WorldWideScience

Sample records for soot surface growth

  1. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames

    KAUST Repository

    Attili, Antonio

    2015-01-01

    The effect of Damköhler number on turbulent nonpremixed sooting flames is investigated via large scale direct numerical simulation in three-dimensional n-heptane/air jet flames at a jet Reynolds number of 15,000 and at three different Damköhler numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest Damköhler number cases. Compared to temperature and other species controlled by fuel oxidation chemistry, naphthalene is found to be affected more significantly by the Damköhler number. Consequently, the overall soot mass fraction decreases by more than one order of magnitude for a fourfold decrease of the Damköhler number. On the contrary, the overall number density of soot particles is approximately the same, but its distribution in mixture fraction space is different in the three cases. The total soot mass growth rate is found to be proportional to the Damköhler number. In the two lowest Da number cases, soot leakage across the flame is observed. Leveraging Lagrangian statistics, it is concluded that soot leakage is due to patches of soot that cross the stoichiometric surface through flame holes. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  2. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  3. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame

    KAUST Repository

    Attili, Antonio

    2014-07-01

    The formation, growth, and transport of soot is investigated via large scale numerical simulation in a three-dimensional turbulent non-premixed n-heptane/air jet flame at a jet Reynolds number of 15,000. For the first time, a detailed chemical mechanism, which includes the soot precursor naphthalene and a high-order method of moments are employed in a three-dimensional simulation of a turbulent sooting flame. The results are used to discuss the interaction of turbulence, chemistry, and the formation of soot. Compared to temperature and other species controlled by oxidation chemistry, naphthalene is found to be affected more significantly by the scalar dissipation rate. While the mixture fraction and temperature fields show fairly smooth spatial and temporal variations, the sensitivity of naphthalene to turbulent mixing causes large inhomogeneities in the precursor fields, which in turn generate even stronger intermittency in the soot fields. A strong correlation is apparent between soot number density and the concentration of naphthalene. On the contrary, while soot mass fraction is usually large where naphthalene is present, pockets of fluid with large soot mass are also frequent in regions with very low naphthalene mass fraction values. From the analysis of Lagrangian statistics, it is shown that soot nucleates and grows mainly in a layer close to the flame and spreads on the rich side of the flame due to the fluctuating mixing field, resulting in more than half of the total soot mass being located at mixture fractions larger than 0.6. Only a small fraction of soot is transported towards the flame and is completely oxidized in the vicinity of the stoichiometric surface. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. Finally, given the difficulties in obtaining quantitative data in experiments of turbulent sooting flames, this simulation provides valuable data to guide the development of

  4. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio; Mü eller, Michael E.; Pitsch, Heinz G.

    2014-01-01

    The formation, growth, and transport of soot is investigated via large scale numerical simulation in a three-dimensional turbulent non-premixed n-heptane/air jet flame at a jet Reynolds number of 15,000. For the first time, a detailed chemical mechanism, which includes the soot precursor naphthalene and a high-order method of moments are employed in a three-dimensional simulation of a turbulent sooting flame. The results are used to discuss the interaction of turbulence, chemistry, and the formation of soot. Compared to temperature and other species controlled by oxidation chemistry, naphthalene is found to be affected more significantly by the scalar dissipation rate. While the mixture fraction and temperature fields show fairly smooth spatial and temporal variations, the sensitivity of naphthalene to turbulent mixing causes large inhomogeneities in the precursor fields, which in turn generate even stronger intermittency in the soot fields. A strong correlation is apparent between soot number density and the concentration of naphthalene. On the contrary, while soot mass fraction is usually large where naphthalene is present, pockets of fluid with large soot mass are also frequent in regions with very low naphthalene mass fraction values. From the analysis of Lagrangian statistics, it is shown that soot nucleates and grows mainly in a layer close to the flame and spreads on the rich side of the flame due to the fluctuating mixing field, resulting in more than half of the total soot mass being located at mixture fractions larger than 0.6. Only a small fraction of soot is transported towards the flame and is completely oxidized in the vicinity of the stoichiometric surface. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. Finally, given the difficulties in obtaining quantitative data in experiments of turbulent sooting flames, this simulation provides valuable data to guide the development of

  5. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation

    Science.gov (United States)

    Zhao, Yan; Liu, Yongchun; Ma, Jinzhu; Ma, Qingxin; He, Hong

    2017-03-01

    The conversion of SO2 to sulfates on the surface of soot is still poorly understood. Soot samples with different fractions of unsaturated hydrocarbons and oxygen-containing groups were prepared by combusting n-hexane under well-controlled conditions. The heterogeneous reaction of SO2 with soot was investigated using in situ attenuated total internal reflection infrared (ATR-IR) spectroscopy, ion chromatography (IC) and a flow tube reactor at the ambient pressure and relative humidity (RH). Water promoted SO2 adsorption and sulfate formation at the RH range from 6% to 70%, while exceeded water condensed on soot was unfavorable for sulfate formation due to inhibition of SO2 adsorption when RH was higher than 80%. The surface composition of soot, which was governed by combustion conditions, also played an important role in the heterogeneous reaction of SO2 with soot. This effect was found to greatly depend on RH. At low RH of 6%, soot with the highest fuel/oxygen ratio of 0.162 exhibited a maximum uptake capacity for SO2 because it contained a large amount of aromatic Csbnd H groups, which acted as active sites for SO2 adsorption. At RH of 54%, soot produced with a fuel/oxygen ratio of 0.134 showed the highest reactivity toward SO2 because it contained appropriate amounts of aromatic Csbnd H groups and oxygen-containing groups, subsequently leading to the optimal surface concentrations of both SO2 and water. These results suggest that variation in the surface composition of soot from different sources and/or resulting from chemical aging in the atmosphere likely affects the conversion of SO2 to sulfates.

  6. Experimental study of the interaction of HO2 radicals with soot surface.

    Science.gov (United States)

    Bedjanian, Yuri; Lelièvre, Stéphane; Le Bras, Georges

    2005-01-21

    The reaction of HO2 with toluene and kerosene flame soot was studied over the temperature range 240-350 K and at P = 0.5-5 Torr of helium using a discharge flow reactor coupled to a modulated molecular beam mass spectrometer. A flat-flame burner was used for the preparation and deposition of soot samples from premixed flames of liquid fuels under well controlled and adjustable combustion conditions. The independent of temperature in the range 240-350 K value of gamma = (7.5 +/- 1.5) x 10(-2) (calculated with geometric surface area) was found for the uptake coefficient of HO2 on kerosene and toluene soot. No significant deactivation of soot surface during its reaction with HO2 was observed. Experiments on soot ageing under ambient conditions showed that the reactivity of aged soot is similar to that of freshly prepared soot samples. The results show that the HO2 + soot reaction could be a significant loss process for HOx in the urban atmosphere with a potential impact on photochemical ozone formation. In contrast this process will be negligible in the upper troposphere even in flight corridors.

  7. Effect of dust and soot on the growth of spruce trees

    Energy Technology Data Exchange (ETDEWEB)

    Rohmeder, E

    1960-07-01

    The effect of chronic exposure to road dust, calcium carbonate and soot on plant growth, was investigated in an experiment with 40 spruces of common heredity that were three years old at the start of the experiment and five years old at its conclusion. The plants were exposed for the entire 1956 growing season to the effect of a heavy coating of dust. In the following year, the growth performance and the production of shoots and needle mass in plants treated with dust were substantially below the untreated control plants. The root mass produced was also smaller in the treated plants than in those untreated. The considerable growth retardation after a heavy layering of dust lasting one growing season is primarily explained by the withdrawal of light and the resultant reduction in assimilation performance. In exposure to soot, however, the corrosive effect of the chemicals contained in the soot increased the extent of the damage to the plants.

  8. Soot in the atmosphere and snow surface of Antarctica

    International Nuclear Information System (INIS)

    Warren, S.G.; Clarke, A.D.

    1990-01-01

    Samples of snow collected near the south pole during January and February 1986 were analyzed for the presence of light-absorbing particles by passing the melted snow through a nuclepore filter. Transmission of light through the filter showed that snow far from the station contains the equivalent of 0.1-0.3 ng of carbon per gram of snow (ng/g). Samples of ambient air were filtered and found to contain about 1-2 ng of carbon per kilogram of air, giving a scavenging ratio of about 150. The snow downwind of the station exhibited a well-defined plume of soot due to the burning of diesel fuel, but even in the center of the plume 1 km downwind, the soot concentration was only 3 ng/g, too small to affect snow albedo significantly. Measurements of snow albedo near large inland stations are therefore probably representative of their surrounding regions

  9. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  10. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  11. Simulation of temporal and spatial soot evolution in an automotive diesel engine using the Moss–Brookes soot model

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► Numerical models were validated against experimental data of two diesel engines. ► Soot model constant values were calibrated to predict in-cylinder soot processes. ► Effects of split-main injection parameters on soot distributions were determined. ► Soot cloud was distributed towards cylinder wall when using large dwell period. ► Greater soot deposition expected with large dwell period and retarded injection. - Abstract: In this reported work, computational study on the formation processes of soot particles from diesel combustion is conducted using an approach where Computational Fluid Dynamics (CFD) is coupled with a chemical kinetic model. A multi-step soot model which accounts for inception, surface growth, coagulation and oxidation was applied. Model constant values in the Moss–Brookes soot formation and Fenimore–Jones soot oxidation models were calibrated, and were validated against in-cylinder soot evolution and exhaust soot density of both heavy- and light-duty diesel engines, respectively. Effects of various injection parameters such as start of injection (SOI) timing, split-main ratio and dwell period of the split-main injection strategy on in-cylinder temporal/spatial soot evolution in a light-duty diesel engine were subsequently investigated. The spatial soot distributions at each crank angle degree after start of injection were found to be insensitive to the change of values in SOI and split-main ratio when close-coupled injection was implemented. Soot cloud was also observed to be distributed towards the cylinder wall when a large separation of 20° was used, even with an advanced SOI timing of −6° after top dead centre (ATDC). The use of large separation is hence not desired for this combustion system as it potentially leads to soot deposition on surface oil film and greater tailpipe soot emissions.

  12. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu; Raj, Abhijeet Dhayal; Chung, Suk-Ho

    2015-01-01

    of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified

  13. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam; Zhang, Ji; Fang, Tiegang; Roberts, William L.

    2014-01-01

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both

  14. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu

    2015-03-01

    A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were

  15. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  16. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  17. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  18. On the formation and early evolution of soot in turbulent nonpremixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-01-01

    A Direct Numerical Simulation (DNS) of soot formation in an n-heptane/air turbulent nonpremixed flame has been performed to investigate unsteady strain effects on soot growth and transport. For the first time in a DNS of turbulent combustion, Polycyclic Aromatic Hydrocarbons (PAH) are included via a validated, reduced chemical mechanism. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments is used [M.E. Mueller, G. Blanquart, H. Pitsch, Combust. Flame 156 (2009) 1143-1155], which allows for an accurate state-of-the-art description of soot number density, volume fraction, and morphology of the aggregates. In agreement with previous experimental studies in laminar flames, Damköhler number effects are found to be significant for PAH. Soot nucleation and growth from PAH are locally inhibited by high scalar dissipation rate, thus providing a possible explanation for the experimentally observed reduction of soot yields at increasing levels of mixing in turbulent sooting flames. Furthermore, our data indicate that soot growth models that rely on smaller hydrocarbon species such as acetylene as a proxy for large PAH molecules ignore or misrepresent the effects of turbulent mixing and hydrodynamic strain on soot formation due to differences in the species Damköhler number. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects between soot and the gas-phase. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow primarily by condensation of PAH on the particle surface. In contrast to previous DNS studies based on simplified soot and chemistry models, surface reactions are found to contribute barely to the growth of soot, for nucleation and condensation processes occurring in the fuel stream are responsible for the most of soot mass generation. Furthermore, the morphology of the soot aggregates is

  19. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution

    KAUST Repository

    Wang, Yu

    2016-05-04

    Experimental and numerical modeling studies have been performed to investigate the effect of CO2 dilution on soot formation in ethylene counterflow diffusion flames. Thermal and chemical effects of CO2 addition on soot growth was numerically identified by using a fictitious CO2 species, which was treated as inert in terms of chemical reactions. The results showed that CO2 addition reduces soot formation both thermodynamically and chemically. In terms of chemical effect, the addition of CO2 decreases soot formation through various pathways, including: (1) reduced soot precursor (PAH) formation leading to lower inception rates and soot number density, which in turn results in lower surface area for soot mass addition; (2) reduced H, CH3, and C3H3 concentrations causing lower H abstraction rate and therefore less active site per surface area for soot growth; and (3) reduced C2H2 mole fraction and thus a slower C2H2 mass addition rate. In addition, the sooting limits were also measured for ethylene counterflow flames in both N2 and CO2 atmosphere and the results showed that sooting region was significantly reduced in the CO2 case compared to the N2 case. © 2016 Taylor & Francis.

  20. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    Science.gov (United States)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  1. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  2. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio; Mueller, Michael E.; Pitsch, Heinz

    2015-01-01

    numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest

  3. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  4. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun

    2014-01-06

    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic hydrocarbons (PAHs) condensation PAHs condensing on soot particle surface surface processes hydrogen-abstraction-C2H2-addition, oxidation coagulation two soot particles coagulating to form a bigger particle This simulation work investigates soot size distribution and morphology in an ethylene counterflow flame, using i). Chemkin with a method of moments to deal with the coupling between vapor consumption and soot formation; ii). Monte Carlo simulation of soot dynamics.

  5. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  6. Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame

    Directory of Open Access Journals (Sweden)

    Manedhar Reddy Busupally

    2016-06-01

    Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.

  7. Investigation of soot morphology and particle size distrib ution in a turbulent nonpremixed flame via Monte Carlo simulations

    KAUST Repository

    Abdelgadir, Ahmed; Lucchesi, Marco; Attili, Antonio; Bisetti, Fabrizio

    2015-01-01

    the soot evolution along selected Lagrangian trajectories using a Monte Carlo method. An operator splitting approach is adopted to split the deterministic processes (nucleation, surface growth and oxidation) from coagulation, which is treated stochastically

  8. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust

    KAUST Repository

    Raj, Abhijeet; Zainuddin, Zakwan; Sander, Markus; Kraft, Markus

    2011-01-01

    The non-catalytic interaction between soot and nitric oxide (NO) resulting in their simultaneous elimination was studied on different types of reactive site present on soot. The reaction mechanism proposed previously was extended by including seven new reaction pathways for which the reaction energetics and kinetics were studied using density functional theory and transition state theory. This has led to the calculation of a new rate for the removal of carbon monoxide (CO) from soot. The new pathways have been added to our polycyclic aromatic hydrocarbon (PAH) growth model and used to simulate the NO-soot interaction to form CO, N2 and N2O. The simulation results show satisfactory agreement with experiment for the new CO removal rate. The NO-soot reaction was found to depend strongly on the soot site type and temperature. For a set of temperatures, computed PAH structures were analysed to determine the functional groups responsible for the decrease in the reactivity of soot with NO with increasing reaction time. In isothermal conditions, it was found that as temperature is increased, the number of oxygen atoms remaining on the soot surface decreases, while the number of nitrogen atoms increases for a given reaction time. © 2010 Elsevier Ltd. All rights reserved.

  9. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust

    KAUST Repository

    Raj, Abhijeet

    2011-04-01

    The non-catalytic interaction between soot and nitric oxide (NO) resulting in their simultaneous elimination was studied on different types of reactive site present on soot. The reaction mechanism proposed previously was extended by including seven new reaction pathways for which the reaction energetics and kinetics were studied using density functional theory and transition state theory. This has led to the calculation of a new rate for the removal of carbon monoxide (CO) from soot. The new pathways have been added to our polycyclic aromatic hydrocarbon (PAH) growth model and used to simulate the NO-soot interaction to form CO, N2 and N2O. The simulation results show satisfactory agreement with experiment for the new CO removal rate. The NO-soot reaction was found to depend strongly on the soot site type and temperature. For a set of temperatures, computed PAH structures were analysed to determine the functional groups responsible for the decrease in the reactivity of soot with NO with increasing reaction time. In isothermal conditions, it was found that as temperature is increased, the number of oxygen atoms remaining on the soot surface decreases, while the number of nitrogen atoms increases for a given reaction time. © 2010 Elsevier Ltd. All rights reserved.

  10. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    Science.gov (United States)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper

    2015-05-01

    In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.

  11. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.

    Science.gov (United States)

    di Stasio, Stefano; Konstandopoulos, Athanasios G; Kostoglou, Margaritis

    2002-03-01

    The agglomeration kinetics of growing soot generated in a diffusion atmospheric flame are here studied in situ by light scattering technique to infer cluster morphology and size (fractal dimension D(f) and radius of gyration R(g)). SEM analysis is used as a standard reference to obtain primary particle size D(P) at different residence times. The number N(P) of primary particles per aggregate and the number concentration n(A) of clusters are evaluated on the basis of the measured angular patterns of the scattered light intensity. The major finding is that the kinetics of the coagulation process that yields to the formation of chain-like aggregates by soot primary particles (size 10 to 40 nm) can be described with a constant coagulation kernel beta(c,exp)=2.37x10(-9) cm3/s (coagulation constant tau(c) approximately = 0.28 ms). This result is in nice accord with the Smoluchowski coagulation equation in the free molecular regime, and, vice versa, it is in contrast with previous studies conducted by invasive (ex situ) techniques, which claimed the evidence in flames of coagulation rates much larger than the kinetic theory predictions. Thereafter, a number of numerical simulations is implemented to compare with the experimental results on primary particle growth rate and on the process of aggregate reshaping that is observed by light scattering at later residence times. The restructuring process is conjectured to occur, for not well understood reasons, as a direct consequence of the atomic rearrangement in the solid phase carbon due to the prolonged residence time within the flame. Thus, on one side, it is shown that the numerical simulations of primary size history compare well with the values of primary size from SEM experiment with a growth rate constant of primary diameter about 1 nm/s. On the other side, the evolution of aggregate morphology is found to be predictable by the numerical simulations when the onset of a first-order "thermal" restructuring mechanism is

  12. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  13. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  14. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites

    Science.gov (United States)

    Esmeryan, Karekin D.; Castano, Carlos E.; Mohammadi, Reza; Lazarov, Yuliyan; Radeva, Ekaterina I.

    2018-02-01

    Condensation frosting is an undesired natural phenomenon that could be impeded efficiently using appropriate wettability and morphologically patterned surfaces. The icephobic properties of carbon soot and the fabrication scalability of its synthesis method are a good foundation for anti-frosting applications; however, the fundamentals of frost growth and spreading on sooted surfaces have not been examined yet. In this study, we investigate the anti-frosting performance of three groups of superhydrophobic soot coatings by means of 16 MHz quartz crystal microbalances (QCMs). The analysis of the real-time sensor signal of each soot coated QCM pattern shows that frost formation and its propagation velocity depend on the quantity of oxygen functionalities and structural defects in the material. In turn, the reduction of both parameters shifts the onset of frost growth to temperatures below  -20 °C, whereas the interdroplet ice bridging is slowed by a factor of four. Moreover, high-resolution scanning electron micrographs of the samples imply delamination upon defrosting of the soot with spherical-like morphology via polar interactions driven mechanism. These results reveal an opportunity for control of frost incipiency on sooted surfaces by adjusting the synthesis conditions and depositing soot coatings with as low as possible content of hydrophilic active sites.

  15. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2015-10-01

    oxygenated carbonaceous ions (CO1-2+, potassium (K+, and water (H2O+ and related fragments. The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c. The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in situ BC surface aging and suggest that the surface of beech-wood BC may be modelled as a single chemical species.

  16. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: Changes of mass, size, effective density, morphology and mixing state

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Han, Ke; Lv, Biao; Bao, Kaiji; Wu, Xuecheng; Gao, Xiang; Cen, Kefa

    2017-02-01

    Atmospheric soot aging process is always accompanied by secondary particle formation, which is a comprehensive environmental issue that deserves great attention. On one hand, aging of primary soot could change its own physicochemical properties; on the other hand, complex air pollution caused by pollutant emission from various sources (e.g., vehicle exhausts, coal-fired flue gases and biogenic VOCs emission) may contribute to secondary particle formation onto primary particle surface. In this study, aging of combustion soot in isoprene/SO2/NOx system was investigated under controlled laboratory conditions in several smog chamber experiments. During the evolution of soot, several physical properties such as mass, size, effective density, morphology and mixing state were determined simultaneously by an integrated aerosol analytical system of Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer-Aerosol Particle Mass Analyzer-Condensation Particle Counter (DMA-APM-CPC) and Transmission Electron Microscopy coupled with Energy-dispersive X-ray Spectrometry (TEM/EDX) techniques. Here, based on the experimental results of soot aging under different gas-phase composition and relative humidity (RH), we firstly proposed possible aging pathways of soot in isoprene/SO2/NOx system. A synergetic effect was speculated to exist between SO2 and isoprene on soot aging process, which led to more secondary particle formation. At the same time, TEM/EDX analysis showed that a competitive mechanism between H2SO4(g) and isoprene oxidation vapor may exist: H2SO4(g) firstly condensed onto fresh soot, then an acceleration of isoprene oxidation products formed onto H2SO4 pre-coated soot. In isoprene/SO2/NOx system, high RH conditions could contribute to soot aging and new particle formation. The changes of effective density and dynamic shape factor of soot also indicated that high RH conditions could accelerate soot aging process, and led chain-like soot into more spherical

  17. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  18. Thermal fragmentation and deactivation of combustion-generated soot particles

    KAUST Repository

    Raj, Abhijeet

    2014-09-01

    The effect of thermal treatment on diesel soot and on a commercial soot in an inert environment under isothermal conditions at intermediate temperatures (400-900°C) is studied. Two important phenomena are observed in both the soot samples: soot fragmentation leading to its mass loss, and loss of soot reactivity towards O2. Several experimental techniques such as high resolution transmission electron microscopy, electron energy loss spectroscopy, thermo-gravimetric analysis with mass spectrometry, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction have been used to identify the changes in structures, functional groups such as oxygenates and aliphatics, σ and π bonding, O/C and H/C ratios, and crystallite parameters of soot particles, introduced by heat. A decrease in the size of primary particles and an increase in the average polycyclic aromatic hydrocarbon (PAH) size was observed in soots after thermal treatment. The activation energies of soot oxidation for thermally treated soot samples were found to be higher than those for the untreated ones at most conversion levels. The cyclic or acyclic aliphatics with sp3 hybridization were present in significant amounts in all the soot samples, but their concentration decreased with thermal treatment. Interestingly, the H/C and the O/C ratios of soot particles increased after thermal treatment, and thus, they do not support the decrease in soot reactivity. The increase in the concentration of oxygenates on soot surface indicate that their desorption from soot surface in the form of CO, CO2 and other oxygenated compounds may not be significant at the temperatures (400-900°C) studied in this work. © 2014 The Combustion Institute.

  19. Fragmentation and bond strength of airborne diesel soot agglomerates

    Directory of Open Access Journals (Sweden)

    Messerer Armin

    2008-06-01

    Full Text Available Abstract Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging" was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot.

  20. Fragmentation and bond strength of airborne diesel soot agglomerates

    Science.gov (United States)

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  1. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo

    2017-02-05

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  2. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo; Wang, Yu; Chung, Suk-Ho; Sarathy, Mani

    2017-01-01

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  3. Ice Nucleation of Soot Particles in the Cirrus Regime: Is Pore Condensation and Freezing Relevant for Soot?

    Science.gov (United States)

    Kanji, Z. A.; Mahrt, F.; David, R.; Marcolli, C.; Lohmann, U.; Fahrni, J.; Brühwiler, D.

    2017-12-01

    Heterogeneous ice nucleation (HIN) onto soot particles from previous studies have produced inconsistent results of temperature and relative humidity conditions required for freezing depending on the source of soot particle investigated. The ability of soot to act as HIN depended on the type of soot and size of particle. Often homogenous freezing conditions or water saturation conditions were required to freeze soot particles, rendering HIN irrelevant. Using synthesised mesoporous silica particles, we show pore condensation and freezing works with experiments performed in the Zurich Ice Nucleation Chamber (ZINC). By testing a variety of soot particles in parallel in the Horizontal Ice Nucleation Chamber (HINC), we suggest that previously observed HIN on soot particles is not the responsible mechanism for ice formation. Laboratory generated CAST brown and black soot, commercially available soot and acid treated soot were investigated for their ice nucleation abilities in the mixed-phase and cirrus cloud temperature regimes. No heterogeneous ice nucleation activity is inferred at T > -38 °C (mixed-phase cloud regime), however depending on particle size and soot type, HIN was observed for T nucleation of ice in the pores or cavities that are ubiquitous in soot particles between the primary spherules. The ability of some particles to freeze at lower relative humidity compared to others demonstrates why hydrophobicity plays a role in ice nucleation, i.e. controlling the conditions at which these cavities fill with water. Thus for more hydrophobic particles pore filling occurs at higher relative humidity, and therefore freezing of pore water and ice crystal growth. Future work focusses on testing the cloud processing ability of soot particles and water adsorption isotherms of the different soot samples to support the hydrophobicity inferences from the ice nucleation results.

