decreased channel size and enlarged land width enhance cell voltage
Model - including thermal creep effects - for the analysis of three-dimensional concrete structures
International Nuclear Information System (INIS)
Rodriguez, C.; Rebora, B.; Favrod, J.D.
1979-01-01
This article presents the most recent developments and results of research carried out by IPEN to establish a mathematical model for the non-linear rheological three-dimensional analysis of massive prestressed concrete structures. The main point of these latest developments is the simulation of the creep of concrete submitted to high temperatures over a long period of time. This research, financed by the Swiss National Science Foundation, has taken an increased importance with the advent of nuclear reactor vessels of the HHT type and new conceptions concerning the cooling of their concrete (replacement of the thermal insulation by a zone of hot concrete). (orig.)
A new method for three-dimensional laparoscopic ultrasound model reconstruction
DEFF Research Database (Denmark)
Fristrup, C W; Pless, T; Durup, J
2004-01-01
BACKGROUND: Laparoscopic ultrasound is an important modality in the staging of gastrointestinal tumors. Correct staging depends on good spatial understanding of the regional tumor infiltration. Three-dimensional (3D) models may facilitate the evaluation of tumor infiltration. The aim of the study...... accuracy of the new method was tested ex vivo, and the clinical feasibility was tested on a small series of patients. RESULTS: Both electromagnetic tracked reconstructions and the new 3D method gave good volumetric information with no significant difference. Clinical use of the new 3D method showed...
Optical asymmetric cryptography using a three-dimensional space-based model
International Nuclear Information System (INIS)
Chen, Wen; Chen, Xudong
2011-01-01
In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method
International Nuclear Information System (INIS)
Krafft, G.A.; Mark, J.W.K.; Wang, T.S.F.
1983-01-01
In an earlier paper, closed hydrodynamic equations were derived with possible application to the simulation of beam plasmas relevant to designs of heavy ion accelerators for inertial confinement fusion energy applications. The closure equations involved a novel feature of anisotropic stresses even transverse to the beam. A related hydrodynamic model is used in this paper to examine further the boundaries of validity of such hydrodynamic approximations. It is also proposed as a useful tool to provide an economic means for searching the large parameter space relevant to three-dimensional stability problems involving coupling of longitudinal and transverse motions in the presence of wall impedance
Directory of Open Access Journals (Sweden)
Canio Hoffarth
2017-03-01
Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.
Electronic transport on the spatial structure of the protein: Three-dimensional lattice model
International Nuclear Information System (INIS)
Sarmento, R.G.; Frazão, N.F.; Macedo-Filho, A.
2017-01-01
Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.
Three-dimensional flow structure measurements behind a queue of studied model vehicles
International Nuclear Information System (INIS)
Huang, J.F.; Chan, T.L.; Zhou, Y.
2009-01-01
The three-dimensional flow structures of a queue of studied model vehicles (i.e., one-, two- and three-vehicle cases) were investigated comprehensively in a closed-circuit wind tunnel using particle image velocimetry (PIV) for the typical urban vehicle speeds (i.e., 10, 30 and 50 km/h). In this three-dimensional vehicle wake, a pair of longitudinal vortices is characterized by counter-rotating and moving downstream at relatively low velocity than their surrounding flow. The flow structures of multiple studied model vehicles are dominated by the wake generated from the last studied model vehicle but the preceding studied model vehicle(s) also has/have some minor effects. Cross-sectional turbulence distribution is non-uniform in the far-wake region for all studied cases. The lowest turbulence occurs at the center part of the vehicle wake while high turbulence occurs at its two sides. As such, it may lead to considerable underestimation in turbulence magnitude if the measurement is only taken along the centerline of the vehicle wake.
THREE-DIMENSIONAL GEOFILTRATIONAL MODEL OF THE ROGUN HYDRO POWER PLANT CONSTRUCTION SITE
Directory of Open Access Journals (Sweden)
Khokhotva Sergey Nikolaevich
2017-05-01
Full Text Available The article deals with technique of creation and results of calculations of the three-dimensional geofiltrational model of the Rogun HPP construction site. When performing works on creation of the Rogun HPP three-dimensional geofiltration model, geological and hydrogeological conditions of the Rogun HPP construction site were analyzed. They showed that the construction site consists mostly of fractured rocks of various weathering degrees. In terms of preservation, four preservation zones were identified in the rock mass. These zones define the features of hydrogeological conditions that have emerged in the area of construction. Calculation results illustrated the absence of seepage areas on the lower slope of dam; this is the indication of normal operation of the dam impervious circuit. The drainage system of the underground hydropower plant has a high efficiency. Operation of the drainage galleries complex leads to a significant reduction of piezometric pressure on roofs of the machine and transformer halls. Above the underground structures a completely drained area is formed. Completed forecast calculations on geofiltration model of the Rogun hydropower plant determine the hydrostatic pressure and piezometric pressure at any point of the modeled area. These data can be used as loads while designing of lining of underground workings.
Electronic transport on the spatial structure of the protein: Three-dimensional lattice model
Energy Technology Data Exchange (ETDEWEB)
Sarmento, R.G. [Departamento de Ciências Biológicas, Universidade Federal do Piauí, 64800-000 Floriano, PI (Brazil); Frazão, N.F. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, 581750-000 Cuité, PB (Brazil); Macedo-Filho, A., E-mail: amfilho@gmail.com [Campus Prof. Antonio Geovanne Alves de Sousa, Universidade Estadual do Piauí, 64260-000 Piripiri, PI (Brazil)
2017-01-30
Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.
Directory of Open Access Journals (Sweden)
Michele eMigliore
2014-04-01
Full Text Available The functional consequences of the laminar organization observed in cortical systems cannot be easily studied using standard experimental techniques, abstract theoretical representations, or dimensionally reduced models built from scratch. To solve this problem we have developed a full implementation of an olfactory bulb microcircuit using realistic three-dimensional inputs, cell morphologies, and network connectivity. The results provide new insights into the relations between the functional properties of individual cells and the networks in which they are embedded. To our knowledge, this is the first model of the mitral-granule cell network to include a realistic representation of the experimentally-recorded complex spatial patterns elicited in the glomerular layer by natural odor stimulation. Although the olfactory bulb, due to its organization, has unique advantages with respect to other brain systems, the method is completely general, and can be integrated with more general approaches to other systems. The model makes experimentally testable predictions on distributed processing and on the differential backpropagation of somatic action potentials in each lateral dendrite following odor learning, providing a powerful three-dimensional framework for investigating the functions of brain microcircuits.
A preliminary three-dimensional geological framework model for Yucca Mountain
International Nuclear Information System (INIS)
Stirewalt, G.L.; Henderson, D.B.
1995-01-01
A preliminary three-dimensional geological framework model has been developed for the potential high-level radioactive waste disposal site at Yucca Mountain. The model is based on field data and was constructed using EarthVision (Version 2.0) software. It provides the basic geological framework in which variations in geological parameters and features in and adjacent to the repository block can be illustrated and analyzed. With further refinement and modification of the model through incorporation of additional data, it can be used by Nuclear Regulatory Commission (NRC) staff to determine whether representation of subsurface geological features in Department of Energy models is reasonable. Consequently, NRC staff will be able to use the model during pre-licensing and licensing phases to assess models for analyses of site suitability, design considerations, and repository performance
Comparison of three-dimensional parameters of Halo CMEs using three cone models
Na, H.; Moon, Y.; Jang, S.; Lee, K.
2012-12-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.
A three-dimensional model of PEM fuel cells with serpentine flow channels
International Nuclear Information System (INIS)
Nguyen, P.T.; Berning, T.; Bang, M.; Djilali, N.
2003-01-01
A three-dimensional computational model of PEM fuel cell with serpentine flow field channels is presented in this paper. This model presents a comprehensive account for all important transport phenomena in fuel cell such as heat transfer, mass transfer, electrode kinetics, and potential fields in the membrane and gas diffusion layers. A new approach of solving for the potential losses across the cell was also developed in this model. The dependency of local current density on oxygen concentration and activation overpotential is fully addressed in this model. The computational domain consists of serpentine gas flow channels, porous gas diffusion layers, catalyst layers, and a membrane. Results obtained from this model are in good agreement with experimental results. (author)
Three-Dimensional Assembly Tolerance Analysis Based on the Jacobian-Torsor Statistical Model
Directory of Open Access Journals (Sweden)
Peng Heping
2017-01-01
Full Text Available The unified Jacobian-Torsor model has been developed for deterministic (worst case tolerance analysis. This paper presents a comprehensive model for performing statistical tolerance analysis by integrating the unified Jacobian-Torsor model and Monte Carlo simulation. In this model, an assembly is sub-divided into surfaces, the Small Displacements Torsor (SDT parameters are used to express the relative position between any two surfaces of the assembly. Then, 3D dimension-chain can be created by using a surface graph of the assembly and the unified Jacobian-Torsor model is developed based on the effect of each functional element on the whole functional requirements of products. Finally, Monte Carlo simulation is implemented for the statistical tolerance analysis. A numerical example is given to demonstrate the capability of the proposed method in handling three-dimensional assembly tolerance analysis.
Computer-aided-design-model-assisted absolute three-dimensional shape measurement.
Li, Beiwen; Bell, Tyler; Zhang, Song
2017-08-20
Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.
Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada
International Nuclear Information System (INIS)
Rautman, C.A.; McKenna, S.A.
1997-11-01
This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area
FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS
International Nuclear Information System (INIS)
Isavnin, A.
2016-01-01
We present a novel three-dimensional (3D) model of coronal mass ejections (CMEs) that unifies all key evolutionary aspects of CMEs and encapsulates their 3D magnetic field configuration. This fully analytic model is capable of reproducing the global geometrical shape of a CME with all major deformations taken into account, i.e., deflection, rotation, expansion, “pancaking,” front flattening, and rotational skew. Encapsulation of 3D magnetic structure allows the model to reproduce in-situ measurements of magnetic field for trajectories of spacecraft-CME encounters of any degree of complexity. As such, the model can be used single-handedly for the consistent analysis of both remote and in-situ observations of CMEs at any heliocentric distance. We demonstrate the latter by successfully applying the model for the analysis of two CMEs.
FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND
DEFF Research Database (Denmark)
Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph
2004-01-01
the distribution of current density and further how thisaffects the polarization curve.The porosity and conductivity of the catalyst layer are some ofthe most difficult parameters to measure, estimate and especiallycontrol. Yet the proposed model shows how these two parameterscan have significant influence...... on the performance of the fuel cell.The two parameters are shown to be key elements in adjusting thethree-dimensional model to fit measured polarization curves.Results from the proposed model are compared to single cellmeasurements on a test MEA from IRD Fuel Cells.......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the...
COSMO-PAFOG: Three-dimensional fog forecasting with the high-resolution COSMO-model
Hacker, Maike; Bott, Andreas
2017-04-01
The presence of fog can have critical impact on shipping, aviation and road traffic increasing the risk of serious accidents. Besides these negative impacts of fog, in arid regions fog is explored as a supplementary source of water for human settlements. Thus the improvement of fog forecasts holds immense operational value. The aim of this study is the development of an efficient three-dimensional numerical fog forecast model based on a mesoscale weather prediction model for the application in the Namib region. The microphysical parametrization of the one-dimensional fog forecast model PAFOG (PArameterized FOG) is implemented in the three-dimensional nonhydrostatic mesoscale weather prediction model COSMO (COnsortium for Small-scale MOdeling) developed and maintained by the German Meteorological Service. Cloud water droplets are introduced in COSMO as prognostic variables, thus allowing a detailed description of droplet sedimentation. Furthermore, a visibility parametrization depending on the liquid water content and the droplet number concentration is implemented. The resulting fog forecast model COSMO-PAFOG is run with kilometer-scale horizontal resolution. In vertical direction, we use logarithmically equidistant layers with 45 of 80 layers in total located below 2000 m. Model results are compared to satellite observations and synoptic observations of the German Meteorological Service for a domain in the west of Germany, before the model is adapted to the geographical and climatological conditions in the Namib desert. COSMO-PAFOG is able to represent the horizontal structure of fog patches reasonably well. Especially small fog patches typical of radiation fog can be simulated in agreement with observations. Ground observations of temperature are also reproduced. Simulations without the PAFOG microphysics yield unrealistically high liquid water contents. This in turn reduces the radiative cooling of the ground, thus inhibiting nocturnal temperature decrease. The
Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model
International Nuclear Information System (INIS)
Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.
1975-01-01
This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent
Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp
Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.
2012-11-01
The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Construction of a Three-Dimensional in vitro skin model on polycaprolactone fibers.
Liu, Qi; Zhang, Ru-Zhi; Xu, Bin
2017-05-16
To observe the morphological characteristics and the biological properties of human epidermal cells when cultured at an air-liquid interface in polycaprolactone (PCL) fibers as a three-dimensional scaffold for tissue engineering. In this study, the melanocytes and keratinocytes were obtained from human scalp skin, seeded onto a PCL film, and cocultured for 2 weeks to construct a three-dimensional (3D) skin model. The cells were then characterized by hematoxylin and eosin (H&E) staining, by immunohistochemical staining with antibodies to cytokeratin 15 (CK15), Ki-67, CD34, CD200 and HMB45 and by transmission electron microscopy. Keratinocytes and melanocytes grew well in the co-culture system. Hematoxylin and eosin staining revealed that the cells adhered to the PCLfiber scaffold well, the keratinocyte layer became a multilayered concentric structure and the surface became distinctly keratinized at the air-liquid interface. Immunohistochemical analyses exhibited a scattered distribution of cells expressing CK15, CD34, CD200, Ki-67 and/or HMB45. Transmission electron microscopy revealed that the keratinocytes contained a number of keratin fibrils and membrane-coated granules. The PCL scaffold has excellent adhesiveness and biocompatibility with human epidermal cells, and is suitable for constructing 3D skin models for tissue engineering in the future.
Three-Dimensional Numerical Modeling of Macrosegregation in Continuously Cast Billets
Directory of Open Access Journals (Sweden)
Qipeng Dong
2017-06-01
Full Text Available Macrosegregation, serving as a major defect in billets, can severely degrade material homogeneity. Better understanding of the physical characteristics of macrosegregation through numerical simulation could significantly contribute to the segregation control. The main purpose of this study was to predict macrosegregation in continuously cast billets with a newly developed three-dimensional macrosegregation model. The fluid flow, solidification, and solute transport in the entire billet region were solved and analyzed. Flow patterns, revealing a typical melt recirculation at the upper region of mold and thermosolutal convection at the secondary cooling zone, significantly affect the solidification and solute distribution. The solute redistribution occurring with thermosolutal convection at the solidification front contributes significantly to continued macrosegregation as solidification proceeds. The results of this study show that the equilibrium partition coefficient is mostly responsible for the magnitude of macrosegregation, while comparison between solute P and S indicated that diffusion coefficients also have some amount of influence. Typical macrosegregation patterns containing a positively segregated peak at the centerline and negatively segregated minima at either side were obtained via the proposed three-dimensional macrosegregation model, which validated by the measured surface temperatures and segregation degree.
Zhao, Y.; Qin, R. S.; Chen, D. F.
2013-08-01
A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.
Three-dimensional modelling of slope stability using the Local Factor of Safety concept
Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger
2017-04-01
Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically
Three-dimensional point-cloud room model in room acoustics simulations
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...... and rotated around the vertical axis while for the second one the device is moved within the room. Benefits of both approaches were analyzed. The device's depth sensor provides a set of points in a three-dimensional coordinate system which represents scanned surfaces of the room interior. These data are used...... to build a 3D point-cloud model of the room. Several models are created to meet requirements of different room acoustics simulation algorithms: plane fitting and uniform voxel grid for geometric methods and triangulation mesh for the numerical methods. Advantages of the proposed method over the traditional...
Three-dimensional point-cloud room model for room acoustics simulations
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...... and rotated around the vertical axis while for the second one the device is moved within the room. Benefits of both approaches were analyzed. The device's depth sensor provides a set of points in a three-dimensional coordinate system which represents scanned surfaces of the room interior. These data are used...... to build a 3D point-cloud model of the room. Several models are created to meet requirements of different room acoustics simulation algorithms: plane fitting and uniform voxel grid for geometric methods and triangulation mesh for the numerical methods. Advantages of the proposed method over the traditional...
Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.
Schedin, Staffan; Hallberg, Per; Behndig, Anders
2016-01-20
We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.
Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya
2015-01-01
Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.
Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters
Heinbockel, John H.; Walker, Gilbert H.
1988-01-01
Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.
Verification and Validation of a Three-Dimensional Generalized Composite Material Model
Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther
2015-01-01
A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material
An three-dimensional imaging algorithm based on the radiation model of electric dipole
International Nuclear Information System (INIS)
Tian Bo; Zhong Weijun; Tong Chuangming
2011-01-01
A three-dimensional imaging algorithm based on the radiation model of dipole (DBP) is presented. On the foundation of researching the principle of the back projection (BP) algorithm, the relationship between the near field imaging model and far field imaging model is analyzed based on the scattering model. Firstly, the far field sampling data is transferred to the near field sampling data through applying the radiation theory of dipole. Then the dealt sampling data was projected to the imaging region to obtain the images of targets. The capability of the new algorithm to detect targets is verified by using finite-difference time-domain method (FDTD), and the coupling effect for imaging is analyzed. (authors)
Three-dimensional cellular automata as a model of a seismic fault
International Nuclear Information System (INIS)
Gálvez, G; Muñoz, A
2017-01-01
The Earth's crust is broken into a series of plates, whose borders are the seismic fault lines and it is where most of the earthquakes occur. This plating system can in principle be described by a set of nonlinear coupled equations describing the motion of the plates, its stresses, strains and other characteristics. Such a system of equations is very difficult to solve, and nonlinear parts leads to a chaotic behavior, which is not predictable. In 1989, Bak and Tang presented an earthquake model based on the sand pile cellular automata. The model though simple, provides similar results to those observed in actual earthquakes. In this work the cellular automata in three dimensions is proposed as a best model to approximate a seismic fault. It is noted that the three-dimensional model reproduces similar properties to those observed in real seismicity, especially, the Gutenberg-Richter law. (paper)
A three-dimensional model for negative half cell of the vanadium redox flow battery
International Nuclear Information System (INIS)
Ma Xiangkun; Zhang Huamin; Xing Feng
2011-01-01
A stationary, isothermal, three-dimensional model for negative half cell of the vanadium redox flow battery is developed, which is based on the comprehensive conservation laws, such as charge, mass and momentum, together with a kinetic model for reaction involving vanadium species. The model is validated against the results calculated by the available two-dimensional model. With the given geometry of the negative half cell, the distributions of velocity, concentration, overpotential and transfer current density in the sections that are perpendicular and parallel to the applied current are studied. It is shown that the distribution of the electrolyte velocity in the electrode has significant impact on the distribution of concentration, overpotential and transfer current density. The lower velocity in the electrode will cause the higher overpotential, further result in the side reaction and corrosion of key materials locally. The development of the design of the vanadium redox flow battery is discussed, and the further research is proposed.
Culture of three-dimensional tissue model and its application in bystander-effect research
International Nuclear Information System (INIS)
Wu Ruqun; Xu An; Wu Lijun; Hu Burong
2012-01-01
Compared with the cultured monolayer (2D) cells, three-dimensional (3D) tissue could be more similar to the environment in vivo including the physical support, chemical factors, cell-cell and cell-matrix interaction and so on. With the development of three-dimensional cell culture techniques (TDCC), 3D tissue is widely used in the areas of bystander effect research. This review focuses on introducing the TDCC method and its application in bystander-effect research. First, the development process of 3D tissue culture method was introduced. Secondly, the induction of radiation induced bystander effects both in 2D cell and 3D tissue and its mechanisms were reviewed. Finally, because heavy ion (carbon ion beam) has been developed as a useful tool to cure solid cancer, and the 3D tissue model is an ideal material to study the damages on body after being irradiated and to understand the underlying mechanisms, future study about heavy ion radiation inducing bystander effect in 3D tissue was discussed. (authors)
Insulin as a model to teach three-dimensional structure of proteins
Directory of Open Access Journals (Sweden)
João Batista Teixeira da Rocha
2018-02-01
Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry. Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure. The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school. From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Cell-free DNA in a three-dimensional spheroid cell culture model
DEFF Research Database (Denmark)
Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.
2017-01-01
Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...
A numerical three-dimensional ocean general circulation and radionuclides dispersion model
International Nuclear Information System (INIS)
Chartier, M.; Marti, O.
1988-01-01
The dispersion of radioactive waste disposed of in the deep-sea or transferred from the atmosphere is a complex hydrodynamic problem concerned by space scales as large as the world ocean. The recent development in the high-speed computers has led to significant progress in ocean modelling and now allows a thorough improvement in the accuracy of the simulations of the nuclides dispersion in the sea. A three-dimensional ocean general circulation model has been recently developed in France for research and engineering purposes. The model solves the primitive equation of the ocean hydrodynamics and the advection-diffusion equation for any dissolved tracer. The code has been fully vectorized and multitasked on 1 to 4 processors of the CRAY-2
International Nuclear Information System (INIS)
Chen, Y.-S.; Chien, K.-H.; Wang, C.-C.; Hung, T.-C.; Pei, B.-S.
2006-01-01
The vapor chambers (flat plate heat pipes) have been applied on the electronic cooling recently. To satisfy the quick-response requirement of the industries, a simplified transient three-dimensional linear model has been developed and tested in this study. In the proposed model, the vapor is assumed as a single interface between the evaporator and condenser wicks, and this assumption enables the vapor chamber to be analyzed by being split into small control volumes. Comparing with the previous available results, the calculated transient responses have shown good agreements with the existing results. For further validation of the proposed model, a water-cooling experiment was conducted. In addition to the vapor chamber, the heating block is also taken into account in the simulation. It is found that the inclusion of the capacitance of heating block shows a better agreement with the measurements
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.
Directory of Open Access Journals (Sweden)
David P Stonko
Full Text Available Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of
A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.
Stonko, David P; Manning, Lathiena; Starz-Gaiano, Michelle; Peercy, Bradford E
2015-01-01
Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.
Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico
Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.
2011-01-01
This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.
Magnetic properties of Hubbard-sigma model with three-dimensionality
International Nuclear Information System (INIS)
Yamamoto, Hisashi; Tatara, Gen; Ichinose, Ikuo; Matsui, Tetsuo.
