WorldWideScience

Sample records for sonic wind sensors

  1. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence mea...... measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the Mar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically.......Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  2. A Remotely Deployable Wind Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-12-01

    Full Text Available Communication and computing shape up base for explosion of Internet of Things (IoT era. Humans can efficiently control the devices around their environment as per requirements because of IoT, the communication between different devices brings more flexibility in surrounding. Useful data is also gathered from some of these devices to create Big Data; where, further analysis assist in making life easier by developing good business models corresponding to user needs, enhance scientific research, formulating weather prediction or monitoring systems and contributing in other relative fields as well. Thus, in this research a remotely deployable IoT enabled Wind Sonic Anemometer has been designed and deployed to calculate average wind speed, direction, and gust. The proposed design is remotely deployable, user-friendly, power efficient and cost-effective because of opted modules i.e., ultrasonic sensors, GSM module, and solar panel. The testbed was also deployed at the roof of Computer & Information Systems Engineering (CIS department, NED UET. Further, its calibration has been carried out by using long short-term memory (LSTM, a deep learning technique; where ground truth data has been gathered from mechanical wind speed sensor (NRG-40 H deployed at top of Industrial & Manufacturing (IM department of NED UET. The obtained results are satisfactory and the performance of designed sensor is also good under various weather conditions.

  3. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  4. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    International Nuclear Information System (INIS)

    Mann, J; Courtney, M S; Mikkelsen, T; Wagner, R; Lindeloew, P; Sjoeholm, M; Enevoldsen, K; Cariou, J-P; Parmentier, R

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the lidar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically

  5. Field intercomparison of prevailing sonic anemometers

    Science.gov (United States)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  6. Optimization of Wind Turbine Operation by Use of Spinner Anemometer

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Sørensen, Niels N.; Vita, Luca

    A prototype spinner anemometer was developed from a standard scientific sonic anemometer with specially designed 1D sonic sensors. A model spinner anemometer was tested in wind tunnel with two sensor head configurations. The tests showed that the sonic sensors responded with a high influence factor...... correlated with wind speed and wind direction from a free meteorology mast. The results showed that the gain factor of the yaw error was only 0.80, which indicates that the yaw error measurements were overestimated with the use of the K factors from the CFD analysis. The wind speed at the free mast ahead...

  7. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  8. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  9. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex E. Full-scale test of wind turbine blade, using sensors and NDT

    DEFF Research Database (Denmark)

    Kristensen, O.J.D.; McGugan, Malcolm; Sendrup, P.

    2002-01-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damagewas made on the blade. The damage made...... for each test-series was surveyed during each series by acoustic emission, fiber optic micro bend displacement transducers and strain gauges. The propagation of the damage was determined by use of ultra sonic andX-ray surveillance during stops in the test-series. By use of acoustic emission it was possible...... to measure damage propagation before the propagation was of visible size. By use of fiber optic micro bend displacement transducers and strain gauges it waspossible to measure minor damage propagation. By use of both ultra sonic, and X-ray NDT-equipment it were possible to determine the size of propagated...

  10. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  11. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex D - Full-scale test of wind turbine blade, using sensors and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, O.J.D.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.; Hansen, A.M.; Debel, C.P.; Soerensen, B.F.

    2002-05-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damage was made on the blade. The damage made for each test-series was surveyed during each series by acoustic emission, fiber optic micro bend displacement transducers and strain gauges. The propagation of the damage was determined by use of ultra sonic and X-ray surveillance during stops in the test series. By use of acoustic emission it was possible to measure damage propagation before the propagation was of visible size. By use of fiber optic micro bend displacement transducers and strain gauges it was possible to measure minor damage propagation. By use of both ultra sonic, and X-ray NDT-equipment it were possible to determine the size of propagated damage. (au)

  12. Wind Speed Measurement by Paper Anemometer

    Science.gov (United States)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  13. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    Science.gov (United States)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  14. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  15. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  16. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    OpenAIRE

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-01-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with differ...

  17. RSA/Legacy Wind Sensor Comparison. Part 2; Eastern Range

    Science.gov (United States)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and propeller-and-vane anemometers on 5 wind towers at Kennedy Space Center and Cape Canaveral Air Force Station. The ultrasonic sensors are scheduled to replace the Legacy propeller-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005, A total of 357,626 readings of 1-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 15 out of 19 RSA sensors having the most consistent performance, with respect to the Legacy sensors. RSA average wind speed data from these 15 showed a small positive bias of 0.38 kts. A slightly larger positive bias of 0.94 kts was found in the RSA peak wind speed.

  18. RSA/Legacy Wind Sensor Comparison. Part 1; Western Range

    Science.gov (United States)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and cup-and-vane anemometers on 5 wind towers at Vandenberg AFB. The ultrasonic sensors are scheduled to replace the Legacy cup-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005. A total of 153,961 readings of I-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 18 out of 34 RSA sensors having the most consistent performance, with respect to the Legacy sensors. Data from these 18 were used to form a composite comparison. A small positive bias in the composite RSA average wind speed increased from +0.5 kts at 15 kts, to +1 kt at 25 kts. A slightly larger positive bias in the RSA peak wind speed increased from +1 kt at 15 kts, to +2 kts at 30 kts.

  19. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  20. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...... the possibility to distinguish between the flap- and edge-wise bend directions on the wind turbine blade, providing a selective sensor. The sensor has proven to be very robust and suitable for this application....

  1. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  2. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  3. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    Science.gov (United States)

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-09-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.

  4. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  5. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    Science.gov (United States)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  6. Visualizing Flutter Mechanism as Traveling Wave Through Animation of Simulation Results for the Semi-Span Super-Sonic Transport Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.

    2014-01-01

    It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to

  7. Optimal sensor placement for modal testing on wind turbines

    Science.gov (United States)

    Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph

    2016-09-01

    The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.

  8. Sonic anemometry to measure natural ventilation in greenhouses.

    Science.gov (United States)

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  9. Autonomous Aerial Sensors for Wind Power Meteorology - A Pre-Project

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Bange, Jens

    Autonomous Aerial Sensors, i.e. meteorological sensors mounted on Unmanned Aerial Systems UAS, can characterise the atmospheric flow in and around wind farms. We instrumented three planes, a helicopter and a lighter-than-air LTA system to fly one week together in a well-instrumented wind farm...

  10. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  11. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  12. Autonomous aerial sensors for wind power meteorology - A pre-project

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G. (ed.); Schmidt Paulsen, U.; Bange, J.; la Cour-Harbo, A.; Reuder, J.; Mayer, S.; van der Kroonenberg, A.; Moelgaard, J.

    2012-01-15

    Autonomous Aerial Sensors, i.e. meteorological sensors mounted on Unmanned Aerial Systems UAS, can characterise the atmospheric flow in and around wind farms. We instrumented three planes, a helicopter and a lighter-than-air LTA system to fly one week together in a well-instrumented wind farm, partly with nano-synchronised sensors (time stamped with about 100 ns global accuracy). Between bankruptcy of a partner, denied overflight rights at the main test location, denied Civil Aviation Authorities permits at the alternative location, stolen planes, and crashed UAS we managed to collect data at a wind farm in Lolland and on an atmospheric campaign in France. Planning of an offshore campaign using the developed techniques is underway. (Author)

  13. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Wenna Zhang

    2016-04-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring.

  14. Aerodynamics and Characteristics of a Spinner Anemometer

    International Nuclear Information System (INIS)

    Pedersen, T F; Soerensen, N N; Enevoldsen, P

    2007-01-01

    A spinner anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine spinner is used for determination of the free wind. Analogies to the concept are the flow around a sphere and a five hole pitot-tube. But, in stead of measuring pressure differences on the surface, the spinner anemometer measures directional air speeds in the flow above the spinner surface. A spinner anemometer, based on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around the spinner was calculated with the EllipSys3D CFD-code. Calculations were made for varying wind speeds and yaw angles, and the air speed within the sonic sensor path was determined during rotation. The calculated air speeds were used as 'calibration' data for an analogue spinner anemometer algorithm. The algorithm converts, by inclusion of a measured rotor position, the measured sonic sensor air speeds to free wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept test and a full scale field experiment with a comparison to a 3D sonic anemometer were made. The results indicate that the 300kW spinner anemometer characteristics are comparable to the 3D sonic anemometer with respect to time traces and average and standard deviation of wind speeds

  15. New method to calibrate a spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    2014-01-01

    The spinner anemometer is a wind sensor, based on three one dimensional sonic sensor probes, mounted on the wind turbine spinner, and an algorithm to convert the wind speeds measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion...... algorithm utilizes two constants k1 and k2 that are specific to the spinner and blade root design and to the mounting position of the sonic sensors on the spinner. The two constants are calibrated by means of two different test and instrument set-ups. Both calibrations consider the rotor of the wind turbine...... to be stopped during calibration in order for the rotor induction not to influence on the calibration, so that the spinner anemometer measures ”free” wind values in stopped condition. The calibration of flow angle measurements is made by calibration of the ratio of the two algorithm constants k2=k1 = k...

  16. Free flow wind speed from a blade-mounted flow sensor

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben Juul; Aagaard Madsen, Helge

    2018-01-01

    This paper presents a method for obtaining the free-inflow velocities from a 3-D flow sensor mounted on the blade of a wind turbine. From its position on the rotating blade, e.g. one-third from the tip, a blade-mounted flow sensor (BMFS) is able to provide valuable information about the turbulent...... sheared inflow in different regions of the rotor. At the rotor, however, the inflow is affected by the wind turbine, and in most cases the wind of interest is the inflow that the wind turbine is exposed to, i.e. the free-inflow velocities. The current method applies a combination of aerodynamic models...... and procedures to estimate the induced velocities, i.e. the disturbance of the flow field caused by the wind turbine. These velocities are subtracted from the flow velocities measured by the BMFS to obtain the free-inflow velocities. Aeroelastic codes, like HAWC2, typically use a similar approach to calculate...

  17. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1997-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  18. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1998-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  19. Sonic anemometry and sediment traps to evaluate the effectiveness of windbreaks in preventing wind erosion

    Directory of Open Access Journals (Sweden)

    Alejandro López

    Full Text Available ABSTRACT The present work analyzes the effectiveness of windbreaks against wind erosion through the study of streamline patterns and turbulent flow by means of sonic anemometry and sediment traps. To this end, windbreaks composed of plastic meshes (7.5 m long and 0.7 m tall were used. Windbreaks are a good means to reduce wind erosion, as they produce a positive effect on the characteristics of air currents that are related to wind erosion processes. Due to their ease of installation and dismantling, plastic meshes are widely used in areas where they are not required permanently. In our study, the use of a mesh of 13 × 30 threads cm−2 and 39 % porosity resulted in an average reduction of 85 % in face velocity at a height of 0.4 m and a distance of 1 m from the windbreak. The turbulence intensity i increased behind the windbreak because the reduction of mean of air speed on the leeside caused by the flow of air through the windbreak. Fluctuation levels, however, remained stable. The mean values of turbulence kinetic energy k decreased by 65 % to 86 % at a distance of 1 m from the windbreak and at a height of 0.4 m. The windbreak reduces erosion and sediment transportation 2 m downwind (2.9 times the windbreak height. Nevertheless, sediment transportation was not reduced at a height of 1.0 m and the effect of the windbreak was not observed at a distance of 6 m downwind (8.6 m times the windbreak height.

  20. “Mood-modules”: Interconnected Wireless Toy Units for Studies of Social Play through Musical and Sonic Games

    DEFF Research Database (Denmark)

    Hansen, Anne-Marie; Andersen, Hans Jørgen

    This paper outlines the research background, focus and methods that will be used in the study of musical and sonic games that are embedded in interconnected wireless toy modules. Seen in the light of the idea: “The ensemble as a musical and social experience”, an approach for designing electronic...... toys for children will be discussed. Five electronic toy units function as test objects. These sensor devices will contain musical and sonic games. Children manipulate sound parameters, when they interact with each sensor, or rather, combinations of sensors. When two or more children interact...