  4. NATO Workshop on Soot in Combustion Systems

    CERN Document Server

    Prado, G

    1983-01-01

    Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scie...

  5. Morphological transformation of soot: investigation of microphysical processes during the condensation of sulphuric acid and limonene ozonolysis products vapours

    Science.gov (United States)

    Pathak, R. K. P.; Pei, X.; Hallquist, M.; Pagels, J. H.

    2017-12-01

    Morphological transformation of soot particle by condensation of low volatility materials on it is a dominant atmospheric process with serious implications for its optical and hygroscopic properties, and atmospheric lifetime. In this study, the morphological transformation of soot agglomerate under the influence of condensation of vapours of sulphuric acid, and/or limonene ozonolysis products were investigated systematically using a Differential Mobility Analyser-Aerosol Particle Mass Analyser (DMA-APM) and the Tandem DMA techniques integrated with a laminar flow-tube system. We discovered that the morphology transformation of soot in general was a sequence of two-step process, i.e. (i) filling of void space within soot agglomerate; (ii) growth of particle diameter. These two steps followed and complimented each other. In the very beginning the filling was the dominant process followed by growth until it led to the accumulation of enough material that in turn exerted surface forces that eventually facilitated the further filling. The filling of void space was constrained by the initial morphology of fresh soot and the nature and amount of the material condensed. This process continued in several sequential steps until all void space within the soot agglomerate was filled completely and then growth of a spherical particle continued as long as mass was condensed on it. In this study, we developed a framework to quantify the microphysical transformation of soot upon the condensation of various materials. The framework utilized experimental data and hypothesis of ideal sphere growth and filling of voids to quantify the distribution of condensed materials in these two processes complimenting each other. Using this framework, we have quantified the percentage of material that went into processes of particle growth and void filling at each step. Using the same framework, we further estimated the fraction of internal voids and open voids and used this information to derive

  6. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    Science.gov (United States)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  7. Investigation of soot morphology and particle size distrib ution in a turbulent nonpremixed flame via Monte Carlo simulations

    KAUST Repository

    Abdelgadir, Ahmed

    2015-03-30

    Recently, our group performed a set of direct numerical simulations (DNS) of soot formation and growth in a n-heptane three dimensional non-premixed jet flame [Attili et al., Proc. Comb. Inst, 35, 2015], [Attili et al., Comb. Flame, 161, 2014], [Bisetti et al.,Trans of the Royal Soc, 372, 2014]. The evolution of species relevant to soot formation and growth have been sampled along a large number of Lagrangian trajectories in the DNS. In this work, the DNS results are post-processed to compute the soot evolution along selected Lagrangian trajectories using a Monte Carlo method. An operator splitting approach is adopted to split the deterministic processes (nucleation, surface growth and oxidation) from coagulation, which is treated stochastically. The morphological properties of soot and the particlesize distribution are investigated. For trajectories that experience an early strong nucleation event, the particle size distribution is found to be bimodal, as the soot particles have enough time to coagulate and grow while it is unimodal for trajectories characterized by only late nucleation events. As a results, the average size distribution at two different crosswise positions in the flame is unimodal.

  8. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  9. Potassium and soot interaction in fast biomass pyrolysis at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Hofmann Larsen, Flemming; Shchukarev, Andrey

    2018-01-01

    2 reactivity was studied by thermogravimetric analysis. The XPS results showed that potassium incorporation with oxygen-containing surface groups in the soot matrix did not occur during high temperature pyrolysis. The potassium was mostly found as water-soluble salts such as KCl, KOH, KHCO3 and K2CO...... potassium amount was incorporated in the soot matrix during pyrolysis. Raman spectroscopy results showed that the carbon chemistry of biomass soot also affected the CO2 reactivity. The less reactive pinewood soot was more graphitic than herbaceous biomass soot samples with the disordered carbon structure...

  10. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  11. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.

    2015-08-17

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production. © 2015 Taylor & Francis

  12. Durable superhydrophobic carbon soot coatings for sensor applications

    Science.gov (United States)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  13. Soot and radiation in combusting boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  14. Impacts of fuel formulation and engine operating parameters on the nanostructure and reactivity of diesel soot

    Science.gov (United States)

    Yehliu, Kuen

    This study focuses on the impacts of fuel formulations on the reactivity and nanostructure of diesel soot. A 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine was used in generating soot samples. The impacts of engine operating modes and the start of combustion on soot reactivity were investigated first. Based on preliminary investigations, a test condition of 2400 rpm and 64 Nm, with single and split injection strategies, was chosen for studying the impacts of fuel formulation on the characteristics of diesel soot. Three test fuels were used: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester (B100), and a synthetic Fischer-Tropsch fuel (FT) produced in a gas-to-liquid process. The start of injection (SOI) and fuel rail pressures were adjusted such that the three test fuels have similar combustion phasing, thereby facilitating comparisons between soots from the different fuels. Soot reactivity was investigated by thermogravimetric analysis (TGA). According to TGA, B100 soot exhibits the fastest oxidation on a mass basis followed by BP15 and FT derived soots in order of apparent rate constant. X-ray photoelectron spectroscopy (XPS) indicates no relation between the surface oxygen content and the soot reactivity. Crystalline information for the soot samples was obtained using X-ray diffraction (XRD). The basal plane diameter obtained from XRD was inversely related to the apparent rate constants for soot oxidation. For comparison, high resolution transmission electron microscopy (HRTEM) provided images of the graphene layers. Quantitative image analysis proceeded by a custom algorithm. B100 derived soot possessed the shortest mean fringe length and greatest mean fringe tortuosity. This suggests soot (nano)structural disorder correlates with a faster oxidation rate. Such results are in agreement with the X-ray analysis, as the observed fringe length is a measure of basal plane diameter. Moreover the relation

  15. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  16. Factors influencing graphene growth on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, E; Bartelt, N C; McCarty, K F [Sandia National Laboratories, Livermore, CA (United States); Feibelman, P J [Sandia National Laboratories, Albuquerque, NM (United States)], E-mail: mccarty@sandia.gov

    2009-06-15

    Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.

  17. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame

    KAUST Repository

    Lucchesi, Marco; Abdelgadir, Ahmed Gamaleldin; Attili, Antonio; Bisetti, Fabrizio

    2017-01-01

    to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates

  18. Alloyed surfaces: New substrates for graphene growth

    Science.gov (United States)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  19. Surface growth kinematics via local curve evolution

    KAUST Repository

    Moulton, Derek E.

    2012-11-18

    A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.

  20. Growth of organic films on indoor surfaces

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2017-01-01

    predictions indicate that film growth would primarily be influenced by the gas-phase concentration of SVOCs with octanol-air partitioning (Koa) values in the approximate range 10≤log Koa≤13. Within the relevant range, SVOCs with lower values will equilibrate with the surface film more rapidly. Over time...

  1. Graphene growth and stability at nickel surfaces

    International Nuclear Information System (INIS)

    Lahiri, Jayeeta; S Miller, Travis; J Ross, Andrew; Adamska, Lyudmyla; Oleynik, Ivan I; Batzill, Matthias

    2011-01-01

    The formation of single-layer graphene by exposure of a Ni(111) surface to ethylene at low pressure has been investigated. Two different growth regimes were found. At temperatures between 480 and 650 deg. C, graphene grows on a pure Ni(111) surface in the absence of a carbide. Below 480 deg. C, graphene growth competes with the formation of a surface Ni 2 C carbide. This Ni 2 C phase suppresses the nucleation of graphene. Destabilization of the surface carbide by the addition of Cu to the surface layer facilitates the nucleation and growth of graphene at temperatures below 480 deg. C. In addition to the growth of graphene on Ni substrates, the interaction between graphene and Ni was also studied. This was done both experimentally by Ni deposition on Ni-supported graphene and by density functional theory calculation of the work of adhesion between graphene and Ni. For graphene sandwiched between two Ni-layers, the work of adhesion between graphene and the Ni substrate was found to be four times as large as that for the Ni-supported graphene without a top layer. This stronger interaction may cause the destruction of graphene that is shown experimentally to occur at ∼200 0 C when Ni is deposited on top of Ni-supported graphene. The destruction of graphene allows the Ni deposits to merge with the substrate Ni. After the completion of this process, the graphene sheet is re-formed on top of the Ni substrate, leaving no Ni at the surface.

  2. Effect of Morphology and Composition on the Hygroscopicity of Soot Aerosols

    Science.gov (United States)

    Williams, L.; Slowik, J.; Davidovits, P.; Jayne, J.; Kolb, C.; Worsnop, D.; Rudich, Y.

    2003-12-01

    Freshly generated soot aerosols are initially hydrophobic and unlikely to act as cloud condensation nuclei (CCN). However, during combustion many low vapor pressure gas products are formed that may then condense on existing soot aerosols. Additionally, soot particles may acquire coatings as they age, such as acids, salts, and oxygenated organics. An understanding of this aging process and its effect on soot hygroscopicity is necessary to address the potential of soot to act as a CCN. The transformation of soot from hydrophobic to hydrophilic is the focus of this work. An aim here is to determine the minimum coating required for hygroscopic growth. Soot particles produced by combustion of mixtures of fuel and air are size selected by a Differential Mobility Analyzer (DMA) and entrained in a laminar flow passing through a flow tube. The size selected soot particles are mixed with a controlled amount of the gas phase precursors to produce the coatings to be studied. Initial studies are focused on coatings of H2SO4, NH4NO3, and selected organics. The number of particles per unit volume of air is counted by a Condensation Particle Counter (CPC) and the particles are isokinetically sampled into an Aerosol Mass Spectrometer (AMS). Two distinct types of soot aerosols have been observed depending on the type of fuel and air mixture. With soot produced by the combustion of propane and air, the AMS shows a polydisperse particle size distribution with aerodynamic diameters ranging from 100 nm to 400 nm. The aerodynamic diameter is linearly related to the DMA-determined mobility diameter with the product density x shape factor = 1.2. The organic molecules in this soot are mostly PAH compounds. However, when kerosene is added to the propane flame, the soot particle morphology and composition is strikingly altered. While the DMA shows an essentially unchanged mobility diameter distribution, in the range 100 nm to 400, aerodynamic particle diameter is constant at about 100 nm

  3. Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NO{sub x} adsorption, soot combustion and simultaneous NO{sub x}-soot removal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongpeng [School of Resources and Environment, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Yan, Xiaotong; Bi, Xinlin; Wang, Liguo [School of Resources and Environment, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Zhang, Zhaoliang, E-mail: chm_zhangzl@ujn.edu.cn [School of Resources and Environment, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Jiang, Zheng; Xiao, Tiancun [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Umar, Ahmad [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The addition of La in Cu-based oxides increased the types of active oxygen. • NO{sub x} adsorption, soot oxidation and simultaneous NO{sub x}-soot removal were enhanced. • The possible catalytic mechanism was studied via in situ FTIR analysis. • Soot oxidation was promoted by the NO{sub 2} intermediate. - Abstract: La-promoted Cu-based hydrotalcites derived mixed oxides were prepared and their catalytic activities for NO{sub x} adsorption, soot oxidation, and simultaneous NO{sub x}-soot removal were investigated. The catalysts were characterized by XRD, DTG, BET, FTIR, H2-TPR, TPD and TPO techniques. The oxides catalysts exhibited mesoporous properties with specific surface area of 45–160 m{sup 2}/g. The incorporation of La and Cu decreased the amount of basic sites due to the large decrease in surface areas. Under O{sub 2} atmosphere, La incorporation is dominant for soot oxidation activity, while Cu favors high selectivity to CO{sub 2} formation. A synergetic effect between La and Cu for catalyzed soot oxidation lies in the improved redox property and suitable basicity. The presence of NO in O{sub 2} significantly promoted soot oxidation on the catalysts with the ignition temperature decreased to about 300 °C. In O{sub 2}/NO atmosphere, NO{sub 2} acts as an intermediate which oxidizes soot to CO{sub 2} at a lower temperature with itself reduced to NO or N{sub 2}, contributing to the high catalytic performance in simultaneous removal of NO{sub x} and soot.

  4. KMC Simulation of Surface Growth of Semiconductors

    International Nuclear Information System (INIS)

    Esen, M.

    2004-01-01

    In this work we have studied the growth and equilibration of semiconductor surfaces consisting of monoatomic steps separated by flat terraces using kinetic Monte Carlo method. Atomistic processes such as diffusion on terraces, attachment/detachment particles to/from step edges, attachment of particles from an upper terrace to a bounding step, diffusion of particles along step edges are considered. A rate equation for each, these processes is written and the overall transition probabilities are calculated where processes are ordered to make the distinction between slow and fast processes Iractal The interaction of steps is also included in the calculation of rate equations. The growth of such a surface is simulated when there is a particle flux to the surface. The rough of the surface and its dependence on both temperature and kinetic parameters such edge diffusion barrier are investigated. The formation of islands on terraces is prohibited and the distribution of their number and sizes are investigated as a function of temperature and appropriate kinetic parameters. In the absence of a flux to the surface, the equilibration of the surface is investigated paying particular attention to the top of the profile when the initial surface is a periodic profile where parallel monoatomic steps separated by terraces. It is observed that during equilibration of the profile, the topmost step disintegrates quickly and leads to many islands on the top of the profile due to. collision and annihilation of step edges of opposite sign. The islands then quickly disintegrate due to the line tension effect and this scenario repeats itself until the surface completely flattens

  5. Potential rare-earth modified CeO{sub 2} catalysts for soot oxidation. Part III. Effect of dopant loading and calcination temperature on catalytic activity with O{sub 2} and NO + O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J.A. [Catalysis Engineering, DelftChemTech, Delft University of Technology, Julianalaan 136, NL 2628 BL Delft (Netherlands)

    2007-09-26

    CeO{sub 2} and CeReO{sub xy} catalysts are prepared by the calcination at different temperatures (y = 500-1000 C) and having a different composition (Re = La{sup 3+} or Pr{sup 3+/4+}{sub ,} 0-90 wt.%). The catalysts are characterised by XRD, H{sub 2}-TPR, Raman, and BET surface area. The soot oxidation is studied with O{sub 2} and NO + O{sub 2} in the tight and loose contact conditions, respectively. CeO{sub 2} sinters between 800-900 C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La{sup 3+} or Pr{sup 3+/4+} hinders the grain growth of CeO{sub 2} and, thereby, improving the surface catalytic properties. Using O{sub 2} as an oxidant, an improved soot oxidation is observed over CeLaO{sub xy} and CePrO{sub xy} in the whole dopant weight loading and calcination temperature range studied, compared with CeO{sub 2}. Using NO + O{sub 2}, the soot conversion decreased over CeLaO{sub xy} catalysts calcined below 800 C compared with the soot oxidation over CeO{sub 2y}. CePrO{sub xy}, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O{sub 2}. The improvement in the soot oxidation activity over the various catalysts with O{sub 2} can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrO{sub xy} with NO + O{sub 2} is explained by the changes in the redox properties of the catalyst as well as surface area. CePrO{sub xy}, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO{sub 2} oxidation activity, that determines soot oxidation activity, is improved over all CePrO{sub x} catalysts. (author)

  6. Phototransformation rate constants of PAHs associated with soot particles

    International Nuclear Information System (INIS)

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow

  7. Improved soot blowing, based on needs, through measurement of the natural frequency of the heat transferring tubes; Foerbaettrad behovsstyrd sotning genom maetning av oeverfoerande tubernas egenfrekvens

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Ivarsson, Christofer

    2007-11-15

    The aim of the project is to develop a method for detecting soot on the transferring tubes by measuring the Eigen frequency of the tubes as a function of the soot deposit growth. The project is a pilot study independent of boiler type and it is applicable to all boilers where soot deposit on transferring tubes is a repeating issue. The report is supposed to answer two major questions. Is it possible to make use of Eigen frequencies in order to trace soot deposit on transferring tubes? What governing parameters are related to the Eigen frequency of transferring tubes? By today, soot blowing is executed after recommendations from the manufacturer in terms of number of soot blowing per time unit. The fuel type as well as boiler type has great influence on the soot deposit growth. The objective of the project is to investigate whether the mechanical properties of the transferring tube can be used to detect soot deposit. The project is divided into a theoretical and a practical part. The theoretical part covers the design of the probe and the change of its mechanical properties when soot deposit is present. Practical experiments were then carried out in a laboratory were the probes mechanical properties with and without soot deposit were investigated. It was shown that the Eigen frequency of the probe decreased with an increased mass due to soot deposit. A test was also made in a boiler at SAKAB but difficulties in attaching the probe to the inspection hatch. The results varied and the interpretation of the results become difficult. However, it was obvious that the mechanical properties of the probe changed with the amount of soot deposit. It was concluded that detection of soot deposit by studying the mechanical properties of the transferring tubes is possible. Yet, using a probe is no optimal solution, instead measurements should be done directly on the heat transferring tubes. In addition, a strategy for controlling the soot deposit has to be developed

  8. Intrinsic geometry of biological surface growth

    CERN Document Server

    Todd, Philip H

    1986-01-01

    1.1 General Introduction The work which comprises this essay formed part of a multidiscip­ linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom­ itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re­ ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana­ tomical point of view, the work explores the use of the surface geo­ metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports...

  9. Nanoparticle production by UV irradiation of combustion generated soot particles

    International Nuclear Information System (INIS)

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-01-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm 2 with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process

  10. Dielectric properties of PMMA/Soot nanocomposites.

    Science.gov (United States)

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  11. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun; Abdelgadir, Ahmed Gamaleldin; Bisetti, Fabrizio

    2014-01-01

    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic

  12. High-throughput approach to the catalytic combustion of diesel soot

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, Eduard Emil; Bassou, Badr; Guilhaume, Nolven; Farrusseng, David; Desmartin-Chomel, Arnold; Bianchi, Daniel; Mirodatos, Claude [Institut de recherches sur la catalyse et l' environnement de Lyon IRCELYON, UMR5256 CNRS Universite Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Lombaert, Karine [Renault, Diesel Innovative Catalytic Materials, Direction de l' Ingenierie Materiaux, 1 Allee Cornuel, 91510 Lardy (France)

    2008-08-30

    A methodology for the evaluation of diesel soot oxidation catalysts by high-throughput (HT) screening was developed. The optimal experimental conditions (soot amount, catalyst/soot ratio, type of contact, composition and flow rate of gas reactants) ensuring a reliable and reproducible detection of light-off temperatures in a 16 parallel channels reactor were set up. The temperature profile measured in the catalyst/soot bed under TPO conditions when the exothermic combustion of soot takes place was shown to provide an accurate measurement of the ignition. Its reproducibility and relevance were checked. The results obtained with a reference noble metal free catalyst (La{sub 0.8}Cr{sub 0.8}Li{sub 0.2}O{sub 3} perovskite) agree very well with literature data. Qualitative mechanistic features could be derived from these experiments, stressing the likely limiting step of oxygen transfer from catalyst surface to soot particulates to ignite the soot combustion. Ceria material was shown to be more appropriate than perovskite one. From an HT screening of a large diverse library (over 100 mixed oxides catalysts) under optimized conditions, about 10 new formulations were found to perform better than selected noble metal free reference materials. (author)

  13. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  14. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  15. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  16. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions

    DEFF Research Database (Denmark)

    Cai Ong, Jiun; Pang, Kar Mun; Walther, Jens Honore

    2018-01-01

    This paper reports the implementation and evaluation of a Lagrangian soot tracking (LST) method for the modeling of soot in diesel engines. The LST model employed here has the tracking capability of a Lagrangian method and the ability to predict primary soot particle sizing. The Moss-Brookes soot...... in predicting temporal soot cloud development, mean soot diameter and primary soot size distribution is evaluated using measurements of n-heptane and n-dodecane spray combustion obtained under diesel engine-like conditions. In addition, sensitivity studies are carried out to investigate the influence of soot....... A higher rate of soot oxidation due to OH causes the soot particles to be fully oxidized downstream of the flame. In general, the LST model performs better than the Eulerian method in terms of predicting soot sizing and accessing information of individual soot particles, both of which are shortcomings...

  17. Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants

    International Nuclear Information System (INIS)

    Chen Baoliang; Huang Wenhai

    2011-01-01

    A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N 2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot. - Graphical abstract: The dual sorptive nature of the biomass-generated soot, i.e., the adsorptive effect of the carbonized soot fraction and the partition effect of the amorphous soot component. Research highlights: → The biomass-generated soot owns the heterogeneous compositions and nano-structures. → The soot exhibits the dual sorptive nature, i.e., adsorption and absorption. → Removal of the amorphous component weakens absorption, but strengthens adsorption. → The exposed adsorptive sites with highly aromatic nature promotes π-π interaction. → The dual sorptive nature of the soot depends on the various soot components. - The compositional heterogeneity and nano-structure play a regulating role in the adsorption and absorption of organic contaminants with the untreated and treated soot samples.

  18. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  19. NASA: Black soot fuels global warming

    CERN Multimedia

    2003-01-01

    New research from NASA's Goddard Space Center scientists suggests emissions of black soot have been altering the way sunlight reflects off Earth's snow. The research indicates the soot could be responsible for as much as 25 percent of global warming over the past century (assorted news items, 1 paragraph each).

  20. The pH-dependent adsorption of tributyltin to charcoals and soot

    International Nuclear Information System (INIS)

    Fang Liping; Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian

    2010-01-01

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m 2 g -1 have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 μmol m -2 ) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  1. The pH-dependent adsorption of tributyltin to charcoals and soot

    Energy Technology Data Exchange (ETDEWEB)

    Fang Liping, E-mail: fang@life.ku.d [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2010-12-15

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m{sup 2} g{sup -1} have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 {mu}mol m{sup -2}) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  2. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves

    Science.gov (United States)

    Yang, Weifeng; Guo, Laodong

    2018-03-01

    Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic

  3. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  4. Emissions of soot particles from heat generators

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  5. Investigation of black soot staining in houses

    Energy Technology Data Exchange (ETDEWEB)

    Fugler, D. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2000-07-01

    Air quality investigators are frequently called upon to determine the origin of streaking, staining or soot marks in both new and old homes. Those marks display common characteristics: black marks along baseboards at interior or exterior walls, behind furniture and at doorways; black smudges on window frames and plastic cabinets; and even shadowing of studs on exterior wall drywall in a few cases. In most instances, carbon soot from a combustion source is the culprit. The combustion sources include furnaces, water heaters, fireplaces, gas dryers, gas ranges, smoking, vehicle exhaust and candle burning. Scepticism about candle soot is prevalent among callers. As a result, a study was initiated in homes where occupants burn candles regularly to investigate soot problems. Samples were collected from five homes, and included stained carpets, filters, and swab samples of black dust or soot. All the houses selected for the study had been built within a three-year period. Some samples of candles commonly burned in those homes were burnt in a laboratory. Air quality audits had been performed in the homes and had revealed other potential pollutant sources. Best practices for cost-effective clean up and control of soot were researched in industry information. The tests conducted in the laboratory found materials consistent with candle soot or residue during microscopic investigations, but no link was established with the stained material obtained from the homes. A few tips for homeowners were included concerning candle burning, and tips for builders were also offered. 1 tab.

  6. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  7. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  8. Oxidation kinetics and soot formation

    Science.gov (United States)

    Glassman, I.; Brezinsky, K.

    1983-01-01

    The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.

  9. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    International Nuclear Information System (INIS)

    Tiwari, S.; Kumar, R.; Tunved, P.; Singh, S.; Panicker, A.S.

    2016-01-01

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m"−"3 with an annual average of 7.17 ± 1.89 μg m"−"3_, while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m"−"3) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m"−"3 ppmv"−"1 (12.6 ± 2.2 μg m"−"3 ppmv"−"1) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm"−"2, however, the RF value at the surface (SFC) was − 21.1 Wm"−"2 which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm"−"2) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm"−"2 varying from + 23.1 to + 43.8 Wm"−"2. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K day"−"1 indicates the enhancement in radiation

  10. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S., E-mail: smbtiwari@tropmet.res.in [Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060 (India); Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Kumar, R. [Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO (United States); Tunved, P. [Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Singh, S. [CSIR, Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand 826001 (India); Panicker, A.S. [Indian Institute of Tropical Meteorology, Pune 411008 (India)

    2016-08-15

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m{sup −3} with an annual average of 7.17 ± 1.89 μg m{sup −3}{sub ,} while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m{sup −3}) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m{sup −3} ppmv{sup −1} (12.6 ± 2.2 μg m{sup −3} ppmv{sup −1}) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm{sup −2}, however, the RF value at the surface (SFC) was − 21.1 Wm{sup −2} which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm{sup −2}) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm{sup −2} varying from + 23.1 to + 43.8 Wm{sup −2}. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K

  11. Stochastic Simulation of Soot Formation Evolution in Counterflow Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2018-01-01

    Full Text Available Soot generally refers to carbonaceous particles formed during incomplete combustion of hydrocarbon fuels. A typical simulation of soot formation and evolution contains two parts: gas chemical kinetics, which models the chemical reaction from hydrocarbon fuels to soot precursors, that is, polycyclic aromatic hydrocarbons or PAHs, and soot dynamics, which models the soot formation from PAHs and evolution due to gas-soot and soot-soot interactions. In this study, two detailed gas kinetic mechanisms (ABF and KM2 have been compared during the simulation (using the solver Chemkin II of ethylene combustion in counterflow diffusion flames. Subsequently, the operator splitting Monte Carlo method is used to simulate the soot dynamics. Both the simulated data from the two mechanisms for gas and soot particles are compared with experimental data available in the literature. It is found that both mechanisms predict similar profiles for the gas temperature and velocity, agreeing well with measurements. However, KM2 mechanism provides much closer prediction compared to measurements for soot gas precursors. Furthermore, KM2 also shows much better predictions for soot number density and volume fraction than ABF. The effect of nozzle exit velocity on soot dynamics has also been investigated. Higher nozzle exit velocity renders shorter residence time for soot particles, which reduces the soot number density and volume fraction accordingly.

