WorldWideScience

Sample records for sonochemical degradation kinetics

  1. Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wei Lin Guo

    2003-01-01

    Full Text Available The sonochemical degradation in aqueous solution of methyl violet, chosen as a model of a basic dye, was studied. The ultrasonic degradation kinetics in water were found to be first-order and the degradation rate coefficient is 1.35×10-2 min-1 (R= 0.9934, n=8 at 20±1°C. The influence of the initial concentrations, reaction temperature and the pH of medium on the ultrasonic decomposition of methyl violet were also investigated.

  2. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    Science.gov (United States)

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  3. Sonochemical degradation of ofloxacin in aqueous solutions.

    Science.gov (United States)

    Hapeshi, E; Achilleos, A; Papaioannou, A; Valanidou, L; Xekoukoulotakis, N P; Mantzavinos, D; Fatta-Kassinos, D

    2010-01-01

    The use of low frequency (20 kHz), high energy ultrasound for the degradation of the antibiotic ofloxacin in water was investigated. Experiments were performed with a horn-type ultrasound generator at varying applied power densities (130-640 W/L), drug concentrations (5-20 mg/L), hydrogen peroxide concentrations (0-100 mM) and sparging gases (air, oxygen, nitrogen and argon). In general, conversion (which was assessed following sample absorbance at 288 nm) increased with increasing ultrasound energy and peroxide concentration and decreasing initial drug concentration. Moreover, reactions under an argon atmosphere were faster than with diatomic gases, possibly due to argon's physical properties (e.g. solubility, thermal conductivity and specific heat ratio) favoring sonochemical activity. Overall, low to moderate levels of ofloxacin degradation were achieved (i.e. it never exceeded 50%), thus indicating that radical reactions in the liquid bulk rather than thermal reactions in the vicinity of the cavitation bubble are responsible for ofloxacin degradation.

  4. Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams.

    Science.gov (United States)

    Vecitis, Chad D; Wang, Yajuan; Cheng, Jie; Park, Hyunwoong; Mader, Brian T; Hoffmann, Michael R

    2010-01-01

    Aqueous film-forming foams (AFFFs) are fire extinguishing agents developed by the Navy to quickly and effectively combat fires occurring close to explosive materials and are utilized today at car races, airports, oil refineries, and military locations. Fluorochemical (FC) surfactants represent 1-5% of the AFFF composition, which impart properties such as high spreadability, negligible fuel diffusion, and thermal stability to the foam. FC's are oxidatively recalcitrant, persistent in the environment, and have been detected in groundwater at AFFF training sites. Ultrasonic irradiation of aqueous FCs has been reported to degrade and subsequently mineralize the FC surfactants perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS). Here we present results of the sonochemical degradation of aqueous dilutions of FC-600, a mixture of hydrocarbon (HC) and fluorochemical components including cosolvents, anionic hydrocarbon surfactants, fluorinated amphiphilic surfactants, anionic fluorinated surfactants, and thickeners such as starch. The primary FC surfactant in FC-600, PFOS, was sonolytically degraded over a range of FC-600 aqueous dilutions, 65 ppb or = 1, indicating that bubble-water interfacial pyrolytic cleavage of the C-S bond in PFOS is the initial degradation step, in agreement with previous studies done in Milli-Q water. Sonochemical fluoride production is significantly below quantitative expectations, delta[F-]/delta[PFOS] 4 vs 17, suggesting that in the AFFF matrix, PFOS' fluorochemical tail is not completely degraded, whereas Milli-Q studies yielded quantitative F- production. Measurements of time-dependent methylene blue active substances and total organic carbon indicate that the other FC-600 components were also sonolytically decomposed.

  5. Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix.

    Science.gov (United States)

    Villaroel, Erica; Silva-Agredo, Javier; Petrier, Christian; Taborda, Gonzalo; Torres-Palma, Ricardo A

    2014-09-01

    This paper deals about the sonochemical water treatment of acetaminophen (ACP, N-acetyl-p-aminophenol or paracetamol), one of the most popular pharmaceutical compounds found in natural and drinking waters. Effect of ultrasonic power (20-60 W), initial ACP concentration (33-1323 μmol L(-1)) and pH (3-12) were evaluated. High ultrasonic powers and, low and natural acidic pH values favored the efficiency of the treatment. Effect of initial substrate concentration showed that the Langmuir-type kinetic model fit well the ACP sonochemical degradation. The influence of organic compounds in the water matrix, at concentrations 10-fold higher than ACP, was also evaluated. The results indicated that only organic compounds having a higher value of the Henry's law constant than the substrate decrease the efficiency of the treatment. On the other hand, ACP degradation in mineral natural water showed to be strongly dependent of the initial substrate concentration. A positive matrix effect was observed at low ACP concentrations (1.65 μmol L(-1)), which was attributed to the presence of bicarbonate ion in solution. However, at relative high ACP concentrations a detrimental effect of matrix components was noticed. Finally, the results indicated that ultrasonic action is able to transform ACP in aliphatic organic compounds that could be subsequently eliminated in a biological system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    Energy Technology Data Exchange (ETDEWEB)

    Serna-Galvis, Efraím A.; Silva-Agredo, Javier [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Giraldo-Aguirre, Ana L. [Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: ricardo.torres@udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-08-15

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L{sup −1}). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe{sup 2+}) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe{sup 2+}, sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX.

  7. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    International Nuclear Information System (INIS)

    Serna-Galvis, Efraím A.; Silva-Agredo, Javier; Giraldo-Aguirre, Ana L.; Torres-Palma, Ricardo A.

    2015-01-01

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L −1 ). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe 2+ ) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe 2+ , sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX

  8. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sonochemical degradation of organophosphorus pesticide in dilute aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    Robina Farooq; FENG Kai-lin; S. F. Shaukat; HUANG Jian-jun

    2003-01-01

    Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2-12. Process parameters studied include pH, steady-state temperature, concentration, and the type of gases. Greater than 96% hydrolysis was observed in 30 minutes through this process and the rate of destruction increased with the help of more soluble and low thermal inert gas. So with Krypton, omethoate was found to undergo rapid destruction as compared with Argon. In the presence of ultrasound, the observed first-order rate of hydrolysis of omethoate is found to be independent of pH. The formation of transient supercritical water(SCW) appears to be an important factor in the acceleration of chemical reactions in the presence of ultrasound. A detailed chemical reaction mechanism for omethoate destruction in water was formulated. Experimental results and theoretical kinetic mechanism demonstrated that the most of the omethoate undergo destruction inside the cavitating holes. A very less effect of temperature on the degradation of omethoate within a temperature range of 20-70℃ proves that a small quantity of omethoate undergoes secondary destruction in the bulk liquid.

  10. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  11. Facile sonochemical synthesis of Zn2SnO4-V2O5 nanocomposite as an effective photocatalyst for degradation of Eosin Yellow.

    Science.gov (United States)

    Ramasamy Raja, V; Rosaline, D Rani; Suganthi, A; Rajarajan, M

    2018-06-01

    This study presents a novel method for the preparation of Zn 2 SnO 4 /V 2 O 5 nanocomposites via a sonochemical aqueous route. This method is mild, convenient, cheap and efficient. The as prepared samples were characterized by XRD, SEM, EDAX, TEM, BET, FT-IR and UV-DRS spectra. DRS spectrum shows the adsorption edge of Zn 2 SnO 4 -V 2 O 5 in visible region of spectrum. The structural and morphological features of the as synthesized Zn 2 SnO 4 -V 2 O 5 nanocomposites have been observed using both scanning and transmission electron microscopy. BET surface area analysis inferred that the prepared hetero-junctions are meso-porous in nature. The photocatalytic activity of Zn 2 SnO 4 -V 2 O 5 nanocomposites for the degradation of Eosin Yellow (EY) dye under visible light was investigated in detail. 3% Zn 2 SnO 4 -V 2 O 5 nanocomposite exhibited the highest photocatalytic performance (92% of EY degradation) when compared with 2% Zn 2 SnO 4 -V 2 O 5 and 5% Zn 2 SnO 4 -V 2 O 5 . The adsorption of Eosin Yellow followed the pseudo-first order kinetic model. Simultaneously, high stability of the sample was also investigated by four successive photodegradation of EY under visible light. The relationship between photocatalytic activity and the structure of 3% Zn 2 SnO 4 -V 2 O 5 nanocomposite is discussed, and possible reaction mechanisms are also proposed. Therefore, the facile sonochemical preparation process provides some insight into the application of Zn 2 SnO 4 -V 2 O 5 nanocomposites in photocatalytic degradation of organic pollutants. Copyright © 2018. Published by Elsevier B.V.

  12. Sonocatalytic degradation of methylene blue dye using a nanosized zinc oxide powder prepared via sonochemical method

    OpenAIRE

    Stanković, Ana; Veselinović, Ljiljana; Marković, Smilja; Uskoković, Dragan

    2013-01-01

    Nanostructured semiconductor materials are of great importance for various tecnological application due to their phisical and chemical properties wich are determined by the morphology and the size of the particles. Among semiconducor oxides, ZnO is one of the most important multifunctional material with its wide direct band gap energy of 3.37 eV and its excitation binding energy around 60 meV. Nowadays, many studies focus on the application of sonochemical reactions for treatment of industria...

  13. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  14. Modeling the degradation kinetics of ascorbic acid.

    Science.gov (United States)

    Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R

    2018-06-13

    Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.

  15. Sono-chemical Synthesis Fe3O4-Mg(OH2 Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation

    Directory of Open Access Journals (Sweden)

    G. Nabiyouni

    2014-10-01

    Full Text Available In this work firstly Fe3O4 nanoparticles were synthesized via a sono-chemical method. At the second step magnesium hydroxide shell was synthesized on the magnetite-core under ultrasonic waves. For preparation Fe3O4-MgO the product was calcinated at 400 ºC for 2h. Properties of the product were examined by X-ray diffraction pattern (XRD, scanning electron microscope (SEM and Fourier transform infrared (FT-IR spectroscopy. Vibrating sample magnetometer (VSM shows nanoparticles exhibit super-paramagnetic behavior. The photo-catalytic behavior of Fe3O4-Mg(OH2  nanocomposite was evaluated using the degradation of a methyl orange (MeO aqueous solution under ultraviolet (UV light irradiation. The results show that Fe3O4-Mg(OH2 nanocomposites have applicable magnetic and photo-catalytic performance.

  16. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2

    International Nuclear Information System (INIS)

    Abbasi, Mahmood; Asl, Nima Razzaghi

    2008-01-01

    The sonolysis of Basic Blue 41 dye in aqueous solution was performed at 35 kHz using ultrasonic power of 160 W and aqueous temperature of 25 + 1 o C within 180 min. The TiO 2 nanoparticles were used as a catalyst to assist the sonication process. The effect of experimental parameters such as pH, H 2 O 2 concentration and initial dye concentration on the reaction were investigated. It was recognized that in lower pH values the dye removal rate decreased. However, dye removal increased via increase in H 2 O 2 concentration and lowering the initial dye concentration. All intermediate compounds were detected by integrated gas chromatography-mass spectrometry (GC/MS) and also ion chromatograph (IC). During the decolorization, all nitrogen atoms and aromatic groups of Basic Blue 41 were converted to urea, nitrate, formic acid, acetic acid and oxalic acid, etc. Kinetic studies revealed that the degradation process followed pseudo-first order mechanism with the correlation coefficient (R 2 ) of 0.9918 under experimental conditions. The results showed that power ultrasound can be regarded as an appropriate tool for degradation of azo dyes to non-toxic end products

  17. Synthesis, characterisation and non-isothermal degradation kinetics ...

    Indian Academy of Sciences (India)

    Thus, obtained co-polymer was charac- terized by Fourier transform ... used, the Kissinger method yielded the lowest degradation kinetics. The degradation ... addition of amines with alkenes in methanol water medium, report is available in the ...

  18. Degradation kinetics of metronidazole and its mutual prodrug with ...

    African Journals Online (AJOL)

    Dr Renu Chadha

    degradation of the drug and prodrug as a function of concentration, pH and temperature. In terms of enthalpy of ... Keywords: Calorimetry, stability studies, degradation kinetics, ciprofloxacin, metronidazole. ... action of ciprofloxacin to form a broad spectrum ...... Stability testing of pharmaceutical by isothermal heat conduction.

  19. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH

    2001-01-01

    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  20. Estimating the Biodegradation Kinetics by Mixed Culture Degrading Pyrene (Pyr

    Directory of Open Access Journals (Sweden)

    B. S. U. Ibn Abubakar

    2017-02-01

    Full Text Available Biodegradation and kinetics of Pyrene (Pyr degradation by a mixed culture previously isolated from hydrocarbon-polluted soil were conducted. Preliminary investigation on environmental factors affecting the degradation of Pyr such as temperature, pH and concentrations of Pyr was performed. These factors were optimised and established in aqueous experiments. In order to develop kinetics of Pyr degradation, an optimum temperature of 30oC and pH of 7.0 was used. Biodegradation kinetics was carried out, at first, using higher concentration between (100-700 ppm as sole source of carbon in mineral salt medium (MSM supplemented with 0.1% yeast extract. The result indicated that a range of concentration between (100-700 ppm inhibits the performance of the mixed culture. A concentration range between (10-100 ppm did not inhibit the growth of the mixed culture. A First-order rate constant, k was higher (0.0487 mg/lh with a substrate concentration of 20 ppm than other concentrations. The average degradation rate constant is 0.0029 mg/Lh for all the concentrations tested. This indicated that the mixed culture could degrade over 0.0696 ppm of Pyr per day. It also confirmed that kinetics of microbial degradation was partially fitted into Monod model. The data can be used to estimate biodegradation of Pyr by a mixed culture and preliminarily estimation of degradation rates.

  1. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...... was similar in all horizons, with the rate constant k1F ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k1S ranging between 0.00067 and 0.029/h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils....... Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA...

  2. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  3. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    Science.gov (United States)

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ametryn degradation by aqueous chlorine: Kinetics and reaction influences

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Cheng Hefa; Hu Chenyan; Xia Shengji; Sun Xiaofeng; Wang Xuejiao; Yang Shaogui

    2009-01-01

    The chemical oxidation of the herbicide ametryn was investigated by aqueous chlorination between pH 4 and 10 at a temperature of 25 deg. C. Ametryn was found to react very rapidly with aqueous chlorine. The reaction kinetics can be well described by a second-order kinetic model. The apparent second-order rate constants are greater than 5 x 10 2 M -1 s -1 under acidic and neutral conditions. The reaction proceeds much more slowly under alkaline conditions. The predominant reactions were found to be the reactions of HOCl with neutral ametryn and the charged ametryn, with rate constants equal to 7.22 x 10 2 and 1.58 x 10 3 M -1 s -1 , respectively. The ametryn degradation rate increases with addition of bromide and decreases with addition of ammonia during the chlorination process. Based on elementary chemical reactions, a kinetic model of ametryn degradation by chlorination in the presence of bromide or ammonia ion was also developed. By employing this model, we estimate that the rate constants for the reactions of HOBr with neutral ametryn and charged ametryn were 9.07 x 10 3 and 3.54 x 10 6 M -1 s -1 , respectively. These values are 10- to 10 3 -fold higher than those of HOCl, suggesting that the presence of bromine species during chlorination could significantly accelerate ametryn degradation.

  5. Degradation kinetics of ptaquiloside in soil and soil solution.

    Science.gov (United States)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-02-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.

  6. Phototransformation of amlodipine: degradation kinetics and identification of its photoproducts.

    Directory of Open Access Journals (Sweden)

    Anna Jakimska

    Full Text Available Nowadays, monitoring focuses on the primary compounds and does not include degradation products formed during various biological and chemical processes. Transformation products may have the same effects to human health and the environment or sometimes they can be more toxic than the parent compound. Unfortunately, knowledge about the formation of degradation products is still limited, however, can be very important for the environmental risk assessment. Firstly, the photodegradation kinetic of amlodipine was investigated in two experimental conditions: during the exposure to solar radiation and during the exposure to the light emitted by the xenon lamp. In all cases degradation of amlodipine followed a pseudo-first-order kinetics. In the next step, identification of transformation products of amlodipine formed during the exposure to xenon lamp irradiation was performed using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS. As a result sixteen photoproducts were identified, their structures were elucidated and ultimately the transformation pathway was proposed. Fifteen compounds (out of 16 photoproducts were newly identified and reported here for the first time; some of those compounds were formed from the first photoproduct, amlodipine pyridine derivative. Several analytes were formed only in acidic or basic conditions. Furthermore, the occurrence of amlodipine and its identified degradation products was investigated in environmental waters. Only one out of 16 compounds was found in wastewater effluent. The possibility of the sorption of examined analytes to sewage sludge particles was discussed based on QSAR.

  7. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.

    Science.gov (United States)

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che

    2008-08-01

    Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.

  8. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    Science.gov (United States)

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-07-01

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.

  9. COMPARATIVE STUDY OF DEGRADATION OF ISOPROTURON (3-(4-isopropylphenyl-1,1dimethylurea PHOTOINDUCED BY FE(III AND FE(III-PHOTOINDUCED SONOCHEMICAL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    S Azizi

    2014-05-01

    Full Text Available The degradation of isoproturon 3-(4-isopropylphenyl-1,1dimethylurea photoinduced by Fe(III in aqueous solution has been investigated. The rate of degradation depends on the concentration of Fe(OH2+, the most photoreactive species in terms of .OH radical formation. These .OH radicals are able to degrade isoproturon until total mineralisation. The formation  of  Fe(II in the irradiated solution was monitored. The sonophotochemical degradation of isoproturon has been found to be dependent on the intensity of sonication. The combination of ultrasound and photochemistry has been used to degrade an aqueous solution of Isoproturon (IP. The degradation of IP in aqueous solution was investigated under sonolysis at         500 kHz and in the presence of Fe(III, as well as under simultaneous sonolysis and photoinduced Fe(III. Coupling photolysis with ultrasound for degradation of IP has been developed. The photosonochemical decomposition rate constant is greater than the additive rate constants of the two processes. Degradation products were analysed by CG/MS performed in the electron-impact (EI mode, at 70 eV potential using full scan mode. Degradation photoproducts were identified and a mechanism of degradation is proposed for two processes.

  10. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Directory of Open Access Journals (Sweden)

    Nag Ambarish

    2011-06-01

    Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to

  11. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Science.gov (United States)

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Kinetics of degradation of ascorbic acid by cyclic voltammetry method

    Directory of Open Access Journals (Sweden)

    Grudić Veselinka V.

    2015-01-01

    Full Text Available Cyclic voltammetry was used to examine the kinetics of degradation of ascorbic acid (AA at different temperatures. It has been shown that the reduction of the concentration of AA in all temperatures follow the kinetics of the first order reaction. The rate constant of the oxidation reaction increases with temperature as follows: 5x10-5; 2x10-4; 1x10-3 and 3x10-3 min-1 at temperatures of 25°C, 35°C, 65°C and 90°C, respectively. The temperature dependence of the rate constant follows Arrhenius equation, and the value of activation energy of the reaction degradation is 48.2 kJ mol-1 . The effect of storage time at a temperature of 90 °C on AA content in fresh juice of green peppers was investigated. It was shown that AA oxidation reaction in the juice is also the first order reaction, while the lower rate constant in relation to the pure AA (5x10-3 min-1 indicates the influence of other substances present in peppers.

  13. Chemical degradation kinetics of fibrates: bezafibrate, ciprofibrate and fenofibrate

    Directory of Open Access Journals (Sweden)

    Marcelo Antonio de Oliveira

    Full Text Available ABSTRACT Fibrates are drugs used for the treatment of hypertriglyceridemia and for the prevention of atherosclerosis. Three drugs in the fibrate class, ciprofibrate, fenofibrate and bezafibrate, were chosen for this study because their raw materials are readily available and because scientific publications on these compounds is limited. To evaluate their intrinsic stability, the drugs were exposed to a test condition (temperature, oxidation, UV light exposure, hydrolysis at different pH values and metal ions in solution and then were subjected to analysis by HPLC. The samples were run on a C18 column, with a flow rate of 1.0 mL min-1 in a mobile phase consisting of methanol: 0.01 % phosphoric acid v/v (80:20, with variable detection wavelengths in the UV spectra. The analysis methodology showed satisfactory performance parameters. The three drugs were very unstable, degrading in each of the conditions evaluated. The test conditions of acid and basic hydrolysis showed the most significant degradation. The results demonstrated that the drugs in this class are unstable. Based on these experimentally determined degradation kinetics, it is easy to understand and emphasize the importance of the lack of liquid dosage forms on the market for fibrates because of their instability.

  14. Non-isothermal kinetics of thermal degradation of chitosan

    Directory of Open Access Journals (Sweden)

    Georgieva Velyana

    2012-08-01

    Full Text Available Abstract Background Chitosan is the second most abundant nitrogen containing biopolymer in nature, obtained from the shells of crustaceans, particularly crabs, shrimp and lobsters, which are waste products of seafood processing industries. It has great potential application in the areas of biotechnology, biomedicine, food industries, and cosmetics. Chitosan is also capable of adsorbing a number of metal ions as its amino groups can serve as chelation sites. Grafted functional groups such as hydroxyl, carboxyl, sulfate, phosphate, and amino groups on the chitosan have been reported to be responsible for metal binding and sorption of dyes and pigments. The knowledge of their thermal stability and pyrolysis may help to better understand and plan their industrial processing. Results Thermogravimetric studies of chitosan in air atmosphere were carried out at six rates of linear increasing of the temperature. The kinetics and mechanism of the thermal decomposition reaction were evaluated from the TG data using recommended from ICTAC kinetics committee iso-conversional calculation procedure of Kissinger-Akahira-Sunose, as well as 27 mechanism functions. The comparison of the obtained results showed that they strongly depend on the selection of proper mechanism function for the process. Therefore, it is very important to determine the most probable mechanism function. In this respect the iso-conversional calculation procedure turned out to be the most appropriate. Conclusion Chitosan have excellent properties such as hydrophilicity, biocompatibility, biodegradability, antibacterial, non-toxicity, adsorption application. The thermal degradation of chitosan occurs in two stages. The most probable mechanism function for both stages is determined and it was best described by kinetic equations of n-th order (Fn mechanism. For the first stage, it was established that n is equal to 3.0 and for the second stage – to 1.0 respectively. The values of the

  15. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.

    Science.gov (United States)

    Zhang, Ya; Li, Jianhua; Zhou, Lei; Wang, Guoqing; Feng, Yanhong; Wang, Zunyao; Yang, Xi

    2016-04-01

    The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain.

  16. Influencing factors and kinetic studies of imidacloprid degradation by ozonation.

    Science.gov (United States)

    Chen, Shi; Deng, Jing; Deng, Yang; Gao, Naiyun

    2018-03-02

    Batch kinetic tests in ozonation of imidacloprid from water were performed in this study. The pseudo-first-order rate constant of imidacloprid degradation was increased from 0.079 to 0.326 min -1 with the increasing pH from 6.02 to 8.64 at an average ozone dose of 1.149 mg L -1 . When the alkalinity was increased from 0 to 250 mg L -1 NaHCO 3 , the pseudo-first-order rate constants decreased from 0.121 to 0.034 min -1 . These results suggested that the predominant oxidant gradually switched from ozone to hydroxyl radicals ([Formula: see text]) with the increase in solution pH. The secondary rate constant [Formula: see text] (10.92 ± 0.12 M -1 s -1 ) for the reaction of imidacloprid and molecular ozone was determined at pH 2.0 and in the presence of 50 mM ter-butyl alcohol (p-chlorobenzoic acid, pCBA), respectively. An indirect competition method was used to determine the secondary rate constant for [Formula: see text] oxidation of imidacloprid in the presence of pCBA as the reference compound. The rate constants [Formula: see text] were estimated to range 2.65-3.79 M -1 s -1 at pH 6.02-8.64. Results obtained from this study demonstrate that ozonation appears to be an effective method to remove imidacloprid from water.

  17. Investigating the potential of using sonochemical reactors for decomposition of LAS from wastewater

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Jahed, G. R.; Changani, F.; Azam, K.; Najafpoor, A. A.

    2009-01-01

    The effectiveness of using sonochemical reactor for degradation of linear alkylbenzen sulfonates (LAS) from aqueous solution has been investigated. LAS are anionic surfactants, which found in relatively high amounts in domestic and industrial wastewaters. In this study, experiments of LAS solution were performed using methylene blue active substances (MBAS) method. (Author)

  18. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar; Rahaman, Ariful; Lubineau, Gilles

    2013-01-01

    conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured

  19. Degradation kinetics of seven organophosphorus pesticides in milk during yoghurt processing

    Directory of Open Access Journals (Sweden)

    LI-YING BO

    2011-03-01

    Full Text Available Bovine milk spiked with seven organophosphorus pesticides, i.e., dimethoate, fenthion, malathion, methyl parathion, monocrotophos, phorate and trichlorphon, was fermented at 42 °C with commercial directed vat set (DVS starters to investigate the degradation kinetics of the pesticides during yoghurt processing. The spiked pesticides were extracted from the prepared samples with an organic solvent and analyzed by gas chromatography after purification. Based on published results that the degradation kinetics of pesticides is first order, the rate constant of degradation and the half live period of the pesticides were calculated. The results indicated that degradation of the pesticides in milk during yoghurt processing were enhanced by one or both starters, except for malathion, and the two commercial DVS starters had different influences on the degradation kinetics of the pesticides.

  20. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.

    Science.gov (United States)

    Wu, H; Fan, M M; Li, C F; Peng, M; Sheng, L J; Pan, Q; Song, G W

    2010-01-01

    The degradation of dye crystal violet (CV) by Fenton oxidation process was investigated. The UV-Vis spectrogram has shown that CV can be degraded effectively by Fenton oxidation process. Different system variables namely initial H(2)O(2) concentration, initial Fe(2 + ) concentration and reaction temperature, which have effect on the degradation of CV by Fenton oxidation process, have been studied systematically. The degradation kinetics of CV was also elucidated based on the experimental data. The degradation of CV obeys the first-order reaction kinetics. The kinetic model can be described as k=1.5 exp(-(7.5)/(RT))[H(2)O(2)](0)(0.8718)[Fe(2+)](0)(0.5062). According to the IR spectrogram, it is concluded that the benzene ring of crystal violet has been destroyed by Fenton oxidation. The result will be useful in treating dyeing wastewater containing CV by Fenton oxidation process.

  1. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    Science.gov (United States)

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Degradation kinetics of metronidazole and its mutual prodrug with ...

    African Journals Online (AJOL)

    Dr Renu Chadha

    present paper utilizes this technique to monitor the hydrolytic degradation of metronidazole ... the antiprotozoal and anaerobic antibacterial effects of metronidazole with ... The catalytic rate constant for hydrogen ion (kH) and hydroxyl ion (kOH) ...

  3. Comparison of Fenton and sono-Fenton bisphenol A degradation

    International Nuclear Information System (INIS)

    Ioan, Iordache; Wilson, Steven; Lundanes, Elsa; Neculai, Aelenei

    2007-01-01

    Degradation of bisphenol A (BPA) was carried out with the Fenton reagent with and without additional sonochemical treatment. The Fenton and the sono-Fenton decomposition of BPA showed that ultrasound irradiation of wastewater improved the wet oxidation process of 25 mg l -1 BPA solutions. The sonochemical degradation of BPA was monitored using UV absorption and large volume injection packed capillary LC measurements

  4. Biocide Runoff from Building Facades: Degradation Kinetics in Soil.

    Science.gov (United States)

    Bollmann, Ulla E; Fernández-Calviño, David; Brandt, Kristian K; Storgaard, Morten S; Sanderson, Hans; Bester, Kai

    2017-04-04

    Biocides are common additives in building materials. In-can and film preservatives in polymer-resin render and paint, as well as wood preservatives are used to protect facade materials from microbial spoilage. Biocides leach from the facade material with driving rain, leading to highly polluted runoff water (up to several mg L -1 biocides) being infiltrated into the soil surrounding houses. In the present study the degradation rates in soil of 11 biocides used for the protection of building materials were determined in laboratory microcosms. The results show that some biocides are degraded rapidly in soil (e.g., isothiazolinones: T 1/2 soils; thus, rainfall events control how often new input to the soil occurs. Time intervals between rainfall events in Northern Europe are shorter than degradation half-lives even for many rapidly degraded biocides. Consequently, residues of some biocides are likely to be continuously present due to repeated input and most biocides can be considered as "pseudo-persistent"-contaminants in this context. This was verified by (sub)urban soil screening, where concentrations of up to 0.1 μg g -1 were detected for parent compounds as well as terbutryn degradation products in soils below biocide treated facades.

  5. Substrate inhibition kinetics of phenol degradation by binary mixed ...

    African Journals Online (AJOL)

    Steady states of a continuous culture with an inhibitory substrate were used to estimate kinetic parameters under substrate limitation (chemo stat operation). Mixed cultures of an indigenous Pseudomonas fluorescence and Pseudomonas aeruginosa were grown in continuous culture on phenol as the sole source of carbon ...

  6. Modelling of thermal degradation kinetics of ascorbic acid in ...

    African Journals Online (AJOL)

    Ascorbic acid (vitamin C) loss in thermally treated pawpaw and potato was modelled mathematically. Isothermal experiments in the temperature range of 50 -80 oC for the drying of pawpaw and 60 -100 oC for the blanch-drying of potato were utilized to determine the kinetics of ascorbic acid loss in both fruit and vegetable.

  7. A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Durruty, Ignacio; Fasce, Diana; González, Jorge Froilán; Wolski, Erika Alejandra

    2015-06-01

    The potential of Penicillium chrysogenum to decolorize azo dyes and a real industrial textile wastewater was studied. P. chrysogenum was able to decolorize and degrade three azo dyes (200 mg L(-1)), either independently or in a mixture of them, using glucose as a carbon source. A kinetic model for degradation was developed and it allowed predicting the degradation kinetics of the mixture of the three azo dyes. In addition, P. chrysogenum was able to decolorize real industrial wastewater. The kinetic model proposed was also able to predict the decolorization of the real wastewater. The calibration of the proposed model makes it a useful tool for future wastewater facilities' design and for practical applications.

  8. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.

    Science.gov (United States)

    Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa

    2012-11-28

    A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.

  9. Thermal degradation kinetics of phycocyanin encapsulation as an antioxidant agent

    Science.gov (United States)

    Nilamsari, A. M.; Yunanda, A.; Hadiyanto, H.

    2018-01-01

    Phycocyanin is a blue-light pigment that found in Cyanobacteria and two Eukaryotics algae such as Rhodophyta and Crytophyta. Phycocyanin is soluble in water and has a strong fluorescent properties as an antioxidant and normally used in food industry, cosmetic, biotechnology, and drug. However, Phycocyanin is easily damaged by a heating process. The aim of this study is to obtain the optimal condition of phycocyanin encapsulation with different coating materials, Chitosan and Carrageenan, by the calculation of heat resistance of antioxidant activity (D), range of temperature that increase the rate of degradation (Z), rate constant of degradation (k), and activation energy (Ea). The ratio of phycocyanin and the coating material are 2% (w/v) and 2 % (w/v).

  10. Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite

    Institute of Scientific and Technical Information of China (English)

    Jiangbo WANG; Zhong XIN

    2009-01-01

    The thermal degradation behaviors of poly-carbonate/polymethylphenylsilsesquioxane (FRPC) composites were investigated by thermogravimetric analysis (TGA) under isothermal conditions in nitrogen atmosphere. The isothermal kinetics equation was used to describe the thermal degradation process. The results showed that activation energy (E), in the case of isothermal degradation, was a quick increasing function of conversion (a) for polycarbonate (PC) but was a strong and decreasing function of conversion for FRPC. Under the isothermal condition, the addition of polymethylphenylsilsesquioxane (PMPSQ) retardanted the thermal degradation and enhanced the thermal stability of PC during the early and middle stages of thermal degradation. It also indicated a possible existence of a difference in nucleation, nuclei growth, and gas diffusion mechanism in the thermal degradation process between PC and FRPC. Meanwhile, the addition of PMPSQ influenced the lifetime of PC, but the composite still met the demand in manufacturing and application.

  11. Kinetics and Novel Degradation Pathway of Permethrin in Acinetobacter baumannii ZH-14

    Directory of Open Access Journals (Sweden)

    Hui Zhan

    2018-02-01

    Full Text Available Persistent use of permethrin has resulted in its ubiquitous presence as a contaminant in surface streams and soils, yet little is known about the kinetics and metabolic behaviors of this pesticide. In this study, a novel bacterial strain Acinetobacter baumannii ZH-14 utilizing permethrin via partial hydrolysis pathways was isolated from sewage sludge. Response surface methodology based on Box-Behnken design of cultural conditions was used for optimization resulting in 100% degradation of permethrin (50 mg·L−1 within 72 h. Strain ZH-14 degraded permethrin up to a concentration of 800 mg·L−1. Biodegradation kinetics analysis indicated that permethrin degradation by this strain was concentration dependent, with a maximum specific degradation rate, half-saturation constant, and inhibition constant of 0.0454 h−1, 4.7912 mg·L−1, and 367.2165 mg·L−1, respectively. High-performance liquid chromatography and gas chromatography-mass spectrometry identified 3-phenoxybenzenemethanol and 3-phenoxybenzaldehyde as the major intermediate metabolites of the permethrin degradation pathway. Bioaugmentation of permethrin-contaminated soils with strain ZH-14 significantly enhanced degradation, and over 85% of permethrin was degraded within 9 days with the degradation process following the first-order kinetic model. In addition to degradation of permethrin, strain ZH-14 was capable of degrading a large range of synthetic pyrethroids such as deltamethrin, bifenthrin, fenpropathrin, cyhalothrin, and beta-cypermethrin which are also widely used pesticides with environmental contamination problems, suggesting the promising potentials of A. baumannii ZH-14 in bioremediation of pyrethroid-contaminated terrestrial and aquatic environments.

  12. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available The thermal stability and kinetics of non-isothermal degradation of polypropene and polypropene composites filled with 20 mass% vigorously grounded and mixed raw rice husks (RRH, black rice husks ash (BRHA, white rice husks ash (WRHA and Aerosil Degussa (AR were studied. The calculation procedures of Coats – Redfern, Madhysudanan et al., Tang et al., Wanjun et al. and 27 model kinetic equations were used. The kinetics of thermal degradation were found to be best described by kinetic equations of n-th order (Fn mechanism. The kinetic parameters E, A, ΔS≠, ΔH≠and ΔG≠for all the samples studied were calculated. The highest values of n, E and A were obtained for the composites filled with WRHA and AR. A linear dependence between lnA and E was observed, known also as kinetic compensation effect. The results obtained were considered enough to conclude that the cheap RRH and the products of its thermal degradation BRHA and WRHA, after vigorously grounding and mixing, could successfully be used as fillers for polypropene instead of the much more expensive synthetic material Aerosil to prepare various polypropene composites.

  13. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  14. Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems.

    Science.gov (United States)

    Hadjal, Thiziri; Dhuique-Mayer, Claudie; Madani, Khodir; Dornier, Manuel; Achir, Nawel

    2013-06-15

    Thermal degradation kinetics of the major blood orange xanthophylls (cis-violaxanthin, lutein, β-cryptoxanthin, zeaxanthin and cis-antheraxanthin) were investigated at 45, 60, 75, and 90°C in real juice and three model systems formulated to evaluate the impact of xanthophyll form (esterified or free) and pH (acid or neutral). Xanthophylls were monitored by HPLC-DAD and kinetic parameters were identified by non-linear regression. A second order model best fitted the degradation curves of xanthophylls. All degradation rates were the lowest in real juice. Esterified forms were more stable than were the free forms. In all acidic media, β-cryptoxanthin exhibited the lowest degradation rates followed by lutein and zeaxanthin. In comparison, the epoxy carotenoids cis-violaxanthin and cis-antheraxanthin degraded around 3-fold faster in their esterified form. In their free form, cis-antheraxanthin degraded 30-fold faster while cis-violaxanthin instantaneously disappeared because of the isomerisation of its 5,6-epoxy groups into 5,8-epoxy. By contrast, in neutral medium, free epoxy-xanthophylls were about 2-fold more stable than were the free hydroxy xanthophylls lutein, zeaxanthin and β-cryptoxanthin. Kinetic behaviours of xanthophylls were closely dependent on their chemical structures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis and thermal degradation Kinetics of D - (+ - galactose containing polymers

    Directory of Open Access Journals (Sweden)

    Fehmi Saltan

    2013-01-01

    Full Text Available In this study, it is investigated the synthesis and characterizations of polymerizable vinyl sugars. Carbohydrate containing polymers were synthesized via free radical polymerization. Thermal behavior of polymer derivatives was analyzed by using DSC and TG. Molecular weight dispersion of polymer derivatives was also analyzed with GPC. Molecular structures were analyzed by FT-IR and 1H-NMR spectrophotometer. We found that molecular weight of copolymers could effect to the thermal stability. According to TG data related to the copolymers, molecular weight of polymers increased while the thermal stability decreased. Thermogravimetric analysis of polymers also investigated. The apparent activation energies for thermal degradation of carbohydrate containing polymers were obtained by integral methods (Flynn - Wall - Ozawa, Kissinger - Akahira - Sunose, and Tang.

  16. Degradation kinetics of di-(2-ethylhexyl) phthalate (DEHP) and organic matter of sewage sludge during composting

    International Nuclear Information System (INIS)

    Cheng, H.-F.; Kumar, Mathava; Lin, J.-G.

    2008-01-01

    The potential degradation of di-(2-ethylhexyl) phthalate (DEHP) and organic matter of sewage sludge by composting was investigated using laboratory reactor at different operating conditions (E-1, E-2 and E-3). In all conditions, single stage thermophilic phase was observed within 2 days and almost, 60% of DEHP was degraded under this phase. At the end of composting, total DEHP degradation of more than 85% was observed in all conditions and total carbon reduction was 11.8% in E-1, 7.6% in E-2 and 10.8% in E-3. Similar trend was observed in the degradation of total nitrogen. The reduction of volatile solids (VS) in the composting reactors was 5.4% in E-1 (18 days), 5.5% in E-2 (12 days) and 4.3% in E-3 (18 days). The degradation kinetics of DEHP in thermophilic phase (including initial mesophilic phase) and the phase there after were determined by first order and fractional power kinetics, respectively. The significance of experimental parameters in DEHP degradation was assessed by Pearson correlation approach. Elevated temperature produced during composting was effective for the rapid degradation of DEHP from sewage sludge compared to mesophilic treatment

  17. Role of aromaticity in humic substances degradation kinetics using non-arrhenius temperature functions

    Czech Academy of Sciences Publication Activity Database

    Kislinger, J.; Novák, František; Kučerík, J.

    2008-01-01

    Roč. 102, č. 15 (2008), s1086-s1088 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z60660521 Keywords : aromaticity * humic substances degradation kinetics * non-arrhenius temperature Subject RIV: EH - Ecology, Behaviour Impact factor: 0.593, year: 2008

  18. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles

    NARCIS (Netherlands)

    Naksuriya, Ornchuma; van Steenbergen, Mies J.; Sastre Torano, Javier; Okonogi, Siriporn; Hennink, Wim E.

    Curcumin, a phenolic compound, possesses many pharmacological activities and is under clinical evaluation to treat different diseases. However, conflicting data about its stability have been reported. In this study, the kinetic degradation of curcumin from a natural curcuminoid mixture under various

  19. Estimation of apparent kinetic parameters of polymer pyrolysis with complex thermal degradation behavior

    International Nuclear Information System (INIS)

    Srimachai, Taranee; Anantawaraskul, Siripon

    2010-01-01

    Full text: Thermal degradation behavior during polymer pyrolysis can typically be described using three apparent kinetic parameters (i.e., pre-exponential factor, activation energy, and reaction order). Several efficient techniques have been developed to estimate these apparent kinetic parameters for simple thermal degradation behavior (i.e., single apparent pyrolysis reaction). Unfortunately, these techniques cannot be directly extended to the case of polymer pyrolysis with complex thermal degradation behavior (i.e., multiple concurrent reactions forming single or multiple DTG peaks). In this work, we proposed a deconvolution method to determine the number of apparent reactions and estimate three apparent kinetic parameters and contribution of each reaction for polymer pyrolysis with complex thermal degradation behavior. The proposed technique was validated with the model and experimental pyrolysis data of several polymer blends with known compositions. The results showed that (1) the number of reaction and (2) three apparent kinetic parameters and contribution of each reaction can be estimated reasonably. The simulated DTG curves with estimated parameters also agree well with experimental DTG curves. (author)

  20. Kinetics of Chlorinated Hydrocarbon Degradation by Methylosinus trichosporium OB3b and Toxicity of Trichloroethylene

    NARCIS (Netherlands)

    Oldenhuis, Roelof; Oedzes, Johannes Y.; Waarde, Jacob J. van der; Janssen, Dick B.

    The kinetics of the degradation of trichloroethylene (TCE) and seven other chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b were studied. All experiments were performed with cells grown under copper stress and thus expressing soluble methane monooxygenase. Compounds that were

  1. Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.

    2009-01-01

    In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and

  2. Kinetic Evaluation of Imidacloprid Degradation in Mice Organs Treated with Olive Oil Polyphenols Extract

    OpenAIRE

    Broznić, Dalibor; Marinić, Jelena; Tota, Marin; Čanadi Jurešić, Gordana; Milin, Čedomila

    2008-01-01

    Imidacloprid is a highly effective insecticide, acting as agonists at the insect nicotinic acetylcholine receptor. Nevertheless, imidacloprid itself or its metabolites could exhibit toxicity in mammals. Imidacloprid biotransformation involves oxidative cleavage, releasing the 6-chloronicotinic acid. Therefore, the concentration of imidacloprid and 6-chloronicotinic acid was used to characterize degradation kinetics and distribution of imidacloprid in mice liver, kidneys and lungs. Additionall...

  3. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ma, Qingwei; Ren, Jing; Huang, Honghui; Wang, Shoubing; Wang, Xiangrong; Fan, Zhengqiu

    2012-01-01

    Highlights: ► For the first time, degradation of MC-LR by nitrous acid under UV 365 nm was discovered. ► The effects of factors on MC-LR degradation were analyzed based on kinetic study. ► Mass spectrometry was applied for identification of intermediates and products. ► Special intermediates involved in this study were identified. ► Degradation mechanisms were proposed according to the results of LC–MS analysis. - Abstract: Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO 2 ) under irradiation of 365 nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO 2 concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO 2 ; enhanced degradation of MC-LR was observed with 365 nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO 2 . The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC–MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda.

  4. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qingwei; Ren, Jing [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Huang, Honghui [Key Laboratory of Fisheries Ecology Environment, Ministry of Agriculture, Guangzhou 510300 (China); Wang, Shoubing [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Wang, Xiangrong, E-mail: xrxrwang@vip.sina.com [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Fan, Zhengqiu, E-mail: zhqfan@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer For the first time, degradation of MC-LR by nitrous acid under UV 365 nm was discovered. Black-Right-Pointing-Pointer The effects of factors on MC-LR degradation were analyzed based on kinetic study. Black-Right-Pointing-Pointer Mass spectrometry was applied for identification of intermediates and products. Black-Right-Pointing-Pointer Special intermediates involved in this study were identified. Black-Right-Pointing-Pointer Degradation mechanisms were proposed according to the results of LC-MS analysis. - Abstract: Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO{sub 2}) under irradiation of 365 nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO{sub 2} concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO{sub 2}; enhanced degradation of MC-LR was observed with 365 nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO{sub 2}. The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda.

  5. Degradation kinetics and transformation products of chlorophene by aqueous permanganate.

    Science.gov (United States)

    Xu, Xinxin; Chen, Jing; Wang, Siyuan; Ge, Jiali; Qu, Ruijuan; Feng, Mingbao; Sharma, Virender K; Wang, Zunyao

    2018-07-01

    This paper evaluates the oxidation of an antibacterial agent, chlorophene (4-chloro-2-(phenylmethyl)phenol, CP), by permanganate (Mn(VII)) in water. Second-order rate constant (k) for the reaction between Mn(VII) and CP was measured as (2.05 ± 0.05) × 10 1  M -1  s -1 at pH 7.0 for an initial CP concentration of 20.0 μM and Mn(VII) concentration of 60.0 μM. The value of k decreased with increasing pH in the pH range of 5.0-7.0, and then increased with an increase in solution pH from 7.0 to 10.0. The presence of MnO 2 and Fe 3+ in water generally enhanced the removal of CP, while the effect of humic acid was not obvious. Fourteen oxidation products of CP were identified by an electrospray time-of-flight mass spectrometer, and direct oxidation, ring-opening, and decarboxylation were mainly observed in the reaction process. The initial reaction sites of CP by Mn(VII) oxidation were rationalized by density functional theory calculations. Toxicity changes of the reaction solutions were assessed by the luminescent bacteria P. phosphoreum, and the intermediate products posed a relatively low ecological risk during the degradation process. The efficient removal of CP in secondary clarifier effluent and river water demonstrated the potential application of this Mn(VII) oxidation method in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2011-04-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1 kOH = (1.13 ± 0.22 × 10−10 and kNO3 = (1.26 ± 0.18 × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NO have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones in the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones in the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds in the reaction with NO3 radicals. The results indicate that, in all cases, the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for Cl atoms and NO3 radicals in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  7. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    Science.gov (United States)

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Multi-technique approach for qualitative and quantitative characterization of furazidin degradation kinetics under alkaline conditions.

    Science.gov (United States)

    Bērziņš, Kārlis; Kons, Artis; Grante, Ilze; Dzabijeva, Diana; Nakurte, Ilva; Actiņš, Andris

    2016-09-10

    Degradation of drug furazidin was studied under different conditions of environmental pH (11-13) and temperature (30-60°C). The novel approach of hybrid hard- and soft-multivariate curve resolution-alternating least squares (HS-MCR-ALS) method was applied to UV-vis spectral data to determine a valid kinetic model and kinetic parameters of the degradation process. The system was found to be comprised of three main species and best characterized by two consecutive first-order reactions. Furazidin degradation rate was found to be highly dependent on the applied environmental conditions, showing more prominent differences between both degradation steps towards higher pH and temperature. Complimentary qualitative analysis of the degradation process was carried out using HPLC-DAD-TOF-MS. Based on the obtained chromatographic and mass spectrometric results, as well as additional computational analysis of the species (theoretical UV-vis spectra calculations utilizing TD-DFT methodology), the operating degradation mechanism was proposed to include formation of a 5-hydroxyfuran derivative, followed by complete hydrolysis of furazidin hydantoin ring. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways.

    Science.gov (United States)

    Nie, Er; Yang, Mo; Wang, Dong; Yang, Xiaoying; Luo, Xingzhang; Zheng, Zheng

    2014-10-01

    Diclofenac (DCF) is a widely used anti-inflammatory drug found in various water bodies, posing threats to human health. In this research, the effects of ultrasonic irradiation at 585kHz on the degradation of DCF were studied under the air, oxygen, argon, and nitrogen saturated conditions. First, the dechlorination efficiencies under the air, oxygen, argon, and nitrogen saturated conditions were calculated to be 67%, 60%, 53% and 59%. Second, there was full mineralization of nitrogen during DCF degradation under the air, oxygen, and argon saturated conditions, but no mineralization of nitrogen under the nitrogen-saturated condition. Different from nitrogen, only partial mineralization of carbon occurred under the four gas-saturated conditions. Third, OH scavengers were added to derive the rate constants in the three reaction zones: cavitation bubble, supercritical interface, and bulk solution. Comparison of the constants indicated that DCF degradation was not limited to the bulk solution as conventionally assumed. Oxidation in the supercritical interface played a dominant role under the air and oxygen saturated conditions, while OH reactions in the cavitation bubble and/or bulk solution were dominant under the nitrogen and argon saturated conditions. After the addition of H2O2, reactions in the cavitation bubble and bulk solution kept their dominant roles under the nitrogen and argon saturated conditions, while reaction in the supercritical interface decreased under the air and oxygen saturated conditions. Finally, LC-MS analysis was used to derive the by-products and propose the main pathways of DCF degradation by ultrasonic irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  11. Thermal degradation kinetics and isoconversional analysis of biodegradable poly(3-hydroxybutyrate)/organomodified montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Achilias, Dimitris S.; Panayotidou, Elpiniki; Zuburtikudis, Ioannis

    2011-01-01

    Poly(3-hydroxybutyrate) (PHB)/organically modified clay nanocomposites were prepared by the melt mixing method and were characterized using wide-angle X-ray diffraction. Their thermal degradation kinetics was investigated using thermogravimetric analysis at various heating rates. Further kinetic analysis was performed using isoconversional methods and the invariant kinetic parameters method was used to estimate the so-called 'true' kinetic parameters, i.e. the pre-exponential factor, A and the activation energy, E, as well as the reaction model. It was found that intercalated structures are formed and the thermal stability of the material is improved by the addition of the nano-filler. From the isoconversional analysis, it was found that the activation energy does not vary significantly with the degree of degradation denoting degradation in one step with similar values for pure PHB and for all nanocomposites. Using the invariant kinetic parameters method, it was found that the model that best describes the experimental data was that of Sestak-Berggren's with f(a) = α n (1 - α) m , where the value of n is always larger than m and is increasing with the amount of the nano-filler. The value of the 'true' activation energy was found to be about 100 kJ mol -1 for all nanocomposites and the pre-exponential factor for PHB was estimated equal to 5.35 x 10 9 min -1 . Finally, the values of the kinetic rate constant k were found to decrease with the amount of the nano-filler up to 3 wt%, while for amounts larger than 3 wt% k increased reaching a value greater than that of pure PHB for the 10 wt% nanocomposites.

  12. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling.

    Science.gov (United States)

    Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David

    2015-05-15

    The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation.

    Science.gov (United States)

    Ma, Qingwei; Ren, Jing; Huang, Honghui; Wang, Shoubing; Wang, Xiangrong; Fan, Zhengqiu

    2012-05-15

    Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO(2)) under irradiation of 365nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO(2) concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO(2); enhanced degradation of MC-LR was observed with 365nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO(2). The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Degradation of clofibric acid in UV/chlorine disinfection process: kinetics, reactive species contribution and pathways.

    Science.gov (United States)

    Tang, Yuqing; Shi, Xueting; Liu, Yongze; Feng, Li; Zhang, Liqiu

    2018-02-01

    As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min -1, and increased to 0.0107 min -1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min -1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of [Formula: see text] (1 ∼ 50 mM), barely affected by the presence of Cl - (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l -1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.

  15. Photolysis of nonylphenol ethoxylates: the determination of the degradation kinetics and the intermediate products.

    Science.gov (United States)

    Chen, Ling; Zhou, Hai-Yun; Deng, Qin-Ying

    2007-06-01

    The photolysis of nonylphenol ethoxylates with an average oligomers length of ten ethoxylate units (NPEO(10)) in aqueous solution under UV, as well as the influence of humic acid (HA) on the photolysis was studied. A 125W high-pressure mercury lamp was employed as the light source. The intermediate products from the photolysis were determined by LC-MS. The results indicated that NPEO(10) underwent direct photolysis upon exposed to UV. The degradation pathway was complex. Besides the generally proposed degradation pathway of ethylene oxide (EO) side chains shortening, the oxidation of alkyl chain and EO chain led to intermediates having both a carboxylated (as well as carbonylated) ethoxylate and alkyl chain of varying lengths. The hydrogenation of benzene ring was also detected. The kinetics data showed that the first order reaction kinetics could be well used to describe the kinetics of NPEO(10) degradation. In the presence of dissolved organic matter by HA addition, the performance of NPEO(10) photodegradation was reduced. The photolysis rate decreased with increased HA concentration.