  1. Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF model data

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.

    2012-01-01

    anemometer at 15 m height and potential temperature differences between the water and the air above. Surface flux estimations from the advanced weather research and forecast (WRF) model are also validated against the sonic and bulk data. The correlation between the sonic and bulk estimates of friction...... to the surface, not only from a systematic bulk and WRF under‐prediction of the friction velocity when compared with the sonic value but also because of the lower magnitude of the sonic heat flux compared with that from the WRF simulations. Although they are not measured but parameterized or estimated, the bulk......–WRF comparisons of friction velocity and 10 m wind speed show good agreement. It is also shown that on a long‐term basis, the WRF and bulk estimates of stability are nearly equal and that a correction towards a slightly stable atmospheric condition has to be applied to the long‐term wind profile at Horns Rev...

  2. Analytical and Experimental Evaluation of Digital Control Systems for the Semi-Span Super-Sonic Transport (S4T) Wind Tunnel Model

    Science.gov (United States)

    Wieseman, Carol D.; Christhilf, David; Perry, Boyd, III

    2012-01-01

    An important objective of the Semi-Span Super-Sonic Transport (S4T) wind tunnel model program was the demonstration of Flutter Suppression (FS), Gust Load Alleviation (GLA), and Ride Quality Enhancement (RQE). It was critical to evaluate the stability and robustness of these control laws analytically before testing them and experimentally while testing them to ensure safety of the model and the wind tunnel. MATLAB based software was applied to evaluate the performance of closed-loop systems in terms of stability and robustness. Existing software tools were extended to use analytical representations of the S4T and the control laws to analyze and evaluate the control laws prior to testing. Lessons were learned about the complex windtunnel model and experimental testing. The open-loop flutter boundary was determined from the closed-loop systems. A MATLAB/Simulink Simulation developed under the program is available for future work to improve the CPE process. This paper is one of a series of that comprise a special session, which summarizes the S4T wind-tunnel program.

  3. Kompensasi Kesalahan Sensor Berbasis Descriptor dengan Performa H_inf pada Winding Machine

    Directory of Open Access Journals (Sweden)

    Hendra Antomy

    2015-12-01

    Full Text Available Kesalahan pada sensor dapat terjadi pada sistem kontrol dengan umpan balik sehingga mengakibatkan sistem mengalami penurunan stabilitas dan performa. Fault Tolerant Control (FTC adalah metode untuk mengkompensasi kesalahan pada komponen sistem, salah satunya adalah kesalahan sensor. FTC dapat disusun dengan cara mendesain estimator untuk mengestimasi besarnya kesalahan sensor yang terjadi. Kompensasi dilakukan dengan cara mengurangkan estimasi kesalahan sensor dengan keluaran sistem. Pada makalah ini, FTC untuk kesalahan sensor diterapkan pada sistem winding machine. Estimator dirancang menggunakan pendekatan sistem descriptor dan didesain memenuhi performa H_inf. Permasalahan dalam desain estimator dirumuskan dalam bentuk Linear Matrix Inequality (LMI. Untuk merancang kontroler nominal, sistem winding machine direpresentasikan sebagai model fuzzy Takagi-Sugeno (T-S. Berdasarkan model tersebut, aturan kontroler disusun menggunakan konsep Parallel Distributed Compensation (PDC dengan struktur kontrol servo tipe 1. Hasil simulasi menunjukkan bahwa kompensasi yang diberikan dapat menjaga performa dan stabilitas sistem saat terjadi kesalahan sensor. Selain itu, estimator memenuhi performa H_inf dengan L2-Gain kurang dari tingkat pelemahan yang ditentukan.

  4. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    Directory of Open Access Journals (Sweden)

    Sam Stade

    2014-07-01

    Full Text Available An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol’skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21–39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol’skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  5. Comparison and flowering valuation of New Guinea Impatiens cultivars from Sonic and Super Sonic groups

    Directory of Open Access Journals (Sweden)

    Ludmiła Startek

    2012-12-01

    Full Text Available In the years 2002-2003 the flowering of four New Guinea Impatiens cultivars from Sonic and Super Sonic groups were compared. They were the following cultivars: 'Sonic Pink', 'Sonic Sweet Cherry', 'Super Sonic Cherry Cream' and 'Super Sonic Hot Pink'. The experiments were carried out from the middle of April till the middle of October. Neutralised sphagnum peat with slow release fertiliser Osmocote Plus 5/6 was used as medium. It was found that the cultivar 'Sonic Pink' began blooming 1-4 weeks earlier than the other cultivars. The cultivars 'Sonic Sweet Cherry' and 'Super Sonic Cherry Cream' had significantly more abundant flowering (105.3-113.3 flowers per plant than the cultivars 'Sonic Pink' and 'Super Sonic Hot Pink' (72.0-92.8 flowers per plant. All the cultivars had big flowers (6.3-7.8 cm in diameter. The most similar flowers were found in 'Sonic Sweet Cherry' and the least similar in 'Super Sonic Hot Pink'.

  6. Automatic tracking of wake vortices using ground-wind sensor data

    Science.gov (United States)

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  7. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    OpenAIRE

    Hansen, L.G.; Lading, Lars

    2002-01-01

    This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three-bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-event...

  8. A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Liu, Hui

    2016-01-01

    Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estim...

  9. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    Science.gov (United States)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  10. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  11. Methodology on quantification of sonication duration for safe application of MR guided focused ultrasound for liver tumour ablation.

    Science.gov (United States)

    Mihcin, Senay; Karakitsios, Ioannis; Le, Nhan; Strehlow, Jan; Demedts, Daniel; Schwenke, Michael; Haase, Sabrina; Preusser, Tobias; Melzer, Andreas

    2017-12-01

    Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). The evidence obtained via this

  12. Unknown input observer based detection of sensor faults in a wind turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2010-01-01

    In this paper an unknown input observer is designed to detect three different sensor fault scenarios in a specified bench mark model for fault detection and accommodation of wind turbines. In this paper a subset of faults is dealt with, it are faults in the rotor and generator speed sensors as well...... as a converter sensor fault. The proposed scheme detects the speed sensor faults in question within the specified requirements given in the bench mark model, while the converter fault is detected but not within the required time to detect....

  13. Sonic Kayaks: Environmental monitoring and experimental music by citizens.

    Science.gov (United States)

    Griffiths, Amber G F; Kemp, Kirsty M; Matthews, Kaffe; Garrett, Joanne K; Griffiths, David J

    2017-11-01

    The Sonic Kayak is a musical instrument used to investigate nature and developed during open hacklab events. The kayaks are rigged with underwater environmental sensors, which allow paddlers to hear real-time water temperature sonifications and underwater sounds, generating live music from the marine world. Sensor data is also logged every second with location, time and date, which allows for fine-scale mapping of water temperatures and underwater noise that was previously unattainable using standard research equipment. The system can be used as a citizen science data collection device, research equipment for professional scientists, or a sound art installation in its own right.

  14. Observer Based Detection of Sensor Faults in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Nielsen, R.

    2009-01-01

    , if an unknown input observer the fault detection  scheme can be non dependent on the actual wind speed. The scheme  is validated on data from a more advanced and detailed simulation  model. The proposed scheme detects the sensor faults a few samples  after the beginning of the faults....

  15. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    Science.gov (United States)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  16. High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing

    Science.gov (United States)

    McCurdy, David A. (Editor)

    1999-01-01

    The third High-Speed Research Sonic Boom Workshop was held at NASA Langley Research Center on June 1-3, 1994. The purpose of this workshop was to provide a forum for Government, industry, and university participants to present and discuss progress in their research. The workshop was organized into sessions dealing with atmospheric propagation; acceptability studies; and configuration design, and testing. Attendance at the workshop was by invitation only. The workshop proceedings include papers on design, analysis, and testing of low-boom high-speed civil transport configurations and experimental techniques for measuring sonic booms. Significant progress is noted in these areas in the time since the previous workshop a year earlier. The papers include preliminary results of sonic boom wind tunnel tests conducted during 1993 and 1994 on several low-boom designs. Results of a mission performance analysis of all low-boom designs are also included. Two experimental methods for measuring near-field signatures of airplanes in flight are reported.

  17. Sonic Interaction Design

    DEFF Research Database (Denmark)

    ) challenges these prevalent approaches by considering sound as an active medium that can enable novel sensory and social experiences through interactive technologies. This book offers an overview of the emerging SID research, discussing theories, methods, and practices, with a focus on the multisensory......Sound is an integral part of every user experience but a neglected medium in design disciplines. Design of an artifact’s sonic qualities is often limited to the shaping of functional, representational, and signaling roles of sound. The interdisciplinary field of sonic interaction design (SID...... aspects of sonic experience. Sonic Interaction Design gathers contributions from scholars, artists, and designers working at the intersections of fields ranging from electronic music to cognitive science. They offer both theoretical considerations of key themes and case studies of products and systems...

  18. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    DEFF Research Database (Denmark)

    Hansen, L.G.; Lading, Lars

    2002-01-01

    -bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-eventime of about 3 years. For a price of 300 000 DKK the break-even time is about 8 years. However......This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three......, the cost/benefit analysis has large uncertainties....

  19. Sonic Kayaks: Environmental monitoring and experimental music by citizens.

    Directory of Open Access Journals (Sweden)

    Amber G F Griffiths

    2017-11-01

    Full Text Available The Sonic Kayak is a musical instrument used to investigate nature and developed during open hacklab events. The kayaks are rigged with underwater environmental sensors, which allow paddlers to hear real-time water temperature sonifications and underwater sounds, generating live music from the marine world. Sensor data is also logged every second with location, time and date, which allows for fine-scale mapping of water temperatures and underwater noise that was previously unattainable using standard research equipment. The system can be used as a citizen science data collection device, research equipment for professional scientists, or a sound art installation in its own right.

  20. Sonic boom predictions using a modified Euler code

    Science.gov (United States)

    Siclari, Michael J.

    1992-04-01

    The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.

  1. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    Science.gov (United States)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  2. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer

    2012-01-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  3. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  4. Structural Monitoring of Wind Turbines using Sensors Connected via UTP Cable

    Directory of Open Access Journals (Sweden)

    Dumitru SPERMEZAN

    2017-12-01

    Full Text Available Unpredicted faults that may occur at the wind generators elements affect their economic operation. A promising approach that avoids these faults is the real-time vibrations monitoring. Data measured by the sensors can be transmitted to a monitoring station using wireless techniques, or optical fiber, or UTP cable. The last possibility is the cheapest, but it permits connecting the monitoring station at a limited distance with respect to the monitored turbine. The paper presents the components of the monitoring system and the experimental results related to the monitored wind turbine.