  12. Soot Formation In Turbulent Combusting Flows

    National Research Council Canada - National Science Library

    Santoro, Robert

    1998-01-01

    .... Laser-based techniques were used to measure the soot volume fraction, particle size and number density as well as the temperature and relative concentration of hydroxyl radicals and polycyclic aromatic hydrocarbons...

  13. Method for removing soot from exhaust gases

    Science.gov (United States)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    2018-01-16

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).

  14. Electrometric aviation soot monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a highly sensitive and portable device to monitor soot particle mass distribution from aircraft engine exhaust. The proposed method is based on...

  15. Diesel soot oxidation under controlled conditions

    OpenAIRE

    Song, Haiwen

    2003-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 11/12/2003. In order to improve understanding of diesel soot oxidation, an experimental rig was designed and set up, in which the soot oxidation conditions, such as temperature, oxygen partial pressure, and CO2 partial pressure, could be varied independently of each other. The oxidizing gas flow in the oxidizer was under laminar condition. This test rig comprised a naturally-aspirated single ...

  16. Conditions for mould growth on typical interior surfaces

    DEFF Research Database (Denmark)

    Møller, Eva B.; Andersen, Birgitte; Rode, Carsten

    2017-01-01

    Prediction of the risk for mould growth is an important parameter for the analysis and design of the hygrothermal performance of building constructions. However, in practice the mould growth does not always follow the predicted behavior described by the mould growth models. This is often explained...... by uncertainty in the real conditions of exposure. In this study, laboratory experiments were designed to determine mould growth at controlled transient climate compared to growth at constant climate. The experiment included three building materials with four different surface treatments. The samples were...

  17. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  18. Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers

    International Nuclear Information System (INIS)

    Xu Baiqing; Joswiak, Daniel R; Zhao Huabiao; Cao Junji; Liu Xianqin; He Jianqiao

    2012-01-01

    The post-depositional enrichment of black soot in snow-pack was investigated by measuring the redistribution of black soot along monthly snow-pits on a Tien Shan glacier. The one-year experiment revealed that black soot was greatly enriched, defined as the ratio of concentration to original snow concentration, in the unmelted snow-pack by at least an order of magnitude. Greatest soot enrichment was observed in the surface snow and the lower firn-pack within the melt season percolation zone. Black carbon (BC) concentrations as high as 400 ng g −1 in the summer surface snow indicate that soot can significantly contribute to glacier melt. BC concentrations reaching 3000 ng g −1 in the bottom portion of the firn pit are especially concerning given the expected equilibrium-line altitude (ELA) rise associated with future climatic warming, which would expose the dirty underlying firn and ice. Since most of the accumulation area on Tibetan glaciers is within the percolation zone where snow densification is characterized by melting and refreezing, the enrichment of black soot in the snow-pack is of foremost importance. Results suggest the effect of black soot on glacier melting may currently be underestimated. (letter)

  19. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index

    KAUST Repository

    Joo, Peter H.

    2013-01-01

    Sooting limits in counterflow diffusion flames of propane/ethylene fuels have been studied experimentally using a light scattering technique, including the effects of dilution, fuel mixing, and strain rate. The results are discussed in view of the threshold soot index (TSI). In soot-formation (SF) flames, where the flame is located on the oxidizer side of the stagnation plane, the sooting limit depends critically on fuel type and subsequently on flame temperature. The sooting limit has a non-linear dependence on the fuel-mixing ratio, which is similar to the non-linear mixing rule for TSI observed experimentally in rich premixed flames, where soot oxidation is absent for both SF and rich premixed flames. In soot-formation-oxidation (SFO) flames, where the flame is located on the fuel side, the sooting limit depends critically on flame temperature, while it is relatively independent on fuel type. This result suggests a linear mixing rule for sooting limits in SFO flames, which is similar to the TSI behavior for coflow diffusion flames. Soot oxidation takes place for both types of flames. The aerodynamic strain effect on the sooting limits has also been studied and an appreciable influence has been observed. Under sooting conditions, soot volume fraction was measured using a light extinction technique. The soot loadings in SF flames of the mixture fuels demonstrated a synergistic effect, i.e., soot production increased for certain mixture fuels as compared to the respective singlecomponent fuels. © 2012 The Combustion Institute.

  20. Simultaneous measurements of acetylene and soot during the pyrolysis of ethylene and benzene in a shock tube

    KAUST Repository

    KC, Utsav

    2016-10-12

    Acetylene is one of the most important precursors of soot and contributes to soot growth by the hydrogen-abstraction acetylene-addition (HACA) mechanism. In this work, we undertake time-resolved simultaneous measurements of acetylene and soot behind reflected shock waves at temperatures of 1600-2200. K and pressures of 3-5. bar. Acetylene mole fraction time-histories are measured from the absorption of a quantum-cascade laser operating around 13.6. μm. The soot volume fraction, particle size and number densities are calculated from the extinction and scattering of a cw Nd:Yag laser at 532. nm. Acetylene and soot are generated from the pyrolysis of 1% benzene in argon, 2.35% ethylene in argon, and binary mixtures of ethylene with propane/methane in argon. We note that acetylene time-histories exhibit a two-stage growth during the pyrolysis of benzene, which can be correlated to the initial rapid increase of soot volume fraction and a later plateauing. In comparison to ethylene pyrolysis, the pyrolysis of benzene results in larger values of the soot volume fraction, particle diameter and number density. We compare the measured data against the values simulated using the method-of-moments routine in Chemkin-Pro and a detailed PAH mechanism based on KM2 [1] and AramcoMech 1.3 [2]. Large discrepancies are observed between the measured and predicted values of the soot parameters. The data obtained from our experiments may assist future validation and development of soot mechanisms.

  1. Surface preparation for the heteroepitactic growth of ceramic thin films

    International Nuclear Information System (INIS)

    Norton, M.G.; Summerfelt, S.R.; Carter, C.B.

    1990-01-01

    The morphology, composition, and crystallographic orientation of the substrate influence the nucleation and growth of deposited thin films. A method for the preparation of controlled, characteristic surfaces is reported. The surfaces are suitable for the heteroepitactic growth of thin films. When used in the formation of electron-transparent thin foils, the substrates can be used to investigate the very early stages of film growth using transmission electron microscopy. The substrate preparation involves the cleaning and subsequent annealing to generate a surface consisting of a series of steps. The step terraces are formed on the energetically stable surface, and controlled nucleation and growth of films at step edges is found. The substrate materials prepared using this technique include (001) MgO, (001) SrTiO 3 , and (001) LaAlO 3

  2. Estimating soot emissions from an elevated flare

    Science.gov (United States)

    Almanza, Victor; Sosa, Gustavo

    2009-11-01

    Combustion aerosols are one of the major concerns in flaring operations, due to both health and environmental hazards. Preliminary results are presented for a 2D transient simulation of soot formation in a reacting jet with exit velocity of 130 m/s under a 5 m/s crossflow released from a 50 m high elevated flare and a 50 cm nozzle. Combustion dynamics was simulated with OpenFOAM. Gas-phase non-premixed combustion was modeled with the Chalmers PaSR approach and a κ-ɛ turbulence model. For soot formation, Moss model was used and the ISAT algorithm for solving the chemistry. Sulfur chemistry was considered to account for the sourness of the fuel. Gas composition is 10 % H2S and 90 % C2H4. A simplified Glassman reaction mechanism was used for this purpose. Results show that soot levels are sensitive to the sulfur present in the fuel, since it was observed a slight decrease in the soot volume fraction. NSC is the current oxidation model for soot formation. Predicted temperature is high (about 2390 K), perhaps due to soot-radiation interaction is not considered yet, but a radiation model implementation is on progress, as well as an oxidation mechanism that accounts for OH radical. Flame length is about 50 m.

  3. Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2

    Science.gov (United States)

    Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.

    2009-12-01

    Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving

  4. Influence of growth parameters on the surface morphology and ...

    Indian Academy of Sciences (India)

    Unknown

    surface features of the grown film like terracing, inclusions, meniscus lines, etc are ... Recently, studies carried out on the growth of InSb ..... is a critical factor in any epitaxial growth process and can ... However, this approach can lead to.

  5. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  6. On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections

    Science.gov (United States)

    Garcia, Rolando R.; Toon, Owen B.; Conley, Andrew J.

    2017-01-01

    Climate simulations that consider injection into the atmosphere of 15,000 Tg of soot, the amount estimated to be present at the Cretaceous−Paleogene boundary, produce what might have been one of the largest episodes of transient climate change in Earth history. The observed soot is believed to originate from global wildfires ignited after the impact of a 10-km-diameter asteroid on the Yucatán Peninsula 66 million y ago. Following injection into the atmosphere, the soot is heated by sunlight and lofted to great heights, resulting in a worldwide soot aerosol layer that lasts several years. As a result, little or no sunlight reaches the surface for over a year, such that photosynthesis is impossible and continents and oceans cool by as much as 28 °C and 11 °C, respectively. The absorption of light by the soot heats the upper atmosphere by hundreds of degrees. These high temperatures, together with a massive injection of water, which is a source of odd-hydrogen radicals, destroy the stratospheric ozone layer, such that Earth’s surface receives high doses of UV radiation for about a year once the soot clears, five years after the impact. Temperatures remain above freezing in the oceans, coastal areas, and parts of the Tropics, but photosynthesis is severely inhibited for the first 1 y to 2 y, and freezing temperatures persist at middle latitudes for 3 y to 4 y. Refugia from these effects would have been very limited. The transient climate perturbation ends abruptly as the stratosphere cools and becomes supersaturated, causing rapid dehydration that removes all remaining soot via wet deposition. PMID:28827324

  7. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    KAUST Repository

    Raj, Abhijeet Dhayal; Rachidi, Mariam El; Chung, Suk-Ho; Sarathy, Mani

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot

  8. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  9. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  10. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  11. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  12. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah

    2015-05-01

    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.

  13. Numerical investigation on soot particles emission in compression ignition diesel engine by using particulate mimic soot model

    Directory of Open Access Journals (Sweden)

    Ibrahim Fadzli

    2017-01-01

    Full Text Available Research via computational method, specifically by detailed-kinetic soot model offers much more advantages than the simple model as more detailed formation/oxidation process is taken into consideration, thus providing better soot mass concentration, soot size, soot number density as well as information regarding other related species. In the present computational study, investigation of in-cylinder soot concentration as well as other emissions in a single cylinder diesel engine has been conducted, using a commercial multidimensional CFD software, CONVERGE CFD. The simulation was carried out for a close-cycle combustion environment from inlet valve closing (IVC to exhaust valve opening (EVO. In this case, detailed-kinetic Particulate Mimic (PM soot model was implemented as to take benefit of the method of moment, instead of commonly implemented simple soot model. Analyses of the results are successfully plotted to demonstrate that the soot size and soot mass concentration are strongly dependent on the detailed soot formation and oxidation process rates. The calculated of soot mass concentration and average soot size at EVO provide the end value of 29.2 mg/m3 and 2.04 × 10−8 m, respectively. Besides, post-processing using EnSight shows the qualitative results of soot concentration along simulation period in the combustion chamber.

  14. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-01-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes

  15. Surface smoothening effects on growth of diamond films

    Science.gov (United States)

    Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava

    2018-04-01

    We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.

  16. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing

    Science.gov (United States)

    So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.

    2016-04-01

    A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.

  17. Flame experiments at the advanced light source: new insights into soot formation processes.

    Science.gov (United States)

    Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina

    2014-05-26

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation

  18. Chemical composition and heterogeneous reactivity of soot generated in the combustion of diesel and GTL (Gas-to-Liquid) fuels and amorphous carbon Printex U with NO2 and CF3COOH gases

    Science.gov (United States)

    Tapia, A.; Salgado, S.; Martín, P.; Villanueva, F.; García-Contreras, R.; Cabañas, B.

    2018-03-01

    The heterogeneous reactions of nitrogen dioxide (NO2) and trifluoroacetic acid (CF3COOH) with soot produced by diesel and GTL (gas-to-liquid) fuels were investigated using a Knudsen flow reactor with mass spectrometry as a detection system for gas phase species. Soot was generated with a 4 cylinder diesel engine working under steady-state like urban operation mode. Heterogeneous reaction of the mentioned gases with a commercial carbon, Printex U, used as reference, was also analyzed. The initial and the steady-state uptake coefficients, γ0 and γss, respectively, were measured indicating that GTL soot reacts faster than diesel soot and Printex U carbon for NO2 gas reactant. According to the number of reacted molecules on the surface, Printex U soot presents more reducing sites than diesel and GTL soot. Initial uptake coefficients for GTL and diesel soot for the reaction with CF3COOH gas reactant are very similar and no clear conclusions can be obtained related to the initial reactivity. The number of reacted molecules calculated for CF3COOH reactions shows values two orders of magnitude higher than the corresponding to NO2 reactions, indicating a greater presence of basic functionalities in the soot surfaces. More information of the surface composition has been obtained using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) before and after the reaction of soot samples with gas reactants. As conclusion, the interface of diesel and GTL soot before reaction mainly consists of polycyclic aromatic hydrocarbons (PAHs), nitro-compounds as well as ether functionalities. After reaction with gas reactant, it was observed that PAHs and nitro-compounds remain on the soot surface and new spectral bands such as carbonyl groups (carboxylic acids, aldehydes, esters and ketones) are observed. Physical properties of soot from both fuels studied such as BET surface isotherm and SEM analysis were also developed and related to the observed reactivity.

  19. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  20. Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study

    KAUST Repository

    Raj, Abhijeet

    2013-09-01

    Soot particles are composed of polycyclic aromatic hydrocarbons (PAHs), which have either planar or curved structures. The oxidation behaviors of soot particles differ depending on their structures, arrangement of PAHs, and the type of surface functional groups. The oxidation rate of curved PAHs in soot is thought to be higher than that of planar ones. To understand the role that PAH structure plays in soot reactivity towards O2, experimental studies are conducted on two types of commercially produced soot, Printex-U and Fullerene soot, using high resolution transmission electron microscopy, electron energy loss spectroscopy, thermo-gravimetric analysis and elemental analysis. The relative concentrations of active sites, oxygenated functional groups, aliphatics and aromatics present in soots are evaluated. The activation energies for soot oxidation at different conversion levels are determined. The average activation energies of the two soots are found to differ by 26kJ/mol. To understand the reason for this difference, quantum calculations using density functional (B3LYP) and Hartree-Fock theories are conducted to study the reaction pathways of the oxidation by O2 of planar and curved PAHs using 4-pyrenyl and 1-corannulenyl as their model molecules, respectively. The energetically preferred channels for curved PAH oxidation differ from the planar one. The addition of O2 on a radical site of a six-membered ring to form a peroxyl radical is found to be barrierless for both the model PAHs. For peroxyl decomposition, three pathways are suggested, each of which involve the activation energies of 108, 170 and 121kJ/mol to form stable molecules in the case of planar PAH, and 94, 155 and 125kJ/mol in the case of curved PAH. During the oxidation of a five-membered ring, to form stable molecules, the activation energies of 90kJ/mol for the curved PAH and 169kJ/mol for the planar PAH relative to the energy of the peroxyl radical are required. The low activation barriers of

  1. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  2. Chinese Soot on a Vietnamese Soup

    Science.gov (United States)

    Mari, X.

    2015-12-01

    Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.

  3. Epitaxial growth of fcc Ti films on Al(001) surfaces

    International Nuclear Information System (INIS)

    Saleh, A.A.; Shutthanandan, V.; Shivaparan, N.R.; Smith, R.J.; Tran, T.T.; Chambers, S.A.

    1997-01-01

    High-energy ion scattering (HEIS), x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction (XPD) were used to study the growth of thin Ti films on Al(001) surfaces. The Al surface peak area in the backscattered ion spectrum of MeV He + ions, incident along the [00 bar 1] direction, was used to monitor the atomic structure of the Ti films during growth. An initial decrease in the area was observed indicating epitaxial film growth. This decrease continued up to a critical film thickness of about 5.5 ML, after which point the structure of the film changed. Titanium films 3, 5, and 9 ML thick were characterized using XPD in the same chamber. Both the HEIS and XPD results show that the Ti films grow with an fcc structure on Al(001). A tetragonal distortion of 2.4% in the fcc Ti film was measured using ions incident along the [10 bar 1] direction. Although there is a general similarity of fcc Ti growth on both Al(001) and Al(110), the submonolayer growth regime does show differences for the two surfaces. copyright 1997 The American Physical Society

  4. Effect of exhaust gas recirculation (EGR) and multiple injections on diesel soot nano-structure and reactivity

    International Nuclear Information System (INIS)

    Rohani, Behzad; Bae, Choongsik

    2017-01-01

    Highlights: • EGR reduced the nano-structural order, regardless of injection strategy. • EGR reduces both VOF and reactivity, regardless of injection strategy. • Longer dwell time between pilot and main injection increases VOF and reactivity. • With EGR, VOF and reactivity are both reduced and un-affected by injection strategy. • VOF-reactivity correlation (without causality) suggests role of surface roughness. - Abstract: The physio-chemical characteristics of soot particles are of importance with regard to performance of diesel after-treatment systems. In this study, the soot particles generated in a single-cylinder heavy-duty diesel engine are examined in terms of nanostructure, oxidative reactivity and volatile organic fraction (VOF), using thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman micro-spectroscopy, and high resolution transmission electron microscopy (HRTEM). Five different injection strategies including single injection and multiple injections with various pilot injection amounts and dwell times were tested with and without exhaust gas recirculation (EGR), while combustion phasing, engine speed, and fuel injection quantity was matched for all cases. Results indicate that for the soot produced under EGR condition, nano-structural order (indicated by crystallite size obtained from XRD and AD1/AG resulted from the Raman Analysis) can explain the soot reactivity. However, in the absence of EGR, the reactivity trend cannot be explained by the structural order. It is discussed that a possible reason can be a higher level of in-cylinder oxidation in non-EGR cases (indicated by higher level of surface functional groups) which roughens the soot surface, and enhances the oxidation by increasing the specific soot surface area. It is also found that in the absence of EGR, different injection strategies impact the soot reactivity and VOF content, which can be explained mainly through the level of charge premixed-ness and the in

  5. Development of silicon growth techniques from melt with surface heating

    Science.gov (United States)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  6. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame

    KAUST Repository

    Lucchesi, Marco

    2017-02-05

    A modeling framework based on Direct Simulation Monte Carlo (DSMC) is employed to simulate the evolution of the soot particle size distribution in turbulent sooting flames. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of a n-heptane turbulent nonpremixed flame. The DSMC method is validated against experimentally measured size distributions in laminar premixed flames and found to reproduce quantitatively the experimental results, including the appearance of the second mode at large aggregate sizes and the presence of a trough at mobility diameters in the range 3–8 nm. The model is then applied to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates lead to a higher peak in number density and to the size distribution attaining its second mode sooner. The ensemble-averaged PSDF in the turbulent flame is computed from individual samples of the PSDF from large sets of Lagrangian trajectories. This statistical measure is equivalent to time-averaged, scanning mobility particle size (SMPS) measurements in turbulent flames. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a long, broad tail, which implies significant polydispersity induced by turbulence. Our results agree very well with SMPS measurements available in the literature. Conditioning on key features of the trajectory, such as mixture fraction or radial locations does not reduce the scatter in the size distributions and the ensemble-averaged PSDF remains broad. The results highlight and explain the important role of turbulence in broadening the size distribution of

  7. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2018-02-19

    Alkenes are important components in transportation fuels, and are known to have increased sooting tendencies compared to analogous saturated hydrocarbons with the same carbon number. This work aims to understand the sooting tendencies of various 1-alkenes through experiments and numerical simulations for counterflow diffusion flames. Soot and PAH formation tendencies of 1-alkene fuels, including ethylene (C2H4), propene (C3H6), 1-butene (1-C4H8), 1-pentene (1-C5H10), 1-hexene (1-C6H12) and 1-octene (1-C8H16), were experimentally studied using laser induced-incandescence (LII) and laser-induced fluorescence (LIF) techniques, respectively. From the LII results, 1-C4H8 was found to be the most sooting fuel, followed by C3H6 > 1-C5H10 > 1-C6H12 > 1-C8H16 > C2H4. The LIF data with a detection wavelength of 500 nm indicated the PAH formation tendencies followed the order of 1-C4H8 > 1-C5H10 ∼1-C6H12 > C3H6 > 1-C8H16 > C2H4, which were different from the order of sooting tendencies. Numerical simulations with a comprehensive chemical kinetic model including PAH growth chemistry for the tested 1-alkene fuels were conducted to elucidate the aromatic formation pathways and rationalize the experimentally observed trends. The numerical results highlighted the importance of intermediate species with odd carbon numbers in aromatic species formation, such as propargyl, allyl, cyclopentadienyl and indenyl radicals. Their concentration differences, which could be traced back to the parent fuel molecules through rate of production analysis, rationalize the experimentally observed differences in soot and PAH formation tendencies.

  8. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  9. Experimental and computational investigation of temperature effects on soot mechanisms

    Directory of Open Access Journals (Sweden)

    Bi Xiaojie

    2014-01-01

    Full Text Available Effects of initial ambient temperatures on combustion and soot emission characteristics of diesel fuel were investigated through experiment conducted in optical constant volume chamber and simulation using phenomenological soot model. There are four difference initial ambient temperatures adopted in our research: 1000 K, 900 K, 800 K and 700 K. In order to obtain a better prediction of soot behavior, phenomenological soot model was revised to take into account the soot oxidation feedback on soot number density and good agreement was observed in the comparison of soot measurement and prediction. Results indicated that ignition delay prolonged with the decrease of initial ambient temperature. The heat release rate demonstrated the transition from mixing controlled combustion at high ambient temperature to premixed combustion mode at low ambient temperature. At lower ambient temperature, soot formation and oxidation mechanism were both suppressed. But finally soot mass concentration reduced with decreasing initial ambient temperature. Although the drop in ambient temperature did not cool the mean in-cylinder temperature during the combustion, it did shrink the total area of local high equivalence ratio, in which soot usually generated fast. At 700 K initial ambient temperature, soot emissions were almost negligible, which indicates that sootless combustion might be achieved at super low initial temperature operation conditions.

  10. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  11. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  12. A theoretical model of semi-elliptic surface crack growth

    Directory of Open Access Journals (Sweden)

    Shi Kaikai

    2014-06-01

    Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.

  13. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  14. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    Kaefer, Daniel; Ruppel, Lars; Witte, Gregor

    2007-01-01

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO 2 . On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  15. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  16. On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-07-01

    Full Text Available Soot particles are a kind of major pollutant from fuel combustion. To enrich the understanding of soot, this work focuses on investigating detailed influences of instantaneous external irradiation (conventional photoflash exposure on nanostructure as well as oxidation reactivity of nascent soot particles. By detailed soot characterizations flash can reduce the mass of soot and soot nanostructure can be reconstructed substantially without burning. After flash, the degree of soot crystallization increases while the soot reactive rate decreases and the activation energy increases. In addition, nanostructure and oxidative reactivity of soot in air and Ar after flash are different due to their different thermal conductivities.

  17. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Krishna, K.; Makkee, M.

    2006-01-01

    Soot oxidation activity and deactivation of NO x storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al 2 O 3 , are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O 2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al 2 O 3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150 o C with NO+O 2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO 2 followed by NO recycles to NO 2 , and (2) soot oxidation with O 2 assisted by NO 2 . Only a part of the stored NO x that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NO x storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al 2 O 3 catalyst is more active, but least stable compared with Pt/Ba-Al 2 O 3 . (author)

  18. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  19. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  20. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  1. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  2. Empirical soot formation and oxidation model

    Directory of Open Access Journals (Sweden)

    Boussouara Karima

    2009-01-01

    Full Text Available Modelling internal combustion engines can be made following different approaches, depending on the type of problem to be simulated. A diesel combustion model has been developed and implemented in a full cycle simulation of a combustion, model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion, and soot pollutant formation. The models of turbulent combustion of diffusion flame, apply to diffusion flames, which one meets in industry, typically in the diesel engines particulate emission represents one of the most deleterious pollutants generated during diesel combustion. Stringent standards on particulate emission along with specific emphasis on size of emitted particulates have resulted in increased interest in fundamental understanding of the mechanisms of soot particulate formation and oxidation in internal combustion engines. A phenomenological numerical model which can predict the particle size distribution of the soot emitted will be very useful in explaining the above observed results and will also be of use to develop better particulate control techniques. A diesel engine chosen for simulation is a version of the Caterpillar 3406. We are interested in employing a standard finite-volume computational fluid dynamics code, KIVA3V-RELEASE2.