  16. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  17. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane

    International Nuclear Information System (INIS)

    Dannoux, A.

    2007-02-01

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  18. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    Science.gov (United States)

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  19. Preformulation study of methazolamide for topical ophthalmic delivery: physicochemical properties and degradation kinetics in aqueous solutions.

    Science.gov (United States)

    Jiang, Sunmin; Wang, Fengzhen; Zhu, Shuning; Zhang, Xiumei; Guo, Zhigang; Li, Rui; Xu, Qunwei

    2013-05-20

    Methazolamide (MTZ) is an anti-glaucoma drug. The present paper aims to characterize the physicochemical properties and degradation kinetics of MTZ to provide a basis for topical ophthalmic delivery. With the increase in pH (pH 5.5-8.0) of aqueous solution, the solubility of the compound increased while the partition coefficient (Ko/w) which was estimated in the system n-octanol/aqueous solution decreased. The degradation of MTZ in aqueous solution followed pseudo-first-order kinetic. The degradation rate kpH is the rate in the absence of buffer catalysis. Plotting the natural logarithm of kpH versus the corresponding pH value gave a V-shaped pH-rate profile with a maximum stability at pH 5.0. The degradation rate constants as a function of the temperature obeyed the Arrhenius equation (R(2)=0.9995 at pH 7.0 and R(2)=0.9955 at pH 9.0, respectively). A decrease in ionic strength and buffer concentration displayed a stabilizing effect on MTZ. Buffer species also influenced the MTZ hydrolysis. Phosphate buffer system was more catalytic than tris and borate buffer systems. In brief, it is important to consider the physicochemical properties and the stability of MTZ during formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics

    Directory of Open Access Journals (Sweden)

    R. Tuffi

    2018-01-01

    Full Text Available The thermal behavior and pyrolytic kinetic analysis of main waste polymers (polypropylene (PP, polyethylene film (PE, poly(ethylene terephthalate (PET, polystyrene (PS and three synthetic mixtures representing commingled postconsumer plastics wastes (CPCPWs output from material recovery facilities were studied. Thermogravimetry (TG pyrolysis experiments revealed that the thermal degradation of single polymers and the synthetic mixture enriched in PP occurred in one single step. The other two mixtures underwent a two-consecutive, partially overlapping degradation steps, whose peaks related to the first-order derivative of TG were deconvoluted into two distinct processes. Further TG experiments carried out on binary mixtures (PS/PP, PET/PP, PET/PEfilm and PP/PEfilm showed a thermal degradation reliance on composition, structure and temperatures of single polymer components. A kinetic analysis was made for each step using the Kissinger-Akahira-Sunose (KAS method, thus determining almost constant activation energy (Ea for pyrolysis of PS, PET, PP and PE film in the range 0.25<α<0.85, unlike for pyrolysis of CPCPWs, with particular reference to CPCPW1 and the second step of CPCPW2 and CPCPW3, both ascribable to degradation of PP and PE film. To account for the reliability of these values the integral isoconversional modified method developed by Vyazovkin was also applied.

  1. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation.

    Science.gov (United States)

    Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan

    2017-01-20

    Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Sonochemical approaches to enhanced oil recovery.

    Science.gov (United States)

    Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Altunina, Lyubov K; Gerasin, Artyom S; Pashin, Dmitriy M; Mason, Timothy J

    2015-07-01

    Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  4. Sonodegradation of cyanidin-3-glucosylrutinoside: degradation kinetic analysis and its impact on antioxidant capacity in vitro.

    Science.gov (United States)

    Sun, Jianxia; Li, Xinghua; Lin, Xinyu; Mei, Zhouxiong; Li, Yitao; Ding, Lijun; Bai, Weibin

    2017-03-01

    As an alternative preservation method for thermal treatment, ultrasound comprises a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, the recent literature indicates that anthocyanin degradation occurs when ultrasound is applied in juice at high amplitude parameters. Such work has mainly focussed on the effect of ultrasound on stability, the antioxidant capacity of cyanidin-3-glucosylrutinoside (Cy-3-glc-rut) and the correlation between anthocyanin degradation and ·OH generation in a simulated system. The spectral intensities of Cy-3-glc-rut at 518 and 282 nm decreased with increasing ultrasound power and treatment time. The degradation of Cy-3-glc-rut was consistent with first-order reaction kinetics (r 2  > 0.9000) and there was a good linear correlation between anthocyanin degradation and hydroxyl radical formation induced by ultrasound (r 2  = 0.9258). Moreover, a decrease in the antioxidant activity of Cy-3-glc-rut after ultrasound evaluated by the 1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power methods was observed. Overall, the results of the present study show that ultrasound will accelerate the degradation of Cy-3-glc-rut with the growth of power over time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study

    International Nuclear Information System (INIS)

    Kusic, Hrvoje; Koprivanac, Natalija; Bozic, Ana Loncaric; Selanec, Iva

    2006-01-01

    In this study the application of advanced oxidation processes (AOPs), dark Fenton and photo-assisted Fenton type processes; Fe 2+ /H 2 O 2 , Fe 3+ /H 2 O 2 , Fe 0 /H 2 O 2 , UV/Fe 2+ /H 2 O 2 , UV/Fe 3+ /H 2 O 2 and UV/Fe 0 /H 2 O 2 , for degradation of phenol as a model organic pollutant in the wastewater was investigated. A detail kinetic modeling which describes the degradation of phenol was performed. Mathematical models which predict phenol decomposition and formation of primary oxidation by-products: catechol, hydroquinone and benzoquinone, by applied processes were developed. The study also consist the modeling of mineralization kinetic of the phenol solution by applied AOPs. This part, besides well known reactions of Fenton and photo-Fenton chemistry, involves additional reactions which describe removal of iron from catalytic cycle through formation of ferric complexes and its regeneration induced by UV radiation. Phenol decomposition kinetic was monitored by HPLC analysis and total organic carbon content measurements (TOC). Complete phenol removal was obtained by all applied processes. Residual TOC by applied Fenton type processes ranged between 60.2 and 44.7%, while the efficiency of those processes was significantly enhanced in the presence of UV light, where residual TOC ranged between 15.2 and 2.4%

  6. Study of kinetics of 2,3-diphosphoglycerate degradation by 31P-NMR technique in depleted human erythrocytes

    International Nuclear Information System (INIS)

    Ataullakhanov, F.I.; Vitvitskii, V.M.; Dubinskaya, E.I.; Dubinskii, V.Z.

    1986-01-01

    The kinetics of 2,3-diphosphoglycerate degradation in depleted human erythrocytes was studied by the high-resolution 31 P-NMR technique. A plateau was found on the kinetic curve in the first 1.5-2 h after the beginning of depletion. The mechanisms that may be responsible for the existence of such a plateau are discussed

  7. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment.

    Science.gov (United States)

    Liu, Chao; Qiang, Zhimin; Adams, Craig; Tian, Fang; Zhang, Tao

    2009-08-01

    The degradation kinetics and mechanism of dichlorvos by permanganate during drinking water treatment were investigated. The reaction of dichlorvos with permanganate was of second-order overall with negligible pH dependence and an activation energy of 29.5 kJ x mol(-1). At pH 7.0 and 25 degrees C, the rate constant was 25.2+/-0.4M(-1)s(-1). Dichlorvos was first degraded to trimethyl phosphate (TMP) and dimethyl phosphate (DMP) simultaneously which approximately accounted for or=95% with respect to phosphorus mass, respectively. Further oxidation of DMP generated a final byproduct, monomethyl phosphate (MMP). MMP was for the first time identified as a major byproduct in chemical oxidation of dichlorvos. The kinetic model based on degradation mechanism and determined reaction rate constants allowed us to predict the evolution of dichlorvos and its byproduct concentrations during permanganate pre-oxidation process at water treatment plants. These results suggest that even though the dichlorvos concentration in surface water complies with the surface water quality standards of China (50 microg L(-1)), its concentration after conventional water treatment will most probably exceed the drinking water quality standards (1 microg L(-1)). Moreover, luminescent bacteria test shows that the acute toxicity of dichlorvos solution evidently increased after permanganate oxidation.

  8. MISCIBILITY AND THERMAL DEGRADATION KINETICS OF POLY-β-ALANINE/POLY(3-HYDROXYPROPIONATE BLENDS

    Directory of Open Access Journals (Sweden)

    Efkan CATIKER

    2016-11-01

    Full Text Available Poly-β-alanine (PBA and poly(3-hidroxypropionate (PHP were synthesized via base-catalyzed hydrogen transfer polymerization (HTP of acrylamide and acrylic acid, respectively. Blends of PBA/PHP with different composition (PHP content, 5% to 75% were studied using FTIR, DSC, TGA, XRD and polarized optical microscope to reveal both miscibility and thermal degradation kinetics of PBA/PHP blends.  Optical images of blends were transparent and entirely uniform. Characteristic IR bands of both components shifted in higher frequencies with increasing fraction of other component.  Melting temperature (Tm, thermal decomposition temperatures (Td and enthalpy of fusion (ΔHf of PHP decreased with increasing PBA fraction in blends. Thermal degradation kinetics of both components were studied by Freeman-Carroll method. Activation energies of thermal degradations of blend components were determined with a good regression coefficients (at least 0.994. Activation energies of decomposition decreased from 224.14 to 86.125 kJmol-1 with increasing PHP content. XRD spectra of blends exhibited lower peak intensities than those of neat polymers. The spectroscopic, thermal and optic methods revealed that PBA and PHP were miscible with a good compatibility in amorphous phase.

  9. Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    International Nuclear Information System (INIS)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-01-01

    Highlights: ► Sequential photocatalytic reduction–oxidation degradation of TBBPA was firstly examined. ► Different atmospheres were found to have significant effect on debromination reaction. ► A possible sequential photocatalytic reduction–oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC–MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N 2 -saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO 2 system by changing the reaction atmospheres.

  10. Kinetics of the Thermal Degradation of Granulated Scrap Tyres: a Model-free Analysis

    Directory of Open Access Journals (Sweden)

    Félix A. LÓPEZ

    2013-12-01

    Full Text Available Pyrolysis is a technology with a promising future in the recycling of scrap tyres. This paper determines the thermal decomposition behaviour and kinetics of granulated scrap tyres (GST by examining the thermogravimetric/derivative thermogravimetric (TGA/DTG data obtained during their pyrolysis in an inert atmosphere at different heating rates. The model-free methods of Friedman, Flynn-Wall-Ozawa and Coats-Redfern were used to determine the reaction kinetics from the DTG data. The apparent activation energy and pre-exponential factor for the degradation of GST were calculated. A comparison with the results obtained by other authors was made.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2947

  11. Kinetic Degradation and Controlled Drug Delivery System Studies for Sensitive Hydrogels Prepared by Gamma Irradiation

    International Nuclear Information System (INIS)

    Eid, M.; El-Arnaouty, M.B.

    2008-01-01

    Ternary mixtures of N-vinyle-2-pyrrolidone(NVP ), itaconic acid (IA) and gelatin (G) were gamma irradiated to prepared poly(NVP/IA/G) hydrogels. The equilibrium kinetic swelling, drug release behavior, Scan Electron Microscope (SEM) and the swelling-degradation kinetics were studied. Both the diffusion exponent and the diffusion coefficient increase with increasing content of (IA). Also, the swelling behavior of copolymer hydrogels in response to ph value of the external media was studied, it is noted that the highest swelling values at ph 4. The in vitro drug release behavior of these hydrogels was examined by quantification analysis with a UV/VIS spectrophotometers. Chlorpromazine hydrochloride was loaded into dried hydrogels to investigate the stimuli-sensitive property at the specific ph. The release studies show that the highest value of release was at ph 4 which can be used for drug delivery system

  12. Ruminal degradation kinetics of protein foods by in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Ivone Yurika Mizubuti

    2014-02-01

    Full Text Available Chemical analysis of carbohydrates and nitrogen fractions, as well as, determination their carbohydrates digestion rates in soyben meal (SM, crambe meal (CM, radish meal (RM, wet brewery residue (WBR and dehydrated silkworm chrysalis (SCD were accomplished. The kinetics parameters of non-fibrous carbohydrates (NFC and B2 fraction were estimated using cumulative gas production technique. Among the foods studied there was considerable variation in chemical composition. The crambe meal was the only food that did not present synchronism between carbohydrate and nitrogen fractions. In this food there was predominance of A+B1 carbohydrates fractions and B1+B2 nitrogen compounds fraction, and for the other predominated B2 carbohydrate fraction and B1+ B2 nitrogen compounds fraction. There were differences among the digestive kinetic parameters for all foods. The greater participation in gas production due to non-fibrous carbohydrates was found in the crambe meal and oilseed radish meal. The fermentation of fibrous carbohydrates provided higher gas volume in the wet brewery residue and in the soybean meal, however, the soybean meal was food with higher total gas volume. Non fibrous carbohydrates degradation rates of wet brewery residue and dehydrated silkworm chrysalis were far below the limits of degradation of this fraction. Due to the parameters obtained by the cumulative gas production, the soybean meal was the best food, however, all others have potential for use in animal nutrition. The cumulative gas production technique allows the estimative of degradation rates and provides further information about the ruminal fermentation kinetics of foods.

  13. Novel HPC-ibuprofen conjugates: synthesis, characterization, thermal analysis and degradation kinetics

    International Nuclear Information System (INIS)

    Hussain, M.A.; Lodhi, B.A.; Abbas, K.

    2014-01-01

    Naturally occurring hydrophilic polysaccharides are advantageously used as drug carriers because they provide a mechanism to improve drug action. Hydroxypropylcellulose (HPC) is water-soluble, biocompatible and bears hydroxyl groups for drug conjugation outside the parent polymeric chains. This unique geometry allows the attachment of drug molecules with higher covalent loading. The HPC-Ibuprofen conjugates as macromolecular prodrugs were therefore synthesized employing homogenous and one pot reaction methodologies using p-toluenesulfonyl chloride in N,N-dimethylacetamide solvent at 80 degree C for 24 h under nitrogen atmosphere. The imidazole was used as a base for neutralization of acidic impurities. Present strategy appeared effective to get high yield (77-81%) and high degree of drug substitution (DS 0.88-1.40) onto the HPC polymer as determined by the acid-base titration and verified by 1H-NMR spectroscopy. The gel permeation chromatography has shown uni-modal absorption which indicates no significant degradation of polymer during reaction. Macromolecular prodrugs with different DS of ibuprofen were synthesized, purified, characterized and found soluble in organic solvents. From thermogravimetric analysis, initial, maximum and final degradation temperatures of the conjugates were calculated and compared for relative thermal stability. Thermal degradation kinetics was also studied and results have indicated that degradation of conjugates follows about first order kinetics as calculated by Kissinger model. The energy of activation was also found moderate 92.38, 99.34 and 87.34 kJ/mol as calculated using Friedman, Broido and Chang models. It was found that these novel prodrugs of ibuprofen were thermally stable therefore these may have potential pharmaceutical applications. (author)

  14. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism.

    Science.gov (United States)

    Xu, Ke; Ben, Weiwei; Ling, Wencui; Zhang, Yu; Qu, Jiuhui; Qiang, Zhimin

    2017-10-15

    Levofloxacin (LF) is a frequently detected fluoroquinolone in surface water, and permanganate (MnO 4 - ) is a commonly used oxidant in drinking water treatment. This study investigated the impact of humic acid (HA) on LF degradation by aqueous MnO 4 - from both kinetic and mechanistic aspects. In the absence of HA, the second-order rate constant (k) of LF degradation by MnO 4 - was determined to be 3.9 M -1  s -1 at pH 7.5, which increased with decreasing pH. In the presence of HA, the pseudo-first-order rate constant (k obs ) of LF degradation at pH 7.5 was significantly increased by 3.8- and 2.8-fold at [HA] o :[KMnO 4 ] o (mass ratio) = 0.5 and 1, respectively. Secondary oxidant scavenging and electron paramagnetic resonance tests indicated that HA could form a complex with Mn(III), a strongly oxidative intermediate produced in the reaction of MnO 4 - with HA, to induce the successive formation of superoxide radicals (O 2 - ) and hydroxyl radicals (OH). The resulting OH primarily contributed to the accelerated LF degradation, and the complex [HA-Mn(III)] could account for the rest of acceleration. The degradation of LF and its byproducts during MnO 4 - oxidation was mainly through hydroxylation, dehydrogenation and carboxylation, and the presence of HA led to a stronger destruction of LF. This study helps better understand the degradation of organic micropollutants by MnO 4 - in drinking water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Decomposition of clofibric acid in aqueous media by advance oxidation techniques: kinetics study and degradation pathway

    International Nuclear Information System (INIS)

    Syed, M.; Khan, A.M.; Khan, R.A.

    2016-01-01

    This study investigates the decomposition of clofibric acid (CLF) by different advanced oxidation processes (AOPs), such as UV (254 nm), VUV (185 nm), UV / TiO/sub 2/ and VUV / TiO/sub 2/. The removal efficiencies of applied AOPs were compared in the presence and absence of dissolved oxygen. The removal efficiency of the studied AOPs towards degradation of CLF were found in the order of VUV / TiO/sub 2/ + O/sub 2/ > VUV/TiO/sub 2/ + N/sub 2/ > VUV alone > UV / TiO/sub 2/ + O/sub 2/ > UV / TiO/sub 2/ +N/sub 2/ > UV alone. The decomposition kinetics of CLF was found to follow pseudo-first order rate law. VUV / TiO2 process was found to be most cheap and effective one for decomposition of CLF as compared to other applied AOPs in terms of electrical energy per order. Degradation products resulting from the degradation processes were also investigated using UPLC-MS /MS, accordingly degradation pathway was proposed. (author)

  18. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  19. Smouldering Combustion of Soil Organic Matter: Inverse Modelling of the Thermal and Oxidative Degradation Kinetics

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2013-04-01

    Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.

  20. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO{sub 2} dispersion

    Energy Technology Data Exchange (ETDEWEB)

    An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); An, Jibin [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Nie, Xiangping [Institute of Hydrobiology, Jinan University, Guangzhou 510632 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Photocatalytic degradation kinetics of antivirus drug lamivudine. Black-Right-Pointing-Pointer The degradation kinetics was optimized by the single-variable-at-a-time. Black-Right-Pointing-Pointer The degradation kinetics was optimized by central composite design. Black-Right-Pointing-Pointer The contribution of reactive species was investigated with addition of scavengers. Black-Right-Pointing-Pointer Six intermediates were identified and a degradation mechanism was proposed. - Abstract: Photocatalytic degradation kinetics of antivirus drug-lamivudine in aqueous TiO{sub 2} dispersions was systematically optimized by both single-variable-at-a-time and central composite design based on the response surface methodology. Three variables, TiO{sub 2} content, initial pH and lamivudine concentration, were selected to determine the dependence of degradation efficiencies of lamivudine on independent variables. Response surface methodology modeling results indicated that degradation efficiencies of lamivudine were highly affected by TiO{sub 2} content and initial lamivudine concentration. The highest degradation efficiency was achieved at suitable amount of TiO{sub 2} and with maintaining initial lamivudine concentration to a minimum. In addition, the contribution experiments of various primary reactive species produced during the photocatalysis were investigated with the addition of different scavengers and found that hydroxyl radicals was the major reactive species involved in lamivudine degradation in aqueous TiO{sub 2}. Six degradation intermediates were identified using HPLC/MS/MS, and photocatalytic degradation mechanism of lamivudine was proposed by utilizing collective information from both experimental results of HPLC/MS/MS, ion chromatography as well as total organic carbon and theoretical data of frontier electron densities and point charges.

  1. Effect of ultrasonic waves on the stability of all-trans lutein and its degradation kinetics.

    Science.gov (United States)

    Song, Jiang-Feng; Li, Da-Jing; Pang, Hui-Li; Liu, Chun-Quan

    2015-11-01

    Ultrasound treatment has been widely applied in the extraction of biologically active compounds including carotenoids. However, there are few reports on their effects on the stability of these compounds. In the present study, the stability of all-trans lutein, one of the carotenoids, was investigated under the action of ultrasound. Results showed that ultrasound induced the isomerization of all-trans lutein to its isomers, namely to 13-cis lutein, 13'-cis lutein, 9-cis lutein and 9'-cis lutein as analyzed by HPLC coupled with DAD and LC-MS; and the percentage of the isomerization increased with increasing both ultrasonic frequency and power. The stability of all-trans lutein in dichloromethane was worst among multiple kinds of solvents. Interestingly, the retention rate of all-trans lutein improved as the temperature increased, which runs counter to the Arrhenius law. Under ultrasound irradiation, the degradation mechanism might be different with various temperatures, the degradation of all-trans lutein followed first-order kinetics at 20°C, while second-order kinetics was followed at 30-50°C. As the ultrasonic reaction time prolonged, lutein epoxidation nearly occurred. Those results presented here emphasized that UAE techniques should be carefully used in the extraction of all-trans lutein. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  3. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  4. Batch growth kinetic studies of locally isolated cyanide-degrading Serratia marcescens strain AQ07.

    Science.gov (United States)

    Karamba, Kabiru Ibrahim; Ahmad, Siti Aqlima; Zulkharnain, Azham; Yasid, Nur Adeela; Ibrahim, Salihu; Shukor, Mohd Yunus

    2018-01-01

    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination ( R 2 ) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration ( S m ) of 713.4 and empirical constant ( n ) of 1.516. Tessier and Aiba fitted the experimental data with a R 2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R 2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R 2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.

  5. Degradation kinetics and N-Nitrosodimethylamine formation during monochloramination of chlortoluron

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Qin, Cao [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Hu, Chen-Yan [College of Energy and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Lin, Yi-Li [Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan, ROC (China); Xia, Sheng-Ji; Xu, Qian; Mwakagenda, Seleli Andrew; Bi, Xiang-yu; Gao, Nai-Yun [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2012-02-15

    The degradation of chlortoluron by monochloramination was investigated in the pH range of 4-9. The degradation kinetics can be well described by a second-order kinetic model, first-order in monochloramine (NH{sub 2}Cl) and first-order in chlortoluron. NH{sub 2}Cl was found not to be very reactive with chlortoluron, and the apparent rate constants in the studied conditions were 2.5-66.3 M{sup -1} h{sup -1}. The apparent rate constants were determined to be maximum at pH 6, minimum at pH 4 and medium at alkaline conditions. The main disinfection by-products (DBPs) formed after chlortoluron monochloramination were identified by ultra performance liquid chromatography-ESI-MS and GC-electron capture detector. N-Nitrosodimethylamine (NDMA) and 5 volatile chlorination DBPs including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone and trichloronitromethane were identified. The distributions of DBPs formed at different solution pH were quite distinct. Concentrations of NDMA and CF were high at pH 7-9, where NH{sub 2}Cl was the main disinfectant in the solution. NDMA formation during chlortoluron monochloramination with the presence of nitrogenous salts increased in the order of nitrite < nitrate < ammonium for a given monochloramination and chlortoluron concentration. - Highlights: Black-Right-Pointing-Pointer Kinetics of chlortoluron monochloramination can be described by second-order model. Black-Right-Pointing-Pointer More N-DBPs formed in chlortoluron monochloramination than that in chlorination. Black-Right-Pointing-Pointer NDMA formation varied with the presence of different nitrogenous salts.

  6. Degradation kinetics and N-Nitrosodimethylamine formation during monochloramination of chlortoluron

    International Nuclear Information System (INIS)

    Xu, Bin; Qin, Cao; Hu, Chen-Yan; Lin, Yi-Li; Xia, Sheng-Ji; Xu, Qian; Mwakagenda, Seleli Andrew; Bi, Xiang-yu; Gao, Nai-Yun

    2012-01-01

    The degradation of chlortoluron by monochloramination was investigated in the pH range of 4–9. The degradation kinetics can be well described by a second-order kinetic model, first-order in monochloramine (NH 2 Cl) and first-order in chlortoluron. NH 2 Cl was found not to be very reactive with chlortoluron, and the apparent rate constants in the studied conditions were 2.5–66.3 M −1 h −1 . The apparent rate constants were determined to be maximum at pH 6, minimum at pH 4 and medium at alkaline conditions. The main disinfection by-products (DBPs) formed after chlortoluron monochloramination were identified by ultra performance liquid chromatography-ESI-MS and GC-electron capture detector. N-Nitrosodimethylamine (NDMA) and 5 volatile chlorination DBPs including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone and trichloronitromethane were identified. The distributions of DBPs formed at different solution pH were quite distinct. Concentrations of NDMA and CF were high at pH 7–9, where NH 2 Cl was the main disinfectant in the solution. NDMA formation during chlortoluron monochloramination with the presence of nitrogenous salts increased in the order of nitrite < nitrate < ammonium for a given monochloramination and chlortoluron concentration. - Highlights: ► Kinetics of chlortoluron monochloramination can be described by second-order model. ► More N-DBPs formed in chlortoluron monochloramination than that in chlorination. ► NDMA formation varied with the presence of different nitrogenous salts.

  7. Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products

    Science.gov (United States)

    The occurrence of common herbicides (Atrazine, ATZ and Iodosufuron, IDS), in waters presents potential risk to human and ecological health. The oxidative degradation of ATZ and IDS by ferrate(VI) (FeVIO42-, Fe(VI)) is studied at different pH levels where kinetically observed se...

  8. Kinetic study of adsorption and degradation of aniline, benzoic acid, phenol, and diuron in soil suspensions

    International Nuclear Information System (INIS)

    Dao, T.H.; Lavy, T.L.

    1987-01-01

    Laboratory studies were conducted to investigate the effects of low temperature and accelerated soil-solution contact on soil adsorption of labile organic chemicals. The authors measured the kinetics of adsorption and degradation of 14 C-aniline, 14 C-benzoic acid, 14 C-phenol, and 14 C-diuron in the solution phase at 3 and 22 0 C. In the initial stages of reactions, the adsorption of all four chemicals was instantaneous at both temperatures under accelerated soil and solution mixing. A steady state was observed after the onset of equilibrium for the adsorption reaction for all compounds within 10 to 30 min. Its length varied according to the expected order of susceptibility to microbial degradation, i.e., diuron > aniline > phenol ≥ benzoate. It was apparent that the steady-state period without or in combination with low temperature could be advantageously used to obtain adsorption measurements in microbially active systems. A mechanistic sorption-catalyzed degradation model was evaluated to uncouple mathematically these processes. The model described satisfactorily the disappearance of labile chemicals in soil suspensions. Numerical analysis allowed the concurrent determination of adsorption, desorption, and biodegradation rate coefficients

  9. Kinetics of Phenol Degradation in Aqueous Solution Oxidized under Low Frequency Ultrasonic Irradiation

    Directory of Open Access Journals (Sweden)

    Marwan Marwan

    2014-06-01

    Full Text Available Phenol is categorized as a refractory pollutant and its presence in water stream is strictly limited according to the government regulation. The present study investigated the degra-dation of phenol in aqueous solution by the effect of ultrasound. The process took place in a 500 ml glass reactor equipped with magnetic stirring and irradiated by low frequency (28 kHz ultrasound from a horn type probe. Ultrasonic irradiation was found to enhance oxidation rates at ambient conditions, compared to other approaches. Optimum conditions were observed at a stirring speed of 400 rpm and temperature of 30 C in acidic solution. It was revealed that the phenol degradation was the first order kinetics with respect to phenol. A low value of the activation energy 6.04 kcal/mol suggested that diffusional steps were rate determining during the phenol decomposition. It also confirmed that phenol was mostly degraded in the film region and less occurred in the bulk solution.

  10. Kinetics of the degradation of 2-chlorophenol by ozonation at pH 3

    International Nuclear Information System (INIS)

    Sung Menghau; Huang, C.P.

    2007-01-01

    Prediction of byproduct distribution during ozonation is of importance to the design of treatment process. In this study, degradation products in direct ozonation of 2-chlorophenol in aqueous solution were identified by employing the chemical derivatization technique, specifically, silylation. Transient distribution of degradation products, in a semi-batch reactor under three ozone dosages were identified and determined by HPLC analysis. An empirical degradation pathway was proposed to describe the ozonation reaction. A mathematical protocol consisting of 11 equations and 12 rate constants was developed to solve and optimize the kinetic parameters. Modeling results revealed that the empirical pathway was capable of predicting the ozonation reaction at the beginning phase under a higher ozone dosage (e.g., greater than 6 mg/L g ). The degree of agreement between predicted and experimental data decreased as the ozone dosage decreased to 1.2 mg/L g . Results suggested that there was a dosage-dependent pathway in the direct ozonation of 2-chlorophenol

  11. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    Science.gov (United States)

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    Science.gov (United States)

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying.

    Science.gov (United States)

    Tian, Guifang; Li, Yuan; Yuan, Qipeng; Cheng, Li; Kuang, Pengqun; Tang, Pingwah

    2015-05-20

    Sulforaphene (SFE) was extracted from the radish seeds and the purity of SFE extracted by our laboratory was 95%. It is well known that SFE can prevent cancers. It is also known that SFE is unstable to heat. To overcome the problem, SFE microcapsules using natural biopolymers were prepared by spray drying. The results indicated that SFE microcapsules using hydroxypropyl-β-cyclodextrin (HP-β-CD), maltodextrin (MD) and isolated soybean protein (SPI) as wall materials could effectively improve its stability against heat, especially SFE-loaded HP-β-CD and MD microcapsules. The amount of SFE in the microcapsules was found 20% higher than that of the non-encapsulated SFE under 90 °C in 168 h. Our finding suggested that the rate of degradation of the non-encapsulated and encapsulated SFE with HP-β-CD, MD and SPI followed the first-order kinetics. The speed of the degradation of the encapsulated SFE in biopolymers increased from SFE with HP-β-CD, to SFE with MD, and to SFE-SPI. The non-encapsulated SFE degrades fastest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Sonochemical Method for Casting the Polymer Nanocomposites: A Mini Review

    Directory of Open Access Journals (Sweden)

    D. Arthisree

    2018-04-01

    Full Text Available The present nano science domain focussed on sample preparation and inhibition of chemical reaction achieved by several techniques based on the principle of cavitation process using ultrasonic frequency-sonochemical routes. The effect of sonochemical routes is highly advantageous in reaction methods such as triggering reaction pathways, inducing the speedy reaction of inter-particle collision. In polymers, high intensity ultrasound waves are used for the polymerization of monomers by step growth process. This review is an outlook of sonochemical approach for polymer nanocomposites, which follows the physics of ultrasonic frequency bands, chemical reactions and the properties of acoustic cavitation highly applicable for the development of modern target materials.

  16. Sonochemical cleaning efficiencies in dental instruments

    Science.gov (United States)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  17. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  18. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    International Nuclear Information System (INIS)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr; Stolte, Stefan; Siedlecka, Ewa Maria

    2014-01-01

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na 2 SO 4 . The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test

  19. Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation

    Science.gov (United States)

    Chu, Libing; Zhuang, Shuting; Wang, Jianlong

    2018-04-01

    The gamma radiation induced-degradation of a β-lactam antibiotic, penicillin G was investigated in aqueous solution. Special attention was paid to the effects of the organic substances such as peptone and glucose on penicillin G degradation, which can be found in the wastewater of the factories producing antibiotics. Results showed that gamma radiation was effective to degrade and deactivate penicillin G in pure water. With the initial concentrations of 0.27 mM, 1.34 mM and 2.68 mM, a complete removal of penicillin G could be achieved at the adsorbed doses of 2.5 kGy, 10 kGy and 20 kGy, respectively. Penicilloic acid from the β-lactam ring cleavage and a series of fragment compounds such as thiazolidine and penicillic acid were identified during gamma irradiation-induced degradation of penicillin G. Addition of Fe2+ was efficient to enhance the mineralization. The TOC removal efficiency of penicillin G was 21.7% using gamma irradiation alone at 10 kGy, which increased to 56.4% with 1.0 mM Fe2+ addition. The gamma radiation-induced degradation of penicillin G was inhibited in the presence of peptone and glucose and the inhibitive effect increased with increasing their concentrations. The rate constant, k of the pseudo first-order kinetics decreased by 74% and 64% in the presence of 1.0 g/L of peptone and glucose, respectively, and by 96% and 89% in the presence of 10 g/L of peptone and glucose, respectively. The ratio of k/k0 was increased by 1.3 times with H2O2 addition and by 3 times with Fe2+ addition, in the presence of 10 g/L of glucose. Adding Fe2+ was effective to improve the ionizing radiation induced degradation of penicillin G antibiotic in the glucose-containing wastewater.

  20. Volatile fatty acid degradation kinetics in anaerobic process; Cinetica de la degradacion de acidos grasos volatiles en procesos anaerobios

    Energy Technology Data Exchange (ETDEWEB)

    Riscado, S.; Osuna, B.; Iza, J.; Ruiz, E. [Universidad del Pais Vasco. Bilbao (Spain)

    1998-10-01

    While searching for the optimal substrate load for anaerobic toxicity assays, the inhibition caused by the propionic acid has been addressed. Lab scale experiments have been carried out to assess the effects of different loads and acid ratios. Results bad been subjected to kinetic analysis and show the degradation follows a first order kinetic, and acetic is easier to degrade than propionic acid. The optimal load for a 100 ml vial assay is composed of 158 mg COD of the 3:1:1 HAc:HPr:HBu mixture. (Author) 9 refs.

  1. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system.

    Science.gov (United States)

    Xiao, Ya-Dong; Huang, Wu-Yang; Li, Da-Jing; Song, Jiang-Feng; Liu, Chun-Quan; Wei, Qiu-Yu; Zhang, Min; Yang, Qiu-Ming

    2018-01-15

    Thermal degradation kinetics of lutein, zeaxanthin, β-cryptoxanthin, β-carotene was studied at 25, 35, and 45°C in a model system. Qualitative and quantitative analyses of all-trans- and cis-carotenoids were conducted using HPLC-DAD-MS technologies. Kinetic and thermodynamic parameters were calculated by non-linear regression. A total of 29 geometrical isomers and four oxidation products were detected, including all-trans-, keto compounds, mono-cis- and di-cis-isomers. Degradations of all-trans-lutein, zeaxanthin, β-cryptoxanthin, and β-carotene were described by a first-order kinetic model, with the order of rate constants as k β -carotene >k β -cryptoxanthin >k lutein >k zeaxanthin . Activation energies of zeaxanthin, lutein, β-cryptoxanthin, and β-carotene were 65.6, 38.9, 33.9, and 8.6kJ/moL, respectively. cis-carotenoids also followed with the first-order kinetic model, but they did not show a defined sequence of degradation rate constants and activation energies at different temperatures. A possible degradation pathway of four carotenoids was identified to better understand the mechanism of carotenoid degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  3. Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Xu, Cheng; Sørensen, Jens

    2012-01-01

    This study investigated the kinetics of multi-enzymatic degradation of soluble wheat arabinoxylan by monitoring the release of xylose and arabinose during designed treatments with mono-component enzymes at different substrate concentrations. The results of different combinations of α...... α-l-arabinofuranosidases catalyze liberation of arabinose residues linked 1→3 to singly (AFAn) or doubly (AFBa) substituted xyloses in arabinoxylan, respectively. When added to arabinoxylan at equimolar levels, the AFBa enzyme catalyzed the release of more arabinose, i.e. had a higher rate constant...... than AFAn, but with respect to the xylose release, AFAn – as expected – exhibited a better synergistic effect than AFBa with β-xylosidase. This synergistic effect with AFAn was estimated to increase the number of β-xylosidase catalyzed cuts from ∼3 (with β-xylosidase alone) to ∼7 in each arabinoxylan...

  4. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.

    Science.gov (United States)

    Monika; Dhar, Prodyut; Katiyar, Vimal

    2017-11-01

    Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H 2 SO 4 ), phosphoric (H 3 PO 4 ), hydrochloric (HCl) and nitric (HNO 3 ) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T 10 , T 50 ) temperature for PLA-CNC film fabricated with HNO 3 , H 3 PO 4 and HCl derived CNC have improved thermal stability in comparison to H 2 SO 4 -CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of E a calculated from OFW model are (PLA-H 3 PO 4 -CNC: 125-139 kJmol -1 ), (PLA-HNO 3 -CNC: 126-145 kJmol -1 ), (PLA-H 2 SO 4 -CNC: 102-123 kJmol -1 ) and (PLA-HCl-CNC: 140-182 kJmol -1 ). This difference among E a for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The E a calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO 2 , CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Thermal degradation kinetics and estimation of lifetime of radiation grafted polypropylene films

    International Nuclear Information System (INIS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Bhalla, Vinod Kumar

    2017-01-01

    In this research work, thermal stability and degradation behavior of acrylic acid grafted polypropylene (PP-g-PAAc) films were investigated by using thermogravimetric (TGA) analysis at four different heating rates 5, 10, 15 and 20 °C/min over a temperature range of 40–550 °C in nitrogen atmosphere. The kinetic parameters namely activation energy (E a ), reaction order (n) and frequency factor (Z) were calculated by three multiple heating rate methods. The thermal stability of PP-g-PAAc films is found to decrease with increase in degree of grafting. The TGA data and thermal kinetic parameters were also used to predict the lifetime of grafted PP films. The estimated lifetime of neat PP as well as grafted PP decreased with increase in temperature by all the three methods. Studies also indicated that E a and lifetime of PP-g-PAAc films decreased with increase in degree of grafting, which may also be helpful in biodegradation of grafted PP films. - Highlights: • Thermal stability of grafted polypropylene films have been observed lower than for neat polypropylene film. • Multiple heating rate methods have been used for determination of activation energy. • Activation energies of grafted polypropylene films were lower than polypropylene film. • The lifetimes of grafted polypropylene films were shorter than for neat polypropylene film.

  6. Fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass.

    Science.gov (United States)

    Sechler, S R; Mullenix, M K; Holland, C M; Muntifering, R B

    2017-09-01

    A 2-yr study was conducted to determine effects of N fertilization level on fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass (T85). Six 0.76-ha pastures of stockpiled T85 were cut to a 10-cm stubble height on August 1 of each yr and fertilized with 56 (56N), 112 (112N), or 168 (168N) kg N/ha (2 pastures/treatment). Fiber digestion kinetics included the 72-hr potential extent of NDF digestion (PED), rate of NDF digestion, and lag time. In yr 1 and 2, PED decreased over the stockpile season. Rates of NDF digestion did not differ ( > 0.05) among N fertilization treatments in either yr. In yr 1, rate of NDF digestion was greatest ( digestion decreased ( digestion rates were similar for November and January 21 sampling dates. Lag time was greater ( digestion ( = -0.60 and -0.25 in yr 1 and 2, respectively) was observed. There was a trend ( = 0.06) for lignin concentration to be positively correlated with lag time ( = 0.39) in yr 1, and a strong relationship was observed in yr 2 ( = 0.91; digestion in stockpiled T85 were influenced more by temporal changes over the stockpile season than by N fertilization level. Supplement formulations based on kinetic parameters of fiber digestion may require periodic adjustment to insure that energy-yielding components of NDF are sufficient to meet animal requirements throughout the stockpile season. The CP fraction in stockpiled T85 contains sufficient RDP to support fibrolytic activity and growth of ruminal microorganisms throughout the stockpile season. Toward the latter end of the season, supplementation with sources of digestible fiber and RDP could be expected to increase MP supply to the host animal.

  7. Thermal degradation kinetics of ascorbic acid, thiamine and riboflavin in rosehip (Rosa canina L nectar

    Directory of Open Access Journals (Sweden)

    Çetin KADAKAL

    2017-10-01

    Full Text Available Abstract In this paper, the loss of L-ascorbic acid, thiamine and riboflavin in rosehip nectar with the heating periods (0, 5, 10, 15, 20 and 30 min at temperatures ranging from 70 to 95 °C is analyzed and experimental results are presented. Firstly, dried rosehip fruits were processed to rosehip nectar and then thermal treatment is performed. Liquid chromatographic (HPLC method was used for the analysis of the contents of L-ascorbic acid, thiamine and riboflavin and examined compounds are thoroughly separated within 25 min. During thermal processing, degradation of L-ascorbic acid, thiamine and riboflavin in rosehip nectar were fitted to a first-order reaction kinetic model. Arrhenius relationship was used for the description of temperature dependence of reaction. Activation energies for L-ascorbic acid, thiamine and riboflavin between 70 to 95 ºC were found to be 55.30, 36.38 and 37.15 kJ/mol, respectively. To the best of the author’s knowledge, due to lack of study on the thermal degradation of L-ascorbic acid, thiamine and riboflavin in rosehip nectar, this manuscript will be the first reported study to enable future analysis.

  8. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    2015-04-16

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acid and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.

  9. Ruminal degradation kinetic of Brachiaria decumbens silages with different nitrogen additives

    Directory of Open Access Journals (Sweden)

    Odimári Pricila Pires do Prado

    2014-02-01

    Full Text Available This study aimed to assess levels of nitrogen additive Silogen® pasto on ruminal in vitro degradability gas production in Brachiaria decumbens silages. The nitrogen additive contained bacterial strains (Bacillus subtilis, Lactobacillus curvatus, Lactobacillus plantarum and Pediococcus acidilactici and minimum nitrogen to 360 g/kg. The levels were: 0.0; 1.0; 1.5; 2.0 and 2.5%. In fractionation were calculated total carbohydrates (TC, non-fiber carbohydrates (NFC, soluble and rapidly degradable (A + B1, potentially degradable (B2 and degradable (C. The kinetic parameters of FC and NFC were estimated using the technique of in vitro gas production. Data were subjected to analysis of variance at 5%. The level additive did not influence the TC and fraction A + B1. The levels of nitrogen additive influenced the NFC, fractions B2 and C. For NFC content 2.0% showed the lowest (22.0 %. The lower levels of additive nitrogen (0, 1.0 and 1.5 % had higher fractions of B2 (average 40.2 % and lower values for the fraction C (average 20.0 % . There was no difference in the volume of gas CNF (average 86.73 mL and final volume of gas produced (average 195.79 mL. Was no influence of nitrogen additives for the time of colonization, the lowest time of 3.89 h to 1.0%. The volume of gas of FC was influenced by levels of nitrogen additives with higher values to 0 % from 1.0 %, and 114.74 and 115.09 mL, respectively. Degradation rates of FC and FNC were also affected by the concentrations of nitrogenous additives, which presented higher rates to the levels of 2.0 and 2.5%. It follows that the lower levels of additives to 1.5 % promoted the reduction of the C fraction and increased B2, and greater production of gas volume of the fiber in these silages, showing better nutritional value in these silages.

  10. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.

    Science.gov (United States)

    Zhang, Tianyang; Xu, Bin; Wang, Anqi; Cui, Changzheng

    2018-03-01

    Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M -1 s -1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H + , HOCl, OCl - and chlorocreatinine - with OCl - were calculated as 2.43 (±1.55) × 10 4  M -2  s -1 , 1.05 (±0.09) M -1 s -1 , 2.86 (±0.30) M -1 s -1 and 3.09 (±0.24) M -1 s -1 , respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    Science.gov (United States)

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.

  12. Kinetic measurements of the hydrolytic degradation of cefixime: effect of Captisol complexation and water-soluble polymers.

    Science.gov (United States)

    Mallick, Subrata; Mondal, Arijit; Sannigrahi, Santanu

    2008-07-01

    We have taken kinetic measurements of the hydrolytic degradation of cefixime, and have studied the effect of Captisol complexation and water-soluble polymers on that degradation. The phase solubility of cefixime in Captisol was determined. Kinetic measurements were carried out as a function of pH and temperature. High-performance liquid chromatography (HPLC) was performed to assay all the samples of phase-solubility analysis and kinetic measurements. Chromatographic separation of the degradation products was also performed by HPLC. FT-IR spectroscopy was used to investigate the presence of any interaction between cefixime and Captisol and soluble polymer. The phase-solubility study showed A(L)-type behaviour. The pH-rate profile of cefixime exhibited a U-shaped profile whilst the degradation of cefixime alone was markedly accelerated with elevated temperature. A strong stabilizing influence of the cefixime-Captisol complexation and hypromellose was observed against aqueous mediated degradation, as compared with povidone and macrogol. The unfavourable effect of povidone and macrogol may have been due to the steric hindrance, which prevented the guest molecule from entering the cyclodextrin cavity, whereas hypromellose did not produce any steric hindrance.

  13. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane; Extrapolation dans le temps des cinetiques de production des produits de degradation radiolytique: application a un polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Dannoux, A

    2007-02-15

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  14. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties

    International Nuclear Information System (INIS)

    Soofivand, Faezeh; Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-01-01

    Graphical abstract: In this work, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been sonochemically prepared using silver salicylate. The effect of preparation parameters on the morphology of the products was investigated by SEM images. Highlights: ► Herein, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been sonochemically prepared. ► The effect of preparation parameters on the morphology of the products was investigated. ► The photocatalytic activity of the as-prepared Ag 2 CrO 4 nanoparticles was tested. ► XPS spectra indicated the high purity of Ag 2 Cr 2 O 7 nanostructures obtained. - Abstract: In this work, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been produced via a sonochemical method using silver salicylate as precursor. Besides silver salicylate, Na 2 CrO 4 and (NH 4 ) 2 Cr 2 O 7 as starting reagents were applied. To investigate the effect of preparation parameters on the morphology and particle size of Ag 2 CrO 4 and Ag 2 Cr 2 O 7 , sonication time, type of surfactant and its concentration were changed. The as-produced nanostructures were characterized by techniques like powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The scanning electron micrographs showed that particle-like and rod-like nanostructures of Ag 2 CrO 4 and Ag 2 Cr 2 O 7 were produced using different surfactants. To investigate the catalytic properties of Ag 2 CrO 4 nanoparticles, photooxidation of methyl orange (MO) was performed. According to the obtained results, it was found that the methyl orange degradation was about 87.3% after 280 min irradiation of visible light

  15. Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation.

    Science.gov (United States)

    Domínguez, Carmen M; Munoz, Macarena; Quintanilla, Asunción; de Pedro, Zahara M; Casas, Jose A

    2017-10-15

    In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50-90 °C), catalyst load (10-50 mg L -1 Fe 3+ ), initial IL concentration (100-2000 mg L -1 ), and hydrogen peroxide dose (10-200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C 4 mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe 3+ ] 0  = 50 mg L -1 ; [H 2 O 2 ] 0  = 100% of the stoichiometric amount), the complete removal of [C 4 mim]Cl (1000 mg L -1 ) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe 3+ amount and H 2 O 2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol -1 . The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.

  16. Synthesis and degradation kinetics of a novel polyester containing bithiazole rings

    Energy Technology Data Exchange (ETDEWEB)

    He, W., E-mail: hwdut2003@yahoo.com [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China); Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Jiang, Y.Y. [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China); Luyt, A.S. [Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Ocaya, R.O. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Ge, T.J. [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China)

    2011-10-20

    Highlights: {yields} A novel Schiff base type polyester was synthesized and characterized by FTIR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. {yields} Thermal degradation of the polyester in nitrogen has been studied at several heating rates by thermogravimetric analysis. {yields} The activation energies were calculated by different methods. And the possible conversation function was estimated. {yields} The life time estimates for the polyester can be determined and the results demonstrate that the polymer possesses good thermal resistance. - Abstract: A novel Schiff base type polyester containing 2,2'-diamino-4,4'-bithiazole (DABT) was prepared by low-temperature interface polycondensation of 1,4-benzenedicarbonyl dichloride with 4,4'-(4,4'-bithiazole-2,2'-diylbis(imine-2,1-diyl) diphenol (BDDP), which is derived from a 2,2'-diamino-4,4'-bithiazole (DABT) Schiff base reacted with a 4-hydroxybenzaldehyde monomer. The newly generated polyester was characterized by FTIR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. The thermal decomposition was investigated in nitrogen atmosphere using thermogravimetric analysis. The activation energies of the decomposition step of the polyester were calculated through the isoconversional methods of Kissinger-Akahira-Sunose (K-A-S) and the iterative equation. In order to estimate the reaction model that best describes the experimental data, the use of an empirical kinetic equation based on that proposed by Sestak-Berggren was investigated here. On the basis of the kinetic data, the life time estimates for the polyester generated from the weight loss of 5%, 10%, and 15% were also constructed.

  17. Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment.

    Science.gov (United States)

    Huang, Junlei; Wang, Yahui; Liu, Guoguang; Chen, Ping; Wang, Fengliang; Ma, Jingshuai; Li, Fuhua; Liu, Haijin; Lv, Wenying

    2017-04-01

    The oxidation of indometacin (IDM) by ferrate(VI) (Fe(VI)) was investigated to determine the reaction kinetics, transformation products, and changes in toxicity. The reaction between IDM and Fe(VI) followed first-order kinetics with respect to each reactant. The apparent second-order rate constants (k app ) decreased from 9.35 to 6.52 M -1  s -1 , as the pH of the solution increased from 7.0 to 10.0. The pH dependence of k app might be well explained by considering the species-specific rate constants of the reactions of IDM with Fe(VI). Detailed product studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that the oxidation products were primarily derived from the hydrolysis of amide linkages, the addition of hydroxyl groups, and electrophilic oxidation. The toxicity of the oxidation products was evaluated using the Microtox test, which indicated that transformation products exhibited less toxicity to the Vibrio fischeri bacteria. Quantitative structure-activity relationship (QSAR) analysis calculated by the ecological structure activity relationship (ECOSAR) revealed that all of the identified products exhibited lower acute and chronic toxicity than the parent pharmaceutical for fish, daphnid, and green algae. Furthermore, Fe(VI) was effective in the degradation IDM in water containing carbonate ions or fulvic acid (FA), and in lake water samples; however, higher Fe(VI) dosages would be required to completely remove IDM in lake water in contrast to deionized water.

  18. Kinetic study of the degradation of the insecticide pymetrozine in a vegetable-field ecosystem

    International Nuclear Information System (INIS)

    Shen Guoqing; Hu Xuan; Hu Yinan

    2009-01-01

    The disappearance kinetics of pymetrozine was studied in a broccoli-field ecosystem, and an efficient method for the determination of pymetrozine in broccoli and soil was also developed. Pymetrozine residues were extracted from samples using acetonitrile. The extracts were cleaned up by liquid-liquid partitioning with dichloromethane, followed by purification with ethyl acetate, and were then determined by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detector. The average recovery was 87-93% from broccoli, and 84-90% from soil. The relative standard deviation (R.S.D.) was less than 4% in broccoli, and in soil less than 11%. These results are all within the accepted range for residue determination. The limit of detection (LOD) of pymetrozine calculated as a sample concentration (S/N ratio of 3) was 0.005 mg kg -1 . The minimum detectable quantity (MDQ) was 1 x 10 -10 g. The results of the kinetics study of pymetrozine residue showed that pymetrozine degradation in broccoli and soil coincided, with C = 1.9826 e -0.1965t and C = 15.352 e -0.4992t , respectively; the half-lives were 3.5 and 1.4 days, respectively. The final residue level was lower than the new maximum residue limit (MRL) for pymetrozine on vegetables with a harvest interval of 23 days. A dosage of 300 g a.i. hm -2 was suggested, which is considered to be safe for human beings. These results contribute to establishing the scientific basis of the dosage of pymetrozine for use in vegetable-field ecosystems.