  5. 3D turbulence measurements using three intersecting Doppler LiDAR beams: validation against sonic anemometry

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Nowadays communities of researchers and industry in the wind engineering and meteorology sectors demand extensive and accurate measurements of atmospheric boundary layer turbulence for a better understanding of its role in a wide range of onshore and offshore applications: wind resource evaluation, wind turbine wakes, meteorology forecast, pollution and urban climate studies, etc. Atmospheric turbulence has been traditionally investigated through sonic anemometers installed on meteorological masts. However, the setup and maintenance of instrumented masts is generally very costly and the available location for the measurements is limited by the fixed position and height of the facility. In order to overcome the above-mentioned shortcomings, a measurement technique is proposed, based on the reconstruction of the three-dimensional velocity vector from simultaneous measurements of three intersecting Doppler wind LiDARs. This measuring technique presents the main advantage of being able to measure the wind velocity at any point in space inside a very large volume, which can be set and optimized for each test. Furthermore, it is very flexible regarding its transportation, installation and operation in any type of terrain. On the other hand, LiDAR measurements are strongly affected by the aerosol concentration in the air, precipitation, and the spatial and temporal resolution is poorer than that of a sonic anemometer. All this makes the comparison between these two kinds of measurements a complex task. The accuracy of the technique has been assessed by this study against sonic anemometer measurements carried out at different heights on the KNMI's meteorological mast at Cabauw's experimental site for atmospheric research (CESAR) in the Netherlands. An early uncertainty analysis shows that one of the most important parameters to be taken into account is the relative angles between the intersecting laser beams, i.e., the position of each LiDAR on the terrain and their

  6. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  7. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    Science.gov (United States)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  8. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    Science.gov (United States)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  9. Data-Driven Method for Wind Turbine Yaw Angle Sensor Zero-Point Shifting Fault Detection

    Directory of Open Access Journals (Sweden)

    Yan Pei

    2018-03-01

    Full Text Available Wind turbine yaw control plays an important role in increasing the wind turbine production and also in protecting the wind turbine. Accurate measurement of yaw angle is the basis of an effective wind turbine yaw controller. The accuracy of yaw angle measurement is affected significantly by the problem of zero-point shifting. Hence, it is essential to evaluate the zero-point shifting error on wind turbines on-line in order to improve the reliability of yaw angle measurement in real time. Particularly, qualitative evaluation of the zero-point shifting error could be useful for wind farm operators to realize prompt and cost-effective maintenance on yaw angle sensors. In the aim of qualitatively evaluating the zero-point shifting error, the yaw angle sensor zero-point shifting fault is firstly defined in this paper. A data-driven method is then proposed to detect the zero-point shifting fault based on Supervisory Control and Data Acquisition (SCADA data. The zero-point shifting fault is detected in the proposed method by analyzing the power performance under different yaw angles. The SCADA data are partitioned into different bins according to both wind speed and yaw angle in order to deeply evaluate the power performance. An indicator is proposed in this method for power performance evaluation under each yaw angle. The yaw angle with the largest indicator is considered as the yaw angle measurement error in our work. A zero-point shifting fault would trigger an alarm if the error is larger than a predefined threshold. Case studies from several actual wind farms proved the effectiveness of the proposed method in detecting zero-point shifting fault and also in improving the wind turbine performance. Results of the proposed method could be useful for wind farm operators to realize prompt adjustment if there exists a large error of yaw angle measurement.

  10. Flow tilt angles near forest edges – Part 1: Sonic anemometry

    Directory of Open Access Journals (Sweden)

    E. Dellwik

    2010-05-01

    Full Text Available An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges.

    Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty were evaluated and found to be highly significant. Since the attack angle distribution of the wind on the sonic anemometer is a function of atmospheric stratification, an instrumental error caused by imperfect flow distortion correction is also a function of the atmospheric stratification. In addition, it is discussed that the sonic anemometers have temperature dependent off-sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b, sonic anemometer accuracy for measuring mean flow tilt angles was estimated to between 2° and 3°. Use of planar fit algorithms, where the mean vertical velocity is calculated as the difference between the neutral and non-neutral flow, does not solve this problem of low accuracy and is not recommended.

    Because of the large uncertainties caused by flow distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies at the site.

    Since the mean flow tilt angles do not follow the terrain, an estimate of the vertical advection

  11. Sonic Watermarking

    Directory of Open Access Journals (Sweden)

    Ryuki Tachibana

    2004-10-01

    Full Text Available Audio watermarking has been used mainly for digital sound. In this paper, we extend the range of its applications to live performances with a new composition method for real-time audio watermarking. Sonic watermarking mixes the sound of the watermark signal and the host sound in the air to detect illegal music recordings recorded from auditoriums. We propose an audio watermarking algorithm for sonic watermarking that increases the magnitudes of the host signal only in segmented areas pseudorandomly chosen in the time-frequency plane. The result of a MUSHRA subjective listening test assesses the acoustic quality of the method in the range of “excellent quality.” The robustness is dependent on the type of music samples. For popular and orchestral music, a watermark can be stably detected from music samples that have been sonic-watermarked and then once compressed in an MPEG 1 layer 3 file.

  12. ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Stone, James M.; Proga, Daniel

    2009-01-01

    We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extrasolar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T ∼> 2 x 10 4 K) or highly ionized gas, we find that strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day side is much closer to the planet surface in multidimensions, and the total mass-loss rate is reduced by almost a factor of 4. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shocked winds. The planetary wind termination shock and the sonic surface in the wind are well separated, so that the mass-loss rate from the planet is essentially unaffected. However, the confinement of the planetary wind to the small volume bounded by the contact discontinuity greatly enhances the column density close to the planet, which might be important for the interpretation of observations of absorption lines formed by gas surrounding transiting planets.

  13. Evaluating Wind Power Potential in the Spanish Antarctic Base (BAE)

    International Nuclear Information System (INIS)

    Arribas, L.M.; Garcia Barquero, C; Navarro, J.; Cuerva, A.; Cruz, I.; Roque, V.; Marti, I.

    2000-01-01

    The objective of the work is to model wind field in the surroundings of the Spanish Antarctic Base (BAE in the following). The need of such a work comes from the necessity of an energy source able to supply the energy demand in the BAE during the Antarctic winter. When the BAE is in operation (in the Antarctic summer) the energy supply comes from a diesel engine. In the Antarctic winter the base is closed, but the demand of energy supply is growing up every year because of the increase in the number of technical and scientific machines that remain in the BAE taking different measurements. For this purpose the top of a closed hill called Pico Radio, not perturbed by close obstacles, has been chosen as the better site for the measurements. The measurement station is made up with a sonic anemometer and a small wind generator to supply the energy needed by the sensors head heating of the anemometer. This way, it will be also used as a proof for the suitability of a wind generator in the new chosen site, under those special climatic conditions.(Author) 3 refs

  14. Advanced load alleviation for wind turbines using adaptive trailing edge flaps: Sensoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Peter Bjoern

    2010-02-15

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy into electric power. They do so through incorporation of generators, which convert mechanical torque into electricity. Wind turbines are designed to keep the overall cost per produced Kilo Watt hour as low as possible. One way of improving the performance and lifetime of the wind turbine is through active flow control. Active control is often considered costly but if the lifespan of the components can be increased it could be justifiable. This thesis covers various aspects of 'smart control' such as control theory, sensoring, optimization, experiments and numerical modeling. (author)

  15. Gearbox Fault Diagnosis in a Wind Turbine Using Single Sensor Based Blind Source Separation

    Directory of Open Access Journals (Sweden)

    Yuning Qian

    2016-01-01

    Full Text Available This paper presents a single sensor based blind source separation approach, namely, the wavelet-assisted stationary subspace analysis (WSSA, for gearbox fault diagnosis in a wind turbine. Continuous wavelet transform (CWT is used as a preprocessing tool to decompose a single sensor measurement data into a set of wavelet coefficients to meet the multidimensional requirement of the stationary subspace analysis (SSA. The SSA is a blind source separation technique that can separate the multidimensional signals into stationary and nonstationary source components without the need for independency and prior information of the source signals. After that, the separated nonstationary source component with the maximum kurtosis value is analyzed by the enveloping spectral analysis to identify potential fault-related characteristic frequencies. Case studies performed on a wind turbine gearbox test system verify the effectiveness of the WSSA approach and indicate that it outperforms independent component analysis (ICA and empirical mode decomposition (EMD, as well as the spectral-kurtosis-based enveloping, for wind turbine gearbox fault diagnosis.

  16. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.

    Science.gov (United States)

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-06-09

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.

  17. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    Science.gov (United States)

    Prasad, A. S. Guru; Sharath, U.; Nagarjun, V.; Hegde, G. M.; Asokan, S.

    2013-09-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

  18. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  19. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; la Cour-Harbo, Anders; Bange, Jens

    2012-01-01

    built a lighter-than-air kite with a long tether and nano-synchronised sensors, Bergen University flies the SUMO, a pusher airplane of 580g total weight equipped with a 100Hz Pitot tube, Tübingen University in conjunction with the TU Braunschweig flies the Carolo, a 2m wide two prop model with a 5-hole...... concern - both the campaign at Høvsøre and the alternate location at Risø had to be cancelled for different reasons, both related to flying permits. There was one week of flying though at the Nøjsomheds Odde wind farm in Lolland, where we could compare the SUMO and balloon with a Lidar and data from...

  20. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  1. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  2. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  3. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed-forward control have been demonstrated through both experiments and simulations in several...... studies, whereas the potential of preview control for alleviating the load variations caused by azimuth dependent inflow variations is less described. Individual or cyclic pitch is required to alleviate azimuth dependent load variations and is traditionally applied through feedback control of the blade...

  4. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  5. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  6. Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The purpose of this paper is to show a novel fault-tolerant tracking control (FTC strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST and simulating it in MATLAB/Simulink.

  7. Paper mechanisms for sonic interaction

    DEFF Research Database (Denmark)

    Delle Monache, Stefano; Rocchesso, Davide; Qi, Ji

    2012-01-01

    Introducing continuous sonic interaction in augmented pop-up books enhances the expressive and performative qualities of movables, making the whole narrative experience more engaging and personal. The SaMPL Spring School on Sounding Popables explored the specific topic of paper-driven sonic...

  8. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...... model, driven by the Doppler lidar measurements, which uses a non-linear particle filter to estimate the small-scale turbulent fluctuations. The first results show that the reconstruction method can reproduce the wind speed maxima measured by the sonic anemometer if a low-pass filter with a cut...

  9. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    Science.gov (United States)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  10. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  11. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  12. The Sound of Stigmatization: Sonic Habitus, Sonic Styles, and Boundary Work in an Urban Slum.

    Science.gov (United States)

    Schwarz, Ori

    2015-07-01

    Based on focus groups and interviews with student renters in an Israeli slum, the article explores the contributions of differences in sonic styles and sensibilities to boundary work, social categorization, and evaluation. Alongside visual cues such as broken windows, bad neighborhoods are characterized by sonic cues, such as shouts from windows. Students understand "being ghetto" as being loud in a particular way and use loudness as a central resource in their boundary work. Loudness is read as a performative index of class and ethnicity, and the performance of middle-class studentship entails being appalled by stigmatized sonic practices and participating in their exoticization. However, the sonic is not merely yet another resource of boundary work. Paying sociological attention to senses other than vision reveals complex interactions between structures anchored in the body, structures anchored in language, and actors' identification strategies, which may refine theorizations of the body and the senses in social theory.

  13. The sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-09-01

    This report deals with the sonic borehole tool. First a review of the various elastic wave types is given and velocity values of compressional waves in various materials listed. Next follows a discussion of 3 models for the relation between transit time and porosity, and a comparison between the 3 models is made. The design of sonic tools is described including their geometry. The path of the sonic signals is discussed. Also the effect of environmental factors on the results of the tools are considered. Finally a number of applications are described. In two appendices the mechanics of deformable bodies and formulas for the velocity of sound are reviewed. (author)

  14. Phase I ResonantSonic CRADA report

    International Nuclear Information System (INIS)

    Richterich, L.R.; Amos, L.O.; Fancher, J.D.; McLellan, G.W.; Setzer, W.V.; Tuttle, B.G.; Hockey, R.L.; Ferris, R.H.; Riechers, D.M.; Pitman, S.G.