  3. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  5. Electron spin resonance of particulate soot samples from automobiles to help environmental studies

    International Nuclear Information System (INIS)

    Yamanaka, C.; Matsuda, T.; Ikeya, M.

    2005-01-01

    The application of electron spin resonance (ESR) was studied for diesel soot samples and suspended particulate matter (SPM) from automobile engines. Soot samples or diesel exhaust particles (DEP) were recovered at various points: in the exhaust pipe of a diesel engine, at the dust sampler of a highway tunnel (standard DEP), on the soundproofing wall alongside a heavy traffic road, and on the filters of a dust sampler for SPM. The diesel soot samples apparently showed two ESR spectra: one was a broad spectrum at g=2.1 with a line width of ca. 80-120mT and the other was a sharp signal of a carbon radical at g=2.003 with a line width of 0.4mT. Annealing experiments with a DEP sample at 250 deg. C revealed drastic enhancement of the sharp ESR signal, which suggested a thermal process of carbonization of remnant organics. An oximetric study by ESR showed an enhancement of the broad signal in the diesel soot sample as well as in the sharp ESR signal. Therefore, the main part of the broad ESR signal would be attributed to carbon radicals, which form a different configuration, probably closely interacting aggregates. Enhancement of the sharp ESR signal was not observed in the standard DEP sample under vacuum condition, which suggested less adsorption sites on the surface of DEP samples

  6. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  7. Scaling behaviour of randomly alternating surface growth processes

    CERN Document Server

    Raychaudhuri, S

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depe...

  8. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  9. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  10. Electron Tomography of Nanoparticle Clusters: Implications for Atmospheric Lifetimes and Radiative Forcing of Soot

    Science.gov (United States)

    vanPoppel, Laura H.; Friedrich, Heiner; Spinsby, Jacob; Chung, Serena H.; Seinfeld, John H.; Buseck, Peter R.

    2005-01-01

    Nanoparticles are ubiquitous in nature. Their large surface areas and consequent chemical reactivity typically result in their aggregation into clusters. Their chemical and physical properties depend on cluster shapes, which are commonly complex and unknown. This is the first application of electron tomography with a transmission electron microscope to quantitatively determine the three-dimensional (3D) shapes, volumes, and surface areas of nanoparticle clusters. We use soot (black carbon, BC) nanoparticles as an example because it is a major contributor to environmental degradation and global climate change. To the extent that our samples are representative, we find that quantitative measurements of soot surface areas and volumes derived from electron tomograms differ from geometrically derived values by, respectively, almost one and two orders of magnitude. Global sensitivity studies suggest that the global burden and direct radiative forcing of fractal BC are only about 60% of the value if it is assumed that BC has a spherical shape.

  11. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-01-01

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding

  12. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Chung, Suk-Ho

    2016-01-01

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot

  13. Bubble growth and detachment between two close surfaces

    International Nuclear Information System (INIS)

    Fath, H.E.S.

    1985-01-01

    Nucleate boiling is an efficient heat transfer process both as a mean of achieving high heat flux at moderate surface temperature and as a mean of generating steam. The ability to predict nucleate boiling heat flux depends on many interconnected factors such as the number of active sites, the frequency of bubble emission at these sites, and the heat transfer associated with a single bubble. Therefore, the determination of the bubble shape, growth, detachment diameter, and detachment time plays an important role in understanding the boiling mechanisms and in predicting the heat transfer rates. Although much research have been carried-out for the study of free bubble dynamics, the analysis of such problem in a narrow gap-between two close and parallel surfaces (as the gaps between steam generator tubes and tube sheet) has not been attempted, so far as the author is aware. This paper represents an attempt to shed some light on this complex problem. (author)

  14. Soot blowing methods and soot steam consumption in Swedish recovery boilers; Sotningsmetoder och sotaangfoerbrukning i svenska sodapannor

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Wallin, Erik; Ahlroth, Mikael

    2008-09-15

    The aim with the report was to put together a description of the current state of the sootblowing systems at Swedish recovery boilers, and to explain differences in cleanability and sootblowing efficiency. In chapter 4 a summary of new techniques and alternative soot blowing methods is found. The report is intended for persons working in the pulp industry. To facilitate the benchmarking the recovery boilers have been divided into two groups. Group A comprises recovery boilers which only have one stop per year and the remaining recovery boilers with more than one stop are classified into group B. The following conclusions, based on the recovery boiler design specifications, are of importance to achieve high boiler availability: Low furnace load; High recovery boiler, wide furnace bottom area; Modern air ports; Small or no correlation between cross pitch division in heat surfaces and cleanability could be seen. The expectation was to identify such a relation. However there are doubts on the correctness in reported data. The amount of chlorine and potassium is assumed to affect the cleanability for a few recovery boilers, but for the majority the amounts are low and most likely do not impact the operation. Because of the large impact of the recovery boilers design data (furnace area, load etc.) on the sootblowing, it has been hard to identify the relation cleanability contra sootblowing system. The relations that could be seen are: No distinction between normally designed nozzles and 'high efficiency' nozzles could be identified. The operational conditions for the different models differ a lot and the effect of nozzle type could not be distinguished. Only a minority of the soot blowing sequences are known from the study. In the recovery boilers with problematic areas improvements can be made in the soot blowing sequence. Four recovery boilers are using intelligent soot blowing of some kind. Two of these boilers have low availability and the other two have

  15. Experiments and Model Development for the Investigation of Sooting and Radiation Effects in Microgravity Droplet Combustion

    Science.gov (United States)

    Choi, Mun Young; Yozgatligil, Ahmet; Dryer, Frederick L.; Kazakov, Andrei; Dobashi, Ritsu

    2001-01-01

    absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized. The effects of soot on droplet burning parameters, including burning rate, soot shell dynamics, flame structure, and extinction phenomena provide significant testing parameters for studying the structure and coupling of soot models with other sub-model components.

  16. Scaling behaviour of randomly alternating surface growth processes

    International Nuclear Information System (INIS)

    Raychaudhuri, Subhadip; Shapir, Yonathan

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depend on the timing of the applications. The analytical results are supported by numerical simulations of various pairs of primary processes and with different distribution functions. Self-affine surfaces grown by two randomly alternating processes are common in nature (e.g., due to randomly changing weather conditions) and in man-made devices such as rechargeable batteries

  17. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    Safron, S.A.; Skofronick, J.G.

    1994-01-01

    This progress report describes work carried out in the study of surface structure and dynamics of ionic insulators, the microscopic interactions controlling epitaxial growth and the formation of overlayers, and energy exchange in multiphonon surface scattering. The approach used is to employ high resolution helium atom scattering to study the geometry and structural features of the surfaces. Experiments have been carried out on the surface dynamics of RbCl and preliminary studies done on CoO and NiO. Epitaxial growth and overlayer dynamics experiments on the systems NaCl/NaCl(001), KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been performed. They have collaborated with two theoretical groups to explore models of overlayer dynamics with which to compare and to interpret their experimental results. They have carried out extensive experiments on the multiphonon scattering of helium atoms from NaCl and, particularly, LiF. Work has begun on self-assembling organic films on gold and silver surfaces (alkyl thiols/Au(111) and Ag(111))

  18. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  19. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  20. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  1. Fractal-like dimension of nanometer Diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  2. Soot emissions from turbulent diffusion flames burning simple alkane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Canteenwalla, P.M.; Johnson, M.R. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Thomson, K.A.; Smallwood, G.J. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology

    2007-07-01

    A classic problem in combustion involves measurement and prediction of soot emissions from turbulent diffusion flames. Very high-sensitivity measurements of particulate matter (PM) from very low-sooting diffusion flames burning methane and other simple alkane fuels have been enabled from recent advances in laser-induced incandescence (LII). In order to quantify soot emissions from a lab-scale turbulent diffusion flame burner, this paper presented a study that used LII to develop a sampling protocol. The purpose of the study was to develop an experimentally based model to predict PM emissions from flares used in industry using soot emissions from lab-scale flares. Quantitative results of mass of soot emitted per mass of fuel burned were presented across a range of flow conditions and fuels. The experiment used digital imaging to measure flame lengths and estimate flame residence times. Comparisons were also made between current measurements and results of previous researchers for soot in the overfire region. The study also considered the validity applicability of buoyancy based models for predicting and scaling soot emissions. The paper described the experimental setup including sampling system and flame length imaging. Background information on soot yield and a comparison of flame residence time definitions were provided. The results and discussion of results were also presented. It was concluded that the results highlighted the subjective nature of flame length measurements. 10 refs., 4 figs.

  3. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  4. Development of Kinetics for Soot Oxidation at High Pressures Under Fuel-Lean Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Vander Wal, Randy [Pennsylvania State Univ., University Park, PA (United States)

    2014-04-21

    The focus of the proposed research was to develop kinetic models for soot oxidation with the hope of developing a validated, predictive, multi-­scale, combustion model to optimize the design and operation of evolving fuels in advanced engines for transportation applications. The work focused on the relatively unstudied area of the fundamental mechanism for soot oxidation. The objectives include understanding of the kinetics of soot oxidation by O2 under high pressure which require: 1) development of intrinsic kinetics for the surface oxidation, which takes into account the dependence of reactivity upon nanostructure and 2) evolution of nanostructure and its impact upon oxidation rate and 3) inclusion of internal surface area development and possible fragmentation resulting from pore development and /or surface oxidation. These objectives were explored for a variety of pure fuel components and surrogate fuels. This project was a joint effort between the University of Utah (UU) and Pennsylvania State University (Penn State). The work at the UU focuses on experimental studies using a two-­stage burner and a high- pressure thermogravimetric analyzer (TGA). Penn State provided HRTEM images and guidance in the fringe analysis algorithms and parameter quantification for the images. This report focuses on completion done under supplemental funding.

  5. Impact of vegetation growth on urban surface temperature distribution

    International Nuclear Information System (INIS)

    Buyadi, S N A; Mohd, W M N W; Misni, A

    2014-01-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI

  6. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-09-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5 % organic carbon content where deposition freezing occurred at an ice saturation ratio Sice ~ 1.22 at a temperature T = 226.6 K with 25 % of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30 % and ~70 % organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5 % organic carbon content soot had an undetectable OC coating whereas the 30 % organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the

  7. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    Science.gov (United States)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of

  8. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    KAUST Repository

    Choi, J. H.; Choi, B. C.; Lee, S. M.; Chung, Suk-Ho; Jung, K. S.; Jeong, W. L.; Choi, S. K.; Park, S. K.

    2015-01-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  9. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    KAUST Repository

    Choi, J. H.

    2015-05-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  10. Reductions of PAH and Soot by Center Air Injection

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2014-07-01

    Full Text Available In this study, to reduce the amount of pollutant PAH and soot in the flame, we examined the burner system equipped with a center air injection. For this purpose, by using PAH-LIF and soot LII, we evaluated relative PAH and soot amounts in both the triple port burner and the conventional co-axial burner (double port burner to discuss effects of center air injection on the formation of PAH and soot. The fuel was propane. In the triple port burner, two different blue flames are observed near the burner rim, followed by bright luminous flames with soot. The flame length is longer when the fuel flow velocity is increased. On the other hand, the flame length is shorter with an increase in internal air flow velocity. As for PAH and soot, these amounts of the triple port burner are much smaller than those of the double port burner. For the triple port burner, due to the center air injection, the fuel consumption occurs in both inner and outer flames. On the other hand, for the double port burner, the oxygen is supplied from one side air, and as a result, the fuel consumption rate is relatively lower. Hence, by the center air injection, the fuel consumption is largely accelerated, resulting in the reduction of PAH and soot.

  11. Fructose-enhanced reduction of bacterial growth on nanorough surfaces

    Directory of Open Access Journals (Sweden)

    Durmus NG

    2012-02-01

    Full Text Available Naside Gozde Durmus1, Erik N Taylor1, Fatih Inci3,4, Kim M Kummer1, Keiko M Tarquinio5, Thomas J Webster1,21School of Engineering, Brown University, Providence, RI, USA; 2Department of Orthopedics, Brown University, Providence, RI, USA; 3Bio-Acoustic-MEMS in Medicine (BAMM Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology, Harvard Medical School, MA, USA; 4Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, Mobgam, Maslak, Istanbul, Turkey; 5Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence, RI, USAAbstract: Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC endotracheal tubes (ETTs. PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of

  12. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  13. Influence of dust on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, M F

    1959-01-01

    Further experiments were made at Kuibyshev with seedlings of Caragana aurantiaca and Prunus maackii. Some the plants were treated with a mixture of fine dust and soot at 2-2.5 g/sq m of leaf surface, and this treatment was repeated as necessary, at intervals during the growing season. Height growth of C. aurantiaca was 26.6%, and that of P. maackii 15.9% less than that of clean controls. Leaf surface area, measured shortly before fall, was 35.3% less than the controls in C. aurantiaca, and 20% less in P. maackii.

  14. Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization

    Directory of Open Access Journals (Sweden)

    Y. F. Cheng

    2012-05-01

    intensities, actual turnover rates of soot (kex → in up to 20% h−1 were derived, which showed a pronounced diurnal cycle peaking around noon time. This result confirms that (soot particles are undergoing fast aging/coating with the existing high levels of condensable vapors in the megacity Beijing. (5 Diurnal cycles of Fin were different between Aitken and accumulation mode particles, which could be explained by the faster growth of smaller Aitken mode particles into larger size bins.

    To improve the Fin prediction in regional/global models, we suggest parameterizing Fin by an air mass aging indicator, i.e., Fin = a + bx, where a and b are empirical coefficients determined from observations, and x is the value of an air mass age indicator. At the Yufa site in the North China Plain, fitted coefficients (a, b were determined as (0.57, 0.21, (0.47, 0.21, and (0.52, 0.0088 for x (indicators as [NOz]/[NOy], [E]/[X] ([ethylbenzene]/[m,p-xylene] and ([IM] + [OM]/[EC] ([inorganic + organic matter]/[elemental carbon], respectively. Such a parameterization consumes little additional computing time, but yields a more realistic description of Fin compared with the simple treatment of soot mixing state in regional/global models.

  15. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    Science.gov (United States)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  16. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    International Nuclear Information System (INIS)

    Kamimoto, Takeyuki

    2006-01-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed

  17. Towards predictive simulations of soot formation: from surrogate to turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, Guillaume [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-03-28

    The combustion of transportation fuels leads to the formation of several kinds of pollutants, among which are soot particles. These particles, also formed during coal combustion and in fires, are the source of several health problems and environmental issues. Unfortunately, our current understanding of the chemical and physical phenomena leading to the formation of soot particles remains incomplete, and as a result, the predictive capability of our numerical tools is lacking. The objective of the work was to reduce the gap in the present understanding and modeling of soot formation both in laminar and turbulent flames. The effort spanned several length scales from the molecular level to large scale turbulent transport.

  18. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.

    2016-12-01

    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  19. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Tatiana V., E-mail: tatiana.ivanova@lut.fi, E-mail: ivanova.tatyana.v@gmail.com; Toivonen, Jenni; Maydannik, Philipp S.; Kääriäinen, Tommi; Sillanpää, Mika [ASTRaL Team, Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Homola, Tomáš; Cameron, David C. [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic)

    2016-05-15

    The particulate soot emission from diesel motors has a severe impact on the environment and people's health. The use of catalytic convertors is one of the ways to minimize the emission and decrease the hazard level. In this paper, the activity of cerium oxide for catalytic combustion of diesel soot was studied. Thin films of cerium dioxide were synthesized by atomic layer deposition using tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium [Ce(thd){sub 4}] and ozone as precursors. The characteristics of the films were studied as a function of deposition conditions within the reaction temperature range of 180–350 °C. Thickness, crystallinity, elemental composition, and morphology of the CeO{sub 2} films deposited on Si (100) were characterized by ellipsometry, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy, respectively. The growth rate of CeO{sub 2} was observed to be 0.30 Å/cycle at temperatures up to 250 °C with a slight increase to 0.37 Å/cycle at 300 °C. The effect of CeO{sub 2} films grown on stainless steel foil supports on soot combustion was measured with annealing tests. Based on the analysis of these, in catalytic applications, CeO{sub 2} has been shown to be effective in lowering the soot combustion temperature from 600 °C for the uncoated substrates to 370 °C for the CeO{sub 2} coated ones. It was found that the higher deposition temperatures had a positive effect on the catalyst performance.

  20. Investigating Soot Morphology in Counterflow Flames at Elevated Pressures

    KAUST Repository

    Amin, Hafiz Muhammad Fahid

    2018-01-01

    Practical combustion devices such as gas turbines and diesel engines operate at high pressures to increase their efficiency. Pressure significantly increases the overall soot yield. Morphology of these ultra-fine particles determines their airborne

  1. Reflectance spectroscopy is an effective tool for monitoring soot pollution in an urban suburb.

    Science.gov (United States)

    Saaroni, H; Chudnovsky, A; Ben-Dor, E

    2010-02-01

    This study examines whether converting the fossil fuel of the Tel Aviv power station from oil to gas influences air pollution in the local urban environment. To this end, the spectral properties of accumulated dust on tree leaves and paper bags were assessed before (2004) and after (2006) the conversion. The sampling site was a garden in a neighborhood located 2700m downwind of the power station. In addition, air pollution concentrations and particulate matter parameters recorded by a local meteorological station were analyzed (PM(10), NO(x), NO(2), NO, and SO(2)). Although differences in the average monthly concentration of pollution parameters are mostly insignificant between the two periods, the accumulated particulate matter exhibits considerably different spectral patterns. All first period samples exhibit a distinctly concave slope in the spectral region between 400 and 1400nm, indicative of high amounts of soot, most likely due to the combustion products of fuel oil exhausted by the power plant. In contrast, the second period samples exhibit spectra that indicate reduced soot content and even appear slightly convex, evidencing the presence of dust of mineral origin, a feature likely masked by the soot in the first period. Thus, the spectral data support that the power plant conversion results in less pollution. More generally, this study corroborates that VIS-NIR-SWIR spectroscopy characterizes key properties of the particulate layer accumulating on sampled surfaces and thus, is a powerful method for monitoring the urban environment. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Investigating Soot Morphology in Counterflow Flames at Elevated Pressures

    KAUST Repository

    Amin, Hafiz Muhammad Fahid

    2018-01-01

    Practical combustion devices such as gas turbines and diesel engines operate at high pressures to increase their efficiency. Pressure significantly increases the overall soot yield. Morphology of these ultra-fine particles determines their airborne lifetime and their interaction with the human respiratory system. Therefore, investigating soot morphology at high pressure is of practical relevance. In this work, a novel experimental setup has been designed and built to study the soot morphology at elevated pressures. The experimental setup consists of a pressure vessel, which can provide optical access from 10° to 165° for multi-angle light scattering, and a counterflow burner which produces laminar flames at elevated pressures. In the first part of the study, N2-diluted ethylene/air and ethane air counterflow flames are stabilized from 2 to 5 atm. Two-angle light scattering and extinction technique have been used to study the effects of pressure on soot parameters. Path averaged soot volume fraction is found to be very sensitive to pressure and increased significantly from 2 to 5 atm. Primary particle size and aggregate size also increased with pressure. Multi-angle light scattering is also performed and flames are investigated from 3 to 5 atm. Scattering to absorption ratio is calculated from multi-angle light scattering and extinction data. Scattering to absorption ratio increased with pressure whereas the number of primary particles in an aggregate decreased with increasing pressure. In the next part of the study, Thermophoretic Sampling of soot is performed, in counterflow flames from 3 to 10 atm, followed by transmission electron microscopy. Mean primary particle size increased with pressure and these trends are consistent withour light scattering measurements. Fractal properties of soot aggregates are found to be insensitive to pressure. 2D diffused light line of sight attenuation (LOSA) and Laser Induced Incandescence (LII) are used to measure local soot

  3. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals

    Science.gov (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert

    2004-10-01

    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  4. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    distributions of PLII signals help understand the soot distributions within diesel/ biodiesel flames. In addition, planar laser-induced Figure 1. Transported ...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 9/14/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll This project investigated biodiesel ...emissions testing. 1 FINAL REPORT Project title: Understanding combustion and soot formation in biodiesel fuelled diesel engines Lead Institute and

  5. Dynamic growth of slip surfaces in catastrophic landslides.

    Science.gov (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M

    2016-01-01

    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's ( Proc. R. Soc. Lond. A 332 , 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

  6. Measurement of Soot Deposition in Automotive Components Using Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Zekveld, David; Liu, Liaohui [AMEC NSS, 700 University Ave, Toronto, Ontario, M5G 1X6 (Canada); UOIT, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Harrison, Andrew; Gill, Spencer; Harvel, Glenn [UOIT, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Chang, Jen-Shih [McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8 (Canada)

    2008-07-01

    About 40% of air pollution is generated by vehicles and transportation. The particulate matter (PM) emission significantly impacts human health. Fine particles below 2.5 {mu}m (PM2.5) can enter the lungs and lead to respiratory problems. These particles not only influence human health, but also reduce the capability of many automobile exhaust heat exchanging devices. Neutron radiography is a non-destructive method of analyzing carbonaceous PM. While neutron radiography has been demonstrated for soot measurement in the past, the application has not considered the presence of unburned hydrocarbons, significant amounts of moisture nor examined complex geometrical configurations. The purpose of this work is to study a reliable non-destructive testing methodology using neutron radiography for measurement of soot distribution in automotive components. A soot standard (aluminium target) was designed and manufactured as a calibration tool. The standard is radiographed and used to measure the differences between various soot thickness and compositions. The radiograph images are analyzed to determine a calibration curve based upon the composition of the materials which can then be used for analysis of the automotive components. Experiments are performed using a diesel engine to produce soot deposits on exhaust piping. Soot distribution on exhaust piping is measured using neutron radiography. (authors)

  7. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  8. Measurement of Soot Deposition in Automotive Components Using Neutron Radiography

    International Nuclear Information System (INIS)

    Zekveld, David; Liu, Liaohui; Harrison, Andrew; Gill, Spencer; Harvel, Glenn; Chang, Jen-Shih

    2008-01-01

    About 40% of air pollution is generated by vehicles and transportation. The particulate matter (PM) emission significantly impacts human health. Fine particles below 2.5 μm (PM2.5) can enter the lungs and lead to respiratory problems. These particles not only influence human health, but also reduce the capability of many automobile exhaust heat exchanging devices. Neutron radiography is a non-destructive method of analyzing carbonaceous PM. While neutron radiography has been demonstrated for soot measurement in the past, the application has not considered the presence of unburned hydrocarbons, significant amounts of moisture nor examined complex geometrical configurations. The purpose of this work is to study a reliable non-destructive testing methodology using neutron radiography for measurement of soot distribution in automotive components. A soot standard (aluminium target) was designed and manufactured as a calibration tool. The standard is radiographed and used to measure the differences between various soot thickness and compositions. The radiograph images are analyzed to determine a calibration curve based upon the composition of the materials which can then be used for analysis of the automotive components. Experiments are performed using a diesel engine to produce soot deposits on exhaust piping. Soot distribution on exhaust piping is measured using neutron radiography. (authors)

  9. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  10. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: j_karimi@alum.sharif.edu [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: mshariat@ut.ac.ir [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-31

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  11. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    International Nuclear Information System (INIS)

    Hedayat, Seyed Mahdi; Karimi-Sabet, Javad; Shariaty-Niassar, Mojtaba

    2017-01-01

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  12. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  13. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper

    2011-01-01

    and soot mass concentrations are used as model boundary conditions. An in-house developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate. The soot concentration is measured basically by filtering the soot...... characteristics are used to fit model constants of soot and filter properties. Measured DPF gas conversions and soot burn rates are used to fit model activation energies of four DPF regeneration reactions using O2 and NO2 as reactants. Modeled DPF pressure drops and soot burn rates are compared to the steady...... state DPF experiments in the temperature range between 260 and 480 °C. The model widely reproduces the experimental results. Especially the exponential soot burn rate versus temperature is accurately reproduced by the model....

  14. Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Brown, Avery; Tompsett, Geoffrey

    2018-01-01

    spectroscopy. The CO2 reactivity of soot was investigated by thermogravimetric analysis. Soot from cellulose was more reactive than soot produced from extractives, lignin and monolignols. Soot reactivity was correlated with the separation distances between adjacent graphene layers, as measured using...... transmission electron microscopy. Particle size, free radical concentration, differences in a degree of curvature and multi-core structures influenced the soot reactivity less than the interlayer separation distances. Soot yield was correlated with the lignin content of the feedstock. The selection...... of the extraction solvent had a strong influence on the soot reactivity. The Soxhlet extraction of softwood and wheat straw lignin soot using methanol decreased the soot reactivity, whereas acetone extraction had only a modest effect....