  19. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guo-Dong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Wang, Yu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Zhou, Dong-Mei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A kinetic model was used to predict the radical species and their distributions. Black-Right-Pointing-Pointer The generated radical species were identified by EPR. Black-Right-Pointing-Pointer The second-order rate constants of sulfate radical with PCBs were determined. - Abstract: Advanced oxidation processes (AOPs) based on sulfate radical (SO{sub 4}{center_dot}{sup -}) have been recently used for soil and groundwater remediation. The presence of chloride ion in natural or wastewater decreases the reactivity of sulfate radical system, but explanations for this behavior were inconsistent, and the mechanisms are poorly understood. Therefore, in this paper we investigated the effect of chloride ion on the degradation of 2,4,4 Prime -CB (PCB28) and biphenyl (BP) by persulfate, based on the produced SO{sub 4}{center_dot}{sup -}. The results showed that the presence of chloride ion greatly inhibited the transformation of PCB28 and BP. Transformation intermediates of BP were monitored, suggesting that the chloride ion can react with SO{sub 4}{center_dot}{sup -} to produce chlorine radical, which reacts with BP to generate chlorinated compounds. To better understand the underlying mechanisms of these processes, a kinetic model was developed for predicting the effect of chloride ion on the types of radical species and their distributions. The results showed that chloride ion could influence the selectivity of radical species and their distribution, and increase the concentration of the sum of radical species. In addition, the second-order rate constants of sulfate radical with PCBs were determined, and quantum-chemical descriptors were introduced to predict the rate constants of other PCBs based on our experimental data.

  20. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    Science.gov (United States)

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  1. Thermal Analysis and Degradation Kinetics of Dextran and Highly Substituted Dextran Acetates

    International Nuclear Information System (INIS)

    Amin, M.; Hussain, M. A.; Shahwar, D.; Hussain, M.

    2015-01-01

    Dextran acetates were synthesized to study their thermal behavior in comparison with pure dextran. The results have indicated that dextran is significantly stabilized after acetylation. Dextran acetates are thermally 65-74 degree C more stable as compared to pure dextran in terms of maximum decomposition temperature (Td/sub m/). Likewise, degradation of dextran acetates also starts and ends later than dextran as shown by relatively higher initial (Td/sub i/) 3-33 degree C and final decomposition temperature (Td/sub f/) 55-69 degree C. The dextran acetates can be arranged in increasing order of thermal stability: dextran acetate DS 2.91 < dextran DS 2.98 < dextran acetate DS 3. The activation energy (Ea) of dextran and dextran acetates was calculated with the help of Friedman, Broido and Chang kinetic models while order of reaction (n) was calculated from thermal data using Chang and Kissinger models. Several other important parameters were also calculated including frequency factor (Z), enthalpy (delta H), Gibbs free energy (delta G) and entropy (delta S). The integral procedural decomposition temperature (IPDT) and comprehensive index of intrinsic thermal stability (ITS) was also drawn from TG curves using Doyle's method. The dependence of IPDT, ITS and Ea on DS of the acetylation of dextran is also discussed. (author)

  2. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    International Nuclear Information System (INIS)

    Park, Hansol; Ryu, Keungarp; Kwon, Oyul

    2015-01-01

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H 2 O 2 as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  3. Deterministic three-half-order kinetic model for microbial degradation of added carbon substrates in soil

    International Nuclear Information System (INIS)

    Brunner, W.; Focht, D.D.

    1984-01-01

    The kinetics of mineralization of carbonaceous substrates has been explained by a deterministic model which is applicable to either growth or nongrowth conditions in soils. The mixed-order nature of the model does not require a priori decisions about reaction order, discontinuity period of lag or stationary phase, or correction for endogenous mineralization rates. The integrated equation is simpler than the integrated form of the Monod equation because of the following: (i) only two, rather than four, interdependent constants have to be determined by nonlinear regression analysis, (ii) substrate or product formation can be expressed explicitly as a function of time, (iii) biomass concentration does not have to be known, and (iv) the required initial estimate for the nonlinear regression analysis can be easily obtained from a linearized form rather than from an interval estimate of a differential equation. 14 CO 2 evolution data from soil have been fitted to the model equation. All data except those from irradiated soil gave us better fits by residual sum of squares (RSS) by assuming growth in soil was linear (RSS =0.71) as opposed to exponential (RSS = 2.87). The underlying reasons for growth (exponential versus linear), no growth, and relative degradation rates of substrates are consistent with the basic mechanisms from which the model is derived. 21 references

  4. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source

    International Nuclear Information System (INIS)

    Vital-Jacome, Miguel; Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor; Thalasso, Frederic

    2016-01-01

    Highlights: • Microrespirometry was used to characterize aerobic granules. • Kinetic parameters for 4-chorophenol degradation were determined. • Intrinsic and apparent kinetic parameters were quantified and contrasted. • Aerobic granules presented lower μ_m_a_x and higher K_S than disaggregated granules. • Microrespirometry can be useful in model development and calibration. - Abstract: In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9 kg COD m"−"3 d"−"1, and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems.

  5. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Vital-Jacome, Miguel [Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360 México DF, México (Mexico); Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor [Laboratory for Research on Advanced Process for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76320, México (Mexico); Thalasso, Frederic, E-mail: thalasso@cinvestav.mx [Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360 México DF, México (Mexico)

    2016-08-05

    Highlights: • Microrespirometry was used to characterize aerobic granules. • Kinetic parameters for 4-chorophenol degradation were determined. • Intrinsic and apparent kinetic parameters were quantified and contrasted. • Aerobic granules presented lower μ{sub max} and higher K{sub S} than disaggregated granules. • Microrespirometry can be useful in model development and calibration. - Abstract: In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9 kg COD m{sup −3} d{sup −1}, and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems.

  6. Sono-catalytic degradation of organic compounds

    International Nuclear Information System (INIS)

    Navarro, N.

    2012-01-01

    Unlike aqueous effluents from the PUREX process, aqueous effluents from advanced separation processes developed to separate the minor actinides (Am, Cm) contain organic reagents in large amounts. To minimize the impact of these organic compounds on the next steps of the process, and to respect standard discharges, it is necessary to develop new techniques of degradation of organic compounds. Sono-chemistry appears as a very promising solution to eliminate organic species in aqueous nuclear effluents. Indeed, the propagation of an ultrasonic wave in a liquid medium induces the appearance of cavitation bubbles which will quickly grow and implode, causing local conditions and extreme temperatures and pressures. Each cavitation bubble can then be considered as a microreactor at high temperature and high pressure able to destroy organic molecules without the addition of specific reagents. The first studies on the effect of ultrasonic frequency on sono-luminescence and sono-lysis of formic acid have shown that the degradation of formic acid occurs at the bubble/liquid interface. The most striking difference between low-frequency and high-frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates secondary reactions not observed at 20 kHz. However, despite a much higher sono-chemical activity at high frequency, highly concentrated carboxylic acids in the aqueous effluents from advanced separation processes cannot be destroyed by ultrasound alone. To increase the efficiency of sono-chemical reactions, the addition of supported platinum catalysts has been studied. In these conditions, an increase of the kinetics of destruction of carboxylic acids such as oxalic acid is observed. (author) [fr

  7. DETERMINATION OF KINETICS OF DEGRADATION AND MOBILITY OF DITHIOCARBAMATES FUNGICIDES IN AQUEOUS MEDIA AND IN MOROCCAN SOIL

    Directory of Open Access Journals (Sweden)

    Said El Antri

    2010-07-01

    Full Text Available Contribution analysis of dithiocarbamates pesticides used on tomatoes treatment has been reported. The study is focused on analysis and determination of some dithiocarbamates like, Maneb, Mancozeb, Zineb and Propineb, in order to achieve accurate impact of theses pesticides on water and soil. Analysis method is based on decomposition of dithiocarbamate by heating under acidic attack to give carbon disulfide complexed with copper acetate solution in presence of diethanolamine. Complex formed is dosed spectrophotometrically at 435 nm. Degradation kinetic of dithiocarbamate in aqueous media have been realized and proved that dithiocarbamate are degraded by simple air exposition. In the other hand, pH affects also dithiocarbamate degradation by increasing hydroxyl ions to participate for dithiocarbamate instability. Dithiocarbamate mobility on Moroccan soils samples have been realised and don’t have the same degradation mode.

  8. Sonochemical Effects on 14 Flavonoids Common in Citrus: Relation to Stability

    Science.gov (United States)

    Qiao, Liping; Sun, Yujing; Chen, Rongrong; Fu, Yu; Zhang, Wenjuan; Li, Xin; Chen, Jianchu; Shen, Yan; Ye, Xingqian

    2014-01-01

    The sonochemical effects of ultrasound (US) treatment on 14 flavonoids representing the main flavonoids in citrus fruit were investigated in a standard mixture by stability evaluation of a model system. Degradation products were further tentatively identified by Fourier transform infrared spectroscopy and high-performance liquid chromatography–ultraviolet detection–electrospray ionization tandem mass spectrometry. Thirteen flavonoids (i.e., eriocitrin, narirutin, neohesperidin, quercitrin, eridictyol, didymin, naringenin, luteolin, sinensetin, nobiletin, tangeretin, naringin, and hesperidin) were fairly stable whereas quercetin was degraded significantly by US treatment. The types of solvent and temperature used were important factors that determined the resulting degradation reactions. The degradation rate of quercetin was highest in 80% ethanol aqueous solution and decreased with increasing temperature. Longer US durations caused increases in the extent of quercetin degradation. Liquid height, ultrasonic intensity, pulse length, and duty cycle of US affected degradation rates but did not change the nature of degradation of the flavonoids. Four types of reactions occurred simultaneously for quercetin under US treatment: oxidation, addition, polymerization, and decomposition. Eight degradation products were tentatively identified as dimer, alcohol addition, oxidation, and decomposition products. PMID:24516562

  9. Sonochemical effects on 14 flavonoids common in citrus: relation to stability.

    Directory of Open Access Journals (Sweden)

    Liping Qiao

    Full Text Available The sonochemical effects of ultrasound (US treatment on 14 flavonoids representing the main flavonoids in citrus fruit were investigated in a standard mixture by stability evaluation of a model system. Degradation products were further tentatively identified by Fourier transform infrared spectroscopy and high-performance liquid chromatography-ultraviolet detection-electrospray ionization tandem mass spectrometry. Thirteen flavonoids (i.e., eriocitrin, narirutin, neohesperidin, quercitrin, eridictyol, didymin, naringenin, luteolin, sinensetin, nobiletin, tangeretin, naringin, and hesperidin were fairly stable whereas quercetin was degraded significantly by US treatment. The types of solvent and temperature used were important factors that determined the resulting degradation reactions. The degradation rate of quercetin was highest in 80% ethanol aqueous solution and decreased with increasing temperature. Longer US durations caused increases in the extent of quercetin degradation. Liquid height, ultrasonic intensity, pulse length, and duty cycle of US affected degradation rates but did not change the nature of degradation of the flavonoids. Four types of reactions occurred simultaneously for quercetin under US treatment: oxidation, addition, polymerization, and decomposition. Eight degradation products were tentatively identified as dimer, alcohol addition, oxidation, and decomposition products.

  10. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies

    International Nuclear Information System (INIS)

    Saien, J.; Khezrianjoo, S.

    2008-01-01

    An attempt was made to investigate the potential of UV-photocatalytic process in the presence of TiO 2 particles for the degradation of carbendazim (C 9 H 9 N 3 O 2 ), a fungicide with a high worldwide consumption but considered as a 'priority hazard substance' by the Water Framework Directive of the European Commission (WFDEC). A circulating upflow photo-reactor was employed and the influence of catalyst concentration, pH and temperature were investigated. The results showed that degradation of this fungicide can be conducted in the both processes of only UV-irradiation and UV/TiO 2 ; however, the later provides much better results. Accordingly, a degradation of more than 90% of fungicide was achieved by applying the optimal operational conditions of 70 mg L -1 of catalyst, natural pH of 6.73 and ambient temperature of 25 deg. C after 75 min irradiation. Under these mild conditions, the initial rate of degradation can be described well by the Langmuir-Hinshelwood kinetic model. Toxicological assessments on the obtained samples were also performed by measurement of the mycelium growth inhibition of Fusarium oxysporum fungus on PDA medium. The results indicate that the kinetics of degradation and toxicity are in reasonably good agreement mainly after 45 min of irradiation; confirming the effectiveness of photocatalytic process

  11. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    Science.gov (United States)

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  12. Particle passage kinetics and neutral detergent fiber degradability of silage of pineapple waste (aerial parts under different packing densities

    Directory of Open Access Journals (Sweden)

    Graciele Araújo de Oliveira Caetano

    2014-01-01

    Full Text Available The objective of this study was to determine the kinetics of in situ degradability parameters of the dry matter (DM and neutral detergent fiber (NDF and the passage of materials originating from the ensilage of the waste from pineapple cultivation (aerial parts. The four treatments utilized were silage of pineapple waste compacted at 600, 700, 900 and 1000 kg/m³. After ensiling the material from the pineapple cultivation, the particle-transit and rumen-degradation kinetics were analyzed. For the analysis of particle transit, chromium was utilized as a marker to mark the fiber. Passage rates were determined by retrieving the markers in the feces of the animals. In the degradation assay, samples were incubated in nylon bags for 0, 6, 18, 48 and 96 hours. The behavior observed in the regression curves of the variables analyzed describes high correlation between them, i.e., the time during which the silage is retained in the rumen influences its digestibility and its degradation rate. Although the silage compacted at 900 kg/m³ shows a larger potentially digestible fraction, it is recommended that it be ensiled at a compaction density of approximately 750 kg/m³ due to the lower cost and shorter mean retention time in the rumen-reticulum and rumen fill, thereby increasing the ruminal degradation and passage dynamics.

  13. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition.

    Science.gov (United States)

    Souri, E; Aghdami, A Negahban; Adib, N

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.

  14. Pengolahan Limbah Cair Rumah Sakit secara Sonochemical

    Directory of Open Access Journals (Sweden)

    Laila Kusuma

    2017-06-01

    Full Text Available Hospital as a service provider has an important role in human life, especially for people who are experiencing physical and mental disorders. Various types of diseases and therapies performed in hospitals has made it as one of the producers of hazardous and infectious waste that requires special handling and processing so as not to pollute the water, soil, and air environment. Hospital wastewater treatment was conducted to determine the ability of sonochemical method to reduce level of Chemical Oxygen Demand (COD and determine the optimum conditions of the parameters used by the design of Response Surface Methodology Box-Behnken. The parameters that affected this process was the concentration of hydrogen peroxide (H2O2, pH, and reaction time. The Waste used was taken from the waste water treatment plant in Zainoel Abidin General Hospital in Banda Aceh with COD value 260.65 ppm. The optimum conditions of this treatment process occured at pH 2, H2O2 concentration 500 ppm, and reaction time 119.98 minutes with reduction of COD was 81.88%.ABSTRAKRumah sakit sebagai penyedia layanan jasa memegang peranan cukup penting dalam kehidupan manusia, terutama bagi orang-orang yang sedang mengalami gangguan fisik dan mental. Berbagai jenis penyakit dan terapi yang dilakukan di rumah sakit telah menjadikannya sebagai salah satu penghasil limbah berbahaya dan infeksius yang memerlukan penanganan dan pengolahan khusus agar tidak mencemari lingkungan yaitu air, tanah dan udara. Pengolahan limbah cair rumah sakit dilakukan untuk mengetahui kemampuan metode sonochemical dalam menurunkan kadar Chemical Oxygen Demand (COD dan menentukan kondisi optimum dari parameter yang digunakan berdasarkan disain Response Surface Methodology Box-Behnken. Parameter yang mempengaruhi proses ini adalah konsentrasi hidrogen peroksida (H2O2, pH, dan waktu reaksi. Limbah yang digunakan diambil dari instalasi pengolahan air limbah di Rumah Sakit Umum Zainoel Abidin Kota Banda Aceh

  15. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  16. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hansol; Ryu, Keungarp [University of Ulsan, Ulsan (Korea, Republic of); Kwon, Oyul [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-09-15

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H{sub 2}O{sub 2} as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  17. p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design.

    Science.gov (United States)

    Meijide, J; Rosales, E; Pazos, M; Sanromán, M A

    2017-10-01

    The chemical process scale-up, from lab studies to industrial production, is challenging and requires deep knowledge of the kinetic model and the reactions that take place in the system. This knowledge is also useful in order to be employed for the reactor design and the determination of the optimal operational conditions. In this study, a model substituted phenol such as p-nitrophenol was degraded by electro-Fenton process and the reaction products yielded along the treatment were recorded. The kinetic model was developed using Matlab software and was based on main reactions that occurred until total mineralization which allowed predicting the degradation pathway under this advanced oxidation process. The predicted concentration profiles of p-nitrophenol, their intermediates and by-products in electro-Fenton process were validated with experimental assays and the results were consistent. Finally, based on the developed kinetic model the degradation process was optimized using central composite design taking as key parameters the ferrous ion concentration and current density. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of Degradation Kinetic of Tomato Paste Color in Heat Processing and Modeling of These Changes by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Ganjeh

    2015-12-01

    Full Text Available Color is an important qualitative factor in tomato products such as tomato paste which is affected by heat processing. The main goal of this study was to evaluate the degradation kinetics of tomato paste color during heat processing by Arrhenius equation and modeling of these changes by response surface methodology (RSM. Considering this purpose, tomato paste was processed at three temperatures of 60, 70 and 80 °C for 25-100 minutes and by three main color indices including L, a and b, a/b ratio, total color difference (TCD, Saturation index (SI and hue angle (HU was analyzed. Degradation kinetics of these parameters was evaluated by Arrhenius equation and their changing trends were modeled by RSM. All parameters except TCA (zero order followed a first order reaction. The b index by highest and TCA and a/b by least activation energies had the maximum and minimum sensitivity to the temperature changes, respectively. Also, TCD and b had the maximum and minimum changing rates, respectively. All responses were influenced by independent parameters (the influence of temperature was more than time and RSM was capable of modeling and predicting these responses. In general, Arrhenius equation was appropriate to evaluate degradation kinetics of tomato paste color changes and RSM was able to estimate independent and interaction effects of time and temperature so that quadratic models were capable to predict these changes by a high accuracy (R2 > 0.95.

  19. Kinetics of transit and degradation of the fiber from guinea grass silages enriched with waste from soybean pre-cleaning

    Directory of Open Access Journals (Sweden)

    Filipe Ton Fialho

    2015-06-01

    Full Text Available The objective was to study the kinetics of transit and degradation of the fiber from guinea grass and the waste from soybean pre-cleaning (WSPC, ensiled with different proportions of mass (0, 100, 150, and 200 g WSPC/kg total mass. Four crossbred (Gyr × Holstein, fistulated cattle with an average body mass of 400±50 kg were organized in a 4 × 4 Latin square experimental design. The fiber utilized in the study of the transit kinetics was stained with chromium mordant, whereas the in situ technique was adopted for the degradation kinetics. The level of inclusion of WSPC only affected the true digestibility and the mean retention time. The addition of waste from soybean pre-cleaning to the silage of guinea grass is beneficial, in terms of kinetics of digestion and passage, at up to levels close to 100 g/kg, because after this quantity the fiber digestion and passage in and through the reticulo-rumen are impaired and there may be alterations in the ruminal environment that will affect the use of silage by animals.

  20. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks.

    Science.gov (United States)

    Shen, Genxiang; Zhang, Yu; Hu, Shuangqing; Zhang, Hongchang; Yuan, Zhejun; Zhang, Wei

    2018-03-01

    Sulfonamides, one of the commonest antibiotics, were widely used on humans and livestock to control pathema and bacterial infections resulting in further environmental risks. The present study evaluated the adsorption and degradation of sulfadiazine (SDZ) and sulfamethoxazole (SMX) in an agricultural soil system under an anaerobic condition. Low sorption coefficients (K d , 1.22 L kg -1 for SDZ and 1.23 L kg -1 for SMX) obtained from Freundlich isotherms experiment indicated that poor sorption of both antibiotics may pose a high risk to environment due to their high mobility and possibility of entering surface and ground water. Degradation occurred at a lower rate under the anaerobic environment, where both two antibiotics had higher persistence in sterile and non-sterile soils with degradation ratio  20 d. Additionally, the addition of manure slightly increased degradation rates of SDZ and SMX, but there were no significant differences between single and repeated manure application at a later stage (p > 0.05), which suggested that the degradation was affected by both biotic and abiotic factors. Degradation rates would be slower at a higher concentration, indicating that degradation kinetics of SDZ and SMX were dependent on initial concentrations. During the degradation period, the antibiotics removal may change temperature, pH, sulfate and nitrate in soil, which suggested that the variation of antibiotics concentrations was related to the changes of soil physicochemical properties. An equation was proposed to elucidate the link between adsorption and degradation under different conditions, and to predict potential environmental risks of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    Science.gov (United States)

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Degradation kinetics of reactive dye by UV/H2O2/US process under continuous mode operation.

    Science.gov (United States)

    Fung, P C; Poon, C S; Chu, C W; Tsui, S M

    2001-01-01

    Degradation of a dye, C. I . Reactive Red 120, in dyeing waatewater by the process o UV/H2O2/US was studied with a bench-scale reactor under the continuous mode of operation. The effects of dyeing wastewater flow rate and the feeding rate of an oxidant, H2O2, on the color removal efficiency of the process were investigated. The significance of ultrasonic (US) combined with UV irradiation was also investigated and the performances of the process on color removal were evaluated. The results showed that the decoloration process followed a pseudo first-order kinetic model and the UV light is the most significant factor on dye removal. Besides, at higher flow rates, incomplete color removal was observed due to relatively insufficient irradiation time (low degradation rate). In order to achieve a higher degradation rate, the feeding rate of H2O2 should be increased.

  3. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    Science.gov (United States)

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (E a ) and pre-exponential factor (k 0 ) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, E a and k 0 of pure PLA are 57.54kJ/mol and 9.74×10 7 day -1 , respectively, but 65.5kJ/mol and 9.81×10 8 day -1 for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature. We systematically evaluate the effects of compression stress and temperature on the degradation properties of two materials: (pure-PLA) and MAO-MAWs/PLA (or Mg/PLA). The initial in vitro degradation kinetics of the unstressed or stressed pure-PLA and MAO-MAWs/PLA composite is confirmed to be Arrhenius-like. MAO-MAWs and external compression stress would influence the degradation activation energy (E a ) and pre-exponential factor (k 0 ) of PLA, and we noticed there is a linear relationship between E a and ln k 0 . Thereafter, we noticed that Mg 2+ , not H + , plays a significant role on the

  4. The Use of Sonochemical Technology for Cyanide Removal from Aqueous Solutions in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2011-10-01

    Full Text Available Cyanide is a highly toxic species that found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Discharge of it into the enviroment causes very health impact. Purpose of this study was, determination of sonochemical technology for cyanide removal from aqueous solutions in the presence of hydrogen peroxide. In this study, a productive set of 500w power ultresoun waves with two frequencies 35 kHz and 130 kHz were used. Experiments were performed using different initial ratio CN-/H2O2 1/1, 1/3 and 1/5 and at initial cyanide concentrations varying from 2.5 to 75 mg/L. The effects of parameters such as pH, time and initial cyanide concentration on the sonochemical degradation have been studied. The results of the study showed that the maximom removal efficiency of cyanide was achieved 85% by sonochemical technology at frequency of 130 kHz, during of 90 min, at pH of 11, at initial cyanide concentration of  2.5 mg/l and with initial ratio of CN-/H2O2 1/5. it was also found the rates of cyanide degradation under different conditions were quite low, and also the rate of cyanide degradation was high at first but later substantially reduced. The efficiency of cyanide removal had direct relationship with pH, frequency, hydrogen peroxide concentration and time ,and it had reverse relationship with cyanide concentration.

  5. Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films

    Directory of Open Access Journals (Sweden)

    Iis Sopyan

    2007-01-01

    Full Text Available The characteristics of the UV illumination-assisted degradation of gaseous acetaldehyde, hydrogen sulfide, and ammonia on highly active nanostructured-anatase and rutile films were investigated. It was found that the anatase film showed a higher photocatalytic activity than the counterpart did, however, the magnitude of difference in the photocatalytic activity of both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide. To elucidate the reasons for the observation, the adsorption characteristics and the kinetics of photocatalytic degradation of the three reactants on both films were analyzed. The adsorption analysis examined using a simple Langmuir isotherm, showed that adsorbability on both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide, which can be explained in terms of the decreasing electron-donor capacity. Acetaldehyde and ammonia adsorbed more strongly and with higher coverage on anatase film (1.2 and 5.6 molecules/nm2, respectively than on rutile (0.6 and 4.7 molecules/nm2, respectively. Conversely, hydrogen sulfide molecules adsorbed more strongly on rutile film (0.7 molecules/nm2 than on anatase (0.4 molecules/nm2. Exposure to UV light illumination brought about the photocatalytic oxidation of the three gases in contact with both TiO2 films, and the decrease in concentration were measured, and their kinetics are analyzed in terms of the Langmuir–Hinshelwood kinetic model. From the kinetic analysis, it was found that the anatase film showed the photocatalytic activities that were factors of ~8 and ~5 higher than the rutile film for the degradation of gaseous ammonia and acetaldehyde, respectively. However, the activity was only a factor of ~1.5 higher for the photodegradation of hydrogen sulfide. These observations are systematically explained by the charge separation efficiency and the adsorption characteristics of each catalyst as well as by the physical and electrochemical properties of each

  6. Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates.

    Science.gov (United States)

    Miao, Dong; Peng, Jianbiao; Zhou, Xiaohuan; Qian, Li; Wang, Mengjie; Zhai, Li; Gao, Shixiang

    2018-05-17

    Atenolol (ATL) has been widely detected in wastewater and aquatic environment. Although satisfactory removal of ATL from wastewater could be achieved, the mineralization ratio is usually low, which may result in the accumulation of its transformation products in the effluent and cause additional ecological risk to the environment. The aim of this study is to explore the effectiveness of heat activated persulfate (PS) in the removal of ATL from wastewater. Influencing factors including temperature, PS dosage, solution pH, existence of NO 3 - , Cl - , HCO 3 - and Suwannee river fulvic acid (SRFA) were examined. Complete removal of ATL was achieved within 40 min at pH 7.0 and 70 °C by using 0.5 mM PS. Inhibitive effects of HCO 3 - and FA had been observed on ATL oxidation, which was increased with the increase of their concentration. Sulfate radical (SO 4 - ) was determined as the main reactive species by quenching experiment. Eight intermediates produced in ATL degradation were identified, and four degradation pathways were proposed based on the analysis of mass spectrum and frontier electron densities. The distribution of major intermediates was influenced by reaction temperature. Hydroxylation intermediates and deamidation intermediate were the most prominent at 50 °C and 60 °C, respectively. All intermediates were completely degraded in 40 min except P134 at 70 °C. Effective removal of TOC (74.12%) was achieved with 0.5 mM PS, pH 7.0 and 70 °C after 240 min. The results proved that heat activation of PS is a promising method to remove organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Analysis of neem oils by LC-MS and degradation kinetics of azadirachtin-A in a controlled environment. Characterization of degradation products by HPLC-MS-MS.

    Science.gov (United States)

    Barrek, Sami; Paisse, Olivier; Grenier-Loustalot, Marie-Florence

    2004-02-01

    Since it was first isolated, the oil extracted from seeds of neem (Azadirachtin indica A juss) has been extensively studied in terms of its efficacy as an insecticide. Several industrial formulations are produced as emulsifiable solutions containing a stated titer of the active ingredient azadirachtin-A (AZ-A). The work reported here is the characterization of a formulation of this insecticide marketed under the name of Neem-azal T/S and kinetic studies of the major active ingredient of this formulation. We initially performed liquid-liquid extraction to isolate the neem oil from other ingredients in the commercial mixture. This was followed by a purification using flash chromatography and semi-preparative chromatography, leading to (13)C NMR identification of structures such as azadirachtin-A, azadirachtin-B, and azadirachtin-H. The neem extract was also characterized by HPLC-MS using two ionization sources, APCI (atmospheric pressure chemical ionization) and ESI (electrospray ionization) in positive and negative ion modes of detection. This led to the identification of other compounds present in the extract-azadirachtin-D, azadirachtin-I, deacetylnimbin, deacetylsalannin, nimbin, and salannin. The comparative study of data gathered by use of the two ionization sources is discussed and shows that the ESI source enables the largest number of structures to be identified. In a second part, kinetic changes in the main product (AZ-A) were studied under precise conditions of pH (2, 4, 6, and 8), temperature (40 to 70 degrees C), and light (UV, dark room and in daylight). This enabled us to determine the degradation kinetics of the product (AZ-A) over time. The activation energy of the molecule (75+/-9 kJ mol(-1)) was determined by examining thermal stability in the range 40 to 70 degrees C. The degradation products of this compound were identified by use of HPLC-MS and HPLC-MS-MS. The results enabled proposal of a chemical degradation reaction route for AZ-A under

  8. Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Jlaiel, Lobna [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2016-04-15

    Ce–ZnO (2 mol %) and undoped ZnO catalysts have been synthesized through hydrothermal method and characterized by X-ray diffraction (XRD), Nitrogen physisorption at 77 K; Fourier transformed infrared spectroscopy (FTIR), UV–Visible spectroscopy, Photoluminescence spectra (PL), and Raman spectroscopy. Ce-doping reduces the average crystallite size, increases the BET surface area, shifts the absorption edge, reduces the electron–hole recombination and consequently improves photodegradation efficiency of Bisphenol A (BPA) in the presence of UV irradiation and hydrogen peroxide. The photocatalytic optimum conditions were established by studying the influence of various operational parameters including catalyst concentration, initial BPA concentration, H{sub 2}O{sub 2} concentration and initial pH. Under optimum conditions, Ce–ZnO (2%) achieved 100% BPA degradation and 61% BPA mineralization after 24 h of UV irradiation. BPA degradation reaction followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. Based on the identified intermediate products, the possible mechanism for BPA photodegradation is proposed. Toxicity under the optimum condition was also evaluated. - Graphical abstract: Proposed photocatalytic degradation pathway of BPA in the presence of Ce– ZnO (2%)/UV/H{sub 2}O{sub 2} system. - Highlights: • Influence of different parameters on the degradation and mineralization of BPA. • Identification of possible degradation products. • Toxicity tests conducted with Vibrio fischeri. • Simple and direct photodegradation mechanism of BPA is proposed.

  9. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    Directory of Open Access Journals (Sweden)

    Jianxia Sun

    2016-08-01

    Full Text Available As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200–500 W and treatment time (0–60 min. The degradation trend was consistent with first-order reaction kinetics (R2 > 0.9100. Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R2 = 0.8790, which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  10. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    Science.gov (United States)

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-08-24

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  11. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2016-02-01

    Full Text Available Abstract The kinetics of astaxanthin degradation and lipid oxidation in shrimp oil from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei as affected by storage temperature were studied. When shrimp oil was incubated at different temperatures (4, 30, 45 and 60 °C for 16 h, the rate constants (k of astaxanthin degradation and lipid oxidation in shrimp oil increased with increasing temperatures (p < 0.05. Thus, astaxanthin degradation and lipid oxidation in shrimp oil were augmented at high temperature. When shrimp oils with different storage conditions (illumination, oxygen availability and temperature were stored for up to 40 days, astaxanthin contents in all samples decreased throughout storage (p < 0.05. All factors were able to enhance astaxanthin degradation during 40 days of storage. With increasing storage time, the progressive formation of primary and secondary oxidation products were found in all samples as evidenced by the increases in both peroxide values (PV and thiobarbituric acid reactive substances (TBARS (p < 0.05. Light, air and temperatures therefore had the marked effect on astaxanthin degradation and lipid oxidation in shrimp oils during the extended storage.

  12. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples: kinetic study of the degradation and optimization using response surface methodology.

    Science.gov (United States)

    Mitsika, Elena E; Christophoridis, Christophoros; Fytianos, Konstantinos

    2013-11-01

    The aims of this study were (a) to evaluate the degradation of acetamiprid with the use of Fenton reaction, (b) to investigate the effect of different concentrations of H2O2 and Fe(2+), initial pH and various iron salts, on the degradation of acetamiprid and (c) to apply response surface methodology for the evaluation of degradation kinetics. The kinetic study revealed a two-stage process, described by pseudo- first and second order kinetics. Different H2O2:Fe(2+) molar ratios were examined for their effect on acetamiprid degradation kinetics. The ratio of 3 mg L(-1) Fe(2+): 40 mg L(-1) H2O2 was found to completely remove acetamiprid at less than 10 min. Degradation rate was faster at lower pH, with the optimal value at pH 2.9, while Mohr salt appeared to degrade acetamiprid faster. A central composite design was selected in order to observe the effects of Fe(2+) and H2O2 initial concentration on acetamiprid degradation kinetics. A quadratic model fitted the experimental data, with satisfactory regression and fit. The most significant effect on the degradation of acetamiprid, was induced by ferrous iron concentration followed by H2O2. Optimization, aiming to minimize the applied ferrous concentration and the process time, proposed a ratio of 7.76 mg L(-1) Fe(II): 19.78 mg L(-1) H2O2. DOC is reduced much more slowly and requires more than 6h of processing for 50% degradation. The use to zero valent iron, demonstrated fast kinetic rates with acetamiprid degradation occurring in 10 min and effective DOC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    Science.gov (United States)

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  15. Kinetics of degradation of sulfur mustard and sarin simulants on HKUST-1 metal organic framework.

    Science.gov (United States)

    Roy, Anuradha; Srivastava, Avanish K; Singh, Beer; Shah, Dilip; Mahato, Timir Haran; Srivastava, Anchal

    2012-10-28

    The applicability of HKUST-1 for the degradation of sulfur mustard and sarin simulants was studied with and without coadsorbed water. Degradation was found to be via hydrolysis and dependent on the nucleophilic substitution reaction, vapour pressure and molecular diameter of the toxicants.

  16. Degradation kinetics of monoethanolamine during CO2 and H2 S absorption from biogas

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon

    2015-02-01

    Full Text Available The rate of degradation of MEA during CO2 and H2 S absorption in the biogas upgrading process was examined in four degradation systems, i.e., MEA-CO2 , MEA-CO2 -O2 , MEA-CO2 -H2 S and MEA-CO2 -O2 -H2 S. Degradation experiments were performed in a 800-ml stainless steel autoclave reactor, using MEA concentrations of 3 and 5 mol/L, CO2 loadings of 0.4 and 0.5 mol CO2 /mol MEA, O2 pressure of 200 kPa, and H2 S concentrations of 84 and 87 mg/L at temperatures of 120 and 140C. The results showed that, for the MEA-CO2 system, an increase in temperature or MEA concentration resulted in a higher rate of MEA degradation. In contrast, an increase in CO2 loading in the MEA-CO2 -O2 system led to a reduction of MEA degradation. The degradation rate of the system with O2 was with 8.3 times as high as that of the system without O2 . The presence of H2 S did not appear to affect the rate of degradation in the MEA-CO2 -H2 S system. However, for the system in which both H2 S and O2 were present, the MEA degradation was additionally induced by H2 S, thus, resulting in higher degradation rates than those of the system with O2 only. The extent of degradation under the same period of time increased in the order MEA-CO2 , MEA-CO2 -H2 S < MEA-CO2 -O2 < MEA-CO2 -O2 -H2 S.

  17. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hyd...

  18. Kinetics of organic matter degradation in the Murchison meteorite for the evaluation of parent-body temperature history

    Science.gov (United States)

    Kebukawa, Yoko; Nakashima, Satoru; Zolensky, Michael E.

    2010-01-01

    To evaluate kinetic parameters for thermal degradation of organic matter, in situ heating experiments of insoluble organic matter (IOM) and bulk of Murchison (CM2) meteorite were conducted under Fourier transform infrared micro-spectroscopy combined with a heating stage. Decreases of aliphatic C-H band area under Ar flow were well fitted with Ginstling-Brounshtein three-dimensional diffusion model, and the rate constants for decreases of aliphatic C-H were determined. Activation energies Ea and frequency factors A obtained from these rate constants at different temperatures using the Arrhenius equation were Ea=109+/-3kJmol-1 and A=8.7×104s-1 for IOM, and Ea=61+/-6kJmol-1 and A=3.8s-1 for bulk, respectively. Activation energy values of aliphatic C-H decrease are larger for IOM than bulk. Hence, the mineral assemblage of the Murchison meteorite might have catalytic effects for the organic matter degradation. Using obtained kinetic expressions, the time scale for metamorphism can be estimated for a given temperature with aliphatic C-H band area, or the temperature of metamorphism can be estimated for a given time scale. For example, using the obtained kinetic parameters of IOM, aliphatic C-H is lost approximately within 200years at 100°C and 100Myr at 0°C. Assuming alteration period of 7.5Myr, alteration temperatures could be calculated to be <15+/-12°C. Aliphatic C-H decrease profiles in a parent body can be estimated using time-temperature history model. The kinetic expression obtained by the infrared spectral band of aliphatic C-H could be used as an alternative method to evaluate thermal processes of organic matter in carbonaceous chondrites.

  19. Sonochemically born proteinaceous micro- and nanocapsules.

    Science.gov (United States)

    Vassileva, Elena D; Koseva, Neli S

    2010-01-01

    The use of proteins as a substrate in the fabrication of micro- and nanoparticulate systems has attracted the interest of scientists, manufactures, and consumers. Albumin-derived particles were commercialized as contrast agents or anticancer therapeutics. Food proteins are widely used in formulated dietary products. The potential benefits of proteinaceous micro- and nanoparticles in a wide range of biomedical applications are indisputable. Protein-based particles are highly biocompatible and biodegradable structures that can impart bioadhesive properties or mediate particle uptake by specific interactions with the target cells. Currently, protein microparticles are engineered as vehicles for covalent attachment and/or encapsulation of bioactive compounds, contrast agents for magnetic resonance imaging, thermometric and oximetric imaging, sonography and optical coherence tomography, etc. Ultrasound irradiation is a versatile technique which is widely used in many and different fields as biology, biochemistry, dentistry, geography, geology, medicine, etc. It is generally recognized as an environmental friendly, cost-effective method which is easy to be scaled up. Currently, it is mainly applied for homogenization, drilling, cleaning, etc. in industry, as well for noninvasive scanning of the human body, treatment of muscle strains, dissolution of blood clots, and cancer therapy. Proteinaceous micro- and nanocapsules could be easily produced in a one-step process by applying ultrasound to an aqueous protein solution. The origin of this process is in the chemical changes, for example, sulfhydryl groups oxidation, that takes place as a result of acoustically generated cavitation. Partial denaturation of the protein most probably occurs which makes the hydrophobic interactions dominant and also responsible for the formation of stable capsules. This chapter aims to present the current state-of-the-art in the field of sonochemically produced protein micro- and nanocapsules

  20. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose.

    Science.gov (United States)

    Natarajan, Janeni; Madras, Giridhar; Chatterjee, Kaushik

    2016-12-01

    Despite significant advances in recent times, the investigation of discovering a perfect biomaterial is perennial. In this backdrop, blending of natural and synthetic polymers is gaining popularity since it is the easiest way to complement the drawbacks and attain a superlative material. Based on this, the objective of this study was to synthesize a novel polyester, poly(galactitol sebacate), and subsequently blend this polymer with one of the three natural polymers such as alginate, chitosan or ethyl cellulose. FT-IR showed the presence of both the polymers in the blends. 1 H NMR confirmed the chemical structure of the synthesized poly (galactitol sebacate). Thermal characterization was performed by DSC revealing that the polymers were amorphous in nature and the glass transition temperatures increased with the increase in ratio of the natural polymers in the blends. SEM imaging showed that the blends were predominantly homogeneous. Contact angle measurements demonstrated that the blending imparted the hydrophilic nature into poly (galactitol sebacate) when blending with alginate or chitosan and hydrophobic when blending with ethyl cellulose. In vitro hydrolytic degradation studies and dye release studies indicated that the polymers became more hydrophilic in alginate and chitosan blends and thus accelerated the degradation and release process. The reverse trend was observed in the case of ethyl cellulose blends. Modeling elucidated that the degradation and dye release followed first order kinetics and Higuchi kinetics, respectively. In vitro cell studies confirmed the cytocompatible nature of the blends. It can be proposed that the chosen natural polymers for blending showed wide variations in hydrophilicity resulting in tailored degradation, release and cytocompatibility properties and thus are promising candidates for use in drug delivery and tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Photocatalytic degradation kinetics, mechanism and ecotoxicity assessment of tramadol metabolites in aqueous TiO{sub 2} suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulou, U. [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Hela, D. [Department of Business Administration of Food and Agricultural Products, University of Patras, Agrinio 30100 (Greece); Konstantinou, I., E-mail: iokonst@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2016-03-01

    This study investigated for the first time the photocatalytic degradation of three well-known transformation products (TPs) of pharmaceutical Tramadol, N-desmethyl-(N-DES), N,N-bidesmethyl (N,N-Bi-DES) and N-oxide-tramadol (N-OX-TRA) in two different aquatic matrices, ultrapure water and secondary treated wastewater, with high (10 mg L{sup −1}) and low (50 μg L{sup −1}) initial concentrations, respectively. Total disappearance of the parent compounds was attained in all experiments. For initial concentration of 10 mg L{sup −1}, the target compounds were degraded within 30–40 min and a mineralization degree of more than 80% was achieved after 240 min of irradiation, while the contained organic nitrogen was released mainly as NH{sub 4}{sup +} for N-DES, N,N-Bi-DES and NO{sub 3}{sup −} for N-OX-TRA. The degradation rates of all the studied compounds were considerably decreased in the wastewater due to the presence of inorganic and organic constituents typically found in effluents and environmental matrices which may act as scavengers of the HO{sup •}. The effect of pH (4, 6.7, 10) in the degradation rates was studied and for N-DES-TRA and N,N-Bi-DES-TRA, the optimum pH value was 6.7. In contrast, N-OX-TRA showed an increasing trend in the photocatalytic degradation kinetic in alkaline solutions (pH 10). The major transformation products were identified by high resolution accurate mass spectrometry coupled with liquid chromatography (HR-LC–MS). Scavenging experiments indicated for all studied compounds the important role of HO{sup •} in the photocatalytic degradation pathways that included mainly hydroxylation and further oxidation of the parent compounds. In addition, Microtox bioassay (Vibrio fischeri) was employed for evaluating the ecotoxicity of photocatalytically treated solutions. Results clearly demonstrate the progressive decrease of the toxicity and the efficiency of the photocatalytic process in the detoxification of the irradiated solutions

  2. Kinetics of thermal degradation of betacyanins, betaxantins and vitamin C in a juice-based drink beet (Beta vulgaris l. and honey

    Directory of Open Access Journals (Sweden)

    William Sánchez-Chávez

    2015-06-01

    Full Text Available The kinetic of degradation betacyanins, betaxantins and vitamin C at 30 °C, 40 °C and 50 ºC was evaluated in a commercial beverage made of beet and honey, using the kinetic models of zero, first and second order; and Arrhenius model to evaluate the dependence of the rate of degradation with respect to temperature. It was determined that the degradation of the three compounds evaluated at the three tested temperatures followed a first order kinetics with a high correlation (R2=0.974, 0.98, 0.979. It was determined that the betacyanins and vitamin have a similar sensitivity to temperature; while betaxantins were more stable. Referring to the influence of temperature on the degradation rate, the activation energy and the reaction Q10 values were determined which confirm the increased stability of betaxantins regarding betacyanins and vitamin in the beverage of beet and honey.

  3. Use of Chiral Alcohols for Elucidating the Mode and Kinetics of Degradation of Fluorotelomer Compounds

    Science.gov (United States)

    Fluorotelomer polymers are the dominant product line of the fluorotelomer industry. Fluorotelomer polymers have been shown to degrade under environmental conditions to form numerous fluorotelomer and perfluorinated monomers that are of environmental and toxicological concern; how...

  4. Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO(2) aqueous solution.

    Science.gov (United States)

    Cao, Hua; Lin, Xiulian; Zhan, Haiying; Zhang, Hong; Lin, Jingxin

    2013-01-01

    5-Ethyl-5-phenylpyrimidine-2,4,6(1H, 3H, 5H)-trione is an anti-convulsant used to treat disorders of movement, e.g. tremors. This work deals with the transformation of phenobarbital by UV/TiO(2) heterogeneous photocatalysis, to assess the decomposition of the pharmaceutical compound, to identify intermediates, as well as to elucidate some mechanistic details of the degradation. The photocatalytic removal efficiency of 100 μm phenobarbital is about 80% within 60 min, while the degradation efficiency of phenobarbital was better in alkaline solution. The study on contribution of reactive oxidative species (ROSs) has shown that ()OH is responsible for the major degradation of phenobarbital, while the photohole, photoelectrons and the other ROSs have the minor contribution to the degradation. Finally, based on the identification of degradation intermediates, two main photocatalytic degradation pathways have been tentatively proposed, including the hydroxylation and cleavage of pyrimidine ring in the phenobarbital molecule respectively. Certainly, the phenobarbital can be mineralized when the photocatalytic reaction time prolongs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Soofivand, Faezeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2013-06-01

    Graphical abstract: In this work, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been sonochemically prepared using silver salicylate. The effect of preparation parameters on the morphology of the products was investigated by SEM images. Highlights: ► Herein, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been sonochemically prepared. ► The effect of preparation parameters on the morphology of the products was investigated. ► The photocatalytic activity of the as-prepared Ag{sub 2}CrO{sub 4} nanoparticles was tested. ► XPS spectra indicated the high purity of Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures obtained. - Abstract: In this work, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been produced via a sonochemical method using silver salicylate as precursor. Besides silver salicylate, Na{sub 2}CrO{sub 4} and (NH{sub 4}){sub 2}Cr{sub 2}O{sub 7} as starting reagents were applied. To investigate the effect of preparation parameters on the morphology and particle size of Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7}, sonication time, type of surfactant and its concentration were changed. The as-produced nanostructures were characterized by techniques like powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The scanning electron micrographs showed that particle-like and rod-like nanostructures of Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} were produced using different surfactants. To investigate the catalytic properties of Ag{sub 2}CrO{sub 4} nanoparticles, photooxidation of methyl orange (MO) was performed. According to the obtained results, it was found that the methyl orange degradation was about 87.3% after 280 min irradiation of visible light.

  6. Kinetics of the degradation of sulfur mustard on ambient and moist concrete

    International Nuclear Information System (INIS)

    Brevett, Carol A.S.; Sumpter, Kenneth B.; Nickol, Robert G.

    2009-01-01

    The rate of degradation of the chemical warfare agent sulfur mustard, bis(2-chloroethyl) sulfide, was measured on ambient and moist concrete using 13 C Solid State Magic Angle Spinning Nuclear Magnetic Resonance (SSMAS NMR). Three samples of concrete made by the same formulation, but differing in age and alkalinity were used. The sulfur mustard eventually degraded to thiodiglycol and 1,4-oxathiane via the intermediate sulfonium ions CH-TG, H-TG, H-2TG and O(CH 2 CH 2 ) 2 S + CH 2 CH 2 OH on all of the concrete samples, and in addition formed 8-31% vinyl moieties on the newer, more alkaline concrete samples. This is the first observation of the formation of O(CH 2 CH 2 ) 2 S + CH 2 CH 2 OH on a solid substrate. The addition of 2-chloroethanol to concrete on which mustard had fully degraded to thiodiglycol and 1,4-oxathiane resulted in the formation of O(CH 2 CH 2 ) 2 S + CH 2 CH 2 OH, thus demonstrating the reversibility of sulfur mustard degradation pathways. The sulfur mustard degradation half-lives on ambient concrete at 22 deg. C ranged from 3.5 to 54 weeks. When the substrates were moistened, the degradation half-lives at 22 deg. C ranged from 75 to 350 h. The degradation of sulfur mustard occurred more quickly at elevated temperatures and with added water. The non-volatile toxic sulfonium ions persisted for months to years on concrete at 22 deg. C and weeks to months on concrete at 35 deg. C, before decomposing to the relatively non-toxic compounds thiodiglycol and 1,4-oxathiane

  7. Kinetics of the degradation of sulfur mustard on ambient and moist concrete

    Energy Technology Data Exchange (ETDEWEB)

    Brevett, Carol A.S. [SAIC, Gunpowder Branch, P.O. Box 68, APG, MD 21010-0068 (United States)], E-mail: carol.brevett@us.army.mil; Sumpter, Kenneth B. [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424 (United States); Nickol, Robert G. [SAIC, Gunpowder Branch, P.O. Box 68, APG, MD 21010-0068 (United States)

    2009-02-15

    The rate of degradation of the chemical warfare agent sulfur mustard, bis(2-chloroethyl) sulfide, was measured on ambient and moist concrete using {sup 13}C Solid State Magic Angle Spinning Nuclear Magnetic Resonance (SSMAS NMR). Three samples of concrete made by the same formulation, but differing in age and alkalinity were used. The sulfur mustard eventually degraded to thiodiglycol and 1,4-oxathiane via the intermediate sulfonium ions CH-TG, H-TG, H-2TG and O(CH{sub 2}CH{sub 2}){sub 2}S{sup +}CH{sub 2}CH{sub 2}OH on all of the concrete samples, and in addition formed 8-31% vinyl moieties on the newer, more alkaline concrete samples. This is the first observation of the formation of O(CH{sub 2}CH{sub 2}){sub 2}S{sup +}CH{sub 2}CH{sub 2}OH on a solid substrate. The addition of 2-chloroethanol to concrete on which mustard had fully degraded to thiodiglycol and 1,4-oxathiane resulted in the formation of O(CH{sub 2}CH{sub 2}){sub 2}S{sup +}CH{sub 2}CH{sub 2}OH, thus demonstrating the reversibility of sulfur mustard degradation pathways. The sulfur mustard degradation half-lives on ambient concrete at 22 deg. C ranged from 3.5 to 54 weeks. When the substrates were moistened, the degradation half-lives at 22 deg. C ranged from 75 to 350 h. The degradation of sulfur mustard occurred more quickly at elevated temperatures and with added water. The non-volatile toxic sulfonium ions persisted for months to years on concrete at 22 deg. C and weeks to months on concrete at 35 deg. C, before decomposing to the relatively non-toxic compounds thiodiglycol and 1,4-oxathiane.

  8. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanpeng [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Fang, Hansun [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ji, Yuemeng; Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Computational approach is effective to reveal the transformation mechanism of MPB. • MPB degradation was more dependent on the [{sup •} OH] than temperature during AOPs. • O{sub 2} could enhance MPB degradation, but more harmful products were formed. • The risks of MPB products in natural waters should be considered seriously. • The risks of MPB products can be overlooked in AOPs due to short half-time. - Abstract: Hydroxyl radicals ({sup •} OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the {sup •} OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by {sup •} OH via OH-addition and H-abstraction routes. Among these routes, the {sup •} OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct ({sup •} MPB-OH{sub 1}) and dehydrogenated radical ({sup •} MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O{sub 2} and {sup •} OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment.