    1994-01-01

    This test report describes the Phase 1 testing and results of the ResonantSonic drilling method. This effort was conducted as part of a Cooperative Research and Development Agreement (CRADA) between the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The purpose of this demonstration was to evaluate the Water Development Corporation's ResonantSonic drilling system, modify components as necessary and determine compatible drilling applications for the ResonantSonic drilling method for use at facilities in the DOE complex and private industry. Initially, the ResonantSonic drill was used to drill several test holes at the Drilling Technology Test Site to assess the feasibility of drilling vertical and angle holes. After this initial phase, a 45 degree angle vapor extraction well was drilled to a depth of 168 feet at the 200 West Carbon Tetrachloride Site. This well was drilled and completed in nine days. Extensive geologic and vapor sampling were conducted while drilling this well. In addition, testing was also conducted at the test site to evaluated drilling with larger diameter casing (8 5/8 inch). Evaluation of the Resonant Sonic drilling method will be continued during the Phase 2 portion of testing to determine if improvements to the ResonantSonic system will make it a more viable method for drilling and sampling

  15. Wind reconstruction algorithm for Viking Lander 1

    Science.gov (United States)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  16. Wind reconstruction algorithm for Viking Lander 1

    Directory of Open Access Journals (Sweden)

    T. Kynkäänniemi

    2017-06-01

    Full Text Available The wind measurement sensors of Viking Lander 1 (VL1 were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  17. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    International Nuclear Information System (INIS)

    Corcuera, A Díaz de; Pujana-Arrese, A; Ezquerra, J M; Segurola, E; Landaluze, J

    2014-01-01

    This paper presents two H ∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H'' controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H'' multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H'' controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases

  18. Evaluation of Probe-Induced Flow Distortion of Campbell CSAT3 Sonic Anemometers by Numerical Simulation

    Science.gov (United States)

    Huq, Sadiq; De Roo, Frederik; Foken, Thomas; Mauder, Matthias

    2017-10-01

    The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. The magnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371-395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.

  19. State of the Art and Trends in Wind Resource Assessment

    Directory of Open Access Journals (Sweden)

    Oliver Probst

    2010-06-01

    Full Text Available Given the significant rise of the utilization of wind energy the accurate assessment of the wind potential is becoming increasingly important. Direct applications of wind assessment techniques include the creation of wind maps on a local scale (typically 5 20 km and the micrositing of wind turbines, the estimation of vertical wind speed variations, prospecting on a regional scale (>100 km, estimation of the long-term wind resource at a given site, and forecasting. The measurement of wind speed and direction still widely relies on cup anemometers, though sonic anemometers are becoming increasingly popular. Moreover, remote sensing by Doppler techniques using the backscattering of either sonic beams (SODAR or light (LIDAR allowing for vertical profiling well beyond hub height are quickly moving into the mainstream. Local wind maps are based on the predicted modification of the regional wind flow pattern by the local atmospheric boundary layer which in turn depends on both topographic and roughness features and the measured wind rose obtained from one or several measurement towers within the boundaries of the planned development site. Initial models were based on linearized versions of the Navier-Stokes equations, whereas more recently full CFD models have been applied to wind farm micrositing. Linear models tend to perform well for terrain slopes lower than about 25% and have the advantage of short execution times. Long-term performance is frequently estimated from correlations with nearby reference stations with concurrent information and continuous time series over a period of at least 10 years. Simple methods consider only point-to-point linear correlations; more advanced methods like multiple regression techniques and methods based on the theory of distributions will be discussed. Both for early prospecting in regions where only scarce or unreliable reference information is available, wind flow modeling on a larger scale (mesoscale is becoming

  20. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  1. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  2. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  3. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  4. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  5. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  6. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the

  7. FLEHAP: A Wind Powered Supply for Autonomous Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Gregorio Boccalero

    2016-10-01

    Full Text Available The development of the Internet of Things infrastructure requires the deployment of millions of heterogeneous sensors embedded in the environment. The powering of these sensors cannot be done with wired connections, and the use of batteries is often impracticable. Energy harvesting is the common proposed solution, and many devices have been developed for this purpose, using light, mechanical vibrations, and temperature differences as energetic sources. In this paper we present a novel energy-harvester device able to capture the kinetic energy from a fluid in motion and transform it in electrical energy. This device, named FLEHAP (FLuttering Energy Harvester for Autonomous Powering, is based on an aeroelastic effect, named fluttering, in which a totally passive airfoil shows large and regular self-sustained motions (limit cycle oscillations even in extreme conditions (low Reynolds numbers, thanks to its peculiar mechanical configuration. This system shows, in some centimeter-sized configurations, an electrical conversion efficiency that exceeds 8% at low wind speed (3.5 m/s. By using a specialized electronic circuit, it is possible to store the electrical energy in a super capacitor, and so guarantee self-powering in such environmental conditions.

  8. Realism Assessment of Sonic Boom Simulators

    Science.gov (United States)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  9. Preliminary proposal for the study of the turbulence of the wind the roofs of the buildings

    International Nuclear Information System (INIS)

    Fariñas Wong, Ernesto Yoel; Cabeza Fereira, Javier Enrique; Baracaldo, Hector; Fleck, Brian; Fernandez Bonilla, Alexeis

    2017-01-01

    The research is aimed at identifying the best safety conditions, efficiency for the use of renewable technologies in urban environments, anemometers of vanes and sonic are applied near the edge and at low height of the floor in the highest building of the INETC in order to know Wind behavior close to the edge as well as vertical wind potentialities and turbulent wind behavior. The data obtained from 3D sonic anemometers and weather vane shall be extrapolated to relate it to the data base of the Davis reference meteorological station, located in the undisturbed stream. The wind data will be linked to the effort and load regime that will be recorded at the same time on solar panels and their support structure, which will be done by means of extensive gauges metric. The meteorological data and the load stresses will be related to three-dimensional numerical simulations obtained by computational fluid mechanics numerical tests. (author)

  10. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  11. An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node

    International Nuclear Information System (INIS)

    Jung, Hyung-Jo; Kim, In-Ho; Jang, Seon-Jun

    2011-01-01

    This paper proposes an electromagnetic energy harvesting system, which utilizes the wind-induced vibration of a stay cable, and investigates its feasibility for powering a wireless sensor node on the cable through numerical simulations as well as experimental tests. To this end, the ambient acceleration responses of a stay cable installed in an in-service cable-stayed bridge are measured, and then they are used as input excitations in cases of both numerical simulations and experimental tests to evaluate the performance of the proposed energy harvesting system. The results of the feasibility test demonstrate that the proposed system generates sufficient electricity for operation of a wireless sensor node attached on the cable under the moderate wind conditions

  12. Quantification of Radicals Generated in a Sonicator

    Directory of Open Access Journals (Sweden)

    Kassim Badmus

    2016-06-01

    Full Text Available The hydroxyl radical (OH• is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA and potassium iodide dosimetry were used to quantify and investigate the behaviour of the generated OH radical in a laboratory scale sonicator. The 2-hydroxyl terephthalic acid (HTA formed during terephthalic acid dosimetry was determined by optical fibre spectrometer. The production rate of HTA served as a means of evaluating and characterizing the OH• generated over given time in a sonicator. The influence of sonicator power intensity, solution pH and irradiation time upon OH• generation were investigated. Approximately 2.2 ´ 10-9 M s-1 of OH radical was generated during the sonication process. The rate of generation of the OH radicals was established to be independent of the concentration of the initial reactant. Thus, the rate of generation of OH• can be predicted by zero order kinetics in a sonicator.

  13. Subjective Response to Simulated Sonic Booms in Homes

    Science.gov (United States)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic

  14. Dispersion characteristics of negative refraction sonic crystals

    International Nuclear Information System (INIS)

    Wu, L.-Y.; Chen, L.-W.; Wang, R.C.-C.

    2008-01-01

    Dispersion characteristics of negative refraction sonic crystals are investigated. The plane wave expansion method is used to calculate the equifrequency surface; the dependences of refractive direction on frequencies and incident angles for triangular lattices are shown. There exist the positive and negative refractive waves which include k.V g ≥0 and k.V g ≤0 in the second band for the triangular system. We also use the finite element method to demonstrate that the relative intensity of the transmitted acoustic waves is dependent on incident frequencies and angles. The positions of the partial band gaps obtained by the plane wave expansion method are in good agreement with those obtained by the finite element method. The sonic crystals with negative effective index are shown to have higher transmission intensities. By using the negative refraction behavior, we can design a sonic crystal plane lens to focus a sonic wave

  15. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haibo [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Graduate University of the Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Hermann, Sascha, E-mail: sascha.hermann@zfm.tu-chemnitz.de [Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Schulz, Stefan E.; Gessner, Thomas [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Li, Wen J., E-mail: wenjungli@gmail.com [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR (China)

    2012-10-26

    Graphical abstract: We study the dispersing behavior of SWCNTs based on the surfactant and the optimization of sonication parameters including the sonication power and running time. Highlights: Black-Right-Pointing-Pointer We study the optimization of sonication for the surfactant-based dispersion of SWCNTs. Black-Right-Pointing-Pointer The absorption spectrum of SWCNT solution strongly depend on the sonication conditions. Black-Right-Pointing-Pointer The sonication process has an important influence on the average length and diameters of SWCNTs in solution. Black-Right-Pointing-Pointer Centrifugation mainly contributes to the decrease of nonresonant absorption background. Black-Right-Pointing-Pointer Under the same sonication parameters, the large-diameter tip performs dispersion of SWCNTs better than the small-diameter tip. -- Abstract: Non-covalent functionalization based on surfactants has become one of the most common methods for dispersing of single-walled carbon nanotubes (SWCNTs). Previously, efforts have mainly been focused on experimenting with different surfactant systems, varying their concentrations and solvents. However sonication plays a very important role during the surfactant-based dispersion process for SWCNTs. The sonication treatment enables the surfactant molecules to adsorb onto the surface of SWCNTs by overcoming the interactions induced by the hydrophobic, electrostatic and van der Waals forces. This work describes a systematic study of the influence of the sonication power and time on the dispersion of SWCNTs. UV-vis-NIR absorption spectra is used to analyze and to evaluate the dispersion of SWCNTs in an aqueous solution of 1 w/v% sodium deoxycholate (DOC) showing that the resonant and nonresonant background absorption strongly depends on the sonication conditions. Furthermore, the diameter and length of SWCNTs under different sonication parameters are investigated using atomic force microscopy (AFM).

  16. U.S. Virgin Islands Wind Resources Update 2014

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. O.; Warren, A.

    2014-12-01

    This report summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. These results are an update to the previous feasibility study; the collected data are critical to the successful development of a wind project at either site.

  17. Realtime Interaction Analysis of Social Interplay in a Multimodal Musical-Sonic Interaction Context

    DEFF Research Database (Denmark)

    Hansen, Anne-Marie

    2010-01-01

    This paper presents an approach to the analysis of social interplay among users in a multimodal interaction and musical performance situation. The approach consists of a combined method of realtime sensor data analysis for the description and interpretation of player gestures and video micro......-analysis methods used to describe the interaction situation and the context in which the social interplay takes place. This combined method is used in an iterative process, where the design of interactive games with musical-sonic feedback is improved according to newly discovered understandings and interpretations...

  18. Application of lidars for assessment of wind conditions on a bridge site

    DEFF Research Database (Denmark)

    Jakobsen, J. B.; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    Wind measurement techniques based on remote optical sensing, extensively applied in wind energy, have been exploited in civil engineering only in a limited number of studies. The present paper introduces a novel application of wind lidars in bridge engineering, and presents the findings from...... characterization. The paper presents a promising comparison of the measurements obtained by the three different sets of instruments, and discusses their complementary value....... the pilot measurement campaign on the Lysefjord Bridge in the South-West Norway. A single long-range pulsed WindScanner lidar and two short-range continuous-wave WindScanner lidars were deployed, in addition to five sonic anemometers installed on the bridge itself, the latter for long-term wind...

  19. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.R. [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Finnish Meteorological Institute, Erik Palmenin aukio 1, Helsinki, 00101 (Finland); Pauscher, L. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Ward, H.C. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB (United Kingdom); Kotthaus, S. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Barlow, J.F., E-mail: j.f.barlow@reading.ac.uk [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Gouvea, M. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Lane, S.E. [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Grimmond, C.S.B. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom)

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65-0.68 m s{sup -1}) as comparisons between sonic anemometers (0.35-0.73 m s{sup -1}). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12-1.63 m s{sup -1}) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. -- Highlights: Black-Right-Pointing-Pointer An inter-comparison was made between lidar-derived winds and regular anemometry. Black-Right-Pointing-Pointer A new lidar operating technique was developed. Black-Right-Pointing-Pointer Airflow features above an urban river included channelling of wind.