  15. The immersion freezing behavior of size-segregated soot and kaolinite particles

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  16. Non-linear self-reinforced growth of tearing modes with multiple rational surfaces

    International Nuclear Information System (INIS)

    Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT

    1993-06-01

    The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium

  17. Tungsten surface evolution by helium bubble nucleation, growth and rupture

    International Nuclear Information System (INIS)

    Sefta, Faiza; Wirth, Brian D.; Hammond, Karl D.; Juslin, Niklas

    2013-01-01

    Molecular dynamics simulations reveal sub-surface mechanisms likely involved in the initial formation of nanometre-sized ‘fuzz’ in tungsten exposed to low-energy helium plasmas. Helium clusters grow to over-pressurized bubbles as a result of repeated cycles of helium absorption and Frenkel pair formation. The self-interstitials either reach the surface as isolated adatoms or trap at the bubble periphery before organizing into prismatic 〈1 1 1〉 dislocation loops. Surface roughening occurs as single adatoms migrate to the surface, prismatic loops glide to the surface to form adatom islands, and ultimately as over-pressurized gas bubbles burst. (paper)

  18. Growth kinetics of metastable (331) nanofacet on Au and Pt(110) surfaces

    International Nuclear Information System (INIS)

    Ndongmouo, U.T.; Houngninou, E.; Hontinfinde, F.

    2006-12-01

    A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (331) nanofacets on Au and Pt(110) surfaces. The results show that under experimental atomic fluxes, the (331) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(001) surface in the kinetic 6-vertex model. (author)

  19. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  20. Experimental determination of soot refractive index in the infrared

    International Nuclear Information System (INIS)

    Ouf, F.X.; Vendel, J.; Ouf, F.X.; Coppalle, A.; Weil, M.E.; Yon, J.

    2007-01-01

    The study of physical properties of soot particles produced during combustion is a complex subject but of a great interest within the framework of the study of the safety of an installation, with respect to the fire hazard. These characteristics are, in this case, particularly useful in order to predict the behaviour of containment barriers in situation of fire, but also in order to estimate the contribution of these particles to radiative transfers. The aim of this study is to determine the radiative properties of soot particles produced during combustion. A specific device, which establishes extinction and vertical-vertical scattering coefficients, has been developed and has allowed to determine the refractive index of soot particles in the infrared. This determination also needed the establishment of size distribution and morphological properties of soot aggregates. We present in this document the experimental device developed, and the validation of this device on latex spheres which optical properties are well known. First results of extinction coefficients will be presented and will underline the similar optical behaviour of different soot aggregates. Values of refractive index will be detailed and discussed, and a direct application of these values will be carried out in order to determine the soot volume fraction. A comparison with reference method will underline the efficiency of our method. We will conclude on the validity of the information brought by this device and on the prospects of this study. A discussion is included, on the utility of mean values of refractive index and on the determination of total emissivity of soot particles. (authors)

  1. Cosmic: Carbon Monoxide And Soot In Microgravity Inverse Combustion

    Science.gov (United States)

    Mikofski, M. A.; Blevins, L. G.; Davis, R. W.; Moore, E. F.; Mulholland, G. W.; Sacksteder, Kurt (Technical Monitor)

    2003-01-01

    Almost seventy percent of fire related deaths are caused by the inhalation of toxins such as CO and soot that are produced when fires become underventilated.(1) Although studies have established the importance of CO formation during underventilated burning,(2) the formation processes of CO (and soot) in underventilated fires are not well understood. The goal of the COSMIC project is to study the formation processes of CO and soot in underventilated flames. A potential way to study CO and soot production in underventilated flames is the use of inverse diffusion flames (IDFs). An IDF forms between a central air jet and a surrounding fuel jet. IDFs are related to underventilated flames because they may allow CO and soot to escape unoxidized. Experiments and numerical simulations of laminar IDFs of CH4 and C2H4 were conducted in 1-g and micro-g to study CO and soot formation. Laminar flames were studied because turbulent models of underventilated fires are uncertain. Microgravity was used to alter CO and soot pathways. A IDF literature survey, providing background and establishing motivation for this research, was presented at the 5th IWMC.(3) Experimental results from 1-g C2H4 IDFs and comparisons with simulations, demonstrating similarities between IDFs and underventilated fires, were presented at the 6th IWMC.(4) This paper will present experimental results from micro-g and 1-g IDFs of CH4 and C2H4 as well as comparisons with simulations, further supporting the relation between IDFs and underventilated flames.

  2. Estimation of algal colonization growth on mortar surface using a ...

    Indian Academy of Sciences (India)

    Thu-Hien Tran

    a hybridization of machine learning and metaheuristic optimization ... support vector regression (LS-SVR) for modelling the growth time of the green alga Klebsormidium flaccidum ...... 2012 Landslide susceptibility assessment in the Hoa Binh.

  3. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio; Mueller, Michael E.; Pitsch, Heinz

    2016-01-01

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  4. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio

    2016-02-13

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors\\' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  5. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  6. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  7. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  8. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Al-Qurashi, Khalid

    2014-01-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of 'MTBE soot' started began at a lower temperature and had higher reaction rate than 'diesel soot' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  9. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  10. Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces

    Science.gov (United States)

    Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.

    1998-03-01

    Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.

  11. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....

  12. Step driven competitive epitaxial and self-limited growth of graphene on copper surface

    Directory of Open Access Journals (Sweden)

    Lili Fan

    2011-09-01

    Full Text Available The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on copper surface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on copper surface. Our results showed that wide and high steps promoted epitaxial growth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayer graphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.

  13. Soot in the air may have serious climatic consequences

    International Nuclear Information System (INIS)

    Seip, Hans Martin

    2002-01-01

    Emissions of soot in China and India may be an important cause of changed summer weather in China, with increasing floods in the south-east and increasing droughts in the north-east. In addition to the greenhouse gases, the particulate matter (aerosols) in the air has an important effect on the climate. Most particles have a cooling effect since they reflect solar radiation. However, some particles are dark as they contain soot ('black carbon'). Such particles, which are formed by incomplete combustion of coal, oil and biomass, absorb solar radiation and thus have a warming effect, even if they reduce the solar irradiation on the ground. Soot particles do not have quite the same effect as the greenhouse gases. The soot particles absorb solar radiation, while the greenhouse gases absorb terrestrial heat radiation. In addition, the residence time of the soot particles in the atmosphere is shorter than that of, say, carbon dioxide. The concentration is therefore much higher in areas close to emission sources than elsewhere

  14. Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

    KAUST Repository

    Lisanti, Joel

    2015-03-30

    To evaluate the current state of the art in LII particle sizing, a comprehensive model for predicting the temporal incandescent response of combustion-generated soot to absorption of a pulsed laser is presented. The model incorporates particle heating through laser absorption, thermal annealing, and oxidation at the surface as well as cooling through sublimation and photodesorption, radiation, conduction and thermionic emission. Thermodynamic properties and the thermal accommodation coefficient utilized in the model are temperature dependent. In addition, where appropriate properties are also phase dependent, thereby accounting for annealing effects during laser heating and particle cooling.

  15. Surfacing the Depths: Thoughts on Imitation, Resonance and Growth

    Science.gov (United States)

    Music, Graham

    2005-01-01

    This paper examines some of the research on imitation that shows it to be much more than simply a behavioural or reflex response, but rather an aspect of the growth of genuine social and psychological interaction and part of an intersubjective process that includes the representation of object relationships. Differentiations between mind,…

  16. Investigations of the long-term effects of LII on soot and bath gas

    KAUST Repository

    Cenker, Emre; Bennett, A.; Roberts, William L.

    2017-01-01

    A combination of high-repetition rate imaging, laser extinction measurements, two-colour soot pyrometry imaging, and high-resolution transmission electron microscopy of thermophoretically sampled soot is used to investigate the long

  17. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement

  18. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu; Im, Hong G.

    2017-01-01

    ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a

  19. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Wienbeucker, F; Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  20. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal–support interactions

    International Nuclear Information System (INIS)

    Durgasri, D. Naga; Vinodkumar, T.; Lin, Fangjian; Alxneit, Ivo; Reddy, Benjaram M.

    2014-01-01

    Graphical abstract: - Highlights: • Supported Ce-Gd-oxides are applied for soot oxidation for the first time. • Gd 2 O 3 doping facilitates enhanced extrinsic oxygen vacancy concentration in ceria. • The Ce-Gd/TiO 2 exhibited the highest soot oxidation activity. • Key parameters that involved in tuning the activity are discussed. - Abstract: The aim of the present investigation was to ascertain the role of Al 2 O 3 , SiO 2 , and TiO 2 supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al 2 O 3 , Ce-Gd/SiO 2 , and Ce-Gd/TiO 2 catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H 2 -TPR, and UV–vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F 2g mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV–vis DRS measurements. The H 2 -TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO 2 catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support

  1. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal–support interactions

    Energy Technology Data Exchange (ETDEWEB)

    Durgasri, D. Naga; Vinodkumar, T. [Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007 (India); Lin, Fangjian; Alxneit, Ivo [Solar Technology Laboratory, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Reddy, Benjaram M., E-mail: bmreddy@iict.res.in [Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Supported Ce-Gd-oxides are applied for soot oxidation for the first time. • Gd{sub 2}O{sub 3} doping facilitates enhanced extrinsic oxygen vacancy concentration in ceria. • The Ce-Gd/TiO{sub 2} exhibited the highest soot oxidation activity. • Key parameters that involved in tuning the activity are discussed. - Abstract: The aim of the present investigation was to ascertain the role of Al{sub 2}O{sub 3}, SiO{sub 2}, and TiO{sub 2} supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al{sub 2}O{sub 3}, Ce-Gd/SiO{sub 2}, and Ce-Gd/TiO{sub 2} catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H{sub 2}-TPR, and UV–vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F{sub 2g} mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV–vis DRS measurements. The H{sub 2}-TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO{sub 2} catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support.

  2. Growth and surface topography of WSe_2 single crystal

    International Nuclear Information System (INIS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-01-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe_2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe_2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  3. New Nanotech from an Ancient Material: Chemistry Demonstrations Involving Carbon-Based Soot

    Science.gov (United States)

    Campbell, Dean J.; Andrews, Mark J.; Stevenson, Keith J.

    2012-01-01

    Carbon soot has been known since antiquity, but has recently been finding new uses as a robust, inexpensive nanomaterial. This paper describes the superhydrophobic properties of carbon soot films prepared by combustion of candle wax or propane gas and introduces some of the optical absorption and fluorescence properties of carbon soot particles.…

  4. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  5. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  6. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.

    1986-01-01

    of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  7. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  8. Buildup of aerosol precursor gases and sulfur-induced activation of soot in nascent jet aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Hirschberg, M.M.; Fabian, P. [Muenchen Univ. (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Gerz, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Research issues concerning the chemical transformation of exhaust trace gases are summarized. The photochemical evolution of NO{sub x} early in the plume is strongly coupled to plume mixing. Substantial amounts of HNO{sub 3} are generated in nascent plumes even if no NO{sub 2} is emitted. The production of H{sub 2}SO{sub 4} becomes very efficient if part of the fuel sulfur is emitted as SO{sub 3}. Each emitted soot particle can acquire 1-10% by mass fully oxidized sulfur molecules prior to binary homogeneous nucleation, if a few percent of the exhaust SO{sub x} are emitted as SO{sub 3}, indicating an important activation pathway for soot, and leading to a marked enhancement of new aerosol formation and growth rates. (author) 11 refs.

  9. Buildup of aerosol precursor gases and sulfur-induced activation of soot in nascent jet aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B; Hirschberg, M M; Fabian, P [Muenchen Univ. (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Gerz, T [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    Research issues concerning the chemical transformation of exhaust trace gases are summarized. The photochemical evolution of NO{sub x} early in the plume is strongly coupled to plume mixing. Substantial amounts of HNO{sub 3} are generated in nascent plumes even if no NO{sub 2} is emitted. The production of H{sub 2}SO{sub 4} becomes very efficient if part of the fuel sulfur is emitted as SO{sub 3}. Each emitted soot particle can acquire 1-10% by mass fully oxidized sulfur molecules prior to binary homogeneous nucleation, if a few percent of the exhaust SO{sub x} are emitted as SO{sub 3}, indicating an important activation pathway for soot, and leading to a marked enhancement of new aerosol formation and growth rates. (author) 11 refs.

  10. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed

    2015-03-30

    A set of coflow diffusion flames are simulated to study the formation, growth, and oxidation of soot in flames of diluted hydrocarbon fuels, with focus on the effects of pressure. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled with a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Finally, a sensitivity study is performed assessing the effect of the boundary conditions and kinetic mechanisms on the flame structure and stabilization properties.

  11. Modified inorganic surfaces as a model for hydroxyapatite growth

    CERN Document Server

    Pramatarova, Lilyana

    2006-01-01

    The process by which organisms in Nature create minerals is known as biomineralization - a process that involves complex interactions between inorganic ions, crystals and organic molecules; resulting in a controlled nucleation and growth of minerals from aqueous solutions. During the last few decades, biomineralization has been intensively studied, due to its involvement in a wide range of biological events; starting with the formation of bones, teeth, cartilage, shells, coral (so-called physiological mineralization) and encompassing pathological mineralization, i.e. the formation of kidney st

  12. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  13. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface

    KAUST Repository

    Marinaro, Giovanni

    2015-06-17

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ¥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. © 2015 American Chemical Society.

  14. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface

    KAUST Repository

    Marinaro, Giovanni; Burghammer, Manfred; Costa, Luca; Dane, Thomas; De Angelis, Francesco; Di Fabrizio, Enzo M.; Riekel, Christian

    2015-01-01

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ¥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. © 2015 American Chemical Society.

  15. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    Science.gov (United States)

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  16. Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth

    Science.gov (United States)

    Jarisz, Tasha A.; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K.

    2018-06-01

    Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.

  17. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Epstein, A K; Hochbaum, A I; Kim, Philseok; Aizenberg, J

    2011-01-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  18. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...

  19. Sooting behavior of oxygenated fuels in a diffusion burner

    NARCIS (Netherlands)

    Boot, M.D.; Luijten, C.C.M.; Baert, R.S.G.; Edenhofer, R.; Dirks, H.; Lucka, K.; Köhne, H.

    2009-01-01

    Different strategies are being investigated towards reducing engine-out emission levels of soot and NOx of modern Diesel engines. A fuel-based strategy currently under investigation, entails the use of low cetane number (CN; i.e.low reactive) oxygenates. Previous research has shown that low CN

  20. Soot and short-lived pollutants provide political opportunity

    Science.gov (United States)

    Victor, David G.; Zaelke, Durwood; Ramanathan, Veerabhadran

    2015-09-01

    Cutting levels of soot and other short-lived pollutants delivers tangible benefits and helps governments to build confidence that collective action on climate change is feasible. After the Paris climate meeting this December, actually reducing these pollutants will be essential to the credibility of the diplomatic process.

  1. Intelligent soot blowing for boilers co-firing waste and biofuel; Behovsstyrd sotblaasning foer bio- och avfallseldade pannor - inventering och teknikval

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    To achieve optimum boiler operation and performance it is necessary to control the cleanliness and limit the fouling of the heat transfer surfaces. Historically, the heating surfaces in boilers firing biomass and waste are cleaned by steamblowing soot blowers on scheduled time-based and/or parameter-based intervals or by mechanical methods. With the advent of fuel switching strategies and use of mixed-in industrial waste, the control of heating surface cleanliness has become even more crucial for these boilers. Scheduled and/or parameter based approaches do not easily address operational changes. As plant operators push to achieve greater efficiency and performance from their boilers, the ability to more effectively optimize cleaning cycles has become increasingly important. If soot blowing is done only when and where it is required rather than at set intervals, unit performance can be maintained with reduced blowing, which saves steam. Two philosophical approaches toward intelligent soot blowing are currently being applied in the industry. One incorporates heat flux monitors to gather real-time heat transfer data to determine which areas of the furnace need cleaning. The other uses indirect temperature and pressure data to infer locations where soot blowing is needed, and is mainly applied for controlling soot blowers in the superheater and economiser area. The heat flux monitors are so fare used for control of the furnace wall blowers. A system using temperature, pressure and flow data does not require much additional instrumentation as compared with what is available on a standard boiler. However the blower control system must be capable of operating blowers on an individual basis. For advanced options it should also be possible to adjust the speed of the soot blower and the steam pressure. The control program could be more or less advanced but the ability to model heating surfaces and determine real-time cleanliness is crucial for an intelligent soot blowing

  2. Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto [FCIPT, Institute for Plasma Research, Gandhinagar 382428, Gujarat (India); Nirma University, Ahmedabad 382481, Gujarat (India); Jolley, Kenny; Smith, Roger [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2016-05-30

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on the flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.

  3. Influence of the growth-surface on the incorporation of phosphorus in SiC

    International Nuclear Information System (INIS)

    Rauls, E.; Gerstmann, U.; Frauenheim, Th.

    2005-01-01

    Phosphorus is a common and desired n-type dopant of SiC, but it turned out that doping by diffusion or during growth is rarely successful. To avoid the efforts and the creation of damage if ion implantation is used instead, these techniques were, though, highly desirable. In this work, we have investigated theoretically the experimental observation that phosphorus obviously hardly diffuses into the material. Not the diffusivity of the dopant but its addiction to occupy a three-fold coordinated surface site are critical, together with the way the surface affects the bulk migration barriers of the dopants. Whereas the most common growth direction for 4H-SiC, the polar silicon terminated (0001) surface, seems to be least appropriate for the incorporation of phosphorus atoms, growth along the nonpolar [112-bar 0] provides a good possibility to achieve efficient P-doping during growth

  4. Selective growth of two-dimensional phosphorene on catalyst surface.

    Science.gov (United States)

    Qiu, L; Dong, J C; Ding, F

    2018-02-01

    Although the study of black phosphorene (BP) and its isomers has attracted enormous attention, the method of synthesizing high-quality samples in a large area is still pending. Here we explore the potential of using the chemical vapor deposition method to synthesize large-area two-dimensional (2D) phosphorene films on metal surfaces. Our ab initio calculations show that BP can be synthesized by using tin (Sn) as a catalyst, while one of its isomers, blue phosphorene (BLP), is very possible to be synthesized by using most other metals, such as Ag and Au. Besides, our study also suggests that the large binding energy between the 2D phosphorene and the active metal substrate may prohibit the exfoliation of the 2D phosphorene for real applications and, therefore, tin, silver and gold are predicted to be the most suitable catalysts for the synthesis of BP and BLP.

  5. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  6. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  7. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeonghwa [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Sakuragi, Makoto; Shibata, Aya; Abe, Hiroshi; Kitajima, Takashi; Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Mizutani, Masayoshi; Ohmori, Hitoshi [Material Fabrication Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ayame, Hirohito [Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Son, Tae Il [Bioscience and Biotechnology, Chung-Ang University, 40-1 San, Nae-Ri, Daeduck-myun, Ansung-si, Kyungki-do, 456-756 (Korea, Republic of); Aigaki, Toshiro [Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)

    2012-12-01

    Titanium and stainless steel were modified with dopamine for the immobilization of biomolecules, epidermal growth factor (EGF). First, the treatment of metal surfaces with a dopamine solution under different pH conditions was investigated. At higher pH, the dopamine solution turned brown and formed precipitates. Treatment of the metals with dopamine at pH 8.5 also resulted in the development of brown color at the surface of the metals. The hydrophobicity of the surfaces increased after treatment with dopamine, independently of pH. X-ray photoelectron spectroscopy revealed the formation of a significant amount of an organic layer on both surfaces at pH 8.5. According to ellipsometry measurements, the organic layer formed at pH 8.5 was about 1000 times as thick as that formed at pH 4.5. The amount of amino groups in the layer formed at pH 8.5 was also higher than that observed in the layer formed at pH 4.5. EGF molecules were immobilized onto the dopamine-treated surfaces via a coupling reaction using carbodiimide. A greater amount of EGF was immobilized on surfaces treated at pH 8.5 compared with pH 4.5. Significantly higher growth of rat fibroblast cells was observed on the two EGF-immobilized surfaces compared with non-immobilized surfaces in the presence of EGF. The present study demonstrated that metals can become bioactive via the surface immobilization of a growth factor and that the effect of the immobilized growth factor on metals was greater than that of soluble growth factor. - Highlights: Black-Right-Pointing-Pointer Epidermal growth factor was covalently immobilized on titan or stainless steel surfaces. Black-Right-Pointing-Pointer Amino groups were formed on the surfaces by the treatment and the growth factor was immobilized through amide bonds. Black-Right-Pointing-Pointer The immobilized epidermal growth factor accelerated cell proliferation more than soluble ones on the surfaces.

  8. Surface structure deduced differences of copper foil and film for graphene CVD growth

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junjun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Hu, Baoshan, E-mail: hubaoshan@cqu.edu.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Zidong; Jin, Yan [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Zhengtang [Department of Chemical and Biomolecular Engineering, The Hongkong University of Science and Technology, Kowloon (Hong Kong); Xia, Meirong [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Pan, Qingjiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080 (China); Liu, Yunling [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-05-01

    Highlights: • We demonstrate the significant differences between Cu foil and film in the surface morphology and crystal orientation distribution. • The different surface structure leads to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. • Nucleation densities and growth rate differences at the initial growth stages on the Cu foil and film were investigated and discussed. Abstract: Graphene was synthesized on Cu foil and film by atmospheric pressure chemical vapor deposition (CVD) with CH₄ as carbon source. Electron backscattered scattering diffraction (EBSD) characterization demonstrates that the Cu foil surface after the H₂-assisted pre-annealing was almost composed of Cu(1 0 0) crystal facet with larger grain size of ~100 μm; meanwhile, the Cu film surface involved a variety of crystal facets of Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0), with the relatively small grain size of ~10 μm. The different surface structure led to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. Further data demonstrate that the Cu foil enabled more nucleation densities and faster growth rates at the initial growth stages than the Cu film. Our results are beneficial for understanding the relationship between the metal surface structure and graphene CVD growth.

  9. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  10. Thin film growth behaviors on strained fcc(111) surface by kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Doi, Y; Matsunaka, D; Shibutani, Y

    2009-01-01

    We study Ag islands grown on strained Ag(111) surfaces using kinetic Monte Carlo (KMC) simulations. We employed KMC parameters of activation energy and attempt frequency estimated by nudged elastic band (NEB) method and vibration analyses. We investigate influences of surface strain and substrate temperature on film growth. As the biaxial surface strain increases, the island density increases. As temperature increases, the shape of the island changes from dendric to hexagonal and the island density increases.

  11. Probability of growth of small damage sites on the exit surface of fused silica optics.

    Science.gov (United States)

    Negres, Raluca A; Abdulla, Ghaleb M; Cross, David A; Liao, Zhi M; Carr, Christopher W

    2012-06-04

    Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

  12. Impacts of vehicle exhaust black soot on germination of gram seed (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available An investigation was initiated to examine the effects of carbon soot collected from exhaust tube of 15 years old petrol and diesel operated vehicles on gram seed germination and biochemical changes of seedling. In view of the widespread cultivation of gram seed in India and long-term impact of black carbon is the warming of the atmosphere as per the recommendation of IPCC (2007. Black soot were separately treated with different doses and the effects of these treatment had on seed germination, seedling vigor, chlorophyll and carotenoid content, root and shoot growth, protein, sugar, phenol and proline estimation were studied. The treatment T6 significantly affected on seed germination (84% as well as seedling vigor and chlorophyll content. But other treatment promoted both seed germination and seedling vigor along with enhancement of other biochemical constituents. On the other hand micrograph study revealed that treatments T1 and T4 both showed negative effects on stomata rather than the ultra-structure of xylem and phloem.

  13. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  14. Modelling the growth of Listeria monocytogenes on the surface of smear- or mould-ripened cheese

    Directory of Open Access Journals (Sweden)

    Sol eSchvartzman

    2014-07-01

    Full Text Available Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model and the Logistic model and three secondary (the Cardinal model, the Ratowski model and the Presser model mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modelled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  15. Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.

    Science.gov (United States)

    Schvartzman, M Sol; Gonzalez-Barron, Ursula; Butler, Francis; Jordan, Kieran

    2014-01-01

    Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw) of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model, and the Logistic model) and three secondary (the Cardinal model, the Ratowski model, and the Presser model) mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modeled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax) were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  16. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  17. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  18. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  19. Laterally enhanced growth of electrodeposited Au to form ultrathin films on nonconductive surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Chiaki; Saito, Mikiko; Homma, Takayuki

    2012-01-01

    We investigated the laterally enhanced growth of electrodeposited Au for fabricating nanogap electrodes. To enhance the lateral growth, we carried out electrodeposition over patterned electrodes onto a SiO 2 surface modified with self-assembled monolayers (SAMs) or dendrimers with amine groups. The morphology and thickness of the Au films were controlled by adjusting deposition conditions such as duration, applied potential, and Au ion concentration in the bath. To investigate the mechanism of the laterally enhanced growth, the surface states of SAM- or dendrimer-modified SiO 2 were analyzed by X-ray photoelectron spectroscopy (XPS). The XPS results indicate the existence of organic molecules and Au ions on the SiO 2 surface, which suggests that laterally enhanced growth is induced by the Au ions coordinated on the amine groups of the organic molecules. To further analyze the mechanism of the laterally enhanced growth, we investigated the relationship between the morphology of the laterally enhanced growth of Au and the amount of Au ions on organic molecules. The laterally enhanced growth of Au is expected to be useful for fabricating thin film nanogap electrodes.