  9. The sonochemical arylation of malonic esters mediated by manganese triacetate.

    Science.gov (United States)

    Meciarova, M; Toma, S; Luche, J L

    2001-04-01

    The intermolecular arylation of malonate esters in acetic acid solution in the presence of manganese(III) triacetate is known to proceed via an Electron Transfer mechanism. Under sonication, this reaction undergoes only minor changes. In contrast, the intramolecular reaction of dimethyl alpha-(3-phenylpropyl)malonate provides a new case of sonochemical switching, with the formation of compounds 7-9, while conventional thermal conditions generate only the bicyclic compound 6. Reactions using the more powerful oxidant, cerium ammonium nitrate are governed by the formation of the nitrate ester 11. Compounds 7-9 are isolated in yields lower than with MnTA, and in proportions depending on the conditions, thermal or sonochemical.

  10. Doped ZnS:Mn nanoparticles obtained by sonochemical synthesis.

    Science.gov (United States)

    Korotchenkov, O A; Cantarero, A; Shpak, A P; Kunitskii, Yu A; Senkevich, A I; Borovoy, M O; Nadtochii, A B

    2005-10-01

    A study of sonochemically synthesized ZnS:Mn nanoparticles is presented. The particles prepared at low rf power (about 20 W) and room temperature coalesce to form morphologically amorphous large species (30-100 nm in diameter). As the power is increased in the range from 20 to 70 W, and the solution temperature is raised to 60 to 80 degrees C, finer particles are produced with the size ranging from 2 to 20 nm and improved crystallinity. The results indicate the dispersion of the Mn(2+) ions at near-surface sites in the particles. It is shown that the sonochemically fabricated particles approach the quality of the ones obtained by a standard chemical route and show a reasonable luminescence performance.

  11. Sonochemical synthesis of solar-light-driven Ago-PbMoO4 photocatalyst

    International Nuclear Information System (INIS)

    Gyawali, Gobinda; Adhikari, Rajesh; Joshi, Bhupendra; Kim, Tae Ho; Rodríguez-González, Vicente; Lee, Soo Wohn

    2013-01-01

    Highlights: • Solar light responsive Ag o -PbMoO 4 photocatalyst synthesized by sonochemical method. • UV–vis DRS reveals the strong absorption band due to SPR effect of Ag nanoparticles. • Ag o -PbMoO 4 possess higher photocatalytic activity over PbMoO 4 . • Enhanced photo-activity is explained on the basis of SPR effect of Ag nanoparticle. -- Abstract: Ag o -PbMoO 4 photocatalysts were synthesized by facile sonochemical method with different mol.% of Ag nanoparticles dispersed on the surface of PbMoO 4 . The synthesized powders were characterized by X-ray Diffraction (XRD) Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and Diffuse Reflectance Spectroscopy (UV–vis DRS) to investigate the crystal structure, morphology, chemical composition, and optical properties of the photocatalyst. Photocatalytic activities of the Ag o -PbMoO 4 samples were evaluated by the degradation of Indigo Carmine (IC) dye under simulated solar light irradiation. It has been observed that the sample containing 0.3 mol.% of Ag showed the best photocatalytic activity as compared to other samples. The results suggest that the dispersion of Ag nanoparticles on the surface of PbMoO 4 significantly enhances the photocatalytic activity of PbMoO 4 . Increase in photocatalytic activity of Ag o -PbMoO 4 photocatalyst has been explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the photocatalyst

  12. Estimation of kinetic parameters of anthocyanins and color degradation in vitamin C fortified cranberry juice during storage.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2017-04-01

    Color degradation in cranberry juice during storage is the most common consumer complaint. To enhance nutritional quality, juice is typically fortified with vitamin C. This study determined effect of gallic acid, a natural antioxidant, for the preservation of anthocyanins (ACYs) and color, and estimated kinetics of ACYs and color degradation. Juice, fortified with 40-80mg/100mL vitamin C and 0-320mg/100mL gallic acid, was pasteurized at 85°C for 1min and stored at 23°C for 16days. Total monomeric anthocyanins and red color intensity were evaluated spectrophotometrically and data were used to determine degradation rate constants (k values) and order of reaction (n) of ACYs and color. Due to high correlation, k and n could not be estimated simultaneously. To overcome this difficulty, both n and k were held at different constant values in separate analyses to allow accurate estimation of each. Parameters n and k were modeled empirically as functions of vitamin C, and of vitamin C and gallic acid, respectively. Reaction order n ranged from 1.2 to 4.4, and decreased with increasing vitamin C concentration. The final model offers an effective tool that could be used for predicting ACYs and color retention in cranberry juice during storage. Copyright © 2017. Published by Elsevier Ltd.

  13. Investigation of Halohydrins Degradation by Whole Cells and Cell-free Extract of Pseudomonas putida DSM 437: A Kinetic Approach

    Directory of Open Access Journals (Sweden)

    A. Konti

    2017-10-01

    Full Text Available The biodegradation of two halohydrins (1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol by P. putida DSM 437 was investigated. Intact cells of previously acclimatized P. putida DSM 437 as well as cell-free extracts were used in order to study the degradation kinetics. When whole cells were used, a maximum biodegradation rate of 3-CPD (vmax = 1.28.10–5 mmol mg–1 DCW h–1 was determined, which was more than 4 times higher than that of 1,3-DCP. However, the affinity towards both halohydrins (Km was practically the same. When using cell-free extract, the apparent vmax and Km values for 1,3-DCP were estimated at 9.61.10–6 mmol mg–1 protein h–1 and 8.00 mM, respectively, while for 3-CPD the corresponding values were 2.42.10–5 mmol mg–1 protein h–1 and 9.07 mM. GC-MS analysis of cell-free extracts samples spiked with 1,3-DCP revealed the presence of 3-CPD and glycerol, intermediates of 1,3-DCP degradation pathway. 3-CPD degradation was strongly inhibited by the presence of epichlorohydrin and to a lesser extent by glycidol, intermediates of dehalogenation pathway.

  14. Kinetic Study of the Alkaline Degradation of Oseltamivir Phosphate and Valacyclovir Hydrochloride using Validated Stability Indicating HPLC

    Directory of Open Access Journals (Sweden)

    Ramzia I. Al-Bagary

    2014-01-01

    Full Text Available Aqueous alkaline degradation was performed for oseltamivir phosphate (OP and valacyclovir hydrochloride (VA. Isocratic stability indicating the use of high-performance liquid chromatography (HPLC was presented for each drug in the presence of its degradation product. The separations were performed using the Nucleosil ODS column and a mobile phase consisting of phosphate buffer (pH = 7, acetonitrile, and methanol 50:25:25 (v/v/v for OP. For VA separation, a Nucleosil CN column using phosphate buffer (pH = 7 and methanol 85:15 (v/v was used as a mobile phase. Ultraviolet detection at 210 nm and 254 nm was used for OP and VA, respectively. The method showed high sensitivity concerning linearity, accuracy, and precision over the range 1-250 μg mL −1 for both drugs. The proposed method was used to determine the drug in its pharmaceutical formulation and to investigate the degradation kinetics of each drug's alkaline-stressed samples. The reactions were found to follow a first-order reaction. The activation energy could also be estimated. International Conference on Harmonisation guidelines were adopted for method validation.

  15. Determination of Ketorolac in the Effluent from a Hospital Treating Plant and Kinetics Study of Its Photolytic Degradation

    Directory of Open Access Journals (Sweden)

    Hector Hugo Ortega Soto

    2017-01-01

    Full Text Available In this work, two specific, sensitive, and rapid analytical methods were developed. One of them was for the determination of ketorolac in a hospital wastewater treatment plant where there is no interference with other organic substances; the other one was for the determination of the degradation kinetics in aqueous medium. Ketorolac was extracted from wastewater samples through solid-phase extraction (SPE cartridges, then it was identified and quantified by high-performance liquid chromatography (HPLC. Ketorolac was detected in concentrations between 0.1376 and 0.2667 μg/L. Photolytic degradation was performed on aqueous solutions of ketorolac tromethamine reference substance, at a concentration of 50 μg/mL. Samples were in direct contact with ultraviolet light in a dark chamber, equipped with two mercury lamps (254 nm at a radiation source of 15 W. The results of the photolytic degradation were adjusted to a first-order model, obtaining a half-life of 4.8 hrs.

  16. Study on kinetic degradation in soil and horizontal transfer of bt gene by 35S isotopic tracing method

    International Nuclear Information System (INIS)

    Wang Haiyan; Zhang Yanfei; Ye Qingfu

    2012-01-01

    In this study, 35 S isotopic tracing method was applied to investigate kinetic degradation of bt gene from Bt transgenic rice TT51 in two different soil and possibility of its horizontal transfer into soil bacteria as well. Results showed that, during 30 d of aerobic incubation, it was indicated that 35 S-Bt gene was not horizontally transferred into soil microorganisms. The aerobic soil degradation dynamics significantly followed a first-order dissipation pattern for bt gene. After 30 d of incubation, the amount of bt gene reached 9.32% of applied radioactivity for the fluvio-marine yellow loamy soil and 9.92% for the fluvio-aquatic soil, respectively. The half-lives in two soils were 3.53 d for the former soil and 5. 77 d for the latter soil, which means that bt gene was more easily degradable in the weak acidic soil. The use of 35 S labeling proved to be valuable; it served the purpose of validating the rigorousness of experimental protocols, and provided insights into the soil environmental safety assessment for Bt transgenic rice. (authors)

  17. Effects of sheep breed and soybean meal supplementation on rumen environment and degradation kinetics

    NARCIS (Netherlands)

    Lourenco, A.; Cone, J.W.; Fontes, P.; Dias-Da-Silva, A.

    2013-01-01

    The aim of this study was to evaluate if the in vivo digestibility and intake differences, observed in previous studies, between Ile-de-France (IF) and Churra-da-Terra-Quente (CTQ) sheep breeds, were due to rumen environment and degradability differences. The intake, digestibility, rumen environment

  18. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    -lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively

  19. Kinetics of phenol degradation in water solutions under gamma-irradiation

    International Nuclear Information System (INIS)

    Guliyeva, U.A.; Gurbanov, M.A.; Abdullayev, E.T.

    2014-01-01

    Full text : In this work the chemical oxygen demand and change of phenol concentration at the radiolysis of aqueous solutions of phenol was studied. Irradiation conducted under gamma-irradiation of 60Co at static conditions and at room temperature. The main component is water, therefore the radiolysis process of water plays an important role in radiolytic degradation of phenol

  20. Determining nutrients degradation kinetics of chickpea (Cicer arietinum straw using nylon bag technique in sheep

    Directory of Open Access Journals (Sweden)

    A. Mirzaei-Aghsaghali

    2012-05-01

    Full Text Available Straw a by-product from grain legume crops is produced in large quantities in Iran. Straw is constant component of ruminant diets on small holder farms; however, there is little information about its nutritive value. Accordingly experiment was conducted to determine the chemical composition and ruminal organic matter (OM and crude protein (CP degradability of chickpea straw using nylon bags (in situ technique. Replicated samples were incubated at 0, 2, 4, 8, 12, 24, 48 and 72 hours in three rumen canulated Ghezel rams with 50±3 kg body weight. Dry matter (DM, CP, ether extract (EE, OM, crude fiber (CF and nitrogen free extract (NFE content of chickpea straws were 92.2, 6.1, 5.5, 92.0, 34.3 and 46.2%, respectively. The soluble fraction (a of the OM and CP of chickpea straw was 17.5 and 40.8% and potential degradability (a+b of OM and CP was 56.7 and 72.0%, respectively. Effective degradability at different passage rates (2, 5 and 8% per hours for OM was 51.0 44.9 and 40.7% and for CP were 68.4, 64.3 and 61.3%, respectively. In conclusion, based on chemical composition and degradation characteristics, chickpea straw could have moderate nutritive value for ruminants.

  1. Using kinetic models to predict thermal degradation of fire-retardant-treated plywood roof sheathing

    Science.gov (United States)

    Patricia Lebow; Jerrold E. Winandy; Patricia K. Lebow

    2003-01-01

    Between 1985-1995 a substantial number of multifamily housing units in the Eastern and Southern U.S. experienced problems with thermally degraded fire-retardant-treated (FRT) plywood roof sheathing. A series of studies conducted at the USDA Forest Service, Forest Products Laboratory (FPL), examined the materials, chemical mechanisms, and process implications and has...

  2. Correction of MHS Viscosimetric Constants upon Numerical Simulation of Temperature Induced Degradation Kinetic of Chitosan Solutions

    Directory of Open Access Journals (Sweden)

    Vincenzo Maria De Benedictis

    2016-05-01

    Full Text Available The Mark–Houwink–Sakurada (MHS equation allows for estimation of rheological properties, if the molecular weight is known along with good understanding of the polymer conformation. The intrinsic viscosity of a polymer solution is related to the polymer molecular weight according to the MHS equation, where the value of the constants is related to the specific solvent and its concentration. However, MHS constants do not account for other characteristics of the polymeric solutions, i.e., Deacetilation Degree (DD when the solute is chitosan. In this paper, the degradation of chitosan in different acidic environments by thermal treatment is addressed. In particular, two different solutions are investigated (used as solvent acetic or hydrochloric acid with different concentrations used for the preparation of chitosan solutions. The samples were treated at different temperatures (4, 30, and 80 °C and time points (3, 6 and 24 h. Rheological, Gel Permeation Chromatography (GPC, Fourier Transform Infrared Spectroscopy (FT-IR, Differential Scanning Calorimetry (DSC and Thermal Gravimetric Analyses (TGA were performed in order to assess the degradation rate of the polymer backbones. Measured values of molecular weight have been integrated in the simulation of the batch degradation of chitosan solutions for evaluating MHS coefficients to be compared with their corresponding experimental values. Evaluating the relationship between the different parameters used in the preparation of chitosan solutions (e.g., temperature, time, acid type and concentration, and their contribution to the degradation of chitosan backbone, it is important to have a mathematical frame that could account for phenomena involved in polymer degradation that go beyond the solvent-solute combination. Therefore, the goal of the present work is to propose an integration of MHS coefficients for chitosan solutions that contemplate a deacetylation degree for chitosan systems or a more

  3. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.

    Science.gov (United States)

    Dong, Huiyu; Qiang, Zhimin; Hu, Jun; Qu, Jiuhui

    2017-09-15

    Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s -1 , which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis and kinetics of non-isothermal degradation of acetylene terminated silazane

    Institute of Scientific and Technical Information of China (English)

    Wei Jian Han; Li Ye; Ji Dong Hu; Tong Zhao

    2011-01-01

    Novel acetylene terminated silazane compounds, with three types of substituent, were synthesized by the aminolysis of dichlorosilane with 3-aminophenylacetylene (3-APA). Thermal property of the compounds is studied by thermogravimetry analysis (TGA). It shows that the acetylene terminated silazane has high temperature resistance. The char yield at 1000℃ is 77.6, 81.9 and 68.7 wt% for methyl, vinyl, and phenyl substituted silazane, respectively. The pyrolysis kinetics of the silazane is investigated by non-isothermal thermogravimetric measurement. The pyrolysis undergoes three stages, which is resolved by PEAKFIT. The kinetic parameters are calculated by the Kissinger method. The role of functionalities on the thermal resistance is discussed. The vinyl-silazane exhibits higher thermal stability because of higher cross-linking density.

  5. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms

    International Nuclear Information System (INIS)

    Aboulkas, A.; El harfi, K.; El Bouadili, A.

    2010-01-01

    Study of the decomposition kinetics is an important tool for the development of polymer recycling in industrial scale. In this work, the activation energy and the reaction model of the pyrolysis of high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) have been estimated from non-isothermal kinetic results. Firstly, the activation energy values obtained by Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa isoconversional methods, are 238-247 kJ/mol for HDPE, 215-221 kJ/mol for LDPE and 179-188 kJ/mol for PP. Secondly, the appropriate conversion model of the process was determined by Coats-Redfern and Criado methods. The pyrolysis reaction models of HDPE and LDPE are accounted for by 'Contracting Sphere' model, whereas that of PP by 'Contracting Cylinder' model.

  6. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Thermal degradation and kinetic study for different waste/rejected plastic materials

    International Nuclear Information System (INIS)

    Rana, Srujal; Parikh, Jigisha Kamal; Mohanty, Pravakar

    2013-01-01

    A kinetic analysis based on thermal decomposition of rejected polypropylene, plastic film and plastic pellets collected from different industrial outlet has been carried out. Non-isothermal experiments using different heating rates of 5, 10, 20, 30, 40 and 50 .deg. C min"−"1 have been performed from ambient to 700 .deg. C in a thermo-balance with the objective of determining the kinetic parameters. The values of activation energy and frequency factor were found to be in the range of 107-322 kJ/mol, 85-331 kJ/mol, 140-375 kJ/mol and 3.49E+07-4.74E+22 min⌃(-1), 3.52E+06-2.88E+22min⌃(-1), 7.28E+13-1.17E+25 min⌃(-1) for rejected polypropylene, plastic film and plastic pellets, respectively, by Coats-Redfern and Ozawa methods including different models. Kissinger method, a model free analysis is also adopted to find the kinetic parameters. Activation energy and frequency factor were found to be 108 kJ/mol, 98 kJ/mol, 132 kJ/mol and 6.89E+03, 2.12E+02, 8.06E+05 min⌃(-1) for rejected polypropylene, plastic film and plastic pellets, respectively, by using the Kissinger method

  8. Case study of the sonochemical decolouration of textile azo dye Reactive Black 5

    International Nuclear Information System (INIS)

    Vajnhandl, Simona; Le Marechal, Alenka Majcen

    2007-01-01

    The decolouration and mineralization of reactive dye C.I. Reactive Black 5, a well-known representative of non-biodegradable azo dyes, by means of ultrasonic irradiation at 20, 279 and 817 kHz has been investigated with emphasis on the effect of various parameters on decolouration and degradation efficiency. Characterization of the used ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using Fricke and iodine dosimeter. Experiments were carried out with low frequency probe type, and a high-frequency plate type transducer at 50, 100 and 150 W of acoustic power and within the 5-300 mg/L initial dye concentration range. Decolouration, as well as radical production, increased with increasing frequency, acoustic power, and irradiation time. Any increase in initial dye concentration results in decreased decolouration rates. Sonochemical decolouration was substantially depressed by the addition of 2-methyl-2-propanol as a radical scavenger, which suggests radical-induced reactions in the solution. Acute toxicity to marine bacteria Vibrio fischeri was tested before and after ultrasound irradiation. Under the conditions employed in this study, no toxic compounds were detected after 6 h of irradiation. Mineralization of the dye was followed by TOC measurements. Relatively low degradation efficiency (50% after 6 h of treatment) indicates that ultrasound is rather inefficient in overall degradation, when used alone

  9. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics.

    Science.gov (United States)

    Walker, Amanda M; Yu, Peiqiang; Christensen, Colleen R; Christensen, David A; McKinnon, John J

    2009-08-12

    The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate and extent of rumen degradation.

  10. UV and solar photo-degradation of naproxen: TiO₂ catalyst effect, reaction kinetics, products identification and toxicity assessment.

    Science.gov (United States)

    Jallouli, Nabil; Elghniji, Kais; Hentati, Olfa; Ribeiro, Ana R; Silva, Adrián M T; Ksibi, Mohamed

    2016-03-05

    Direct photolysis and TiO2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pHinitial 6.5) was 83% after 3h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (kapp) for NPX degradation by photolysis ranged from 0.0050 min(-1) at pH 3.5 to 0.0095 min(-1) at pH 6.5, while it was estimated to be 0.0063 min(-1) under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus.

    OpenAIRE

    Vogt, R G; Riddiford, L M; Prestwich, G D

    1985-01-01

    Behavioral and electrophysiological evidence has suggested that sex pheromone is rapidly inactivated within the sensory hairs soon after initiation of the action-potential spike. We report the isolation and characterization of a sex-pheromone-degrading enzyme from the sensory hairs of the silkmoth Antheraea polyphemus. In the presence of this enzyme at physiological concentration, the pheromone [(6E,11Z)-hexadecadienyl acetate] has an estimated half-life of 15 msec. Our findings suggest a mol...

  12. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huijiao; Bakheet, Belal; Yuan, Shi; Li, Xiang; Yu, Gang [School of Environment, Tsinghua University, Beijing 100084 (China); Murayama, Seiichi [Power and Industrial Systems R& D Center, Toshiba Corporation, Fuchu-shi, Tokyo (Japan); Wang, Yujue, E-mail: wangyujue@tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-08-30

    Highlights: • E-peroxone couples electrolysis with ozonation to driven peroxone reaction for pollutant degradation. • Significant amounts of ·OH can be efficiently produced in the E-peroxone process. • E-peroxone greatly enhances 1,4-dioxane degradation kinetics compared with ozonation and electrolysis. • E-peroxone consumes less energy for 1,4-dioxane mineralization than ozonation and electrolysis. • E-peroxone offers a cost-effective and energy-efficient alternative to degrade 1,4-dioxane. - Abstract: Degradation of 1,4-dioxane by ozonation, electrolysis, and their combined electro-peroxone (E-peroxone) process was investigated. The E-peroxone process used a carbon-polytetrafluorethylene cathode to electrocatalytically convert O{sub 2} in the sparged ozone generator effluent (O{sub 2} and O{sub 3} gas mixture) to H{sub 2}O{sub 2}. The electro-generated H{sub 2}O{sub 2} then react with sparged O{sub 3} to yield aqueous ·OH, which can in turn oxidize pollutants rapidly in the bulk solution. Using p-chlorobenzoic acid as ·OH probe, the pseudo-steady concentration of ·OH was determined to be ∼0.744 × 10{sup −9} mM in the E-peroxone process, which is approximately 10 and 186 times of that in ozonation and electrolysis using a Pt anode. Thanks to its higher ·OH concentration, the E-peroxone process eliminated 96.6% total organic carbon (TOC) from a 1,4-dioxane solution after 2 h treatment with a specific energy consumption (SEC) of 0.376 kWh g{sup −1} TOC{sub removed}. In comparison, ozonation and electrolysis using a boron-doped diamond anode removed only ∼6.1% and 26.9% TOC with SEC of 2.43 and 0.558 kWh g{sup −1} TOC{sub removed}, respectively. The results indicate that the E-peroxone process can significantly improve the kinetics and energy efficiency for 1,4-dioxane mineralization as compared to the two individual processes. The E-peroxone process may thus offer a highly effective and energy-efficient alternative to treat 1,4-dioxane

  13. Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation

    International Nuclear Information System (INIS)

    Manivel, Arumugam; Lee, Gang-Juan; Chen, Chin-Yi; Chen, Jing-Heng; Ma, Shih-Hsin; Horng, Tzzy-Leng; Wu, Jerry J.

    2015-01-01

    Highlights: • Synthesis of one-dimensional MoO 3 nanostructures using hydrothermal, microwave, and sonochemical methods. • Sonochemical synthesized MoO 3 presents the best efficiency for the dye removal by catalytic ozonation. • Efficient environmental remediation process. - Abstract: One-dimensional molybdenum trioxide nanostructures were prepared in three different approaches, including thermal, microwave, and sonochemical methods. The physicochemical properties of the obtained MoO 3 nanoparticles were investigated by diffused reflectance spectroscopy, X-ray diffraction analysis, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Among the methods as investigated, sonochemical synthesis gave well-dispersed fine MoO 3 nanoparticles compared with the other approaches. All the synthesized MoO 3 nanostructures were examined for the catalytic ozonation to degrade azo dye in aqueous environment. Different performances were obtained for the catalyst prepared in different methods and the catalytic efficiencies were found to be the order of sonochemical, microwave, and then thermal methods. The sonochemical MoO 3 catalyst allowed the total dye removal within 20 min and its good performance was justified according to their higher surface area with higher number of active sites that provide effective dye interaction for better degradation

  14. Determination of physicochemical properties and degradation kinetics of triamcinolone acetonide palmitate in vitro.

    Science.gov (United States)

    Peng, Cuilian; Liu, Cong; Tang, Xing

    2010-12-01

    Triamcinolone acetonide palmitate (TAP) is a lipophilic prodrug of triamcinolone acetonide (TAA) to improve the insoluble TAA physicochemical properties for the preparation of emulsions. This investigation has focused on the preformulation study of TAP, including its physicochemical properties and hydrolysis kinetics in vitro. The solubility of TAP in medium-chain triglyceride is about twice greater than that in soybean oil (long-chain triglyceride) (19.17 versus 9.55 mg/g) at 25°C, and in all investigated cases, lecithin (80, 160, and 240 mg/g) as solubilizer provided increased solubility of drugs in medium-chain triglyceride and long-chain triglyceride, whereas the maximum water solubility of TAP was 0.10 μg/mL. The partition coefficient (log P) of TAP was 5.79 irrespective of the pH conditions. The hydrolysis of TAP followed pseudo-first-order kinetics in aqueous solutions, and the stable pH range was from pH 5.0 to 9.0. The in vitro enzymolysis kinetics of TAP in rat plasma and liver homogenate was evaluated by measuring the decrease of TAP as well as the increase of TAA at 37°C for 96 hours. The results demonstrated that the TAP may be hydrolyzed mainly by rat plasma esterase and, to a minor extent, by liver esterase, and the hydrolysis half-life of TAP in 100% rat plasma was 17.53 ± 6.85 hours at pH 7.4. All these results indicated that TAP had successfully obtained higher lipid-soluble property for the preparation of intravenous emulsion and may be an effective prodrug for sustained release of TAA in vivo.

  15. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials--determination of intermediates and reaction pathways.

    Science.gov (United States)

    Doll, Tusnelda E; Frimmel, Fritz H

    2004-02-01

    The light-induced degradation of clofibric acid, carbamazepine, iomeprol and iopromide under simulated solar irradiation has been investigated in aqueous solutions suspended with different TiO2 materials (P25 and Hombikat UV100). Kinetic studies showed that P25 had a better photocatalytic activity for clofibric acid and carbamazepine than Hombikat UV100. For photocatalytic degradation of iomeprol Hombikat UV100 was more suitable than P25. The results can be explained by the higher adsorption capacity of Hombikat UV100 for iomeprol. The study also focuses on the identification and quantification of possible degradation products. The degradation process was monitored by determination of sum parameters and inorganic ions. In case of clofibric acid various aromatic and aliphatic degradation products have been identified and quantified. A possible multi-step degradation scheme for clofibric acid is proposed. This study proves the high potential of the photocatalytic oxidation process to transform and mineralize environmentally relevant pharmaceuticals and contrast media in water.

  16. Reaction kinetics of hydrazine neutralization in steam generator wet lay-up solution: Identifying optimal degradation conditions

    International Nuclear Information System (INIS)

    Schildermans, Kim; Lecocq, Raphael; Girasa, Emmanuel

    2012-09-01

    During a nuclear power plant outage, hydrazine is used as an oxygen scavenger in the steam generator lay-up solution. However, due to the carcinogenic effects of hydrazine, more stringent discharge limits are or will be imposed in the environmental permits. Hydrazine discharge could even be prohibited. Consequently, hydrazine alternatives or hydrazine degradation before discharge is needed. This paper presents the laboratory tests performed to characterize the reaction kinetics of hydrazine neutralization using bleach or hydrogen peroxide, catalyzed with either copper sulfate (CuSO 4 ) or potassium permanganate (KMnO 4 ). The tests are performed on two standard steam generator lay-up solutions based on different pH control agents: ammonia or ethanolamine. Different neutralization conditions are tested by varying temperature, oxidant addition, and catalyst concentration, among others, in order to identify the optimal parameters for hydrazine neutralization in a steam generator wet lay-up solution. (authors)

  17. KINETICS OF THE PHOTOCATALYTIC DEGRADATION OF SELECTED ORGANIC MICROPOLLUTANTS IN THE WATER ENVIROMENT

    Directory of Open Access Journals (Sweden)

    Edyta Anna Kudlek

    2017-04-01

    Full Text Available The paper presents an assessment of the removal degree of selected polycyclic aromatic hydrocarbons (anthracene, benzo(apyrene, xenoestrogens (octylphenol, pentachlorophenol and pharmaceutical compounds (diclofenac in the process of heterogeneous photocatalysis of their water solutions, which were prepared on the base of deionized water. Titanium dioxide at a dose of 100 mg/dm3 was used as a photocatalyst of the process. The kinetics of the process was determined based on the Langmuir-Hinsherlwood equation, assuming the pseudo-first-order reaction of micropollutants decomposition. Furthermore a toxicological analysis of water samples of test compounds was performed by the use of the Microtox® test. It has been found that the micropollutant concentrations decreased with the increase of process time and their removal degree after 60 minutes exceeds 90%. The analysis of the proces kinetic showed that the oxidation of the compounds occurred with the greatest intensity in the first stage of the process up to 10 min. The preformed toxicological assessment confirmed the incomplete decomposition of pollutants and the generation of by-products, which contribute to the increase of the toxicity of treated water solutions.

  18. Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water

    International Nuclear Information System (INIS)

    Mezyk, Stephen P.; Mincher, Bruce J.; Cooper, William J.; Kirkham Cole, S.; Fox, Robert V.; Gardinali, Piero R.

    2012-01-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60 Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water, is provided. - Highlights: ► Radical-based mineralization of aqueous halonitromethane disinfection byproducts. ► Constructed kinetic computer model for tri-halogenated halonitromethane removal. ► Model predicted that superoxide reaction is unimportant for halonitromethanes. ► Measured superoxide reaction with chloropicrin was negligibly slow, 4 M −1 s −1 . ► Determined that superoxide reaction with nitrate also insignificant at ∼10 4 M −1 s −1 .

  19. Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

    Directory of Open Access Journals (Sweden)

    Ya Ma

    2017-12-01

    Full Text Available Simple, efficient, and durable electrodes are highly demanded for practical electro­chemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR‑Ni foam was facilely prepared via one-step cyclic voltammetry electrodeposition of gra­phene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuran­zone (NFZ, a kind of typical antibiotics was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl, the removal efficiency of NFZ (C0 = 20 mg L−1 at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1 than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2, unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics.

  20. Photo-catalytic degradation of surfactants hexadecyltrimethyl-ammonium chloride in aqueous medium - a kinetic study

    International Nuclear Information System (INIS)

    Soomro, S.A.; Aziz, S.; Memon, A.R.

    2011-01-01

    Surfactants in the environment are a prerequisite for the sustainable development of human health and ecosystems. Surfactants are important in daily life in households as well as in industrial cleansing processes. It is important to have a detailed knowledge about their lifetime in the environment, their biodegradability in wastewater treatment plants and in natural waters, and their eco toxicity. Most of the issues on environmental acceptability focus on the effects on the environment associated with the use and disposal of these surfactants. These effects are taken into account by a risk assessment. The first step in a risk assessment is to estimate the concentrations of surfactants in the environmental compartment of interest, such as wastewater treatment plant effluents, surface waters, sediments, and soils. This estimate is generated either by actual measurement or by prediction via modelling. The measured or predicted concentrations are then compared to the concentrations of surfactant known to be toxic to organisms living in these environmental compartments. There are many situations where industry is producing both heavy metals ions and organic pollutants. Successful treatment of effluents of this type to achieve legislative compliance will depend on whether the heavy metals effect the process of degradation of the organic species and whether the presence of organic molecules hinder the process of removal of heavy metals. Degradation of cationic surfactant was studied with a photolytic cell system. Compressed air was used as oxidant and the temperature was maintained at 25-30 deg. C. Effect of UV source, hydrogen peroxide (H/sub 2/O/sub 2/) and titanium (TiO/sub 2/) on Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl) were recorded. HPLC and IR were used to analyse the rate of degradation of Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl).

  1. Thermal degradation kinetics of polyketone based on styrene and carbon monoxide

    International Nuclear Information System (INIS)

    Mu, Jiali; Fan, Wenjun; Shan, Shaoyun; Su, Hongying; Wu, Shuisheng; Jia, Qingming

    2014-01-01

    Highlights: • The PK were synthesized from carbon monoxide and styrene in the presence of PANI-PdCl 2 catalyst and PdCl 2 catalyst. • The structures and thermal behaviors of PK prepared by homogenous and the supported catalyst were investigated. • The microstructures of PK were changed in the supported catalyst system. • The alternating PK copolymer (PANI-PdCl 2 catalyst) was more thermally stable than PK (PdCl 2 catalyst). • The degradation activation energy values were estimated by Flynn–Wall–Ozawa method and Kissinger method. - Abstract: Copolymerization of styrene with carbon monoxide to give polyketones (PK) was carried out under homogeneous palladium catalyst and polyaniline (PANI) supported palladium(II) catalyst, respectively. The copolymers were characterized by 1 H NMR, 13 C NMR and GPC. The results indicated that the PK catalyzed by the supported catalyst has narrow molecular weight distribution (PDI = 1.18). For comparison purpose of thermal behaviors of PK prepared by the homogeneous and the supported catalyst, thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) were conducted at different heating rates. The peak temperatures (396–402 °C) for PK prepared by the supported catalyst are higher than those (387–395 °C) of PK prepared by the homogeneous catalyst. The degradation activation energy (E k ) values were estimated by Flynn–Wall–Ozawa method and Kissinger method, respectively. The E k values, as determined by two methods, were found to be in the range 270.72 ± 0.03–297.55 ± 0.10 kJ mol −1 . Structures analysis and thermal degradation analysis revealed that the supported catalyst changed the microstructures of PK, resulting in improving thermal stability of PK

  2. Thermal degradation kinetics of polyketone based on styrene and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jiali, E-mail: jiaqm411@163.com; Fan, Wenjun; Shan, Shaoyun; Su, Hongying; Wu, Shuisheng; Jia, Qingming

    2014-03-01

    Highlights: • The PK were synthesized from carbon monoxide and styrene in the presence of PANI-PdCl{sub 2} catalyst and PdCl{sub 2} catalyst. • The structures and thermal behaviors of PK prepared by homogenous and the supported catalyst were investigated. • The microstructures of PK were changed in the supported catalyst system. • The alternating PK copolymer (PANI-PdCl{sub 2} catalyst) was more thermally stable than PK (PdCl{sub 2} catalyst). • The degradation activation energy values were estimated by Flynn–Wall–Ozawa method and Kissinger method. - Abstract: Copolymerization of styrene with carbon monoxide to give polyketones (PK) was carried out under homogeneous palladium catalyst and polyaniline (PANI) supported palladium(II) catalyst, respectively. The copolymers were characterized by {sup 1}H NMR, {sup 13}C NMR and GPC. The results indicated that the PK catalyzed by the supported catalyst has narrow molecular weight distribution (PDI = 1.18). For comparison purpose of thermal behaviors of PK prepared by the homogeneous and the supported catalyst, thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) were conducted at different heating rates. The peak temperatures (396–402 °C) for PK prepared by the supported catalyst are higher than those (387–395 °C) of PK prepared by the homogeneous catalyst. The degradation activation energy (E{sub k}) values were estimated by Flynn–Wall–Ozawa method and Kissinger method, respectively. The E{sub k} values, as determined by two methods, were found to be in the range 270.72 ± 0.03–297.55 ± 0.10 kJ mol{sup −1}. Structures analysis and thermal degradation analysis revealed that the supported catalyst changed the microstructures of PK, resulting in improving thermal stability of PK.

  3. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries.

    Science.gov (United States)

    Gamboa-Santos, Juliana; Megías-Pérez, Roberto; Soria, A Cristina; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2014-06-15

    In this paper, a study on the usefulness of the determination of vitamin C together with indicators of the initial steps of Maillard reaction (2-furoylmethyl amino acids, 2-FM-AA) during the convective drying of strawberries has been carried out for the first time, paying special attention to the kinetics of degradation and formation, respectively, of both parameters. Formation of 2-FM-AA of Lys, Arg and GABA and vitamin C loss increased with time and temperature following, respectively, a zero and first-order kinetics. As supported by its lower activation energy, 2-FM-GABA (55.9 kJ/mol) and 2-FM-Lys+2-FM-Arg (58.2 kJ/mol) were shown to be slightly more sensitive indicators than vitamin C (82.1 kJ/mol). The obtained results, together with a complementary study on the rehydration ability and sensorial attributes of samples, pointed out the suitability of the convective drying system to obtain dried strawberries of high nutritive quality and bioactivity and good consumer acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation

    Science.gov (United States)

    Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei

    2018-01-01

    Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.

  5. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  6. Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.

    Science.gov (United States)

    Cisse, Mady; Vaillant, Fabrice; Acosta, Oscar; Dhuique-Mayer, Claudie; Dornier, Manuel

    2009-07-22

    Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.

  7. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    Science.gov (United States)

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Non-isothermal degradation and evaluation of kinetic parameters of some Schiff base metal complexes

    International Nuclear Information System (INIS)

    Mishra, A.P.; Soni, Monika

    2008-01-01

    Thermal decomposition of VO (II)-methyl isobutyl ketone-nicotinamide, VO (II)-2-furfurylidine-3,4-dichloroaniline, Co(II)-4-dimethyl amino benzylidine-3-chloro-4-fluoroaniline, VO(II)-2-pyridine carboxylidine-4-aminobenzoic acid complexes have been carried out by thermogravimetric method. The TG curves of complexes were recorded at a uniform rate of 20 deg C/min in nitrogen. The thermogram of the three VO(II) complexes exhibit single stage decomposition whereas the Co(II) complex shows a double stage decomposition. Various kinetic parameters i. e., energy of activation (E), entropy (AS) and frequency factor (Z) have been evaluated by using Coats-Redfern and Piloyan-Novikova equations and their comparable values are reported. The order of thermal stability of first decomposition stage is as: 4=2>1>3. (author)

  9. Degradation kinetics and assessment of the prediction equation of indigestible fraction of neutral detergent fiber from agroindustrial byproducts

    Directory of Open Access Journals (Sweden)

    José Gilson Louzada Regadas Filho

    2011-09-01

    Full Text Available This study aimed at estimating the kinetic parameters of ruminal degradation of neutral detergent fiber from agroindustrial byproducts of cashew (pulp and cashew nut, passion fruit, melon, pineapple, West Indian cherry, grape, annatto and coconut through the gravimetric technique of nylon bag, and to evaluate the prediction equation of indigestible fraction of neutral detergent fiber suggested by the Cornell Net Carbohydrate and Protein System. Samples of feed crushed to 2 mm were placed in 7 × 14 cm nylon bags with porosity of 50 µm in a ratio of 20 g DM/cm² and incubated in duplicate in the rumen of a heifer at 0, 3, 6, 9, 12, 16, 24, 36, 48, 72, 96 and 144 hours. The incubation residues were analyzed for NDF content and evaluated by a non-linear logistic model. The evaluation process of predicting the indigestible fraction of NDF was carried out through adjustment of linear regression models between predicted and observed values. There was a wide variation in the degradation parameters of NDF among byproducts. The degradation rate of NDF ranged from 0.0267 h-1 to 0.0971 h-1 for grape and West Indian cherry, respectively. The potentially digestible fraction of NDF ranged from 4.17 to 90.67%, respectively, for melon and coconut byproducts. The CNCPS equation was sensitive to predict the indigestible fraction of neutral detergent fiber of the byproducts. However, due to the high value of the mean squared error of prediction, such estimates are very variable; hence the most suitable would be estimation by biological methods.

  10. Kinetics of patulin degradation in model solution, apple cider and apple juice by ultraviolet radiation.

    Science.gov (United States)

    Zhu, Yan; Koutchma, Tatiana; Warriner, Keith; Shao, Suqin; Zhou, Ting

    2013-08-01

    Patulin is a mycotoxin produced by a wide range of molds involved in fruit spoilage, most commonly by Penicillium expansum and is a health concern for both consumers and manufacturers. The current study evaluated feasibility of monochromatic ultraviolet (UV) radiation at 253.7 nm as a possible commercial application for the reduction of patulin in fresh apple cider and juice. The R-52G MINERALIGHT® UV bench top lamp was used for patulin destruction. It was shown that 56.5%, 87.5%, 94.8% and 98.6% reduction of patulin can be achieved, respectively, in the model solution, apple cider, apple juice without ascorbic acid addition and apple juice with ascorbic acid addition in 2-mm thickness sample initially spiked by 1 mg·L(-1) of patulin after UV exposure for 40 min at UV irradiance of 3.00 mW·cm(-2). A mathematic model to compare the degradation rate and effective UV dose was developed. The effective UV doses that were directly absorbed by patulin for photochemical reaction were 430, 674, 724 and 763 mJ·cm(-3), respectively. The fluence-based decimal reduction time was estimated to 309.3, 31.3, 28.9 and 5.1 mW·cm(-2)·min, respectively, in four media mentioned above. The degradation of patulin followed the first-order reaction model. The time-based and fluence-based reaction rate constants were determined to predict patulin degradation. The time-based reaction rate constant of samples treated in dynamic regime with constant stirring (model solution: 2.95E-4 s(-1), juice: 4.31E-4 s(-1)) were significantly higher than samples treated in static regime (model solution: 2.79E-4 s(-1), juice: 3.49E-4 s(-1), p radiation may be an effective method for treating patulin-containing apple cider and juice.

  11. Kinetic thermal degradation of vitamin C during microwave drying of okra and spinach.

    Science.gov (United States)

    Dadali, Gökçe; Ozbek, Belma

    2009-01-01

    In this present study, the effect of microwave output power and sample amount on vitamin C loss in okra (Hibiscus esculenta L.) and spinach (Spinacia oleracea L.) were investigated using the microwave drying technique. The procedure is based on the reaction between l-ascorbic acid (vitamin C) and 2,6-dichloroindophenol. The proposed method was applied successfully to both okra and spinach for the determination of ascorbic acid (vitamin C) content. It was observed that as the microwave output power increased or as the sample amount decreased, the vitamin C in okra and spinach decreased as well. The activation energy for degradation of vitamin C for both okra and spinach was calculated using an exponential expression based on the Arrhenius equation.

  12. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  13. Kinetics of ascorbic acid degradation in un-pasteurized Iranian lemon juice during regular storage conditions.

    Science.gov (United States)

    Abbasi, A; Niakousari, M

    2008-05-15

    The aim of this research was to determine shelf life stability of un-pasteurized lemon juice filled in clear or dark green glass bottles. Presence of light, time and temperature affect the ascorbic acid retention in citrus juices. Bottles were stored at room temperature (27 +/- 3 degrees C) and in the refrigerator (3 +/- 1 degrees C). Total soluble solids, total titrable acidity and pH value were measured every three weeks and analysis was carried out on ascorbic acid content by means of titration method in the presence of 2,6-dichlorophenol indophenol. The study was carried out for 12 weeks after which slight changes in color, taste and apparent texture in some samples were observed and ascorbic acid content reduced by 50%. Soluble solids content, pH value and total acidity were 5.5 degrees Brix, 2.73 and 5 g/100 mL, respectively which appeared not to be significantly influenced by storage time or conditions. Ascorbic acid content initially at 38.50 mg/100 mL was sharply reduced to about 22 mg/100 mL within the first three weeks of storage. The final ascorbic acid content of all samples was about 15 mg/100 mL. The deteriorative reaction of ascorbic acid in the juice at all conditions followed a first-order kinetic model with activation energy of 137 cal mol(-1).

  14. VSS Degradation Kinetics in High Temperature Aerobic Digestion and Microbial Community Characteristics

    Directory of Open Access Journals (Sweden)

    Yunfen Shi

    2018-01-01

    Full Text Available Piggery wastewater is a kind of high concentration organic wastewater with high concentration of pollutants, large amount of emissions, and serious environmental pollution and is difficult to deal with. Piggery wastewater was treated with autothermal hyperthermia aerobic digestion process (ATAD and its biodegradation kinetics was studied. The ATAD system was automatically heated up and the reaction temperature rose from ambient temperature of 20°C to a maximum temperature of 64°C. Based on Arrhenius formula, the empirical model is obtained through dimensional analysis. The removal of volatile suspended solids (VSS was correlated with the initial VSS concentration, water inlet temperature, aeration rate, and agitation rate in the model. In the empirical model, the apparent activation energy was 2.827 kJ·mol−1. The exponentials for the initial VSS concentration, aeration rate, and stirring rate were 1.0587, −0.0976, and −0.1618, respectively. The correlation coefficient of the exponential factor was 0.9971. The VSS removal efficiency predicted by the model was validated with an actual test, showing a maximum relative deviation of 8.82%. Sludge systems show a lower diversity of microbial populations and Bacillus occupies a very important position in the reactor. The data obtained will be useful for optimizing piggery wastewater treatment process. The new model provided good theoretical guidance with good practicality.

  15. Contribution to the study of particle resuspension kinetics during thermal degradation of polymers.

    Science.gov (United States)

    Ouf, F-X; Delcour, S; Azema, N; Coppalle, A; Ferry, L; Gensdarmes, F; Lopez-Cuesta, J-M; Niang, A; Pontreau, S; Yon, J

    2013-04-15

    Experimental results are reported on the resuspension of particles deposited on polymer samples representative of glove boxes used in the nuclear industry, under thermal degradation. A parametric study was carried out on the effects of heat flux, air flow rate, fuel type and particle size distribution. Small-scale experiments were conducted on 10 cm × 10 cm PolyMethyl MethAcrylate (PMMA) and PolyCarbonate (PC) samples covered with aluminium oxide particles with physical geometric diameters of 0.7 and 3.6 μm. It was observed for both polymer (fuel) samples that heat flux has no effect on the airborne release fraction (ARF), whereas particle size is a significant parameter. In the case of the PMMA sample, ARF values for 0.7 and 3.6 μm diameter particles range from 12.2% (± 6.2%) to 2.1% (± 0.6%), respectively, whereas the respective values for the PC sample range from 3.2% (± 0.8%) to 6.9% (± 3.9%). As the particle diameter increases, a significant decrease in particle release is observed for the PMMA sample, whereas an increase is observed for the PC sample. Furthermore, a peak airborne release rate is observed during the first instants of PMMA exposure to thermal stress. An empirical relationship has been proposed between the duration of this peak release and the external heat flux. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    Science.gov (United States)

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments.

    Science.gov (United States)

    Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi

    2017-10-01

    Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI).

    Science.gov (United States)

    Zhou, Zhengwei; Jiang, Jia-Qian

    2015-01-01

    The treatment of ciprofloxacin (CIP) and ibuprofen (IBU) in test solutions by ferrate(VI) was investigated in this study. A series of jar test was performed in bench-scale at pH 6-9 and ferrate(VI) dose of 1-5 mg L(-1). Results demonstrated that ferrate(VI) removed CIP from test solutions efficiently, with above 70% of reduction under study conditions. In contrary, the removal rates of IBU were very low, less than 25% in all conditions. Raising ferrate(VI) dose improved the treatment performance, while the influence of solution pH was not significant at pH 6-9 compared with that of ferrate(VI) dose. In addition, kinetic studies of ferrate(VI) with both compounds were carried out at pH 8 and pH 9 (20 °C). Ferrate(VI) had a much higher reactivity with CIP than IBU at pH 8 and pH 9, with CIP's apparent second-order rate constants of 113.7±6.3 M(-1) s(-1) and 64.1±1.0 M(-1) s(-1), respectively. The rate constants of ferrate(VI) with IBU were less than 0.2 M(-1) s(-1) at pH 8 and pH 9. Furthermore, seven oxidation products (OPs) were formed during CIP degradation by ferrate(VI). The attack on the piperazinyl ring of the CIP by ferrate(VI) appeared to lead to the cleavage or hydroxylation of the rings, and the attack on the quinolone moiety by ferrate(VI) might lead to the cleavage of the double bond at the six-member heterocyclic ring. No OPs of IBU were detected during ferrate(VI) oxidation due to very small part of IBU was degraded by ferrate(VI). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sonochemical-assisted magnesium borate synthesis from different boron sources

    Directory of Open Access Journals (Sweden)

    Yildirim Meral

    2017-03-01

    Full Text Available In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM. The XRD analyses showed that the products were admontite [MgO(B2O33 · 7(H2O] with JCPDS (Joint Committee on Powder Diffraction Standards no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH62 · 9(H2O] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.

  20. Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance.

    Science.gov (United States)

    Chen, Deliang; Yoo, Seung Hwa; Huang, Qingsong; Ali, Ghafar; Cho, Sung Oh

    2012-04-23

    A novel one-step sonochemical approach to synthesize a plasmonic photocatalyst of AgCl nanocubes (ca. 115 nm in edge length) with a small amount of Ag metal species is presented. The nanoscale Ag/AgCl hybrid photocatalysts with cubic morphology are readily formed under ambient ultrasonic conditions and neither external heat treatment nor reducing agents are required. The size of the Ag/AgCl photocatalysts could be controlled by changing the concentrations of Ag(+) ions and polyvinylpyrrolidone molecules in precursor solutions. The compositions, microstructures, influencing factors, and possible growth mechanism of the Ag/AgCl hybrid nanocubes were systematically investigated. The Ag/AgCl photocatalysts show excellent photocatalytic performance for degradation of various dye molecules under visible light. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling

    International Nuclear Information System (INIS)

    Cheyns, K.; Mertens, J.; Diels, J.; Smolders, E.; Springael, D.

    2010-01-01

    Pesticide transport models commonly assume first-order pesticide degradation kinetics for describing reactive transport in soil. This assumption was assessed in mini-column studies with associated batch degradation tests. Soil mini-columns were irrigated with atrazine in two intermittent steps of about 30 days separated by 161 days application of artificial rain water. Atrazine concentration in the effluent peaked to that of the influent concentration after initial break-through but sharply decreased while influx was sustained, suggesting a degradation lag phase. The same pattern was displayed in the second step but peak height and percentage of atrazine recovered in the effluent were lower. A Monod model with biomass decay was successfully calibrated to this data. The model was successfully evaluated against batch degradation data and mini-column experiments at lower flow rate. The study suggested that first-order degradation models may underestimate risk of pesticide leaching if the pesticide degradation potential needs amplification during degradation. - Population dynamics of pesticide degrading population should be taken into account when predictions of pesticide fate are made to avoid underestimation of pesticide break-through towards groundwater.

  3. Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil

    Energy Technology Data Exchange (ETDEWEB)

    Poznyak, Tatyana [Superior School of Chemical Engineering, National Polytechnic Institute of Mexico (ESIQIE-IPN), Edif. 7, UPALM, C.P. 07738, Mexico D.F. (Mexico)]. E-mail: tpoznyak@ipn.mx; Garcia, Alejandro [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico); Chairez, Isaac [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico); Gomez, Miriam [Superior School of Chemical Engineering, National Polytechnic Institute of Mexico (ESIQIE-IPN), Edif. 7, UPALM, C.P. 07738, Mexico D.F. (Mexico); Poznyak, Alexander [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico)]. E-mail: apoznyak@ctrl.cinvestav.mx

    2007-07-31

    In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24 mg/g and treated by ozone (with the ozone initial concentration 16 mg/L) during 90 min in a reactor by the 'fluid bed' principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20 min and by-products of ozonation are started to be destroyed after 30 min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method.