  20. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry

    International Nuclear Information System (INIS)

    Wood, C.R.; Pauscher, L.; Ward, H.C.; Kotthaus, S.; Barlow, J.F.; Gouvea, M.; Lane, S.E.; Grimmond, C.S.B.

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s −1 ) as comparisons between sonic anemometers (0.35–0.73 m s −1 ). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12–1.63 m s −1 ) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. -- Highlights: ► An inter-comparison was made between lidar-derived winds and regular anemometry. ► A new lidar operating technique was developed. ► Airflow features above an urban river included channelling of wind.

  1. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    Science.gov (United States)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  2. Recent Progress on Sonic Boom Research at NASA

    Science.gov (United States)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  3. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  4. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... was better than that of the cross-wind component. No significant difference was found between the performance of the model at the forested and the agricultural areas. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....

  5. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  6. Variation of boundary-layer wind spectra with height

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Petersen, Erik L.; Larsen, Søren Ejling

    2018-01-01

    This study revisits the height dependence of the wind speed power spectrum from the synoptic scale to the spectral gap. Measurements from cup anemometers and sonics at heights of 15 m to 244 m are used. The measurements are from one land site, one coastal land‐based site and three offshore sites...... the atmospheric tide. The second finding regards the height dependence of the general spectrum. We describe the dependence through a so‐called effective roughness, which is calculated from wind spectra and represents the energy removal at different frequencies, and thus surface conditions in the footprint areas....... The generalizable spectral properties of winds presented herein may prove useful for validating numerical models....

  7. Integrated monitoring of wind plant systems

    Science.gov (United States)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  8. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  9. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    International Nuclear Information System (INIS)

    Liu, C.-P.; Lin, T.-K.; Chang, Y.-H.; Yu, C.-S.; Wu, K.-T.; Wang, S.-J.; Ying, T.-F.; Huang, D.-R.

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model

  10. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    CERN Document Server

    Liu, C P; Chang, Y H; Yu, C S; Wu, K T; Wang, S J; Ying, T F; Huang, D R

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model.

  11. Continuous and pulse sonication effects on transesterification of used vegetable oil

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2015-01-01

    Highlights: • We studied continuous and pulse sonication effects on transesterification reaction. • Pulse sonication appears to have superior effects on transesterification reaction. • Effects of various process parameters on FAMEs yield were discussed in detail. • Effects of ultrasonic intensity and power density were compared for both conditions. • Continuous sonication may be beneficial for short time and plug-flow conditions. - Abstract: This study reports on the effects of direct application of continuous and pulse sonication on transesterification reaction of used vegetable oil. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with the effects of different ultrasonic intensities and power densities were reported. Two process parametric evaluation studies were conducted to compare the effects of continuous and pulse sonication. These included methanol to oil ratio, catalyst concentration and reaction time effects on the transesterification reaction. For continuous sonication, a catalyst amount of 0.5% (wt/wt), methanol to oil ratio of 9:1 was sufficient to complete the transesterification reaction in 1–2 min at a power output of 150 W with a biodiesel yield of 93.5%. For pulse sonication, a maximum biodiesel yield of 98% was achieved at 2.5 min of reaction time, 9:1 methanol to oil ratio, and 1.25% catalyst. Generally, higher biodiesel yields were observed for pulse sonication compared to continuous sonication under any given process condition. Power density and ultrasonic intensity tests revealed that biodiesel yields were more sensitive to continuous sonication due to intense mixing. A plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction under continuous sonication

  12. Measurement of mechanical properties of metallic glass at elevated temperature using sonic resonance method

    Science.gov (United States)

    Kaluvan, Suresh; Zhang, Haifeng; Mridha, Sanghita; Mukherjee, Sundeep

    2017-04-01

    Bulk metallic glasses are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of bulk metallic glasses include high strength and hardness as well as excellent corrosion and wear resistance. However, there are few reports and limited understanding of their mechanical properties at elevated temperatures. We used a nondestructive sonic resonance method to measure the Young's modulus and Shear modulus of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5, at elevated temperatures. The measurement system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The OMICRON Bode-100 Vector Network Analyzer was used to sweep the frequency and its output was connected to the speaker which vibrated the material in its flexural mode and torsional modes. A Polytec OFV-505 laser vibrometer sensor was used to capture the vibration of the material at various frequencies. The flexural and torsional mode frequency shift due to the temperature variation was used to determine the Young's modulus and Shear modulus. The temperature range of measurement was from 50°C to 350°C. The Young's modulus was found to reduce from 100GPa to 94GPa for the 300°C temperature span. Similarly, the Shear modulus decreased from 38.5GPa at 50°C to 36GPa at 350°C.

  13. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor

    KAUST Repository

    Xi, Yi

    2017-02-17

    Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self-powered speed sensor of wind by correlating the short-circuit current with the wind speed.

  14. Advanced Metal Rubber Sensors for Hypersonic Decelerator Entry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber™ sensors for aeroelastic analysis of Hypersonic Decelerator Entry...

  15. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  16. Evaluating wind power potential in the Spanish Antarctic Base (BAE); Evaluacion del Potencial Eolico en la Base Antartica Espanola Juan Carlos I

    Energy Technology Data Exchange (ETDEWEB)

    Arribas de Paz, L. M.; Garcia Barquero, C.; Navarro Montesinos, J.; Cuerva Tejero, A.; Cruz Cruz, I.; Roque Lopez, V.; Marti Perez, I. [Ciemat. Madrid (Spain)

    2000-07-01

    The objective of the work is to model wind field in the surroundings of the Spanish Antarctic Base (BAE in the following). The need of such a work comes from the necessity of an energy source able to supply the energy demand in the BAE during the Antarctic winter. When the BAE is in operation (in the Antarctic summer) the energy supply comes from a diesel engine. In the Antartic winter the base is closed, but the demand of energy supply is growing up every year because of the increase in the number of technical and scientific machines that remain in the BAE taking different measurements. For this purpose the top of a closed hill called Pico Radio, not perturbed by close obstacles, has been chosen as the better site for the measurements. The measurement station is made up with a sonic an-emometer and a small wind generator to supply the energy needed by the sensors head heating of the anemometer. this way, it will be also used as a proof for the suitability of a wind generator in the new chosen site, under those special climactic conditions. (Author) 3 refs.

  17. Control con dos sensores para energías eólica y solar; Control with two sensors for energies wind and solar

    Directory of Open Access Journals (Sweden)

    Alfredo G M Gámez López

    2011-02-01

    Full Text Available En el artículo se realiza un análisis de dos sensores que se aplican en energías renovables (eólica y solar,obteniéndose una ley de control óptima. Para las fuentes energéticas elegidas se proponen técnicas de altafrecuencia de conmutación y eficiencia. Para la validación de los resultados se emplean técnicas desimulación digital In this article we make an analysis of two sensors applied in renewable energies (wind and solar,obtaining an ideal law of control. For the chosen energetic sources there appear technologies of highfrequency of commutation and of high efficiency. Technologies of digital simulation validate the results.

  18. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  19. Production of talc nano sheets via fine grinding and sonication processes

    International Nuclear Information System (INIS)

    Samayamutthirian Palaniandy; Noorina Hidayu Jamil Khairun Azizi Mohd Azizli; Syed Fuad Saiyid Hashim; Hashim Hussin

    2009-01-01

    Fine grinding of high purity talc in jet mill at low grinding pressure was carried out by varying the feed rate and classifier rotational speed. These ground particles were sonicated in laboratory ultrasonic bath by varying the soniction period at five levels. The ground and sonicated particles were characterized in terms of particle size and particle size distribution. Mechanochemical and sonochemical effect of talc was determine via X-ray diffraction. Particle shape and surface texture of the ground and sonicated product was determined via scanning electron microscope and transmission electron microscope. The ground particle size exhibited particle size below 10 μm with narrow size distribution. The reduction of peak intensity in (002) plane indicated the layered structure has been distorted. The sonicated talc shows that the thickness of the talc particles after the sonication process is 20 nm but the lateral particle size still remains in micron range. The reduction of the XRD peak intensity for (002) plane and thickness of sonicated talc as shown in SEM and TEM micrographs proves that fine grinding and sonication process produces talc nano sheets. (author)

  20. Anemometers for Mars. [Viking '75 wind measurements

    Science.gov (United States)

    Henry, R. M.; Greene, G. C.

    1974-01-01

    An investigation is conducted concerning the problems involved in the conduction of wind measurements on the planet Mars, taking into account the currently known characteristics of the Martian atmosphere. Problems introduced by the presence of the lander are examined. The suitability of several different types of anemometers for making the measurements is discussed, giving attention to rotating anemometers, sonic anemometers, ion tracers, drag force anemometers, pitot tubes, and thermal anemometers.

  1. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  2. From Ecological Sounding Artifacts Towards Sonic Artifact Ecologies

    DEFF Research Database (Denmark)

    Erkut, Cumhur; Serafin, Stefania

    2016-01-01

    The discipline of sonic interaction design has been focused on the interaction between a single user and an artifact. This strongly limits one of the fundamental aspects of music as a social and interactive experience. In this paper we propose sonic artifact ecologies as a mean to examine interac...

  3. Environmental Pollution: Noise Pollution - Sonic Boom

    Science.gov (United States)

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  4. State of the art of sonic boom modeling

    Science.gov (United States)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  5. Evaluation of the IRAD flexible probe sonic extensometer

    International Nuclear Information System (INIS)

    Glenn, H.D.; Patrick, W.C.; Rector, N.L.; Butler, L.S.

    1986-08-01

    Evaluation of the IRAD sonic extensometer was initiated with an electronic-circuit analysis which indicated an accuracy of +-0.001 in. (0.025 mm). Readings from two sonic probes consistently were low by 2% for distances between magnetic anchors, but were accurate to +-0.002 and +-0.003 in. (0.051 and 0.076 mm) for small displacements. Although a series of high explosive tests subjected magnetic anchors to peak accelerations of from 2100 g to 32,000 g the anchors generally did not experience detectable damage. Sonic probe readings exhibited a sensitivity to temperature changes with two of the four segments monitored exceeding the correction factor cited by the manufacturer

  6. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  7. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    Science.gov (United States)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity

  8. Lidar-based reconstruction of wind fields and application for wind turbine control

    OpenAIRE

    Kapp, Stefan

    2017-01-01

    In this thesis horizontal, upwind scanning lidar systems of the focused continuous-wave type are regarded for wind turbines. The theory of wind field reconstruction is extended to a five parameter model describing the inflow in non-uniform conditions more accurately. Sensor requirements are derived. A new approach to spherically scan the inflow area is studied experimentally. Expected inaccuracies of the averaged wind direction signal in a wind farm environment are quantified and spatial inho...

  9. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Koh, Byumseok; Cheng, Wei

    2015-08-01

    Sonication process is regularly adopted for dispersing single-walled carbon nanotubes (SWCNTs) in an aqueous medium. This can be achieved by either covalent functionalization of SWCNTs with strong acid or by noncovalent functionalization using dispersants that adsorb onto the surface of SWCNTs during dispersion. Because the dispersion process is usually performed using sonication, unintentional free radical formation during sonication process may induce covalent modification of SWCNT surface. Herein, we have systematically investigated the status of SWCNT surface modification under various sonication conditions using Raman spectroscopy. Comparing ID /IG (Raman intensities between D and G bands) ratio of SWCNTs under various sonication conditions suggests that typical sonication conditions (1-6 h bath sonication with sonication power between 3 and 80 W) in aqueous media do not induce covalent modification of SWCNT surface. In addition, we confirm that SWCNT dispersion with single-stranded DNA (ssDNA) involves noncovalent adsorption of ssDNA onto the surface of SWCNTs, but not covalent linkage between ssDNA and SWCNT surface. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  11. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  12. Multi-life-stage monitoring system based on fibre bragg grating sensors for more reliable wind turbine rotor blades: Experimental and numerical analysis of deformation and failure in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    , design and optimisation of offshore wind turbines. The MareWint main scientific objective is to optimise the design of offshore wind turbines, maximise reliability, and minimise maintenance costs. Integrated within the innovative rotor blades work-package, this PhD project is focused on damage analysis...... are used to improve the design process, and the implemented sensor are used to control the manufacturing and operation stage of a wind turbine rotor blade. The FBG sensors measurement principle is analysed from a multi-life-stage (design, material testing, manufacturing, and operation) perspective......, and supported/validated by numerical models, software tools, signal post-processing, and experimental validation. The damage in the wind turbine rotor blade is analysed from a material perspective (fibre reinforced polymers) and used as a design property, meaning that damage is accepted in an operational wind...