  20. An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical

    Energy Technology Data Exchange (ETDEWEB)

    John E. Dec; Peter L. Kelly-Zion

    1999-10-01

    Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

  1. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  2. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    International Nuclear Information System (INIS)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  3. Transient surface states during the CBE growth of GaAs

    Science.gov (United States)

    Farrell, T.; Hill, D.; Joyce, T. B.; Bullough, T. J.; Weightman, P.

    1997-05-01

    We report the occurrence of a transient surface state during the initial stages of CBE GaAs(0 0 1) growth. The state was detected in real-time reflectance ( R) and reflectance anisotropy spectroscopy (RAS) growth monitoring. At low growth rates, less than 1 μm/h, beam equivalent pressure (BEP) of triethylgallium (TEG) BEPs there was a rapid increase in R at all monitoring wavelengths, followed by a monotonic decay to its pre-growth value. This transient increase in R was accompanied by a change in the RAS signal, the magnitude and sign of which varied with wavelength. The initial increase in R is shown to be associated with the development of a metallic-like surface whereas the changes in the RAS signal are consistent with the formation of Ga dimers.

  4. The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: A numerical investigation

    Science.gov (United States)

    Hazra, Anupam; Padmakumari, B.; Maheskumar, R. S.; Chen, Jen-Ping

    2016-05-01

    This study investigates the influence of different ice nuclei (IN) species and their number concentrations on cloud ice production. The numerical simulation with different species of ice nuclei is investigated using an explicit bulk-water microphysical scheme in a Mesoscale Meteorological Model version 5 (MM5). The species dependent ice nucleation parameterization that is based on the classical nucleation theory has been implemented into the model. The IN species considered include dust and soot with two different concentrations (Low and High). The simulated cloud microphysical properties like droplet number concentration and droplet effective radii as well as macro-properties (equivalent potential temperature and relative humidity) are comparable with aircraft observations. When higher dust IN concentrations are considered, the simulation results showed good agreement with the cloud ice and cloud water mixing ratio from aircraft measurements during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. Relative importance of IN species is shown as compared to the homogeneous freezing nucleation process. The tendency of cloud ice production rates is also analyzed and found that dust IN is more efficient in producing cloud ice when compared to soot IN. The dust IN with high concentration can produce more surface precipitation than soot IN at the same concentration. This study highlights the need to improve the ice nucleation parameterization in numerical models.

  5. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  6. Absence of surface stress change during pentacene thin film growth on the Si(111)-(7 x 7) surface: a buried reconstruction interface

    International Nuclear Information System (INIS)

    Kury, P; Horn von Hoegen, M; Heringdorf, F-J Meyer zu; Roos, K R

    2008-01-01

    We use high-resolution surface stress measurements to monitor the surface stress during the growth of pentacene (C 22 H 14 ) on the (7x7) reconstructed silicon (111) surface. No significant change in the surface stress is observed during the pentacene growth. Compared to the changes in the surface stress observed for Si and Ge deposition on the Si(111)-(7x7) surface, the insignificant change in the surface stress observed for the pentacene growth suggests that the pentacene molecules of the first adsorbate layer, although forming strong covalent bonds with the Si adatoms, do not alter the structure of the (7x7) reconstruction. The (7x7) reconstruction remains intact and, with subsequent deposition of pentacene, eventually becomes buried under the growing film. This failure of the pentacene to affect the structure of the reconstruction may represent a fundamental difference between the growth of organic thin films and that of inorganic thin films on semiconductor surfaces

  7. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene

    Directory of Open Access Journals (Sweden)

    Kubicki JD

    2000-09-01

    Full Text Available Molecular simulations (energy minimizations and molecular dynamics of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1 were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2 and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3 force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH, such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.

  8. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dhrubajyoti D.; St. John, Peter C.; McEnally, Charles S.; Kim, Seonah; Pfefferle, Lisa D.

    2018-04-01

    Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, which expands the chemical space of relevant compounds. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveraging the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (greater than or equal to 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. The model's predictive accuracy (as demonstrated by leave-one-out cross-validation) is comparable to a previously developed, more detailed predictive model. The fitted model provides insight into the effects of chemical structure on soot formation, and cases where its predictions fail reveal the presence of more complicated kinetic sooting mechanisms. This work will therefore enable the rational design of low-sooting fuel blends from a wide range of feedstocks and chemical functionalities.

  9. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  10. Surface reconstruction: An effective method for the growth of mismatched materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu; Zheng, Beining; Wu, Xiaofeng; Yuan, Long; Wu, Jie; Guo, Hongping; Huang, Keke; Feng, Shouhua, E-mail: shfeng@mail.jlu.edu.cn

    2016-01-01

    Graphical abstract: High quality thin film of GaSb was fabricated with molecular beam epitaxy technique on the reconstructed Si(1 1 1) surface. - Highlights: • Surface reconstruction formed by different surface treatments controls the heteroepitaxial growth. • Mismatched stress can be effectively released when the mismatched material epi-film tilts out of the epitaxial interface plane to create a coincidence-site lattice. • GaSb films grown on Si(1 1 1)-(5√3 × 5√3)-Sb surface show better crystal quality and morphology for its self-assembled 2D fishbone structure. - Abstract: The crystalline quality of epitaxial films depends on the degree of lattice match between substrates and films. Here, we report a growth strategy for large mismatched epi-films to grow GaSb films on Si(1 1 1) substrates. The epitaxial strategy can be influenced by controlling the surface reconstructions of Sb-treated Si(1 1 1). The film with the best quality was grown on Si(1 1 1)-(5√3 × 5√3)-Sb surface due to the stress release and the formation of a self-assembled 2D fishbone structure. Controlled surface engineering provides an effective pathway towards the growth of the large mismatched materials.

  11. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  12. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces.

    Directory of Open Access Journals (Sweden)

    Robert King

    2017-10-01

    Full Text Available Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2. Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2 suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.

  13. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces

    Science.gov (United States)

    Plummer, Amy; Halsey, Kirstie; Lovegrove, Alison; Hammond-Kosack, Kim

    2017-01-01

    Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast “yeast-like” growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices. PMID:29020037

  14. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  15. Methods for growth of relatively large step-free SiC crystal surfaces

    Science.gov (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  16. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  17. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  18. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Yang, Wei-En; Lee, Tzu-Hsin

    2014-01-01

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  19. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  20. A novel growth mode of alkane films on a SiO2 surface

    DEFF Research Database (Denmark)

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  1. Effect of relative humidity on soot - secondary organic aerosol mixing: A case study from the Soot Aerosol Aging Study (PNNL-SAAS)

    Science.gov (United States)

    Sharma, N.; China, S.; Zaveri, R. A.; Shilling, J. E.; Pekour, M. S.; Liu, S.; Aiken, A. C.; Dubey, M. K.; Wilson, J. M.; Zelenyuk, A.; OBrien, R. E.; Moffet, R.; Gilles, M. K.; Gourihar, K.; Chand, D.; Sedlacek, A. J., III; Subramanian, R.; Onasch, T. B.; Laskin, A.; Mazzoleni, C.

    2014-12-01

    Atmospheric processing of fresh soot particles emitted by anthropogenic as well as natural sources alters their physical and chemical properties. For example, fresh and aged soot particles interact differently with incident solar radiation, resulting in different overall radiation budgets. Varying atmospheric chemical and meteorological conditions can result in complex soot mixing states. The Soot Aerosol Aging Study (SAAS) was conducted at the Pacific Northwest National Laboratory in November 2013 and January 2014 as a step towards understanding the evolution of mixing state of soot and its impact on climate-relevant properties. Aging experiments on diesel soot were carried out in a controlled laboratory chamber, and the effects of condensation and coagulation processes were systematically explored in separate sets of experiments. In addition to online measurement of aerosol properties, aerosol samples were collected for offline single particle analysis to investigate the evolution of the morphology, elemental composition and fine structure of sample particles from different experiments. Condensation experiments focused on the formation of α-pinene secondary organic aerosol on diesel soot aerosol seeds. Experiments were conducted to study the aging of soot under dry (RH < 2%) and humid conditions (RH ~ 80%). We present an analysis of the morphology of soot, its evolution, and its correlation with optical properties, as the condensation of α-pinene SOA is carried out for the two different RH conditions. The analysis was performed by using scanning electron microscopy, transmission electron microscopy, scanning transmission x-ray microscopy and atomic force microscopy for single particle characterization. In addition, particle size, mass, composition, shape, and density were characterized in-situ, as a function of organics condensed on soot seeds, using single particle mass spectrometer.

  2. The concentration of heavy metals and PAH's in soot water - suggested methods of treatment; Halten av tungmetaller och PAH:er i sotvatten - foerslag paa behandlingsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Bjoern (TecNet Nordic AB, Goeteborg (SE))

    2007-12-15

    content of chlorides which will lead to expensive materials and due to its content of calcium and sulfates that may give scaling on heat transfer surfaces. Ion exchange resins can be of some interest for waters that are generally clean, but have one metal with to high concentration. In the report, the use of soot water for cooling of slag, moistening of the fuel, reuse as soot water and cleaning in an existing water treatment plant, have also been discussed. This project have generated a lot of new information about soot water and what soot water contains. Information that is important when discussing its effect on the environment as well as looking for ways to treat the water. The project has also shown the importance of correct sampling and analysis of soot water and discussed ways to treat this water. Information that is requested by personnel on combustion plant, authorities and by companies building treatment plants

  3. Effects of morphology and wavelength on the measurement accuracy of soot volume fraction by laser extinction

    Science.gov (United States)

    Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua

    2018-01-01

    A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.

  4. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-01-01

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621

  5. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-11-13

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  6. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2015-11-01

    Full Text Available Soot sensors are required for on-board diagnostics (OBD of automotive diesel particulate filters (DPF to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  7. In situ measurements of soot formation in simple flames using small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom); Greaves, G.N. [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom)]. E-mail: gng@aber.ac.uk; Hargrave, G.K. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Jarvis, S. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Wildman, P. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Meneau, F. [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom); Netherlands Organisation for Scientific Research (NWO), DUBBLE CRG/ESRF, P.O. Box 220, F38043 Grenoble Cedex (France); Bras, W. [Netherlands Organisation for Scientific Research (NWO), DUBBLE CRG/ESRF, P.O. Box 220, F38043 Grenoble Cedex (France); Thomas, G. [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom)

    2005-08-15

    Direct SAXS measurements of soot formation from ethylene have been made using laminar pre-mixed flames for the first time. The slot burner was configured to maximise the signal from particulates. The geometry also enabled the thermal background from the surrounding hot gasses to be accurately removed. With cold flame speeds of 40 cm s{sup -1} we have been able to identify particle sizes and densities from moderately sooty to rich flame conditions. By adjusting the height of the burner in the beam, the development of particles as a function of position above the flame tip and therefore as a function of time from ignition have been obtained. These reveal evidence for bimodal particle nucleation and growth at different stages in the continuous combustion of ethylene.

  8. In situ measurements of soot formation in simple flames using small angle X-ray scattering

    International Nuclear Information System (INIS)

    Gardner, C.; Greaves, G.N.; Hargrave, G.K.; Jarvis, S.; Wildman, P.; Meneau, F.; Bras, W.; Thomas, G.

    2005-01-01

    Direct SAXS measurements of soot formation from ethylene have been made using laminar pre-mixed flames for the first time. The slot burner was configured to maximise the signal from particulates. The geometry also enabled the thermal background from the surrounding hot gasses to be accurately removed. With cold flame speeds of 40 cm s -1 we have been able to identify particle sizes and densities from moderately sooty to rich flame conditions. By adjusting the height of the burner in the beam, the development of particles as a function of position above the flame tip and therefore as a function of time from ignition have been obtained. These reveal evidence for bimodal particle nucleation and growth at different stages in the continuous combustion of ethylene

  9. In situ measurements of soot formation in simple flames using small angle X-ray scattering

    Science.gov (United States)

    Gardner, C.; Greaves, G. N.; Hargrave, G. K.; Jarvis, S.; Wildman, P.; Meneau, F.; Bras, W.; Thomas, G.

    2005-08-01

    Direct SAXS measurements of soot formation from ethylene have been made using laminar pre-mixed flames for the first time. The slot burner was configured to maximise the signal from particulates. The geometry also enabled the thermal background from the surrounding hot gasses to be accurately removed. With cold flame speeds of 40 cm s-1 we have been able to identify particle sizes and densities from moderately sooty to rich flame conditions. By adjusting the height of the burner in the beam, the development of particles as a function of position above the flame tip and therefore as a function of time from ignition have been obtained. These reveal evidence for bimodal particle nucleation and growth at different stages in the continuous combustion of ethylene.

  10. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces

    NARCIS (Netherlands)

    Lai, Stanley; Lazenby, R.A.; Kirkman, P.M.; Unwin, P.R.

    2015-01-01

    The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of

  11. Preservation of the Pt(100) surface reconstruction after growth of a continuous layer of graphene

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Bjerre, Jacob

    2012-01-01

    Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change in di...

  12. Carbon nanoparticles from corn stalk soot and its novel application as stationary phase of hydrophilic interaction chromatography and per aqueous liquid chromatography

    International Nuclear Information System (INIS)

    Li Yuanyuan; Xu Luan; Chen Tong; Liu Xiaoyan; Xu Zhigang; Zhang Haixia

    2012-01-01

    Highlights: ► Carbon nanoparticles (6–18 nm in size) were prepared from corn stalk soot. ► CNPs-based silica were used as novel chromatography stationary phase. ► The new phase shows good separation selectivity for polar compounds. ► The new phase had the similar retention for polar probes in HILIC and PALC modes. ► In contrast to PALC, under HILIC conditions high efficiencies were achieved. - Abstract: Carbon nanoparticles (CNPs) (6–18 nm in size) were prepared by refluxing corn stalk soot in nitric acid. The obtained acid-oxidized CNPs are soluble in water due to the existence of carboxylic and hydroxyl groups. 13 C NMR measurement shows the CNPs are mainly of sp 2 and sp 3 carbon structure different from CNPs obtained from candle soot and natural gas soot. Furthermore, these CNPs exhibit unique photoluminescence properties. Interestingly, the CNPs might be exploited to immobilize on the surface of porous silica particles as chromatographic stationary phase. The resultant packing material was evaluated by high-performance liquid chromatography, indicating that the new stationary phase could be used in hydrophilic interaction liquid chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes. The separation of five nucleosides, four sulfa compounds and safflower injection was achieved by using the new column in the HILIC and PALC modes, respectively.

  13. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions

    DEFF Research Database (Denmark)

    Stærk, Kristian; Kolmos, Hans Jørn; Khandige, Surabhi

    2016-01-01

    were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS:  Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations...... with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations....... enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. CONCLUSION:  Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions...

  14. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    Science.gov (United States)

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  15. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  16. Dynamics of very small soot particles during soot burnout in diesel engines; Dynamik kleinster Russteilchen waehrend der Russausbrandphase im Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Chemische Technik; Peters, N. [RWTH Aachen (DE). Institut fuer Technische Mechanik (ITM); Pittermann, R. [WTZ fuer Motoren- und Maschinenforschung Rosslau gGmbH (Germany); Hentschel, J.; Weber, J.

    2003-07-01

    The investigations used advanced laser-optical methods for measuring soot particle size distributions, temporally and spectrally resolved measurements of engine combustion, measurements of composition and size distribution of particles in exhaust, and further development and validation of reaction-kinetic models. In all, it can be stated that mixing will affect not only soot particle formation but also soot particle emissions. Mixing can be influenced by using a fuel-water emulsion and by CR injection. Experiments and models both showed the advantageous effects of water added to the diesel fuels and of CR injection. The higher OH radical concentrations in the later combustion stages also serve to ensure faster oxidation of soot. (orig.) [German] Ziel des Projektes war es, Informationen ueber die Bildung und Oxidation von Russ sowie die Teilchendynamik der Russteilchen waehrend der Ausbrandphase zu erhalten. Dies wurde erreicht durch die Weiterentwicklung laseroptischer Methoden zur Bestimmung der Groessenverteilung von Russpartikeln, durch zeit- und spektral aufgeloeste Erfassung der motorischen Verbrennung, durch die Bestimmung von Zusammensetzung und Groessenverteilung von Partikeln im Abgas sowie durch die Weiterentwicklung und Validierung von reaktionskinetischen Modellen. Zusammenfassend laesst sich sagen, dass sich die Gemischbildung im Dieselmotor nicht nur auf die Bildung der Russpartikel sondern auch auf die Russpartikelemission auswirkt. Die Verwendung einer Kraftstoff-Wasser-Emulsion und die Common-Rail-Einspritzung stellen zwei Verfahren zur Beeinflussung der Gemischbildung dar. Sowohl die experimentellen Untersuchungen als auch die Modellierung zeigen den die Gemischbildung foerdernden Einfluss des Zusatzes von Wasser zum Dieselbrennstoff. Ein erhoehter Anteil an vorgemischter Verbrennung, wie er auch durch die Verwendung hoher Einspritzdruecke bei der Common-Rail-Einspritzung erreicht werden kann, verringert die waehrend der Verbrennung entstehende

  17. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  18. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    International Nuclear Information System (INIS)

    Tian Chungui; Wang Enbo; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-01-01

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO 3 /PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted

  19. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  20. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  1. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  2. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  3. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu

    2017-01-05

    The flame-vortex interaction enables the study of basic phenomena that control the coupling between combustion and turbulence. Employing a gas phase reaction mechanism considering polycyclic aromatic hydrocarbons (PAH), a two dimensional counterflow ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a prescribed decaying random velocity field is being investigated. Counterflow nonpremixed flames at low strain rate sooting conditions are considered. Effects of vortices are studied on the flame structures and its sensitivity on the soot formation characteristics. As the vortex rolls up the flame, integrated soot volume fraction is found to be larger for the air-side vortex. A detailed analysis on the flame structure and its influence on the formation of soot were carried out. The results indicate that the larger PAH species contributes to the soot formation in the airside perturbation regimes, whereas the soot formation is dominated by the soot transport in fuel-side perturbation.

  4. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy

    Science.gov (United States)

    Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R.

    2018-01-01

    Individual soot agglomerates collected at four different locations on the Arctic archipelago Svalbard (Norway) were characterised by transmission electron microscopy and energy-dispersive X-ray microanalysis. For source identification of the ambient soot agglomerates, samples from different local sources (coal burning power plants in Longyearbyen and Barentsburg, diesel and oil burning for power generation in Sveagruva and Ny Ålesund, cruise ship) as well as from other sources which may contribute to Arctic soot concentrations (biomass burning, aircraft emissions, diesel engines) were investigated. Diameter and graphene sheet separation distance of soot primary particles were found to be highly variable within each source and are not suited for source identification. In contrast, concentrations of the minor elements Si, P, K, Ca and Fe showed significant differences which can be used for source attribution. The presence/absence of externally mixed particle groups (fly ashes, tar balls, mercury particles) gives additional hints about the soot sources. Biomass/wood burning, ship emissions and coal burning in Barentsburg can be excluded as major source for ambient soot at Svalbard. The coal power plant in Longyearbyen is most likely a major source of soot in the settlement of Longyearbyen but does not contribute significantly to soot collected at the Global Atmosphere Watch station Zeppelin Mountain near Ny Ålesund. The most probable soot sources at Svalbard are aircraft emissions and diesel exhaust as well as long range transport of coal burning emissions.

  5. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  6. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2017-02-01

    Full Text Available Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF. The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  7. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tig...... exhibited a volcano-curve dependence on the heat of oxygen chemisorption, and among the tested pure metals and oxides Cr2O3 was the most active catalyst. Further improvements were achieved with a FeaCrbOx binary oxide catalyst....

  8. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques for both soot formation and soot formation/oxidation flames. Tested fuels were three binary mixtures from the primary reference fuels of n-heptane, iso-octane, and toluene. The result showed that PAH and soot maintained near zero level for all mixtures of n-heptane/iso-octane case under present experimental conditions. For n-heptane/toluene and iso-octane/toluene mixtures, PAH initially increased and then decreased with the toluene ratio, exhibiting a synergistic effect. The soot formation increased monotonically with the toluene ratio, however the effect of toluene on soot formation was minimal for relatively small toluene ratios. These results implied that even though toluene had a dominant role in soot and PAH formations, small amount of toluene had a minimal effect on soot formation. Numerical simulations have also been conducted by adopting recently proposed two kinetic mechanisms. The synergistic behavior of aromatic rings was predicted similar to the experimental PAH measurement, however, the degree of the synergistic effect was over-predicted for the soot formation flame, indicating the need for refinements in the kinetic mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  9. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    Science.gov (United States)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  10. Studies on the controlled growth of InAs nanostructures on scission surfaces

    International Nuclear Information System (INIS)

    Bauer, J.

    2006-01-01

    The aim of this thesis was the controlled alignment of self-assembled InAs nano-structures on a {110}-oriented surface. The surface is prestructured with the atomic precision offered by molecular beam epitaxy, using the cleaved edge overgrowth-technique. On all samples grown within this work, the epitaxial template in the first growth step was deposited on a (001)GaAs substrate, while the InAs-layer forming the nanostructures during the second growth step was grown on cleaved {110}-GaAs surfaces. Atomic Force Microscopy (AFM) investigations demonstrate the formation of quantum dot (QD)-like nanostructures on top of the AlAs-stripes. X-ray diffraction measurements on large arrays of aligned quantum dots demonstrate that the quantum dots are formed of pure InAs. First investigations on the optical properties of these nanostructures were done using microphotoluminescence-spectroscopy with both high spatial and spectral resolution. (orig.)

  11. HFCVD growth of various carbon nanostructures on SWCNT paper controlled by surface treatment

    International Nuclear Information System (INIS)

    Varga, M.; Izak, T.; Kromka, A.; Kotlar, M.; Vretenar, V.; Ledinsky, M.; Michalka, M.; Skakalova, V.; Vesely, M.

    2012-01-01

    In this article, we investigate the nanocomposite material formation, particularly the deposition of nanocrystalline diamond and carbon nanowalls (CNWs) on single-wall carbon nanotubes buckypaper (BP). One part of the buckypaper substrate was nucleated by nanodiamond powder. The growth was carried out in a hot filament chemical vapor deposition (HFCVD) system. Contact angle measurements, scanning electron microscopy, and Raman spectroscopy were used for the surface morphology analysis and characterization of carbon phases. Due to a different surface pretreatment, different carbon nanostructures were formed: diamond film was grown on the nucleated BP area; non-treated area of the BP was covered with a dense field of CNWs. Covering a part of the BP surface prevented an access of the HF-plasma and so the growth of any carbon structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body.

    Science.gov (United States)

    Perkins, Jonathan P; Ward, Kevin M; de Silva, Shanaka L; Zandt, George; Beck, Susan L; Finnegan, Noah J

    2016-10-25

    The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.

  13. Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2017-08-01

    Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.

  14. Growth mechanism and surface atomic structure of AgInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pena Martin, Pamela; Rockett, Angus A.; Lyding, Joseph [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering and the Beckman Institute, University of Illinois at Urbana-Champaign, 405 N. Matthews St., Urbana, Illinois 61801 (United States)

    2012-07-15

    The growth of (112)A-oriented AgInSe{sub 2} on GaAs (111)A and its surface reconstruction were studied by scanning tunneling microscopy, atomic force microscopy, and other techniques. Films were grown by a sputtering and evaporation method. Topographic STM images reveal that the film grew by atomic incorporation into surface steps resulting from screw dislocations on the surface. The screw dislocation density was {approx}10{sup 10} cm{sup 2}. Atomically resolved images also show that the surface atomic arrangement appears to be similar to that of the bulk, with a spacing of 0.35-0.41 nm. There is no observable reconstruction, which is unexpected for a polar semiconductor surface.

  15. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  16. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    Science.gov (United States)

    Price, J.; Lakshmi, V.

    2013-12-01

    The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll

  17. Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth

    Science.gov (United States)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2009-01-01

    Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.

  18. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  19. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method.