1990-05-01
It has been broadly accepted that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling and the spin-wave velocity with 'effective' ones determined by the concentration and the one-loop correction of hole fermions. Stationary-phase equations for the one-loop effective potential of S 2 model are analyzed. Based on them, various magnetic properties of the system, such as the behavior of Neel temperature, spin correlation length, staggered magnetization, specific heat and susceptibility as functions of anisotropic parameter, temperature, etc. are investigated in detail. The results show that our anisotropic field theory model with certain values of parameters gives a good description of the magnetic properties in both the ordered and the disordered phases indicated by experiments on La 2 CuO 4 . The part of the above results is supported by the renormalization-group analysis. In the doped case it is observed that the existence of holes destroys the long-range order and their hopping effect is large. (author)
Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Allen, Dale J.; DeCaria, Alex J.; Ridley, Brian; Lin, Ruei-Fong; Lang, Stephen; Tao, Wei-Kuo
2010-01-01
A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four
The simulation of the transport of aircraft emissions by a three-dimensional global model
Directory of Open Access Journals (Sweden)
G. J. M. Velders
1994-04-01
Full Text Available A three-dimensional off-line tracer transport model coupled to the ECMWF analyses has been used to study the transport of trace gases in the atmosphere. The model gives a reasonable description of their general transport in the atmosphere. The simulation of the transport of aircraft emissions (as NOx has been studied as well as the transport of passive tracers injected at different altitudes in the North Atlantic flight corridor. A large zonal variation in the NOx concentrations as well as large seasonal and yearly variations was found. The altitude of the flight corridor influences the amount of tracers transported into the troposphere and stratosphere to a great extent.
Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development
Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark
2005-01-01
Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.
Chiral spin liquids at finite temperature in a three-dimensional Kitaev model
Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi
2017-11-01
Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.
International Nuclear Information System (INIS)
Qian Li-Bo; Xia Yin-Shui; Zhu Zhang-Ming; Ding Rui-Xue; Yang Yin-Tang
2014-01-01
Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three-dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 mV and 379 mV reductions in the peak noise voltage, respectively
Interplay of universality classes in a three-dimensional Yukawa model
International Nuclear Information System (INIS)
Focht, E.; Jersak, J.; Paul, J.
1996-01-01
We investigate numerically on the lattice the interplay of universality classes of the three-dimensional Yukawa model with U(1) chiral symmetry, using the Binder method of finite size scaling. At zero Yukawa coupling the scaling related to the magnetic Wilson-Fisher fixed point is confirmed. At sufficiently strong Yukawa coupling the dominance of the chiral fixed point associated with the 3D Gross-Neveu model is observed for various values of the coupling parameters, including infinite scalar self-coupling. In both cases the Binder method works consistently in a broad range of lattice sizes. However, when the Yukawa coupling is decreased the finite size behavior gets complicated and the Binder method gives inconsistent results for different lattice sizes. This signals a crossover between the universality classes of the two fixed points. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Chen Minsun; Jiang Houman; Liu Zejin
2011-01-01
Fundamental equations governing the temperature field of thermally decomposing resin composite irradiated by laser are derived from mass and energy conservation laws with the control Janume method. The thermal decomposition of resin is described by a multi-step model. An assumption is proposed that the flow of pyrolysis gas is one-dimensional, which makes it possible to consider the influence of pyrolysis gas convective transport and realize the closure of the three-dimensional model without introducing mechanical quantities. In view of the anisotropy of resin composite, expressions of the thermal conductivities of partially pyrolyzed material are deduced, as well as the computing formula for the laser absorption coefficient of partially pyrolyzed material. The energy conservation equation is consistent with reference under some simplifications. (authors)
Gauge structure, anomalies and mass generation in a three dimensional thirring model
International Nuclear Information System (INIS)
Gomes, M.; Mendes, R.S.; Ribeiro, R.F.; Silva, A.J. da.
1990-05-01
We consider a three dimensional model of spinor fields with a Thirring like, quadrilinear self interaction. Using either two or four component Dirac spinors, we prove that the 1/N expansion for the model is renormalizable if a gauge structure to select physical quantities is introduced. For certain values of the coupling the leading 1/N approximation exihibits bound state poles. Dynamical breaking of parity or chiral symmetry is shown to occur as a cooperative effect of different orders of 1/N, if N is smaller than the critical value N c = 128 / x 2 D' , where D is two or four depending on wether the fermion field has two or four components. (author) [pt
Modelling three-dimensional cochlear micromechanics within the guinea pig organ of Corti
Ni, Guangjian; Elliott, Stephen J.
2018-05-01
The active amplification process in the mammalian cochlea depends on a complex interaction between cells within the organ of Corti. A three-dimensional (3D) model was developed using the finite element method based on anatomy for the apical end in the guinea pig cochlea, which is comprised of 3D discrete hair cells, 3D continuous membranes and fluid. The basilar membrane, tectorial membrane and the reticular lamina are modelled with orthotropic materials. The Y-shape structures formed by the outer hair cell (OHC), the Deiters' cell and Deiters' cell phalangeal process are also included to account for the structural longitudinal coupling. The motion within the organ of Corti was first simulated in response to a pressure difference loading on the basilar membrane, in order to calculate the passive vibration pattern. Then, the outer hair cells somatic electromotility was implemented by applying a voltage across the OHC walls to investigate its contribution to membranes motion.
Three-dimensional sound localisation with a lizard peripheral auditory model
DEFF Research Database (Denmark)
Kjær Schmidt, Michael; Shaikh, Danish
the networks learned a transfer function that translated the three-dimensional non-linear mapping into estimated azimuth and elevation values for the acoustic target. The neural network with two hidden layers as expected performed better than that with only one hidden layer. Our approach assumes that for any...... location of an acoustic target in three dimensions. Our approach utilises a model of the peripheral auditory system of lizards [Christensen-Dalsgaard and Manley 2005] coupled with a multi-layer perceptron neural network. The peripheral auditory model’s response to sound input encodes sound direction...... information in a single plane which by itself is insufficient to localise the acoustic target in three dimensions. A multi-layer perceptron neural network is used to combine two independent responses of the model, corresponding to two rotational movements, into an estimate of the sound direction in terms...
Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.
2018-04-01
While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.
Interaction Deep Excavation Adjacent Structure Numerical Two and Three Dimensional Modeling
International Nuclear Information System (INIS)
Abdallah, M.; Chehade, F. H.; Chehade, W.; Fawaz, A.
2011-01-01
Urban development often requires the construction of deep excavations near to buildings or other structures. We have to study complex material structure interactions where we should take into consideration several particularities. In this paper, we perform a numerical modeling with the finite element method, using PLAXIS software, of the interaction deep excavation-diaphragm wall-soil-structure in the case of non linear soil behavior. We focus our study on a comparison of the results given respectively by two and three dimensional modelings. This allows us to give some recommendations concerning the validity of twodimensional study. We perform a parametric study according to the initial loading on the structure and the struts number. (author)
Petroleum migration pathways and charge concentration: A three-dimensional model
Energy Technology Data Exchange (ETDEWEB)
Hindle, A.D. [Anadarko Algeria Corp., Middlesex (United Kingdom)
1997-09-01
Petroleum migration pathways through a basin are determined by the three-dimensional distribution of discontinuous sealing surfaces, which are usually parallel to bedding. The petroleum migrates below the sealing surface, taking the structurally most advantageous route. The three-dimensional distribution of migration pathways within the petroleum system can be modeled on a personal computer using a program based on the parameters discussed in this paper. Application of the model to the Paris and Williston basins demonstrates that a good correlation between predicted pathways and discovered accumulations can be made using simple models. Pathways form a dense network overlying generating areas in the central parts of basins. Toward the basin margins these routes commonly become increasingly focused into discrete pathways by the sealing-surface morphologies. Eventually, these pathways may reach the surface as seepages. It is important to integrate surface outcrops of migration routes (surface seepages) into migration modeling. Deflection of the pathways from the structurally most advantageous route below the sealing surface may be caused by lateral sealing barriers due to faces variation in the carrier rock below the seal, fault juxtaposition, or cross-formational seals such as salt intrusions. Deflection of pathways also occurs where there are hydrodynamic conditions in response to topography-driven groundwater flow. Zones of vertical migration are associated with facies changes along the horizon of the sealing surface into a nonsealing facies, or juxtaposition to nonsealing strata by faults. Vertical migration from either normally or abnormally pressured strata is most likely to occur into normally or lesser pressured strata at intrabasinal highs where hydrocarbons can be stored and transferred at times of temporary seal rupture.
Slab1.0: A three-dimensional model of global subduction zone geometries
Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.
2012-01-01
We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.
Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model
Directory of Open Access Journals (Sweden)
Jing Li
2017-10-01
Full Text Available Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.
Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.
Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang
2017-10-16
Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.
International Nuclear Information System (INIS)
Li Heping; Pfender, E; Chen, Xi
2003-01-01
In this paper, physical/mathematical models for the three-dimensional, quasi-steady modelling of the plasma flow and heat transfer inside a non-transferred DC arc plasma torch are described in detail. The Steenbeck's minimum principle (Finkelnburg W and Maecker H 1956 Electric arcs and thermal plasmas Encyclopedia of Physics vol XXII (Berlin: Springer)) is employed to determine the axial position of the anode arc-root at the anode surface. This principle postulates a minimum arc voltage for a given arc current, working gas flow rate, and torch configuration. The modelling results show that the temperature and flow fields inside the DC non-transferred arc plasma torch show significant three-dimensional features. The predicted anode arc-root attachment position and the arc shape by employing Steenbeck's minimum principle are reasonably consistent with experimental observations. The thermal efficiency and the torch power distribution are also calculated in this paper. The results show that the thermal efficiency of the torch always ranges from 30% to 45%, i.e. more than half of the total power input is taken away by the cathode and anode cooling water. The special heat transfer mechanisms at the plasma-anode interface, such as electron condensation, electron enthalpy and radiative heat transfer from the bulk plasma to the anode inner surface, are taken into account in this paper. The calculated results show that besides convective heat transfer, the contributions of electron condensation, electron enthalpy and radiation to the anode heat transfer are also important (∼30% for parameter range of interest in this paper). Additional effects, such as the non-local thermodynamic equilibrium plasma state near the electrodes, the transient phenomena, etc, need to be considered in future physical/mathematical models, including corresponding measurements
On a model of three-dimensional bursting and its parallel implementation
Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.
2008-04-01
A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.
Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.
Werner, J; Buse, M; Foegen, A
1989-01-01
In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.
Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool
Schmid, Brian M.; Manu, Andrew; Norton, Amy E.
2009-01-01
Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…
Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling
2018-01-01
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Directory of Open Access Journals (Sweden)
Kayla F Goliwas
2016-07-01
Full Text Available Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.
Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy
Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.
2015-08-01
We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.
Imai, Takashi; Kovalenko, Andriy; Hirata, Fumio
2005-04-14
The three-dimensional reference interaction site model (3D-RISM) theory is applied to the analysis of hydration effects on the partial molar volume of proteins. For the native structure of some proteins, the partial molar volume is decomposed into geometric and hydration contributions using the 3D-RISM theory combined with the geometric volume calculation. The hydration contributions are correlated with the surface properties of the protein. The thermal volume, which is the volume of voids around the protein induced by the thermal fluctuation of water molecules, is directly proportional to the accessible surface area of the protein. The interaction volume, which is the contribution of electrostatic interactions between the protein and water molecules, is apparently governed by the charged atomic groups on the protein surface. The polar atomic groups do not make any contribution to the interaction volume. The volume differences between low- and high-pressure structures of lysozyme are also analyzed by the present method.
Meson form factors and covariant three-dimensional formulation of composite model
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.
1978-01-01
An approach is developed which is applied in the framework of the relativistic quark model to obtain explicit expressions for meson form factors in terms of covariant wave functions of the two-quark system. These wave functions obey the two-particle quasipotential equation in which the relative motion of quarks is singled out in a covariant way. The exact form of the wave functions is found using the transition to the relativistic configurational representation with the help of the harmonic analysis on the Lorentz group instead of the usual Fourier expansion and then solving the relativistic difference equation thus obtained. The expressions found for form factors are transformed into the three-dimensional covariant form which is a direct geometrical relativistic generalization of analogous expressions of the nonrelativistic quantum mechanics and provides the decrease of the meson form factor by the Fsub(π)(t) approximately t -1 law as -t infinity, in the Coulomb field
Three-dimensional modeling of capsule implosions in OMEGA tetrahedral hohlraums
International Nuclear Information System (INIS)
Schnittman, J. D.; Craxton, R. S.
2000-01-01
Tetrahedral hohlraums have been proposed as a means for achieving the highly uniform implosions needed for ignition with inertial confinement fusion (ICF) [J. D. Schnittman and R. S. Craxton, Phys. Plasmas 3, 3786 (1996)]. Recent experiments on the OMEGA laser system have achieved good drive uniformity consistent with theoretical predictions [J. M. Wallace et al., Phys. Rev. Lett. 82, 3807 (1999)]. To better understand these experiments and future investigations of high-convergence ICF implosions, the three-dimensional (3-D) view-factor code BUTTERCUP has been expanded to model the time-dependent radiation transport in the hohlraum and the hydrodynamic implosion of the capsule. Additionally, a 3-D postprocessor has been written to simulate x-ray images of the imploded core. Despite BUTTERCUP's relative simplicity, its predictions for radiation drive temperatures, fusion yields, and core deformation show close agreement with experiment. (c) 2000 American Institute of Physics
Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas
Energy Technology Data Exchange (ETDEWEB)
Guszejnov, D.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Pusztai, I. [Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Refy, D.; Zoletnik, S. [MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Lampert, M. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of)
2012-11-15
One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.
Nonasymptotic form of the recursion relations of the three-dimensional Ising model
International Nuclear Information System (INIS)
Kozlovskii, M.P.
1989-01-01
Approximate recursion relations for the three-dimensional Ising model are obtained in the form of rapidly converging series. The representation of the recursion relations in the form of nonasymptotic series entails the abandonment of traditional perturbation theory based on a Gaussian measure density. The recursion relations proposed in the paper are used to calculate the critical exponent ν of the correlation length. It is shown that the difference form of the recursion relations leads, when higher non-Gaussian basis measures are used, to disappearance of a dependence of the critical exponent ν on s when s > 2 (s is the parameter of the division of the phase space into layers). The obtained results make it possible to calculate explicit expressions for the thermodynamic functions near the phase transition point
International Nuclear Information System (INIS)
Kijanka, Piotr; Packo, Pawel; Staszewski, Wieslaw J; Zhu, Xuan; Di Scalea, Francesco Lanza
2015-01-01
The paper presents a three-dimensional temperature-dependent model of surface-bonded, low-profile piezoceramic transducers (PZT) used for Lamb wave propagation. The effect of temperature on Lamb wave actuation, propagation and sensing is investigated. The major focus is on the study of actuation and sensing properties of PZT for various temperature levels. These properties are investigated through the electric field analysis of transducers. The temperature effect on transducer bond layers is also investigated. Numerically simulated amplitude responses are analysed for various temperatures and excitation frequencies. Numerical simulations are validated experimentally. The results demonstrate that temperature-dependent physical properties of PZT, bond layers and particularly host structures significantly affect the amplitude and phase of Lamb wave responses. (paper)
Three-dimensional finite element modelling of the uniaxial tension test
DEFF Research Database (Denmark)
Østergaard, Lennart; Stang, Henrik
2002-01-01
. One of the most direct methods for determination of the σ-w relationship is the uniaxial tension test, where a notched specimen is pulled apart while the tensile load and the crack opening displacement is observed. This method is appealing since the interpretation is straightforward. The method......Experimental determination of the stress-crack opening relationship (σ-w) for concrete as defined in the fictitious crack model has proven to be difficult. This is due to the problems that may arise from application of the inverse analysis method necessary for the derivation of the relationship...... is examined in this paper through three dimensional finite element analyses. It is concluded that the interpretation of the uniaxial tension test is indeed straightforward, if the testing machine stiffness is sufficiently high....
Directory of Open Access Journals (Sweden)
Kateryna P. Osadcha
2017-12-01
Full Text Available The article is devoted to some aspects of the formation of future bachelor's graphic competence in computer sciences while teaching the fundamentals for working with three-dimensional modelling means. The analysis, classification and systematization of three-dimensional modelling means are given. The aim of research consists in investigating the set of instruments and classification of three-dimensional modelling means and correlation of skills, which are being formed, concerning inquired ones at the labour market in order to use them further in the process of forming graphic competence during training future bachelors in computer sciences. The peculiarities of the process of forming future bachelor's graphic competence in computer sciences by means of revealing, analyzing and systematizing three-dimensional modelling means and types of three-dimensional graphics at present stage of the development of informational technologies are traced a line round. The result of the research is a soft-ware choice in three-dimensional modelling for the process of training future bachelors in computer sciences.
Dong, Mengqi; Chen, Guangzhong; Qin, Kun; Ding, Xiaowen; Zhou, Dong; Peng, Chao; Zeng, Shaojian; Deng, Xianming
2018-01-15
Rapid prototyping technology is used to fabricate three-dimensional (3D) brain arteriovenous malformation (AVM) models and facilitate presurgical patient communication and medical education for young surgeons. Two intracranial AVM cases were selected for this study. Using 3D CT angiography or 3D rotational angiography images, the brain AVM models were reconstructed on personal computer and the rapid prototyping process was completed using a 3D printer. The size and morphology of the models were compared to brain digital subtraction arteriography of the same patients. 3D brain AVM models were used for preoperative patient communication and young neurosurgeon education. Two brain AVM models were successfully produced. By neurosurgeons' evaluation, the printed models have high fidelity with the actual brain AVM structures of the patients. The patient responded positively toward the brain AVM model specific to himself. Twenty surgical residents from residency programs tested the brain AVM models and provided positive feedback on their usefulness as educational tool and resemblance to real brain AVM structures. Patient-specific 3D printed models of brain AVM can be constructed with high fidelity. 3D printed brain AVM models are proved to be helpful in preoperative patient consultation, surgical planning and resident training.
Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface
Gou, J.; Zhou, W.; Wu, L.
2016-10-01
Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
Construction of a three-dimensional interactive model of the skull base and cranial nerves.
Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L
2007-05-01
The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.
A three-dimensional finite element model for biomechanical analysis of the hip.
Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe
2013-11-01
The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.
Directory of Open Access Journals (Sweden)
Tarig Magdeldin
2014-07-01
Full Text Available The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti–epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01. Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.
Verifying three-dimensional skull model reconstruction using cranial index of symmetry.
Kung, Woon-Man; Chen, Shuo-Tsung; Lin, Chung-Hsiang; Lu, Yu-Mei; Chen, Tzu-Hsuan; Lin, Muh-Shi
2013-01-01
Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47-99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (ppairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation.
International Nuclear Information System (INIS)
Liang, Zhong Wei; Wang, Yi Jun; Ye, Bang Yan; Brauwer, Richard Kars
2012-01-01
In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process
Energy Technology Data Exchange (ETDEWEB)
Liang, Zhong Wei; Wang, Yi Jun [Guangzhou Univ., Guangzhou (China); Ye, Bang Yan [South China Univ. of Technology, Guangzhou (China); Brauwer, Richard Kars [Indian Institute of Technology, Kanpur (India)
2012-10-15
In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process.
Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator
Directory of Open Access Journals (Sweden)
D. V. Rose
2010-01-01
Full Text Available A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel et al., in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002, p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.
Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary
Directory of Open Access Journals (Sweden)
Edward S. Gross
2010-01-01
Full Text Available Simulations of circulation in the San Francisco Estuary were performed with the three-dimensional TRIM3D hydrodynamic model using a generic length scale turbulence closure. The model was calibrated to reproduce observed tidal elevations, tidal currents, and salinity observations in the San Francisco Estuary using data collected during 1996-1998, a period of high and variable freshwater flow. It was then validated for 1994-1995, with emphasis on spring of 1994, a period of intensive data collection in the northern estuary. The model predicts tidal elevations and tidal currents accurately, and realistically predicts salinity at both the seasonal and tidal time scales. The model represents salt intrusion into the estuary accurately, and therefore accurately represents the salt balance. The model’s accuracy is adequate for its intended purposes of predicting salinity, analyzing gravitational circulation, and driving a particle-tracking model. Two applications were used to demonstrate the utility of the model. We estimated the components of the longitudinal salt flux and examined their dependence on flow conditions, and compared predicted salt intrusion with estimates from two empirical models.
Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma
Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip
2010-01-01
The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
A three-dimensional model for thermal analysis in a vanadium flow battery
International Nuclear Information System (INIS)
Zheng, Qiong; Zhang, Huamin; Xing, Feng; Ma, Xiangkun; Li, Xianfeng; Ning, Guiling
2014-01-01
Highlights: • A three-dimensional model for thermal analysis in a VFB has been developed. • A quasi-static thermal behavior and temperature spatial distribution were showed. • Ohmic heat gets vital in heat generation if applied current density is large enough. • A lower porosity or a faster flow shows a more uniform temperature distribution. • The model shows good prospect in heat and temperature management for a VFB. - Abstract: A three-dimensional model for thermal analysis has been developed to gain a better understanding of thermal behavior in a vanadium flow battery (VFB). The model is based on a comprehensive description of mass, momentum, charge and energy transport and conservation, combining with a global kinetic model for reactions involving all vanadium species. The emphasis in this paper is placed on the heat losses inside a cell. A quasi-static behavior of temperature and the temperature spatial distribution were characterized via the thermal model. The simulations also indicate that the heat generation exhibits a strong dependence on the applied current density. The reaction rate and the over potential rise with an increased applied current density, resulting in the electrochemical reaction heat rises proportionally and the activation heat rises at a parabolic rate. Based on the Ohm’s law, the ohmic heat rises at a parabolic rate when the applied current density increases. As a result, the determining heat source varies when the applied current density changes. While the relative contribution of the three types of heat is dependent on the cell materials and cell geometry, the regularities of heat losses can also be attained via the model. In addition, the electrochemical reaction heat and activation heat have a lack of sensitivity to the porosity and flow rate, whereas an obvious increase of ohmic heat has been observed with the rise of the porosity. A lower porosity or a faster flow shows a better uniformity of temperature distribution in
Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances
Yang, H.; Pasko, V. P.
2003-12-01
Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model
Gattolin, G.; Franceschi, M.; Breda, A.; Teza, G.; Preto, N.