  13. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  14. Applications of antireflection coatings in sonic crystal-based acoustic devices

    International Nuclear Information System (INIS)

    Wang Yun; Deng Ke; Xu Shengjun; Qiu Chunyin; Yang Hai; Liu Zhengyou

    2011-01-01

    The unwanted reflection seriously baffles the practical applications of sonic crystals, such as for various acoustic lenses designed by utilizing the in-band properties of sonic crystals. Herein we introduce the concept of the antireflection coating into the sonic crystal-based devices. The efficiency of such accessorial structures is demonstrated well by an originally high reflection system. Promising perspectives can be anticipated in extending the antireflection coating layers into more general acoustic applications through a flexible design process.

  15. Shuttle sonic boom - Technology and predictions. [environmental impact

    Science.gov (United States)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  16. Acoustic transparency in two-dimensional sonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es

    2009-01-15

    Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.

  17. Wind-stilling in the light of wind speed measurements: the Czech experience

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Valík, A.; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Možný, M.

    2018-01-01

    Roč. 74 (2018), s. 131-143 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:86652079 Keywords : universal anemograph * vaisala wind-speed sensors * wind speed * homogenisation * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  18. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  19. The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Aasen, S E

    1995-10-01

    This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.

  20. Evaluation of Rheological Properties and Swelling Behaviour of Sonicated Scleroglucan Samples

    Directory of Open Access Journals (Sweden)

    Siddique Akber Ansari

    2012-02-01

    Full Text Available Scleroglucan is a natural polysaccharide that has been proposed for various applications. However there is no investigation on its property variations when the molecular weight of this polymer is reduced. Scleroglucan was sonicated at two different polymer concentrations for different periods of time and the effect of sonication was investigated with respect to molecular weight variations and rheological properties. Molar mass, estimated by viscometric measurements, was drastically reduced already after a sonication for a few min. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording the mechanical spectra and the flow curves. A comparison with the system prepared with the dialysed polymer was also carried out. The anisotropic elongation, observed with tablets of scleroglucan and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  1. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  2. Lake Michigan Wind Assessment Analysis, 2012 and 2013

    Directory of Open Access Journals (Sweden)

    Charles R Standridge

    2017-03-01

    Full Text Available A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm.  Lake Michigan is an inland sea in the upper mid-western United States.  A laser wind sensor mounted on a floating platform was located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013.  Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters.  Wind speed and direction were measured once each second and aggregated into 10 minute averages.  The two sample t-test and the paired-t method were used to perform the analysis.  Average wind speed stopped increasing between 105 m and 150 m depending on location.  Thus, the collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower heights.  Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon.  Thus, it may be possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought.  At both locations, the predominate wind direction is from the south-southwest.  The ability of the laser wind sensor to measure wind speed appears to be affected by a lack of particulate matter at greater heights.   Keywords: wind assessment, Lake Michigan, LIDAR wind sensor, statistical analysis. Article History: Received June 15th 2016; Received in revised form January 16th 2017; Accepted February 2nd 2017 Available online How to Cite This Article: Standridge, C., Zeitler, D., Clark, A., Spoelma, T., Nordman, E., Boezaart, T.A., Edmonson, J.,  Howe, G., Meadows, G., Cotel, A. and Marsik, F. (2017 Lake Michigan Wind Assessment Analysis, 2012 and 2013. Int. Journal of Renewable Energy Development

  3. High-resolution proton and carbon-13 NMR of membranes: why sonicate?

    International Nuclear Information System (INIS)

    Oldfield, E.; Bowers, J.L.; Forbes, J.

    1987-01-01

    The authors have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-chloresterol (1:1) multibilayers, using magic-angle sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol system, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while the 13 C NMR, the authors demonstrate that most 13 C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13 C MASS NMR spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultransonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra

  4. How good are remote sensors at measuring extreme winds?

    NARCIS (Netherlands)

    Sathe, A.R.; Courtney, M.; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat

  5. Novel Ultralow-Weight Metal Rubber Sensor System for Ultra Long-Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, ultralow mass density, and non-intrusive sensor system for ultra long duration balloons that will operate in the most...

  6. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... gearbox. Only the generator speed measurement which is available in even simple wind turbine control systems is used as input. Consequently this proposed scheme does not need additional sensors and computers for monitoring the condition of the wind gearbox. The scheme is evaluated on a wide-spread wind...

  7. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING; FINAL

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  8. An Intermediate in the evolution of superfast sonic muscles

    Directory of Open Access Journals (Sweden)

    Mok Hin-Kiu

    2011-11-01

    Full Text Available Abstract Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1 causing the tendon and bladder to snap back (part 2 generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.

  9. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  10. The Use of Structural-Acoustic Techniques to Assess Potential Structural Damage From Sonic Booms

    Science.gov (United States)

    Garrelick, Joel; Martini, Kyle

    1996-01-01

    The potential impact of supersonic operations includes structural damage from the sonic boom overpressure. This paper describes a study of how structural-acoustic modeling and testing techniques may be used to assess the potential for such damage in the absence of actual flyovers. Procedures are described whereby transfer functions relating structural response to sonic boom signature may be obtained with a stationary acoustic source and appropriate data processing. Further, by invoking structural-acoustic reciprocity, these transfer functions may also be acquired by measuring the radiated sound from the structure under a mechanical drive. The approach is based on the fundamental assumption of linearity, both with regard to the (acoustic) propagation of the boom in the vicinity of the structure and to the structure's response. Practical issues revolve around acoustic far field and source directivity requirements. The technique was implemented on a specially fabricated test structure at Edwards AFB, CA with the support of Wyle Laboratories, Inc. Blank shots from a cannon served as our acoustic source and taps from an instrumented hammer generated the mechanical drive. Simulated response functions were constructed. Results of comparisons with corresponding measurements recorded during dedicated supersonic flyovers with F-15 aircraft are presented for a number of sensor placements.

  11. Research on Test-bench for Sonic Logging Tool

    Directory of Open Access Journals (Sweden)

    Xianping Liu

    2016-01-01

    Full Text Available In this paper, the test-bench for sonic logging tool is proposed and designed to realize automatic calibration and testing of the sonic logging tool. The test-bench System consists of Host Computer, Embedded Controlling Board, and functional boards. The Host Computer serves as the Human Machine Interface (HMI and processes uploaded data. The software running on Host Computer is designed on VC++, which is developed based on multithreading, Dynamic Linkable Library (DLL and Multiple Document Interface (MDI techniques. The Embedded Controlling Board uses ARM7 as the microcontroller and communicates with Host Computer via Ethernet. The Embedded Controlling Board software is realized based on embedded uclinux operating system with a layered architecture. The functional boards are designed based on Field Programmable Gate Array (FPGA and provide test interfaces for the logging tool. The functional board software is divided into independent sub-modules that can repeatedly be used by various functional boards and then integrated those sub-modules in the top layer. With the layered architecture and modularized design, the software system is highly reliable and extensible. With the help of designed system, a test has been conducted quickly and successfully on the electronic receiving cabin of the sonic logging tool. It demonstrated that the system could greatly improve the production efficiency of the sonic logging tool.

  12. Sonic Hedgehog Signaling Promotes Tumor Growth

    National Research Council Canada - National Science Library

    Bushman, Wade

    2007-01-01

    ... of the DOD New Investigator award indicate that Shh signaling promotes tumor growth. This proposal addresses the hypothesis that Sonic hedgehog signaling promotes tumor growth by activating stromal cell gene expression...

  13. Sonic journeys with the dead

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits

    This audio-paper is a site-specific investigation of relations between a gravesite at Vor Frelser Cemetery (Cemetery of Our Saviour), Copenhagen, Denmark, its cultural history and publicly co-constructed memories. The audio-paper follows a non-representational approach to sonic media and the meta...

  14. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  15. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show th...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...... that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  16. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    Science.gov (United States)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  17. Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Zack

    2012-07-15

    This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a

  18. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  19. ON THE LAUNCHING AND STRUCTURE OF RADIATIVELY DRIVEN WINDS IN WOLF–RAYET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2016-04-20

    Hydrostatic models of Wolf–Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-loss rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.

  20. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  1. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors

    Science.gov (United States)

    Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.

    2018-01-01

    Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by

  2. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  3. Effect of sonication on technological properties of beef

    Directory of Open Access Journals (Sweden)

    Z. J. Dolatowski

    2007-06-01

    Full Text Available Ultrasound treatment during rigor mortis period led to an acceleration of aging processes. No significant influence of sonication on acidity during ageing was observed. Ultrasound treatment did not influence the lightness, but according to the shear force measurements, improve meat tenderness. Differentiated technological properties of examined samples may result from influence of ultrasound on protein structures of meat. As a result of ultrasound treatment an increase of free calcium ions concentration occurred. Obtained results pointed out that sonication may be an effective method of formation of technological properties of beef during ageing.

  4. Low-Weight, Durable, and Low-Cost Metal Rubber Sensor System for Ultra Long Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, low-cost, ultra low mass density, and non-intrusive sensor system for ultra long duration balloons (ULDB) that will...

  5. Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Koracin, D. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Kaplan, M. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Smith, C. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, G. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Wolf, A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCord, T. [Desert Research Inst. (DRI), Las Vegas, NV (United States); King, K. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Belu, R. [Drexel Univ., Philadelphia, PA (United States); Horvath, K. [Croatian Meteorological and Hydrological Service, Zagreb (Croatia)

    2015-10-01

    The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.

  6. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E.; Thompson, K.M.; Barrow, J.C.

    1993-01-01

    ResonantSonic SM drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  7. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    Science.gov (United States)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  8. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  9. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities

    Directory of Open Access Journals (Sweden)

    Irene Suomi

    2018-04-01

    Full Text Available Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.

  10. A real-time deflection monitoring system for wind turbine blades using a built-in laser displacement sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong-Cheol; Giri, Paritosh; Lee, Jung-Ryul [Korea Chonbuk National Univ., Jeonbuk (Korea, Republic of). Dept. of Aerospace Engineering and LANL-CBNU Engineering Inst.

    2012-07-01

    Renewable energy is considered a good alternative to deal with the issues related to fossil fuel and environmental pollution. Wind energy as one of such renewable energy alternatives has seen a substantial growth. With commercially viable global wind power potential, wind energy penetration is further expected to rise, and so will the related problems. One of the issues is the collision of wind blade and tower during operation. To improve safety during operation, to minimize the risk of sudden failure or total breakdown, and to ensure reliable power generation and reduce wind turbine life cycle costs, a structural health monitoring (SHM) technology is required. This study proposes a single laser displacement sensor (LDS) system, where all of the rotating blades could be evaluated effectively. The system is cost-effective as well, as the system costs only a mere thousand dollars. If the blade bolt loosening occurs, it causes deflection in the affected blade. In a similar manner, nacelle tilt or mass loss damage in the blade will result in change of blade's position and the proposed system can identify such problems with ease. With increased demand of energy, the sizes of wind blades are getting bigger and bigger due to which people are installing wind turbines very high above the ground level or offshore. It is impractical to monitor the deflection through wired connection in these cases and hence can be replaced by a wireless solution. This wireless solution is achieved using Zigbee technology which operates in the industrial, scientific and medical (ISM) radio bands, typically 2.4 GHz, 915 MHz and 868 MHz. The output from the LDS is fed to the microcontroller which acts as an analog to digital converter which in turn is connected to the Zigbee transceiver module, which transmits the data. At the other end, the Zigbee reads the data and displays on the PC from where user can monitor the condition of wind blades. (orig.)