    Science.gov (United States)

    Tapia, A; Salgado, M S; Martín, María Pilar; Lapuerta, M; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2016-03-15

    Surface functional groups of two different types of combustion aerosols, a conventional diesel (EN 590) and a hydrotreated vegetable oil (HVO) soot, have been investigated using heterogeneous chemistry (i.e., gas-particle surface reactions). A commercial sample of amorphous carbon (Printex XE2-B) was analyzed as a reference substrate. A Knudsen flow reactor was used to carry out the experiments under molecular flow conditions. The selected gases for the titration experiments were: N(CH3)3 for the identification of acidic sites, NH2OH for the presence of carbonyl groups, CF3COOH and HCl for basic sites of different strength, and O3 and NO2 for reducing groups. Reactivity with N(CH3)3 indicates a lower density of acidic functionalities for Printex XE2-B in relation to diesel and HVO soot. Results for NH2OH experiments indicates that commercial amorphous carbon exhibits a lower abundance of available carbonyl groups at the interface compared to the results from diesel and HVO soot, the latter being the one with the largest abundance of carbonyl functions. Reactions with acids indicate the presence of weak basic oxides on the particle surface that preferentially interact with the strong acid CF3COOH. Finally, reactions with O3 and NO2 reveal that diesel and especially HVO have a significantly higher reactivity with both oxidizers compared to that of Printex XE2-B because they have more reducing sites by roughly a factor of 10 and 30, respectively. The kinetics of titration reactions have also been investigated.

  20. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  1. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    International Nuclear Information System (INIS)

    Sun, Jie; Lindvall, Niclas; Yurgens, August; Nam, Youngwoo; Cole, Matthew T.; Teo, Kenneth B. K.; Woo Park, Yung

    2014-01-01

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature

  2. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  3. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...

  4. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons

    KAUST Repository

    Selvaraj, Prabhu

    2015-11-05

    An updated reduced gas-phase kinetic mechanism was developed and integrated with aerosol models to predict soot formation characteristics in ethylene nonpremixed and premixed flames. A primary objective is to investigate the sensitivity of the soot formation to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). The gas-phase chemical mechanism adopted the KAUST-Aramco PAH Mech 1.0, which utilized the AramcoMech 1.3 for gas-phase reactions validated for up to C2 fuels. In addition, PAH species up to coronene (C24H12 or A7) were included to describe the detailed formation pathways of soot precursors. In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph with expert knowledge (DRG-X) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames at low strain rate sooting conditions were considered, for which the sensitivity of soot formation characteristics to different nucleation pathways were investigated. Premixed flame experiment data at different equivalence ratios were also used for validation. The findings show that higher PAH concentrations result in a higher soot nucleation rate, and that the total soot volume and average size of the particles are predicted in good agreement with experimental results. Subsequently, the effects of different pathways, with respect to pyrene- or coronene-based nucleation models, on the net soot formation rate were analyzed. It was found that the nucleation processes (i.e., soot inception) are sensitive to the choice of PAH precursors, and consideration of higher PAH species beyond pyrene is critical for accurate prediction of the overall soot formation.

  5. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    Science.gov (United States)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  6. The Effect of Growth Temperature and V/III Flux Ratio of MOCVD Antimony Based Semiconductors on Growth Rate and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Ramelan Ari Handono

    2017-01-01

    Full Text Available Epitaxial Alx Ga1-x Sb layers on GaSb and GaAs substrates have been grown by atmospheric pressure metalorganic chemical vapor deposition using TMAl, TMGa and TMSb. Nomarski microscope and a profiler were employed to examine the surface morphology and growth rate of the samples. We report the effect of growth temperature and V/III flux ratio on growth rate and surface morphology. Growth temperatures in the range of 520°C and 680°C and V/III ratios from 1 to 5 have been investigated. A growth rate activation energy of 0.73 eV was found. At low growth temperatures between 520 and 540°C, the surface morphology is poor due to antimonide precipitates associated with incomplete decomposition of the TMSb. For layers grown on GaAs at 580°C and 600°C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580°C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology

  7. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  8. Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates

    Science.gov (United States)

    Damodar, D.; Sahoo, R. K.; Jacob, C.

    2013-06-01

    Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.

  9. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    Emtsev, Konstantin

    2009-01-01

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  10. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Lee, Jong Woon; Jang, Yamujin; Choi, Soon Hyung; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Joo, Won-Jae; Hwang, Sungwoo; Whang, Dongmok

    2015-01-01

    Direct growth of graphene on silicon (Si) through chemical vapor deposition has predominantly focused on surface-mediated processes due to the low carbon (C) solubility in Si. However, a considerable quantity of C atoms was incorporated in Si and formed Si 1−x C x alloy with a reduced lattice dimension even in the initial stage of direct graphene growth. Subsequent high temperature annealing promoted active C out-diffusion, resulting in the formation of a graphitic layer on the Si surface. Furthermore, the significantly low thermal conductivity of the Si 1−x C x alloy shows that the incorporated C atoms affect the properties of a semiconductor adjacent to the graphene. These findings provide a key guideline for controlling desirable properties of graphene and designing hybrid semiconductor/graphene architectures for various applications

  11. On the growth mechanisms of polar (100) surfaces of ceria on copper (100)

    Science.gov (United States)

    Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.

    2018-05-01

    We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.

  12. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    Science.gov (United States)

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  13. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  14. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  15. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  16. 2D problems of surface growth theory with applications to additive manufacturing

    Science.gov (United States)

    Manzhirov, A. V.; Mikhin, M. N.

    2018-04-01

    We study 2D problems of surface growth theory of deformable solids and their applications to the analysis of the stress-strain state of AM fabricated products and structures. Statements of the problems are given, and a solution method based on the approaches of the theory of functions of a complex variable is suggested. Computations are carried out for model problems. Qualitative and quantitative results are discussed.

  17. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised...

  18. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  19. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.; Arias, P.G.; Wang, Y.; Gao, Y.; Park, S.; Im, Hong G.; Sarathy, Mani; Chung, Suk-Ho; Lu, T.

    2015-01-01

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  20. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  1. Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter

    NARCIS (Netherlands)

    Zhang-Steenwinkel, Y.; van der Zande, L.M.; Castricum, H.L.; Bliek, A.; van den Brink, R.W.; Elzinga, G.D.

    2005-01-01

    Dielectric heating may be used as an in situ technique for the periodic regeneration of soot filters, as those used in Diesel engines. As generally the Diesel exhaust temperatures are below the soot light-off temperature, passive regeneration is not possible. Presently, we have investigated the

  2. Development and implementation of Intelligent Soot Blowing Optimization System for TNB Janamanjung

    Directory of Open Access Journals (Sweden)

    Sundaram Taneshwaren

    2017-01-01

    Full Text Available With an ever increasing demand for energy, Malaysia has become a nation that thrives on solid power generation sector to meet the energy demand and supply market. In a coal fired power plant, soot blowing operation is commonly used as a cleaning mechanism inside the boiler. There are many types of sequence available for this soot blowing operation. Hence, there is no efficient ways in utilizing the soot blowing operation to enhance the efficiency of boiler. Soot blowing optimization requires specific set of data preparation and simulation in order to achieve the best modal. Computational Fluid Dynamics (CFD is used to model a 700MW super-critical boiler, whereby parameters with effect to soot blowing operation is studied. Two different boiler condition is studied to analyze parameters in a clean and faulty boiler. Artificial Neural Network (ANN is used to train neural network modal with back propagation method to determine the best modal that will be used to predict soot blowing operation. Combination of neural network different number of neurons, hidden layers, training algorithm, and training functions is trained to find the modal with lowest error. By improving soot blowing sequence, efficiency of boiler can be improved by providing best parameter and model. This model is then used as a reference for advisory tool whereby a Neural Network Predictive Tool is suggested to the station to predict the soot blowing operation that occurs.

  3. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2014-01-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration

  4. Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments

    DEFF Research Database (Denmark)

    Abián, María; Jensen, Anker D.; Glarborg, Peter

    2012-01-01

    A study of the reactivity of soot produced from ethylene pyrolysis at different temperatures and CO2 atmospheres toward O2 and CO2 has been carried out using a thermogravimetric analyzer. The purpose was to quantify how soot reactivity is affected by the gas environment and temperature history of...

  5. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  6. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    Energy Technology Data Exchange (ETDEWEB)

    Teys, S.A., E-mail: teys@isp.nsc.ru

    2017-01-15

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  7. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    International Nuclear Information System (INIS)

    Teys, S.A.

    2017-01-01

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  8. Investigation of mass and energy coupling between soot particles and gas species in modelling ethylene counterflow diffusion flames

    NARCIS (Netherlands)

    Zimmer, L.; Pereira, F.M.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction

  9. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.

    2016-04-05

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  10. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.; Manin, Julien; Pickett, Lyle M.; Cenker, Emre; Bruneaux, Gilles; Kondo, Katsufumi; Aizawa, Tets; Westlye, Fredrik; Dalen, Kristine; Ivarsson, Anders; Xuan, Tiemin; Garcia-Oliver, Jose M; Pei, Yuanjiang; Som, Sibendu; Hu, Wang; Reitz, Rolf D.; Lucchini, Tommaso; D'Errico, Gianluca; Farrace, Daniele; Pandurangi, Sushant S.; Wright, Yuri M.; Chishty, Muhammad Aqib; Bolla, Michele; Hawkes, Evatt

    2016-01-01

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  11. Detection of Soot Using a Resistivity Sensor Device Employing Thermophoretic Particle Deposition

    Directory of Open Access Journals (Sweden)

    Doina Lutic

    2010-01-01

    Full Text Available Results are reported for thermophoretic deposition of soot particles on resistivity sensors as a monitoring technique for diesel exhaust particles with the potential of improved detection limit and sensitivity. Soot with similar characteristics as from diesel exhausts was generated by a propane flame and diluted in stages. The soot in a gas flow at 240–270C∘ was collected on an interdigitated electrode structure held at a considerably lower temperature, 105–125C∘. The time delay for reaching measurable resistance values, the subsequent rate, and magnitude of resistance decrease were a function of the distance between the fingers in the electrodes and the degree of dilution of the soot containing flow. Soot deposition and subsequent removal by heating the sensor support was also performed in a real diesel exhaust. Good similarities between the behavior in our laboratory system and the real diesel exhaust were noticed.

  12. Two-dimensional quantification of soot and flame-soot interaction in spray combustion at elevated pressures - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T.

    2008-07-15

    Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell near top dead centre conditions typically found in a Diesel engine. Measurements were performed for initial gas pressures between 1 MPa and 3 MPa, injection pressures between 50 MPa and 130 MPa and laser probe timings between 5 ms and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions, gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.4 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 ms and 16 ms after start of injection, irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

  13. Nucleation and growth of vapor bubbles in the liquid bulk and at a solid surface

    International Nuclear Information System (INIS)

    Yagov, V.V.

    1977-01-01

    The main achievements in the study of the vapor phase origin in liquid and the subsequent growth of the vapor bubbles are presented briefly, and a number of issues on which there is no single opinion as yet are also outlined. The theory of homogeneous nucleation and a great number of experiments make it possible not only to explain qualitatively the causes of spontaneous formation of vapor nucleation centers in the metastable liquid but provides a simple computational relation for the estimating the intensity of this process. None of the existing hypotheses, however, can give a complete answer to the question of the mechanism of the vapor phase nucleation on a solid surface under ''pure conditions'', although this is a more pressing problem. At the same time, the role of cavities of reservoir type (with a narrow orifice) on the surface under heating as reliable stabilizers of the vapor formation (especially in liquid metals) is clarified from the practical point of view. Thus, the identification of technology for production of such cavities would make it possible to increase substantially the efficiency of heat transferring surfaces. Any computational relations for the growth of bubbles on the heating surface also are (and, according to the author, necessarily will be) approximate ones, although considerable success has been achieved in this field

  14. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  15. Theoretical studies of growth processes and electronic properties of nanostructures on surfaces

    Science.gov (United States)

    Mo, Yina

    Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development

  16. Investigations of the long-term effects of LII on soot and bath gas

    KAUST Repository

    Cenker, Emre

    2017-08-24

    A combination of high-repetition rate imaging, laser extinction measurements, two-colour soot pyrometry imaging, and high-resolution transmission electron microscopy of thermophoretically sampled soot is used to investigate the long-term and permanent effects of rapid heating of in-flame soot during laser-induced incandescence (LII). Experiments are carried out on a laminar non-premixed co-annular ethylene/air flame with various laser fluences. The high-repetition rate images clearly show that the heated and the neighbouring laser-border zones undergo a permanent transformation after the laser pulse, and advect vertically with the flow while the permanent marking is preserved. The soot volume fraction at the heated zone reduces due to the sublimation of soot and the subsequent enhanced oxidation. At the laser-border zones, however, optical thickness increases that may be due to thermophoretic forces drawing hot particles towards relatively cooler zones and the rapid compression of the bath gas induced by the pressure waves created by the expansion of the desorbed carbon clusters. Additionally sublimed carbon clusters can condense onto existing particles and contribute to increase of the optical thickness. Time-resolved two-colour pyrometry imaging show that the increased temperature of soot both in the heated and neighbouring laser-border zones persists for several milliseconds. This can be associated to the increase in the bath-gas temperature, and a change in the wavelength-dependent emissivity of soot particles induced by the thermal annealing of soot. Ex-situ analysis show that the lattice structure of the soot sampled at the laser-border zones tend to change and soot becomes more graphitic. This may be attributed to thermal annealing induced by elevated temperature.

  17. Molecular modelling investigations on the possibility of phenanthrene dimers to be the primary nuclei of soot

    Science.gov (United States)

    Wei, Mingrui; Wu, Sheng; Li, Fan; Zhang, Dongju; Zhang, Tingting; Guo, Guanlun

    2017-11-01

    Pyrene dimerisation was successfully used to model the beginning of soot nucleation in some simulation models. However, the quantum mechanics (QM) calculations proved that the binding energy of a PAH dimer with three six-member rings was similar to that of a pyrene dimer. Meanwhile, the high concentration of phenanthrene at flame conditions indicated high probability of collisions among them. The small difference of the binding energy and high concentration indicated that PAHs structurally smaller than pyrene also could be involved in soot inception. Hence, binary collisions of phenanthrene were simulated to find out whether phenanthrene dimers can serve as soot primary nuclei or not by using non-equilibrium molecular dynamics (MD). Three temperatures, six collision orientations and 155 initial translational velocities (ITVs) were considered. The results indicated that the number of dimers with lifetime over 10 ps which can serve as soot nuclei decreased from 52 at 1000 K to 17 at 1600 K, and further to 6 at 2400 K, which means that low temperature was more favourable for phenanthrene to form soot nuclei. Meanwhile, no soot nuclei were formed at the high velocity region (HVR), compared to 43 and 9 at low and middle velocity regions (LVR and MVR), respectively, when temperature was 1000 K. Also, no soot nuclei were formed at HVR when the temperature was raised to 1600 K and 2400 K. This indicated that HVR was unfavourable for phenanthrene to form soot nuclei. The results computationally further illustrated that small PAHs such as phenanthrene could serve as soot primary nuclei, since they have similar mole fractions in some flames. This may be useful for future soot simulation models.

  18. Soot particles at an elevated site in eastern China during the passage of a strong cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hongya [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Shao, Longyi [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Zhang, Daizhou, E-mail: dzzhang@pu-kumamoto.ac.jp [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan)

    2012-07-15

    Atmospheric particles larger than 0.2 {mu}m were collected at the top of Mt. Tai (36.25 Degree-Sign N, 117.10 Degree-Sign E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 {mu}m in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 {mu}m. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 {mu}m. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage. - Highlights: Black-Right-Pointing-Pointer Particles at an elevated site in eastern China in a strong cyclone were studied. Black-Right-Pointing-Pointer Aged status of soot particles in the prefrontal and postfrontal air was similar. Black-Right-Pointing-Pointer Soot particles in elevated layers could be considered as aged ones.

  19. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion

    Directory of Open Access Journals (Sweden)

    Santiago Iván Suárez-Vázquez

    2018-02-01

    Full Text Available Soot particles have been associated with respiratory diseases and cancer. To decrease these emissions, perovskite-mixed oxides have been proposed due to their thermal stability and redox surface properties. In this work, SrTiO3 doped with different amounts of Mn were synthesized by the hydrothermal method and tested for soot combustion. Results show that at low Mn content, structural distortion, and higher Oads/Olat ratio were observed which was attributed to the high content of Mn3+ in Ti sites. On the other hand, increasing the Mn content led to surface segregation of manganese oxide. All synthesized catalysts showed mesopores in the range of 32–47 nm. In the catalytic combustion of soot, the samples synthesized in this work lowered the combustion temperature by more than 100 °C compared with the uncatalyzed reaction. The sample doped with 1 wt % of Mn showed the best catalytic activity. The activation energy of these samples was also calculated, and the order of decreasing activation energy is as follows: uncatalyzed > Mn0 > Mn8 > Mn4 > Mn1. The best catalytic activity for Mn1 was attributed to its physicochemical properties and the mobility of the oxygen from the bulk to the surface at temperatures higher than 500 °C.

  20. Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation

    Directory of Open Access Journals (Sweden)

    Silviya Mikhailovna Ojovan

    2014-06-01

    Full Text Available Using a variety of proliferating cell types, it was shown that the surface of nanocrystalline-diamond (NCD provides a permissive substrate for cell adhesion and development without the need of complex chemical functionalization prior to cell seeding. In an extensive series of experiments we found that, unlike proliferating cells, post-mitotic primary neurons do not adhere to bare NCD surfaces when cultured in defined medium. These observations raise questions on the potential use of bare NCD as an interfacing layer for neuronal devices. Nevertheless, we also found that classical chemical functionalization methods render the hostile bare NCD surfaces with adhesive properties that match those of classically functionalized substrates used extensively in biomedical research and applications. Based on the results, we propose a mechanism that accounts for the conflicting results; which on one hand claim that un-functionalized NCD provides a permissive substrate for cell adhesion and growth, while other reports demonstrate the opposite.

  1. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  2. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  3. Role of Fluid-Dynamics in Soot Formation and Microstructure in Acetylene-Air Laminar Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Praveen Pandey

    2015-03-01

    Full Text Available Residence time and thermo-chemical environment are important factors in the soot-formation process in flames. Studies have revealed that flow-dynamics plays a dominant role in soot formation process. For understanding the effect of flow dynamics on soot formation and physical structure of the soot formed in different combustion environments two types of laminar diffusion flames of Acetylene and air, a normal diffusion flame (NDF and an inverse diffusion flame (IDF have been investigated. The fuel and air supply in the reaction zone in two flame types were kept constant but the interchange of relative position of fuel and air altered the burner exit Reynolds and Froude numbers of gases, fuel/air velocity ratio and flame shape. Soot samples were collected using thermophoretic sampling on transmission electron microscope (TEM grids at different flame heights and were analyzed off-line in a Transmission Electron Microscope. Soot primary particle size, soot aggregate size and soot volume fraction were measured using an image analysis software. In NDF the maximum flame temperature was about 1525 K and 1230 K for IDF. The soot primary particles are distinctly smaller in size in IDF (between 19 – 26 nm compared to NDF (between 29–34 nm. Both NDF and IDF show chainlike branched structure of soot agglomerate with soot particles of a nearly spherical shape. The average number of soot primary particles per aggregate in NDF was in the range of 24 to 40 and in IDF it varied between 16 to 24. Soot volume fraction was between 0.6 to 1.5 ppm in NDF where as it was less than 0.2 ppm in IDF. The change in sooting characteristics of the two flame types is attributed to changed fuel/air velocity ratio, entrainment of gas molecules and thermophoresis on soot particles.

  4. Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth

    Science.gov (United States)

    Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki

    2001-10-01

    Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.

  5. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  6. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  7. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    Science.gov (United States)

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  8. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  9. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  10. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  11. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  12. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates.

    Science.gov (United States)

    Pant, Atul; Parsons, Matthew T; Bertram, Allan K

    2006-07-20

    Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is

  13. Study on initial stage of hetero-epitaxial growth by glancing angle scattering of fast ions from surfaces

    International Nuclear Information System (INIS)

    Fujii, Yoshikazu; Toba, Kazuaki; Narumi, Kazumasa; Kimura, Kenji; Mannami, Michihiko

    1993-01-01

    Initial stages of epitaxial growth of lead chalcogenides on the (100) surface of SnTe under UHV conditions are studied from the angular distribution of scattered ions at glancing angle incidence of 0.7 MeV He ions on the growing surfaces. Real time measurement of the angular distribution is performed during the growth. Anomalous broadening of the angular distribution is observed at the initial stage of the growth. The broadening is attributed to the surface wrinkles induced by a square network of misfit edge dislocations. (author)

  14. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  15. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics

    International Nuclear Information System (INIS)

    Honour, Sarah L.; Bell, J. Nigel B.; Ashenden, Trevor W.; Cape, J. Neil; Power, Sally A.

    2009-01-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO x ) representative of urban conditions, in solardome chambers. Annual mean NO x concentrations ranged from 77 nl l -l to 98 nl l -1 , with NO:NO 2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation. - Fumigation experiments demonstrate adverse effects of exhaust emissions on urban vegetation

  16. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  17. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    Science.gov (United States)

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  18. Fatigue crack growth from handling surface anomalies in a nickel based superalloy at high temperature

    Directory of Open Access Journals (Sweden)

    Gourdin Stéphane

    2014-01-01

    Full Text Available Aircraft engine manufacturers have to demonstrate that handling surface anomalies in sensitive areas of discs are not critical for in-service life of a component. Currently, the models used consider anomalies as long cracks propagating from the first cycle, which introduces a certain degree of conservatism when calculating the fatigue life of surface flaws. Preliminary studies have shown that the first stages of crack propagation from surface anomalies are responsible for the conservative results. Thus, the aim of the study is to characterize the crack propagation from typical surface anomalies and to establish a new crack growth model, which can account for the micro-propagation stage. To separate the effects of the geometry of the anomalies and the residual stress state after introduction of the surface flaws, two V-type anomalies are studied: scratches and dents. Different studies have shown that the residual stresses beneath the anomalies seem to control the fatigue life of samples exhibiting scratches and dents. In order to monitor the crack micro-propagation, a direct current potential drop technique, coupled with heat tints is used during fatigue tests at elevated temperature. Thermal treatments releasing the residual stresses are also used to decouple the effect of crack morphology and residual stresses.

  19. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Balzer, F., E-mail: fbalzer@mci.sdu.dk [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Sun, R. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Parisi, J. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany); Rubahn, H.-G. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Lützen, A. [University of Bonn, Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany); Schiek, M. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany)

    2015-12-31

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  20. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    International Nuclear Information System (INIS)

    Balzer, F.; Sun, R.; Parisi, J.; Rubahn, H.-G.; Lützen, A.; Schiek, M.

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  1. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  2. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential

  3. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  4. Implementation of two-equation soot flamelet models for laminar diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, Colom 11, E-08222, Terrassa (Barcelona) (Spain)

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  5. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao; Jaasim, Mohammed; Vallinayagam, R.; Vedharaj, S.; Im, Hong G.; Johansson, Bengt.

    2017-01-01

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  6. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    Science.gov (United States)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  7. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Tae; Black, Robert; Yim, Taeeun; Ji, Xiulei; Nazar, Linda F. [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada)

    2012-12-15

    The concept of surface-initiated growth of oxides on functionalized carbons is introduced as a method to inhibit the dissolution of polysulfide ions in Li-S battery cathode materials. MO{sub x} (M: Si, V) thin layers are homogeneously coated on nanostructured carbon-sulfur composites. The coating significantly inhibits the dissolution of polysulfides on cycling, resulting in enhanced cycle performance and coulombic efficiency of the Li-S battery. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  9. Optimization of Growth Medium for Efficient Cultivation of Lactobacillus salivarius i 24 using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Lim, C. H.

    2007-01-01

    Full Text Available Production of Lactobacillus salivarius i 24, a probiotic strain for chicken, was studied in batch fermentation using 500 mL Erlenmeyer flask. Response surface method (RSM was used to optimize the medium for efficient cultivation of the bacterium. The factors investigated were yeast extract, glucose and initial culture pH. A polynomial regression model with cubic and quartic terms was used for the analysis of the experimental data. Estimated optimal conditions of the factors for growth of L. salivarius i 24 were; 3.32 % (w/v glucose, 4.31 % (w/v yeast extract and initial culture pH of 6.10.

  10. Soot and liquid-phase fuel distributions in a newly designed optically accessible DI diesel engine

    Science.gov (United States)

    Dec, J. E.; Espey, C.

    1993-10-01

    Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

  11. Developing a predictive model for the chemical composition of soot nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Violi, Angela [Univ. of Michigan, Ann Arbor, MI (United States); Michelsen, Hope [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hansen, Nils [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilson, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-07

    In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed a series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.

  12. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Growth of pentacene on Ag(1 1 1) surface: A NEXAFS study

    International Nuclear Information System (INIS)

    Pedio, M.; Doyle, B.; Mahne, N.; Giglia, A.; Borgatti, F.; Nannarone, S.; Henze, S.K.M.; Temirov, R.; Tautz, F.S.; Casalis, L.; Hudej, R.; Danisman, M.F.; Nickel, B.