2012-04-01
At the end of the Early Carnian, the Carnian Pluvial Event (CPE) resulted in a major crisis of carbonate factories. The sharp change in carbonate production lead to a dramatic modifications in depositional geometries. Steep clinoforms of the high-relief pre-crisis carbonate platforms were replaced by low-angle ramps. Spatial characters of depositional geometries can be decisive in identifying the genesis of geological bodies. We here show how 3D modeling techniques can be applied to help in quantifying and highlighting their variations. As case study we considered two outcrops in the Tofane Group (Dolomites, Italy). The first outcrop (bottom of southern walls of Tofana di Rozes) exposes a platform-to-basin transect of pre- and post-crisis platforms, the second (Dibona hut) a clinostratified carbonate body deposited during the Carnian crisis. Outcrop conditions at both sites, with vertical and hardly accessible walls, make the field tracing of depositional geometries particularly challenging. Line drawing on high resolution pictures can help (e.g. for clinoforms), but its use for quantification is hampered by perspective deformation. Three dimensional acquisition and modeling allow to retrieve the true spatial characters of sedimentary bodies in these outcrops. The geometry of the carbonate body at Dibona (~ 15000 sqm) was acquired with terrestrial LiDAR, while for Tofana photogrammetric techniques were applied because of the extension of the outcrop itself (~ 240000 sqm) and the lack of suitable points of view for terrestrial laser scanning. At Tofana, field observations reveal the presence of tens-hundreds m large carbonate mounds grown on a pre-existing inclined surface, intercalated with skeletal carbonates and siltites-arenites. This system rapidly evolves into a carbonate-clastic ramp. Photogrammetric topography acquisition permitted to place and visualize geological features in a three dimensional frame, thus obtaining a conceptual sedimentological model. A 3
Three-dimensional printing of Hela cells for cervical tumor model in vitro
International Nuclear Information System (INIS)
Zhao, Yu; Yao, Rui; Ouyang, Liliang; Ding, Hongxu; Zhang, Ting; Sun, Wei; Zhang, Kaitai; Cheng, Shujun
2014-01-01
Advances in three-dimensional (3D) printing have enabled the direct assembly of cells and extracellular matrix materials to form in vitro cellular models for 3D biology, the study of disease pathogenesis and new drug discovery. In this study, we report a method of 3D printing for Hela cells and gelatin/alginate/fibrinogen hydrogels to construct in vitro cervical tumor models. Cell proliferation, matrix metalloproteinase (MMP) protein expression and chemoresistance were measured in the printed 3D cervical tumor models and compared with conventional 2D planar culture models. Over 90% cell viability was observed using the defined printing process. Comparisons of 3D and 2D results revealed that Hela cells showed a higher proliferation rate in the printed 3D environment and tended to form cellular spheroids, but formed monolayer cell sheets in 2D culture. Hela cells in 3D printed models also showed higher MMP protein expression and higher chemoresistance than those in 2D culture. These new biological characteristics from the printed 3D tumor models in vitro as well as the novel 3D cell printing technology may help the evolution of 3D cancer study. (paper)
Characterization and three-dimensional reconstruction of synthetic bone model foams
Energy Technology Data Exchange (ETDEWEB)
Gómez, S. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Vlad, M.D. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Faculty of Medical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, Str. Kogalniceanu 9-13, 700454 Iasi (Romania); López, J. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Navarro, M. [Centre de Biotecnologia Animal i de Teràpia Gènica (CBATEG), Departament de Sanitat i d' Anatomia Animals, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Cerdanyola del Vallès (Spain); Fernández, E., E-mail: enrique.fernandez@upc.edu [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain)
2013-08-01
Sawbones© open-cell foams with different porosity grades are being used as synthetic bone-like models for in vitro mechanical and infiltration experiments. However, a comprehensive characterization of these foams is not available and there is a lack of reliable information about them. For this reason two of these foams (Refs. 1522-505 and -507) have been characterized at the micro architectural level by scanning electron microscopy, computed tomography and image data analysis. BoneJ open software and ImageJ open software were used to obtain the characteristic histomorphometric parameters and the three dimensional virtual models of the foams. The results showed that both foams, while having different macro porosities, appeared undistinguishable at the micro scale. Moreover, the micro structural features resembled those of osteoporotic rather than healthy trabecular bone. It is concluded that Sawbones© foams behave reasonably as synthetic bone-like models. Consequently, their use is recommended for in vitro comparison purposes of both mechanical and infiltration testing performed in real vertebra. Finally, the virtual models obtained, which are available under request, can favour comparisons between future self-similar in vitro experiments and computer simulations. - Highlights: • Sawbones© model foams have been scanned by μ-CT. • Histomorphometric indices and 3D virtual models have been obtained. • The results will be of use to understand biocement vertebra infiltration studies.
Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon
Blais, A; Boulos, M I
2003-01-01
The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop DELTA phi all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I...
Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.
Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter
2018-06-01
We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.
Characterization and three-dimensional reconstruction of synthetic bone model foams
International Nuclear Information System (INIS)
Gómez, S.; Vlad, M.D.; López, J.; Navarro, M.; Fernández, E.
2013-01-01
Sawbones© open-cell foams with different porosity grades are being used as synthetic bone-like models for in vitro mechanical and infiltration experiments. However, a comprehensive characterization of these foams is not available and there is a lack of reliable information about them. For this reason two of these foams (Refs. 1522-505 and -507) have been characterized at the micro architectural level by scanning electron microscopy, computed tomography and image data analysis. BoneJ open software and ImageJ open software were used to obtain the characteristic histomorphometric parameters and the three dimensional virtual models of the foams. The results showed that both foams, while having different macro porosities, appeared undistinguishable at the micro scale. Moreover, the micro structural features resembled those of osteoporotic rather than healthy trabecular bone. It is concluded that Sawbones© foams behave reasonably as synthetic bone-like models. Consequently, their use is recommended for in vitro comparison purposes of both mechanical and infiltration testing performed in real vertebra. Finally, the virtual models obtained, which are available under request, can favour comparisons between future self-similar in vitro experiments and computer simulations. - Highlights: • Sawbones© model foams have been scanned by μ-CT. • Histomorphometric indices and 3D virtual models have been obtained. • The results will be of use to understand biocement vertebra infiltration studies
Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere
International Nuclear Information System (INIS)
Qu, Yongfeng
2011-01-01
In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr
Evaluating the effects of modeling errors for isolated finite three-dimensional targets
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui
2017-10-01
Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.
Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer.
Kondo, Kosuke; Nemoto, Masaaki; Masuda, Hiroyuki; Okonogi, Shinichi; Nomoto, Jun; Harada, Naoyuki; Sugo, Nobuo; Miyazaki, Chikao
2015-01-01
We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors.
Three-Dimensional Geological Model of Quaternary Sediments in Walworth County, Wisconsin, USA
Directory of Open Access Journals (Sweden)
Jodi Lau
2016-07-01
Full Text Available A three-dimensional (3D geologic model was developed for Quaternary deposits in southern Walworth County, WI using Petrel, a software package primarily designed for use in the energy industry. The purpose of this research was to better delineate and characterize the shallow glacial deposits, which include multiple shallow sand and gravel aquifers. The 3D model of Walworth County was constructed using datasets such as the U.S. Geological Survey 30 m digital elevation model (DEM of land surface, published maps of the regional surficial geology and bedrock topography, and a database of water-well records. Using 3D visualization and interpretation tools, more than 1400 lithostratigraphic picks were efficiently interpreted amongst 725 well records. The final 3D geologic model consisted of six Quaternary lithostratigraphic units and a bedrock horizon as the model base. The Quaternary units include in stratigraphic order from youngest to oldest: the New Berlin Member of the Holy Hill Formation, the Tiskilwa Member of the Zenda Formation, a Sub-Tiskilwa Sand/Gravel unit, the Walworth Formation, a Sub-Walworth Sand/Gravel unit, and a Pre-Illinoisan unit. Compared to previous studies, the results of this study indicate a more detailed distribution, thickness, and interconnectivity between shallow sand and gravel aquifers and their connectivity to shallow bedrock aquifers. This study can also help understand uncertainty within previous local groundwater-flow modeling studies and improve future studies.
Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon
International Nuclear Information System (INIS)
Blais, A; Proulx, P; Boulos, M I
2003-01-01
The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop Δφ all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I and conductor current I conductor and decreases with the flow rate Q and x 0 , the arc-conductor distance. These deflection behaviours are explained using physical arguments
International Nuclear Information System (INIS)
Touqan, Abdul Razzaq
2008-01-01
Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is ''a dynamic punch'', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction
Mamou, Jonathan M.
This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.
Simplest simulation model for three-dimensional xenon oscillations in large PWRs
International Nuclear Information System (INIS)
Shimazu, Yoichiro
2004-01-01
Xenon oscillations in large PWRs are well understood and there have been no operational problems remained. However, in order to suppress the oscillations effectively, optimal control strategy is preferable. Generally speaking in such optimality search based on the modern control theory, a large volume of transient core analyses is required. For example, three dimensional core calculations are inevitable for the analyses of radial oscillations. From this point of view, a very simple 3-D model is proposed, which is based on a reactor model of only four points. As in the actual reactor operation, the magnitude of xenon oscillations should be limited from the view point of safety, the model further assumes that the neutron leakage can be also small or even constant. It can explicitly use reactor parameters such as reactivity coefficients and control rod worth directly. The model is so simplified as described above that it can predict oscillation behavior in a very short calculation time even on a PC. However the prediction result is good. The validity of the model in comparison with measured data and the applications are discussed. (author)
Three-dimensional shear transformation zone dynamics model for amorphous metals
International Nuclear Information System (INIS)
Homer, Eric R; Schuh, Christopher A
2010-01-01
A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress
Development of the three dimensional flow model in the SPACE code
International Nuclear Information System (INIS)
Oh, Myung Taek; Park, Chan Eok; Kim, Shin Whan
2014-01-01
SPACE (Safety and Performance Analysis CodE) is a nuclear plant safety analysis code, which has been developed in the Republic of Korea through a joint research between the Korean nuclear industry and research institutes. The SPACE code has been developed with multi-dimensional capabilities as a requirement of the next generation safety code. It allows users to more accurately model the multi-dimensional flow behavior that can be exhibited in components such as the core, lower plenum, upper plenum and downcomer region. Based on generalized models, the code can model any configuration or type of fluid system. All the geometric quantities of mesh are described in terms of cell volume, centroid, face area, and face center, so that it can naturally represent not only the one dimensional (1D) or three dimensional (3D) Cartesian system, but also the cylindrical mesh system. It is possible to simulate large and complex domains by modelling the complex parts with a 3D approach and the rest of the system with a 1D approach. By 1D/3D co-simulation, more realistic conditions and component models can be obtained, providing a deeper understanding of complex systems, and it is expected to overcome the shortcomings of 1D system codes. (author)
Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.
2010-01-01
We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.
Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model
Energy Technology Data Exchange (ETDEWEB)
Wei Lei [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Lin Xin, E-mail: xlin@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Wang Meng; Huang Weidong [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)
2012-07-01
A three-dimensional (3-D) adaptive mesh refinement (AMR) cellular automata (CA) model is developed to simulate the equiaxed dendritic growth of pure substance. In order to reduce the mesh induced anisotropy by CA capture rules, a limited neighbor solid fraction (LNSF) method is presented. It is shown that the LNSF method reduced the mesh induced anisotropy based on the simulated morphologies for isotropic interface free energy. An expansion description using two interface free energy anisotropy parameters ({epsilon}{sub 1}, {epsilon}{sub 2}) is used in the present 3-D CA model. It is illustrated by present 3-D CA model that the positive {epsilon}{sub 1} favors the dendritic growth with the Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket preferred directions, and negative {epsilon}{sub 2} favors dendritic growth with the Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket preferred directions, which has a good agreement with the prediction of the spherical plot of the inverse of the interfacial stiffness. The dendritic growths with the orientation selection between Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket are also discussed using the different {epsilon}{sub 1} with {epsilon}{sub 2}=-0.02. It is found that the simulated morphologies by present CA model are as expected from the minimum stiffness criterion.
Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas
Qi, L.; Carr, T.R.; Goldstein, R.H.
2007-01-01
In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
A three-dimensional model of solar radiation transfer in a non-uniform plant canopy
Levashova, N. T.; Mukhartova, Yu V.
2018-01-01
A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.
Three-dimensional model of heat transport during In Situ Vitrification with melting and cool down
International Nuclear Information System (INIS)
Hawkes, G.L.
1993-01-01
A potential technology for permanent remediation of buried wastes is the In Situ Vitrification (ISV) process. This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable, glasslike material that encapsulates and immobilizes buried wastes. The magnitude of the resulting electrical resistance heating is sufficient to cause soil melting. As the molten region grows, surface heat losses cause the soil near the surface to re solidify. This paper presents numerical results obtained by considering heat transport and melting when solving the conservation of mass and energy equations using finite element methods. A local heat source is calculated by solving the electric field equation and calculating a Joule Heat source term. The model considered is a three-dimensional model of the electrodes and surrounding soil. Also included in the model is subsidence; where the surface of the melted soil subsides due to the change in density when the soil melts. A power vs. time profile is implemented for typical ISV experiments. The model agrees well with experimental data for melt volume and melt shape
Theory for the three-dimensional Mercedes-Benz model of water
Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.
2009-11-01
The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.
Theory for the three-dimensional Mercedes-Benz model of water.
Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A
2009-11-21
The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.
Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng
2016-08-01
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
Three-dimensional model of a selective theophylline-binding RNA molecule
Energy Technology Data Exchange (ETDEWEB)
Tung, Chang-Shung; Oprea, T.I.; Hummer, G.; Garcia, A.E.
1995-07-01
We propose a three-dimensional (3D) model for an RNA molecule that selectively binds theophylline but not caffeine. This RNA, which was found using SELEX [Jenison, R.D., et al., Science (1994) 263:1425] is 10,000 times more specific for theophylline (Kd=320 nM) than for caffeine (Kd=3.5 mM), although the two ligands are identical except for a methyl group substituted at N7 (present only in caffeine). The binding affinity for ten xanthine-based ligands was used to derive a Comparative Molecular Field Analysis (CoMFA) model (R{sup 2} = 0.93 for 3 components, with cross-validated R{sup 2} of 0.73), using the SYBYL and GOLPE programs. A pharmacophoric map was generated to locate steric and electrostatic interactions between theophylline and the RNA binding site. This information was used to identify putative functional groups of the binding pocket and to generate distance constraints. Based on a model for the secondary structure (Jenison et al., idem), the 3D structure of this RNA was then generated using the following method: each helical region of the RNA molecule was treated as a rigid body; single-stranded loops with specific end-to-end distances were generated. The structures of RNA-xanthine complexes were studied using a modified Monte Carlo algorithm. The detailed structure of an RNA-ligand complex model, as well as possible explanations for the theophylline selectivity will be discussed.
Large eddy simulation of new subgrid scale model for three-dimensional bundle flows
International Nuclear Information System (INIS)
Barsamian, H.R.; Hassan, Y.A.
2004-01-01
Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)
A three-dimensional laboratory steam injection model allowing in situ saturation measurements
Energy Technology Data Exchange (ETDEWEB)
Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.
1992-08-01
The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.
Three-dimensional MR microscopy of a transgenic mouse model of dilated cardiomyopathy
Energy Technology Data Exchange (ETDEWEB)
Sze, R.W.; Strife, J.L. [Dept. of Radiology, Children' s Hospital Medical Center, Cincinnati, OH (United States); Chan, C.B.; Sanbe, A.; Robbins, J. [Div. of Molecular Cardiovascular Biology, Department of Pediatrics, Children' s Hospital Research Foundation, Cincinnati, OH (United States); Dardzinski, B.J.; Dunn, S.; Schmithorst, V.; Holland, S.K. [Imaging Research Center, Children' s Hospital Medical Center, Cincinnati, OH (United States)
2001-02-01
Background. Scientists are now able to alter the genetics of vertebrate embryos routinely to produce animal models of human developmental diseases. However, our understanding of structural changes in these animal models is limited by current methodologies. Histological techniques, although providing great anatomic detail, display only ''static'' data (one time point only) in two dimensions. Ultrasound may be used to generate continuous time course data, but is limited by interobserver variation, limited acoustic windows, and relatively low resolution. Objective. To apply the high resolution, non-destructive, and three-dimensional acquisition capabilities of magnetic resonance (MR) microscopy to compare the hearts of normal mice versus an established transgenic mouse model of dilated cardiomyopathy. Materials and methods. Transgenic mice exhibiting dilated cardiomyopathy were developed via the introduction of a mutated, heart-specific gene (myosin light chain). Post-mortem cardiac imaging was performed on the transgenic mice and normal controls. MR imaging was performed on a Bruker 3T imaging magnet using a custom radiofrequency coil following contrast perfusion of the atrial and ventricular chambers. Image resolution was 156 {mu}m isotropic voxels. MR images were compared to gross pathologic specimens. Imaging data were post-processed using custom software to calculate the volumes of the atria and ventricles and to display the three-dimensional morphology of the chambers and myocardium. Results. Of the seven mice scanned, four exhibited normal right atrial (average = 14.8 {mu}l {+-} 1.4), left atrial (average = 8.5 {mu}l {+-} 0.3), right ventricular (average = 12.9 {mu}l {+-} 2.7), and left ventricular (average 3.3 {mu}l {+-} 0.5) volumes. Three mice exhibited dilatation of the right and left cardiac chambers (RA average = 23.9 {mu}l {+-} 5.6; LA average = 15.9 {mu}l {+-} 4.8; RV average = 32.5 {mu}l {+-} 6.8; LV average 24.0 {mu}l {+-} 1
Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models
Directory of Open Access Journals (Sweden)
Liyu Tang
2017-12-01
Full Text Available Virtual geographic environments (VGEs have been regarded as an important new means of simulating, analyzing, and understanding complex geological processes. Plants and light are major components of the geographic environment. Light is a critical factor that affects ecological systems. In this study, we focused on simulating light transmission and distribution within a three-dimensional plant canopy model. A progressive refinement radiosity algorithm was applied to simulate the transmission and distribution of solar light within a detailed, three-dimensional (3D loquat (Eriobotrya japonica Lindl. canopy model. The canopy was described in three dimensions, and each organ surface was represented by a set of triangular facets. The form factors in radiosity were calculated using a hemi-cube algorithm. We developed a module for simulating the instantaneous light distribution within a virtual canopy, which was integrated into ParaTree. We simulated the distribution of photosynthetically active radiation (PAR within a loquat canopy, and calculated the total PAR intercepted at the whole canopy scale, as well as the mean PAR interception per unit leaf area. The ParaTree-integrated radiosity model simulates the uncollided propagation of direct solar and diffuse sky light and the light-scattering effect of foliage. The PAR captured by the whole canopy based on the radiosity is approximately 9.4% greater than that obtained using ray tracing and TURTLE methods. The latter methods do not account for the scattering among leaves in the canopy in the study, and therefore, the difference might be due to the contribution of light scattering in the foliage. The simulation result is close to Myneni’s findings, in which the light scattering within a canopy is less than 10% of the incident PAR. Our method can be employed for visualizing and analyzing the spatial distribution of light within a canopy, and for estimating the PAR interception at the organ and canopy
Directory of Open Access Journals (Sweden)
V. Couvreur
2012-08-01
Full Text Available Many hydrological models including root water uptake (RWU do not consider the dimension of root system hydraulic architecture (HA because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution SSF, the root system equivalent conductance K_{rs} and the compensatory RWU conductance K_{comp}. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation.
Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.
Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M
2014-01-01
The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.
Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario
2018-02-01
A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.
Directory of Open Access Journals (Sweden)
Luis Gutierrez-Heredia
Full Text Available Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters, but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon and freeware (123D Catch, Meshmixer and Netfabb, allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.
Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G
2016-01-01
Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.
Vertex shading of the three-dimensional model based on ray-tracing algorithm
Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan
2016-10-01
Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Tam, Zhi Yang; Cai, Yi Hui; Gunawan, Rudiyanto
2010-11-17
Mitochondrial regulation of apoptosis depends on the programmed release of proapoptotic proteins such as cytochrome c (Cyt c) through the outer mitochondrial membrane (OMM). Although a few key processes involved in this release have been identified, including the liberation of inner membrane-bound Cyt c and formation of diffusible pores on the OMM, other details like the transport of Cyt c within complex mitochondrial compartments, e.g., the cristae and crista junctions, are not yet fully understood (to our knowledge). In particular, a remodeling of the inner mitochondrial membrane accompanying apoptosis seen in a few studies, in which crista junctions widen, has been hypothesized to be a necessary step in the Cyt c release. Using a three-dimensional spatial modeling of mitochondrial crista and the crista junction, model simulations and analysis illustrated how the interplay among solubilization of Cyt c, fast diffusion of Cyt c, and OMM permeabilization gives rise to the observed experimental release profile. Importantly, the widening of the crista junction was found to have a negligible effect on the transport of free Cyt c from cristae. Finally, model simulations showed that increasing the fraction of free/loosely-bound Cyt c can sensitize the cell to apoptotic stimuli in a threshold manner, which may explain increased sensitivity to cell death associated with aging. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Three-dimensional (3D) printed endovascular simulation models: a feasibility study.
Mafeld, Sebastian; Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob
2017-02-01
Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Initial data supports the value of 3D printed endovascular models although further educational validation is required.
Condro, A. A.; Pawitan, H.; Risdiyanto, I.
2018-05-01
Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.
A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models
Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.
2016-03-01
Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.
Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes
International Nuclear Information System (INIS)
Abbaspour, Ali; Luo Jingli; Nandakumar, K.
2010-01-01
A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.
Three-dimensional microstructure-based micromechanical modeling for TC6 titanium alloy
Energy Technology Data Exchange (ETDEWEB)
Li, Guoju; Shi, Ran [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China); Fan, Qunbo, E-mail: fanqunbo@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China); Xia, Yumeng; Zhang, Hongmei [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China)
2017-02-08
A new in-depth evaluation of the micromechanical response of TC6 (Ti–6Al–1.5Cr–2.5Mo–0.5Fe–0.3Si) titanium alloy subjected to uniaxial tensile loading is performed based on micromechanical modeling. This evaluation includes reconstruction of the three-dimensional annealed microstructure (annealing at 800 °C for 2 h, then air cooled) of the alloy via dual-energy micro-computed tomography. In addition, constitutive relations of the constituent phases were determined via synchrotron-based in-situ high-energy X-ray diffraction and a self-consistent model as well as nanoindentation tests combined with finite element modeling. The results revealed that the stress concentration was translated from the primary α phase to the secondary α phase, then to the β phase. Moreover, the stress generated was re-transferred to the primary α phase when the strain was increased from 0.00 to 0.05. This transfer is indicative of crack initiation in the primary α grains.