  11. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    Science.gov (United States)

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (PCR, especially of low-virulent organisms.

  12. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  13. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  14. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  15. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  16. Development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A. [Quebec Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering

    2010-07-01

    Interest in renewable energy sources has grown in recent years in response to concerns of increasing pollution levels and depleting fossil fuels. Among renewable energy sources, wind energy generation is the fastest growing technology and one of the most cost-effective and environmental friendly means to generate electricity from renewable sources. Modern wind turbines are ready to be deployed in large scale as a result of recent developments in wind power technology. Variable speed permanent magnet synchronous generators (PMSG) based wind energy conversion systems (WECS) are becoming more popular. The use of a permanent magnet reduces size, cost and weight of overall WECS. In addition, the absence of field winding and its excitation system avoids heat dissipation in the rotor winding, thereby improving overall efficiency of the WECS. This type of configuration is more appropriate for remote locations, particularly for off-shore wind application, where the geared doubly fed induction generator usually requires regular maintenance due to tearing-wearing in brushes, windings and gear box. This presentation discussed the development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features. A novel adaptive network-based fuzzy inference system was used to estimate the speed and position of variable speed PMSG under fluctuating wind conditions. A novel control strategy was developed for the grid interfacing inverter incorporating power quality improvement features at point of common coupling.

  17. Intensification of transesterification via sonication numerical simulation and sensitivity study

    International Nuclear Information System (INIS)

    Janajreh, Isam; ElSamad, Tala; Noorul Hussain, Mohammed

    2017-01-01

    Highlights: • 3D numerical simulation of transesterification is accomplished. • A non-isothermal, reactive Navier–stokes was carried out. • Conventional and sonicated process was compared as far as reaction kinetics and yield. • Higher kinetic rates are achieved at lower molar ratios in sonicated process. • It validates feasibility of numerical simulation for transesterification assessment. - Abstract: Transesterification is known as slow reaction that can take over several hours to complete. The process involves two immiscible reactants to produce the biodiesel and the byproduct glycerol. Biodiesel commercialization has always been hindered by the long process times of the transesterification reaction. Catalyzing the process and increasing the agitation rate is the mode of intensifying the process additional to the increase of the molar ratio, temperature, circulation that all penalize the overall process metrics. Finding shorter path by reducing the reaction into a few minutes and ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction moves the technology from the slow batch process into the high throughput continuous process. In a practical sense this means a huge optimization for the biodiesel production process which opens pathways for faster, voluminous and cheaper production. The mechanism of sonication assisted reaction is explained by the creation of microbubbles which increases the interfacial surface reaction areas and the presence of high localized temperature and turbulence as these microbubbles implode. As a result the reaction kinetics of sonicated transesterification as inferred by several authors is much faster. The aim of this work is to implement the inferred rates in a high fidelity numerical reactive flow simulation model while considering the reactor geometry. It is based on Navier–Stokes equations coupled with energy equation for non-isothermal flow and the transport

  18. Sonic anemometry measurements to determine airflow patterns in multi-tunnel greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Valera, D. L.; Molina-aiz, F. D.; Pena, A.

    2012-11-01

    The present work describes a methodology for studying natural ventilation in Mediterranean greenhouses using sonic anemometry. The experimental work took place in the three-span greenhouse located at the agricultural research farm belonging to the University of Almeria. This methodology has allowed us to obtain patterns of natural ventilation of the experimental greenhouse under the most common wind regimes for this region. It has also enabled us to describe how the wind and thermal effects interact in the natural ventilation of the greenhouse, as well as to detect deficiencies in the ventilation of the greenhouse, caused by the barrier effect of the adjacent greenhouse (imply a mean reduction in air velocity close to the greenhouse when facing windward of 98% for u, 63% for u, and more importantly 88% for ux, the component of air velocity that is perpendicular to the side vent). Their knowledge allows us to improve the current control algorithms that manage the movement of the vents. In this work we make a series of proposals that could substantially improve the natural ventilation of the experimental greenhouse. For instance, install vents equipped with ailerons which guide the air inside, or with vents in which the screen is not placed directly over the side surface of the greenhouse. A different proposal is to prolong the opening of the side vents down to the soil, thus fomenting the entrance of air at crop level. (Author) 34 refs.

  19. Wind inflow observation from load harmonics

    OpenAIRE

    Marta, Bertelè; Bottasso, Carlo L.; Cacciola, Stefano; Fabiano Daher Adegas,; Sara, Delport

    2017-01-01

    The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observ...

  20. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  1. Sensors and sensor systems for guidance and navigation; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Wade, Jack; Tuchman, Avi

    1991-07-01

    The present conference discusses wide field-of-view star-tracker cameras, discrete frequency vs radius reticle trackers, a sensor system for comet approach and landing, a static horizon sensor for a remote-sensing satellite, an improved ring laser gyro navigator, FM reticle trackers in the pupil plane, and the 2D encoding of images via discrete reticles. Also discussed are reduced-cost coil windings for interferometric fiber-optic gyro sensors, the ASTRO 1M space attitude-determination system, passive range-sensor refinement via texture and segmentation, a coherent launch-site atmospheric wind sounder, and a radar-optronic tracking experiment for short and medium range aerial combat. (For individual items see A93-27044 to A93-27046)

  2. Microcontroller-based data logging instrumentation system for wind ...

    African Journals Online (AJOL)

    In this study, a microcontroller based data logger for measuring wind speed and wind direction has been designed. The designed system uses the Atmel microcontroller family which consists of sensor inputs, a microcontroller and a data storage device. The system was designed and developed to measure the wind speed ...

  3. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  4. Field measurements in the wake of a model wind turbine

    International Nuclear Information System (INIS)

    Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark

    2014-01-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability

  5. Spatially Modeling the Impact of Terrain on Wind Speed and Dry Particle Deposition Across Lake Perris in Southern California to Determine In Situ Sensor Placement

    Science.gov (United States)

    Brooks, A. N.

    2014-12-01

    While developed countries have implemented engineering techniques and sanitation technologies to keep water resources clean from runoff and ground contamination, air pollution and its contribution of harmful contaminants to our water resources has yet to be fully understood and managed. Due to the large spatial and temporal extent and subsequent computational intensity required to understand atmospheric deposition as a pollutant source, a geographic information system (GIS) was utilized. This project developed a multi-step workflow to better define the placement of in situ sensors on Lake Perris in Southern California. Utilizing a variety of technologies including ArcGIS 10.1 with 3D and Spatial Analyst extensions and WindNinja, the impact of terrain on wind speed and direction was simulated and the spatial distribution of contaminant deposition across Lake Perris was calculated as flux. Specifically, the flux of particulate matter (PM10) at the air - water interface of a lake surface was quantified by season for the year of 2009. Integrated Surface Hourly (ISH) wind speed and direction data and ground station air quality measurements from the California Air Resources Board were processed and integrated for use within ModelBuilder. Results indicate that surface areas nearest Alessandro Island and the dam of Lake Perris should be avoided when placing in situ sensors. Furthermore, the location of sensor placement is dependent on seasonal fluctuations of PM10 which can be modeled using the techniques used in this study.

  6. Instabilities of line-driven stellar winds. V. Effect of an optically thick continuum

    International Nuclear Information System (INIS)

    Owocki, S.P.; Rybicki, G.B.

    1991-01-01

    Earlier analyses of the linear instability of line-driven stellar winds are extended to the case, relevant to Wolf-Rayet stars, in which the continuum remains optically thick well above the sonic point. It is found that an optically thick flow driven by pure scattering lines is stabilized by the drag effect of the diffuse, scattered radiation. However, even a relatively small photon destruction probability can cause a flow with continuum optical thickness much greater than 1 to remain unstable, with a given growth rate. The implications of these results for the variability characteristics of winds from Wolf-Rayet stars are briefly discussed. 16 refs

  7. The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods

    Science.gov (United States)

    Mauder, Matthias; Oncley, Steven P.; Vogt, Roland; Weidinger, Tamas; Ribeiro, Luis; Bernhofer, Christian; Foken, Thomas; Kohsiek, Wim; de Bruin, Henk A. R.; Liu, Heping

    2007-04-01

    The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterion—closure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement technology can be made responsible for this deficiency, in particular the effects of instrumentation or of the post-field data processing. Therefore, current eddy-covariance sensors and several post-field data processing methods were compared. The differences in methodology resulted in deviations of 10% for the sensible heat flux and of 15% for the latent heat flux for an averaging time of 30 min. These disparities were mostly due to different sensor separation corrections and a linear detrending of the data. The impact of different instrumentation on the resulting heat flux estimates was significantly higher. Large deviations from the reference system of up to 50% were found for some sensor combinations. However, very good measurement quality was found for a CSAT3 sonic together with a KH20 krypton hygrometer and also for a UW sonic together with a KH20. If these systems are well calibrated and maintained, an accuracy of better than 5% can be achieved for 30-min values of sensible and latent heat flux measurements. The results from the sonic anemometers Gill Solent-HS, ATI-K, Metek USA-1, and R.M. Young 81000 showed more or less larger deviations from the reference system. The LI-COR LI-7500 open-path H2O/CO2 gas analyser in the test was one of the first serial numbers of this sensor type and had technical problems regarding direct solar radiation sensitivity and signal delay. These problems are known by the manufacturer and improvements of the sensor have since been made.

  8. Sonication assisted Agrobacterium -mediated transformation of ...

    African Journals Online (AJOL)

    In this study, a protocol was developed to obtain stable lines of the Spring Dendrobium cultivar 'Sanya' via sonication assisted Agrobacterium-mediated transformation (SAAT) of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strain LBA4404 was used with the binary vector AG205 containing the chalcone ...

  9. Wind inflow observation from load harmonics

    Directory of Open Access Journals (Sweden)

    M. Bertelè

    2017-12-01

    Full Text Available The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observer provides on-rotor wind inflow characteristics that can be exploited for wind turbine and wind farm control. The proposed formulation is evaluated through extensive numerical simulations in turbulent and nonturbulent wind conditions using a high-fidelity aeroservoelastic model of a multi-MW wind turbine.

  10. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  11. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high...

  12. Design methodology for a community response questionnaire on sonic boom exposure

    Science.gov (United States)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-01-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  13. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  14. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  15. Active and Passive Hybrid Sensor

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  16. Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy.

    Directory of Open Access Journals (Sweden)

    Jessica Gagné-Sansfaçon

    Full Text Available BACKGROUND: Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. CONCLUSIONS/SIGNIFICANCE: Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.

  17. Dissipation of Turbulence in the Wake of a Wind Turbine

    Science.gov (United States)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  18. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  19. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  20. Negative refractions by triangular lattice sonic crystals in partial band gaps

    International Nuclear Information System (INIS)

    Alagoz, S.; Sahin, A.; Alagoz, B. B.; Nur, S.

    2015-01-01

    This study numerically demonstrates the effects of partial band gaps on the negative refraction properties of sonic crystal. The partial band gap appearing at the second band edge leads to the efficient transmissions of scattered wave envelopes in the transverse directions inside triangular lattice sonic crystal, and therefore enhances the refraction property of sonic crystal. Numerical simulation results indicate a diagonal guidance of coupled scattered wave envelopes inside crystal structure at the partial band gap frequencies and then output waves are restored in the vicinity of the output interface of sonic crystal by combining phase coherent scattered waves according to Huygens’ principles. This mechanism leads to two operations for wavefront engineering: one is spatial wavefront shifting operation and the other is convex–concave wavefront inversion operation. The effects of this mechanism on the negative refraction and wave focalization are investigated by using the finite difference time domain (FDTD) simulations. This study contributes to a better understanding of negative refraction and wave focusing mechanisms at the band edge frequencies, and shows the applications of the slab corner beam splitting and SC-air multilayer acoustic system. (paper)

  1. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  2. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog.