  4. A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, M., E-mail: mariacristina.gagliardi@iit.it [Center for Micro Bio-Robotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy); Bertero, A. [Department of Biology, Unit of Cellular and Developmental Biology, University of Pisa, S.S.12 Abetone e Brennero 4, 56127 Pisa (Italy); Center for Neuroscience and Cognitive Systems @UNITN, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto (Italy); Bardi, G. [Center for Bio-Molecular Nanotechnologies @UniLe, Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano (Italy); Bifone, A. [Center for Neuroscience and Cognitive Systems @UNITN, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto (Italy)

    2016-02-01

    This paper reports the synthesis and the physicochemical, functional and biological characterisations of nanocarriers made of a novel di-block biodegradable poly(ether-ester) copolymer. This material presents tunable, fast biodegradation rates, but its products are less acidic than those of other biosorbable polymers like PLGA, thus presenting a better biocompatibility profile and the possibility to carry pH-sensitive payloads. A method for the production of monodisperse and spherical nanoparticles is proposed; drug delivery kinetics and blood protein adsorption were measured to evaluate the functional properties of these nanoparticles as drug carriers. The copolymer was labelled with a fluorescent dye for internalisation tests, and rhodamine B was used as a model cargo to study transport and release inside cultured cells. Biological tests demonstrated good cytocompatibility, significant cell internalisation and the possibility to vehiculate non-cell penetrating moieties into endothelial cells. Taken together, these results support the potential use of this nanoparticulate system for systemic administration of drugs. - Highlights: • We propose a novel biodegradable nanocarrier for intracellular drug delivery. • Biodegradation rates can be finely tuned by controlling copolymer composition. • Degradation products are less acidic, thus enabling delivery of pH-sensitive cargoes. • We demonstrate intracellular delivery of a non-cell-penetrating model drug. • No significant membrane damage by the polymer nanocarriers is observed.

  5. A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics

    International Nuclear Information System (INIS)

    Gagliardi, M.; Bertero, A.; Bardi, G.; Bifone, A.

    2016-01-01

    This paper reports the synthesis and the physicochemical, functional and biological characterisations of nanocarriers made of a novel di-block biodegradable poly(ether-ester) copolymer. This material presents tunable, fast biodegradation rates, but its products are less acidic than those of other biosorbable polymers like PLGA, thus presenting a better biocompatibility profile and the possibility to carry pH-sensitive payloads. A method for the production of monodisperse and spherical nanoparticles is proposed; drug delivery kinetics and blood protein adsorption were measured to evaluate the functional properties of these nanoparticles as drug carriers. The copolymer was labelled with a fluorescent dye for internalisation tests, and rhodamine B was used as a model cargo to study transport and release inside cultured cells. Biological tests demonstrated good cytocompatibility, significant cell internalisation and the possibility to vehiculate non-cell penetrating moieties into endothelial cells. Taken together, these results support the potential use of this nanoparticulate system for systemic administration of drugs. - Highlights: • We propose a novel biodegradable nanocarrier for intracellular drug delivery. • Biodegradation rates can be finely tuned by controlling copolymer composition. • Degradation products are less acidic, thus enabling delivery of pH-sensitive cargoes. • We demonstrate intracellular delivery of a non-cell-penetrating model drug. • No significant membrane damage by the polymer nanocarriers is observed.

  6. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  7. Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil

    International Nuclear Information System (INIS)

    Poznyak, Tatyana; Garcia, Alejandro; Chairez, Isaac; Gomez, Miriam; Poznyak, Alexander

    2007-01-01

    In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24 mg/g and treated by ozone (with the ozone initial concentration 16 mg/L) during 90 min in a reactor by the 'fluid bed' principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20 min and by-products of ozonation are started to be destroyed after 30 min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method

  8. Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis vinifera L.) and three different soils of India.

    Science.gov (United States)

    Oulkar, Dasharath P; Banerjee, Kaushik; Patil, Sangram H; Upadhyay, Ajay K; Taware, Praveen B; Deshmukh, Madhukar B; Adsule, Pandurang G

    2009-02-01

    This work was undertaken to determine the preharvest interval (PHI) of buprofezin to minimize its residues in grapes and thereby ensure consumer safety and avoid possible non-compliance in terms of residue violations in export markets. Furthermore, the residue dynamics in three grapevine soils of India was explored to assess its environmental safety. Residues dissipated following non-linear two-compartment first + first-order kinetics. In grapes, the PHI was 31 days at both treatments (312.5 and 625 g a.i. ha(-1)), with the residues below the maximum permissible intake even 1 h after foliar spraying. Random sampling of 5 kg comprising small bunchlets (8-10 berries) collected from a 1 ha area gave satisfactory homogeneity and representation of the population. A survey on the samples harvested after the PHI from supervised vineyards that received treatment at the recommended dose showed residues below the maximum residue limit (MRL) of 0.02 mg kg(-1) applicable for the European Union. In soil, the degradation rate was fastest in clay soil, followed by sandy loam and silty clay, with a half-life within 16 days in all the soils. The recommendation of the PHI proved to be effective in minimizing buprofezin residues in grapes. Thus, this work is of high practical significance to the domestic and export grape industry of India to ensure safety compliance in respect of buprofezin residues, keeping in view the requirements of international trade.

  9. Mechanism and degradation kinetics of zinc complex containing isophthalato and 2,2‧-dipyridylamine ligands under different atmospheres

    Science.gov (United States)

    Zdravković, J. D.; Radovanović, L.; Poleti, D.; Rogan, J. R.; Vulić, P. J.; Radovanović, Ž.; Minić, D. M.

    2018-06-01

    The design of mixed-ligand complexes are of increasing interest from fundamental as well as technological and curative aspects. Having that in mind, we studied zinc complex containing 2,2‧-dipyridylamine (dipya) and dianion of isophthalic acid (ipht), [Zn(dipya)(ipht)]n, as promising precursor for synthesis of nanostructured metal oxide. In that sense, the mechanism and degradation kinetics of [Zn(dipya)(ipht)]n was analyzed under non-isothermal conditions in nitrogen and in air atmospheres. Peak deconvolution of the [Zn(dipya)(ipht)]n decomposition profile, in the form of a derivative thermogram (DTG), in nitrogen atmosphere, revealed the presence of three decomposition steps, while in air five single steps were isolated. In both cases ZnO is formed as residue at 530 °C: pure (in air) or in amorphous matrix (nitrogen). In air we obtained well crystalized ZnO nanospheres (∼25 nm), by thermal treatment in temperature range 370-530 °C showing that this complex could be considered as good precursor for production of nanosized ZnO.

  10. Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures

    Science.gov (United States)

    Balitska, V.; Shpotyuk, O.; Brunner, M.; Hadzaman, I.

    2018-02-01

    Thermally-induced (170 °C) degradation-relaxation kinetics is examined in screen-printed structures composed of spinel Cu0.1Ni0.1Co1.6Mn1.2O4 ceramics with conductive Ag or Ag-Pd layered electrodes. Structural inhomogeneities due to Ag and Ag-Pd diffusants in spinel phase environment play a decisive role in non-exponential kinetics of negative relative resistance drift. If Ag migration in spinel is inhibited by Pd addition due to Ag-Pd alloy, the kinetics attains stretched exponential behavior with ∼0.58 exponent, typical for one-stage diffusion in structurally-dispersive media. Under deep Ag penetration into spinel ceramics, as for thick films with Ag-layered electrodes, the degradation kinetics drastically changes, attaining features of two-step diffusing process governed by compressed-exponential dependence with power index of ∼1.68. Crossover from stretched- to compressed-exponential kinetics in spinel-metallic structures is mapped on free energy landscape of non-barrier multi-well system under strong perturbation from equilibrium, showing transition with a character downhill scenario resulting in faster than exponential decaying.

  11. Sonochemical synthesis of stibnite nanoparticles and their use as radiolytic stabilizer in polynomial chloride matrix

    International Nuclear Information System (INIS)

    Albuquerque, Marilia Cordeiro C. de; Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2011-01-01

    Stibnite (Sb 2 S 3 ) was synthesized by sonochemical method. Amorphous powder of Sb 2 S 3 was obtained and exhibit nanospheres structure with an average size in the range of 300-500 nm. Commercial Polyvinyl Chloride (PVC) containing Sb 2 S 3 nanoparticles (PVC/Sb) at concentrations of 0.10; 0.30 and 0.50 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (M v ) was measured for PVC systems without nanoparticles and with nanoparticles. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of Sb 2 S 3 nanoparticles at 0.3 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 66,5% in PVC matrix. Results about the free radical scavenger action of the Sb 2 S 3 were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Changes in the infrared spectra of PVC systems indicated that polymer molecules interact with Sb 2 S 3 nanoparticles. (author)

  12. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yayapao, Oranuch [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-11-05

    Highlights: •Undoped and Dy-doped ZnO used as photocatalysts. •They were synthesized by sonochemistry. •The promising materials for treatment of organic pollutants. -- Abstract: Dy-doped ZnO nanostructures were synthesized by a sonochemical method. The concentration effect of Dy on their phase, morphology, optical properties and photocatalytic activities was investigated. XRD patterns indicated that the as-synthesized 0–3% Dy-doped ZnO was hexagonal wurtzite structure. SEM and TEM show that the products were nanorods with their growth direction along the c axis. The photoluminescence spectrum of 3% Dy-doped ZnO, applied by Gaussian analysis, consists of three emission peaks at 376 nm, 448 nm and 487 nm. The photocatalytic activities of the as-synthesized products were determined from the degradation of methylene blue (C{sub 16}H{sub 18}N{sub 3}SCl) by UV radiation. In this research, the 3% Dy-doped ZnO showed the highest photocatalytic activity.

  13. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yayapao, Oranuch; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-01-01

    Highlights: •Undoped and Dy-doped ZnO used as photocatalysts. •They were synthesized by sonochemistry. •The promising materials for treatment of organic pollutants. -- Abstract: Dy-doped ZnO nanostructures were synthesized by a sonochemical method. The concentration effect of Dy on their phase, morphology, optical properties and photocatalytic activities was investigated. XRD patterns indicated that the as-synthesized 0–3% Dy-doped ZnO was hexagonal wurtzite structure. SEM and TEM show that the products were nanorods with their growth direction along the c axis. The photoluminescence spectrum of 3% Dy-doped ZnO, applied by Gaussian analysis, consists of three emission peaks at 376 nm, 448 nm and 487 nm. The photocatalytic activities of the as-synthesized products were determined from the degradation of methylene blue (C 16 H 18 N 3 SCl) by UV radiation. In this research, the 3% Dy-doped ZnO showed the highest photocatalytic activity

  14. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO{sub 2}: A case of {beta}-blockers

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); An Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Li Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Song Weihua; Cooper, William J. [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175 (United States); Luo Haiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Guangzhou Product Quality Supervision and Testing Institute, National Centre for Quality Supervision and Testing of Processed Food (Guangzhou), Guangzhou 510110 (China); Guo Xindong [Guangzhou Product Quality Supervision and Testing Institute, National Centre for Quality Supervision and Testing of Processed Food (Guangzhou), Guangzhou 510110 (China)

    2010-07-15

    This study investigated the photocatalytic degradation of three {beta}-blockers in TiO{sub 2} suspensions. The disappearance of the compounds followed pseudo-first-order kinetics according to the Langmuir-Hinshelwood model and the rate constants were 0.075, 0.072 and 0.182 min{sup -1} for atenolol, metoprolol and propranolol, respectively. After 240 min irradiation, the reaction intermediates were completely mineralized to CO{sub 2} and the nitrogen was predominantly as NH{sub 4}{sup +}. The influence of initial pH and {beta}-blocker concentration on the kinetics was also studied. From adsorption studies it appears that the photocatalytic degradation occurred mainly on the surface of TiO{sub 2}. Further studies indicated that surface reaction with {center_dot}OH radical was principally responsible for the degradation of these three {beta}-blockers. The major degradation intermediates were identified by HPLC/MS analysis. Cleavage of the side chain and the addition of the hydroxyl group to the parent compounds were found to be the two main degradation pathways for all three {beta}-blockers.

  15. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO{sub 2} process: Optimization, kinetics and toxicity studies

    Energy Technology Data Exchange (ETDEWEB)

    Saien, J. [Department of Applied Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of)], E-mail: saien@basu.ac.ir; Khezrianjoo, S. [Department of Applied Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of)

    2008-09-15

    An attempt was made to investigate the potential of UV-photocatalytic process in the presence of TiO{sub 2} particles for the degradation of carbendazim (C{sub 9}H{sub 9}N{sub 3}O{sub 2}), a fungicide with a high worldwide consumption but considered as a 'priority hazard substance' by the Water Framework Directive of the European Commission (WFDEC). A circulating upflow photo-reactor was employed and the influence of catalyst concentration, pH and temperature were investigated. The results showed that degradation of this fungicide can be conducted in the both processes of only UV-irradiation and UV/TiO{sub 2}; however, the later provides much better results. Accordingly, a degradation of more than 90% of fungicide was achieved by applying the optimal operational conditions of 70 mg L{sup -1} of catalyst, natural pH of 6.73 and ambient temperature of 25 deg. C after 75 min irradiation. Under these mild conditions, the initial rate of degradation can be described well by the Langmuir-Hinshelwood kinetic model. Toxicological assessments on the obtained samples were also performed by measurement of the mycelium growth inhibition of Fusarium oxysporum fungus on PDA medium. The results indicate that the kinetics of degradation and toxicity are in reasonably good agreement mainly after 45 min of irradiation; confirming the effectiveness of photocatalytic process.

  16. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  17. The kinetics of sterane biological marker release and degradation processes during the hydrous pyrolysis of vitrinite kerogen

    Science.gov (United States)

    Abbott, G. D.; Wang, G. Y.; Eglinton, T. I.; Home, A. K.; Petch, G. S.

    1990-09-01

    The hydrous pyrolysis of a mineral-free vitrinite kerogen (Dinantian coal Lower Carboniferous, North East England) has been carried out at four temperatures (270, 300, 330, and 350°C) for heating times ranging from 2 to 648 h. No significant differences in the epimer-based maturation parameters 20S/(20S + 20R)-5α(H),14α(H),17α(H) C 29 non-rearranged steranes and 22S/(22S+22R)-17α(H), 21β(H) homohopanes were found for a comparison between "expelled oil" and "bitumen" fractions in the resulting pyrolysates. A deuterated model compound ((20R)-5α(H),14α(H),17α(H)-[2,2,4,4-d 4] cholestane) was added to a number of preextracted kerogens (vitrinite, Kimmeridge, Messel and Monterey) and the mixtures were heated under typical hydrous pyrolysis conditions. These experiments showed that direct chiral isomerisation at C-20 in the non-rearranged steranes appears to be relatively unimportant during hydrous pyrolysis which has also been suggested by other recent studies on geological samples.A kinetic model comprising consecutive release and degradation processes was derived to measure first-order rate coefficients from the bi-exponential concentration-time functions of both the (20R)-and (20S)-5α(H),14α(H),17α(H) C 29 "free" steranes in the vitrinite kerogen pyrolysates. This data was then used to calculate preliminary Arrhenius parameters for release ((20S): ΔEa = 125 ± 30 kJ mol -1, A ≈ 4.7 × 10 5 s -1;(20R): ΔEa = 151 ± 39 kJ mol -1, A ≈ 2.7 × 10 9 s -1) and degradation ((20S): ΔEa = 104 ± 22 kJ mol -1, A ≈ 5.8 × 10 3 s -1; (20R): Δa = 87 ± 6 kJ mol -1, A ≈ 2.2 × 10 2 s -1) of the above individual isomers and the values were found to be consistent with a free-radical chain mechanism. This work helps in the greater understanding of the important biomarker reactions that prevail in hydrous pyrolysis experiments.

  18. Isolation and Identification of Pyrene-degrading Bacteria from Soils around Landfills in Shiraz and Their Growth Kinetic Assay

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2011-12-01

    Full Text Available Background & Objectives: Pyrene is a kind of carcinogen hydrocarbon in environment and one of the top 129 pollutants as ranked by the U.S.Environmental Pretection Agency (USEPA. Today's commodious method that is considered by many researchers is the use of microorganisms to degrade these compounds from the environment. The goal of this research is separation and identification of the indigenous bacterias which are effective in decomposition of Pyrene hydrocarbon from soils around Shiraz Landfills. Isolated bacteria growth in the presence of different concentrations of the aforesaid organic pollutant was evaluated. Materials & Methods: Taking samples from Landfills were done after transportation them to the laboratory. The numbers of the bacterias were counted in a medium including Pyrene 0.6 g/l and in another medium without Pyrene. The isolated bacterias were separated by the enriched medium of hydrocarbon Pyrene and were recognized accordance with standards methods (specialty of colony, microscopic properties, fermentation of sugars and biochemical test.The kinetic growth of the separated bacterias was evaluated every 12 hours during 7 successive days. Results: It was reported that the numbers of the bacterias in the medium without Pyrene is more than those with Pyrene (cfu/g. The separated bacterias were included Bacillus spp., Pseudomonas spp., Micrococcus spp., Mycobacterium spp. These four isolated bacterias showed the best growth with Pyrene 0.6 g/l during third and fourth days. Conclusion: The separating bacterias, effecting in decomposition of PAH, make this possibility that the modern methods with more efficiency to be created for removing the carcinogen organic polluters from the environment. Moreover, the separated bacterias (relating to this research can be applied to develop the microbial population in the areas that polluted with Pyrene.

  19. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Detailed Assessment of the Kinetics of Hg-Cell Association, Hg Methylation, and Methylmercury Degradation in Several Desulfovibrio Species

    Science.gov (United States)

    Graham, Andrew M.; Bullock, Allyson L.; Maizel, Andrew C.; Elias, Dwayne A.

    2012-01-01

    The kinetics of inorganic Hg [Hg(II)i] association, methylation, and methylmercury (MeHg) demethylation were examined for a group of Desulfovibrio species with and without MeHg production capability. We employed a detailed method for assessing MeHg production in cultures, including careful control of medium chemistry, cell density, and growth phase, plus mass balance of Hg(II)i and MeHg during the assays. We tested the hypothesis that differences in Hg(II)i sorption and/or uptake rates drive observed differences in methylation rates among Desulfovibrio species. Hg(II)i associated rapidly and with high affinity to both methylating and nonmethylating species. MeHg production by Hg-methylating strains was rapid, plateauing after ∼3 h. All MeHg produced was rapidly exported. We also tested the idea that all Desulfovibrio species are capable of Hg(II)i methylation but that rapid demethylation masks its production, but we found this was not the case. Therefore, the underlying reason why MeHg production capability is not universal in the Desulfovibrio is not differences in Hg affinity for cells nor differences in the ability of strains to degrade MeHg. However, Hg methylation rates varied substantially between Hg-methylating Desulfovibrio species even in these controlled experiments and after normalization to cell density. Thus, biological differences may drive cross-species differences in Hg methylation rates. As part of this study, we identified four new Hg methylators (Desulfovibrio aespoeensis, D. alkalitolerans, D. psychrotolerans, and D. sulfodismutans) and four nonmethylating species (Desulfovibrio alcoholivorans, D. tunisiensis, D. carbinoliphilus, and D. piger) in our ongoing effort to generate a library of strains for Hg methylation genomics. PMID:22885751

  1. Spectral, thermal, kinetic, molecular modeling and eukaryotic DNA degradation studies for a new series of albendazole (HABZ) complexes

    Science.gov (United States)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-01-01

    This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.

  2. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    Science.gov (United States)

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  3. Investigation of the profile and kinetics of degradation of rivaroxaban using HPLC, TLC-densitometry and LC/MS/MS: Application to pre-formulation studies

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdallah

    2015-06-01

    Full Text Available Rivaroxaban (RIVA, an amide group-containing oral anticoagulant was subjected to stress conditions commonly required for the registration of pharmaceuticals: base and acid-catalyzed hydrolysis (0.1 M, 60 °C, 3–6 h, oxidation (10% H2O2, 24 h, photodegradation (300–800 nm, 24 h and thermal decomposition (50 °C, 6 h. Two major degradation products were separated and identified using TLC and LC/MS/MS, respectively. An orthogonal stability-indicating testing protocol (RP-HPLC and NP-TLC-densitometry was developed and validated according to ICH guidelines. Both assays enabled the determination of RIVA in the presence of its degradation products as well as the kinetics of degradation. Determination was carried out over a concentration range of (5.00–50.00 μg/mL and (0.40–12.00 μg/band with an accuracy of (100.81% ± 1.03 and (100.29% ± 1.08 for HPLC and TLC-densitometry, respectively. Results indicated that RIVA was stable towards oxidation, photodegradation and thermal decomposition but extremely sensitive to hydrolysis. Two major degradation products were detected in the case of base-catalyzed hydrolysis while only one degradation product was detected upon acid-catalyzed hydrolysis. This could be attributed to the presence of amide groups in RIVA structure of different stability profiles. The kinetics of hydrolysis was investigated in more detail and the reaction was found to follow the pseudo first order kinetics, as confirmed by the results of both HPLC and TLC-densitometric assays. The applicability of the assay for the determination of RIVA content and dissolution pattern of the innovator product as well as three generic formulations was demonstrated.

  4. Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms

    Directory of Open Access Journals (Sweden)

    Stuart D. Collyer

    2010-05-01

    Full Text Available The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm–2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes.

  5. Cold Incineration of Chlorophenols in Aqueous Solution by Advanced Electrochemical Process Electro-Fenton. Effect of Number and Position of Chlorine Atoms on the Degradation Kinetics

    Science.gov (United States)

    Oturan, Nihal; Panizza, Marco; Oturan, Mehmet A.

    2009-09-01

    This study reports the kinetics of the degradation of several chlorophenols (CPs), such as monochlorophenols (2-chlorophenol and 4-chlorophenol), dichlorophenols (2,4-dichlorophenol and 2,6- dichlorophenol), trichlorophenols (2,3,5- trichlorophenol and 2,4,5-trichlorophenol), 2,3,5,6-tetrachlorophenol, and pentachlorophenol, by the electro-Fenton process using a carbon felt cathode and a Pt anode. The effect of number and the position of the chlorine atoms in the aromatic ring on the oxidative degradation rate was evaluated and discussed. The oxidation reaction of all the CPs with hydroxyl radicals evidenced a pseudo-first-order kinetics and the rate constant decreased with increasing the number of chlorine atoms. The absolute rate constant of second-order reaction kinetics between CPs and •OH was determined by the competition kinetics method in the range of (3.56-7.75) × 109 M-1 s-1 and follows the same sequence of the apparent rate constants. The mineralization of several CPs and of a mixture of all CPs under study was monitored by the total organic carbon (TOC) removal and the chlorine release during mineralization was followed by ion chromatography. Our results demonstrated that more chlorinated phenols are more difficult to mineralize; however for all the tested CPs, almost quantitative release of chloride ions was obtained after 6 h of treatment.

  6. Sonochemical treatment of benzene/toluene contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, G.; Gleason, M. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering; Popov, V. [Scientific Production Association Typhoon, Obninsk (Russian Federation). Inst. of Experimental Meterology

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  7. Degradation of pharmaceuticals in UV (LP)/H₂O₂ reactors simulated by means of kinetic modeling and computational fluid dynamics (CFD).

    Science.gov (United States)

    Wols, B A; Harmsen, D J H; Wanders-Dijk, J; Beerendonk, E F; Hofman-Caris, C H M

    2015-05-15

    UV/H2O2 treatment is a well-established technique to degrade organic micropollutants. A CFD model in combination with an advanced kinetic model is presented to predict the degradation of organic micropollutants in UV (LP)/H2O2 reactors, accounting for the hydraulics, fluence rate, complex (photo)chemical reactions in the water matrix and the interactions between these processes. The model incorporates compound degradation by means of direct UV photolysis, OH radical and carbonate radical reactions. Measurements of pharmaceutical degradations in pilot-scale UV/H2O2 reactors are presented under different operating conditions. A comparison between measured and modeled degradation for a group of 35 pharmaceuticals resulted in good model predictions for most of the compounds. The research also shows that the degradation of organic micropollutants can be dependent on temperature, which is relevant for full-scale installations that are operated at different temperatures over the year. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    Science.gov (United States)

    Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.

    2018-05-01

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the

  9. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    International Nuclear Information System (INIS)

    Singh, Ritu; Misra, Virendra; Mudiam, Mohana Krishna Reddy; Chauhan, Lalit Kumar Singh; Singh, Rana Pratap

    2012-01-01

    Highlights: ► This study explores the potential of CMC-Pd/nFe 0 to degrade γ-HCH in spiked soil. ► Sorption–desorption characteristics and partitioning of γ-HCH is investigated. ► Three degradation pathways has been proposed and discussed. ► γ-HCH degradation mechanism and kinetics is elucidated. ► Activation energy reveals that γ-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe 0 bimetallic nanoparticles (CMC-Pd/nFe 0 ). GC–MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe 0 within 6 h of incubation. The surface area normalized rate constant (k SA ) was found to be 7.6 × 10 −2 L min −1 m −2 . CMC-Pd/nFe 0 displayed ∼7-fold greater efficiency for γ-HCH degradation in comparison to Fe 0 nanoparticles (nFe 0 ), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe 0 loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe 0 has been discussed.

  10. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis.

    Science.gov (United States)

    Kang, Young-Min; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2018-08-01

    In this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/H 2 O 2 reaction were examined. The presence of NO 3 - (0.04-0.4 mM) and CO 3 2- /HCO 3 - (0.4-4 mM) ions increased BPA degradation during UV photolysis. Humic acid less than 3 mg/L promoted BPA degradation, but greater than 3 mg/L of humic acid inhibited BPA degradation. During the UV/H 2 O 2 reaction, all water matrix components acted as radical scavengers in the order of humic acid > CO 3 2- /HCO 3 -  > NO 3 - . All of the degradation reactions agreed with the pseudo-first-order kinetics. While eight byproducts (m/z = 122, 136, 139, 164, 181, 244, 273, 289) were identified in UV-C/NO 3 - photolysis reaction, four (m/z = 122, 136, 164, 244) and three byproducts (m/z = 122, 136, 164) were observed during UV-C/NO 3 - /CO 3 2- /HCO 3 - and UV-C/CO 3 2- /HCO 3 - reactions. Nitrogenated and hydrogenated byproducts were first observed during the UV-C/NO 3 - photolysis, but only hydrogenated byproducts as adducts were detected during the UV-C/NO 3 - /CO 3 2- /HCO 3 - photolysis. Nitrogenated and hydrogenated byproducts were formed in the early stage of degradation by OH or NO 2 radicals, and these byproducts were subsequently degraded into smaller compounds with further reaction during UV-C/NO 3 - and UV-C/NO 3 - /CO 3 2- /HCO 3 - reactions. In contrast, BPA was directly degraded into smaller compounds by β-scission of the isopropyl group by CO 3 - /HCO 3 radicals during UV-C/CO 3 2- /HCO 3 - reaction. Our results imply that the water components can change the degradation mechanism of BPA during UV photolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Michael, C; Varela, A R; Kyriakou, S; Manaia, C M; Fatta-Kassinos, D

    2012-11-01

    This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L(-1)) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe(2+)](0) = 5 mg L(-1); [H(2)O(2)](0) = 75 mg L(-1)) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m(3) day(-1) of secondary wastewater effluent was found to be 0.85 € m(-3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation.

    Science.gov (United States)

    de Melo da Silva, Lucas; Pereira Cavalcante, Rodrigo; Fabbro Cunha, Rebeca; Gozzi, Fábio; Falcao Dantas, Renato; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2016-12-15

    This study employed direct UV-ABC photolysis and the UV-ABC/H 2 O 2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 2 3 factorial design with added center point was used to evaluate the effect of three independent variables-namely, H 2 O 2 concentration ([H 2 O 2 ]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H 2 O 2 photolysis during UV-ABC/H 2 O 2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 10 4 J s -1 ) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and R adj = 0.9921 for TA degradation and R = 0.9828 and R adj = 0.9570 for H 2 O 2 photolysis. The most efficient combination of variables was [H 2 O 2 ] = 255 mg L -1 and [TA] = 25 mg L -1 , resulting in 100% TA degradation and 98.87% H 2 O 2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO ● was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 10 10 M -1 s -1 in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H 2 O 2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H 2 O 2 processes were proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal

    International Nuclear Information System (INIS)

    Ghanbari, F.; Ghoorchi, T.; Shawrang, P.; Mansouri, H.; Torbati-Nejad, N.M.

    2012-01-01

    This study was conducted to compare effects of electron beam (EB) and gamma ray (GR) treatments at doses of 25, 50 and 75 kGy on ruminal degradation kinetics of crude protein (CP), amino acid (AA), and in vitro digestibility of cottonseed meal (CSM). Ionizing radiations of EB and GR had significant effects (P 0.05). Irradiation processing caused decrement in AA degradation after 16 h of ruminal incubation (P<0.05). EB irradiation was more effective than GR irradiation in lessening the ruminal degradability of AA (P<0.05). EB and GR treatments at a dose of 75 kGy increased in vitro digestibility of CSM numerically. This study showed that EB could cause CP and AA bypass rumen as well as GR. Therefore, ionizing irradiation processing can be used as an efficient method in improving nutritional value of CSM. - Highlights: ► Irradiation was effective on reducing ruminal degradability of cottonseed meal. ► Ionizing radiations, especially electron beam, lessened ruminal degradability of amino acid substantially. ► Irradiation processing could be used as a safe and efficient method in improving nutritional value of cottonseed meal.

  14. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    Science.gov (United States)

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  15. Physicochemical Characteristics, in Vitro Fermentation Indicators, Gas Production Kinetics, and Degradability of Solid Herbal Waste as Alternative Feed Source for Ruminants

    Directory of Open Access Journals (Sweden)

    A. N. Kisworo

    2017-08-01

    Full Text Available The aims of this research were to study the nutrient and secondary metabolite contents of solid herbal wastes (SHW that were preserved by freeze drying, sun drying and silage, as well as to analyze their effects on in vitro fermentation indicators i.e., gas production kinetics and degradability of solid herbal waste. Physical and chemical properties on three forms of SHW (sun dry, freeze dry, and silage were characterized and then an in vitro gas production experiment was performed to determine the kinetics of gas production, methane production, NH3, microbial protein, and SHW degradability. Polyethylene glycol (PEG was added to the three treatments to determine the biological activity of tannins. Results showed that all three preparations of SHW still contained high nutrient and plant secondary metabolite contents. Gas production, methane, NH3, microbial protein, in vitro degradability of dry matter (IVDMD and organic matter (IVDOM of SHW silage were lower (P<0.05 compared to sun dry and freeze dry. These results were apparently due to the high content of secondary metabolites especially tannin. It can be concluded that solid herbal wastes (SHW can be used as an alternative feed ingredients for ruminants with attention to the content of secondary metabolites that can affect the process of fermentation and digestibility in the rumen.

  16. Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics.

    Science.gov (United States)

    Seifried, Natascha; Steingaß, Herbert; Schipprack, Wolfgang; Rodehutscord, Markus

    2016-10-01

    The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0-8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information

  17. Degradation kinetics of aflatoxin B1 and B2 in filter paper and rough rice by using pulsed light irradiation

    Science.gov (United States)

    Rough rice is susceptible to contamination by aflatoxins, which are highly toxic, mutagenic and carcinogenic compounds. To develop aflatoxin degradation technology for rice with the use of pulsed light (PL) treatment, the objective of this study was to investigate the degradation characters of aflat...

  18. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta

    2014-01-01

    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  19. Sonochemical synthesis of stibnite nanoparticles and their use as radiolytic stabilizer in polynomial chloride matrix

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Marilia Cordeiro C. de; Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S., E-mail: aquino@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Stibnite (Sb{sub 2}S{sub 3}) was synthesized by sonochemical method. Amorphous powder of Sb{sub 2}S{sub 3} was obtained and exhibit nanospheres structure with an average size in the range of 300-500 nm. Commercial Polyvinyl Chloride (PVC) containing Sb{sub 2}S{sub 3} nanoparticles (PVC/Sb) at concentrations of 0.10; 0.30 and 0.50 wt% were investigated. The samples were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere. The viscosity-average molar mass (M{sub v}) was measured for PVC systems without nanoparticles and with nanoparticles. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of Sb{sub 2}S{sub 3} nanoparticles at 0.3 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 66,5% in PVC matrix. Results about the free radical scavenger action of the Sb{sub 2}S{sub 3} were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Changes in the infrared spectra of PVC systems indicated that polymer molecules interact with Sb{sub 2}S{sub 3} nanoparticles. (author)

  20. Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

    Directory of Open Access Journals (Sweden)

    Ilana Perelshtein

    2016-01-01

    Full Text Available The sonochemical technique has already been proven as one of the best coating methods for stable functionalization of substrates over a wide range of applications. Here, we report for the first time on the simultaneous sonochemical dyeing and coating of textiles with antibacterial metal oxide (MO nanoparticles. In this one-step process the antibacterial nanoparticles are synthesized in situ and deposited together with dye nanoparticles on the fabric surface. It was shown that the antibacterial behavior of the metal oxides was not influenced by the presence of the dyes. Higher K/S values were achieved by sonochemical deposition of the dyes in comparison to a dip-coating (exhaustion process. The stability of the antibacterial properties and the dye fastness was studied for 72 h in saline solution aiming at medical applications.

  1. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media.

    Science.gov (United States)

    Sinela, André Mundombe; Mertz, Christian; Achir, Nawel; Rawat, Nadirah; Vidot, Kevin; Fulcrand, Hélène; Dornier, Manuel

    2017-11-15

    Effect of oxygen, polyphenols and metals was studied on degradation of delphinidin and cyanidin 3-O-sambubioside of Hibiscus sabdariffa L. Experiments were conducted on aqueous extracts degassed or not, an isolated polyphenolic fraction and extract-like model media, allowing the impact of the different constituents to be decoupled. All solutions were stored for 2months at 37°C. Anthocyanin and their degradation compounds were regularly HPLC-DAD-analyzed. Oxygen concentration did not impact the anthocyanin degradation rate. Degradation rate of delphinidin 3-O-sambubioside increased 6-fold when mixed with iron from 1 to 13mg.kg -1 but decreased with chlorogenic and gallic acids. Degradation rate of cyanidin 3-O-sambubioside was not affected by polyphenols but increased by 3-fold with increasing iron concentration with a concomitant yield decrease of scission product, protocatechuic acid. Two pathways of degradation of anthocyanins were identified: a major metal-catalyzed oxidation followed by condensation and a minor scission which represents about 10% of degraded anthocyanins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cinética da degradação de geleiada de morango Kinetics of strawberry jelly degradation

    Directory of Open Access Journals (Sweden)

    Ana Carolina Almeida Miguel

    2009-03-01

    Full Text Available Geleiadas de morango foram armazenadas à temperatura de 20 ºC (controle, 30 ºC (ambiente e 40 ºC (acelerada, a fim de se avaliar a vida-de-prateleira. A avaliação da vida-de-prateleira foi baseada em leituras objetivas de cor L, a e b Hunter (Minolta Chroma Meter CR-400b e subjetivas de cor, odor, sabor e textura (Análise Descritiva Quantitativa. As análises objetivas e subjetivas foram realizadas a cada 30 dias, por seis meses, nas três condições de armazenamento. Os dados obtidos mostraram que a reação cinética de degradação da cor se ajusta ao modelo cinético de 1ª ordem. O modelo de Arrhenius foi aplicado às velocidades de reação (k, nas diferentes temperaturas, fornecendo uma energia de ativação (Ea de 5,66 kcal.mol-1 e um valor de Q10 de 1,36. As geleiadas apresentaram qualidade adequada com relação ao teor de ácido ascórbico na ocasião do processamento, porém apresentaram baixa taxa de retenção de vitamina C, tendo, aos 60 dias, seu conteúdo reduzido em mais de 98%, independente da condição de armazenamento. As geleiadas mantidas a 40 ºC mostram-se mais sensíveis às alterações na cor, e esta temperatura afetou negativamente os atributos sensoriais, indicados pelo escurecimento e perdas de odor, sabor e textura. Estes resultados sugerem que as geleiadas devem ser armazenadas sob condições controladas de temperatura (20-30 ºC.Strawberry jelly was stored at 20 (control, 30 (room and 40 (accelerated ºC in order to evaluate their shelf lives. The shelf-life evaluation was based on objective color readings of L a b Hunter color (Minolta Chroma Meter CR-400 and on subjective color methods, smell, flavor, and texture (Quantitative Descriptive Analysis measurements. Objective and subjective analyses were carried out for 180 days at 30-day intervals under three different conditions. Experimental data show that the color degradation followed the model of a first order kinetic reaction. The Arrhenius model

  3. Kinetics of pyridine degradation along with toluene and methylene chloride with Bacillus sp. in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uma, B.; Sandhya, S. [National Environmental Engineering Research Institute, CSIR-Complex, Madras (India)

    1998-04-01

    Bacillus coagulans strain isolated from contaminated soil was immobilised on activated carbon for degradation of pyridine, toluene and methylene chloride containing synthetic wastewaters. Pyridine was supplied as the only source of nitrogen in the wastewaters. Continuous runs in a packed bed laboratory reactor showed that immobilized B. coagulans can degrade pyridine along with other organics rapidly and the effluent ammonia is also controlled in presence of ``organic carbon``. About 644 mg/l of influent TOC was efficiently degraded (82.85%) at 64.05 mg/l/hr loading. (orig.) With 2 figs., 4 tabs., 15 refs.

  4. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

    Science.gov (United States)

    von Götz, N; Richter, O

    1999-03-01

    The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

  5. Comparative studies on the effect of ionizing and nonionizing radiations on the kinetics of DNA synthesis and postirradiation degradation in Micrococcus radiodurans R/sub 11/5

    Energy Technology Data Exchange (ETDEWEB)

    Auda, H; Khalef, Z [Nuclear Centre Tuwaitha, Baghdad (Iraq)

    1982-06-01

    The kinetics of degradation and synthesis of DNA and the nature of radioactive substances released from M. radiodurans R/sub 11/5 labeled with thymidine-methyl-/sup 3/H after UV and gamma irradiations were investigated. The release of labeled material from the DNA began immediately upon incubation and terminated in due time 90 min and 180 min for UV and gamma irradiations, respectively. When acriflavine was added to the medium, post-irradiation degradation process did not terminate even after 9 h in the case of UV exposure. However, it terminated after 6 h in the case of gamma irradiation. In the presence of acriflavine, DNA synthesis resumed after termination of DNA degradation in the case of gamma irradiation and this was not observed in the case of UV irradiation. Degradation products were chromatographed and it was found that they were located in one major radioactive peak. However their locations were different for UV and gamma radiations. For UV irradiation, the peak fell in the thymine region, while for gamma irradiation it fell in the thymidine region.

  6. Comparative studies on the effect of ionizing and nonionizing radiations on the kinetics of DNA synthesis and postirradiation degradation in Micrococcus radiodurans R115

    International Nuclear Information System (INIS)

    Auda, H.; Khalef, Z.

    1982-01-01

    The kinetics of degradation and synthesis of DNA and the nature of radioactive substances released from M. radiodurans R 11 5 labeled with thymidine-methyl- 3 H after UV and gamma irradiations were investigated. The release of labeled material from the DNA began immediately upon incubation and terminated in due time 90 min and 180 min for UV and gamma irradiations, respectively. When acriflavine was added to the medium, post-irradiation degradation process did not terminate even after 9 h in the case of UV exposure. However, it terminated after 6 h in the case of gamma irradiation. In the presence of acriflavine, DNA synthesis resumed after termination of DNA degradation in the case of gamma irradiation and this was not observed in the case of UV irradiation. Degradation products were chromatographed and it was found that they were located in one major radioactive peak. However their locations were different for UV and gamma radiations. For UV irradiation, the peak fell in the thymine region, while for gamma irradiation it fell in the thymidine region. (author)

  7. Sonochemical synthesis of manganese (II) hydroxide for supercapacitor applications

    International Nuclear Information System (INIS)

    Anandan, Sambandam; Gnana Sundara Raj, Balasubramaniam; Lee, Gang-Juan; Wu, Jerry J.

    2013-01-01

    Graphical abstract: - Highlights: • Octahedral Mn(OH) 2 nanoparticles were prepared by sonochemical process. • TEM images indicates the formation of octahedral Mn(OH) 2 nanoparticles. • Octahedral Mn(OH) 2 nanoparticles are evaluated as a supercapacitor material. - Abstract: In this research, a rapid and controllable synthesis of octahedral Mn(OH) 2 nanoparticles with a size range from 140 to 200 nm has been done by a sonochemial irradiation method for the energy storage applications. Transmission electron microscopic images, energy disperse X-ray spectroscopy (EDX), X-ray photo electron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analyses clearly indicate the formation of octahedral Mn(OH) 2 nanoparticles. Octahedral Mn(OH) 2 nanoparticles were evaluated as a supercapacitor material that exhibits specific capacitance 127 F g −1 at a current density of 0.5 mA cm −2 in the potential range from −0.1 to 0.8 V in 1 M Na 2 SO 4 solution

  8. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

    Science.gov (United States)

    Muradov, Mustafa B.; Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Maharramov, Abel M.; Qahramanli, Lala R.; Eyvazova, Goncha M.; Aghamaliyev, Zohrab A.

    2018-03-01

    Convenient and environmentally friendly synthesis of Co9S8/PVA, CoxSy/EG and CoxSy/3-MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and sodium sulfide (Na2S·9H2O) were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co9S8/PVA is 1.81 eV and for CoxSy/EG is 2.42 eV, where the direct band gap of bulk cobalt sulfide is (0.78-0.9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co9S8, CoS2 and Co3S4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

  9. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  10. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    International Nuclear Information System (INIS)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan; Chakrabarti, Sampa

    2016-01-01

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  11. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization

    Institute of Scientific and Technical Information of China (English)

    Amir Hassanjani-Roshan; Mohammad Reza Vaezi; Ali Shokuhfar; Zohreh Rajabali

    2011-01-01

    Preparation of iron oxide (α-Fe2O3) nanoparticles was carried out via a sonochemical process. The process parameters such as temperature,sonication time and power of ultrasonication play important roles in the size and morphology of the final products. The iron oxide nanoparticles were characterized by transmission electron microscopy,X-ray powder diffraction,and thermogravimetric and differential thermal analyses. From transmission electron microscopy observations,the size of the iron oxide nanoparticles is estimated to be significantly smaller than 19 nm. X-ray diffraction data of the powder after annealing provide direct evidence that the iron oxide was formed during the sonochemical process.

  12. The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study.

    Science.gov (United States)

    Boucheloukh, H; Remache, W; Parrino, F; Sehili, T; Mechakra, H

    2017-05-17

    The photocatalytic degradation of isoproturon, a persistent toxic herbicide, was investigated in the presence of natural iron oxide and oxalic acid and under UV irradiation. The influence of the relevant parameters such as the pH and the iron oxide and oxalic acid concentrations has been studied. The presence of natural iron oxide and oxalic acid in the system effectively allow the degradation of isoproturon, whereas the presence of t-butyl alcohol adversely affects the phototransformation of the target pollutant, thus indicating that an OH radical initiated the degradation mechanism. The degradation mechanism of isoproturon was investigated by means of GC-MS analysis. Oxidation of both the terminal N-(CH 3 ) 2 and isopropyl groups is the initial process leading to N-monodemethylated (NHCH 3 ), N-formyl (N(CH 3 )CHO), and CHCH 3 OH as the main intermediates. The substitution of the isopropyl group by an OH group is also observed as a side process.

  13. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    OpenAIRE

    Jianxia Sun; Zhouxiong Mei; Yajuan Tang; Lijun Ding; Guichuan Jiang; Chi Zhang; Aidong Sun; Weibin Bai

    2016-01-01

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •O...

  14. Adsorption and Photocatalytic Decomposition of the β-Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    Directory of Open Access Journals (Sweden)

    Violette Romero

    2013-01-01

    Full Text Available This study reports the photocatalytic degradation of the β-blocker metoprolol (MET using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different initial pH were studied to evaluate noncatalytic degradation for this pharmaceutical. MET adsorption onto titania was fitted to two-parameter Langmuir isotherm. From adsorption results it appears that the photocatalytic degradation can occur mainly on the surface of TiO2. MET removed by photocatalysis was 100% conditions within 300 min, while only 26% was achieved by photolysis at the same time. TiO2 photocatalysis degradation of MET in the first stage of the reaction followed approximately a pseudo-first-order model. The major reaction intermediates were identified by LC/MS analysis such as 3-(propan-2-ylaminopropane-1,2-diol or 3-aminoprop-1-en-2-ol. Based on the identified intermediates, a photocatalytic degradation pathway was proposed, including the cleavage of side chain and the hydroxylation addition to the parent compounds.

  15. Effects of sequence of nylon bags rumen incubation on kinetics of degradation in some commonly used feedstuffs in dairy rations

    Institute of Scientific and Technical Information of China (English)

    DONG Shuang-zhao; Arash Azarfar; ZOU Yang; LI Sheng-li; WANG Ya-jing; CAO Zhi-jun

    2017-01-01

    Nowadays, most available information on the degradative behaviour of feeds in ruminants is based onin situ incubation in the rumen, and it is adopted by many feed evaluation systems currently in use for ruminants. However, the outcome of this technique might be affected by many factors such as sequence of nylon bags incubation in the rumen. The objective of current study was to investigate effects of sequence of nylon bag incubation on degradative behavior of dry matter (DM), crude protein (CP), neutral detergent ifber (NDF) and acid detergent ifber (ADF) in some feed ingredients commonly used in dairy rations, including alfalfa haylage, corn silage, corn grain and soybean meal. Four multiparous Holstein lactating cows iftted with permanent ruminal cannulas were used. The nylon bags containing feed samples either were placed in the rumen at once and removed at designated time intervals (all in-gradually out method; AG) or were placed in the rumen at designated time points and retrieved at once (gradually in-all out method; GA). Fractional rate of degradation of potentially degradable fraction, lag time and effective rumen degradability (ED) of DM and CP were signiifcantly higher in the AG compared to the GA method (P namely corn grain and soybean meal. This experiment is the ifrst time to investigate effects of two methods under the same experiment conditions, providing basic data for the determination of ED.

  16. Kinetic study of internalization and degradation of 131I-labeled follicle-stimulating hormone in mouse Sertoli cells and its relevance to other systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Kawashima, S.

    1989-01-01

    The behavior of 131I-labeled follicle-stimulating hormone (FSH) after binding to cell-surface receptors in cultured Sertoli cells of C57BL/6NCrj mice was investigated. Sertoli cells cultured in F12/DME were pulse-labeled with 131I-FSH for 10 min at 4 degrees C, followed by cold chase for various periods of time. After the cold chase Sertoli cells were treated with 0.2 M acetate (pH 2.5) to dissociate membrane-bound 131I-FSH (surface radioactivity). The medium containing radioactivity after cold chase was mixed with 20% trichloroacetic acid, centrifuged, and the radioactivity of the supernatant was measured (degraded hormone). The radiolabeled materials associated with each process (surface binding, internalization, and degradation) were concentrated with ultrafiltration and characterized with gel filtration and/or thin layer chromatography. The effects of lysosomotropic agents, NH4Cl and chloroquine, were studied. The cold chase study at 32 degrees C showed that the surface radioactivity was the largest among the three kinds of radioactivities associated with each process immediately after pulse labeling, but the surface radioactivity rapidly decreased, while the internalized radioactivity increased. The cold chase study at 4 degrees C did not show such time-related changes in radioactivities, and a high level of surface radioactivity constantly persisted. The surface and internalized radioactivities were due to 131I-FSH, and the degraded radioactivity was mainly due to [131I]monoiodotyrosine. When Sertoli cells were cultured with lysosomotropic agents, the internalized radioactivity increased, while the degraded radioactivity decreased. Based on these observations, a kinetic model was proposed and the relationships among the surface, internalized, and degraded radioactivities and cold chase time were calculated algebraically

  17. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds

    Directory of Open Access Journals (Sweden)

    Mona M.Y. Elghandour

    2014-04-01

    Full Text Available The objective of this study was to evaluate the effects of Saccharomyces cerevisiae on in vitro gas production (GP kinetics and degradability of corn stover, oat straw, sugarcane bagasse and sorghum straw. Feedstuffs were incubated with different doses of yeast [0, 4, 8 and 12 mg/g dry matter (DM] at direct addition or 72 h pre-incubation. Rumen GP was recorded at 2, 4, 6, 8, 10, 12, 14, 24, 30, 48, 54 and 72 h of incubation. After 72 h, rumen pH and methane were determined and contents were filtrated for DM, neutral (NDF and acid detergent fibre (ADF degradability. Fibrous species×method of application×yeast interactions occurred (P<0.001 for all measured ruminal GP parameters and degradability. The direct addition or 72 h pre-incubation of S. cerevisiae with corn stover improved (P<0.05 GP and methane and decreased (P<0.05 the lag time (L and NDF degradability (NDFD. The direct addition of S. cerevisiae to oat straw increased (P<0.05 rate of GP (c and decreased (P<0.05 asymptotic GP (b. However, 72 h pre-incubation increased (P<0.05 c with linearly decreased b, DM degradability (DMD and NDFD. Applying S. cerevisiae for 72 h pre-incubation decreased (P<0.001 methane emission. The direct addition or 72 h pre-incubation of S. cerevisiae to sorghum straw increased (P<0.05 b, c, L, DMD and NDFD. Overall, the effect of dose varied among different feedstuffs and different application methods. Results suggested that the direct addition of S. cerevisiae could support and improve ruminal fermentation of lowquality forages at 4 to 12 g/kg DM.

  18. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes

    NARCIS (Netherlands)

    Coehoorn, R.; van Eersel, H.; Bobbert, P.A.; Janssen, R.A.J.

    2015-01-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an

  19. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    Science.gov (United States)

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    Science.gov (United States)

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A validated stability-indicating high performance liquid chromatographic method for moxifloxacin hydrochloride and ketorolac tromethamine eye drops and its application in pH dependent degradation kinetics

    Directory of Open Access Journals (Sweden)

    Jayant B Dave

    2013-01-01

    Full Text Available Background and Aim: A fixed dose combination of moxifloxacin hydrochloride and ketorolac tromethamine is used in ratio of 1:1 as eye drops for the treatment of the reduction of post operative inflammatory conditions of the eye. A simple, precise, and accurate High Performance Liquid Chromatographic (HPLC method was developed and validated for determination of moxifloxacin hydrochloride and ketorolac tromethamine in eye drops. Materials and Methods: Isocratic HPLC separation was achieved on a ACE C 18 column (C 18 (5 μm, 150 mm×4.6 mm, i.d. using the mobile phase 10 mM potassium di-hydrogen phosphate buffer pH 4.6-Acetonitrile (75:25 v/v at a flow rate of 1.0 mL/min. The detection was performed at 307 nm. Drugs were subjected to acid, alkali and neutral hydrolysis, oxidation and photo degradation. Moreover, the proposed HPLC method was utilized to investigate the pH dependent degradation kinetics of moxifloxacin hydrochloride and ketorolac tromethamine in buffer solutions at different pH values like 2.0, 6.8 and 9.0. Results and Conclusion: The retention time (t R of moxifloxacin hydrochloride and ketorolac tromethamine were 3.81±0.01 and 8.82±0.02 min, respectively. The method was linear in the concentration range of 2-20 μ/mL each for moxifloxacin hydrochloride and ketorolac tromethamine with a correlation coefficient of 0.9996 and 0.9999, respectively. The method was validated for linearity, precision, accuracy, robustness, specificity, limit of detection and limit of quantitation. The drugs could be effectively separated from different degradation products and hence the method can be used for stability analysis. Different kinetics parameters like apparent first-order rate constant, half-life and t 90 (time for 90% potency left were calculated.