In vitro three-dimensional cancer metastasis modeling: Past, present, and future
International Nuclear Information System (INIS)
Han Wei-jing; Zhu Jiang-rui; Fan Qihui; Liu Li-yu; Yuan Wei; Qu Junle
2016-01-01
Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our understanding of the progression of malignancy. However, most of the molecular mechanisms fail to address the causes of cancer and its evolutionary origin, demonstrating an inability to find a solution for complete cure of cancer. After being a neglected area of tumor biology for quite some time, recently several studies have focused on the impact of the tumor microenvironment on cancer growth. The importance of the tumor microenvironment is gradually gaining attention, particularly from the perspective of biophysics. In vitro three-dimensional (3-D) metastatic models are an indispensable platform for investigating the tumor microenvironment, as they mimic the in vivo tumor tissue. In 3-D metastatic in vitro models, static factors such as the mechanical properties, biochemical factors, as well as dynamic factors such as cell–cell, cell–ECM interactions, and fluid shear stress can be studied quantitatively. With increasing focus on basic cancer research and drug development, the in vitro 3-D models offer unique advantages in fundamental and clinical biomedical studies. (topical review)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2014-06-01
There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.
Three-dimensional Subsurface Geological Modeling of the Western Osaka Plane based on Borehole Data
Nonogaki, S.; Masumoto, S.; Nemoto, T.
2012-12-01
Three-dimensional (3D) geological model of subsurface structure plays an important role in developing infrastructures. In particular, the 3D geological model in urban area is quite helpful to solve social problems such as underground utilization, environmental preservation, and disaster assessment. Over the past few years, many studies have been made on algorithms for 3D geological modeling. However, most of them have given little attention to objectivity of the model and traceability of modeling procedures. The purpose of this study is to develop an algorithm for constructing a 3D geological model objectively and for maintaining high-traceability of modeling procedures. For the purpose of our work, we proposed a new algorithm for 3D geological modeling using gridded geological boundary surfaces and the "logical model of geologic structure". The geological boundary surface is given by a form of Digital Elevation Model (DEM). The DEM is generated based on geological information such as elevation, strike and dip by using a unique spline-fitting method. The logical model of geological structure is a mathematical model that defines a positional relation between geological boundary surfaces and geological units. The model is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. We applied the proposed algorithm into constructing a 3D subsurface geological model of the western Osaka Plane, southwest Japan. The data used for 3D geological modeling is a set of borehole data provided by Osaka City and Kansai Geoinformatics Agency. As a result, we constructed a 3D model consistent with the subjective model reported in other studies. In addition, all information necessary for modeling, such as the used geological information, the parameters of surface fitting, and the logical model, was stored in text files. In conclusion, we can not only construct 3D geological model objectively but also maintain high
Modest, Mara C; Moore, Eric J; Abel, Kathryn M Van; Janus, Jeffrey R; Sims, John R; Price, Daniel L; Olsen, Kerry D
2017-01-01
Discuss current techniques utilizing the scapular tip and subscapular system for free tissue reconstruction of maxillary defects and highlight the impact of medical modeling on these techniques with a case series. Case review series at an academic hospital of patients undergoing maxillectomy + thoracodorsal scapula composite free flap (TSCF) reconstruction. Three-dimensional (3D) models were used in the last five cases. 3D modeling, surgical, functional, and aesthetic outcomes were reviewed. Nine patients underwent TSCF reconstruction for maxillectomy defects (median age = 43 years; range, 19-66 years). Five patients (55%) had a total maxillectomy (TM) ± orbital exenteration, whereas four patients (44%) underwent subtotal palatal maxillectomy. For TM, the contralateral scapula tip was positioned with its natural concavity recreating facial contour. The laterally based vascular pedicle was ideally positioned for facial vessel anastomosis. For subtotal-palatal defect, an ipsilateral flap was harvested, but inset with the convex surface facing superiorly. Once 3D models were available from our anatomic modeling lab, they were used for intraoperative planning of the last five patients. Use of the model intraoperatively improved efficiency and allowed for better contouring/plating of the TSCF. At last follow-up, all patients had good functional outcomes. Aesthetic outcomes were more successful in patients where 3D-modeling was used (100% vs. 50%). There were no flap failures. Median follow-up >1 month was 5.2 months (range, 1-32.7 months). Reconstruction of maxillectomy defects is complex. Successful aesthetic and functional outcomes are critical to patient satisfaction. The TSCF is a versatile flap. Based on defect type, choosing laterality is crucial for proper vessel orientation and outcomes. The use of internally produced 3D models has helped refine intraoperative contouring and flap inset, leading to more successful outcomes. 4. Laryngoscope, 127:E8-E14
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model
Markowich, Peter A.; Titi, Edriss S; Trabelsi, Saber
2016-01-01
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy's law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm. © 2016 IOP Publishing Ltd & London Mathematical Society.
Three-dimensional modelling of thermal stress in floating zone silicon crystal growth
Plate, Matiss; Krauze, Armands; Virbulis, Jānis
2018-05-01
During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.
Advanced three-dimensional thermal modeling of a baseline spent fuel repository
International Nuclear Information System (INIS)
Altenbach, T.J.; Lowry, W.E.
1980-01-01
A three-dimensional thermal analysis using finite difference techniques was performed to determine the near-field response of a baseline spent fuel repository in a deep geologic salt medium. A baseline design incorporates previous thermal modeling experience and OWI recommendations for areal thermal loading in specifying the waste form properties, package details, and emplacement configuration. The base case in this thermal analysis considers one 10-year old PWR spent fuel assembly emplaced to yield a 36 kW/acre (8.9 W/m 2 ) loading. A unit cell model in an infinite array is used to simplify the problem and provide upper-bound temperatures. Boundary conditions are imposed which allow simulations to 1000 years. Variations studied include a comparison of ventilated and unventilated storage room conditions, emplacement packages with and without air gaps surrounding the canister, and room cool-down scenarios with ventilation following an unventilated state for retrieval purposes. It was found that at this low-power level, ventilating the emplacement room has an immediate cooling influence on the canister and effectively maintains the emplacement room floor near the temperature of the ventilating air
Directory of Open Access Journals (Sweden)
Suzhi Xiao
2016-04-01
Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-04-28
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model.
Yamauchi, Kosei; Mitsunaga, Tohru
2018-03-01
In a previous study, we found that both synthetic 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) increased extracellular melanin content. 34'7TMQ increased the activity of melanogenic enzymes by stimulating the p38 pathway and the expression of microphthalmia-associated transcription factor (MITF). In contrast, 3MQ increased the activity of melanogenic enzymes without the involvement of MITF, which suggests that 3MQ inhibits the degradation of melanogenic enzymes. In the present study, we investigated the effects of 3MQ and 34'7TMQ on melanogenesis in normal human melanocytes and using a commercial three-dimensional (3D) skin model system. Both 3MQ and 34'7TMQ elongated the dendrites of normal human melanocytes from a Caucasian donor, but did not stimulate melanogenesis in the melanocytes. In the 3D skin model, which included melanocytes from an Asian donor, 3MQ and 34'7TMQ increased and elongated the melanocytes and showed a tendency to stimulate melanogenesis. These results suggest that 3MQ and 34'7TMQ could be put to practical use in skin care products and agents aimed at preventing hair graying.
Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model
Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber
2016-04-01
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.
Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model
Markowich, Peter A.
2016-03-09
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy\\'s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm. © 2016 IOP Publishing Ltd & London Mathematical Society.
Attempt to develop taste bud models in three-dimensional culture.
Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro
2011-09-01
Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.
Planning corrective osteotomy of the femoral bone using three-dimensional modeling. Part II
Directory of Open Access Journals (Sweden)
Vladimir E. Baskov
2017-10-01
Full Text Available Introduction. Three-dimensional (3D modeling and prototyping are increasingly being used in various branches of surgery for planning and performing surgical interventions. In orthopedics, this technology was first used in 1990 for performing knee-joint surgery. This was followed by the development of protocols for creating and applying individual patterns for navigation in the surgical interventions for various bones. Aim. The study aimed to develop a new 3D method for planning and performing corrective osteotomy of the femoral bone using an individual pattern and to identify the advantages of the proposed method in comparison with the standard method of planning and performing surgical intervention. Materials and methods. A new method for planning and performing corrective osteotomy of the femoral bone in children with various pathologies of the hip joint is presented. The outcomes of planning and performing corrective osteotomy of the femoral bone in 27 patients aged 5 to 18 years (32 hip joints with congenital and acquired deformity of the femoral bone were analyzed. Conclusion. The use of computer 3D modeling for planning and implementing corrective interventions on the femoral bone improves the treatment results owing to an almost perfect performance accuracy achieved by the minimization of possible human errors reduction in the surgery duration; and reduction in the radiation exposure for the patient.
Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.
2009-01-01
We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.
Zheng, Yuan-Fang
A three-dimensional, five link biped system is established. Newton-Euler state space formulation is employed to derive the equations of the system. The constraint forces involved in the equations can be eliminated by projection onto a smaller state space system for deriving advanced control laws. A model-referenced adaptive control scheme is developed to control the system. Digital computer simulations of point to point movement are carried out to show that the model-referenced adaptive control increases the dynamic range and speeds up the response of the system in comparison with linear and nonlinear feedback control. Further, the implementation of the controller is simpler. Impact effects of biped contact with the environment are modeled and studied. The instant velocity change at the moment of impact is derived as a function of the biped state and contact speed. The effects of impact on the state, as well as constraints are studied in biped landing on heels and toes simultaneously or on toes first. Rate and nonlinear position feedback are employed for stability of the biped after the impact. The complex structure of the foot is properly modeled. A spring and dashpot pair is suggested to represent the action of plantar fascia during the impact. This action prevents the arch of the foot from collapsing. A mathematical model of the skeletal muscle is discussed. A direct relationship between the stimulus rate and the active state is established. A piecewise linear relation between the length of the contractile element and the isometric force is considered. Hill's characteristic equation is maintained for determining the actual output force during different shortening velocities. A physical threshold model is proposed for recruitment which encompasses the size principle, its manifestations and exceptions to the size principle. Finally the role of spindle feedback in stability of the model is demonstrated by study of a pair of muscles.
Verifying three-dimensional skull model reconstruction using cranial index of symmetry.
Directory of Open Access Journals (Sweden)
Woon-Man Kung
Full Text Available BACKGROUND: Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS. MATERIALS AND METHODS: From January 2011 to June 2012, decompressive craniectomy (DC was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. RESULTS: CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47-99.84. CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test. These data evidenced the highly accurate symmetry of these CAD models with regular contours. CONCLUSIONS: CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation.
Three-dimensional eddy current solution of a polyphase machine test model (abstract)
Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado
1994-05-01
This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.
Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng
2012-12-01
Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.
Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data
Directory of Open Access Journals (Sweden)
Nengchao Lyu
2017-02-01
Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.
Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi
2013-01-01
The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.
Directory of Open Access Journals (Sweden)
S. N. S. Jamaludin
2014-01-01
Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.
Three-Dimensional (3D Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling
Directory of Open Access Journals (Sweden)
Susanna Fafenrot
2017-10-01
Full Text Available Fused deposition modeling (FDM is a three-dimensional (3D printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid (PLA printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea
2017-10-19
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.
Application of three dimensional finite element modeling for the simulation of machining processes
International Nuclear Information System (INIS)
Fischer, C.E.; Wu, W.T.; Chigurupati, P.; Jinn, J.T.
2004-01-01
For many years, metal cutting simulations have been performed using two dimensional approximations of the actual process. Factors such as chip morphology, cutting force, temperature, and tool wear can all be predicted on the computer. However, two dimensional simulation is limited to processes which are orthogonal, or which can be closely approximated as orthogonal.Advances in finite element technology, coupled with continuing improvement in the availability of low cost, high performance computer hardware, have made the three dimensional simulation of a large variety of metal cutting processes practical. Specific improvements include efficient FEM solvers, and robust adaptive remeshing. As researchers continue to gain an improved understanding of wear, material representation, tool coatings, fracture, and other such phenomena, the machining simulation system also must adapt to incorporate these evolving models.To demonstrate the capabilities of the 3D simulation system, a variety of drilling, milling, and turning processes have been simulated and will be presented in this paper. Issues related to computation time and simulation accuracy will also be addressed
The modulation of galactic cosmic rays as described by a three-dimensional drift model
International Nuclear Information System (INIS)
Potgieter, M.S.
1984-01-01
An outline of the present state of knowledge about the effect of drift on the modulation of galactic cosmic rays is given. Various observations related to the reversal of the solar magnetic field polarity are discussed. Comprehensive numerical solutions of the steady-state cosmic-ray transport equation in an axially-symmetric three-dimensional heliosphere, including drift are presented. This is an extention of the continuing effort of the past six years to understand the effect and importance of drift on the transport of galactic cosmic rays in the heliosphere. A flat neutral sheet which coincides with the equatorial plane is assumed. A general method of calculating the drift velocity in the neutral sheet including that used previously by other authors is presented. The effect of changing various modulation parameters on the drift solutions are illustrated in detail. The real significance of drift is illustrated by using Gaussian input spectra on the modulation boundary. A carefully selected set of modulation parameters is used to illustrate to what extent a drift model can explain prominent observational features. It is concluded that drift is important in in the process of cosmic-ray transport and must as such be considered in all modulation studies, but that it is not overwhelmingly dominant as previously anticipated
International Nuclear Information System (INIS)
Lacey, G.; Thenoux, G.; Rodriguez-Roa, F.
2008-01-01
In accordance with the present development of empirical-mechanistic tools, this paper presents an alternative to traditional analysis methods for flexible pavements using a three-dimensional finite element formulation based on a liner-elastic perfectly-plastic Drucker-Pager model for granular soil layers and a linear-elastic stress-strain law for the asphalt layer. From the sensitivity analysis performed, it was found that variations of +-4 degree in the internal friction angle of granular soil layers did not significantly affect the analyzed pavement response. On the other hand, a null dilation angle is conservatively proposed for design purposes. The use of a Light Falling Weight Deflectometer is also proposed as an effective and practical tool for on-site elastic modulus determination of granular soil layers. However, the stiffness value obtained from the tested layer should be corrected when the measured peak deflection and the peak force do not occur at the same time. In addition, some practical observations are given to achieve successful field measurements. The importance of using a 3D FE analysis to predict the maximum tensile strain at the bottom of the asphalt layer (related to pavement fatigue) and the maximum vertical comprehensive strain transmitted to the top of the granular soil layers (related to rutting) is also shown. (author)
Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams
International Nuclear Information System (INIS)
Pizzo, V.J.
1982-01-01
The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream
Three-dimensional wave-induced current model equations and radiation stresses
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.
Directory of Open Access Journals (Sweden)
Cemal Cagatay Bilgin
Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.
Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data
International Nuclear Information System (INIS)
Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen
2014-01-01
Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three
Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred
2018-04-01
Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http
Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics
Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike
2014-05-01
Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.
Three-dimensional Kinetic Pulsar Magnetosphere Models: Connecting to Gamma-Ray Observations
Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Harding, Alice K.; Kazanas, Demosthenes
2018-04-01
We present three-dimensional (3D) global kinetic pulsar magnetosphere models, where the charged particle trajectories and the corresponding electromagnetic fields are treated self-consistently. For our study, we have developed a Cartesian 3D relativistic particle-in-cell code that incorporates radiation reaction forces. We describe our code and discuss the related technical issues, treatments, and assumptions. Injecting particles up to large distances in the magnetosphere, we apply arbitrarily low to high particle injection rates, and obtain an entire spectrum of solutions from close to the vacuum-retarded dipole to close to the force-free (FF) solution, respectively. For high particle injection rates (close to FF solutions), significant accelerating electric field components are confined only near the equatorial current sheet outside the light cylinder. A judicious interpretation of our models allows the particle emission to be calculated, and consequently, the corresponding realistic high-energy sky maps and spectra to be derived. Using model parameters that cover the entire range of spin-down powers of Fermi young and millisecond pulsars, we compare the corresponding model γ-ray light curves, cutoff energies, and total γ-ray luminosities with those observed by Fermi to discover a dependence of the particle injection rate, { \\mathcal F }, on the spin-down power, \\dot{{ \\mathcal E }}, indicating an increase of { \\mathcal F } with \\dot{{ \\mathcal E }}. Our models, guided by Fermi observations, provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed γ-ray phenomenologies of both young and millisecond pulsars.
Three-dimensional electrical resistivity model of a nuclear waste disposal site
International Nuclear Information System (INIS)
Rucker, Dale F.; Levitt, Marc T.; Greenwood, William J.
2009-01-01
A three-dimensional (3D) modeling study was completed on a very large electrical resistivity survey conducted at a nuclear waste site in eastern Washington. The acquisition included 47 pole-pole two dimensional (2D) resistivity profiles collected along parallel and orthogonal lines over an area of 850 m-570 m. The data were geo-referenced and inverted using EarthImager3D (EI3D). EI3D runs on a Microsoft 32-bit operating system (e.g. WIN-2K, XP) with a maximum usable memory of 2 GB. The memory limits the size of the domain for the inversion model to 200 m-200 m, based on the survey electrode density. Therefore, a series of increasing overlapping models were run to evaluate the effectiveness of dividing the survey area into smaller subdomains. The results of the smaller subdomains were compared to the inversion results of a single domain over a larger area using an upgraded form of EI3D that incorporates multi-processing capabilities and 32 GB of RAM memory. The contours from the smaller subdomains showed discontinuity at the boundaries between the adjacent models, which do not match the hydrogeologic expectations given the nature of disposal at the site. At several boundaries, the contours of the low resistivity areas close, leaving the appearance of disconnected plumes or open contours at boundaries are not met with a continuance of the low resistivity plume into the adjacent subdomain. The model results of the single large domain show a continuous monolithic plume within the central and western portion of the site, directly beneath the elongated trenches. It is recommended that where possible, the domain not be subdivided, but instead include as much of the domain as possible given the memory of available computing resources.
Lima, L. S.
2018-06-01
We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.
Accuracy of open-source software segmentation and paper-based printed three-dimensional models.
Szymor, Piotr; Kozakiewicz, Marcin; Olszewski, Raphael
2016-02-01
In this study, we aimed to verify the accuracy of models created with the help of open-source Slicer 3.6.3 software (Surgical Planning Lab, Harvard Medical School, Harvard University, Boston, MA, USA) and the Mcor Matrix 300 paper-based 3D printer. Our study focused on the accuracy of recreating the walls of the right orbit of a cadaveric skull. Cone beam computed tomography (CBCT) of the skull was performed (0.25-mm pixel size, 0.5-mm slice thickness). Acquired DICOM data were imported into Slicer 3.6.3 software, where segmentation was performed. A virtual model was created and saved as an .STL file and imported into Netfabb Studio professional 4.9.5 software. Three different virtual models were created by cutting the original file along three different planes (coronal, sagittal, and axial). All models were printed with a Selective Deposition Lamination Technology Matrix 300 3D printer using 80 gsm A4 paper. The models were printed so that their cutting plane was parallel to the paper sheets creating the model. Each model (coronal, sagittal, and axial) consisted of three separate parts (∼200 sheets of paper each) that were glued together to form a final model. The skull and created models were scanned with a three-dimensional (3D) optical scanner (Breuckmann smart SCAN) and were saved as .STL files. Comparisons of the orbital walls of the skull, the virtual model, and each of the three paper models were carried out with GOM Inspect 7.5SR1 software. Deviations measured between the models analysed were presented in the form of a colour-labelled map and covered with an evenly distributed network of points automatically generated by the software. An average of 804.43 ± 19.39 points for each measurement was created. Differences measured in each point were exported as a .csv file. The results were statistically analysed using Statistica 10, with statistical significance set at p paper-based Mcor Matrix 300 3D printer is comparable to those of other commonly used
SU-E-T-754: Three-Dimensional Patient Modeling Using Photogrammetry for Collision Avoidance
Energy Technology Data Exchange (ETDEWEB)
Popple, R; Cardan, R [Univ Alabama Birmingham, Birmingham, AL (United States)
2015-06-15
Purpose: To evaluate photogrammetry for creating a three-dimensional patient model. Methods: A mannequin was configured on the couch of a CT scanner to simulate a patient setup using an indexed positioning device. A CT fiducial was placed on the indexed CT table-overlay at the reference index position. Two dimensional photogrammetry targets were placed on the table in known positions. A digital SLR camera was used to obtain 27 images from different positions around the CT table. The images were imported into a commercial photogrammetry package and a 3D model constructed. Each photogrammetry target was identified on 2 to 5 images. The CT DICOM metadata and the position of the CT fiducial were used to calculate the coordinates of the photogrammetry targets in the CT image frame of reference. The coordinates were transferred to the photogrammetry software to orient the 3D model. The mannequin setup was transferred to the treatment couch of a linear accelerator and positioned at isocenter using in-room lasers. The treatment couch coordinates were noted and compared with prediction. The collision free regions were measured over the full range of gantry and table motion and were compared with predictions obtained using a general purpose polygon interference algorithm. Results: The reconstructed 3D model consisted of 180000 triangles. The difference between the predicted and measured couch positions were 5 mm, 1 mm, and 1 mm for longitudinal, lateral, and vertical, respectively. The collision prediction tested 64620 gantry table combinations in 11.1 seconds. The accuracy was 96.5%, with false positive and negative results occurring at the boundaries of the collision space. Conclusion: Photogrammetry can be used as a tool for collision avoidance during treatment planning. The results indicate that a buffer zone is necessary to avoid false negatives at the boundary of the collision-free zone. Testing with human patients is underway. Research partially supported by a grant
International Nuclear Information System (INIS)
Wei Xin; Zhong Liming; Xie Xiaodong; Wang Chaohua; You Jian; Hu Hong; Hu Kongqiong; Zhao Xiaowei
2012-01-01
Objective: To explore virtual three-dimensional (3D) model for intravascular interventional devices,the method of preoperative simulation and its value in clinical work. Methods: The virtual models including catheter, guide wire, stent and coil were established by using the 3D moulding software of 3D Studio MAX R3. The interventional preoperative simulation was performed on personal computer including 21 patients of cerebral aneurysm embolization (anterior communicating artery 5, posterior communicating artery 10,middle cerebral artery 3, internal carotid artery 2, and vertebral artery 1), during interventional procedures, the surgeon relied on the simulation results for plastic micro-guide wire, catheter and the release of micro-coils and stents. Results: (1) All the virtual instruments and real instruments had similar shape,the overall tine for constructing virtual model was about 20 hours. The preoperative simulation took 50 to 80 minutes. (2) The simulation result of catheter insertion in the 18 cases had relevant value to guide micro-catheter, molding micro-guide wire tip, and shortened the operating time. For embolization, the simulation results of filling coil and releasing stent were similar to surgical results in 76% of the patients (16/21). (3)For teaching and training, 93% (38/41) of doctors in training believed that preoperative simulation facilitated the understanding of surgery. Conclusions: The method of virtual model of intravascular interventional devices was reliable. The preoperative simulation results could be used to guide practical clinical operation with relatively high degree of similarity, and could play a role in promoting researches on interventional virtual operations. (authors)
Using three-dimensional plant root architecture in models of shallow-slope stability.
Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia
2008-05-01
The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.
Verification of a three-dimensional resin transfer molding process simulation model
Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson
1995-01-01
Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.
PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS
International Nuclear Information System (INIS)
Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.
2010-01-01
Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.
Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo
2017-01-01
The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.
Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
Liu, Haihu; Valocchi, Albert J; Kang, Qinjun
2012-04-01
We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35
Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice
Energy Technology Data Exchange (ETDEWEB)
Mijailovich, Srboljub M.; Kayser-Herold, Oliver; Stojanovic, Boban; Nedic, Djordje; Irving, Thomas C.; Geeves, MA (Harvard); (IIT); (U. Kent); (Kragujevac)
2016-11-18
The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to
Measuring and modeling of a three-dimensional tracer transport in a planted soil column
Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.
2013-12-01
Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for
Visualizing Three-dimensional Slab Geometries with ShowEarthModel
Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.
2017-12-01
Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.
Alessi, Roberto; Pham, Kim
2016-02-01
This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.
Directory of Open Access Journals (Sweden)
Jie Ni
2016-02-01
Full Text Available Prostate cancer (CaP is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D ultrasound system equipped with photoacoustic (PA imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8. Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001. The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.
International Nuclear Information System (INIS)
Billaux, D.; Long, J.C.S.; Peterson, J.E. Jr.
1990-03-01
A model for channelized flow in three-dimensional, random networks of fractures has been developed. In this model, the fractures are disc-shaped discontinuities in an impermeable matrix. Within each fracture, flow occurs only in a network of random channels. The channels in each fracture can be generated independently with random distributions of length, conductivity, and orientation in the fracture plane. Boundary conditions are specified on the sides of a ''flow region,'' and at the intersections of the channels with interior ''holes'' specified by the user to simulate boreholes or drifts. This code is part of a set of programs used to generate two-dimensional or three-dimensional random fracture networks, plot them, compute flow through them and analyze the results. 8 refs., 13 figs
Energy Technology Data Exchange (ETDEWEB)
Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)
2008-10-21
Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.
International Nuclear Information System (INIS)
Boyd, J; Buick, J M
2008-01-01
Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.
Three-dimensional hydrogel cell culture systems for modeling neural tissue
Frampton, John
Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was
Directory of Open Access Journals (Sweden)
Hainian Wang
2014-02-01
Full Text Available X-ray CT (computed tomography was used to scan asphalt mixture specimen to obtain high resolution continuous cross-section images and the meso-structure. According to the theory of three-dimensional (3D reconstruction, the 3D reconstruction algorithm was investigated in this paper. The key to the reconstruction technique is the acquisition of the voxel positions and the relationship between the pixel element and node. Three-dimensional numerical model of asphalt mixture specimen was created by a self-developed program. A splitting test was conducted to predict the stress distributions of the asphalt mixture and verify the rationality of the 3D model.
A computational model to generate simulated three-dimensional breast masses
Energy Technology Data Exchange (ETDEWEB)
Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)
2015-02-15
Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and
A computational model to generate simulated three-dimensional breast masses
International Nuclear Information System (INIS)
Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.
2015-01-01
Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and
A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.
Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa
2015-06-25
The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gatherwright, James R; Brown, Matthew S; Katira, Kristopher M; Rowe, David J
2015-08-01
Three-dimensional (3D) changes in the midface following malar calcium hydroxyapatite (CaHa) injection have not been systematically analyzed. The authors analyzed 3D volume changes in midface and naso-labial fold (NLF) volume, as well as lateral movement in the NLF/naso-labial crease (NLC) junction following malar injection of CaHa in a cadaver model. A single surgeon injected CaHa in the supraperiosteal plane. Sequential images were obtained with the VECTRA 3D system pre- and post-1.5- and 3-cc CaHa injections. All measurements were performed by a single examiner. Injection location was verified anatomically. Injections were performed in 16 fresh cadaver hemi-faces. Maximal increases in projection were centered on the malar injection site, with associated decreases in projection and volume in the infero-medial locations. Relative mean increases in volume of 3.16 cc and 4.94 cc were observed following the 1.5-cc and 3-cc injections, respectively. There was a relative decrease in the volume of the NLF of -0.3 cc and -0.4 cc following the 1.5- and 3-cc injections, respectively. Injection of CaHa was associated with lateral movements of the NLF-NLC junction at the level of the nasal sill, philtral columns, and oral commissure, measuring 2.7, 2.5, and 1.9 mm and 2.8, 2.9, and 2.4 mm following the 1.5- and 3-cc injections, respectively. Anatomical dissection verified the location in the supraperiosteal space and within the middle malar fat pad. Following malar CaHa injection, 3D photographic analysis showed a measureable lifting effect with recruitment of ptotic tissue and lateral movement of the NLF-NLC junction in a cadaver model. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Energy Technology Data Exchange (ETDEWEB)
Qamar, I.; Bayles, G.A.; Tierney, J.W.; Chiang, S.-H.; Klinzing, G.E.
1987-01-01
A three dimensional bond-flow correlated network model has been successfully used to calculate equilibrium desaturation curves for coal filter cakes. A simple cubic lattice with the pore sizes correlated in the direction of macroscopic flow is used as the network. A new method of pore volume assignment is presented in which the pore volume occupied by the large pores (which give rise to capillary pressures less than a calculated critical value) is assigned to the nodes and the rest is distributed to the bonds according to an experimentally determined micrographic pore size distribution. Equilibrium desaturation curves for -32 mesh, -200 mesh and -100 + 200 mesh coal cakes (Pittsburgh Seam coal), formed with distilled water have been calculated. A bond flow correlation factor, F/sub c/ is introduced to account for channeling of the displacing fluid through high volume, low resistance flow paths - a phenomenon which is displayed by many real systems. It is determined that a single value of 0.6 for F/sub c/ is required for -32 mesh and -200 mesh coals. However, for -100 + 200 mesh coal, where all small as well as large particles have been removed, a value of 1.0 is required. The results of six -32 mesh cakes formed with surfactants show that the effect of surfactants can be accounted for by modifying one of the model parameters, the entry diameter correction. A correlation is presented to estimate the modified correction using experimentally determined surface tension and contact angle values. Further, the predicted final saturations agree with the experimental values within an average absolute error of 5%. 16 refs., 11 figs., 2 tabs.
Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.
2011-01-01
Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.
International Nuclear Information System (INIS)
Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.
2011-01-01
Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.
Hermenegildo, J A; Roberts, S L; Kim, S Y
2014-05-01
The relationship between the innervation pattern of the suprascapular nerve (SSN) and the muscle architecture of supraspinatus has not been thoroughly investigated. The supraspinatus is composed of two architecturally distinct regions: anterior and posterior. Each of these regions is further subdivided into three parts: superficial, middle and deep. The purpose of this study was to investigate the course of the SSN throughout the volume of supraspinatus and to relate the intramuscular branches to the distinct regions and parts of the supraspinatus. The SSN was dissected in thirty formalin embalmed cadaveric specimens and digitized throughout the muscle volume in six of those specimens. The digitized data were modeled using Autodesk(®) Maya(®) 2011. The three-dimensional (3D) models were used to relate the intramuscular innervation pattern to the muscle and tendon architecture defined by Kim et al. (2007, Clin Anat 20:648-655). The SSN bifurcated into two main trunks: medial and lateral. All parts of the anterior region were predominantly innervated by the medial trunk and its proximal and medial branches, whereas all parts of the posterior region predominantly by the lateral trunk and its posterolateral and/or posteromedial branches. The posterior region also received innervation from the proximal branch of the medial trunk in half of the specimens. These findings provide evidence that the anterior and posterior regions are distinct with respect to their innervation. The 3D map of the innervation pattern will aid in planning future clinical studies investigating muscle activation patterns and provide insight into possible injury of the nerve with supraspinatus pathology and surgical techniques. Copyright © 2013 Wiley Periodicals, Inc.
STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere
Directory of Open Access Journals (Sweden)
B. Grassi
2002-06-01
Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3
STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere
Directory of Open Access Journals (Sweden)
B. Grassi
Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO_{3} and O_{3} data, showing also very low O_{3} values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO_{3} capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O_{3} destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it
Ho, Q.T.; Berghuijs, H.N.C.; Watté, R.; Verboven, P.; Herremans, E.; Yin, X.; Retta, M.A.; Aernouts, B.; Saeys, W.; Helfen, L.; Farquhar, G.D.; Struik, P.C.; Nicolai, B.
2016-01-01
We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography,
Daniele Tonina; John M. Buffington
2009-01-01
A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...
Damayanti, Ista; Lilies, Latief, Benny S.
2017-02-01
Three-dimensional (3-D) printing has been identified as an innovative manufacturing technology of functional parts. The 3-D model was produced based on CT-Scan using Osyrix software, where automatic segmentation was performed and convert into STL format. This STL format was then ready to be produced physically, layer-by-layer to create 3-D model.
DEFF Research Database (Denmark)
Eldrup, Mads Røge; Andersen, Thomas Lykke
The present report presents results from a three-dimensional model test study carried out at Aalborg University in January 2018 with the new western breakwater in Port of Hanstholm as proposed by the contractor Aarsleff and their consultant Cowi. The objectives of the model tests were to study th...
Temmerman, S.; Bouma, T.J.; De Vries, M.B.; Wang, Z.B.; Govers, G.; Herman, P.M.J.
2005-01-01
A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model
Temmerman, S.; Bouma, T.J.; Govers, G.; Wang, Z.B.; de Vries, M.B.; Herman, P.M.J.
2005-01-01
A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model
Three-dimensional submodel for modelling of joints in precast concrete structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2016-01-01
The shear capacity of in-situ cast joints is crucial to the overall stability of precast concrete structures. The current design is based on empirical formulas, which account for neither the reinforcement layout of the joint nor the three-dimensional stress states present within the joint...
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
Three-dimensional modelling of an injection experiment in the anaerobic part of a landfill plume
DEFF Research Database (Denmark)
Juul Petersen, Michael; Engesgaard, Peter Knudegaard; Bjerg, Poul Løgstrup
1998-01-01
Analytical and numerical three-dimensional (3-D) simulations have been conducted and compared to data obtained from a large-scale (50 m), natural gradient field injection experiment. Eighteen different xenobiotic compounds (i.e. benzene, toluene, o-xylene, naphthalene, 1,1,1-TCA, PCE, and TCE...
Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto
2012-01-01
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…
Coupling reducing k-points for supercell models of defects in three-dimensional photonic crystals
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Bjarklev, Anders Overgaard
2004-01-01
The optimum choice of k-point for supercell calculations of defect states in a three-dimensional photonic crystal is investigated for the case of a supercell with a simple cubic (SC) structure. By using the k-point (1/4,1/4,1/4) it is possible to eliminate the symmetric part of the repeated...
and three-dimensional models for analysis of optical absorption in ...
Indian Academy of Sciences (India)
Unknown
The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near ... Optical band gap; two- and three-dimensional; optical absorption. 1. ..... ssion, New Delhi, in the form of a research project is.
Directory of Open Access Journals (Sweden)
A. V. Krasnyuk
2008-03-01
Full Text Available Three-dimensional design possibilities of the AutoCAD system for performing graphic tasks are presented in the article. On the basis of the studies conducted the features of application of computer-aided design system are noted and the methods allowing to decrease considerably the quantity of errors at making the drawings are offered.
International Nuclear Information System (INIS)
Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Whitney, Barbara A.; Wood, Kenneth
2011-01-01
With high-resolution infrared data becoming available that can probe the formation of high-mass stellar clusters for the first time, appropriate models that make testable predictions of these objects are necessary. We utilize a three-dimensional radiative transfer code, including a hierarchically clumped dusty envelope, to study the earliest stages of super star cluster (SSC) evolution. We explore a range of parameter space in geometric sequences that mimic the hypothesized evolution of an embedded SSC. The inclusion of a hierarchically clumped medium can make the envelope porous, in accordance with previous models and supporting observational evidence. The infrared luminosity inferred from observations can differ by a factor of two from the true value in the clumpiest envelopes depending on the viewing angle. The infrared spectral energy distribution also varies with viewing angle for clumpy envelopes, creating a range in possible observable infrared colors and magnitudes, silicate feature depths, and dust continua. General observable features of cluster evolution differ between envelopes that are relatively opaque or transparent to mid-infrared photons. For optically thick envelopes, evolution is marked by a gradual decline of the 9.8 μm silicate absorption feature depth and a corresponding increase in the visual/ultraviolet flux. For the optically thin envelopes, clusters typically begin with a strong hot dust component and silicates in emission, and these features gradually fade until the mid-infrared polycyclic aromatic hydrocarbon features are predominant. For the models with a smooth dust distribution, the Spitzer MIPS or Herschel PACS [70]-[160] color is a good probe of the stellar mass relative to the total mass or star formation efficiency (SFE). Likewise, the IRAC/MIPS [3.6]-[24] color can be used to constrain the R in and R out values of the envelope. However, clumpiness confuses the general trends seen in the smooth dust distribution models, making it
Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study
Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.
2017-08-01
The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.
Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model.
da Silva, Emmanuel João Nogueira Leal; Zaia, Alexandre A; Peters, Ove A
2017-06-01
The aim of the present study was to evaluate cytotoxic effects and cytokine production of calcium silicate-based sealers (EndoSeal, EndoSequence BC Sealer, and MTA Fillapex) using an in vitro root canal filling model and three-dimensional (3D) cell culture. AH Plus as a reference was compared to contemporary calcium silicate cements regarding cell viability and cytokine production. Root canals of 30 human maxillary incisors were prepared using a single-file reciprocating technique. The samples were randomly distributed and canals filled with either AH Plus, EndoSeal, EndoSequence BC Sealer, and MTA Fillapex (n = 6). In the negative control group, the root canal remained unfilled. Sealers were placed into the canals along with a gutta-percha cone placed to working length. Balb/c 3T3 fibroblasts, cultured in a type I collagen 3D scaffold, were exposed to filling material and the respective root apex for 24 h. Cytocompatibility of the materials was evaluated using the methyl-thiazoldiphenyl-tetrazolium (MTT) assay. The production of IL-1β, IL-6, and IL-8 was analyzed using enzyme-linked immunosorbent assay (ELISA). One-way analysis of variance was performed, and when the F-ratios were significant, data were compared by Duncan's multiple-range test. The alpha-type error was set at 0.05. EndoSeal, Endosequence BC Sealer and AH Plus showed cell viability that was similar to the negative control group (P > 0.05), while MTA Fillapex sealer was cytotoxic (P culture, AH Plus, EndoSeal, and EndoSequence BC Sealer were cytocompatible. These results may suggest that AH Plus, EndoSeal and EndoSequence BC Sealer may achieve better biological response when compared to MTA Fillapex.
Modeling of three-dimensional diffusible resistors with the one-dimensional tube multiplexing method
International Nuclear Information System (INIS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Meunier, Michel
2009-01-01
Electronic-behavior modeling of three-dimensional (3D) p + -π-p + and n + -ν-n + semiconducting diffusible devices with highly accurate resistances for the design of analog resistors, which are compatible with the CMOS (complementary-metal-oxide-semiconductor) technologies, is performed in three dimensions with the fast tube multiplexing method (TMM). The current–voltage (I–V) curve of a silicon device is usually computed with traditional device simulators of technology computer-aided design (TCAD) based on the finite-element method (FEM). However, for the design of 3D p + -π-p + and n + -ν-n + diffusible resistors, they show a high computational cost and convergence that may fail with fully non-separable 3D dopant concentration profiles as observed in many diffusible resistors resulting from laser trimming. These problems are avoided with the proposed TMM, which divides the 3D resistor into one-dimensional (1D) thin tubes with longitudinal axes following the main orientation of the average electrical field in the tubes. The I–V curve is rapidly obtained for a device with a realistic 3D dopant profile, since a system of three first-order ordinary differential equations has to be solved for each 1D multiplexed tube with the TMM instead of three second-order partial differential equations in the traditional TCADs. Simulations with the TMM are successfully compared to experimental results from silicon-based 3D resistors fabricated by laser-induced dopant diffusion in the gaps of MOSFETs (metal-oxide-semiconductor field-effect transistors) without initial gate. Using thin tubes with other shapes than parallelepipeds as ring segments with toroidal lateral surfaces, the TMM can be generalized to electronic devices with other types of 3D diffusible microstructures
Structural, functional and evolutionary study of in silico three dimensional model of pneumolysin
International Nuclear Information System (INIS)
Lutfullah, G.; Taj, S.; Bashir, K.; Khattak, S.U.
2017-01-01
Streptococcus pneumoniae, a gram-positive cocci shaped bacteria, is the major human pathogen, causing diseases like septic meningitis, otitis media, sinusitis, pneumonia and septicemia. The objective of present study is to gain more knowledge about the function of important domain of the toxin pneumolysin. This study aims to analyze the structural and functional features of pneumolysin and to investigate the residues involved in its pathogenicity.The major virulence factor of this bacterium is a protein, pneumolysin, which is the member of thiol-activated cytolysins. From the three dimensional homology model of the present study, it was found that pneumolysin has four domains, out of which domain 4 is of great importance. It was observed that Cys 428 and Trp 433 of pneumolysin are of great importance and any mutation in this region highly reduces its cytotoxicity. Cys 428 forms hydrophobic contact with Ala 373 and Trp 436 of the conserved region, while Trp 433 is bonded with Trp 436 and Arg 426 through hydrogen interactions .The particular cysteine residue is present at position 428 and is also sandwiched between beta-sheet and Trp 436. In pneumolysin, the undecapeptide or the Trp-rich loop spans the region (amino acid 427 to 437) and several single amino acid substitutions within this region reduce the cytolytic activity of pneumolysin by up to 99.9% as reported previously. The primary structure of pneumolysin has a total eight tryptophan residues and one cysteine. The undecapeptide region has three tryptophan and one cysteine residue containing 11 amino acid sequence i.e ECTGLAWEWWR. Cysteine 428 of pneumolysin present in trp-rich motif is responsible to act on cholestrol. Pairwise alignment reveals that pneumolysin do not have the N-terminus signal peptide sequence which is present in the template i.e. perfringolysin. This shows that pneumolysin is an intracellular protein and released only upon cell lysis. (author)
Three-dimensional HepaRG model as an attractive tool for toxicity testing.
Leite, Sofia B; Wilk-Zasadna, Iwona; Zaldivar, Jose M; Airola, Elodie; Reis-Fernandes, Marcos A; Mennecozzi, Milena; Guguen-Guillouzo, Christiane; Chesne, Christopher; Guillou, Claude; Alves, Paula M; Coecke, Sandra
2012-11-01
The culture of HepaRG cells as three dimensional (3D) structures in the spinner-bioreactor may represent added value as a hepatic system for toxicological purposes. The use of a cost-effective commercially available bioreactor, which is compatible with high-throughput cell analysis, constitutes an attractive approach for routine use in the drug testing industry. In order to assess specific aspects of the biotransformation capacity of the bioreactor-based HepaRG system, the induction of CYP450 enzymes (i.e., CYP1A2, 2B6, 2C9, and 3A4) and the activity of the phase II enzyme, uridine diphosphate glucuronoltransferase (UGT), were tested. The long-term functionality of the system was demonstrated by 7-week stable profiles of albumin secretion, CYP3A4 induction, and UGT activities. Immunofluorescence-based staining showed formation of tissue-like arrangements including bile canaliculi-like structures and polar distribution of transporters. The use of in silico models to analyze the in vitro data related to hepatotoxic activity of acetaminophen (APAP) demonstrated the advantage of the integration of kinetic and dynamic aspects for a better understanding of the in vitro cell behavior. The bioactivation of APAP and its related cytotoxicity was assessed in a system compatible to high-throughput screening. The approach also proved to be a good strategy to reduce the time necessary to obtain fully differentiated cell cultures. In conclusion, HepaRG cells cultured in 3D spinner-bioreactors are an attractive tool for toxicological studies, showing a liver-like performance and demonstrating a practical applicability for toxicodynamic approaches.
Accuracy of Currently Used Paper Burn Diagram vs a Three-Dimensional Computerized Model.
Benjamin, Nicole C; Lee, Jong O; Norbury, William B; Branski, Ludwik K; Wurzer, Paul; Jimenez, Carlos J; Benjamin, Debra A; Herndon, David N
Burn units have historically used paper diagrams to estimate percent burn; however, unintentional errors can occur. The use of a computer program that incorporates wound mapping from photographs onto a three-dimensional (3D) human diagram could decrease subjectivity in preparing burn diagrams and subsequent calculations of TBSA burned. Analyses were done on 19 burned patients who had an estimated TBSA burned of ≥20%. The patients were admitted to Shriners Hospitals for Children or the University of Texas Medical Branch in Galveston, Texas, from July 2012 to September 2013 for treatment. Digital photographs were collected before the patient's first surgery. Using BurnCase 3D (RISC Software GmbH, Hagenberg, Austria), a burn mapping software, the user traced partial- and full-thickness burns from photographs. The program then superimposed tracings onto a 3D model and calculated percent burned. The results were compared with the Lund and Browder diagrams completed after the first operation. A two-tailed t-test was used to calculate statistical differences. For partial-thickness burns, burn sizes calculated using Lund and Browder diagrams were significantly larger than those calculated using BurnCase 3D (15% difference, P < .01). The opposite was found for full-thickness burns, with burn sizes being smaller when calculated using Lund and Browder diagrams (11% difference, P < .05). In conclusion, substantial differences exist in percent burn estimations derived from BurnCase 3D and paper diagrams. In our studied cohort, paper diagrams were associated with overestimation of partial-thickness burn size and underestimation of full-thickness burn size. Additional studies comparing BurnCase 3D with other commonly used methods are warranted.