    2007-01-01

    Thin films of pentacene (C 22 H 14 ) have become widely used in the field of organic electronics. Here films of C 22 H 14 of thickness ranging from submonolayer to multilayer were thermally deposited on Ag(1 1 1) surface. The determination of molecular geometry in pentacene films on Ag(1 1 1) studied by X-ray absorption at different stages of growth up to one monolayer is presented. XAS spectra at the C K-edge were collected as a function of the direction of the electric field at the surface. The different features of the spectra were assigned to resonances related to the various molecular unoccupied states by the comparison with the absorption coefficient of the pentacene gas phase. The transitions involving antibonding π states show a pronounced angular dependence for all the measured coverages, from submonolayer to multilayer. The spectra analysis indicates a nearly planar chemisorption of the first pentacene layer with a tilt angle of 10 o

  14. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance

    International Nuclear Information System (INIS)

    Li, Chong; Li, Yujie; Ling, Yunyang; Lai, Yangwei; Wu, Chuanliu; Zhao, Yibing

    2014-01-01

    Ultrathin silica coating (UTSC) has emerged as an effective way to improve the compatibility and stability of nanoparticles without attenuating their intrinsic optical properties. Exploration strategies to probe the growth process of ultrathin silica shells on the surface of nanoparticles would represent a valuable innovation that would benefit the development of ultrathin silica coated nanoparticles and their relevant applications. In this work, we report a unique, very effective and straightforward strategy for probing the growth of ultrathin silica shells on the surface of gold nanorods (Au NRs), which exploits the localized surface plasmon resonance (LSPR) as a reporting signal. The thickness of the ultrathin silica shells on the surface of Au NRs can be quantitatively measured and predicted in the range of 0.5–3.5 nm. It is demonstrated that the LSPR shift accurately reflects the real-time change in the thickness of the ultrathin silica shells on Au NRs during the growth process. By using the developed strategy, we further analyze the growth of UTSC on the surface of Au NRs via feeding of Na 2 SiO 3 in a stepwise manner. The responsiveness analysis of LSPR also provides important insight into the shielding effect of UTSC on the surface of Au NRs that is not accessible with conventional strategies. This LSPR-based strategy permits exploration of the surface-mediated sol–gel reactions of silica from a new point of view. (paper)

  15. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    Science.gov (United States)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  16. Investigation on the growth of DAST crystals of large surface area for THz applications

    International Nuclear Information System (INIS)

    Vijay, R. Jerald; Melikechi, N.; Thomas, Tina; Gunaseelan, R.; Arockiaraj, M. Antony; Sagayaraj, P.

    2012-01-01

    Graphical abstract: It is evident from the photographs that the crystal tend to grow as a needle (Fig. 1a) in the lower concentration region (2–3 g/200 mL); whereas, in the high concentration region (5 g/200 mL) though there is a marked enlargement in the size of the crystal, the morphology of the resulting DAST crystal is slightly irregular (Fig. 1d) in nature. Among the four concentrations employed, best result was obtained with the DAST–methanol solution of concentration 4 g/200 mL; which resulted in the DAST crystal of large surface area (270 mm 2 ) with high transparency and nearly square shape (Fig. 1c) in a growth period of 20–25 days. Highlights: ► DAST crystals of different sizes are obtained for different concentrations. ► The main focus is to grow DAST crystals with large surface area. ► Structural, optical, thermal and mechanical properties are investigated. - Abstract: The growth of high quality 4-N,N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystal with large surface area is reported by adopting the slope nucleation coupled slow evaporation method (SNM-SE). The structure and composition of the crystal are studied by single crystal X-ray diffraction and CHN analyses. The linear optical properties are investigated by UV–vis absorption. The melting point and thermal behavior of DAST are investigated using differential scanning calorimetric (DSC) and thermogravimetric analyses (TGA). The Vickers microhardness number (VHN) and work hardening coefficient of the grown crystal have been determined. The surface features of the DAST crystal are analyzed by scanning electron microscopy (SEM) and it confirmed the presence of narrow line defects (NLDs) in the sample.

  17. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  18. Subsonic aircraft soot. A tracer documenting barriers to inter-hemispheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, R F [NASA Ames Research Center, Moffett Field, CA (United States)

    1998-12-31

    Meridional observations of soot aerosols and radioactive {sup 14}C, and models of the geographic distribution of nuclear bomb-released {sup 14}C and aircraft-emitted NO{sub x}, all show strong gradients between the hemispheres. Reason for it are decade-long inter-hemispheric mixing times which are much in excess of yearlong stratospheric residence times of tracers. Vertical mixing of soot aerosol is not corroborated by {sup 14}C observations. The reason could be radiometric forces that act on strongly absorbing soot. (author) 10 refs.

  19. Subsonic aircraft soot. A tracer documenting barriers to inter-hemispheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, R.F. [NASA Ames Research Center, Moffett Field, CA (United States)

    1997-12-31

    Meridional observations of soot aerosols and radioactive {sup 14}C, and models of the geographic distribution of nuclear bomb-released {sup 14}C and aircraft-emitted NO{sub x}, all show strong gradients between the hemispheres. Reason for it are decade-long inter-hemispheric mixing times which are much in excess of yearlong stratospheric residence times of tracers. Vertical mixing of soot aerosol is not corroborated by {sup 14}C observations. The reason could be radiometric forces that act on strongly absorbing soot. (author) 10 refs.

  20. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    Science.gov (United States)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  1. Adhesion strength and spreading characteristics of EPS on membrane surfaces during lateral and central growth.

    Science.gov (United States)

    Tansel, Berrin; Tansel, Derya Z

    2013-11-01

    Deposition of extracellular polymeric substances (EPS) on membrane surfaces is a precursor step for bacterial attachment. The purpose of this study was to analyze the morphological changes on a clean polysulfone ultrafilration membrane after exposure to effluent from a membrane bioreactor. The effluent was filtered to remove bacteria before exposing the membrane. The morphological characterization was performed by atomic force microscopy (AFM). The lateral (2D) and central growth characteristics (3D) of the EPS deposits were evaluated by section and topographical analyses of the height images. The contact angle of single EPS units was 9.07 ± 0.50° which increased to 24.41 ± 1.00° for large clusters (over 10 units) and decreased to 18.68 ± 1.00° for the multilayered clusters. The surface tension of the single EPS units was 49.34 ± 1.70 mNm(-1). The surface tension of single layered small and large EPS clusters were 51.26 ± 2.05 and 53.48 ± 2.01 mNm(-1), respectively. For the multilayered clusters, the surface tension was 51.43 ± 2.05 mNm(-1). The spreading values were negative for all deposits on the polysulfone membrane indicating that the EPS clusters did not have tendency to spread but preferred to retain their shapes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.

    Science.gov (United States)

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-02-05

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    Science.gov (United States)

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  4. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases.

    Science.gov (United States)

    Anitua, Eduardo; Muruzabal, Francisco; de la Fuente, María; Merayo, Jesús; Durán, Juan; Orive, Gorka

    2016-07-01

    The purpose of this work is to describe and review the technology of plasma rich in growth factors (PRGF), a novel blood derivative product, in the treatment of ocular surface disorders. To demonstrate the importance of this technology in the treatment of ocular pathologies, a thorough review of the preclinical and clinical literature results obtained following use of the different therapeutic formulations of PRGF was carried out. A literature search for applications of PGRF plasma in the ophthalmology field was carried out using the PubMed database. PRGF involves the use of patient's own biologically active proteins, growth factors, and biomaterial scaffolds for therapeutic purposes. This procedural technology is gaining interest in regenerative medicine due to its potential to stimulate and accelerate the tissue healing processes. The versatility and biocompatibility of this technology opens the door to a personalized medicine on ocular tissue regeneration. This review discusses the state of the art of the new treatments and technologies developed to promote ocular surface tissue regeneration. The standardized protocol that has been developed to source eye drops from PRGF technology is also described. The preclinical research, together with the most relevant clinical applications are summarized and discussed. The preliminary results suggest that the use of PRGF to enhance ocular tissue regeneration is safe and efficient.

  5. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  6. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  7. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela Albara Lando

    2017-07-01

    Full Text Available Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR, scanning electron microscopy (SEM, and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  8. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    Simcock, Michael Neil

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  9. Controlling the growth of epitaxial graphene on metalized diamond (111) surface

    International Nuclear Information System (INIS)

    Cooil, S. P.; Wells, J. W.; Hu, D.; Evans, D. A.; Niu, Y. R.; Zakharov, A. A.; Bianchi, M.

    2015-01-01

    The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp 3 to sp 2 carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 °C, whilst increasing the temperature to 560 °C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level

  10. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  11. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  12. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  13. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation.

    Science.gov (United States)

    Li, Jian; Zhao, Zhihong; Li, Dianming; Tian, Haifeng; Zha, Fei; Feng, Hua; Guo, Lin

    2017-09-21

    Oil/water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil-water mixtures, oil-in-water or water-in-oil emulsions. Smart surfaces with responsive wettability have received extensive attention especially for controllable oil/water separation. However, traditional smart membranes with a switchable wettability between superhydrophobicity and superhydrophilicity are limited to certain responsive materials and continuous external stimuli, such as pH, electrical field or light irradiation. Herein, a candle soot coated mesh (CSM) with a larger pore size and a candle soot coated PVDF membrane (CSP) with a smaller pore size with underwater superoleophobicity and underoil superhydrophobicity were successfully fabricated, which can be used for on-demand immiscible oil/water mixtures and surfactants-stabilized oil/water emulsion separation, respectively. Without any continuous external stimulus, the wettability of our membranes could be reversibly switched between underwater superoleophobicity and underoil superhydrophobicity simply by drying and washing alternately, thus achieving effective and switchable oil/water separation with excellent separation efficiency. We believe that such smart materials will be promising candidates for use in the removal of oil pollutants in the future.

  14. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

    Science.gov (United States)

    Pritchett, David; Henderson, Walter; Burnham, Shawn D.; Doolittle, W. Alan

    2006-04-01

    The surface reaction byproducts during the growth of GaN films via metal organic molecular beam epitaxy (MOMBE) were investigated as a means to optimize material properties. Ethylene and ethane were identified as the dominant surface reaction hydrocarbon byproducts, averaging 27.63% and 7.15% of the total gas content present during growth. Intense ultraviolet (UV) photoexcitation during growth was found to significantly increase the abundance of ethylene and ethane while reducing the presence of H2 and N2. At 920°C, UV excitation was shown to enhance growth rate and crystalline quality while reducing carbon incorporation. Over a limited growth condition range, a 4.5×1019-3.4×1020 cm-3 variation in carbon incorporation was achieved at constant high vacuum. Coupled with growth rate gains, UV excitation yielded films with ˜58% less integrated carbon content. Structural material property variations are reported for various ammonia flows and growth temperatures. The results suggest that high carbon incorporation can be achieved and regulated during MOMBE growth and that in-situ optimization through hydrocarbon analysis may provide further enhancement in the allowable carbon concentration range.

  15. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  16. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  17. Laser-Induced Emissions Sensor for Soot Mass in Rocket Plumes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A method is proposed to measure soot mass concentration non-intrusively from a distance in a rocket engine exhaust stream during ground tests using laser-induced...

  18. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

    Science.gov (United States)

    Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume

    2012-12-17

    A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

  19. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul; Choi, Sangkyu; Chung, Suk-Ho

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques

  20. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott; Fang, Tiegang; Roberts, William L.

    2016-01-01

    for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh

  1. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.; Arias, Paul G.; Lecoustre, Vivien R.; Haworth, Daniel C.; Im, Hong G.; Trouvé , Arnaud C.

    2014-01-01

    of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright

  2. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  3. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  4. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  5. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth

    Science.gov (United States)

    Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo

    2017-12-01

    Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.

  6. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  7. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  8. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  9. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    International Nuclear Information System (INIS)

    Demarco, R.; Nmira, F.; Consalvi, J.L.

    2013-01-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C 1 –C 3 hydrocarbon–air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated

  10. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  11. Effects of soot by-product from the synthesis of engineered metallofullerene nanomaterials on terrestrial invertebrates.

    Science.gov (United States)

    Johnson, David R; Boyd, Robert E; Bednar, Anthony J; Weiss, Charles A; Hull, Matt S; Coleman, Jessica G; Kennedy, Alan J; Banks, Cynthia J; Steevens, Jeffery A

    2018-02-23

    The synthesis of carbon-based nanomaterials is often inefficient, generating large amounts of soot with metals as waste by-product. Currently, there are no specific regulations for disposal of engineered nanomaterials or the waste by-products resulting from their synthesis, so it is presumed that by-products are disposed of in the same way as the parent (bulk) materials. We studied the terrestrial toxicity of soot from gadolinium metallofullerene nanomanufacturing on earthworms (Eisenia fetida) and isopods (Porcellio scaber). The metallofullerene soot consisted of carbon particle agglomerates in the nanometer and submicrometer ranges (1-100 and 101-999 nm, respectively), with metals used during nanomanufacturing detectable on the particles. Despite high metal concentrations (>100 000 mg/kg) in the soot, only a relatively small amount of metals leached out of a spiked field soil, suggesting only moderate mobility. Seven- and 14-d exposures in field soil demonstrated that the soot was only toxic to earthworms at high concentrations (>10 000 mg/kg); however, earthworms avoided spiked soils at lower concentrations (as low as 500 mg/kg) and at lower soil pH. The presence of soot in food and soil did not cause isopod avoidance. These data demonstrate that metallofullerene soot from nanomanufacturing may only be toxic to earthworms at high concentrations representative of improper disposal or accidental spills. However, our results indicate that terrestrial invertebrates may avoid soils contaminated with soot at sublethal concentrations. Environ Toxicol Chem 2018;9999:1-12. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.

  12. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  13. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-05-01

    Full Text Available CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010[How to Cite: R. Prasad, V.R. Bella. (2011. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 15-21. doi:10.9767/bcrec.6.1.822.15-21][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822 | View in 

  14. Oil soot measurement system of diesel engine; Diesel engine no oil sutsu sokutei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Y; Moritsugu, M; Kato, N [Nippon Soken, Inc., Tokyo (Japan); Osaki, R [Denso Corp., Aichi (Japan)

    1997-10-01

    For use evaluate diesel engine in laboratory, we have developed a apparatus which can measure soot density in engine oil instantly and accurately. We have achieved accuracy of 0.03 wt% by employing the following; (1) utilize a ligh-reflecting oil soot sensor, (2) regurate the temperature and flow of the in-coming oil to be constant. 4 refs., 12 figs., 2 tabs.

  15. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  16. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  17. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Science.gov (United States)

    Adachi, K.; Buseck, P. R.

    2008-05-01

    Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples) with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC) and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  18. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  19. Asymptotic analysis soot model and experiment for a directed injection engine

    Science.gov (United States)

    Liu, Yongfeng; Pei, Pucheng; Xiong, Qinghui; Lu, Yong

    2012-09-01

    The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T0.6, only the soot precursors—polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ⩾ 1 500 K and excess air factor Φinjection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.

  20. Planar measurements of soot volume fraction and OH in a JP-8 pool fire

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Nathan, Graham J. [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); Alwahabi, Zeyad T.; Qamar, Nader [School of Chemical Engineering, University of Adelaide, SA 5005 (Australia)

    2009-07-15

    The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near the base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)

  1. Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames

    Science.gov (United States)

    Mueller, Michael

    2012-11-01

    An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.

  2. Estimation of the Diesel Particulate Filter Soot Load Based on an Equivalent Circuit Model

    Directory of Open Access Journals (Sweden)

    Yanting Du

    2018-02-01

    Full Text Available In order to estimate the diesel particulate filter (DPF soot load and improve the accuracy of regeneration timing, a novel method based on an equivalent circuit model is proposed based on the electric-fluid analogy. This proposed method can reduce the impact of the engine transient operation on the soot load, accurately calculate the flow resistance, and improve the estimation accuracy of the soot load. Firstly, the least square method is used to identify the flow resistance based on the World Harmonized Transient Cycle (WHTC test data, and the relationship between flow resistance, exhaust temperature and soot load is established. Secondly, the online estimation of the soot load is achieved by using the dual extended Kalman filter (DEKF. The results show that this method has good convergence and robustness with the maximal absolute error of 0.2 g/L at regeneration timing, which can meet engineering requirements. Additionally, this method can estimate the soot load under engine transient operating conditions and avoids a large number of experimental tests, extensive calibration and the analysis of complex chemical reactions required in traditional methods.

  3. Recent developments on the Kardar-Parisi-Zhang surface-growth equation.

    Science.gov (United States)

    Wio, Horacio S; Escudero, Carlos; Revelli, Jorge A; Deza, Roberto R; de la Lama, Marta S

    2011-01-28

    The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here--among other topics--we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation.

  4. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    International Nuclear Information System (INIS)

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-01-01

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation

  5. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  6. The competition between mineral dust and soot ice nuclei in mixed-phase clouds (Invited)

    Science.gov (United States)

    Murray, B. J.; Atkinson, J.; Umo, N.; Browse, J.; Woodhouse, M. T.; Whale, T.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O'Sullivan, D.; Malkin, T. L.

    2013-12-01

    The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. In this talk our recent laboratory and global aerosol modelling work on mineral dust and soot ice nuclei will be presented. We have performed immersion mode experiments to quantify ice nucleation by the individual minerals which make up desert mineral dusts and have shown that the feldspar component, rather than the clay component, is most important for ice nucleation (Atkinson et al. 2013). Experiments with well-characterised soot generated with eugenol, an intermediate in biomass burning, and n-decane show soot has a significant ice nucleation activity in mixed-phase cloud conditions. Our results for soot are in good agreement with previous results for acetylene soot (DeMott, 1990), but extend the efficiency to much higher temperatures. We then use a global aerosol model (GLOMAP) to map the distribution of soot and feldspar particles on a global basis. We show that below about -15oC that dust and soot together can explain most observed ice nuclei in the Earth's atmosphere, while at warmer temperatures other ice nuclei types are needed. We show that in some regions soot is the most important ice nuclei (below -15oC), while in others feldspar dust dominates. Our results suggest that there is a strong anthropogenic contribution to the ice nuclei population, since a large proportion of soot aerosol in the atmosphere results from human activities. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013). Demott, P. J. 1990. An Exploratory-Study of Ice Nucleation by Soot

  7. Monitoring massive fracture growth at 2-km depths using surface tiltmeter arrays

    Science.gov (United States)

    Wood, M.D.

    1979-01-01

    Tilt due to massive hydraulic fractures induced in sedimentary rocks at depths of up to 2.2 km have been recorded by surface tiltmeters. Injection of fluid volumes up to 4 ?? 105 liters and masses of propping agent up to 5 ?? 105 kg is designed to produce fractures approximately 1 km long, 50-100 m high and about 1 cm wide. The surface tilt data adequately fit a dislocation model of a tensional fault in a half-space. Theoretical and observational results indicate that maximum tilt occurs at a distance off the strike of the fracture equivalent to 0.4 of the depth to the fracture. Azimuth and extent of the fracture deduced from the geometry of the tilt field agree with other kinds of geophysical measurements. Detailed correlation of the tilt signatures with pumping parameters (pressure, rate, volume, mass) have provided details on asymmetry in geometry and growth rate. Whereas amplitude variations in tilt vary inversely with the square of the depth, changes in flow rate or pressure gradient can produce a cubic change in width. These studies offer a large-scale experimental approach to the study of problems involving fracturing, mass transport, and dilatancy processes. ?? 1979.

  8. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Zhang, Weiqing; Liu, Jie; Niu, Wenxin; Yan, Heng; Lu, Xianmao; Liu, Bin

    2018-04-19

    Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO 3 used. Upon 785 nm excitation, single Au-Ag NC 350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.

  9. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  10. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2015-01-01

    with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases......, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced....

  11. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  12. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    2011-02-01

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  13. SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-Hua

    2009-01-01

    Full Text Available Abstract SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.

  14. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  15. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matti Maricq, M. [Research and Advanced Engineering, Ford Motor Company, Dearborn, MI (United States)

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  16. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  17. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    International Nuclear Information System (INIS)

    Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-01-01

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth

  18. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Energy Technology Data Exchange (ETDEWEB)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  19. Investigating the formation mechanism of soot-like materials present in blast furnace coke samples

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; P. A' lvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2008-09-15

    An attempt to gain an understanding of the formation mechanism of these 'soot-like' materials has been made by means of tracing the changes in the molecular-mass distribution and molecular structure of the NMP-extractable materials from an injectant coal as well as its partially gasified chars and its pyrolytic tars. Variations in the SEC chromatograms provide clues about changes in the apparent molecular-mass distributions of these NMP extracts. Results suggest that the build-up of 'soot-like' materials follows from the secondary reactions of tars evolved from the injectant coal. The likely secondary-reaction pathways have been probed by collating structural information on these NMP extracts. The time-resolved 13-16 and 22-25 min elution fractions from the SEC column have been characterized using UV fluorescence (UV F) spectroscopy. Greater concentrations of larger aromatic ring systems are found present in samples formed under conditions appearing more prone for soot formation. The 11-16 min (large apparent molecular mass) effluent from SEC has been examined by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). Results from FTIR spectroscopy are consistent with the UV F data, showing more significant extents of dehydrogenation under conditions more prone to form soot. Similarly, TEM results show that larger amount of graphene layers exist in samples exposed to more soot-prone conditions. The emerging picture for the formation of 'soot-like' materials involves a well-defined sequence. Tars evolved from the injectant coal undergo secondary dehydrogenation, condensation, and repolymerization reactions, which eventually lead to the formation of the NMP-extractable 'soot-like' materials of large apparent molecular mass. 44 refs., 7 figs., 3 tabs.

  20. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    Science.gov (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  1. Surfactant-induced layered growth in homoepitaxy of Fe on Fe(100)-c(2 x 2)O reconstruction surface

    International Nuclear Information System (INIS)

    Kamiko, Masao; Mizuno, Hiroyuki; Chihaya, Hiroaki; Xu, Junhua; Kojima, Isao; Yamamoto, Ryoichi

    2007-01-01

    In this study, the effects of several surfactants (Pb, Bi, and Ag) on the homoepitaxial growth of Fe(100) were studied and compared. The reflection high-energy electron diffraction measurements clearly reveal that these surfactants enhance the layer-by-layer growth of Fe on an Fe(100)-c(2 x 2)O reconstruction surface. The dependence of growth on the surfactant layer thickness suggests that there exists a suitable amount of surfactant layer that induces a smoother layer-by-layer growth. Comparisons between the atomic force microscopy images reveal that the root-mean-square surface roughness of Fe films mediated by Pb and Bi surfactants are considerably smaller than those of the films mediated by Ag surfactant. The Auger electron spectra show that Pb and Bi segregate at the top of the surface. It has been concluded that Pb and Bi are effective surfactants for enhancing layer-by-layer growth in Fe homoepitaxy. Ag has the same effect, but it is less efficient due to the weak surface segregation of Ag

  2. Simulation of YBa{sub 2}Cu{sub 3}O{sub 7}/MgO surface growth

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadizadeh, M.R. [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran (Iran); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran); Safari, N.; Kia, M.; Savaloni, H. [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran (Iran)

    2006-09-15

    For surface growth simulation of YBa{sub 2}Cu{sub 3}O{sub 7} on MgO substrate, binding energies between each two different Y, Ba, Cu, O, and Mg atoms were calculated by ab initio pseudopotential density functional theory approach. Then, simulation of YBa{sub 2}Cu{sub 3}O{sub 7} growth was performed by a simple two dimensional model based on the ballistic aggregation of hard discs. By increasing the substrate temperature, the atomic layers distribution is more condensed and the nanometric surface roughness decreases. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Nucleation and growth of C60 overlayers on the Ag/Pt(111) dislocation network surface

    International Nuclear Information System (INIS)

    Ait-Mansour, K; Ruffieux, P; Xiao, W; Fasel, R; Groening, P; Groening, O

    2007-01-01

    We have investigated the room temperature growth of C 60 overlayers on the strainrelief dislocation network formed by two monolayers of Ag on Pt(111) by means of scanning tunneling microscopy. Extended domains of highly ordered dislocation networks with a typical superlattice parameter of 6.8 nm have been prepared, serving as templates for subsequent C 60 depositions. For low C 60 coverages, the molecules decorate the step-edges, where also the first islands nucleate. This indicates that at room temperature the C 60 molecules are sufficiently mobile to cross the dislocation lines and to diffuse to the step-edges. For C 60 coverages of 0.4 monolayer, besides the islands nucleated at the step-edges, C 60 islands also grow in the middle of terraces. The C 60 islands typically extend over several unit cells of the dislocation network and show an unusual orientation of the hexagonally close-packed C 60 lattice as compared to that found on the bare Ag(111) surface. Whereas C 60 grows preferentially in a (2 √3 x 2 √3) R30 0 structure on Ag(111), on the Ag/Pt(111) dislocation network the C 60 lattice adopts an orientation rotated by 30 0 , with the close-packed C 60 rows aligned along the dislocations which themselves are aligned along the Ag(1-10) directions. For higher coverages in the range of 1-2 monolayers, the growth of C 60 continues in a layer-by-layer fashion

  4. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels☆

    Scienc