  2. UV and solar photo-degradation of naproxen: TiO_2 catalyst effect, reaction kinetics, products identification and toxicity assessment

    International Nuclear Information System (INIS)

    Jallouli, Nabil; Elghniji, Kais; Hentati, Olfa; Ribeiro, Ana R.; Silva, Adrián M.T.; Ksibi, Mohamed

    2016-01-01

    Highlights: • Degradation kinetics and mineralization rate of naproxen (NPX) were studied. • Direct photolysis and TiO_2/UV approaches were evaluated. • The formation of by-products was followed by UHPLC-DAD-MS. • Ecological risk assessment of NPX-treated solutions was assessed using E. andrei. - Abstract: Direct photolysis and TiO_2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pH_i_n_i_t_i_a_l 6.5) was 83% after 3 h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO_2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (k_a_p_p) for NPX degradation by photolysis ranged from 0.0050 min"−"1 at pH 3.5 to 0.0095 min"−"1 at pH 6.5, while it was estimated to be 0.0063 min"−"1 under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4 h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions.

  3. Rapid sonochemical preparation of shape-selective lead iodide

    International Nuclear Information System (INIS)

    Huang, Baojun; He, Qin; Fa, Wenjun; Li, Pinjiang; Zhang, Yange; Zheng, Zhi

    2012-01-01

    Graphical abstract: SEM morphologies of various PbI2 products obtained with the iodine concentration of 6.7 g/L and irradiation time of 1 minute at the reaction temperatures of 35 °C (a), 25 °C (b), and 15 °C (c). Highlights: ► PbI 2 with various morphologies were rapidly formed at room temperature. ► We could well control the morphologies of PbI 2 by changing reaction conditions. ► The PbI 2 films could better resist rolling in a liquid media. -- Abstract: Lead iodide (PbI 2 ) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI 2 crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI 2 films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.

  4. Thermal properties of extruded injection-molded poly (lactic acid) and milkweed composites: degradation kinetics and enthalpic relaxation

    Science.gov (United States)

    Currently, most polymer composites utilize petroleum-based materials that are non-degradable and difficult to recycle or incur substantial cost for disposal. Green composites can be used in nondurable limited applications. In order to determine the degree of compatibility between Poly (lactic Acid...

  5. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.

    Science.gov (United States)

    Lai, K P K; Dolan, K D; Ng, P K W

    2009-06-01

    Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.

  6. Thermal Degradation and Kinetic Parameters of Polyester and Poly(Lactic Acid) Blends Used in Shopping Bags in Brazil

    OpenAIRE

    Araújo Junior, J.; Magalhães, D; Oliveira, N. A.; Wiebeck, Helio; Matos, J. R.

    2014-01-01

    In this work, synthetic polyester and poly(lactic acid) blends used as biodegradable shopping plastic bags were studied, together with control samples of polyethylene containing pro-oxidant catalysts (called “oxidegradable bags” in the market). Samples of these materials were weighed and buried in simulated soil for 3 months, and then studied by Thermal Analysis including a non-isothermal kinetic analysis. It was observed that although there was no significant mass loss in the period of the a...

  7. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties

    International Nuclear Information System (INIS)

    Karunakaran, C.; Manikandan, G.; Gomathisankar, P.

    2013-01-01

    Highlights: •CuO nanoleaves synthesized by CTAB-assisted hydrothermal method. •CuO nanodiscs synthesized by CTAB-assisted sonochemical method. •Combustion synthesized CuO is highly porous. •Synthetic method and morphology influence CuO bactericidal activity. -- Abstract: Cetyltrimethylammonium bromide (CTAB)-assisted microwave synthesis of CuO provides nanoleaves and in the absence of CTAB the shape of CuO is irregular. Sonochemical synthesis of CuO using CTAB gives nanodiscs whereas irregularly shaped flake-like structure is obtained without CTAB. Combustion synthesized CuO is highly porous with innumerable large holes. CTAB does not provide any structure in combustion synthesis. Transmission electron micrographs (TEM) display the constituent nanoparticles of microwave and sonochemically synthesized CuO. The powder X-ray diffractogram (XRD) shows the sample obtained by sonochemical method in the absence of CTAB as a mixture of monoclinic CuO, cubic Cu 2 O, and orthorhombic Cu(OH) 2 . But the rest of the samples are pure CuO in monoclinic phase. The selected area electron diffractograms (SAED) of the microwave and sonochemically synthesized samples, in the presence as well as in the absence of CTAB, confirm the monoclinic phase of CuO and indicates the presence of amorphous CuO in traces. All the samples are characteristic of Fourier Transform infrared (FT-IR) Cu–O stretching frequencies. The method of synthesis and also the morphology influence the electrical properties as well as the bactericidal activity of CuO

  8. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach.

    Science.gov (United States)

    Damiran, D; Yu, P

    2011-10-01

    To date, no study has been done of molecular structures in relation to nutrient degradation kinetics and intestinal availability in dairy cattle. The objectives of this study were to (1) reveal molecular structures of hulless barley affected by structural alteration using molecular spectroscopy (diffuse reflectance infrared Fourier transform) as a novel approach, and (2) quantify structure features on a molecular basis in relation to digestive kinetics and nutritive value in the rumen and intestine in cattle. The modeled feeds in this study were 4 types of hulless barley (HB) cultivars modified in starch traits: (a) normal starch cultivar, (b) zero-amylose waxy, (c) waxy, and (d) high-amylose. The molecular structural features were determined using diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (ca. 4,000-800 cm(-1)) of the electromagnetic spectrum. The items assessed included infrared intensity attributed to protein amide I (ca. 1,715-1,575 cm(-1)), amide II (ca. 1,575-1,490 cm(-1)), α-helix (ca. 1,648-1,660 cm(-1)), β-sheet (ca. 1,625-1,640 cm(-1)), and their ratio, β-glucan (ca. 1,445-1,400 cm(-1)), total carbohydrates (CHO; ca. 1,188-820 cm(-1)) and their 3 major peaks, structural carbohydrates (ca. 1,277-1,190 cm(-1)), and ratios of amide I to II and amide I to CHO. The results show that (1) the zero-amylose waxy was the greatest in amide I and II peak areas, as well as in the ratio of protein amide I to CHO among HB; (2) α-helix-to-β-sheet ratio differed among HB: the high-amylose was the greatest, the zero-amylose waxy and waxy were the intermediate, and the normal starch was the lowest; (3) HB were similar in β-glucan and CHO molecular structural makeup; (4) altered starch HB cultivars were similar to each other, but were different from the normal starch cultivar in protein molecular makeup; and (5) the rate and extent of rumen degradation of starch and protein were highly related to the molecular structural

  9. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yamin [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wei, Huangzhao; Zhao, Ying [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun, Wenjing [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Chenglin, E-mail: clsun@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-03-15

    Highlights: • The sludge derived carbon modified with 0 °C acid was used as catalyst in CWPO. • RSM was used to optimize CWPO reaction conditions of m-cresol for the first time. • The kinetic model was disclosed to be correlated with residue target concentration. • The proposed degradation pathways of m-cresol were well proven by DFT method. - Abstract: The sludge-derived carbon catalyst modified with 0 °C HNO{sub 3} solution was tested in catalytic wet peroxide oxidation of m-cresol (100 mg L{sup −1}) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T = 60 °C, initial pH = 3.0, C{sub 0,H2O2(30%)} = 1.20 g L{sup −1} (lower than the stoichiometric amount of 1.80 g L{sup −1}) and C{sub cat} = 0.80 g L{sup −1}, with 96% of m-cresol and 47% of TOC converted after 16 min and 120 min of reaction, respectively, and ξ (mg TOC/g H{sub 2}O{sub 2} fed) = 83.6 mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H{sub 2}O{sub 2} exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H{sub 2}O{sub 2} on effective H{sub 2}O{sub 2} utilization. The reaction intermediates over time were identified by gas chromatography–mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  10. Kinetics of Photocatalytic Degradation of Diuron in Aqueous Colloidal Solutions of Q-TiO2 Particles

    Czech Academy of Sciences Publication Activity Database

    Macounová, Kateřina; Krýsová, Hana; Ludvík, Jiří; Jirkovský, Jaromír

    2003-01-01

    Roč. 156, - (2003), s. 273-282 ISSN 1010-6030 R&D Projects: GA ČR GA203/99/0763; GA ČR GA203/00/D071; GA ČR GA203/02/0983; GA AV ČR IAA4040804 Institutional research plan: CEZ:AV0Z4040901 Keywords : photocatalytic degradation * phenylurea herbicide diuron * Q-TiO2 Subject RIV: CG - Electrochemistry Impact factor: 1.693, year: 2003

  11. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existed proteins

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2016-01-01

    Full Text Available Impacts of medium pH, temperature and coexisted proteins on the degradation of two flavonoids fisetin and quercetin were assessed by spectroscopic method in the present study. Based on the measured degradation rate constants (k, fisetin was more stable than quercetin in all cases. Increasing medium pH from 6.0 to 7.5 at 37°C enhanced respective k values of fisetin and quercetin from 8.30x10−3 and 2.81x10−2 to 0.202 and 0.375 h-1 (P<0.05. In comparison with their degradation at 37°C, fisetin and quercetin showed larger k values at higher temperature (0.124 and 0.245 h−1 at 50°C, or 0.490 and 1.42 h−1 at 65°C. Four protein products in medium could stabilize the two flavonoids (P<0.05, as these proteins at 0.10 g L-1 decreased respective k values of fisetin and quercetin to 2.28x10−2-2.98x10−2 and 4.37´10−2-5.97x10−2 h−1. Hydrophobic interaction between the proteins and the two flavonoids was evidenced responsible for the stabilization, as sodium dodecyl sulfate could destroy the stabilization significantly (P<0.05. Casein and soybean protein provided greater stabilization than whey protein isolate. It is thus concluded that higher temperature and alkaline pH can enhance flavonoid loss, whereas coexisted proteins as flavonoid stabilizers can inhibit flavonoid degradation.

  12. An investigation of influence of solvent on the degradation kinetics of carotenoids in oil extracts of Calendula officinalis

    OpenAIRE

    DEJAN BEZBRADICA; JELA MILIC-ASKRABIC; SLOBODAN D. PETROVIC; SLAVICA SILER-MARINKOVIC

    2005-01-01

    The stability of carotenoids was studied in marigold oil extracts prepared with following solvents: Myritol 312®, paraffin oil, almond oil, olive oil, sunflower oil, grape seed oil, and soybean oil. The concentration of the carotenoids was determined by spectroscopic measurement at 450 nm. Degradation rate showed a first order dependence on the concentration of carotenoids with a faster first stage (which lasted 3550 days, depending on the solvent) and a slower second stage. The highest degra...

  13. Derivative spectrophotometry for the determination of faropenem in the presence of degradation products: an application for kinetic studies.

    Science.gov (United States)

    Cielecka-Piontek, Judyta

    2013-07-01

    A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible.

  14. Aqueous degradation kinetics of pharmaceutical drug diclofenac by photo catalysis using nano structured titania–zirconia composite catalyst

    International Nuclear Information System (INIS)

    Das, L.; Barodia, S. K.; Sengupta, S.; Basu, J. K.

    2015-01-01

    Diclofenac is an anti-inflammatory pharmaceutical drug and its presence in a trace amount in waste water makes severe environmental pollution. The degradation of diclofenac was investigated by a photo catalytic process in presence of ultra violet irradiation at room temperature using titania and titania-zirconia nano composite catalysts in a batch reactor. The composite catalyst was prepared by sol-gel method and characterized by X-ray diffraction, transmission electron microscopy as well as BET surface area analyzer. The effect of various process parameters such as catalyst loading, initial concentration of diclofenac and p H of the experimental solution was observed on the degradation of diclofenac. The titania-zirconia nano composites exhibited reasonably higher photo catalytic activity than that of anatase form of titania without zirconia. The maximum removal of diclofenac of about 92.41% was achieved using Zr/Ti mass ratio of 11.8 wt% composite catalyst. A rate equation was proposed for the degradation of diclofenac using the composite catalyst. The values of rate constant (kc) and adsorption equilibrium constant (K1) were found to vary with the catalyst content in the reaction mixture.

  15. An investigation of influence of solvent on the degradation kinetics of carotenoids in oil extracts of Calendula officinalis

    Directory of Open Access Journals (Sweden)

    DEJAN BEZBRADICA

    2005-02-01

    Full Text Available The stability of carotenoids was studied in marigold oil extracts prepared with following solvents: Myritol 312®, paraffin oil, almond oil, olive oil, sunflower oil, grape seed oil, and soybean oil. The concentration of the carotenoids was determined by spectroscopic measurement at 450 nm. Degradation rate showed a first order dependence on the concentration of carotenoids with a faster first stage (which lasted 35–50 days, depending on the solvent and a slower second stage. The highest degradation rates were observed in extracts prepared with linoleic acid rich solvents (sunflower oil, soybean oil and grape seed oil, while the lowest were found in oil with saturated fatty acids (Myritol 312® and paraffin oil. These results confirm the connection between the degradation of carotenoids and lipid autoxidation, and suggest that the influence of the oil solvents on the stability of oil extracts of Calendula officinalis is a factor that must be considered when selecting a solvent for the production of marigold oil extracts.

  16. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  17. Sonochemical synthesis of cooper II sulfide nanoparticles and their use as radiolytic stabilizer in polyvinyl chloride matrix

    International Nuclear Information System (INIS)

    Freitas, Danubia Maria da Silva; Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2013-01-01

    Cooper (II) sulfide (CuS) was synthesized by sonochemical method. CuS crystals with hexagonal structure exhibit irregular aggregates of particles with an average size in the range of 250-900 nm. Commercial Polyvinyl chloride (PVC) containing CuS nanoparticles (PVC/CuS) at concentrations of 0.10; 0.30; 0.50 and 0.70 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (M v ) was measured for PVC systems without nanoparticles and with nanoparticles. Decrease in viscosity molar mass was observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of CuS nanoparticles at 0.5 wt% into PVC matrix decreased the number of main chain scissions at dose of 25 kGy and was calculated a protection of 84% in PVC matrix. CuS nanoparticles act as free radical scavenger into gamma-irradiated PVC systems. The interactions between CuS and PVC favor action of nanoparticles as a good plasticizer in the PVC molecule. (author)

  18. Sonochemical synthesis of copper II sulfide nanoparticles and their use as radiolytic stabilizer in poly(methyl methacrylate) matrix

    International Nuclear Information System (INIS)

    Albuquerque, Marilia Cordeiro C. de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2011-01-01

    Copper (II) sulfide (CuS) was synthesized by sonochemical method. Cu S crystals with hexagonal structure exhibit irregular particles with an average size in the range of 250-900 nm. Commercial Poly(methyl methacrylate) (PMMA) containing CuS nanoparticles (PMMA/Cu) at concentrations of 0.15; 0.30; 0.45 and 0.60 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (Mv) was measured for PMMA systems without nanoparticles and with nanoparticles. Decrease in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of CuS nanoparticles at 0.3 wt% into PMMA matrix decreased the number of main chain scissions at dose of 25 kGy and was calculated a protection of 50% in PMMA matrix. CuS nanoparticles act as free radical scavenger into gamma-irradiated PMMA systems. Changes in the infrared spectra of PMMA systems indicate that polymer molecules interact with CuS nanoparticles. Improvement of mechanical properties was found for PMMA/Cu films. An increase of 38% of Young's modulus value and a decrease of 22% on the elongation at break value were recorded for PMMA/Cu films exposed to gamma irradiation. (author)

  19. Sonochemical synthesis of copper II sulfide nanoparticles and their use as radiolytic stabilizer in poly(methyl methacrylate) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Marilia Cordeiro C. de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S., E-mail: aquino@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Copper (II) sulfide (CuS) was synthesized by sonochemical method. Cu S crystals with hexagonal structure exhibit irregular particles with an average size in the range of 250-900 nm. Commercial Poly(methyl methacrylate) (PMMA) containing CuS nanoparticles (PMMA/Cu) at concentrations of 0.15; 0.30; 0.45 and 0.60 wt% were investigated. The samples were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere. The viscosity-average molar mass (Mv) was measured for PMMA systems without nanoparticles and with nanoparticles. Decrease in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of CuS nanoparticles at 0.3 wt% into PMMA matrix decreased the number of main chain scissions at dose of 25 kGy and was calculated a protection of 50% in PMMA matrix. CuS nanoparticles act as free radical scavenger into gamma-irradiated PMMA systems. Changes in the infrared spectra of PMMA systems indicate that polymer molecules interact with CuS nanoparticles. Improvement of mechanical properties was found for PMMA/Cu films. An increase of 38% of Young's modulus value and a decrease of 22% on the elongation at break value were recorded for PMMA/Cu films exposed to gamma irradiation. (author)

  20. Enhancement or Reduction of Sonochemical Activity of Pulsed Ultrasound Compared to Continuous Ultrasound at 20 kHz?

    Directory of Open Access Journals (Sweden)

    Yujing Sun

    2013-04-01

    Full Text Available Little is known about the efficacy of pulsed ultrasound compared with continuous ultrasound. Previous studies on the efficacy of pulsed ultrasound were not systematic and gave different results. In this study, the effects of pulse length, pulse interval, pulse length × pulse intervals, and treatment time on sonochemical activity were investigated using a simple oxidation of iodide method and a comparison of the efficacy of pulsed ultrasound and continuous ultrasound is made. The results showed that the main factor in the efficacy of pulsed ultrasound was pulse length when pulse length varied from 0.1 to 1 s. However, the main factors were pulse length, the pulse length × pulse interval, and pulse interval when pulse length varied from 1 to 9 s. Pulsed ultrasound had no effect when the pulse length was 0.1 s; however, the sonochemical activity of pulsed ultrasound decreased compared to continuous ultrasound as the pulse length varied from 0.1 to 1 s. The sonochemical activity of pulsed ultrasound either increased or decreased compared to continuous ultrasound when pulse length varied from 1 to 9 s, but the increase or decrease had no clear trend. The sonochemical activity was constant at Ton/Toff = 2 s/2 s and slightly decreased at Ton/Toff = 3 s/2 s with time, whereas the sonochemical activity of continuous ultrasound significantly decreased with time. Enhancement or reduction of sonochemical activity of pulsed ultrasound compared to continuous ultrasound depended on the pulse length and pulse interval.

  1. Sonochemical and hydrothermal synthesis of PbTe nanostructures with the aid of a novel capping agent

    International Nuclear Information System (INIS)

    Fard-Fini, Shahla Ahmadian; Salavati-Niasari, Masoud; Mohandes, Fatemeh

    2013-01-01

    Graphical abstract: - Highlights: • PbTe nanostructures were prepared with the aid of Schiff-base compound. • Sonochemical and hydrothermal methods were employed to fabricate PbTe nanostrucrues. • The effect of preparation parameters on the morphology of PbTe was investigated. - Abstract: In this work, a new Schiff-base compound derived from 1,8-diamino-3,6-dioxaoctane and 2-hydroxy-1-naphthaldehyde marked as (2-HyNa)-(DaDo) was synthesized, characterized, and then used as capping agent for the preparation of PbTe nanostructures. To fabricate PbTe nanostructures, two different synthesis methods; hydrothermal and sonochemical routes, were applied. To further investigate, the effect of preparation parameters like reaction time and temperature in hydrothermal synthesis and sonication time in the presence of ultrasound irradiation on the morphology and purity of the final products was tested. The products were analyzed with the aid of SEM, TEM, XRD, FT-IR, and EDS. Based on the obtained results, it was found that pure cubic phased PbTe nanostructures have been obtained by hydrothermal and sonochemical approaches. Besides, SEM images showed that cubic-like and rod-like PbTe nanostructures have been formed by hydrothermal and sonochemical methods, respectively. Sonochemical synthesis of PbTe nanostructures was favorable, because the synthesis time of sonochemical method was shorter than that of hydrothermal method

  2. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu, E-mail: zqz@sdu.edu.cn; Hu, Jingtian; Wang, Wenxing

    2015-02-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl{sub 2}Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl{sub 2}Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10{sup −12} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl{sub 2}Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl{sub 2}Phe and should contribute to clarifying its atmospheric fate. - Highlights: • We studied a comprehensive mechanism of OH-initiated degradation of 9,10-Cl{sub 2}Phe. • The atmospheric lifetime of 9,10-Cl{sub 2}Phe determined by OH radical is about 5.05 d. • The rate constants of the crucial elementary steps were evaluated. • Water plays an important role in the formation of nitro-9,10-Cl{sub 2}Phe.

  3. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A., E-mail: armina_84@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Maknoon, R., E-mail: rmaknoon@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Kowsari, E., E-mail: kowsarie@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • Three combined advanced SBR and enhanced Fenton process as post treatment was compared. • Higher biomass concentration, dye, COD and metabolites removal was presented together. • Pseudo zero and pseudo first-order bio-decolorization kinetics were observed in all SBRs. • High reduction of AR18 to intermediate metabolites was monitored by HPLC. - Abstract: The purpose of this research was to compare three combined sequencing batch reactor (SBR) – Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD = 3270 mg/L) at the end of alternating anaerobic–aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10 mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV–vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  4. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene.

    Science.gov (United States)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Wang, Wenxing

    2015-02-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl₂Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl₂Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10(-12)cm(3) molecule(-1)s(-1) at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl₂Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl₂Phe and should contribute to clarifying its atmospheric fate. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Novel differential refractometry study of the enzymatic degradation kinetics of poly(ethylene oxide)-b-poly(epsilon-caprolactone) particles dispersed in water.

    Science.gov (United States)

    Lam, HiuFung; Gong, Xiangjun; Wu, Chi

    2007-02-22

    A poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer was micronized into small micelle-like particles (approximately 80 nm) via dialysis-induced microphase inversion. The enzymatic biodegradation of the PCL portion of these particles in water was in situ investigated inside a recently developed novel differential refractometer. Using this refractometry method, we were able to monitor the real-time biodegradation via the refractive index change (Deltan) of the dispersion because Deltan is directly proportional to the particle mass concentration. We found that the degradation rate is proportional to either the polymer or enzyme concentration. Our results directly support previous speculation on the basis of the light-scattering data that the biodegradation follows the first-order kinetics for a given enzyme concentration. This study not only leads to a better understanding of the enzymatic biodegradation of PCL, but also demonstrates a novel, rapid, noninvasive, and convenient way to test the degradability of polymers.

  6. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.

    Science.gov (United States)

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-09-26

    Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.

  7. Kinetics of the Degradation of Anthocyanins, Phenolic Acids and Flavonols During Heat Treatments of Freeze-Dried Sour Cherry Marasca Paste

    Directory of Open Access Journals (Sweden)

    Zoran Zorić

    2014-01-01

    Full Text Available The effect of heating temperature (80–120 °C and processing time (5–50 min on the stability of anthocyanins (cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside and cyanidin- 3-glucoside, quercetin-3-glucoside and phenolic acids (chlorogenic, neochlorogenic, p-coumaric and ferulic acids in freeze-dried Marasca sour cherry pastes was studied. The degradation rates of individual anthocyanins, quercetin-3-glucoside and phenolic acids followed the first order reaction kinetics. Cyanidin-3-glucoside was found to be the most unstable among the anthocyanins, together with p-coumaric and neochlorogenic acids among other phenols. Activation energies for anthocyanin degradation ranged from 42 (cyanidin-3-glucosylrutinoside to 55 kJ/mol (cyanidin-3-glucoside, and for other phenols from 8.12 (chlorogenic acid to 27 kJ/mol (neochlorogenic acid. By increasing the temperature from 80 to 120 °C, the reaction rate constant of cyanidin-3-glucosylrutinoside increased from 2.2·10–2 to 8.5·10–2 min–1, of p-coumaric acid from 1.12·10–2 to 2.5·10–2 min–1 and of quercetin-3-glucoside from 1.5·10–2 to 2.6·10–2 min–1. The obtained results demonstrate that at 80°C the half-life of anthocyanins ranges from 32.10 min for cyanidin-3-glucosylrutinoside to 45.69 min for cyanidin-3-rutinoside, and of other phenolic compounds from 43.39 for neochlorogenic acid to 66.99 min for chlorogenic acid. The results show that the heating temperature and duration affect the anthocyanins considerably more than the other phenols in terms of degradation.

  8. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products.

    Science.gov (United States)

    Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2015-07-01

    The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  10. Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor.

    Science.gov (United States)

    Wolfand, Jordyn M; LeFevre, Gregory H; Luthy, Richard G

    2016-10-12

    Fipronil is a recalcitrant phenylpyrazole-based pesticide used for flea/tick treatment and termite control that is distributed in urban aquatic environments via stormwater and contributes to stream toxicity. We discovered that fipronil is rapidly metabolized (t 1/2 = 4.2 d) by the white rot fungus Trametes versicolor to fipronil sulfone and multiple previously unknown fipronil transformation products, lowering fipronil concentration by 96.5%. Using an LC-QTOF-MS untargeted metabolomics approach, we identified four novel fipronil fungal transformation products: hydroxylated fipronil sulfone, glycosylated fipronil sulfone, and two compounds with unresolved structures. These results are consistent with identified enzymatic detoxification pathways wherein conjugation with sugar moieties follows initial ring functionalization (hydroxylation). The proposed pathway is supported by kinetic evidence of transformation product formation. Fipronil loss by sorption, hydrolysis, and photolysis was negligible. When T. versicolor was exposed to the cytochrome P450 enzyme inhibitor 1-aminobenzotriazole, oxidation of fipronil and production of hydroxylated and glycosylated transformation products significantly decreased (p = 0.038, 0.0037, 0.0023, respectively), indicating that fipronil is metabolized intracellularly by cytochrome P450 enzymes. Elucidating fipronil transformation products is critical because pesticide target specificity can be lost via structural alteration, broadening classes of impacted organisms. Integration of fungi in engineered natural treatment systems could be a viable strategy for pesticide removal from stormwater runoff.

  11. Statistical analysis of sonochemical synthesis of SAPO-34 nanocrystals using Taguchi experimental design

    International Nuclear Information System (INIS)

    Askari, Sima; Halladj, Rouein; Nazari, Mahdi

    2013-01-01

    Highlights: ► Sonochemical synthesis of SAPO-34 nanocrystals. ► Using Taguchi experimental design (L9) for optimizing the experimental procedure. ► The significant effects of all the ultrasonic parameters on the response. - Abstract: SAPO-34 nanocrystals with high crystallinity were synthesized by means of sonochemical method. An L9 orthogonal array of the Taguchi method was implemented to investigate the effects of sonication conditions on the preparation of SAPO-34 with respect to crystallinity of the final product phase. The experimental data establish the favorable phase crystallinity which is improved by increasing the ultrasonic power and the sonication temperature. In the case of ultrasonic irradiation time, however, an initial increases in crystallinity from 5 min to 15 min is followed by a decrease in crystallinity for longer sonication time

  12. Modelling of acoustic pressure waves in bubbly liquids with application to sonochemical reactors

    OpenAIRE

    Dogan, Hakan

    2013-01-01

    This thesis investigates the acoustic wave propagation in bubbly liquids as part of the SONO project supported by the FP7 European Commission programme, which is aimed at developing a pilot sonochemical plant in order to produce antibacterial medical textile fabrics by coating of the textile with ZnO or CuO nanoparticles. The findings of this research are anticipated to aid the design procedures and also to provide better understanding of the micro scale physical and chemical events. Propagat...

  13. The coupled kinetics of grain growth and fission product behavior in nuclear fuel under degraded-core accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1985-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, and cesium release from (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests (performed at Oak Ridge National Laboratory) and (2) trace-irratiated LWR fuel during severe-fuel-damage (SFD) tests (performed in the PBF reactor in Idaho). A theory of grain boundary sweeping of gas bubbles has been included within the FASTGRASS-VFP formalism. This theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges, and provides a means of determining whether gas bubbles are caught up and moved along by a moving grain boundary or whether the grain boundary is only temporarily retarded by the bubbles and then breaks away. In addition, as FASTGRASS-VFP provides for a mechanistic calculation of intra- and intergranular fission product behavior, the coupled calculation between fission gas behavior and grain growth is kinetically comprehensive. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. The effect of fuel oxidation by steam on fission product and grain growth behavior is also considered. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted. (orig.)

  14. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    International Nuclear Information System (INIS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-01-01

    Cadmium Sulphide nanoparticles approximately 5–10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV–Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV–Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.Graphical AbstractThis paper investigates the in vitro binding interaction of Cadmium Sulphide (CdS) nanoparticles with serum albumins (HSA and BSA) using the UV-vis, steady-state fluorescence, time-resolved fluorescence, synchronous fluorescence and circular dichroism (CD) spectral techniques.

  15. Sonochemical synthesis, characterization, and electrochemical properties of MnMoO4 nanorods for supercapacitor applications

    International Nuclear Information System (INIS)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Sivaprakasam, Radhakrishnan; Kim, Sang Jae

    2014-01-01

    In this article, we reported the preparation of manganese molybdate (MnMoO 4 ) nanorods by a facile sonochemical method and investigated its electrochemical properties for supercapacitor applications. The microstructure, surface morphology and composition were characterized by using field emission scanning electron microscope (FE-SEM), high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and X-ray photo electron microscopy (XPS). The cyclic voltammetry (CV) curves of sonochemically synthesized α-MnMoO 4 nanorods revealed the presence of redox pairs suggesting the pseudocapacitive nature of MnMoO 4 . A maximum specific capacitance of the α-MnMoO 4 nanorods was about 168.32 F g −1 as observed from the galvanostatic charge–discharge (GCD) analysis at a constant current density of 0.5 mA cm −2 . Long term cyclic stability study revealed that about 96% of initial capacitance was retained after 2000 cycles. - Highlights: • MnMoO 4 nanorods were synthesized by sonochemical method. • FE-SEM studies show the rod like morphology of MnMoO 4 . • XRD studies show the presence of monoclinic phase of α-MnMoO 4 . • Specific capacitance of 168.32 F g −1 was achieved using charge–discharge analysis

  16. Mechanical Properties and Kinetics of Thermal Degradation of Bioplastics based on Straw Cellulose and Whole Wheat Flour

    Directory of Open Access Journals (Sweden)

    Hesam Omrani fard

    2012-12-01

    Full Text Available During  the  past  two  decades  the  use  of  bioplastics,  as  a  suitable  alternative to  petroleum-based  plastics,  has  attracted  researchers'  attention  to  a  great extent.  In  this  study,  the whole wheat four and  straw cellulose at different proportions were mixed with glycerol and bioplastics sheets were obtained by a press type molding machine.  The mechanical  properties  of  samples  were  examined  on compositions prepared by whole wheat weight in three proportions of 70, 60 and 50% and the cellulose in three proportions 75, 70 and 65%. The tensile tests on the samples indicated  that with  lowering  proportions  of  both  four  and  cellulose,  the modulus of elasticity and  tensile  strength of  the bioplastics dropped as well. The maximum modulus of  elasticity  achieved  for  the four  and  cellulose  compositions were 12.5, and 8.6 MPa, and the maximum tensile strengths were 878 and 202 kPa, respectively. The TGA tests indicated that the bioplastics prepared from whole wheat four showed higher temperatures of thermal degradation. The activation energies calculated for the four and cellulose bioplastics, as estimated by Arrhenius type equation, were 133.0 and 63.8 kJ/mol, respectively.

  17. Kinetic study of the degradation of C5 and C6 unsaturated aldehydes and alcohols by ozone

    Science.gov (United States)

    Kalalian, Carmen; Roth, Estelle; Chakir, Abdelkhaleq

    2017-04-01

    Emissions of biogenic volatile organic compounds (VOCs) are higher than those from anthropogenic sources. They are therefore likely to have a great influence on atmospheric chemistry both locally and regionally, through their impact on the HOx balance (HOx = HO + HO2), ozone production and ability to form secondary organic aerosols (SOA). Among the volatile organic compounds of biogenic origin are the family of C5 and C6 unsaturated aldehydes and alcohols. Few information exist regarding the fate of these compounds in the atmosphere especially there reaction with ozone. In this work, we studied the kinetics of the reaction of three unsaturated aldehydes (trans-2-pentenal, trans-2-hexenal and 2-methyl-2-pentenal) and three unsaturated alcohols (1-penten-3-ol, cis-2-penten-1-ol and trans-3-hexen-1-ol) with ozone O3 in a rigid atmospheric simulation chamber coupled to an FTIR spectrometer at four different temperatures (273, 298, 333 and 353 K) and at atmospheric pressure. The rate constants of the ozonolysis reaction of the unsaturated aldehydes and the unsaturated alcohols studied were determined and the following Arrhenius expression was obtained (cm3 molecule -1 s -1): k (Trans -2-pentenal)= (3.83 ± 3.71) x 10-16 exp (- (1706 ± 295) / T) k (Trans-2-hexenal)= (1.43 ± 0.67) x 10-16 exp (- (1369 ± 141) / T) k(2-Methyl-2-pentenal)= (3.62± 0.22) x 10-18 exp (- (121 ± 20) / T) k(1-penten-3-ol) = (1.42 ± 1.24) x 10-16 exp (- (642 ± 250) / T) k(Cis-2-penten-1-ol)= (3.14 ± 0.45) x 10-15 exp (- (1045 ± 40) / T) k(Trans-3-hexen-1-ol)= (6.38 ± 1.75) x 10-16 exp (- (686 ± 89) / T) The obtained data will be discussed in terms of structure-reactivity relationship and compared with the reported reactivity with OH radicals. The atmospheric implications derived from this study are discussed as well.

  18. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2016-07-01

    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  19. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes (Presentation Recording)

    Science.gov (United States)

    Coehoorn, Reinder; van Eersel, Harm; Bobbert, Peter A.; Janssen, Rene A. J.

    2015-10-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an integral manner. The method employs a physically transparent mechanistic approach, and is based on measurable parameters. All processes can be followed with molecular-scale spatial resolution and with sub-nanosecond time resolution, for any layer structure and any mixture of materials. In the talk, applications to the efficiency roll-off, emission color and lifetime of white and monochrome phosphorescent OLEDs [1,2] are demonstrated, and a comparison with experimental results is given. The simulations show to which extent the triplet-polaron quenching (TPQ) and triplet-triplet-annihilation (TTA) contribute to the roll-off, and how the microscopic parameters describing these processes can be deduced properly from dedicated experiments. Degradation is treated as a result of the (accelerated) conversion of emitter molecules to non-emissive sites upon a triplet-polaron quenching (TPQ) process. The degradation rate, and hence the device lifetime, is shown to depend on the emitter concentration and on the precise type of TPQ process. Results for both single-doped and co-doped OLEDs are presented, revealing that the kMC simulations enable efficient simulation-assisted layer stack development. [1] H. van Eersel et al., Appl. Phys. Lett. 105, 143303 (2014). [2] R. Coehoorn et al., Adv. Funct. Mater. (2015), publ. online (DOI: 10.1002/adfm.201402532)

  20. Determination of Glutamic Acid Decarboxylase (GAD65 in Pancreatic Islets and Its In Vitro and In Vivo Degradation Kinetics in Serum Using a Highly Sensitive Enzyme Immunoassay

    Directory of Open Access Journals (Sweden)

    Michael Schlosser

    2008-01-01

    Full Text Available Glutamic acid decarboxylase GAD65 autoantibodies (GADA are an established marker for autoimmune diabetes. Recently, the autoantigen GAD65 itself was proposed as biomarker of beta-cell loss for prediction of autoimmune diabetes and graft rejection after islet transplantation. Therefore, the GAD65 content in pancreatic islets of different species and its serum degradation kinetics were examined in this study using a sensitive immunoassay. GAD65 was found in quantities of 78 (human, 43.7 (LEW.1A rat and 37.4 (BB/OK rat ng per 1,000 islets, respectively, but not in mouse islets. The in vitro half-life of porcine GAD65 and human recombinant GAD65 ranged from 1.27 to 2.35 hours at 37°C in human serum, plasma and blood, and was unaffected by presence of GAD65 autoantibodies. After injecting 2,000 ng recombinant human GAD65 into LEW.1A rats, the in vivo half-life was 2.77 hours. GAD65 was undetectable after 24 hours in these animals, and for up to 48 hours following diabetes induction by streptozotocin in LEW.1A rats. Estimated from these data, at least 13 islets in rat and 1,875 in human must be simultaneously destroyed to detect GAD65 in circulation. These results should be taken into consideration in further studies aimed at examining the diagnostic relevance of GAD65.

  1. Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation.

    Science.gov (United States)

    Escudero, Carlos J; Iglesias, Olalla; Dominguez, Sara; Rivero, Maria J; Ortiz, Inmaculada

    2017-06-15

    This work reports the comparative performance of two Advanced Oxidation Processes (AOPs), electrochemical oxidation and photocatalysis, as individual technological alternatives for the treatment of effluents containing p-cresol. First, the influence of operating parameters in the oxidation and mineralization yield was carried out together with kinetic analysis. Boron Doped Diamond (BDD), RuO 2 and Pt as anodic materials, Na 2 SO 4 and NaCl as supporting electrolytes and different current densities were evaluated in electrochemical oxidation whereas the effect of TiO 2 concentration and radiation was studied in the photocatalytic degradation. Then, the parameter Electrical Energy per Order (E EO ) was calculated to compare the energy consumption in both AOPs, concluding that under the studied conditions the electrochemical treatment with BDD, Na 2 SO 4 and 125 A m -2 showed the best energy efficiency, with an E EO of 5.83 kW h m -3 order -1 for p-cresol and 58.05 kW h m -3 order -1 for DOC removal, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of rumen-degradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage.

    Science.gov (United States)

    Wickersham, T A; Titgemeyer, E C; Cochran, R C; Wickersham, E E; Gnad, D P

    2008-11-01

    We evaluated the effect of increasing amounts of rumen-degradable intake protein (DIP) on urea kinetics in steers consuming prairie hay. Ruminally and duodenally fistulated steers (278 kg of BW) were used in a 4 x 4 Latin square and provided ad libitum access to low-quality prairie hay (4.9% CP). The DIP was provided as casein dosed ruminally once daily in amounts of 0, 59, 118, and 177 mg of N/kg of BW daily. Periods were 13 d long, with 7 d for adaptation and 6 d for collection. Steers were in metabolism crates for total collection of urine and feces. Jugular infusion of (15)N(15)N-urea, followed by determination of urinary enrichment of (15)N(15)N-urea and (14)N(15)N-urea was used to determine urea kinetics. Forage and N intake increased (linear, P Urea synthesis was 19.9, 24.8, 42.9, and 50.9 g of urea-N/d for 0, 59, 118, and 177 mg of N/kg of BW daily (linear, P = 0.004). Entry of urea into the gut was 98.9, 98.8, 98.6, and 95.9% of production for 0, 59, 118, and 177 mg of N/kg of BW daily, respectively (quadratic, P = 0.003). The amount of urea-N entering the gastrointestinal tract was greatest for 177 mg of N/kg of BW daily (48.6 g of urea-N/d) and decreased (linear, P = 0.005) to 42.4, 24.5, and 19.8 g of urea-N/d for 118, 59, and 0 mg of N/kg of BW daily. Microbial incorporation of recycled urea-N increased linearly (P = 0.02) from 12.3 g of N/d for 0 mg of N/kg of BW daily to 28.9 g of N/d for 177 mg of N/kg of BW daily. Provision of DIP produced the desired and previously observed increase in forage intake while also increasing N retention. The large percentage of urea synthesis that was recycled to the gut (95.9% even when steers received the greatest amount of DIP) points to the remarkable ability of cattle to conserve N when fed a low-protein diet.

  3. A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane.

    Science.gov (United States)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2014-01-01

    We report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by an acoustic cavitation (sonochemical) process were found to induce a rapid silanization reaction between SPION and APTES. FTIR, XPS and XRD measurements were used to demonstrate the grafting of APTES on SPION. Compared to what was reported in literature, the results showed that the silanization reaction time was greatly minimized. More importantly, the product displayed superparamagnetic behaviour at room temperature with a more than 20% higher saturation magnetization.

  4. Rye Bran Modified with Cell Wall-Degrading Enzymes Influences the Kinetics of Plant Lignans but Not of Enterolignans in Multicatheterized Pigs.

    Science.gov (United States)

    Bolvig, Anne K; Nørskov, Natalja P; van Vliet, Sophie; Foldager, Leslie; Curtasu, Mihai V; Hedemann, Mette S; Sørensen, Jens F; Lærke, Helle N; Bach Knudsen, Knud E

    2017-12-01

    Background: Whole-grain intake is associated with a lower risk of chronic Western-style diseases, possibly brought about by the high concentration of phytochemicals, among them plant lignans (PLs), in the grains. Objective: We studied whether treatment of rye bran with cell wall-degrading enzymes changed the solubility and kinetics of PLs in multicatheterized pigs. Methods: Ten female Duroc × Danish Landrace × Yorkshire pigs (60.3 ± 2.3 kg at surgery) fitted with permanent catheters were included in an incomplete crossover study. The pigs were fed 2 experimental diets for 1-7 d. The diets were rich in PLs and based on nontreated lignan-rich [LR; lignan concentration: 20.2 mg dry matter (DM)/kg] or enzymatically treated lignan-rich (ENZLR; lignan concentration: 27.8 mg DM/kg) rye bran. Plasma concentrations of PLs and enterolignans were quantified with the use of targeted LC-tandem mass spectrometry. Data were log transformed and analyzed with mixed-effects, 1-compartment, and asymptotic regression models. Results: The availability of PLs was 38% greater in ENZLR than in LR, and the soluble fraction of PLs was 49% in ENZLR compared with 35% in LR diets. PLs appeared in the circulation 30 min after intake of both the ENZLR and LR diets. Postprandially, consumption of ENZLR resulted in a 4-times-greater ( P concentration compared with LR. The area under the curve (AUC) measured 0-360 min after ENZLR intake was ∼2 times higher than after LR intake. A 1-compartment model could describe the postprandial increase in plasma concentration after ENZLR intake, whereas an asymptotic regression model described the plasma concentrations after LR intake. Despite increased available and soluble PLs, ENZLR did not increase plasma enterolignans. Conclusion: The modification of rye bran with cell wall-degrading enzymes resulted in significantly greater plasma concentrations of PLs and the 4-h AUC, particularly syringaresinol, in multicatheterized pigs. © 2017 American Society

  5. Styrene photocatalytic degradation reaction kinetics

    OpenAIRE

    Taffarel, Silvio R.; Lansarin, Marla A.; Moro, Celso C.

    2011-01-01

    A reação de degradação fotocatalítica do estireno foi estudada utilizando-se TiO2 P-25 (Degussa) como catalisador. Os experimentos foram realizados em um reator “slurry” em bateladas, com controle de temperatura, empregando-se uma lâmpada UV. Foram estudados os efeitos do pH, da concentração inicial de estireno, da concentração do catalisador e da adição de H2O2 sobre a velocidade da reação. Os resultados mostraram que, em 90 min, cerca de 95% da quantidade inicial da molécula foi consumida p...

  6. Rapid sonochemical synthesis of mesoporous MnO{sub 2} for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Prasant Kumar [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012 (India); Munichandraiah, N., E-mail: muni@ipc.iisc.ernet.in [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012 (India)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer Mesoporous MnO{sub 2} samples have been synthesized in a very short duration by using sonochemical method. Black-Right-Pointing-Pointer On varying the amplitude of sonication, there is a change in morphology and porosity of MnO{sub 2} samples. Black-Right-Pointing-Pointer A maximum specific capacitance of 265 F g{sup -1} is achieved in 0.1 M Ca(NO{sub 3}){sub 2} electrolyte. - Abstract: Mesoporous MnO{sub 2} samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO{sub 4} by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO{sub 2} samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO{sub 2} from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m{sup 2} g{sup -1} is achieved for MnO{sub 2} sample. The MnO{sub 2} samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO{sub 3}){sub 2} electrolyte. A maximum specific capacitance (SC) of 265 F g{sup -1} is obtained for the MnO{sub 2} sample synthesized in sonochemical method using an amplitude of 30 {mu}m. The MnO{sub 2} samples also possess good electrochemical stability due to their favourable porous structure and high surface area.

  7. Sonochemical fabrication of 8-hydroxyquinoline aluminum (Alq3) nanoflowers with high electrogenerated chemiluminescence.

    Science.gov (United States)

    Mao, Chang-Jie; Wang, Dan-Chen; Pan, Hong-Cheng; Zhu, Jun-Jie

    2011-03-01

    Well-defined Alq(3) nanoflowers were fabricated via a facile and fast sonochemical route. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and shape of the as-prepared product. The results showed that the resulting Alq(3) was composed of nanobelts with thickness about 50 nm, average widths of 200 nm, and length up to 10 μm. The Alq(3) nanoflowers exhibited good electrogenerated chemiluminescence behavior. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Preparation of magnetic and pH-responsive chitosan microcapsules via sonochemical method.

    Science.gov (United States)

    Xu, Fengzhi; Zhao, Tianqi; Wang, Shurong; Liu, Songfeng; Yang, Ting; Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun

    2016-01-01

    Magnetic and pH-responsive chitosan microcapsules (MPRCMCs) were prepared by a simple sonochemical method. Superparamagnetic oleic acid modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) and hydrophobic drugs could be directly loaded into MPRCMCs during sonication. The obtained microcapsules had a well-defined spherical morphology with the average size of 2 μm. The microcapsules showed an excellent magnetic property. In addition, the pH-responsive controlled release of coumarin 6 (C6) from MPRCMCs indicated that the developed microcapsules could be a promising candidate for drugs carriers.

  9. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huawa [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); School of Science, Xi' an Polytechnic University, Xi' an 710048 (China); Fan, Huiqing, E-mail: hqfan3@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Xin [Shaanxi Province Thin Film Technology and Optical Test Open Key Laboratory, School of Photoelectrical Engineering, Xi' an Technological University, Xi' an 710032 (China); Wang, Jing [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Cheng, Pengfei; Zhang, Xiaojun [School of Science, Xi' an Polytechnic University, Xi' an 710048 (China)

    2014-10-03

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH){sub 2} crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices.

  10. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Yu, Huawa; Fan, Huiqing; Wang, Xin; Wang, Jing; Cheng, Pengfei; Zhang, Xiaojun

    2014-01-01

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH) 2 crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices

  11. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Nitzan, E-mail: n58987012@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Chen, Kuang-Yu [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Nien, Yung-Tang, E-mail: ytnien@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 63201, Taiwan (China); Perkas, Nina [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Gedanken, Aharon, E-mail: Aharon.Gedanken@biu.ac.il [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Chen, In-Gann, E-mail: ingann@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China)

    2015-03-15

    Highlights: • Solid state Ag SERS active substrates were sonochemically synthesized. • High intensity SERS spectra of both crystal violet and rhodamine 6G were observed. • We discovered that PVP aided synthesized substrates showed higher SERS intensity. - Abstract: Surface enhanced Raman scattering (SERS) enables the detection of substances at low concentrations using silver or gold nanostructure. The SERS technique has many applications, such as environmental detection and biosensing. Sonochemistry is an excellent and cheap deposition technique for coating substrates in a form of nanostructure at ambient temperature. It can also be utilized to prepare large SERS substrates. Here, we used the advantages of sonochemistry to deposit solid SERS substrates immobilized on GaN nanostructure. Morphology was studied by scanning electron microscopy. The elemental composition and the spatial distribution were examined by energy dispersive X-ray spectroscopy. The crystal structure and atomic presence was confirmed by X-ray diffraction. SERS substrates were examined with the analytes crystal violet (10{sup −5} M) and rhodamine 6G (10{sup −6} M), they showed prominent characteristic peaks. We discovered that the SERS intensity of poly-vinyl-pyrrolidinone aided sonochemical deposition of Ag nanoparticles was increased. The reason for the effect is morphological changes of the Ag nanoparticles. Smaller nanoparticles were fabricated, which increase their SERS intensity.

  12. Interphase and magnetotransport of LSMO-PMMA nanocomposites obtained by a sonochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Mariano [Centro NanoMat/Cryssmat Lab/Cátedra de Física – DETEMA – Facultad de Química – Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Universidad de la República (Uruguay); Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat/Cryssmat Lab/Cátedra de Física – DETEMA – Facultad de Química – Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Universidad de la República (Uruguay); Faccio, Ricardo [Centro NanoMat/Cryssmat Lab/Cátedra de Física – DETEMA – Facultad de Química – Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Universidad de la República (Uruguay); Tumelero, Milton A. [Laboratorio de filmes finos e superficies – Departamento de Física – Universidad Federal de Santa Catarina, Florianópolis (Brazil); and others

    2015-05-15

    In this report, we studied the structural, microstructural and compositional trends in a manganite-polymethylmethacrilate (LSMO-PMMA) nanocomposite prepared by a sonochemical method focusing in the study of its interphase and its correlation with magnetotransport. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman scattering and X-ray powder diffraction (XRPD) studies showed evidence of PMMA reactivity with partial decomposition at the LSMO nanoparticles interface. Additionally, grazing incidence small angle X-ray scattering (GISAXS) and high resolution transmission electron microscopy (HRTEM) showed information about the microstructure and the separation between nanoparticles in these nanocomposite materials. An enhancement in the low field magnetoresistance (LFMR) respect to pure LSMO was observed for a 20% weight fraction addition of PMMA in the high temperature regime (205–305 K) probably due to the increase in the magnetic disorder at the grain boundaries caused by the ultrasonic treatment. Nevertheless, lower PMMA weight fraction addition showed no enhancement in LFMR respect to pure LSMO, probably in agreement with the higher decomposition rate observed at the interphase. - Highlights: • We report the synthesis of LSMO-PMMA nanocomposites by a sonochemical method. • Compositional and microstructural trends were obtained from the interphase. • This method showed long-range homogeneity and enhancement of grain boundary disorder. • The enhancement on the LFMR respect to pure manganite was obtained at higher temperatures.

  13. Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application.