THREE-DIMENSIONAL RADIATIVE TRANSFER MODELING OF THE POLARIZATION OF THE SUN'S CONTINUOUS SPECTRUM
International Nuclear Information System (INIS)
Bueno, Javier Trujillo; Shchukina, Nataliya
2009-01-01
Polarized light provides the most reliable source of information at our disposal for diagnosing the physical properties of astrophysical plasmas, including the three-dimensional (3D) structure of the solar atmosphere. Here we formulate and solve the 3D radiative transfer problem of the linear polarization of the solar continuous radiation, which is principally produced by Rayleigh and Thomson scattering. Our approach takes into account not only the anisotropy of the solar continuum radiation but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. We show that such symmetry-breaking effects do produce observable signatures in Q/I and U/I, even at the very center of the solar disk where we observe the forward scattering case, but their detection would require obtaining very high resolution linear polarization images of the solar surface. Without spatial and/or temporal resolution U/I ∼ 0 and the only observable quantity is Q/I, whose wavelength variation at a solar disk position close to the limb has been recently determined semi-empirically. Interestingly, our 3D radiative transfer modeling of the polarization of the Sun's continuous spectrum in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the semi-empirical determination, significantly better than that obtained via the use of one-dimensional (1D) atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of 'hidden' magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the semi-empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also to other (more familiar) observables, like the center-limb variation of the
Yoshida, Masaki
2010-06-01
Characteristic tectonic structures such as young orogenic belts and suture zones in a continent are expected to be mechanically weaker than the stable part of the continental lithosphere with the cratonic root (or cratonic lithosphere) and yield lateral viscosity variations in the continental lithosphere. In the present-day Earth's lithosphere, the pre-existing, mechanically weak zones emerge as a diffuse plate boundary. However, the dynamic role of a weak (low-viscosity) continental margin (WCM) in the stability of continental lithosphere has not been understood in terms of geophysics. Here, a new numerical simulation model of mantle convection with a compositionally and rheologically heterogeneous, deformable, mobile continental lithosphere is presented for the first time by using three-dimensional regional spherical-shell geometry. A compositionally buoyant and highly viscous continental assemblage with pre-existing WCMs, analogous to the past supercontinent, is modeled and imposed on well-developed mantle convection whose vigor of convection, internal heating rate, and rheological parameters are appropriate for the Earth's mantle. The visco-plastic oceanic lithosphere and the associated subduction of oceanic plates are incorporated. The time integration of the advection of continental materials with zero chemical diffusion is performed by a tracer particle method. The time evolution of mantle convection after setting the model supercontinent is followed over 800 Myr. Earth-like continental drift is successfully reproduced, and the characteristic thermal interaction between the mantle and the continent/supercontinent is observed in my new numerical model. Results reveal that the WCM protects the cratonic lithosphere from being stretched by the convecting mantle and may play a significant role in the stability of the cratonic lithosphere during the geological timescale because it acts as a buffer that prevents the cratonic lithosphere from undergoing global
Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education.
Hochman, Jordan B; Rhodes, Charlotte; Wong, Dana; Kraut, Jay; Pisa, Justyn; Unger, Bertram
2015-10-01
Current three-dimensional (3D) printed simulations are complicated by insufficient void spaces and inconsistent density. We describe a novel simulation with focus on internal anatomic fidelity and evaluate against template/identical cadaveric education. Research ethics board-approved prospective cohort study. Generation of a 3D printed temporal bone was performed using a proprietary algorithm that deconstructs the digital model into slices prior to printing. This supplemental process facilitates removal of residual material from air-containing spaces and permits requisite infiltrative access to the all regions of the model. Ten otolaryngology trainees dissected a cadaveric temporal bone (CTB) followed by a matched/isomorphic 3D printed bone model (PBM), based on derivative micro-computed tomography data. Participants rated 1) physical characteristics, 2) specific anatomic constructs, 3) usefulness in skill development, and 4) perceived educational value. The survey instrument employed a seven-point Likert scale. Trainees felt physical characteristics of the PBM were quite similar to CTB, with highly ranked cortical (5.5 ± 1.5) and trabecular (5.2 ± 1.3) bone drill quality. The overall model was considered comparable to CTB (5.9 ± 0.74), with respectable air cell reproduction (6.1 ± 1.1). Internal constructs were rated as satisfactory (range, 4.9-6.2). The simulation was considered a beneficial training tool for all types of mastoidectomy (range, 5.9-6.6), posterior tympanotomy (6.5 ± 0.71), and skull base approaches (range, 6-6.5). Participants believed the model to be an effective training instrument (6.7 ± 0.68), which should be incorporated into the temporal bone lab (7.0 ± 0.0). The PBM was thought to improve confidence (6.7 ± 0.68) and operative performance (6.7 ± 0.48). Study participants found the PBM to be an effective platform that compared favorably to CTB. The model was considered a valuable adjunctive
Sergovich, Aimée; Johnson, Marjorie; Wilson, Timothy D
2010-01-01
The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using cryosection images obtained from the Visible Human Project, in conjunction with a general-purpose three-dimensional segmentation and surface-rendering program. Anatomical areas of interest were identified and labeled on consecutive images. Each 2D slice was reassembled, forming a three-dimensional model. The model includes the pelvic girdle, organs of the pelvic cavity, surrounding musculature, the perineum, neurovascular structures, and the peritoneum. Each structure can be controlled separately (e.g. added, subtracted, made transparent) to reveal organization and/or relationships between structures. The model can be manipulated and/or projected stereoscopically to visualize structures and relationships from different angles with excellent spatial perception. Because of its ease of use and versatility, we expect this model may provide a powerful teaching tool for learning in the classroom or in the laboratory. (c) 2010 American Association of Anatomists.
Fatone, Stefania; Johnson, William Brett; Tucker, Kerice
2016-04-01
Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.
Taher, Fadi; Falkensammer, Juergen; McCarte, Jamie; Strassegger, Johann; Uhlmann, Miriam; Schuch, Philipp; Assadian, Afshin
2017-06-01
The fenestrated Anaconda endograft (Vascutek/Terumo, Inchinnan, UK) is intended for the treatment of abdominal aortic aneurysms with an insufficient infrarenal landing zone. The endografts are custom-made with use of high-resolution, 1-mm-slice computed tomography angiography images. For every case, a nonsterile prototype and a three-dimensional (3D) model of the patient's aorta are constructed to allow the engineers as well as the physician to test-implant the device and to review the fit of the graft. The aim of this investigation was to assess the impact of 3D model construction and prototype testing on the design of the final sterile endograft. A prospectively held database on fenestrated endovascular aortic repair patients treated at a single institution was completed with data from the Vascutek engineers' prototype test results as well as the product request forms. Changes to endograft design based on prototype testing were assessed and are reported for all procedures. Between April 1, 2013, and August 18, 2015, 60 fenestrated Anaconda devices were implanted. Through prototype testing, engineers were able to identify and report potential risks to technical success related to use of the custom device for the respective patient. Theoretical concerns about endograft fit in the rigid model were expressed in 51 cases (85.0%), and the engineers suggested potential changes to the design of 21 grafts (35.0%). Thirteen cases (21.7%) were eventually modified after the surgeon's testing of the prototype. A second prototype was ordered in three cases (5.0%) because of extensive changes to endograft design, such as inclusion of an additional fenestration. Technical success rates were comparable for grafts that showed a perfect fit from the beginning and cases in which prototype testing resulted in a modification of graft design. Planning and construction of fenestrated endografts for complex aortic anatomies where exact fit and positioning of the graft are paramount to
Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation
Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras
2016-04-01
into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.
A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid
Wang, N.; Prodanovic, M.
2017-12-01
Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic
Impact of sophisticated fog spray models on accident analyses
International Nuclear Information System (INIS)
Roblyer, S.P.; Owzarski, P.C.
1978-01-01
The N-Reactor confinement system release dose to the public in a postulated accident is reduced by washing the confinement atmosphere with fog sprays. This allows a low pressure release of confinement atmosphere containing fission products through filters and out an elevated stack. The current accident analysis required revision of the CORRAL code and other codes such as CONTEMPT to properly model the N Reactor confinement into a system of multiple fog-sprayed compartments. In revising these codes, more sophisticated models for the fog sprays and iodine plateout were incorporated to remove some of the conservatism of steam condensing rate, fission product washout and iodine plateout than used in previous studies. The CORRAL code, which was used to describe the transport and deposition of airborne fission products in LWR containment systems for the Rasmussen Study, was revised to describe fog spray removal of molecular iodine (I 2 ) and particulates in multiple compartments for sprays having individual characteristics of on-off times, flow rates, fall heights, and drop sizes in changing containment atmospheres. During postulated accidents, the code determined the fission product removal rates internally rather than from input decontamination factors. A discussion is given of how the calculated plateout and washout rates vary with time throughout the analysis. The results of the accident analyses indicated that more credit could be given to fission product washout and plateout. An important finding was that the release of fission products to the atmosphere and adsorption of fission products on the filters were significantly lower than previous studies had indicated
Directory of Open Access Journals (Sweden)
Kazuyuki Yusa
2017-06-01
Full Text Available Objectives: Recently, three-dimensional printing models based on preoperative computed tomography and magnetic resonance imaging images have been widely used in medical fields. This study presents an effective use of the three-dimensional printing model in exploring complex spatial relationship between the tumour and surrounding tissue and in simulation surgery based planning of the operative procedure. Material and Methods: The patient was a 7-year-old boy with ameloblastic fibro-odontoma. Prior to surgery, a hybrid three-dimensional printing model consisting of the jaw bone, the tumour and the inferior alveolar nerve was fabricated. After the simulation surgery based on this model, enucleation of the tumour, leaving tooth 46 intact (Universal Numbering System by ADA safe, was planned. Results: Enucleation of the tumour was successfully carried out. One year later, healing was found to be satisfactory both clinically and radiographically. Conclusions: The study presented an effective application of a novel hybrid three-dimensional printing model composed of hard and soft tissues. Such innovations can bring significant benefits, especially to the field of oncological surgery.
Three-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins
Zhu, G.; Gerya, T.; Tackley, P. J.
2011-12-01
Active margins are important sites of new continental crust formation by magmatic processes related to the subduction of oceanic plates. We investigate these phenomena using a three-dimensional coupled petrological-geochemical-thermomechanical numerical model, which combines a finite-difference flow solver with a non-diffusive marker-in-cell technique for advection (I3ELVIS code, Gerya and Yuen, PEPI,2007). The model includes mantle flow associated with the subducting plate, water release from the slab, fluid propagation that triggers partial melting at the slab surface, melt extraction and the resulting volcanic crustal growth at the surface. The model also accounts for variations in physical properties (mainly density and viscosity) of both fluids and rocks as a function of local conditions in temperature, pressure, deformation, nature of the rocks, and chemical exchanges. Our results show different patterns of crustal growth and surface topography, which are comparable to nature, during subduction at active continental margins. Often, two trench-parallel lines of magmatic activity, which reflect two maxima of melt production atop the slab, are formed on the surface. The melt extraction rate controls the patterns of new crust at different ages. Moving free water reflects the path of fluids, and the velocity of free water shows the trend of two parallel lines of magmatic activity. The formation of new crust in particular time intervals is distributed in finger-like shapes, corresponding to finger-like and ridge-like cold plumes developed atop the subducting slabs (Zhu et al., G-cubed,2009; PEPI,2011). Most of the new crust is basaltic, formed from peridotitic mantle. Granitic crust extracted from melted sediment and upper crust forms in a line closer to the trench, and its distribution reflects the finger-like cold plumes. Dacitic crust extracted from the melted lower crust forms in a line farther away from the trench, and its distribution is anticorrelated with
Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model
Hulscher, Suzanne J.M.H.
1996-01-01
The three-dimensional model presented in this paper is used to study how tidal currents form wave-like bottom patterns. Inclusion of vertical flow structure turns out to be necessary to describe the formation, or absence, of all known large-scale regular bottom features. The tide and topography are
Oortgiesen, D.A.W.; Yu, N.; Bronckers, A.L.J.J.; Yang, F.; Walboomers, X.F.; Jansen, J.A.
2012-01-01
Periodontitis is a disease affecting the supporting structures of the teeth, which can eventually result in tooth loss. A three-dimensional (3D) tissue culture model was developed that may serve to grow a 3D construct that not only transplants into defective periodontal sites, but also allows to
This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River in Oakville, Iowa. Due to a levee breaching along the Iowa River during the US ...
DEFF Research Database (Denmark)
Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen
2012-01-01
A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake in the i...
Hansen, John A.; Barnett, Michael; MaKinster, James G.; Keating, Thomas
2004-01-01
In this study, we explore an alternate mode for teaching and learning the dynamic, three-dimensional (3D) relationships that are central to understanding astronomical concepts. To this end, we implemented an innovative undergraduate course in which we used inexpensive computer modeling tools. As the second of a two-paper series, this report…
A vector/parallel method for a three-dimensional transport model coupled with bio-chemical terms
B.P. Sommeijer (Ben); J. Kok (Jan)
1995-01-01
textabstractA so-called fractional step method is considered for the time integration of a three-dimensional transport-chemical model in shallow seas. In this method, the transport part and the chemical part are treated separately by appropriate integration techniques. This separation is motivated
DEFF Research Database (Denmark)
Zhu, Dong; Jensen, Leif Bjørnø
2000-01-01
. The major drawback of using the cylindrical coordinate system, when the backscattering solution is valid within a limited area, is analyzed using a geometrical-optical interpretation. The model may be useful for studying three-dimensional backscattering phenomena comprising azimuthal diffraction effects...
Experimental validation of a three-dimensional linear system model for breast tomosynthesis
International Nuclear Information System (INIS)
Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei
2009-01-01
A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.
Experimental validation of a three-dimensional linear system model for breast tomosynthesis
Energy Technology Data Exchange (ETDEWEB)
Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States); Siemens AG Healthcare, Henkestrasse 127, D-91052 Erlangen (Germany); Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)
2009-01-15
A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 {mu}m pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of {+-}20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.
Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24
Carranza-fulmer, T. L.; Moldwin, M.
2014-12-01
The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience
Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin
2016-01-01
This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...
Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert
2015-12-08
Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.
Maidment, Susannah C R; Bates, Karl T; Falkingham, Peter L; VanBuren, Collin; Arbour, Victoria; Barrett, Paul M
2014-08-01
Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the
Development of a three-dimensional CFD model for rotary lime kilns
Energy Technology Data Exchange (ETDEWEB)
Lixin Tao; Blom, Roger (FS Dynamics Sweden AB, Goeteborg (Sweden)); Nordgren, Daniel (Innventia, Stockholm (Sweden))
2010-11-15
In the calcium loop of the recovery cycle in a Kraft process of pulp and paper production, rotary lime kilns are used to convert the lime mud, mainly CaCO3, back to quick lime, CaO, for re-use in the causticizing process. The lime kilns are one of the major energy consumption devices for paper and pulp industry. Because of the rising oil price and new emission limits, the pulp mills have been forced to look for alternative fuels for their lime kilns. One interesting alternative to oil, often easily available at pulp mills, is biofuels such as sawdust and bark. However the practical kiln operation often encounters some difficulties because of the uncertainties around the biofuel impact on the lime kiln performance. A deeper understanding of the flame characteristics is required when shifting from oil to biofuels. Fortunately recent advances in modern Computational Fluid Dynamics, CFD, have provided the possibility to study and predict the detailed flame characteristics regarding the lime kiln performance. In this project a three-dimensional CFD model for rotary lime kilns has been developed. To simulate a rotary lime kiln the developed CFD model integrates the three essential sub-models, i.e. the freeboard hot flow model, the lime bed model and the rotating refractory wall model and it is developed based on the modern CFD package: FLUENT which is commercially available on the market. The numerical simulations using the developed CFD model have been performed for three selected kiln operations fired with three different fuel mixtures. The predicted results from the CFD modelling are presented and discussed in order to compare the impacts on the kiln performance due to the different firing conditions. During the development, the lime kiln at the Soedra Cell Moensteraas mill has been used as reference kiln. To validate the CFD model, in-plant measurements were carried out in the Moensteraas lime kiln during an experiment campaign. The results obtained from the
International Nuclear Information System (INIS)
Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.
1996-01-01
Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure
International Nuclear Information System (INIS)
Wei Xin; Xie Xiaodong; Wang Chaohua
2007-01-01
Objective: To establish virtual three-dimensional instrument and cerebral aneurysm models by using three-dimensional moulding software, and to explore the effect of the models in interventional preoperative simulation. Methods: The virtual individual models including cerebral arteries and aneurysms were established by using the three-dimensional moulding software of 3D Studio MAX R3 based on standard virtual cerebral aneurysm models and individual DSA image. The virtual catheter, guide wire, stent and coil were also established. The study of interventional preoperative simulation was run in personal computer, and included 3 clinical cases. Results: The simulation results of the working angle and the moulding angle of the head of catheter and guide wire in 3 cases were identical with that of operation results. The simulation results of the requirement of number and size of coil in 1 case of anterior communicating aneurysm and 1 case of posterior communicating aneurysm were identical with that of operation results. The simulation results of coil for aneurysmal shape in 1 case of giant internal carotid artery aneurysm were more than 2 three-dimensional coils with size of 3 mm x 3 cm from the operation results, and the position of the second coil in aneurysmal neck was adjusted according to the results of real-time simulation. The results of retrospective simulation of operation procedure indicated that the simulation methods for regular and small aneurysms could become a routine simulation means but more simulation experience was needed to build up for the giant aneurysms. Conclusions: The virtual three-dimensional instrument and cerebral aneurysm models established by the general software provided a new study method for neuro-interventional preoperative simulation, and it played an important guidance role in developing neuro-interventional operation. (authors)
International Nuclear Information System (INIS)
Nagai, Haruyasu; Yamazawa, Hiromi
1994-11-01
A three-dimensional atmospheric dynamic model (PHYSIC) was improved and its performance was examined using the meteorological data observed at a coastal area with a complex terrain. To introduce synoptic meteorological conditions into the model, the initial and boundary conditions were improved. By this improvement, the model can predict the temporal change of wind field for more than 24 hours. Moreover, the model successfully simulates the land and sea breeze observed at Shimokita area in the summer of 1992. (author)
Beam halo studies using a three-dimensional particle-core model
Directory of Open Access Journals (Sweden)
Ji Qiang
2000-06-01
Full Text Available In this paper we present a study of beam halo based on a three-dimensional particle-core model of an ellipsoidal bunched beam in a constant focusing channel including the effects of nonlinear rf focusing. For an initially mismatched beam, three linear envelope modes—a high frequency mode, a low frequency mode, and a quadrupole mode—are identified for an azimuthally symmetric bunched beam. The high frequency mode has three components all in phase; the low frequency mode has the transverse components in phase and the longitudinal component 180° out of phase; the quadrupole mode has no longitudinal component, and the two transverse components in the mode are 180° out of phase. We also study the case of an ellipsoidal bunched beam without azimuthal symmetry and find that the high frequency mode and the low frequency mode are still present but the quadrupole mode is replaced by a new mode with transverse components 180° out of phase and a nonzero longitudinal component. Previous studies, which generally addressed the situation where the longitudinal-to-transverse focusing strength is roughly 0.6 or less, conclude that the oscillation of the high frequency mode is predominantly transverse, and that of the low frequency mode is predominantly longitudinal. In this paper we present a systematic study of the features of the modes as a function of the longitudinal-to-transverse focusing strength ratio. We find that, when the ratio is greater than unity, the high frequency mode may contain a significant longitudinal component. Thus, excitation of the high frequency mode in this situation can be responsible for the formation of longitudinal beam halo. Furthermore, while previous studies have observed halo amplitudes roughly 2–3 times the matched beam edge, for the present parameters we observe much larger amplitudes (5 times or more. This is due to the fact that the longitudinal-to-transverse focusing ratio used here is greater than that of previous
International Nuclear Information System (INIS)
Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.
2007-01-01
Fusion systems are, in general, geometrically complex requiring detailed three-dimensional (3-D) nuclear analysis. This analysis is required to address tritium self-sufficiency, nuclear heating, radiation damage, shielding, and radiation streaming issues. To facilitate such calculations, we developed an innovative computational tool that is based on the continuous energy Monte Carlo code MCNP and permits the direct use of CAD-based solid models in the ray-tracing. This allows performing the neutronics calculations in a model that preserves the geometrical details without any simplification, eliminates possible human error in modeling the geometry for MCNP, and allows faster design iterations. In addition to improving the work flow for simulating complex 3- D geometries, it allows a richer representation of the geometry compared to the standard 2nd order polynomial representation. This newly developed tool has been successfully tested for a detailed 40 degree sector benchmark of the International Thermonuclear Experimental Reactor (ITER). The calculations included determining the poloidal variation of the neutron wall loading, flux and nuclear heating in the divertor components, nuclear heating in toroidal field coils, and radiation streaming in the mid-plane port. The tool has been applied to perform 3-D nuclear analysis for several fusion designs including the ARIES Compact Stellarator (ARIES-CS), the High Average Power Laser (HAPL) inertial fusion power plant, and ITER first wall/shield (FWS) modules. The ARIES-CS stellarator has a first wall shape and a plasma profile that varies toroidally within each field period compared to the uniform toroidal shape in tokamaks. Such variation cannot be modeled analytically in the standard MCNP code. The impact of the complex helical geometry and the non-uniform blanket and divertor on the overall tritium breeding ratio and total nuclear heating was determined. In addition, we calculated the neutron wall loading variation in
Experiments with three-dimensional riblets as an idealized model of shark skin
Energy Technology Data Exchange (ETDEWEB)
Bechert, D.W.; Bruse, M.; Hage, W. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Dept. of Turbulence Res.
2000-05-01
The skin of fast sharks exhibits a rather intriguing three-dimensional rib pattern. Therefore, the question arises whether or not such three-dimensional riblet surfaces may produce an equivalent or even higher drag reduction than straight two-dimensional riblets. Previously, the latter have been shown to reduce turbulent wall shear stress by up to 10%. Hence, the drag reduction by three-dimensional riblet surfaces is investigated experimentally. Our idealized 3D-surface consists of sharp-edged fin-shaped elements arranged in an interlocking array. The turbulent wall shear stress on this surface is measured using direct force balances. In a first attempt, wind tunnel experiments with about 365000 tiny fin elements per test surface have been carried out. Due to the complexity of the surface manufacturing process, a comprehensive parametric study was not possible. These initial wind tunnel data, however, hinted at an appreciable drag reduction. Subsequently, in order to have a better judgement on the potential of these 3D-surfaces, oil channel experiments are carried out. In our new oil channel, the geometrical dimensions of the fins can be magnified 10 times in size as compared to the initial wind tunnel experiments, i.e., from typically 0.5 mm to 5 mm. For these latter oil channel experiments, novel test plates with variable fin configuration have been manufactured, with 1920-4000 fins. This enhanced variability permits measurements with a comparatively large parameter range. As a result of our measurements, it can be concluded, that 3D-riblet surfaces do indeed produce an appreciable drag reduction. We found as much as 7.3% decreased turbulent shear stress, as compared to a smooth reference plate.
Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen
2006-05-01
To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.
Zhang, Tao; Siebers, Peer-Olaf; Aickelin, Uwe
2012-01-01
This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential\\ud energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of...
Three-Dimensional Thermal Modeling Analysis Of CST Media For The Small Ion Exchange Project
International Nuclear Information System (INIS)
Lee, S.; King, W.
2011-01-01
occurs. The in-column and the in-tank evaluations incorporated recently updated maximum cesium loading levels calculated using the current SCIX feed compositions, which resulted in significantly higher cesium loading than previously calculated. The calculations were conducted to ensure conservative predictions for the maximum temperatures achievable using the current baseline design. The degree of conservatism was reduced for in-column calculations relative to the previous work by using a three-dimensional modeling approach and selecting parameters which were nearer to expected conditions. The degree of conservatism for the in-tank calculations was also reduced by lowering the soil penetration depth below the tank from 150 to 20 feet. The primary goals of the extended thermal modeling effort were to determine whether fluid boiling or superheating are possible within the column module and to determine the maximum floor temperatures within the tank loaded with spent CST.
Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T
2017-08-01
DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.
Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-11-01
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
Rubab, Khansa; Mustafa, M
2016-01-01
This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
Energy Technology Data Exchange (ETDEWEB)
Chang, Robert; Sun Wei [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Emami, Kamal; Wu Honglu, E-mail: rcc34@drexel.ed, E-mail: sunwei@drexel.ed, E-mail: kamal.emami-1@nasa.go, E-mail: honglu.wu-1@nasa.go [Radiation Biophysics Laboratory, Human Adaptation and Countermeasures Office, NASA Johnson Space Center, Houston, TX (United States)
2010-12-15
In their normal in vivo matrix milieu, tissues assume complex well-organized three-dimensional architectures. Therefore, the primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario. This challenge can be addressed by applying emerging layered biofabrication approaches in which the precise configuration and composition of cells and bioactive matrix components can recapitulate the well-defined three-dimensional biomimetic microenvironments that promote cell-cell and cell-matrix interactions. Furthermore, the advent of and refinements in microfabricated systems can present physical and chemical cues to cells in a controllable and reproducible fashion unmatched with conventional cultures, resulting in the precise construction of engineered biomimetic microenvironments on the cellular length scale in geometries that are readily parallelized for high throughput in vitro models. As such, the convergence of layered solid freeform fabrication (SFF) technologies along with microfabrication techniques enables the creation of a three-dimensional micro-organ device to serve as an in vitro platform for cell culture, drug screening or to elicit further biological insights, particularly for NASA's interest in a flight-suitable high-fidelity microscale platform to study drug metabolism in space and planetary environments. The proposed model in this paper involves the combinatorial setup of an automated syringe-based, layered direct cell writing bioprinting process with micro-patterning techniques to fabricate a microscale in vitro device housing a chamber of bioprinted three-dimensional liver cell-encapsulated hydrogel-based tissue constructs in defined design patterns that biomimic the cell's natural microenvironment for enhanced biological functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, reproducibly fabricated tissue constructs were biologically
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
Chang, Robert; Emami, Kamal; Wu, Honglu; Sun, Wei
2010-12-01
In their normal in vivo matrix milieu, tissues assume complex well-organized three-dimensional architectures. Therefore, the primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario. This challenge can be addressed by applying emerging layered biofabrication approaches in which the precise configuration and composition of cells and bioactive matrix components can recapitulate the well-defined three-dimensional biomimetic microenvironments that promote cell-cell and cell-matrix interactions. Furthermore, the advent of and refinements in microfabricated systems can present physical and chemical cues to cells in a controllable and reproducible fashion unmatched with conventional cultures, resulting in the precise construction of engineered biomimetic microenvironments on the cellular length scale in geometries that are readily parallelized for high throughput in vitro models. As such, the convergence of layered solid freeform fabrication (SFF) technologies along with microfabrication techniques enables the creation of a three-dimensional micro-organ device to serve as an in vitro platform for cell culture, drug screening or to elicit further biological insights, particularly for NASA's interest in a flight-suitable high-fidelity microscale platform to study drug metabolism in space and planetary environments. The proposed model in this paper involves the combinatorial setup of an automated syringe-based, layered direct cell writing bioprinting process with micro-patterning techniques to fabricate a microscale in vitro device housing a chamber of bioprinted three-dimensional liver cell-encapsulated hydrogel-based tissue constructs in defined design patterns that biomimic the cell's natural microenvironment for enhanced biological functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, reproducibly fabricated tissue constructs were biologically characterized for
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
International Nuclear Information System (INIS)
Chang, Robert; Sun Wei; Emami, Kamal; Wu Honglu
2010-01-01
In their normal in vivo matrix milieu, tissues assume complex well-organized three-dimensional architectures. Therefore, the primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario. This challenge can be addressed by applying emerging layered biofabrication approaches in which the precise configuration and composition of cells and bioactive matrix components can recapitulate the well-defined three-dimensional biomimetic microenvironments that promote cell-cell and cell-matrix interactions. Furthermore, the advent of and refinements in microfabricated systems can present physical and chemical cues to cells in a controllable and reproducible fashion unmatched with conventional cultures, resulting in the precise construction of engineered biomimetic microenvironments on the cellular length scale in geometries that are readily parallelized for high throughput in vitro models. As such, the convergence of layered solid freeform fabrication (SFF) technologies along with microfabrication techniques enables the creation of a three-dimensional micro-organ device to serve as an in vitro platform for cell culture, drug screening or to elicit further biological insights, particularly for NASA's interest in a flight-suitable high-fidelity microscale platform to study drug metabolism in space and planetary environments. The proposed model in this paper involves the combinatorial setup of an automated syringe-based, layered direct cell writing bioprinting process with micro-patterning techniques to fabricate a microscale in vitro device housing a chamber of bioprinted three-dimensional liver cell-encapsulated hydrogel-based tissue constructs in defined design patterns that biomimic the cell's natural microenvironment for enhanced biological functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, reproducibly fabricated tissue constructs were biologically characterized for
Zeng, Fei-huang; Xu, Yuan-zhi; Fang, Li; Tang, Xiao-shan
2012-02-01
To describe a new technique for fabricating an 3D resin model by 3D reconstruction and rapid prototyping, and to analyze the precision of this method. An optical grating scanner was used to acquire the data of silastic cavity block , digital dental cast was reconstructed with the data through Geomagic Studio image processing software. The final 3D reconstruction was saved in the pattern of Stl. The 3D resin model was fabricated by fuse deposition modeling, and was compared with the digital model and gypsum model. The data of three groups were statistically analyzed using SPSS 16.0 software package. No significant difference was found in gypsum model,digital dental cast and 3D resin model (P>0.05). Rapid prototyping manufacturing and digital modeling would be helpful for dental information acquisition, treatment design, appliance manufacturing, and can improve the communications between patients and doctors.
Directory of Open Access Journals (Sweden)
A. Soria-Medina
2013-07-01
Full Text Available This article shows the results obtained in the three dimensional survey of the church of Santa Maria of Castrelos realized through a terrestrial Laser Scanner. The Church of Santa Maria of Castrelos, which was built in the early thirteenth century, is located in Vigo Spain. It is a Romanesque style church with a nave and semicircular apse with three gates decorated with rosettes and typically Romanesque geometrical figures. The survey was conducted by the laboratory of Close Range Photogrammetry of Natural Resources Department, Mining School, at University of Vigo – Spain, jointly with the Geomatics Department, Federal University of Parana – Brazil. This work explores the use of laser scanning for the surveying, three-dimensional modeling and documentation of historical monuments but also the generation of quoted plans and cross sections of this Romanesque church in the city of Vigo. The resolution of point clouds used to obtain the models varied according to need. Namely, the point cloud used for three-dimensional model for the general external and internal church was used with an approximate step width of 10 cm, while 5 cm and 1 cm step widths were used for details of geometric figures and rosettes. The results of both the three-dimensional model and the plans and sections are in accordance with the specifications and scales of representation usually used in conventional surveys of historic monuments recommended in the specialized literature in the area. The objective of this study is showing the potential of the use of terrestrial laser scanner in the documentation of historical heritage through achieving the 3D model by joining external and internal point clouds and the generation of planes and sections of the church of Santa Maria of Castrelos, Vigo.
Modelling stratospheric chemistry in a global three-dimensional chemical transport model
Energy Technology Data Exchange (ETDEWEB)
Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory
1996-12-31
Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations
Modelling stratospheric chemistry in a global three-dimensional chemical transport model
Energy Technology Data Exchange (ETDEWEB)
Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory
1995-12-31
Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations
Development of model plans in three dimensional conformal radiotherapy for brain tumors
International Nuclear Information System (INIS)
Pyo, Hongryull; Kim, Gwieon; Keum, Kichang; Chang, Sekyung; Suh, Changok; Lee, Sanghoon
2002-01-01
Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plans for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decided. Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal tumor-5.7 x 8.2 x 7.6 cm, suprasellar tumor-3 x 4 x 4.1 cm, thalamic tumor-3.1 x 5.9 x 3.7 cm, frontoparietal tumor-5.5 x 7 x 5.5 cm, and occipitoparietal tumor-5 x 5.5 x 5 cm. Plans using parallel opposed 2-portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D plans: 27%, 8% → 3D plans: 1%, 1%). Various dose statistic values did not show any
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
2017-11-01
Results in netCDF 11 4.3 Morphological Data Generation 16 5. 3DWF on Mobile Platforms 17 5.1 3DWF on Windows Mobile Devices 18 5.2 3DWF Migration to...Windows and Mobile Platforms by Giap Huynh and Yansen Wang Approved for public release; distribution is unlimited. NOTICES...Migration of the Three-dimensional Wind Field (3DWF) Model from Linux to Windows and Mobile Platforms by Giap Huynh and Yansen Wang
International Nuclear Information System (INIS)
Kobayashi, Yoko; Aiyoshi, Eitaro
2001-01-01
Fast and accurate prediction of three-dimensional (3D) power distribution is essential in a boiling water reactor (BWR). The prediction method of 3D power distribution in BWR is developed using the neural network. Application of the neural network starts with selecting the learning algorithm. In the proposed method, we use the learning algorithms based on a class of Quasi-Newton optimization techniques called Self-Scaling Variable Metric (SSVM) methods. Prediction studies were done for a core of actual BWR plant with octant symmetry. Compared to classical Quasi-Newton methods, it is shown that the SSVM method reduces the number of iterations in the learning mode. The results of prediction demonstrate that the neural network can predict 3D power distribution of BWR reasonably well. The proposed method will be very useful for BWR loading pattern optimization problems where 3D power distribution for a huge number of loading patterns (LPs) must be performed. (author)
Energy Technology Data Exchange (ETDEWEB)
Marghany, Maged [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Inst. for Science and Technology Geospatial (INSTeG)
2012-06-15
This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0.02 {+-} 0.21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction. (orig.)
International Nuclear Information System (INIS)
Zanjani, Mehdi B.; Lukes, Jennifer R.
2014-01-01
A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.1–1 W/m K that are consistent with reported experimental results
Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters
Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes
2017-04-01
A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.
Monte Carlo simulation of the three-state vector Potts model on a three-dimensional random lattice
International Nuclear Information System (INIS)
Jianbo Zhang; Heping Ying
1991-09-01
We have performed a numerical simulation of the three-state vector Potts model on a three-dimensional random lattice. The averages of energy density, magnetization, specific heat and susceptibility of the system in the N 3 (N=8,10,12) lattices were calculated. The results show that a first order nature of the Z(3) symmetry breaking transition appears, as characterized by a thermal hysterisis in the energy density as well as an abrupt drop of magnetization being sharper and discontinuous with increasing of volume in the cross-over region. The results obtained on the random lattice were consistent with those obtained on the three-dimensional cubic lattice. (author). 12 refs, 4 figs
Energy Technology Data Exchange (ETDEWEB)
Sato, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-05-27
Discussed in this report is a wavefield simulation in the 3-dimensional seismic survey. With the level of the object of exploration growing deeper and the object more complicated in structure, the survey method is now turning 3-dimensional. There are several modelling methods for numerical calculation of 3-dimensional wavefields, such as the difference method, pseudospectral method, and the like, all of which demand an exorbitantly large memory and long calculation time, and are costly. Such methods have of late become feasible, however, thanks to the advent of the parallel computer. As compared with the difference method, the pseudospectral method requires a smaller computer memory and shorter computation time, and is more flexible in accepting models. It outputs the result in fullwave just like the difference method, and does not cause wavefield numerical variance. As the computation platform, the parallel computer nCUBE-2S is used. The object domain is divided into the number of the processors, and each of the processors takes care only of its share so that parallel computation as a whole may realize a very high-speed computation. By the use of the pseudospectral method, a 3-dimensional simulation is completed within a tolerable computation time length. 7 refs., 3 figs., 1 tab.
Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.
2017-07-01
Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.
Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D
Energy Technology Data Exchange (ETDEWEB)
King, J. D., E-mail: kingjd@fusion.gat.com [Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830-8050 (United States); General Atomics, P.O. Box 85608, San Diego, California 92816-5608 (United States); Strait, E. J.; Ferraro, N. M.; Lanctot, M. J.; Paz-Soldan, C.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92816-5608 (United States); Lazerson, S. A.; Logan, N. C.; Park, J.-K.; Nazikian, R.; Okabayashi, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Haskey, S. R. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australia National University, Canberra, Australian Capital Territory 0200 (Australia); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027 (United States); Liu, Yueqiang [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shiraki, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)
2015-07-15
DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. These tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. Scans of the applied poloidal spectrum and edge safety factor confirm that low-pressure, n = 1 non-axisymmetric tokamak equilibria are determined by a single, dominant, stable eigenmode. However, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.
International Nuclear Information System (INIS)
Kamaya, Masayuki; Kitamura, Takayuki
2006-01-01
In order to understand the initiation behavior of microstructurally small cracks in a stress corrosion cracking condition, it is important to know the tensile normal stress acting on the grain boundary (normal G.B. stress). The local stress in a polycrystalline body is greatly influenced by deformation constraint which is caused by anisotropic and/or inhomogeneous property of each grain. In present study, the local normal G.B. stress on bi- and tri-crystal bodies and a three-dimensional polycrystalline body consisting of 100 grains were evaluated by the finite element method under a remote uniform tensile stress condition. The polycrystalline body was generated by using a Monte Carlo procedure and random orientations were assigned to each grain. It was revealed that the local normal G.B. stress on the polycrystalline body is inhomogeneous under uniform applied stress. The stress tends to be large near the triple points due to the deformation constraint caused by adjacent grains, even though the grain boundary inclination to the load axis has large influence. It was also shown that particular high stress was not observed at corners of the polycrystalline body. (author)
Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems
de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.
2017-07-01
Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.
2012-01-01
Background This study characterizes the distribution and components of plaque structure by presenting a three-dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and calcium distribution in lipids influence the biomechanical stress on the plaque. Method Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its vulnerability. Results Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights and methodologically sound data to investigate plaque rupture mechanics. Conclusion Structural analysis using a three-dimensional calcified model represents a more realistic simulation of late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a decrease in lipid core volume can stabilize plaque structurally. PMID:22336469
Directory of Open Access Journals (Sweden)
Wong Kelvin KL
2012-02-01
Full Text Available Abstract Background This study characterizes the distribution and components of plaque structure by presenting a three-dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and calcium distribution in lipids influence the biomechanical stress on the plaque. Method Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its vulnerability. Results Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights and methodologically sound data to investigate plaque rupture mechanics. Conclusion Structural analysis using a three-dimensional calcified model represents a more realistic simulation of late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a decrease in lipid core volume can stabilize plaque structurally.
Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.
2017-01-01
Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.
A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET
Tripathi, Shweta; Narendar, Vadthiya
2015-07-01
In this paper, three dimensional (3D) analytical model for subthreshold characteristics of doped FinFET has been presented. The separation of variables technique is used to solve the 3D Poisson's equation analytically with appropriate boundary conditions so as to obtain the expression for channel potential. The thus obtained potential distribution function has been employed in deriving subthreshold current and subthreshold slope model. The channel potential characteristics have been studied as a function of various device parameters such as gate length, gate oxide thickness and channel doping. The proposed analytical model results have been validated by comparing with the simulation data obtained by the 3D device simulator ATLAS™ from Silvaco.
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
International Nuclear Information System (INIS)
Bottoni, M.; Lyczkowski, R.; Ahuja, S.
1995-01-01
Numerical simulation of subcooled boiling in one-dimensional geometry with the Homogeneous Equilibrium Model (HEM) may yield difficulties related to the very low sonic velocity associated with the HEM. These difficulties do not arise with subcritical flow. Possible solutions of the problem include introducing a relaxation of the vapor production rate. Three-dimensional simulations of subcooled boiling in bundle geometry typical of fast reactors can be performed by using two systems of conservation equations, one for the HEM and the other for a Separated Phases Model (SPM), with a smooth transition between the two models
Hsieh, Paul A.; Winston, Richard B.
2002-01-01
Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.
Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue
2018-06-01
Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.
Energy Technology Data Exchange (ETDEWEB)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developed at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.
Energy Technology Data Exchange (ETDEWEB)
Suh, Kyung Suk; Park, Ki Hyun; Min, Byung Il; Kim, Sora; Yang, Byung Mo [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-05-15
It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.
Susilo, Monica E; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A
2010-04-01
The three-dimensional microstructure and mechanical properties of the collagen fibrils within the extracellular matrix (ECM) is now being recognized as a primary factor in regulating cell proliferation and differentiation. Therefore, an appreciation of the mechanical aspects by which a cell interacts with its ECM is required for the development of engineered tissues. Ultimately, using these interactions to design tissue equivalents requires mathematical models with three-dimensional architecture. In this study, a three-dimensional model of a collagen fibril matrix undergoing uniaxial tensile stress was developed by making use of cellular solids. A structure consisting of thin struts was chosen to represent the arrangement of collagen fibrils within an engineered ECM. To account for the large deformation of tissues, the collagen fibrils were modeled as hyperelastic neo-Hookean or Mooney-Rivlin materials. The use of cellular solids allowed the fibril properties to be related to the ECM properties in closed form, which, in turn, allowed the estimation of fibril properties using ECM experimental data. A set of previously obtained experimental data consisting of simultaneous measures of the fibril microstructure and mechanical tests was used to evaluate the model's capability to estimate collagen fibril mechanical property when given tissue-scale data and to predict the tissue-scale mechanical properties when given estimated fibril stiffness. The fibril tangent modulus was found to be 1.26 + or - 0.70 and 1.62 + or - 0.88 MPa when the fibril was modeled as neo-Hookean and Mooney-Rivlin material, respectively. There was no statistical significance of the estimated fibril tangent modulus among the different groups. Sensitivity analysis showed that the fibril mechanical properties and volume fraction were the two input parameters which required accurate values. While the volume fraction was easily obtained from the initial image of the gel, the fibril mechanical properties
Automatic three-dimensional model for protontherapy of the eye: Preliminary results
International Nuclear Information System (INIS)
Bondiau, Pierre-Yves; Malandain, Gregoire; Chauvel, Pierre; Peyrade, Frederique; Courdi, Adel; Iborra, Nicole; Caujolle, Jean-Pierre; Gastaud, Pierre
2003-01-01
Recently, radiotherapy possibilities have been dramatically increased by software and hardware developments. Improvements in medical imaging devices have increased the importance of three-dimensional (3D) images as the complete examination of these data by a physician is not possible. Computer techniques are needed to present only the pertinent information for clinical applications. We describe a technique for an automatic 3D reconstruction of the eye and CT scan merging with fundus photographs (retinography). The final result is a 'virtual eye' to guide ocular tumor protontherapy. First, we make specific software to automatically detect the position of the eyeball, the optical nerve, and the lens in the CT scan. We obtain a 3D eye reconstruction using this automatic method. Second, we describe the retinography and demonstrate the projection of this modality. Then we combine retinography with a reconstructed eye, using a CT scan to get a virtual eye. The result is a computer 3D scene rendering a virtual eye into a skull reconstruction. The virtual eye can be useful for the simulation, the planning, and the control of ocular tumor protontherapy. It can be adapted to treatment planning to automatically detect eye and organs at risk position. It should be highlighted that all the image processing is fully automatic to allow the reproduction of results, this is a useful property to conduct a consistent clinical validation. The automatic localization of the organ at risk in a CT scan or an MRI by automatic software could be of great interest for radiotherapy in the future for comparison of one patient at different times, the comparison of different treatments centers, the possibility of pooling results of different treatments centers, the automatic generation of doses-volumes histograms, the comparison between different treatment planning for the same patient and the comparison between different patients at the same time. It will also be less time consuming
International Nuclear Information System (INIS)
Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng
2015-01-01
In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jinping; Chen, Yuping, E-mail: ypchen@sjtu.edu.cn; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)
2015-02-14
In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.
Design of a three-dimensional site-scale model for the unsaturated zone at Yucca Mountain, Nevada
International Nuclear Information System (INIS)
Wittwer, C.S.; Bodvarsson, G.S.; Chornack, M.P.; Flint, A.L.; Lewis, B.D.; Spengler, R.W.; Flint, L.E.; Rautman, C.A.
1992-01-01
A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed. This site-scale model covers an area of about 30 km 2 and is bounded by major faults to the east and west. A detailed numerical grid has been developed based on location of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Different maps, such as contour maps and isopachs maps, are presented for the different infiltration zones, and for the base of the Tiva Canyon, the Paintbrush, and the Topopah Spring hydrogeological units
International Nuclear Information System (INIS)
Collins, R.; Perez-Martin, A.M.C.; Dominguez-Vazquez, J.; Jimenez-Rodriguez, J.J.