    Science.gov (United States)

    Gupta, Anadi; Srivastava, Rohit

    2018-03-01

    Current study reports a new and highly scalable method for the synthesis of novel structure Zinc oxide nanoleaves (ZnO-NLs) using disperser-assisted sonochemical approach. The synthesis was carried out in different batches from 50mL to 1L to ensure the scalability of the method which produced almost similar results. The use of high speed (9000rpm) mechanical dispersion while bath sonication (200W, 33kHz) yield 4.4g of ZnO-NLs powder in 1L batch reaction within 2h (>96% yield). The ZnO-NLs shows an excellent thermal stability even at a higher temperature (900°C) and high surface area. The high antibacterial activity of ZnO-NLs against diseases causing Gram-positive bacteria Staphylococcus aureus shows a reduction in CFU, morphological changes like eight times reduction in cell size, cell burst, and cellular leakage at 200µg/mL concentration. This study provides an efficient, cost-effective and an environmental friendly approach for the synthesis of ZnO-NLs at industrial scale as well as new technique to increase the efficiency of the existing sonochemical method. We envisage that this method can be applied to various fields where ZnO is significantly consumed like rubber manufacturing, ceramic industry and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mn-doped ZnO nanocrystals synthesized by sonochemical method: Structural, photoluminescence, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.A., E-mail: aaelho@yahoo.com [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt); Osman, M.A. [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt); Ibrahim, E.M.M. [Sohag University, Faculty of Science, Department of Physics, Sohag 82524 (Egypt); Ali, Manar A.; Abd-Elrahim, A.G. [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt)

    2017-05-15

    Highlights: • Mn-doped ZnO nanostructures were synthesized by the sonochemical method. • Structural, morphological, optical, photoluminescence and magnetic properties were investigated. • Mn-doped ZnO nanostructures reveal a blue shift of the optical band gap. • Photoluminescence spectra of Mn-doped ZnO nanostructures show quenching in the emission intensity. • Mn-doped ZnO nanostructures exhibit ferromagnetic ordering at room temperature. - Abstract: This work reports the synthesis of Mn-doped ZnO nanostructures using ice-bath assisted sonochemical technique. The impact of Mn-doping on structural, morphological, optical, and magnetic properties of ZnO nanostructures is studied. The morphological study shows that the lower doped samples possess mixtures of nanosheets and nanorods while the increase in Mn content leads to improvement of an anisotropic growth in a preferable orientation to form well-defined edge rods at Mn content of 0.04. UV–vis absorption spectra show that the exciton peak in the UV region is blue shifted due to Mn incorporation into the ZnO lattice. Doping ZnO with Mn ions leads to a reduction in the PL intensity due to a creation of more non-radiative recombination centers. The magnetic measurements show that the Mn-doped ZnO nanostructures exhibit ferromagnetic ordering at room temperature, as well as variation of the Mn content can significantly affect the ferromagnetic behavior of the samples.

  15. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    International Nuclear Information System (INIS)

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  16. Ionic liquid-assisted sonochemical synthesis of SnS nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, Nora A.; Parra-Arcieniega, Salomé M. de la; Garza-Tovar, Lorena L.; Torres-González, Luis C.; Sánchez, Eduardo M., E-mail: eduardo.sanchezcv@uanl.edu.mx

    2014-03-05

    Highlight: • Obtention of SnS nanostructures using novel ionic liquid assisted sonochemical method. • Influence of the (BMImBF{sub 4}) ionic liquid in SnS morphology. • Inhibitory effect in SnS crystallinity by structuring agents in ionic environments. -- Abstract: SnS nanoparticles have been successfully synthesized by the ionic liquid-assisted sonochemical method (ILASM). The starting reagents were anhydrous SnCl{sub 2}, thioacetamide, dissolved in ethanol and ionic liquid (IL)1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF{sub 4}) mixtures. Our experiments showed that IL plays an important role in the morphology of SnS. A 1:1 ethanol:IL mixture was found to yield the more interesting features. The lower concentration of Sn (II) in solution favored the presence of nanoplatelets. An increase in ultrasonic time favored crystalline degree and size as well. Also, the effect of additives as 3-mercaptopropionic acid, diethanolamine, ethylene glycol, and trioctyl phosphine oxide is reported. X-ray diffraction (XRD) and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis-DRS) were used to characterize the obtained products.

  17. Characterization and electrocatalytic properties of sonochemical synthesized PdAg nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Godinez-Garcia, Andres, E-mail: agodinez@qro.cinvestav.mx [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Perez-Robles, Juan Francisco [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Martinez-Tejada, Hader Vladimir [Grupo de Energia y Termodinamica, Universidad Pontificia Bolivariana, Medellin, Antioquia C.P. 050031 (Colombia); Solorza-Feria, Omar [Depto. Quimica, CINVESTAV-IPN, Av. IPN 2508, A. P. 14-740, 07360 D.F. Mexico (Mexico)

    2012-06-15

    High intensity ultrasound was used in the synthesis of PdAg nanoparticles. PdAg nanoparticles were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). Catalytic properties for oxygen reduction reaction (ORR) were determined by electrochemical techniques of cyclic voltammetry (CV) and thin-film rotating disk electrode (TF-RDE). Finally the electrocatalyst was tested as a cathode in a single polymer electrolyte membrane fuel cell (PEMFC). Sonochemical synthesis (SS) decreased the overpotential required for the ORR and increased the double-layer capacitance (DLC) respect to the sodium borohydride reduction method due to a better distribution on vulcan carbon support. The electrocatalytic activity of the nanometric bimetallic electrocatalyst for the ORR in acid media showed a favorable multielectron charge transfer process (n = 4e{sup -}) to water formation. The performance of the membrane electrode assembly (MEA) prepared with dispersed PdAg/C as a cathode catalyst in a single PEMFC is lower in comparison to platinum. - Highlights: Black-Right-Pointing-Pointer Sonochemical synthesized PdAg nanoparticles supported on carbon were produced. Black-Right-Pointing-Pointer The material showed catalytic properties for the oxygen reduction reaction (ORR). Black-Right-Pointing-Pointer The ORR favored the pathway to water formation.

  18. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Himani, E-mail: hkalita74@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Prashanth Kumar, B.N., E-mail: prasanthkumar999@gmail.com [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Konar, Suraj, E-mail: suraj.konar@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Tantubay, Sangeeta, E-mail: sang.chem2@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Mahto, Madhusudan Kr., E-mail: mahtomk0@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Mandal, Mahitosh, E-mail: mahitosh@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~ 48 nm and 206.51 m{sup 2}/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. - Highlights: • Biocompatible zirconium phosphate nanoparticles were synthesized by a simple sonochemical approach. • Curcumin was rapidly loaded onto the particles by the aid by hydrogen bond formation. • The curcumin loaded zirconium phosphate nanoparticles depict pH triggered drug release phenomenon. • The nanoformulated curcumin showed enhanced anti-tumor activity as compared to the native curcumin.

  19. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application

    International Nuclear Information System (INIS)

    Kalita, Himani; Prashanth Kumar, B.N.; Konar, Suraj; Tantubay, Sangeeta; Mahto, Madhusudan Kr.; Mandal, Mahitosh; Pathak, Amita

    2016-01-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~ 48 nm and 206.51 m"2/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. - Highlights: • Biocompatible zirconium phosphate nanoparticles were synthesized by a simple sonochemical approach. • Curcumin was rapidly loaded onto the particles by the aid by hydrogen bond formation. • The curcumin loaded zirconium phosphate nanoparticles depict pH triggered drug release phenomenon. • The nanoformulated curcumin showed enhanced anti-tumor activity as compared to the native curcumin.

  20. A sonochemical route for the encapsulation of drug in magnetic microspheres

    International Nuclear Information System (INIS)

    Wu Shixi; Jiang Wei; Zhang Xiaojuan; Sun Huan; Zhang Wenyao; Dai Junjun; Liu Li; Chen Xiaolong; Li Fengsheng

    2012-01-01

    This study focused on the preparation and characterization of magnetic targeted antibiotic microspheres (MTAMs). MTAMs were prepared by a sonochemical method in the presence of hydrophobic Fe 3 O 4 nanoparticles and tetracycline. The properties of MTAMs were characterized by transmission electron microscopy, Fourier-transform infrared spectrum, thermogravimetric analysis, vibration sample magnetometry, and bacteriostatic experiment. The results indicated that the superparamagnetic microspheres have ultrafine size (below 230 nm), high saturation magnetization (80.90 emu/g), high biocompatibility, biodegradability, controlled-release, and antibiotic effect. It has been proved that MTAMs can carry out the function of magnetic targeted drugs delivery system by putting together magnetic materials and antibiotics. The possible formation mechanism of MTAMs was also discussed. In summary, MTAMs had potential in medical imaging, drug targeting, and catalysis. - Highlights: → Microspheres carry out the function of magnetic targeted drugs delivery system. → Microspheres exhibit high saturation magnetization and antibiotic effect. → Microspheres have a potential application in the biomedical field. → The sonochemical method is well controlled for the synthesis.

  1. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses

    Directory of Open Access Journals (Sweden)

    Mazyar Etemadzade

    2016-11-01

    Full Text Available Objective: To evaluate the effect of novel sonochemical silver nanorods on HIV and herpes simplex virus type 1 (HSV-1 viruses in human cervical cancer HeLa cells. Methods: The formation of silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The antiviral activity of this Ag-MES was examined against HIV and HSV-1 virus replication. Results: The characterizations of Ag-MES and physiochemical structure were determined by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Approximately entire viral replication was inhibited by Ag-MES at 10 µmol/mL concentration. About 90% of HSV virions failed to replicate in the present of this concentration of nanorods. However, HIV showed more sensitivity to Ag-MES than HSV-1. Conclusions: According to the obtained data, the synthesized sonochemical silver nanorod in this study is a promising candidate for further drug discovery investigation.

  2. Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II)

    International Nuclear Information System (INIS)

    Lu, Xianyong; Liu, Zhaoyue; Zhu, Ying; Jiang, Lei

    2011-01-01

    Highlights: → Mg-doped ZnO nanoparticles were synthesized by sonochemical strategy. → Mg-doped ZnO nanoparticles present good photocatalytic properties. → The change of band gap contributes to their high efficiency in photocatalyst. -- Abstract: Mg-doped ZnO nanoparticles were successfully synthesized by sonochemical method. The products were characterized by scan electron microscopy (SEM) and X-ray powder diffraction (XRD). SEM images revealed that ZnO doped with Mg(II) nanoparticles and ZnO nanoparticles synthesized by the same strategy all had spherical topography. XRD patterns showed that the doped nanoparticles had the same crystals structures as the pure ZnO nanoparticles. The Mg-doped ZnO nanoparticles had larger lattice volume than the un-doped nanoparticles. X-ray photoelectron spectroscopy (XPS) not only demonstrated the moral ratio of Mg and Zn element on the surface of nanoparticles, but their valence in nanoparticles as well. The Mg-doped ZnO nanoparticles presented good properties in photocatalyst compared with pure ZnO nanoparticles.

  3. Interphase and magnetotransport of LSMO-PMMA nanocomposites obtained by a sonochemical method

    International Nuclear Information System (INIS)

    Romero, Mariano; Pardo, Helena; Faccio, Ricardo; Tumelero, Milton A.

    2015-01-01

    In this report, we studied the structural, microstructural and compositional trends in a manganite-polymethylmethacrilate (LSMO-PMMA) nanocomposite prepared by a sonochemical method focusing in the study of its interphase and its correlation with magnetotransport. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman scattering and X-ray powder diffraction (XRPD) studies showed evidence of PMMA reactivity with partial decomposition at the LSMO nanoparticles interface. Additionally, grazing incidence small angle X-ray scattering (GISAXS) and high resolution transmission electron microscopy (HRTEM) showed information about the microstructure and the separation between nanoparticles in these nanocomposite materials. An enhancement in the low field magnetoresistance (LFMR) respect to pure LSMO was observed for a 20% weight fraction addition of PMMA in the high temperature regime (205–305 K) probably due to the increase in the magnetic disorder at the grain boundaries caused by the ultrasonic treatment. Nevertheless, lower PMMA weight fraction addition showed no enhancement in LFMR respect to pure LSMO, probably in agreement with the higher decomposition rate observed at the interphase. - Highlights: • We report the synthesis of LSMO-PMMA nanocomposites by a sonochemical method. • Compositional and microstructural trends were obtained from the interphase. • This method showed long-range homogeneity and enhancement of grain boundary disorder. • The enhancement on the LFMR respect to pure manganite was obtained at higher temperatures

  4. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  5. Effects of ultrasound-related variables on sonochemically synthesized SAPO-34 nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Askari, Sima, E-mail: sima.askari@aut.ac.ir [Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Ave., Tehran (Iran, Islamic Republic of); Halladj, Rouein, E-mail: halladj@aut.ac.ir [Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Ave., Tehran (Iran, Islamic Republic of)

    2013-05-01

    The sonochemical method was developed to synthesize uniform SAPO-34 (silicoaluminophosphate molecular sieve) nanoparticles with high crystallinity using TEAOH as a structure-directing agent (SDA). The physicochemical characteristics of SAPO-34 products, i.e. crystallinity, particle size and shape can be controlled by varying the ultrasonic-related variable such as ultrasound power intensity, ultrasonic irradiation time, sonication temperature and geometrical characteristics of the ultrasonic device (e.g., sonotrode size). The products were characterized by XRD, SEM, TEM and BET. It is found that each of the parameters can play a significant role in acoustic cavitation, number of nuclei and the crystal growth. The experimental data establish that the crystallinity is related to ultrasonic intensity and diameter of the sonotrode, as well as sonication temperature. By increasing the ultrasonic power, duration and the sonication temperature, the mean sizes of particles decrease and the morphology of the products efficiently alters from spherical aggregates of cube type SAPO-34 particles to uniform spherical nanoparticles. - Graphical abstract: Increasing US power by increasing either US power intensity or the sonotrode diameter leads to smaller particle size and the morphology changes from spherical aggregates of cubic particles to uniform nanospheres. Highlights: • Effects of ultrasonic parameters on sonochemical synthesis of SAPO-34 nanoparticles. • The higher crystallinity by increasing ultrasonic power, duration and sonication temperature. • The morphology changes from spherical aggregates of cubic particles to uniform nanospheres. • Decreasing the particle size by increasing ultrasonic power, duration and sonication temperature.

  6. Study of degradation processes kinetics in ohmic contacts of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures under influence of temperature

    Science.gov (United States)

    Makeev, M. O.; Meshkov, S. A.

    2017-07-01

    The artificial aging of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures was conducted. As a result of the thermal influence resonant tunneling diodes IV curves degrade firstly due to ohmic contacts' degradation. To assess AlAs/GaAs resonant tunneling diodes degradation level and to predict their reliability, a functional dependence of the contact resistance of resonant tunneling diode AuGeNi ohmic contacts on time and temperature was offered.

  7. Comparison of Sonolysis, Photolysis, and Photosonolysis for the Degradation of Organic Matter

    Directory of Open Access Journals (Sweden)

    Afshin Maleki

    2009-06-01

    Full Text Available Phenol is one of the most common compounds found in the effluents of many industries such as petroleum refining and petrochemicals, pharmaceuticals, pesticides, paint and dye industries, organic chemicals manufacturing, etc. Due to the high toxicity of phenol, the contamination of bodies of water with this chemical is a serious problem for the environment and human health. In this study, the sonochemical, photochemical, and photosonochemical degradation of phenol in an aqueous solution were investigated. The sonochemical and photochemical experiments were carried out using a bath sonicator (500 W working at 35 and 130 kHz frequencies and a 400W medium pressure UV lamp. Experiments were performed at initial concentrations varying from 1 to 100 mg L-1. The effects of such parameters as pH, initial phenol concentration, and oxidation period have been determined. Results showed that the effects of ultrasound wave for phenol oxidation were mainly due to hydroxyl radical production during cavitation-induced water decomposition. However, low rates of sonochemical destruction of phenol in water solution obtained. In the sonochemical process, phenol underwent degradation at a faster rate at 130 kHz than 35 kHz. Besides, it was shown that reaction rates involving hydroxyl radicals (hydrogen peroxide formation and phenol oxidation had a maximum value at higher frequencies. The best yield was observed at 130 kHz for phenol degradation perhaps due to the greater availability of hydroxyl radical on the outer surface of cavitation bubbles. It was found that the rate of photochemical degradation of phenol was higher than sonochemical destruction. Also, the results showed that the combination of ultrasound wave and ultraviolet irradiation was considerably more effective than either ultrasound or ultraviolet light alone. Thus, based on the results of this study, the synergistic action of ultrasound and ultraviolet light is confirmed. This may be the result of

  8. Hydrothermal synthesis of Ag@TiO2–Fe3O4 nanocomposites using sonochemically activated precursors: magnetic, photocatalytic and antibacterial properties

    International Nuclear Information System (INIS)

    Bokare, Anuja; Singh, Hema; Nair, Roopa; Sabharwal, Sushma; Athawale, Anjali A; Pai, Mrinal

    2014-01-01

    Fe 3 O 4 –TiO 2 nanocomposites have been synthesized by hydrothermal method using sonochemically activated precursors. X-ray diffraction analysis of the samples reveals the formation of pure phase composites. The optical properties of the composites are superior to TiO 2 as noted from the red shift in the diffused reflectance spectra of the composites. The presence of nanocubes of Fe 3 O 4 , nanospheres of TiO 2 and heterojunctions of the two in the composite samples have been observed in transmission electron micrographs. The magnetic properties of the samples were determined with the help of vibrating sample magnetometry (VSM) and magnetic force microscopy (MFM). The photocatalytic activity of the samples was investigated in terms of degradation of methyl orange (MO) dye. The composites could be easily separated from the reaction mixture after photocatalysis due to their magnetic behaviour. However, the photocatalytic activity of the composites was observed to be lower compared to bare TiO 2 . The composite (15% Fe 3 O 4 –TiO 2 ) when modified by coating it with Ag showed enhanced photocatalytic activity. Further, the antibacterial activities of the samples were also examined using E. coli as a model organism. Positive results were obtained only for the Ag coated composite with lower MIC (minimum inhibition concentration) values. (paper)

  9. Hydrothermal synthesis of Ag@TiO2-Fe3O4 nanocomposites using sonochemically activated precursors: magnetic, photocatalytic and antibacterial properties

    Science.gov (United States)

    Bokare, Anuja; Singh, Hema; Pai, Mrinal; Nair, Roopa; Sabharwal, Sushma; Athawale, Anjali A.

    2014-12-01

    Fe3O4-TiO2 nanocomposites have been synthesized by hydrothermal method using sonochemically activated precursors. X-ray diffraction analysis of the samples reveals the formation of pure phase composites. The optical properties of the composites are superior to TiO2 as noted from the red shift in the diffused reflectance spectra of the composites. The presence of nanocubes of Fe3O4, nanospheres of TiO2 and heterojunctions of the two in the composite samples have been observed in transmission electron micrographs. The magnetic properties of the samples were determined with the help of vibrating sample magnetometry (VSM) and magnetic force microscopy (MFM). The photocatalytic activity of the samples was investigated in terms of degradation of methyl orange (MO) dye. The composites could be easily separated from the reaction mixture after photocatalysis due to their magnetic behaviour. However, the photocatalytic activity of the composites was observed to be lower compared to bare TiO2. The composite (15% Fe3O4-TiO2) when modified by coating it with Ag showed enhanced photocatalytic activity. Further, the antibacterial activities of the samples were also examined using E. coli as a model organism. Positive results were obtained only for the Ag coated composite with lower MIC (minimum inhibition concentration) values.

  10. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Hui, E-mail: huiqiaoz@163.com [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Department of Electrical Engineering and Computer Sciences, South Dakota State University, Brookings, SD 57007 (United States); Xia, Zhaokang; Liu, Yanhua [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Cui, Rongrong, E-mail: cuirong3243@sina.com [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Fei, Yaqian; Cai, Yibing; Wei, Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Yao, Qingxia [School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000 (China); Qiao, Qiquan, E-mail: qiquan.qiao@sdstate.edu [Department of Electrical Engineering and Computer Sciences, South Dakota State University, Brookings, SD 57007 (United States)

    2017-04-01

    Graphical abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The lithium storage properties demonstrated that ordered Co/CMK-3 nanocomposites possessed high reversible capacity and cycling stability. Moreover, the ordered Co/CMK-3 nanocomposites electrode also exhibits high capacity at higher charge/discharge rate. - Highlights: • A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. • The lithium storage properties shows that the ordered Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g{sup −1} after 50 cycles. • The ordered Co/CMK-3 nanocomposites also showed high capacity at higher discharge and charge rate. - Abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The ordered Co/CMK-3 nanocomposite were characterized by X-ray diffraction, transmission electron microscopy and N{sub 2} adsorption–desorption analysis techniques. The lithium storage properties shows that the Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g{sup −1} after 50 cycles at a current rate of 50 mA g{sup −1}, much higher than that of original CMK-3 electrode. The Co/CMK-3 nanocomposites also demonstrates an excellent rate capability with capacity of 479 mAh g{sup −1} even at a current density of 1000 mA g{sup −1} after 50 cycles. The improved lithium storage properties of ordered Co/CMK-3 nanocomposites can be attributed to the CMK-3 could restrain the aggregation of Co nanoparticles, the large surface area of the mesopores in which the Co nanoparticles are formed, as well as presence of Co which played the role of catalyst could promote the lithium storage reaction.

  11. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites

    International Nuclear Information System (INIS)

    Qiao, Hui; Xia, Zhaokang; Liu, Yanhua; Cui, Rongrong; Fei, Yaqian; Cai, Yibing; Wei, Qufu; Yao, Qingxia; Qiao, Qiquan

    2017-01-01

    Graphical abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The lithium storage properties demonstrated that ordered Co/CMK-3 nanocomposites possessed high reversible capacity and cycling stability. Moreover, the ordered Co/CMK-3 nanocomposites electrode also exhibits high capacity at higher charge/discharge rate. - Highlights: • A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. • The lithium storage properties shows that the ordered Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g"−"1 after 50 cycles. • The ordered Co/CMK-3 nanocomposites also showed high capacity at higher discharge and charge rate. - Abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The ordered Co/CMK-3 nanocomposite were characterized by X-ray diffraction, transmission electron microscopy and N_2 adsorption–desorption analysis techniques. The lithium storage properties shows that the Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g"−"1 after 50 cycles at a current rate of 50 mA g"−"1, much higher than that of original CMK-3 electrode. The Co/CMK-3 nanocomposites also demonstrates an excellent rate capability with capacity of 479 mAh g"−"1 even at a current density of 1000 mA g"−"1 after 50 cycles. The improved lithium storage properties of ordered Co/CMK-3 nanocomposites can be attributed to the CMK-3 could restrain the aggregation of Co nanoparticles, the large surface area of the mesopores in which the Co nanoparticles are formed, as well as presence of Co which played the role of catalyst could promote the lithium storage reaction.

  12. Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors.

    Science.gov (United States)

    Gnana Sundara Raj, Balasubramaniam; Asiri, Abdullah M; Qusti, Abdullah H; Wu, Jerry J; Anandan, Sambandam

    2014-11-01

    In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282Fg(-1) in the presence of 1M Ca(NO3)2 as an electrolyte at a current density of 0.5mAcm(-2) in the potential range from 0.0 to 1.0V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application

    Directory of Open Access Journals (Sweden)

    Arshid Numan

    2017-08-01

    Full Text Available A facile and fast approach for the synthesis of a nanostructured nickel hydroxide (Ni(OH2 via sonochemical technique is reported in the present study. The X-ray diffraction results confirmed that the synthesized Ni(OH2 was oriented in β-phase of hexagonal brucite structure. The nanostructured Ni(OH2 electrode exhibited the maximum specific capacitance of 1256 F/g at a current density of 200 mA/g in 1 M KOH(aq. Ni(OH2 electrodes exhibited the pseudocapacitive behavior due to the presence of redox reaction. It also exhibited long-term cyclic stability of 85% after 2000 cycles, suggesting that the nanostructured Ni(OH2 electrode will play a promising role for high performance supercapacitor application.

  14. Chemical composition and ruminal degradation kinetics of crude protein and amino acids, and intestinal digestibility of amino acids from tropical forages

    Directory of Open Access Journals (Sweden)

    Lidia Ferreira Miranda

    2012-03-01

    Full Text Available The objective of this research was to determine the chemical composition and ruminal degradation of the crude protein (CP, total and individual amino acids of leaves from tropical forages: perennial soybean (Neonotonia wightii, cassava (Manihot esculenta, leucaena (Leucaena leucocephala and ramie (Boehmeria nivea, and to estimate the intestinal digestibility of the rumen undegradable protein (RUDP and individual amino acids of leaves from the tropical forages above cited, but including pigeon pea (Cajanus cajan. Three nonlactating Holstein cows were used to determine the in situ ruminal degradability of protein and amino acids from leaves (6, 18 and 48 hours of ruminal incubation. For determination of the intestinal digestibility of RUDP, the residue from ruminal incubation of the materials was used for 18 hours. A larger concentration of total amino acids for ramie and smaller for perennial soybean were observed; however, they were very similar in leucaena and cassava. Leucine was the essential amino acid of greater concentration, with the exception of cassava, which exhibited a leucine concentration 40.45% smaller. Ramie showed 14.35 and 22.31% more lysine and methionine, respectively. The intestinal digestibility of RUDP varied from 23.56; 47.87; 23.48; 25.69 and 10.86% for leucaena, perennial soybean, cassava, ramie and pigeon pea, respectively. The individual amino acids of tropical forage disappeared in different extensions in the rumen. For the correct evaluation of those forages, one should consider their composition of amino acids, degradations and intestinal digestibility, once the amino acid composition of the forage does not reflect the amino acid profiles that arrived in the small intestine. Differences between the degradation curves of CP and amino acids indicate that degradation of amino acids cannot be estimated through the degradation curve of CP, and that amino acids are not degraded in a similar degradation profile.

  15. Role of e{sub aq}{sup −}, ·OH and H· in radiolytic degradation of atrazine: A kinetic and mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Javed Ali, E-mail: javed_chemistry@yahoo.com [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Shah, Noor S. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Institute of Chemical Sciences, University of Swat, Swat 19130 (Pakistan); Nawaz, Shah; Ismail, M.; Rehman, Faiza [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Hasan M., E-mail: hmkhan@upesh.edu.pk [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan)

    2015-05-15

    Highlights: • Atrazine was efficiently removed from aqueous solution by γ-ray irradiation. • e{sub aq}{sup −} was found to have more crucial role in removal of atrazine than ·OH. • Atrazine degradation was reduced in the presence of t-BuOH and i-PrOH. • Atrazine showed high stability at neutral pH than at very low and high pH conditions. • Potential degradation mechanism was evaluated by GC–MS analysis. - Abstract: The degradation of atrazine was investigated in aqueous solution by gamma-ray irradiation. 8.11 μM initial atrazine concentration could be completely removed in N{sub 2} saturated solution by applying 3500 Gy radiation dose at a dose rate of 296 Gy h{sup −1}. Significant removal of atrazine (i.e., 39.4%) was observed at an absorbed dose of 1184 Gy in air saturated solution and the removal efficiency was promoted to 50.5 and 65.4% in the presence of N{sub 2}O and N{sub 2} gases, respectively. The relative contributions of hydrated electron, hydroxyl radical and hydrogen radical toward atrazine degradation were determined as ratio of observed dose constant (k{sub obs}) and found to be 5: 3: 1 for k{sub eaq}{sup −}: k{sub ·OH}: k{sub H}·, respectively. The degradation efficiency of atrazine was 69.5, 55.6 and 37.3% at pH 12.1, 1.7 and 5.7, respectively. A degradation mechanism was proposed based on the identified degradation by-products by gas chromatography–mass spectrometry. Taking the relative contributions of oxidative and reductive species to atrazine degradation into account, reductive pathway proved to be a better approach for the radiolytic treatment of atrazine contaminated water.

  16. Effects of ultrasound-related variables on sonochemically synthesized SAPO-34 nanoparticles

    International Nuclear Information System (INIS)

    Askari, Sima; Halladj, Rouein

    2013-01-01

    The sonochemical method was developed to synthesize uniform SAPO-34 (silicoaluminophosphate molecular sieve) nanoparticles with high crystallinity using TEAOH as a structure-directing agent (SDA). The physicochemical characteristics of SAPO-34 products, i.e. crystallinity, particle size and shape can be controlled by varying the ultrasonic-related variable such as ultrasound power intensity, ultrasonic irradiation time, sonication temperature and geometrical characteristics of the ultrasonic device (e.g., sonotrode size). The products were characterized by XRD, SEM, TEM and BET. It is found that each of the parameters can play a significant role in acoustic cavitation, number of nuclei and the crystal growth. The experimental data establish that the crystallinity is related to ultrasonic intensity and diameter of the sonotrode, as well as sonication temperature. By increasing the ultrasonic power, duration and the sonication temperature, the mean sizes of particles decrease and the morphology of the products efficiently alters from spherical aggregates of cube type SAPO-34 particles to uniform spherical nanoparticles. - Graphical abstract: Increasing US power by increasing either US power intensity or the sonotrode diameter leads to smaller particle size and the morphology changes from spherical aggregates of cubic particles to uniform nanospheres. Highlights: ► Effects of ultrasonic parameters on sonochemical synthesis of SAPO-34 nanoparticles. ► The higher crystallinity by increasing ultrasonic power, duration and sonication temperature. ► The morphology changes from spherical aggregates of cubic particles to uniform nanospheres. ► Decreasing the particle size by increasing ultrasonic power, duration and sonication temperature

  17. Kinetics of thermal degradation of Vitamin C in Marula Fruit (Sclerocarya birrea subsp. caffra) as compared to other selected tropical fruits

    NARCIS (Netherlands)

    Hiwilepo-van Hal, P.; Bosschaart, C.; Twisk, van C.; Verkerk, R.; Dekker, M.

    2012-01-01

    The kinetics of the thermaldegradation of vitaminC of marula, mango and guava pulp at different heat treatments at temperature ranging from 80 to 150 °C were investigated. For temperatures lower than 125 °C, the ascorbic acid in marula pulp was about 15 fold more stable to heat than the ascorbic

  18. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics

    NARCIS (Netherlands)

    Rokhina, E.V.; Makarova, K.; Lathinen, M.; Golovina, E.A.; As, van H.; Virkutyte, J.

    2013-01-01

    The combination of peracetic acid (PAA) and heterogeneous catalyst (MnO2) was used for the degradation of phenol in an aqueous solution in the presence of ultrasound irradiation (US). As a relevant source of free radicals (e.g. OH), peracetic acid was comprehensively studied by means of electron

  19. Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: an atomic force microscopy (AFM) approach

    DEFF Research Database (Denmark)

    Balashev, Konstantin; Atanasov, Vasil; Mitewa, Mariana

    2011-01-01

    during the vipoxin's PLA(2) action. Experimentally for the first time, we observed the appearance and the growth of three-dimensional (3D), crystal-like structures within the formed defects of the degraded bilayer. In an effort to explain their nature, we applied bearing image analysis to estimate...

  20. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Comber, Mike

    2017-01-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby...... potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation...... method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng...

  1. Experimental study and kinetic modeling of the thermal degradation of aromatic volatile organic compounds (benzene, toluene and xylene-para) in methane flames; Etude experimentale et modelisation cinetique de la degradation thermique des composes organiques volatils aromatiques benzenes, toluene et para-xylene dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L.

    2001-02-01

    This study treats of the thermal degradation of a family of aromatic volatile organic compounds (VOCs) in laminar premixed methane flames at low pressure. The experimental influence of benzene, toluene and xylene-para on the structure of a reference methane flame has been studied. The molar fraction profiles of the stable and reactive, aliphatic, aromatic and cyclic species have been established by the coupling of the molecular beam sampling/mass spectroscopy technique with the gas chromatography/mass spectroscopy technique. Temperature profiles have been measured using a covered thermocouple. A detailed kinetic mechanism of oxidation of these compounds in flame conditions has been developed. Different available sub-mechanisms have been used as references: the GDF-Kin 1.0 model for the oxidation of methane and the models of Tan and Franck (1996) and of Lindstedt and Maurice (1996) in the case of benzene and toluene. In the case of para-xylene, a model has been developed because no mechanisms was available in the literature. These different mechanisms have been refined, completed or adjusted by comparing the experimental results with those obtained by kinetic modeling. The complete kinetic mechanism, comprising 156 chemical species involved in 1072 reactions allows to reproduce all the experimental observations in a satisfactory manner. The kinetic analysis of reactions velocity has permitted to determine oxidation kinetic schemes for benzene, toluene, xylene-para and for the cyclopentadienyl radical, main species at the origin of the rupture of the aromatic cycle. Reactions of recombination with the methyl radicals formed during methane oxidation, of the different aromatic or aliphatic radicals created during the oxidation of aromatics, play an important role and lead to the formation of several aromatic pollutants (ethyl-benzene for instance) or aliphatic pollutants (butadiene or penta-diene for instance) in flames. (J.S.)

  2. Cinética da degradação ruminal de dietas contendo farelo de casca de pequi Ruminal degradation kinetics of diets with pequi hulls bran

    Directory of Open Access Journals (Sweden)

    Luciana Castro Geraseev

    2011-09-01

    Full Text Available A casca de pequi é um resíduo do processamento do fruto, encontrado em grande volume nas regiões do cerrado brasileiro, que pode constituir uma alternativa para a alimentação de ruminantes. Avaliou-se a cinética da degradação ruminal da matéria seca (MS, proteína bruta (PB e fibra em detergente neutro (FDN do farelo da casca de pequi (FCP e de dietas contendo diferentes níveis do resíduo em substituição ao capim-elefante (CE. Foram utilizados quatro caprinos, machos, portando cânulas ruminais, dispostos em um delineamento experimental de blocos ao acaso com parcela subdividida. Avaliaram-se os parâmetros de degradabilidade do FCP, capim-elefante e de dietas contendo 0, 10, 20 e 30% de FCP em substituição ao CE. Os alimentos foram incubados no rúmen nos tempos de 4, 8, 12, 24, 48, 72 e 96 horas. Os resultados indicaram degradação potencial da MS, PB e FDN do resíduo superiores a 90, 80 e 80%, respectivamente. A adição do FCP em substituição ao CE resultou em maior degradabilidade da matéria seca e fibra em detergente neutro, reflexo da maior fração solúvel e potencialmente degradável da MS do FCP. Para a fração protéica, a adição de FCP correlacionou-se negativamente com a fração solúvel, degradação potencial e efetiva, e positivamente com a fração insolúvel potencialmente degradável. A substituição do capim-elefante por FCP permite melhor aproveitamento da dieta, elevando o aporte de nutrientes ao animal.The pequi hulls is a waste of pequi processing, found in large volume in the Brazilian Cerrado, which may provide an alternative to ruminants' diet. This experiment was developed to evaluate the ruminal degradation kinects of dry matter (DM, crude protein (CP and neutral detergent fiber (NDF of pequi hulls bran (PHB and experimental diets, with different substitution levels of elephant grass (EG by pequi hulls bran. Four goats castrated with ruminal cannulas were used in a randomized complete block

  3. Kinetics of polymer degradation in solution. 6. Laser flash photolysis and pulse radiolysis studies of polymethylvinylketone in solution using the light scattering detection method

    Energy Technology Data Exchange (ETDEWEB)

    Lindenau, D; Beavan, S W; Beck, G; Schnabel, W [Hahn-Meitner-Institut fuer Kernforschung Berlin G.m.b.H. (Germany, F.R.)

    1977-01-01

    Polymethylvinylketone (PMVK) was irradiated in solution with 2 ..mu..s pulses of 15 MeV electrons or with 15 ns flashes of 262 nm light. The change of the intensity of the light scattered by the solution (LSI) after the irradiation was measured. For the radiolysis experiments, a main chain scission process tausub(1/2) (decr) approximately 20 ..mu..s) and a subsequent crosslinking process (tausub(1/2) (incr) approximately 0.4 sec) could be discriminated. The LSI change pertaining to the main chain degradation was found to be due to disentanglement diffusion, whereas the LSI change pertaining to the crosslinking process could be correlated to a chemical reaction. The rate constant for combination of lateral macroradicals in acetone solution was estimated as 2 k/sub 2/ - (4.5 +- 1.5)10/sup 6/ M/sup -1/ sec/sup -1/. Stationary irradiation with /sup 60/Co-..gamma..-rays showed that PMVK is predominantly crosslinked to form a macrogel when irradiated in the solid state or in solution at concentrations greater than 100 g/l. At lower concentrations, microgel formation occurred. Photolysis of PMVK in solution yielded only main chain degradation. The LSI change was found to be due to disentanglement diffusion as during radiolysis. It was concluded that the same mechanism for main chain rupture is operative as in radiolysis. Stationary irradiations with uv light (lambda > 260 nm ) resulted in main chain degradation; no indication of crosslinking was obtained.

  4. Long-Acting Diclofenac Ester Prodrugs for Joint Injection: Kinetics, Mechanism of Degradation, and In Vitro Release From Prodrug Suspension.

    Science.gov (United States)

    Mertz, Nina; Larsen, Susan Weng; Kristensen, Jesper; Østergaard, Jesper; Larsen, Claus

    2016-10-01

    A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol/vol) human synovial fluid with 2-(1-methyl-1H-imidazol-2-yl)ethyl 2-(2-(2,6 dichlorophenyl)amino)phenylacetate being the poorest substrate toward enzymatic cleavage. The conversion and release of parent diclofenac from prodrug suspensions in vitro were studied using the rotating dialysis model. The results suggest that it is possible to alter and control dissolution and reconversion behavior of the diclofenac prodrugs, thus making the prodrug approach feasible for local and sustained diclofenac action after joint injection. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application.

    Science.gov (United States)

    Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Interphase and magnetotransport of LSMO-PMMA nanocomposites obtained by a sonochemical method

    Science.gov (United States)

    Romero, Mariano; Pardo, Helena; Faccio, Ricardo; Tumelero, Milton A.; Plá Cid, Cristiani Campos; Castiglioni, Jorge; Pasa, André A.; Mombrú, Álvaro W.

    2015-05-01

    In this report, we studied the structural, microstructural and compositional trends in a manganite-polymethylmethacrilate (LSMO-PMMA) nanocomposite prepared by a sonochemical method focusing in the study of its interphase and its correlation with magnetotransport. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman scattering and X-ray powder diffraction (XRPD) studies showed evidence of PMMA reactivity with partial decomposition at the LSMO nanoparticles interface. Additionally, grazing incidence small angle X-ray scattering (GISAXS) and high resolution transmission electron microscopy (HRTEM) showed information about the microstructure and the separation between nanoparticles in these nanocomposite materials. An enhancement in the low field magnetoresistance (LFMR) respect to pure LSMO was observed for a 20% weight fraction addition of PMMA in the high temperature regime (205-305 K) probably due to the increase in the magnetic disorder at the grain boundaries caused by the ultrasonic treatment. Nevertheless, lower PMMA weight fraction addition showed no enhancement in LFMR respect to pure LSMO, probably in agreement with the higher decomposition rate observed at the interphase.

  7. Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities.

    Science.gov (United States)

    Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Naderi, Hamid Reza; Pourmohamadian, Vafa; Ahmadi, Farhad; Ganjali, Mohammad Reza; Ehrlich, Hermann

    2018-07-01

    Sonochemically prepared nanoparticles of terbium tungstate (TWNPs) were evaluated through scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and the optimal products were further characterized in terms of their electrochemical properties using conventional and continuous cyclic voltammetry (CV, and CCV), galvanostatic charge/discharge technique, and electrochemical impedance spectroscopy (EIS). The CV studies indicated the TWNPs to have specific capacitance (SC) values of 336 and 205 F g -1 at 1 and 200 mV s -1 , and galvanostatic charge-discharge tests revealed the SC of the TWNP-based electrodes to be 300 F g -1 at 1 Ag -1 . Also continuous cyclic voltammetry evaluations proved the sample as having a capacitance retention value of 95.3% after applying 4000 potential cycles. In the light of the results TWNPs were concluded as favorable electrode materials for use in hybrid vehicle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites

    Science.gov (United States)

    Qiao, Hui; Xia, Zhaokang; Liu, Yanhua; Cui, Rongrong; Fei, Yaqian; Cai, Yibing; Wei, Qufu; Yao, Qingxia; Qiao, Qiquan

    2017-04-01

    A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The ordered Co/CMK-3 nanocomposite were characterized by X-ray diffraction, transmission electron microscopy and N2 adsorption-desorption analysis techniques. The lithium storage properties shows that the Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g-1 after 50 cycles at a current rate of 50 mA g-1, much higher than that of original CMK-3 electrode. The Co/CMK-3 nanocomposites also demonstrates an excellent rate capability with capacity of 479 mAh g-1 even at a current density of 1000 mA g-1 after 50 cycles. The improved lithium storage properties of ordered Co/CMK-3 nanocomposites can be attributed to the CMK-3 could restrain the aggregation of Co nanoparticles, the large surface area of the mesopores in which the Co nanoparticles are formed, as well as presence of Co which played the role of catalyst could promote the lithium storage reaction.

  9. Sonochemical assisted synthesis of SrFe12O19 nanoparticles.

    Science.gov (United States)

    Palomino, R L; Bolarín Miró, A M; Tenorio, F N; Sánchez De Jesús, F; Cortés Escobedo, C A; Ammar, S

    2016-03-01

    We present the synthesis of M-type strontium hexaferrite by sonochemistry and annealing. The effects of the sonication time and thermal energy on the crystal structure and magnetic properties of the obtained powders are presented. Strontium hexagonal ferrite (SrFe12O19) was successfully prepared by the ultrasonic cavitation (sonochemistry) of a complexed polyol solution of metallic acetates and diethylene glycol. The obtained materials were subsequently annealed at temperatures from 300 to 900 °C. X-ray diffraction analysis shows that the sonochemical process yields an amorphous phase containing Fe(3+), Fe(2+) and Sr(2+) ions. This amorphous phase transforms into an intermediate phase of maghemite (γ-Fe2O3) at 300 °C. At 500 °C, the intermediate species is converted to hematite (α-Fe2O3) by a topotactic transition. The final product of strontium hexaferrite (SrFe12O19) is generated at 800 °C. The obtained strontium hexaferrite shows a magnetization of 62.3 emu/g, which is consistent with pure hexaferrite obtained by other methods, and a coercivity of 6.25 kOe, which is higher than expected for this hexaferrite. The powder morphology is composed of aggregates of rounded particles with an average particle size of 60 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fabrication of redox-responsive magnetic protein microcapsules from hen egg white by the sonochemical method.

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Tian, Fangyuan

    2015-01-01

    Redox-responsive magnetic protein microcapsules with Fe3O4 magnetic nanoparticles (MNPs) encapsulated inside have been obtained using a facile, cost-effective and fast sonochemical method from hen egg white proteins. Such prepared redox-responsive magnetic hen egg white protein microcapsules (MHEWPMCs) could be easily manipulated to do magnetic-guided targeting delivery. The synchronous loading of the hydrophobic dye Coumarin 6 as a model of drug into MHEWPMCs was readily achieved during the fabrication of MHEWPMCs by dissolving them into the oil phase before ultrasonication. TEM images indicated that Fe3O4 MNPs were encapsulated in MHEWPMCs. Confocal laser scanning microscopic images indicated that the dye was distributed evenly in the MHEWPMCs and no leakage of dye from the MHEWPMCs was observed due to the protection of protein shells. The MHEWPMCs are potential candidates as attractive carriers for drug targeting delivery and stimuli-responsive release due to their magnetic and redox responsiveness of the disulfide in the microcapsule shells.

  11. Ultrasound assisted sonochemical synthesis of samarium doped Y2O3 nanostructures for display applications

    Science.gov (United States)

    Venkatachalaiah, K. N.; Nagabhushana, H.; Basavaraj, R. B.; Venkataravanappa, M.; Suresh, C.

    2018-04-01

    Sm3+ doped (1-11 mol %) cubic Y2O3 nanoflowers were fabricated by simple low temperature Sonochemical method using Aloe Vera gel as fuel. The product was characterized by PXRD, SEM, TEM, DRS, PL etc. The powder X-ray diffraction (PXRD) profiles of nanophosphors showed cubic phase structure. The particle size was further confirmed by transmission electron microscope (TEM) and it was found to be in the range of 17-25 nm. The PL emission results reveal that the phosphor nanoparticles (NPs) emit an intensive yellowish light under 367 nm excitation. The excitation spectrum of Y2O3: Sm3+ (5 mol %) obtained by monitoring the emission of the 4f - 4f (4G5/2→6H7/2) transition of Sm3+ at 612 nm As can be seen that the excitation spectrum consists of strong band at 332 nm and a broad band centered at 367 nm which corresponds to host absorption, confirming the effective energy transfer from Y2O3 host to Sm3+ ions. In the present study, CIE and CCT were estimated and found to be (0.45688, 0.51727) and the CCT of Y2O3: Sm3+ at 367 nm excitation was found to be 3357 K which was within the range of vertical daylight. Thus it can be useful for artificial production of illumination devices.

  12. Sonocatalytic degradation of Reactive Yellow 39 using synthesized ZrO2 nanoparticles on biochar.

    Science.gov (United States)

    Khataee, Alireza; Kayan, Berkant; Gholami, Peyman; Kalderis, Dimitrios; Akay, Sema; Dinpazhoh, Laleh

    2017-11-01

    ZrO 2 -biochar (ZrO 2 -BC) nanocomposite was prepared by a modified sonochemical/sol-gel method. The physicochemical properties of the prepared nanocomposite were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray fluorescence, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller model. The sonocatalytic performance of ZrO 2 -BC was investigated in sonochemical degradation of Reactive Yellow 39 (RY39). The high observed sonocatalytic activity of the ZrO 2 -BC sample could be interpreted by the mechanisms of sonoluminescence and hot spots. Parameters including ZrO 2 -BC dosage, solution pH, initial RY39 concentration and ultrasonic power were selected as the main operational parameters and their influence on RY39 degradation efficiency was examined. A 96.8% degradation efficiency was achieved with a ZrO 2 -BC dosage of 1.5g/L, pH of 6, initial RY39 concentration of 20mg/L and ultrasonic power of 300W. In the presence of OH radical scavengers, RY39 degradation was significantly inhibited, providing evidence for the key role of hydroxyl radicals in the process. The sonodegradation intermediates were identified using gas chromatography-mass spectroscopy and the possible decomposition route was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    Science.gov (United States)

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  14. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    OpenAIRE

    Mohammad Ali Karimi; Saeed Haghdar Roozbahani; Reza Asadiniya; Abdolhamid Hatefi-Mehrjardi; Mohammad Hossein Mashhadizadeh; Reza Behjatmanesh-Ardakani; Mohammad Mazloum-Ardakani; Hadi Kargar; Seyed Mojtaba Zebarjad

    2011-01-01

    This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO3)2 and Mg(CHCOO3)2 with tetramethylammonium hydroxide (TMAH) in the presence of polyvinyl pyrrolidone (PVP) and constant frequency ultrasonic waves (sonochemical method). Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as...

  15. Anatomia e cinética de degradação do feno de Manihot glaziovii = Anatomy and kinetics of degradation of Manihot glaziovii Hay

    Directory of Open Access Journals (Sweden)

    Andrezza Araújo de França

    2010-04-01

    Full Text Available Avaliaram-se a composição química, o teor de compostos secundários, adegradabilidade in situ, a anatomia e a degradabilidade dos tecidos do feno de maniçoba, a partir de plantas em início de frutificação, oriundas de uma vegetação de caatinga em Ibimirim, Estado do Pernambuco. O caule apresentou células com variados graus de lignificação, destacando-se a presença de fibras gelatinosas, parênquima medular lignificado e espessas paredes celulares no xilema. As folhas se destacam pela presença da estrutura girder, caracterizam-se pela grande quantidade de mesofilo, constituído por células com paredes delgadas, contribuindo para a degradabilidade de matéria seca. Idioblastos contendo drusas de oxalato foram encontrados nos tecidos vasculares, na nervura principal da folha. Eles funcionam como mecanismos de defesa do vegetal contra herbívoros e podem afetar a disponibilidade de minerais para o animal. O feno demaniçoba, apesar de obtido de planta em avançado estágio de maturidade (início da frutificação, possui adequada composição química e baixos teores de ácido cianídrico e taninos. Os principaislimitantes à degradabilidade são o espessamento e a lignificação das paredes celulares, especialmente nos tecidos do caule. Adicionalmente, os diversos aspectos aqui relatados induzem à continuidade de pesquisas em diversos focos e visam ao melhoramento e à utilização desta espécie como forrageira.This study the structural components of cell wall with its degradability, chemical composition, secondary compounds, in situ degradability, anatomy and tissue degradability of the hay of “maniçoba” (wild cassava from plants in early fruiting, from savanna vegetation in Ibimirim, Pernambuco. The stem showed cells with varied degrees of lignification, highlighting the presence of gelatinousfibers, lignified pith parenchyma and thick cell walls inside the xylem. The leaves were highlighted by the presence of a girder

  16. Electrochemical degradation of PAH compounds in process water: A kinetic study on model solutions and a proof of concept study on runoff water from harbour sediment purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    2010-01-01

    The present study has investigated the possibility to apply electrochemical oxidation in the treatment of polycyclic aromatic hydrocarbon (PAHs) pollutants in water. The reaction kinetics of naphthalene, fluoranthene, and pyrene oxidation have been studied in a batch recirculation experimental...... oxidation side reaction at lower applied voltages. A proof of concept study in real polluted water demonstrated the applicability of the electrochemical oxidation technique for larger scale use, where especially the indirect chloride mediated oxidation approach was a promising technique. However, the risk....... Decreased current densities from 200 to 15 mA cm-2 in the NaCl electrolyte also decreased the removal rates, but significantly enhanced the current efficiencies of the PAH oxidation, based on a defined current efficiency constant, kq. This observation is believed to be due to the suppression of the water...

  17. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    Science.gov (United States)

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Time-of-flight mass spectrometry assessment of fluconazole and climbazole UV and UV/H2O2 degradability: Kinetics study and transformation products elucidation.

    Science.gov (United States)

    Castro, Gabriela; Casado, Jorge; Rodríguez, Isaac; Ramil, María; Ferradás, Aida; Cela, Rafael

    2016-01-01

    The efficiency of UV irradiation for the removal of the antimycotic drugs fluconazole (FCZ) and climbazole (CBZ) from water samples is evaluated. Degradation experiments, at laboratory scale, were carried out with spiked aliquots of ultrapure water solutions and treated wastewater samples using low-pressure mercury lamps emitting at 254 nm. Time course of precursor pollutants and identification of arising transformation products (TPs) was performed by injection of different reaction time aliquots in a liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) system. Chemical structures of identified TPs were proposed from their full-product ion spectra, acquired using different collision energies. During UV irradiation experiments, the half-lives (t1/2) of FCZ and CBZ were similar in ultrapure water solutions and wastewater samples; however, the first species was more recalcitrant than the second one. Four TPs were identified in case of FCZ resulting from substitution of fluorine atoms by hydroxyl moieties and intramolecular cyclization with fluorine removal. CBZ interacted with UV radiation through reductive dechlorination, hydroxylation and cleavage of the ether bond; moreover, five additional primary TPs, with the same empirical formula as CBZ, were also noticed. Given the relatively long t1/2 of FCZ under direct photolysis (ca. 42 min), UV irradiation was combined with H2O2 addition to promote formation of reactive hydroxyl radicals. Under such conditions, the degradation rate of FCZ was enhanced significantly and no TPs were detected. These latter conditions allowed also the effective removal of CBZ TPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    International Nuclear Information System (INIS)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X_m_a_x), biodegradation constant of DEHP (k), half-life (t_1_/_2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X_m_a_x occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t_1_/_2 were 0.024 h"−"1 and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  20. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  1. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways.

    Science.gov (United States)

    Xu, Xinxin; Chen, Jing; Qu, Ruijuan; Wang, Zunyao

    2017-10-01

    The feasibility of UV-activated peroxymonosulfate (PMS) technology for the degradation of Tris (2-chloroethyl) phosphate (TCEP) in an aqueous solution was investigated in this study. The conditions of [PMS] 0 : [TCEP] 0  = 20:1, T = 25 ± 2 °C and pH = 5.5 ± 0.5 cause a 94.6% removal of TCEP (1 mg L -1 ) after 30 min of Hg lamp irradiation. The effects of operating parameters (the oxidant doses, pH and presence of typical cations (Fe 3+ , Cu 2+ , Ni 2+ , NH 4 + ), anions (Cl - , HCO 3 - , NO 3 - , HPO 4 2- ) and humic acid (HA)) were evaluated. It was found that an increase of the PMS dose and the presence of Fe 3+ could accelerate the reaction, while the anions and HA inhibited the reaction. Meanwhile, TCEP removal in various water matrices was compared, and the order for TCEP removal was as follows: ultrapure water > tap water > synthetic water > secondary clarifier effluent > Jiuxiang river water. Twenty-two oxidation products were identified using an electrospray time-of-flight mass spectrometer, and the degradation pathways mainly involved radicals' addition and CO bond cleavage. Furthermore, ECOSAR analysis revealed that the intermediate products during the TCEP oxidation process were generally not harmful to three typical aquatic species. Hence, UV/PMS can be used as an efficient technology to treat TCEP-containing water and wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  3. In situ Rumen Degradation Kinetics of High-Protein Forage Crops in Temperate Climates Cinética de Degradación Ruminal in situ en Forrajes de Alto Contenido Proteico en Clima Templado

    Directory of Open Access Journals (Sweden)

    Ximena Valderrama L.

    2011-12-01

    Full Text Available The present study was conducted to evaluate the nutritional value and in situ degradation kinetics of eight high protein forage crops: alfalfa (Medicago sativa L., forage oat (Avena sativa L., mixed pasture, and ryegrass (Lolium multiflorum Lam. pasture in early vegetative stages, two forage lupins (Lupinus albus L. in early bloom stages, sugar beet (Beta vulgaris L. and kale (Brassica napus var. pabularia (DC. Rchb. leaves at root maturity. Dry matter (DM and crude protein (CP degradation kinetics were evaluated by the nylon bag technique through the in situ procedure described by 0rskov and MacDonald (1979 using three ruminally cannulated sheep. Chemical composition of the forage crops showed on average 13.7% DM; 21.4% CP; 31.5% neutral detergent fiber (NDF; 17.7% crude fiber (CF, 80.6% digestibility of organic matter (DOMD and 12.13 MJ kg-1 metabolizable energy (ME. The high total degradability of forage crops reported here (> 87% DM; > 93% CP can be associated with the presence of large quantities of fraction a (> 34% DMa; > 29% CPa and high degradability of fraction b, resulting in low amounts of undegradable fraction (U (7.02% DM and 3.55% CP. Correlations between CPb and DMb degradability (r = 0.79 and CPc and DMc degradation rates (r = 0.78 were high, however differences in c were not explained by differences in CP or NDF contents, nor by the amounts of a or b fractions. Degradation for DM and CP during the first 6 h of incubation was strongly and inversely correlated to b (36 h (r = 0.93 (P El presente estudio se desarrolló con el objetivo de evaluar el valor nutricional y la cinética de degradación in situ de ocho forrajes de alto valor proteico: alfalfa (Medicago sativa L., avena (Avena sativa L., pastos mixtos y pastos de ballica (Lolium multiflorum Lam., en las primeras etapas vegetativas, dos lupinos forrajeros (Lupinus albus L. en etapas inicio de la floración, hojas de remolacha azucarera (Beta vulgaris L. y de col (Brassica

  4. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor.

    Science.gov (United States)

    Ghasemi, Shahram; Hosseini, Sayed Reza; Boore-Talari, Omid

    2018-01-01

    Manganese dioxide (MnO 2 ) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO 2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO 2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO 2 /GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1V to obtain MnO 2 /RGO nanohybrid. The structure and morphology of the MnO 2 and MnO 2 /RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO 2 and MnO 2 /RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5M sodium sulfate in the potential window of 0.0-1.0V. The electrochemical investigations reveal that MnO 2 /RGO exhibits high specific capacitance (C s ) of 375Fg -1 at current density of 1Ag -1 and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200mVs -1 ). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  6. Nanostructural Characters of β-SiC Nanoparticles Prepared from Indonesian Natural Resource using Sonochemical Method

    Science.gov (United States)

    Fuad, A.; Kultsum, U.; Taufiq, A.; Hartatiek; Latifah, E.

    2018-04-01

    Silicon carbide (SiC) nanoparticles become one of the interesting non-oxide ceramics due to their physical and chemical properties. For an extended period, SiC nanoparticles have been prepared by several methods that usually performed at high temperatures ranging from 1200 - 2000 °C from inexpensive commercial precursors. In this work, we prepared SiC nanoparticles from the low priced precursor of Indonesia natural resource using the sonochemical method at a temperature that is lower than 1000 °C. To produce samples with particular characters, we varied the sintering holding time (1, 10, and 20 hours) and the sintering temperatures (850, 950, and 1050 °C) during the synthesis. The samples were then characterized using XRD, SEM-EDX, TEM, and FTIR. The XRD data analysis showed that the samples have a dominant phase of SiC in the form of β-SiC with a 3C-SiC structure and SiO2 phase in a low composition within a good agreement with the EDX characterization. Interestingly, the sample prepared at the sintering temperature of 850 °C for 1 hour showed a non-crystallite phase. Using a Scherer’s equation, the particles of the samples sized from 13 to 18 nm, which were validated by SEM and TEM images. Furthermore, the FT-IR spectra presented several peaks, i.e., at wavenumbers of 482.2 and 1150 cm-1 representing Si-O-Si bonding and also at 798.5 cm-1 regarding with Si-C bonding.

  7. Cinética de degradação e vida-de-prateleira de suco integral de manga Kinetics of degradation and shelf-life of whole mango juice

    Directory of Open Access Journals (Sweden)

    Anderson do Nascimento Oliveira

    2013-01-01

    Full Text Available Este trabalho objetivou estudar a cinética de degradação de suco integral manga Ubá por testes acelerados e estimar sua vida-de-prateleira a 25°C. Para isso, amostras do produto foram armazenadas em estufas tipo BOD a 25, 35 e 45°C, providas de iluminação (650lux 24 horas por dia. As características físico-químicas que mais influenciaram na qualidade do produto foram as coordenadas de cor (L* e ∆E* e a concentração de vitamina C. A alteração da cor seguiu o modelo cinético de ordem zero, sendo verificado um escurecimento dos produtos mantidos a 35°C e 45°C, enquanto que a degradação da vitamina C foi mais bem explicada pelo modelo de primeira ordem. Houve correlação significativa entre a concentração de vitamina C e os valores de L* e ∆E* (PThis research aimed to study the kinetic of whole mango juice cv. 'Ubá' degradation using accelerated assays and estimate its shelf-life at 25°C. The products were stored in BOD incubator at 25°C (control, 35°C and 45°C (accelerated conditions, provided with 24 hours a day 650lux lighting. Physico-chemical properties that most influenced the quality of the product were the color coordinates (L* and ∆E* and the vitamin C content. It was found that zero order kinetic model was the best fit to variations in the values of L* and ∆E*, which showed browning of products stored under higher temperatures. There were significant correlations between changes in vitamin C content and changes in values of L* and ∆E*, suggesting that the degradation of this vitamin contributed to darkening of the product. Shelf-life of 190 days was estimated for whole mango juice stored at 25°C, using vitamin C content as the limiting quality.

  8. Cinética ruminal da degradação de nutrientes da silagem de milho em ambiente ruminal inoculado com diferentes aditivos Ruminal degradation kinetics of corn silage in bulls inoculated with different additives in the rumen

    Directory of Open Access Journals (Sweden)

    Pedro Andrade Katsuki

    2006-12-01

    Full Text Available Objetivou-se avaliar a cinética ruminal da degradação de MS, PB e FDN da silagem de milho em ambiente ruminal inoculado com diferentes aditivos. Utilizou-se um delineamento em quadrado latino 4 x 4, com quatro bovinos holandeses e quatro períodos de incubação, em ambiente ruminal adaptado ou não com diferentes aditivos alimentares. Foram testados os seguintes tratamentos: SCL - silagem de milho em ambiente ruminal sem inoculação de aditivo; SBL - silagem de milho em ambiente ruminal inoculado com 5 g de produto comercial contendo bactérias ruminais e intestinais liofilizadas (Ruminobacter amylophilum: 3,0 x 10(11 ufc/kg; Fibrobacter succinogenes: 3,0 x 10(11 ufc/kg; Succinovibrio dextrinsolvens: 4,4 x 10(11 ufc/kg; Bacillus cereus: 3,5 x 10(11 ufc/kg; Lactobacillus acidophilus: 3,5 x 10(11 ufc/kg e Streptococcus faecium: 3,5 x 10(11 ufc/kg; SEC - silagem de milho em ambiente ruminal inoculado com 15 g de produto comercial contendo enzimas celulolíticas (xilanase 10%; e SMS - silagem de milho em ambiente ruminal inoculado com 3 g de produto comercial contendo monensina sódica. Os tratamentos SBL e SEC não afetaram a fração potencialmente degradável (b dos nutrientes avaliados da silagem de milho. A monensina sódica reduziu a fração (b da MS (51,01% e a degradabilidade potencial da silagem de milho (72,33%. Entre os aditivos estudados, a monensina sódica proporcionou a maior fração não-degradável da FDN (45,57%, reduzindo o desaparecimento desta fração a partir de 48 horas de incubação intra-ruminal. Os diferentes aditivos, nas concentrações estudadas, não proporcionaram melhora na degradabilidade efetiva da MS, PB e FDN da silagem de milho.Four bulls fitted with ruminal cannula were used in a 4 x 4 Latin square design to evaluate the effects of different ruminally inoculated additives on the degradation kinetics of DM, CP, and NDF of corn silage (CS. The treatments were: control CS incubated in rumen with no

  9. Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis.

    Science.gov (United States)

    Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei

    2017-11-01

    To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. TiO{sub 2} modified with Ag nanoparticles synthesized via ultrasonic atomization-UV reduction and the use of kinetic models to determine the acetic acid photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yingcao, E-mail: xuyingcao@aliyun.com [State Key Laboratory of Urban Water Resource, Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Applied Chemistry Department, School of Science, Northeast Agriculture University, Harbin 150030 (China); You, Hong, E-mail: youhong@hit.edu.cn [State Key Laboratory of Urban Water Resource, Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2014-12-01

    Highlights: • The first use of ultrasonic atomization-UV reduction for modifying Ag on TiO{sub 2}. • The first use of kinetics models for the establishment of the photocatalytic degradation of acetic acid using a hyperbolic mathematical model and introducing the concentration factor (α) in the dynamic model. • Photocatalytic experiment design using double-sided TiO{sub 2} and a double-light source. - Abstract: TiO{sub 2} surfaces modified with noble metal nanoparticles have been found to effectively reduce the photogenerated carrier recombination rate and significantly extend the light absorption properties of TiO{sub 2}, thereby greatly increasing its photocatalytic activity. In this paper, highly ordered, double-sided TiO{sub 2} nanotube arrays were prepared using an anodic oxidation method in a home-made reactor using glycerol/water (volume ratio 2:1) and NH{sub 4}F (0.25 mol/L) as the electrolyte, titanium plates (10 cm × 2 cm × 0.5 mm) as the anode and graphite as the cathode at a constant voltage of 25 V. After a 2-h reaction, anatase TiO{sub 2} nanotubes were obtained upon calcination at 450 °C for 4 h. The Ag nanoparticles on the surfaces of the TiO{sub 2} were prepared via ultrasonic atomization-ultraviolet light reduction. First, a silver nitrate solution was sputtered into small droplets under ultrasonication. Then, the Ag{sup +} droplets were reduced to Ag nanoparticles. The surface morphologies, structures and elemental compositions were characterized using SEM, EDS, XRD and XPS. The photocatalytic activities were determined in acetic acid solutions (40–200 mg/L), and a mathematical model for catalytic degradation was established based on a hyperbolic model. The SEM results showed that the diameters of the as-prepared Ag/TiO{sub 2} are approximately 100 nm and that the lengths are approximately 1.8 μm. The XRD crystal structure analysis shows that the anatase phase of the TiO{sub 2} does not change during the Ag modification, and there was

  11. Development and validation of an SPME-GC method for a degradation kinetics study of propiconazole I, propiconazole II and tebuconazole in blueberries in Concordia, the main production area of Argentina.

    Science.gov (United States)

    Munitz, Martín S; Medina, María B; Montti, María I T

    2017-05-01

    An analytical method for the simultaneous determination of propiconazole isomers and tebuconazole residues in blueberries was developed using solid-phase microextraction (SPME) coupled to gas chromatography. Confirmation was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The SPME fibre coating selected was CWX-DVB, and the pH was adjusted to 7 with NaOH. The method is selective with adequate precision and high accuracy and sensitivity. Recoveries ranged between 97.4% and 98.9% for all compounds; and detection and quantification limits were respectively 0.21 and 0.49 μg kg -1 for propiconazole I; 0.16 and 0.22 μg kg -1 for propiconazole II; and 0.16 and 0.48 μg kg -1 for tebuconazole. The degradation of these fungicides in blueberries followed first-order rate kinetics. The half-life times for flowering and fruit set applications were respectively 4.0 and 10.3 days for propiconazole I, 4.0 and 11.4 days for propiconazole II, and 3.5 and 12.4 days for tebuconazole.

  12. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    International Nuclear Information System (INIS)

    Khan, Samreen Heena; Suriyaprabha, R.; Pathak, Bhawana; Fulekar, M. H.

    2016-01-01

    With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in many technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped

  13. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Samreen Heena, E-mail: samreen.heena.khan@gmail.com; Suriyaprabha, R. [Centre for Nanosciences, Central University of Gujarat, Gandhinagar, India- 382030 (India); Pathak, Bhawana, E-mail: bhawana.pathak@cug.ac.in; Fulekar, M. H., E-mail: mhfulekar@yahoo.com [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, India- 382030 (India)

    2016-04-13

    With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in many technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped

  14. Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand

    Science.gov (United States)

    Hayati, Payam; Souri, Bagher; Rezvani, Ali Reza; Morsali, Ali; Gutierrez, Angel

    2017-12-01

    Nanoparticles of one new lead and K coordination polymer (CP), {[Pb6(pyc)6(N3)7K].½H2O}n (1) Hpyc = picolinic acid ligand, has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compound 1 imply that the Pb ion is seven coordinated. The thermal stability of compound 1 has been studied by thermogravimetric (TG) and differential scanning calorimetry (DSC). The role of temperature, reaction time and ultrasound irradiation power on the size and morphfology of the nano-structured compound obtained from 1, have been investigated. Results indicate that an increase of temperature and sonication power and a decrease in time reaction led to a decrease of particle size.

  15. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  16. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulnezhad, Hossein [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Kavei, Ghassem, E-mail: kaveighassem@gmail.com [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Ahmadi, Kamran [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Rahimipour, Mohammad Reza [Ceramic Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of)

    2017-06-30

    Highlights: • Combination of sonochemical and CVD methods for preparation of nanostructured carbon-doped TiO{sub 2} thin film on glass substrate, for the first time. • High transparency, monodispersity and homogeneity of the prepared thin films. • Preparation of the carbon-doped TiO{sub 2} thin films with nanorod and nanosphere morphologies. - Abstract: The present work reports the successful synthesis of the nanostructured carbon-doped TiO{sub 2} thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO{sub 2} sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO{sub 2} thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO{sub 2} to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  17. A novel single-step synthesis of N-doped TiO2 via a sonochemical method

    International Nuclear Information System (INIS)

    Wang, Xi-Kui; Wang, Chen; Guo, Wei-Lin; Wang, Jin-Gang

    2011-01-01

    Graphical abstract: The N-doped anatase TiO 2 nanoparticles were synthesized by sonochemical method. The as-prepared sample is characterized by XRD, TEM, XPS and UV-Vis DRS. The photocatalytic activity of the photocatalyst was evaluated by the photodegradation of an azo dye direct sky blue 5B. Highlights: → A novel singal-step sonochemical synthesis method for the preparation of anatase N-doped TiO 2 nanocrystalline at low temperature has been devoleped. → The as-prepared sample is characterized by XRD, TEM, XPS and UV-Vis DRS. → The photodegradation of azo dye direct sky blue 5 showed that the N-doped TiO 2 catalyst is of high visible-light photocatalytic activity. -- Abstract: A novel single-step synthetic method for the preparation of anatase N-doped TiO 2 nanocrystalline at low temperature has been devoleped. The N-doped anatase TiO 2 nanoparticles were synthesized by sonication of the solution of tetraisopropyl titanium and urea in water and isopropyl alcohol at 80 o C for 150 min. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis absorption spectrum. The product structure depends on the reaction temperature and reaction time. The photocatalytic activity of the as-prepared photocatalyst was evaluated via the photodegradation of an azo dye direct sky blue 5B. The results show that the N-doped TiO 2 nanocrystalline prepared via sonication exhibit an excellent photocatalytic activity under UV light and simulated sunlight.

  18. Thermal degradation kinetics and solid state, temperature ...

    Indian Academy of Sciences (India)

    WINTEC

    proceeds due to the oxidation of sulphur atom in the ring to sulphoxide, for the .... grain boundaries etc. Electrical properties ... The spatial orientation in phenothiazine ... atom points outside with respect to the dihedral angle. The two forms are ...

  19. Studies on degradation of chlorinated aromatic hydrocarbon by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... chlorobenzene to study the kinetics of degradation of chlorobenzene. The rate of decomposition of ... hydraulic fluids, biocides, herbicides, plastics, degree- ..... degradation by bacteria isolated from contaminated groundwater.

  20. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations.

    Science.gov (United States)

    Ghodbane, Houria; Hamdaoui, Oualid

    2009-06-01

    In this work, the sonolytic degradation of an anthraquinonic dye, C.I. Acid Blue 25 (AB25), in aqueous phase using high frequency ultrasound waves (1700kHz) for an acoustic power of 14W was investigated. The sonochemical efficiency of the reactor was evaluated by potassium iodide dosimeter, Fricke reaction and hydrogen peroxide production yield. The three investigated methods clearly show the production of oxidizing species during sonication and well reflect the sonochemical effects of high frequency ultrasonic irradiation. The effect of operational conditions such as the initial AB25 concentration, solution temperature and pH on the degradation of AB25 was studied. Additionally, the influence of addition of salts on the degradation of dye was examined. The rate of AB25 degradation was dependent on initial dye concentration, pH and temperature. Addition of salts increased the degradation of dye. Experiments conducted using distilled and natural waters demonstrated that the degradation was more efficient in the natural water compared to distilled water. To increase the efficiency of AB25 degradation, experiments combining ultrasound with Fe(II) or H(2)O(2) were conducted. Fe(II) induced the dissociation of ultrasonically produced hydrogen peroxide, leading to additional OH radicals which enhance the degradation of dye. The combination of ultrasound with hydrogen peroxide looks to be a promising option to increase the generation of free radicals. The concentration of hydrogen peroxide plays a crucial role in deciding the extent of enhancement obtained for the combined process. The results of the present work indicate that ultrasound/H(2)O(2) and ultrasound/Fe(II) processes are efficient for the degradation of AB25 in aqueous solutions by high frequency ultrasonic irradiation.

  1. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  2. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  3. Thermal degradation of organo-soluble polyimides

    Institute of Scientific and Technical Information of China (English)

    黄俐研; 史燚; 金熹高

    1999-01-01

    The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.

  4. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  5. Lanthanum oxyfluoride nanostructures prepared by modified sonochemical method and their use in the fields of optoelectronics and biotechnology

    Directory of Open Access Journals (Sweden)

    C. Suresh

    2018-02-01

    Full Text Available Dysprosium doped lanthanum oxyfluoride nanostructures were prepared by modified sonochemical method using Aloe Vera gel as a bio-surfactant. The morphology of the product was systematically studied by varying different experimental parameters including concentration of surfactant, sonication time, pH and sonication power. It was found that some of these above parameters play a key role in tuning the morphology of the product. The photoluminescence studies exhibited characteristic emission peaks at ∼483 nm, 574 nm and 674 nm attributed to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 transitions of Dy3+ ions respectively. The optimal concentration of Dy3+ ions was found to be ∼3 mol%. The photometric studies revealed that the prepared samples were quite useful for the fabrication of white light emitting diodes. The optimized product was also tested for their capability as an antigen against the bacterial and fungal pathogens. The present method of preparation may be scaled up easily to the larger production for industrial applications. The optimized sample showed an effective visualization of latent fingerprints on various forensic relevant materials and also showed effective antimicrobial potential for applications in nanobiotechnology.

  6. Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis

    International Nuclear Information System (INIS)

    Gonzalez-Reyes, L.; Hernandez-Perez, I.; Diaz-Barriga Arceo, L.; Dorantes-Rosales, H.; Arce-Estrada, E.; Suarez-Parra, R.; Cruz-Rivera, J.J.

    2010-01-01

    Anatase TiO 2 nanocrystalline (6 nm) with BET specific surface area of 300 m 2 /g and direct bandgap of 3.31 eV were prepared sonochemically and then it was subjected to thermal treatment from 400 to 900 deg. C for 2 h, in order to produce variable anatase-rutile ratio. Three stages were considered in the samples thermally treated: (i) anatase grains coarsening as a result of heat treatment temperature increasing the structural homogeneity and crystallinity and both phenomena produce a reduction in the specific surface area, (ii) coexistence of two phases (anatase and rutile) separated by a transition region, called an interface, and (iii) process where the rutile grains evolve into a new equilibrium shape without the presence of anatase phase, minimizing the total surface and the grain boundary energies, by mass transport diffusion. In this last stage the rutile phase has the sole function of growth and densification. The structure evolution, morphology and microstructure characteristics were obtained by X-ray diffraction (XRD) and transmission electron microscopy (TEM). All the stages of phase transformation are subject to thermal effects that stem from the redistribution of energy in the system. The UV-vis absorption spectra show that direct and indirect transitions can take place in the same sample simultaneously. This is attributed to the combined effect of samples with variable anatase-rutile ratio and particle size effect.

  7. Sonochemical synthesis and resonance light scattering effect of Zn(II)bis(1-(2-pyridylazo)-2-naphthol) nanorods

    International Nuclear Information System (INIS)

    Pan Hongcheng; Liang Fupei; Mao Changjie; Zhu Junjie

    2007-01-01

    Zn(II)bis(1-(2-pyridylazo)-2-naphthol) (Zn(PAN) 2 ) complex nanorods have been successfully synthesized via a facile sonochemical method. The transmission electron microscopy (TEM) images showed that the products had a rod-like morphology with a diameter of about 20-70 nm and a length of about 100-300 nm. The Zn(PAN) 2 nanorods exhibit an intense resonance light-scattering (RLS) effect, displaying a very strong RLS peak at 622 nm, a moderate peak at 361 nm and several broad bands ranged from 400 to 550 nm. The effect of ultrasonic irradiation and the mechanism of aggregation growth and resonance-enhanced light scattering were also discussed. Exciton coupling among neighbour Zn(PAN) 2 complex monomers in the nanorods were found to produce resonance-enhanced light scattering. The red-shifted absorption bands and depolarized RLS data can be explained in terms of a J-aggregate geometry of Zn(PAN) 2

  8. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    Science.gov (United States)

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sonochemical Synthesis of Ca(OH2 Nanoparticles and Its Application in Preparation of MWCNT-Paraloid Nanocomposite

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2015-01-01

    Full Text Available In this work at the first step calcium hydroxide nano-particles were synthesized via sono-chemical method at room temperature. At the second step aminated multi-walled carbon nano-tubes was prepared via chemical modification of surfaces of CNT. Finally modified-MWCNT and Ca(OH2 were added to paraloid matrix by aid of ultrasonic irradiation. Paraloid-modified-MWCNT-Ca(OH2 nanocomposite was used as a protection agent applicable in cultural heritage preservation. This nanocomposite can be used against acid rain that is destructive agent in historic monuments. One of the main advantages of paraloid as a consolidant is that it is stronger and harder than polyvinyl acetate without being extremely brittle. Nanostructures were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Thermal stability behavior of paraloid filled with calcium hydroxide was investigated by thermogravimetric analysis (TGA. Our results show that the MWCNT-Ca(OH2 nanostructure can enhance thermal stability property of the paraloid matrix. Nano-additives like a barrier slow down volatilization of paraloid chains against heat.

  10. Sonochemical synthesis of fructose 1,6-bisphosphate dicalcium porous microspheres and their application in promotion of osteogenic differentiation.

    Science.gov (United States)

    Qi, Chao; Zhou, Ding; Zhu, Ying-Jie; Sun, Tuan-Wei; Chen, Feng; Zhang, Chang-Qing

    2017-08-01

    Human bone mesenchymal stem cells (hBMSCs) have the ability to differentiate into bone and cartilage for clinical bone regeneration. Biomaterials with an innate ability to stimulate osteogenic differentiation of hBMSCs into bone and cartilage are considered attractive candidates for the applications in bone tissue engineering and regeneration. In this paper, we synthesized fructose 1,6-bisphosphate dicalcium (Ca 2 FBP) porous microspheres by the sonochemical method, and investigated the ability of Ca 2 FBP for the promotion of the osteogenic differentiation of hBMSCs. After the hBMSCs were co-cultured with the sterilized powder of Ca 2 FBP porous microspheres for different times, the cell proliferation assay, alkaline phosphatase activity assay, quantitative real-time polymerase chain reaction and western blotting were performed to investigate the bioactivity and osteogenic differentiation performance of the as-prepared product. Compared with hydroxyapatite nanorods, Ca 2 FBP porous microspheres show a superior bioactivity and osteoinductive potential, and can promote the cell differentiation of hBMSCs in vitro, thus, they are promising for applications in the tissue engineering field such as dental and bone defect repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  12. Degradation of surfactants by sono-irradiation

    International Nuclear Information System (INIS)

    Ashokkumar, M.; Grieser, F.; Vinodgopal, K.

    2000-01-01

    Full text: The ultrasound induced decomposition of a commercially available polydisperse nonylphenol ethoxylate surfactant (Teric GN9) has been investigated. Nearly 90% mineralization and/or degradation into volatile products of the surfactant is achieved after sonication for 24 hours. Ultrasound has been found to be a useful tool to achieve a number of chemical processes. Linear and branched alkyl benzene sulfonates and alkyl nonylphenol ethoxylates are widely used surfactants which accumulated in the environment and contribute to a well-recognised pollution problem. We have investigated the use of ultrasound in the degradation of both types of surfactants with the aim of understanding the mechanism of degradation in order to optimise the decomposition process. In this presentation, we report on the sonochemical degradation of Teric GN9- polydisperse, a nonylphenol ethoxylate with an average of 9 ethylene oxide units. The ultrasound unit used for the degradation studies of the surfactant solutions was an Allied Signal (ELAC Nautik) RF generator and transducer with a plate diameter of 54.5 mm operated at 363 kHz in continuous wave mode at an intensity of 2 W/cm 2 . Ultrasound induced cavitation events generate primary radicals inside gas/vapour filled bubbles. Due to the extreme conditions (T ∼ 5000 K; P ∼ 100 atm) generated within the collapsing bubble, H and OH radicals are produced by the homolysis of water molecules, if water is the medium of sonication. These primary radicals attack the surfactant molecules adsorbed at the bubble/water interface. The initial rate of reaction of the surfactant was found to be dependent on the monomer concentration in solution below and above the critical micelle concentration of the surfactants. This result strongly suggests that the initial radical attack on the surfactants occurs at the cavitation bubble/solution interface, followed by oxidative decomposition and pyrolysis of volatile fragments of the surfactant within

  13. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  14. Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system

    NARCIS (Netherlands)

    Blümmel, M.; Cone, J.W.; Gelder, van A.H.; Nshalai, I.; Umunna, N.N.; Makkar, H.P.S.; Becker, K.

    2005-01-01

    This study investigated two approaches to in vitro analysis of gas production data, being a three phase model with long (¿72 h) incubation times, to obtain kinetics and asymptotic values of gas production, and combination of gas volume measurements with residue determinations after a relatively

  15. Application of Titanium Dioxide-Graphene Composite Material for Photocatalytic Degradation of Alkylphenols

    Directory of Open Access Journals (Sweden)

    Chanbasha Basheer

    2013-01-01

    Full Text Available Titanium dioxide-graphene (TiO2-G composite was used for the photodegradation of alkylphenols in wastewater samples. The TiO2-G composites were prepared via sonochemical and calcination methods. The synthesized composite was characterized by X-ray diffraction (XRD, infrared spectroscopy (IR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDX, and fluorescence spectroscopy. The photocatalytic efficiency was evaluated by studying the degradation profiles of alkylphenols using gas chromatography-flame ionization detector (GC-FID. It was found that the synthesized TiO2-G composites exhibit enhanced photocatalytic efficiencies as compared to pristine TiO2. The presence of graphene not only provides a large surface area support for the TiO2 photocatalyst, but also stabilizes charge separation by trapping electrons transferred from TiO2, thereby hindering charge transfer and enhancing its photocatalytic efficiency.

  16. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram, 624 302, Dindigul District, Tamil Nadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2017-02-28

    Highlights: • A composite Ni foam textured with Cu particles was fabricated by a sonication method. • The foam can be used as a pseudocapacitive material for energy storage applications. • The foam has a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. - Abstract: Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl{sub 2}) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  17. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  18. Sonochemical synthesis of bismuth(III) nano coordination compound and direct synthesis of Bi.sub.2./sub.O.sub.3./sub. nanoparticles from a bismuth(III) nano coordination compound precursor

    Czech Academy of Sciences Publication Activity Database

    Roodsari, M.S.; Shaabani, B.; Mirtamizdoust, B.; Dušek, Michal; Fejfarová, Karla

    2015-01-01

    Roč. 25, č. 5 (2015), s. 1226-1232 ISSN 1574-1443 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : nano coordination compound * sonochemical method * intramolecular proton transfer * nano bismuth oxide * isoniazid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.308, year: 2015

  19. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2011-01-01

    Full Text Available This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO32 and Mg(CHCOO32 with tetramethylammonium hydroxide (TMAH in the presence of polyvinyl pyrrolidone (PVP and constant frequency ultrasonic waves (sonochemical method. Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as structure director using ultrasonic assisted method. After filtration, the synthesized solution was obtained containing magnesium hydroxide in the presence of ZnO nanoparticles. It was calcinated at the temperature of 550 ºC, so that ZnO/MgO nanocomposite could be produced. The effects of different parameters on particle size and morphology of final ZnO and MgO powders and ZnO/MgO nanocomposite were optimized by ‘‘one at a time’’ method. Under optimum conditions, spongy shaped, uniformed and homogeneous nanostructured zinc oxide and magnesium oxide powders were obtained with particle sizes of 25–50 and 30-60 nm, respectively. ZnO/MgO nanocomposite was also obtained with more spongy morphology and particle size about 65 nm. Both synthesized ZnO and MgO nanoparticles and ZnO/MgO nanocomposite were successfully applied to the preparation of zinc polycarboxylate dental cement.

  20. Degradation of chlorocarbons driven by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)

    2007-05-15

    To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  2. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  3. In situ sonochemical reduction and direct functionalization of graphene oxide: A robust approach with thermal and biomedical applications.

    Science.gov (United States)

    Maktedar, Shrikant S; Mehetre, Shantilal S; Avashthi, Gopal; Singh, Man

    2017-01-01

    The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, 13 C solid state NMR, XPS, XRD, Raman' HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128mgmL -1 . It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14-48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10-80μgmL -1 . The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Degradation of Endosulfan I and Endosulfan II in the Aquatic ...

    African Journals Online (AJOL)

    Degradation of Endosulfan I and Endosulfan II in the Aquatic Environment: A Proposed Enzymatic Kinetic Model that takes into account Adsorption/Desorption of the Pesticide by Colloidal and/or Sediment Particles.

  5. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  6. Tolrestat kinetics

    International Nuclear Information System (INIS)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-01-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate

  7. Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue ...

    African Journals Online (AJOL)

    , in aqueous solution by hypochlorite as a function of pH was investigated. While the degradation of dye obeyed pseudo-first-order kinetics, the oxidation of the dye occurred through two competitive reactions facilitated by [OCl–] and [HOCl].

  8. Effects of the aspect ratio on the dye adsorption of ZnO nanorods grown by using a sonochemical method for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Choi, Seok Cheol; Yun, Won Suk; Sohn, Sang Ho; Oh, Sang Jin

    2012-01-01

    Well-aligned ZnO nanorods for the photoelectrode of dye-sensitized solar cells (DSSCs) were grown via a sonochemical method, and the effects of their aspect ratios on the dye adsorption in DSSCs were studied. The control of the aspect ratio of well-aligned ZnO nanorods was performed by tuning the mole concentration of zinc acetate dehydrate in the range of 0.04 ∼ 0.06M. The dye amounts adsorbed in the ZnO nanorods were estimated from the UV-Visible absorbance by using the Beer-Lambert law. The efficiency of DSSCs with ZnO nanorods was measured to investigate the effects of the aspect ratio of the ZnO nanorods on the dye adsorption properties. A change in the aspect ratio of the ZnO nanorods was founded to yield a change in their dye adsorption ability, resulting in a change in the efficiency of the DSSCs.

  9. Abareshi Maryam Non-isothermal crystallization kinetics of ...

    Indian Academy of Sciences (India)

    Administrator

    A new sonochemical method for preparation of different morphologies of CuInS2 .... aluminium- and gallium- doped zinc oxide transparent conducting sol–gel thin films ... heterojunction for optoresponse applications. 1509. Dalagan Juliet Q.

  10. Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide.

    Science.gov (United States)

    Geetha Bai, Renu; Muthoosamy, Kasturi; Zhou, Meifang; Ashokkumar, Muthupandian; Huang, Nay Ming; Manickam, Sivakumar

    2017-01-15

    In this study, a sonochemical approach was utilised for the development of graphene-gold (G-Au) nanocomposite. Through the sonochemical method, simultaneous exfoliation of graphite and the reduction of gold chloride occurs to produce highly crystalline G-Au nanocomposite. The in situ growth of gold nanoparticles (AuNPs) took place on the surface of exfoliated few-layer graphene sheets. The G-Au nanocomposite was characterised by UV-vis, XRD, FTIR, TEM, XPS and Raman spectroscopy techniques. This G-Au nanocomposite was used to modify glassy carbon electrode (GCE) to fabricate an electrochemical sensor for the selective detection of nitric oxide (NO), a critical cancer biomarker. G-Au modified GCE exhibited an enhanced electrocatalytic response towards the oxidation of NO as compared to other control electrodes. The electrochemical detection of NO was investigated by linear sweep voltammetry analysis, utilising the G-Au modified GCE in a linear range of 10-5000μM which exhibited a limit of detection of 0.04μM (S/N=3). Furthermore, this enzyme-free G-Au/GCE exhibited an excellent selectivity towards NO in the presence of interferences. The synergistic effect of graphene and AuNPs, which facilitated exceptional electron-transfer processes between the electrolyte and the GCE thereby improving the sensing performance of the fabricated G-Au modified electrode with stable and reproducible responses. This G-Au nanocomposite introduces a new electrode material in the sensitive and selective detection of NO, a prominent biomarker of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Z.I.; Verde-Gómez, Y.; Valenzuela-Muñiz, A.M.; Gochi-Ponce, Y.; Oropeza-Guzmán, M.T.; Berhault, Gilles; Alonso-Núñez, G.

    2015-01-01

    Highlights: • Pt/CNT/TiO 2 electrocatalyst was successfully prepared by the sonochemical method. • The electrocatalyst Pt/CNT/TiO 2 was synthesized without heat treatments, additives or surfactants. • The TiO 2 -Pt interaction improves the CO-tolerance of Pt/CNT/TiO 2 , as well as the electrocatalyst stability. • Low amount of multi-walled carbon nanotubes increases the current density of Pt/CNT/TiO 2 significantly compared to Pt/TiO 2 . - Abstract: Pt electrocatalyst supported on composite formed of multi-walled carbon nanotubes and titanium oxide (CNT/TiO 2 ) was successfully synthesized by a sonochemical method without heat treatments, surfactants or additives. This electrocatalyst could be used for direct methanol fuel cells (DMFC) applications. For comparison, Pt/CNT and Pt/TiO 2 electrocatalysts were prepared as reference samples. Structural properties and morphology of the synthesized materials were examined by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and their specific surface areas were determined by the Brunauer-Emmett-Teller method. The Pt and acid-treated CNT contents were analyzed by inductively coupled plasma atomic emission spectroscopy and thermogravimetric analysis, respectively. The electrochemical properties of the synthesized electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry in a three-electrode cell at room temperature. The evaluation performed using electrochemical techniques suggests that TiO 2 promotes the CO-tolerance due to TiO 2 -Pt interaction. The CV tests demonstrated that 6 wt.% of acid-treated CNT increases significantly the current density when Pt selectively interacts with TiO 2 .

  12. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route

    Science.gov (United States)

    Jafari, Hossein; Ganjali, Mohammad Reza; Dezfuli, Amin Shiralizadeh; Faridbod, Farnoush

    2018-01-01

    Decoration of reduced graphene oxide (RGO) with nano-size inorganic particles creates a class of composites with considerably improved characteristics. Improvements in the function of electrochemical energy-storage devices, catalysts and sensors using such particles, have hence attracted a great deal of interest to the area. This manuscript tends to report the results of the research on the application of a sonochemical route for anchoring nano-sized Yb2O3 (Ytterbia) particles, on sheets of RGO. The anchoring phenomenon is based on the self-assembly of the Yb2O3 nano-particles under sonochemical treatments in an ultrasonic bath. To evaluate the method, the produced Yb2O3-RGO nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM), which proved the uniform distribution of the nano-particles on the RGO sheets. Additionally, the Yb2O3-RGO nano-composites were evaluated through cyclic voltammetry (CV), to assess the potentials of their application in electrochemical devices. The high activity of the produced Yb2O3-RGO nanocomposites can be attributed to the synergistic effect between Yb2O3 and RGO as well as the porous structure of the nanocomposite. Due to their stability, electrocatalytic properties and large accessible surface area, the low detection limit sensor is usable for long term usages in blood serum and wide linear dynamic range. There are linear relationships between current intensities and concentrations in the region 0.3-800 μM dopamine (DA), and 0.2-210 μM uric acid (UA), and the limits of detection (LOD) (S/N = 3) are down to 0.02 μM and 0.01 μM for DA and UA, respectively in 0.5 mM solution of ascorbic acid.

  13. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  14. Estudo comparativo da cinética de degradação ruminal de forragens tropicais em bovinos e ovinos Comparative study of ruminal degradation kinetics of tropical forages in cattle and sheep

    Directory of Open Access Journals (Sweden)

    P.R.S.S. Campos

    2006-12-01

    Full Text Available Estimaram-se os parâmetros da cinética de degradação ruminal in situ da fibra em detergente neutro (DgFDN da cana-de-açúcar e das silagens de capim-elefante, de milho e de sorgo em diferentes tempos de incubação, tamanhos de partícula (1 e 2mm e espécies (ovinos e bovinos. A DgFDN foi obtida nos tempos de incubação: 3, 6, 12, 24, 36, 48, 72, 96, 120, 144 e 240 horas. A avaliação dos tamanhos de partículas e das espécies na degradabilidade foi realizada pelo teste de identidade de modelos de regressão não linear e interpretada pela análise de fatores. As taxas de degradação da FDN (k d também foram estimadas, matematicamente, utilizando-se apenas de dois tempos de incubação in situ (tempos 6 e 24h ou 6 e 36h. Os valores de k d estimados em 2 tempos ou 11 tempos de incubação foram comparados pelo teste t com arranjo em pares. Os valores de k d estimados com dois tempos de incubação, quando comparados com os valores obtidos em vários tempos de incubação mostraram-se similares (P>0,05. Em estudos da cinética de degradação ruminal in situ da FDN, ovinos não devem ser considerados modelos experimentais para bovinos, mas o tamanho de partícula do alimento incubado, de 1 ou 2mm, tem pouca influência nos parâmetros de degradação ruminal.The neutral detergent fiber degradability (NDFd of sugar-cane, and elephantgrass, corn, and sorghum silages were predicted by in situ method, with different time points, sample grind sizes (1 and 2mm and animal species (sheep and cattle. The feedstuffs were incubated at 3, 6, 12, 24, 36, 48, 72, 96, 120, 144, 240 hours. The effects of sample grind sizes and of the species in NDFd were analyzed through the test of identity of non-linear regression models and interpreted by factor analysis. The rates of degradation of NDF (k d were also estimated for two times of incubation in situ (times 6 and 24h or 6 and 36h, and they were compared to the k d values estimated at the in situ trial

  15. Effects of calcium oxide treatment at varying moisture concentrations on the chemical composition, in situ degradability, in vitro digestibility and gas production kinetics of anaerobically stored corn stover.

    Science.gov (United States)

    Shi, H T; Cao, Z J; Wang, Y J; Li, S L; Yang, H J; Bi, Y L; Doane, P H

    2016-08-01

    The objective of this study was to determine the optimum conditions for calcium oxide (CaO) treatment of anaerobically stored corn stover by in situ and in vitro methods. Four ruminally cannulated, non-lactating, non-pregnant Holstein cows were used to determine the in situ effective degradabilities of dry matter (ISDMD), organic matter (ISOMD), neutral detergent fibre (ISNDFD), in vitro organic matter disappearance (IVOMD) and gas production in 72 h (GP72h ) of corn stover. A completely randomized design involving a 3 × 3 factorial arrangement was adopted. Ground corn stover was treated with different levels of CaO (3%, 5% and 7% of dry stover) at varying moisture contents (40%, 50% and 60%) and stored under anaerobic conditions for 15 days before analysis. Compared with untreated corn stover, the CaO-treated stover had increased ash and calcium (Ca) contents but decreased aNDF and OM contents. The moisture content, CaO level and their interaction affected (p  0.01) in these in situ degradability parameters were observed between the stover treated with 5% CaO at 60% moisture content and those treated with 7% CaO at 60% moisture content. Corn stover treated with 5% CaO at 50% moisture had the maximum IVOMD and GP72 h among the treatments, and there was no difference (p > 0.01) between 50% and 60% moisture. Results from this study suggested that 5% CaO applied at 60% moisture could be an effective and economical treatment combination. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  16. Mn2O3 decorated graphene nanosheet: An advanced material for the photocatalytic degradation of organic dyes

    International Nuclear Information System (INIS)

    Chandra, Sourov; Das, Pradip; Bag, Sourav; Bhar, Radhaballabh; Pramanik, Panchanan

    2012-01-01

    Graphical abstract: A facile and economical route has been developed for the synthesis of graphene–Mn 2 O 3 nanocomposite in which Mn 2 O 3 nanoparticles are uniformly distributed throughout the surface of the graphene nanosheet with their average sizes ranging from 8 to 10 nm. It shows a brilliant catalytic activity during the photodegradation of several organic dyes as compare to both of the bare manganese oxide and graphene too. Highlights: ► One step sonochemical synthesis of graphene–Mn 2 O 3 nanocomposite. ► Growth of such nanoparticles over graphene is accelerated by the simultaneous reduction with KMnO 4 . ► The composite can effectively use as heterogeneous catalyst during the photodegradation of organic dyes. ► It exhibits ∼84%, ∼80% and ∼60% degradation of MB, eosin and RB respectively within a few minutes. - Abstract: A one step sonochemical route has been developed to prepare graphene–Mn 2 O 3 nanocomposite with uniform distribution of Mn 2 O 3 nanoparticles throughout the surface of graphene nanosheet. Growth of such nanoparticles over this two dimensional carbon network is simply accelerated by the simultaneous reduction of potassium permanganate along with graphene oxide, in which metal ions are first anchored through binding with oxy-functional groups of graphene oxide and finally reduced by hydrazine. The final product ensure a new platform for the photodegradation of organic dyes, as it can store electrons and circulate them towards dye molecules through the formation of hydroxyl radical under the exposure of UV-light. Almost 80% photocatalytic degradation of eosin, methylene blue and rhodamine B have been observed within few minutes, which has not been obtained by using bare manganese oxide itself.

  17. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide

    NARCIS (Netherlands)

    Ballari, M.M.; Hunger, Martin; Hüsken, Götz; Brouwers, Jos

    2010-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of NOx (combining the degradation of NO and the appearance and disappearance of

  18. Cinética de degradação do ácido ascórbico em ameixas liofilizadas Kinetic of ascorbic acid degradation in freeze-dried prunes

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Gabas

    2003-12-01

    Full Text Available Realizou-se a modelagem da degradação de vitamina C em ameixas desidratadas e submetidas a diferentes condições de temperatura e umidade relativa, com o auxílio da equação de Bigelow. As ameixas in natura foram liofilizadas e acondicionadas em dessecadores contendo diferentes soluções salinas saturadas na temperatura de 4ºC. Após atingir o equilíbrio, os dessecadores foram submetidos a temperaturas na faixa que variou entre 40 e 80ºC. A degradação de vitamina C foi analisada ao longo de 5 dias, aplicando-se o método de titulação com solução padronizada de 2,6-diclorofenolindofenol 0,01%. As amostras apresentaram os seguintes conteúdos de umidade: 0,05; 0,11; 0,18; 0,38 e 1,40g água/g sólido seco. A partir dos parâmetros da equação de Bigelow, tempo de redução decimal (D T e valor z, os resultados indicaram que as amostras submetidas à faixa de temperatura entre 40 - 60ºC apresentaram uma perda mais lenta de vitamina C (D T no conteúdo de umidade de 0,05 apresentou valores na faixa de 1672 - 275h. Por outro lado, em altas temperaturas a degradação do ácido ascórbico ocorreu mais rapidamente (D T para X = 0,05 forneceu valores entre 110 e 47h. Os parâmetros z e D T apresentaram uma dependência linear e quadrática com o conteúdo de umidade das amostras, respectivamente. De modo geral, em altos teores de umidade, houve uma maior perda de vitamina C, devido a sua alta solubilidade.The degradation of vitamin C in prunes submitted to different conditions of temperature and moisture content was modeling by using the Bigelow equation. Firstly, plums were freeze-dried and conditioned in dessecators with different saturated salt solutions at 4ºC. After reaching the equilibrium, dessecators were submitted to a range of temperature between 40 to 80ºC. The vitamin C degradation was analyzed during 5 days, by applying the titration method with patronized solution of 2,6-dichlorophenolindophenol 0.01%. Samples presented

  19. Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} under UV-254 nm irradiation

    Energy Technology Data Exchange (ETDEWEB)

    He, Xuexiang [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia (Cyprus); Mezyk, Stephen P. [Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840 (United States); Michael, Irene; Fatta-Kassinos, Despo [Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia (Cyprus); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia (Cyprus)

    2014-08-30

    Graphical abstract: - Highlights: • Removal efficiency was comparable at different UV fluence rates but same fluence. • Reducing pH to 3 or 2 did not inhibit the removal of nitrobenzene by UV/S{sub 2}O{sub 8}{sup 2−}. • 1.84 × 10{sup −14} M [HO{sup •} ]{sub ss} and 3.10 × 10{sup −13} M [SO{sub 4}{sup •} {sup −}]{sub ss} in UV/S{sub 2}O{sub 8}{sup 2−} were estimated. • HO{sup •} reacted faster with the β-lactams than SO{sub 4}{sup •} {sup −} but sharing similar byproducts. • Transformation pathways included hydroxylation, hydrolysis and decarboxylation. - Abstract: The extensive production and usage of antibiotics have led to an increasing occurrence of antibiotic residuals in various aquatic compartments, presenting a significant threat to both ecosystem and human health. This study investigated the degradation of selected β-lactam antibiotics (penicillins: ampicillin, penicillin V, and piperacillin; cephalosporin: cephalothin) by UV-254 nm activated H{sub 2}O{sub 2} and S{sub 2}O{sub 8}{sup 2−} photochemical processes. The UV irradiation alone resulted in various degrees of direct photolysis of the antibiotics; while the addition of the oxidants improved significantly the removal efficiency. The steady-state radical concentrations were estimated, revealing a non-negligible contribution of hydroxyl radicals in the UV/S{sub 2}O{sub 8}{sup 2−} system. Mineralization of the β-lactams could be achieved at high UV fluence, with a slow formation of SO{sub 4}{sup 2−} and a much lower elimination of total organic carbon (TOC). The transformation mechanisms were also investigated showing the main reaction pathways of hydroxylation (+16 Da) at the aromatic ring and/or the sulfur atom, hydrolysis (+18 Da) at the β-lactam ring and decarboxylation (–44 Da) for the three penicillins. Oxidation of amine group was also observed for ampicillin. This study suggests that UV/H{sub 2}O{sub 2} and UV/S{sub 2}O{sub 8}{sup 2−} advanced

  20. Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation

    International Nuclear Information System (INIS)

    He, Xuexiang; Mezyk, Stephen P.; Michael, Irene; Fatta-Kassinos, Despo; Dionysiou, Dionysios D.

    2014-01-01

    Graphical abstract: - Highlights: • Removal efficiency was comparable at different UV fluence rates but same fluence. • Reducing pH to 3 or 2 did not inhibit the removal of nitrobenzene by UV/S 2 O 8 2− . • 1.84 × 10 −14 M [HO • ] ss and 3.10 × 10 −13 M [SO 4 • − ] ss in UV/S 2 O 8 2− were estimated. • HO • reacted faster with the β-lactams than SO 4 • − but sharing similar byproducts. • Transformation pathways included hydroxylation, hydrolysis and decarboxylation. - Abstract: The extensive production and usage of antibiotics have led to an increasing occurrence of antibiotic residuals in various aquatic compartments, presenting a significant threat to both ecosystem and human health. This study investigated the degradation of selected β-lactam antibiotics (penicillins: ampicillin, penicillin V, and piperacillin; cephalosporin: cephalothin) by UV-254 nm activated H 2 O 2 and S 2 O 8 2− photochemical processes. The UV irradiation alone resulted in various degrees of direct photolysis of the antibiotics; while the addition of the oxidants improved significantly the removal efficiency. The steady-state radical concentrations were estimated, revealing a non-negligible contribution of hydroxyl radicals in the UV/S 2 O 8 2− system. Mineralization of the β-lactams could be achieved at high UV fluence, with a slow formation of SO 4 2− and a much lower elimination of total organic carbon (TOC). The transformation mechanisms were also investigated showing the main reaction pathways of hydroxylation (+16 Da) at the aromatic ring and/or the sulfur atom, hydrolysis (+18 Da) at the β-lactam ring and decarboxylation (–44 Da) for the three penicillins. Oxidation of amine group was also observed for ampicillin. This study suggests that UV/H 2 O 2 and UV/S 2 O 8 2− advanced oxidation processes (AOPs) are capable of degrading β-lactam antibiotics decreasing consequently the antibiotic activity of treated waters