1994-01-01
A simple model for three-dimensional material relaxation associated with atomic mixing is presented. The relaxation of the solid to accommodate the extra effective displacement volume Ω of an implanted or relocated atom is modelled by treating the surrounding solid as an incompressible medium. This leads to a tractable general formalism which can be used to predict implant distribution and changes in surface topography induced by ion beams, both in monatomic and multicomponent targets. The two-component case is discussed in detail. (orig.)
Lazarowitz, Reuven; Naim, Raphael
2014-01-01
The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular…
Directory of Open Access Journals (Sweden)
Jaeshin Yi
2014-11-01
Full Text Available This paper reports a modeling methodology to predict the effects of operating conditions on the thermal behavior of a lithium-ion battery (LIB module. The potential and current density distributions on the electrodes of an LIB cell are predicted as a function of discharge time based on the principle of charge conservation. By using the modeling results of the potential and current density distributions of the LIB cell, the non-uniform distribution of the heat generation rate in a single LIB cell within the module is calculated. Based on the heat generation rate in the single LIB cell determined as a function of the position on the electrode and time, a three-dimensional thermal modeling of an LIB module is performed to calculate the three-dimensional velocity, pressure, and temperature distributions within the LIB module as a function of time at various operating conditions. Thermal modeling of an LIB module is validated by the comparison between the experimental measurements and the modeling results. The effect of the cooling condition of the LIB module on the temperature rise of the LIB cells within the module and the uniformity of the distribution of the cell temperatures are analyzed quantitatively based on the modeling results.
International Nuclear Information System (INIS)
Lazaro, A.; Ordonez, J.; Martorell, S.; Przemyslaw, S.; Ammirabile, L.; Tsige-Tamirat, H.
2015-01-01
The sodium cooled fast reactor (SFR) is one of the reactor types selected by the Generation IV International Forum. SFR stand out due to its remarkable past operational experience in related projects and its potential to achieve the ambitious goals laid for the new generation of nuclear reactors. Regardless its operational experience, there is a need to apply computational tools able to simulate the system behaviour under conditions that may overtake the reactor safety limits from the early stages of the design process, including the three-dimensional phenomena that may arise in these transients. This paper presents the different steps followed towards the development of a multi-physics platform with capabilities to simulate complex phenomena using a coupled neutronic-thermal-hydraulic scheme. The development started with a one-dimensional thermal-hydraulic model of the European Sodium Fast Reactor (ESFR) design with point kinetic neutronic feedback benchmarked with its peers in the framework of the FP7-CP-ESFR project using the state-of-the-art thermal-hydraulic system code TRACE. The model was successively extended into a three-dimensional model coupled with the spatial kinetic neutronic code PARCS able to simulate three-dimensional multi-physic phenomena along with the comparison of the results for symmetric cases. The last part of the paper shows the application of the developed tool to the analysis of transients involving asymmetrical effects, such as the coast-down of a primary and secondary pump or the withdrawal of a peripheral control rod bank, demonstrating the unique capability of the code to simulate such transients and the capability of the design to withstand them under design basis
International Nuclear Information System (INIS)
Adamovich, Igor V.
2014-01-01
A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes
Directory of Open Access Journals (Sweden)
Soo Y. Kim
2015-01-01
Full Text Available Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL and pennation angle (PA were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies.
Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz
2017-12-01
This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.
Directory of Open Access Journals (Sweden)
Arunachalam Sangeetha
2012-01-01
Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.
Particle tracking in sophisticated CAD models for simulation purposes
International Nuclear Information System (INIS)
Sulkimo, J.; Vuoskoski, J.
1995-01-01
The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT. (orig.)
Particle tracking in sophisticated CAD models for simulation purposes
Sulkimo, J.; Vuoskoski, J.
1996-02-01
The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT.
Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing
2005-08-01
Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.
Olszewski, R; Tranduy, K; Reychler, H
2010-07-01
The authors present a new procedure of computer-assisted genioplasty. They determined the anterior, posterior and inferior limits of the chin in relation to the skull and face with the newly developed and validated three-dimensional cephalometric planar analysis (ACRO 3D). Virtual planning of the osteotomy lines was carried out with Mimics (Materialize) software. The authors built a three-dimensional rapid-prototyping multi-position model of the chin area from a medical low-dose CT scan. The transfer of virtual information to the operating room consisted of two elements. First, the titanium plates on the 3D RP model were pre-bent. Second, a surgical guide for the transfer of the osteotomy lines and the positions of the screws to the operating room was manufactured. The authors present the first case of the use of this model on a patient. The postoperative results are promising, and the technique is fast and easy-to-use. More patients are needed for a definitive clinical validation of this procedure. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Three dimensional strained semiconductors
Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui
2016-11-08
In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.
Simplicity, inference and modelling: keeping it sophisticatedly simple
National Research Council Canada - National Science Library
Zellner, Arnold; Keuzenkamp, Hugo A; McAleer, Michael
2001-01-01
.... What is meant by simplicity? How is simplicity measured? Is there an optimum trade-off between simplicity and goodness-of-ﬁt? What is the relation between simplicity and empirical modelling? What is the relation between simplicity and prediction? What is the connection between simplicity and convenience? The book concludes with reﬂect...
DEFF Research Database (Denmark)
Olchev, A.; Radler, K.; Sogachev, Andrey
2009-01-01
, solar radiation, wind speed and direction, soil temperatures at 10 and 20 cm depth were measured by five automatic stations within the clear-cut area. One reference station was placed about 100 m from the clear-cut inside the forest stand. Comparisons of modelled and measured solar radiation fluxes...... and soil temperature profiles showed that the model adequately describes the spatial heterogeneity and dynamics of these variables under different weather conditions. The model can be used to explore solar radiation and soil temperature patterns within heterogeneous forest plots, with applications......A three-dimensional model Mixfor-3D of soil–vegetation–atmosphere transfer (SVAT) was developed and applied to estimate possible effects of tree clear-cutting on radiation and soil temperature regimes of a forest ecosystem. The Mixfor-3D model consists of several closely coupled 3D sub...
Cheng, Wen-Nuan Kara; Hardy, Lew; Woodman, Tim
2011-02-01
We tested the predictive validity of the recently validated three-dimensional model of performance anxiety (Chang, Hardy, & Markland, 2009) with elite tae-kwon-do competitors (N = 99). This conceptual framework emphasized the adaptive potential of anxiety by including a regulatory dimension (reflected by perceived control) along with the intensity-oriented dimensions of cognitive and physiological anxiety. Anxiety was assessed 30 min before a competitive contest using the Three-Factor Anxiety Inventory. Competitors rated their performance on a tae-kwon-do-specific performance scale within 30 min after completion of their contest. Moderated hierarchical regression analyses revealed initial support for the predictive validity of the three-dimensional performance anxiety model. The regulatory dimension of anxiety (perceived control) revealed significant main and interactive effects on performance. This dimension appeared to be adaptive, as performance was better under high than low perceived control, and best vs. worst performance was associated with highest vs. lowest perceived control, respectively. Results are discussed in terms of the importance of the regulatory dimension of anxiety.
Energy Technology Data Exchange (ETDEWEB)
Foxall, William [Univ. of California, Berkeley, CA (United States)
1992-11-01
Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.
International Nuclear Information System (INIS)
Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.
2010-01-01
The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 μm) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Nan [Department of Bioengineering, Stanford University, Stanford, CA 94305 (United States); Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom); Humphrey, Jay D. [Department of Biomedical Engineering, Yale University, New Haven, CT 06520 (United States); Figueroa, C. Alberto, E-mail: alberto.figueroa@kcl.ac.uk [Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom)
2013-07-01
In this article, we present a computational multi-scale model of fully three-dimensional and unsteady hemodynamics within the primary large arteries in the human. Computed tomography image data from two different patients were used to reconstruct a nearly complete network of the major arteries from head to foot. A linearized coupled-momentum method for fluid–structure-interaction was used to describe vessel wall deformability and a multi-domain method for outflow boundary condition specification was used to account for the distal circulation. We demonstrated that physiologically realistic results can be obtained from the model by comparing simulated quantities such as regional blood flow, pressure and flow waveforms, and pulse wave velocities to known values in the literature. We also simulated the impact of age-related arterial stiffening on wave propagation phenomena by progressively increasing the stiffness of the central arteries and found that the predicted effects on pressure amplification and pulse wave velocity are in agreement with findings in the clinical literature. This work demonstrates the feasibility of three-dimensional techniques for simulating hemodynamics in a full-body compliant arterial network.
Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael
2012-01-01
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511
Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes
International Nuclear Information System (INIS)
Xin, R.C.; Dong, Z.F.; Ebadian, M.A.
1996-01-01
In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically
Energy Technology Data Exchange (ETDEWEB)
Noguchi, K; Endo, M [Waseda University, Tokyo (Japan). School of Science and Engineering
1997-10-22
Study is made on the theory of three-dimensional modelling of TDEM (Time Domain Electromagnetic) method based on the theory of Wang and Hohmann. A difference scheme is built and investigation is conducted about calculation accuracy with attention paid especially to space and time division, and the obtained optimum value is compared with the analytical solution for a homogeneous medium. As the result, it becomes possible to have a high-accuracy TDEM response thanks to the obtained optimum parameter. In an example, a response is determined in the case of a high-resistivity body in presence near the ground surface. Calculation is performed under the given conditions of a medium 100 ohm/m in resistivity, anomalous bodies 200, 500, 1000, 2000,5000, and 10,000 ohm/m in resistivity, respectively, and a distance in the direction of depth of 20m. The result indicates that it is possible to estimate the effect of the ground surface terrain on a TDEM response. Since the effect of the ground surface terrain emerges at the initial part of a response, it is inferred that consideration of terrain is mandatory in building a model if it is for interpreting the subsurface structure in detail. 5 refs., 7 figs.
Directory of Open Access Journals (Sweden)
Aziz Mahmoudzadeh
2016-07-01
Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.
Mahmoudzadeh, Aziz; Mohammadpour, Hemn
2016-07-01
Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.
Three-dimensional reactor model for the Paks NPP full-scope simulator
International Nuclear Information System (INIS)
Gyori, C.; Hegyi, G.; Hozer, Z.; Kereszturi, A.; Maraczy, C.
1993-01-01
The reactor model includes thermohydraulic and neutron-physical components. The thermohydraulic model is based on the SMABRE code developed at the Technical Research Centre of Finland for the analysis of loss-of-coolant transients in PWRs. The fuel rod model will be replaced by a new software module providing a comprehensive description of the behavior of fuel rods during reactor transients and hypothetical accidents. The calculation is performed in four individual models: fuel rod temperature model, fuel rod internal pressure model, fuel rod deformation model and fuel rod failure model. In the neutron-physical model the core is calculated with nodes for all of the 349 fuel assemblies, and each assembly is calculated in ten layers. (Z.S.) 1 fig., 5 refs
Echo, Anthony; Wolfswinkel, Erik M.; Weathers, William; McKnight, Aisha; Izaddoost, Shayan
2013-01-01
The use of a three-dimensional (3-D) model has been well described for craniomaxillofacial reconstruction, especially with the preoperative planning of free fibula flaps. This article reports the application of an innovative 3-D model approach for the calculation of the exact contours, angles, length, and general morphology of a prefabricated MEDPOR 2/3 orbital implant for reconstruction of a suprastructure maxillectomy defect. The 3-D model allowed intraoperative modification of the MEDPOR implant which decreased the risk of iatrogenic harm, contamination while also improving aesthetic results and function. With the aid of preoperative 3-D models, porous polypropylene facial implants can be contoured efficiently intraoperatively to precisely reconstruct complex craniomaxillofacial defects. PMID:24436774
Energy Technology Data Exchange (ETDEWEB)
Rouss, Vicky; Charon, Willy [M3M, University of Technology Belfort - Montbeliard (France); FCLAB, Rue Thierry Mieg, F 90010 Belfort, Cedex (France); Candusso, Denis [INRETS, The French National Institute for Transport and Safety Research (France); FCLAB, Rue Thierry Mieg, F 90010 Belfort, Cedex (France)
2008-11-15
The implementation of fuel cells (FC) in transportation systems such as airplanes requires better understanding of their mechanical behaviour in vibrating environment. To this end, a FC stack was tested on a vibrating platform for all three orthogonal axes. The experimental procedure is described in the first part of the paper. This second part of the paper demonstrates how the experimental data collected can be used to create a three-dimensional, multi-input and multi-output model based on the Artificial Neural Network (ANN) approach. Indeed FCs are nonlinear mechanical systems, difficult to be physically modelled. The ANN methodology which depends strictly on raw data is a particularly interesting alternative solution to model FCs, for example, for monitoring purpose. The ANN model is described along with the training, pruning and validation stages. The results are exposed and commented. (author)
A NEW THREE-DIMENSIONAL SOLAR WIND MODEL IN SPHERICAL COORDINATES WITH A SIX-COMPONENT GRID
Energy Technology Data Exchange (ETDEWEB)
Feng, Xueshang; Zhang, Man; Zhou, Yufen, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-09-01
In this paper, we introduce a new three-dimensional magnetohydrodynamics numerical model to simulate the steady state ambient solar wind from the solar surface to 215 R {sub s} or beyond, and the model adopts a splitting finite-volume scheme based on a six-component grid system in spherical coordinates. By splitting the magnetohydrodynamics equations into a fluid part and a magnetic part, a finite volume method can be used for the fluid part and a constrained-transport method able to maintain the divergence-free constraint on the magnetic field can be used for the magnetic induction part. This new second-order model in space and time is validated when modeling the large-scale structure of the solar wind. The numerical results for Carrington rotation 2064 show its ability to produce structured solar wind in agreement with observations.
International Nuclear Information System (INIS)
Hall, M.L.; Davis, A.B.
2005-01-01
Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown
Precision of three-dimensional CT-assisted model production in the maxillofacial area
International Nuclear Information System (INIS)
Solar, P.; Ulm, C.; Lill, W.; Imhof, H.; Watzek, G.; Blahout, R.; Gruber, H.; Matejka, M.
1992-01-01
Individual skull model fabrication was introduced into preoperative diagnostics in maxillofacial surgery in the mid-1980s. The aim of the present study was to collect information on the reproducibility of a skull model milled from hardened polyurethane foam. This model was based on the CT data of a real skull. Twenty comparative studies were carried out on both the model and the original skull, the model showing an average inaccuracy of 1.6 mm. The deviations ranged between 0.0 and 3.6 mm; the general trend favouring enlargements. The total deviation of the model as compared to the original skull was 1.8%. A convincing aspect of the model, which cannot be obtained by any other method, is its plasticity and the possibility of 3D orientation on a lifesize model. This new method is already used in preoperative planning of corrections of post-traumatic defects and craniofacial deformities as well as in tumour surgery. (orig.)
Savitri, I. T.; Badri, C.; Sulistyani, L. D.
2017-08-01
Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.
A Monte Carlo reflectance model for soil surfaces with three-dimensional structure
Cooper, K. D.; Smith, J. A.
1985-01-01
A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.
Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.
2017-12-01
Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.
International Nuclear Information System (INIS)
Meloni, S.
1998-01-01
To simulate transmitted radiation in agroforestry systems, radiative transfer models usually require a detailed three-dimensional description of the tree canopy. We propose here a simplification of the description of the three-dimensional structure of wild cherry trees (Prunus avium). The simplified tree description was tested against the detailed one for five-year-old wild cherry. It allowed accurate simulation of transmitted radiation and avoided tedious measurements of tree structure. The simplified description was then applied to older trees. Allometric relationships were used to compute the parameters not available on free-grown trees. The transmitted radiation in an agroforestry system was simulated at four different ages: 5, 10, 15 and 20 years. The trees were planted on a 5 m square grid. Two row orientations, chosen to provide different transmitted radiation patterns, were tested: north/south and north- east/south-west. The simulations showed that the daily mean transmitted radiation was reduced from 92% of incident radiation under five-year-old trees to 37% under 20-year-old trees. The variability of transmitted radiation increased with tree growth. The row orientation had only small effects on the shaded area at the beginning and end of the day when solar elevation was low. (author)
Directory of Open Access Journals (Sweden)
Ada J Klinkhamer
Full Text Available Digital dissection is a relatively new technique that has enabled scientists to gain a better understanding of vertebrate anatomy. It can be used to rapidly disseminate detailed, three-dimensional information in an easily accessible manner that reduces the need for destructive, traditional dissections. Here we present the results of a digital dissection on the appendicular musculature of the Australian estuarine crocodile (Crocodylus porosus. A better understanding of this until now poorly known system in C. porosus is important, not only because it will expand research into crocodilian locomotion, but because of its potential to inform muscle reconstructions in dinosaur taxa. Muscles of the forelimb and hindlimb are described and three-dimensional interactive models are included based on CT and MRI scans as well as fresh-tissue dissections. Differences in the arrangement of musculature between C. porosus and other groups within the Crocodylia were found. In the forelimb, differences are restricted to a single tendon of origin for triceps longus medialis. For the hindlimb, a reduction in the number of heads of ambiens was noted as well as changes to the location of origin and insertion for iliofibularis and gastrocnemius externus.
Three-dimensional seismic model of crustal structure in Southern Norway
DEFF Research Database (Denmark)
Loidl, B.; Behm, M.; Thybo, Hans
2014-01-01
, traveltime tomography, and interpolation algorithms to the high quality inline and cross-line data. A smooth 3-D crustal velocity model is inverted from traveltimes of diving Pg waves with similar results for two initial models. Initial models include a 1-D average model and an interpolated 3-D model based...... on robust, local 1-D velocity-depth functions derived from CMP-sorted and stacked records. The depth to Moho is determined from reflected waves (PmP) by traditional exploration seismology processing routines (CMP sorting, NMO correction, stacking, depth conversion). We find that this combination of stacking...
Three-dimensional modeling of flow through fractured tuff at Fran Ridge
International Nuclear Information System (INIS)
Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.
1996-01-01
Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 μm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies
Three-dimensional modeling of flow through fractured tuff at Fran Ridge
International Nuclear Information System (INIS)
Eaton, R.R.; Ho, C.K.; Glass, RJ.; Nicholl, M.J.; Arnold, B.W.
1996-09-01
Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 microm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies
A three-dimensional spectral element model for the solution of the hydrostatic primitive equations
Iskandarani, M; Levin, J C
2003-01-01
We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...
Construction and use of a three-dimensional model as a teaching resource for protein synthesis
Directory of Open Access Journals (Sweden)
Alberto Alexandre Lazzaroni
2017-12-01
Full Text Available A lot of biology topics are complex and abstract. So, the use of models that can simplify without trivializing knowledge, are important tools for the transposition of academic knowledge in school settings. By understanding the needs of its construction and, due to the lack of a concrete model that exemplifies the protein synthesis, the objective of this work was to elaborate this referred model. For this, the active teaching method was applied as a challenge proposal: the conception of a model conducted by High School students. Once the prototype was built, this strategy was applied to biology graduates, who evaluated and made some criticisms about it. Our results show that the tactic used was effective. It was verified that the model should be reproduced and that its application facilitated learning of both high school students and undergraduates. We conclude that the availability of this model should contribute to the learning of biochemistry / molecular biology in formal education.
International Nuclear Information System (INIS)
Chourasia, M.K.; Goswami, T.K.
2007-01-01
A three dimensional model was developed to simulate the transport phenomena in heat and mass generating porous medium cooled under natural convective environment. Unlike the previous works on this aspect, the present model was aimed for bulk stored agricultural produce contained in a permeable package placed on a hard surface. This situation made the bottom of the package impermeable to fluid flow as well as moisture transfer and adiabatic to heat transfer. The velocity vectors, isotherms and contours of rate of moisture loss were presented during transient cooling as well as at steady state using the commercially available computational fluid dynamics (CFD) code based on the finite volume technique. The CFD model was validated using the experimental data on the time-temperature history as well as weight loss obtained from a bag of potatoes kept in a cold store. The simulated and experimental values on temperature and moisture loss of the product were found to be in good agreement
Three-Dimensional Model Test Study of the New Breakwaters at Playa Blanca, Lanzarote
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Garborg, Karsten; Stagsted, Esben Rubech
This report present the results of 3-D physical model tests (length scale 1:42.5) carried out in a wave bassin at Department of Civil Engineering, Aalborg University (AAU) on behalf of SENER Ingenera y Sistemas S.A. Associate Prof. Thomas Lykke Andersen was in charge of the model tests, assisted...... by B.Sc. Karsten Garborg and B.Sc. Esben Rubeck Stagsted. Engineer assistant Niels Drustrup and Leif Mortensen assisted in the laboratory with the construction and instrumentation of the model. The model construction, testing and reporting were performed during August and September 2012. For further...
Energy Technology Data Exchange (ETDEWEB)
Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)
2012-07-01
Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the
Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Glorieux, C.
2015-01-01
Sound absorption of porous asphalt pavements is an important property when reducing tyre-road noise. A hybrid model has been developed to predict the sound absorption of porous roads. This model is a combination of an analytical analysis of the sound eld and a numerical approach, including both the
International Nuclear Information System (INIS)
Chen Jian-Lin; Li Lei; Wang Lin-Yuan; Cai Ai-Long; Xi Xiao-Qi; Zhang Han-Ming; Li Jian-Xin; Yan Bin
2015-01-01
The projection matrix model is used to describe the physical relationship between reconstructed object and projection. Such a model has a strong influence on projection and backprojection, two vital operations in iterative computed tomographic reconstruction. The distance-driven model (DDM) is a state-of-the-art technology that simulates forward and back projections. This model has a low computational complexity and a relatively high spatial resolution; however, it includes only a few methods in a parallel operation with a matched model scheme. This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations. Our proposed model has been implemented on a GPU (graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation. The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop, respectively, with an image size of 256×256×256 and 360 projections with a size of 512×512. We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation. The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction. (paper)
AUTOMATING THREE DIMENSIONAL (3D) MODEL CREATION OF CIRCUIT CARD ASSEMBLIES
2017-07-01
mechanical engineers throughout the design process. METHODS, ASSUMPTIONS, AND PROCEDURES Overview The methods described in this paper follow...release; distribution is unlimited. AD U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Weapons and Software Engineering Center... mechanical CAD application for solid modeling. The resulting models allow for additional error checking prior to fabrication as well as the data needed to
Programming Models for Three-Dimensional Hydrodynamics on the CM-5 (Part II)
International Nuclear Information System (INIS)
Amala, P.A.K.; Rodrigue, G.H.
1994-01-01
This is a two-part presentation of a timing study on the Thinking Machines CORP. CM-5 computer. Part II is given in this study and represents domain-decomposition and message-passing models. Part I described computational problems using a SIMD model and connection machine FORTRAN (CMF)