    Science.gov (United States)

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-10-04

    The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants.

  3. Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors

    International Nuclear Information System (INIS)

    Daili, Yacine; Gaubert, Jean-Paul; Rahmani, Lazhar

    2015-01-01

    Highlights: • A new maximum power point tracking algorithm for small wind turbines is proposed. • This algorithm resolves the problems of the classical perturb and observe method. • The proposed method has been tested under several wind speed profiles. • The validity of the new algorithm has been confirmed by the experimental results. - Abstract: This paper proposes a modified perturbation and observation maximum power point tracking algorithm for small wind energy conversion systems to overcome the problems of the conventional perturbation and observation technique, namely rapidity/efficiency trade-off and the divergence from peak power under a fast variation of the wind speed. Two modes of operation are used by this algorithm, the normal perturbation and observation mode and the predictive mode. The normal perturbation and observation mode with small step-size is switched under a slow wind speed variation to track the true maximum power point with fewer fluctuations in steady state. When a rapid change of wind speed is detected, the algorithm tracks the new maximum power point in two phases: in the first stage, the algorithm switches to the predictive mode in which the step-size is auto-adjusted according to the distance between the operating point and the estimated optimum point to move the operating point near to the maximum power point rapidly, and then the normal perturbation and observation mode is used to track the true peak power in the second stage. The dc-link voltage variation is used to detect rapid wind changes. The proposed algorithm does not require either knowledge of system parameters or of mechanical sensors. The experimental results confirm that the proposed algorithm has a better performance in terms of dynamic response and efficiency compared with the conventional perturbation and observation algorithm

  4. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    Science.gov (United States)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  5. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  6. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    International Nuclear Information System (INIS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-01-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm −2 , 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP–AES, LECO and SEM–EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO 3 concentration

  7. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    Science.gov (United States)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  8. Hydrogen storage in sonicated carbon materials

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G.S.; Choi, Y.J.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P.

    2001-01-01

    The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this

  9. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  10. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog

    OpenAIRE

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-01-01

    The Hedgehog-signaling pathway plays key roles in animal development and physiology. Insufficient Hedgehog signaling causes birth defects, whereas uncontrolled signaling is implicated in cancer. Signaling is triggered by the secreted protein, Sonic Hedgehog, which inhibits the membrane protein Patched1, leading to pathway activation. Despite its fundamental importance, we do not understand how Sonic Hedgehog inhibits Patched1. Here, we uncover a critical interaction between the fatty-acid?mod...

  11. Position sensor without any mechanical contact

    International Nuclear Information System (INIS)

    Ambier, Jean.

    1976-01-01

    The invention concerns a system for detecting, without any mechanical contact, the position of a mobile element according to a pre-determined path. The sensor includes a primary winding fed by an AC source and a secondary winding inductively coupled with the primary winding and subdivided into elementary coils, spaced out along this path and electrically inter-connected in couples. The mobile element has a magnetic part capable of modifying the inductive coupling between the windings, a secondary coil couple delivering a differential signal of zero values for all positions of the mobile element generating the same inductive coupling of each coil of the couple to the said primary winding. The main patent describes a system making it possible to detect the position of the rods in a nuclear reactor. The need was felt to improved the measuring accuracy of the sensor and to have a rigid front signal for easy electronic processing. The purpose of this invention is to improve the standard sensor to this end and it is characterised by the fact that the primary winding is subdivided into the same number of elementary coils as the secondary winding and that a primary coil is associated to each secondary coil, the two associated coils being coiled one on the other. The saving in space enables the coils to be brought closer together and affords an increase in measurement accuracy. A magnetic screen isolates each pair of coils and channels the leakage flux, the screen sharing in the localisation of the magnetic field under each pair of coils to achieve a sudden variation and a rigid front of the signal during the displacement of the mobile element [fr

  12. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  13. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  14. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  15. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  16. Sonication technique improves microbiological diagnosis in patients treated with antibiotics before surgery for prosthetic joint infections.

    Science.gov (United States)

    Scorzolini, Laura; Lichtner, Miriam; Iannetta, Marco; Mengoni, Fabio; Russo, Gianluca; Panni, Alfredo Schiavone; Vasso, Michele; Vasto, Michele; Bove, Marco; Villani, Ciro; Mastroianni, Claudio M; Vullo, Vincenzo

    2014-07-01

    Microbiological diagnosis is crucial for the appropriate management of implant-associated orthopedic infections (IAOIs). Sonication of biomaterials for microbiological diagnosis has not yet been introduced in routine clinical practice. Aim of this study was to describe the advantages and feasibility of this procedure in the clinical setting. We prospectively studied 56 consecutive patients undergoing revision because of IAOI and compared the sensitivity of sonication of explanted orthopedic implants with standard cultures. Patients were divided into two groups: those with foreign body infection (FBI, 15 patients) and those with prosthetic joint infection (PJI, 41 patients). Clinical, radiological and microbiological features were recorded. In the PJI group the sensitivity of sonication in detecting bacterial growth was higher than conventional culture (77% vs 34.1% respectively, p0.05). Coagulase-negative Staphylococci accounted for 90% of the bacteria detected by sonication. Moreover, we found that in the PJI group the sensitivity of sonication was not affected by the timing of antibiotic interruption before surgery. Sonication remains an important tool to improve microbiological diagnosis in PJIs, especially in patients who received previous antimicrobial treatment.

  17. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    Science.gov (United States)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  18. The Effect of Sonic Bloom Fertilizing Technology on The Seed Germination and Growth of Acacia mangium Willd Seedling

    Directory of Open Access Journals (Sweden)

    Mulyadi A T

    2012-11-01

    Full Text Available Acacia mangium Willd is one of the promising wood species, it is a fast growing species and can be used as raw materials for pulp, furniture and wood working. Musi Hutan Persada Company has planted Acacia mangium Willd in large scale for pulp processing raw materials and for wood working industry. The faculty of forestry of the Nusa Bangsa University in collaboration with the Musi Hutan Persada have examined  the effect of “Sonic Bloom” to the Acacia mangium Willd germination and seedling growth. The results of the research are the following : (1 The seed germination with “Sonic Bloom” provided percented of germination of 82%, better than those without “Sonic Bloom”, i.e. only 34%; (2 With Sonic Bloom,  the height of 80-days old seedling is 129.6 cm higher than those without “Sonic Bloom”of only 90.7 cm  ; (3 the diameter of 80-days old seedling with “Sonic Bloom” is 0,24 cm higher than those without “Sonic Bloom” harving diameters of only 0.19 cm.The study concludes that sonic bloom treatment is very useful for the seed germination and the growth of Acacia mangium Willd seedling Key Words : Sonic Bloom, persemaian, Acacia mangium, perkecambahan, bibit   Normal 0 false false false IN X-NONE X-NONE

  19. ResonantSonic drilling: History, progress, and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Moak, D.J.

    1995-01-01

    ResonantSonic drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. The ResonantSonic drilling method requires no mud, air, or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. A specialized drill head imparts high frequency vibrations into steel drill pipe and creates a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ResonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs utilize the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  20. Design and Development of a Magneto-Optic Sensor for Magnetic Field Measurements

    Directory of Open Access Journals (Sweden)

    Sarbani CHAKRABORTY

    2015-01-01

    Full Text Available A magneto-optic sensor is developed using a Terbium Doped Glass (TDG element as a Faraday rotation sensor and optical fiber as light transmitting and receiving medium. Online LabView based application software is developed to process the sensor output. The system is used to sense the magnetic field of a DC motor field winding in industrial environment. The sensor output is compared with the magnetic flux density variation obtained with a calibrated Hall Magnetic sensor (Gauss Meter. A linear variation of sensor output over wide range of current passing through the field winding is obtained. Further the results show an improved sensitivity of magneto-optic sensor over the Hall sensor.

  1. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  2. PRODUCTION WELL PERFORMANCE ENHANCEMENT USING SONICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery

    2003-12-17

    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  3. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  4. Performance Enhancement and Load Reduction on Wind Turbines Using Inflow Measurements

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard

    . The load variations on a wind turbine can be alleviated using either yaw or pitch actuation. A method is presented for alleviating load variations using yaw control, and it is shown how the method can be efficiently applied for decreasing the load variations that are caused by a vertical wind shear...... wind energy research is focused on decreasing the cost of the energy that can be produced from the wind. The cost of energy can for example be decreased by ensuring that wind turbines are operated in a way that ensures that the maximum amount of energy is extracted, and that the turbines are not loaded...... excessively. The operation of a wind turbine is governed by a number of controllers that are based on a series of sensors and actuators. Classical wind turbine control utilizes sensors for measuring turbine parameters such as rotor speed, power and shaft torque, as well as actuators for applying generator...

  5. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  6. Defatting and Sonication Enhances Protein Extraction from Edible Insects.

    Science.gov (United States)

    Choi, Byoung Deug; Wong, Nathan A K; Auh, Joong-Hyuck

    2017-01-01

    Edible insects are attracting growing interest as a sustainable source of protein for addition to processed meat and dairy products. The current study investigated the optimal method for protein extraction from mealworm larvae ( Tenebrio molitor ), cricket adults ( Gryllus bimaculatus ), and silkworm pupae ( Bombyx mori ), for use in further applications. After defatting with n-hexane for up to 48 h, sonication was applied for 1-20 min and the protein yield was measured. All samples showed a total residual fat percentage below 1.36%, and a 35% to 94% improvement in protein yield (%). In conclusion, defatting with n-hexane combined with sonication improves the protein yield from insect samples.

  7. Fault tolerant control of wind turbines using unknown input observers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    This paper presents a scheme for accommodating faults in the rotor and generator speed sensors in a wind turbine. These measured values are important both for the wind turbine controller as well as the supervisory control of the wind turbine. The scheme is based on unknown input observers, which...

  8. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    International Nuclear Information System (INIS)

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-01-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  9. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Energy Technology Data Exchange (ETDEWEB)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Lee, Hyung Woo, E-mail: leehw@che.itb.ac.id [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Research and Business Foundation, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746 (Korea, Republic of)

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  10. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  11. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Carlos Quiterio Gómez Muñoz

    2016-01-01

    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  12. A review of damage detection methods for wind turbine blades

    International Nuclear Information System (INIS)

    Li, Dongsheng; Song, Gangbing; Ren, Liang; Li, Hongnan; Ho, Siu-Chun M

    2015-01-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed. (topical review)

  13. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  14. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  15. InfraSound from wind turbines : observations from Castle River wind farm. Volume 1

    International Nuclear Information System (INIS)

    Edworthy, J.; Hepburn, H.

    2005-01-01

    Although infrasound has been discussed as a concern by groups opposed to wind farm facilities, there is very little information available about infrasound and wind turbines. This paper presented details of a project conducted by VisionQuest, the largest wind power producer in Canada. Three sensor types were used: precision sound analyzer, seismic geophones, and calibrated microphones to take measurements in low, medium and high winds. The project also measured infrasound when the wind farm was not operating. Acquisition geometry was presented, as well as details of apparent attenuations of wind noise. It was noted that high wind noise was a dominant factor and that there was little difference when the wind farm was not operational. It was suggested that turbines have no impact with high wind, since wind noise is not attenuated with distance. It was noted that increased geophone amplitudes indicate high wind coupled motion which is attenuated when the turbines are on. Results indicate that all frequencies showed attenuation with distance. Evidence showed that low frequency sound pressure levels were often lower when the turbines were switched on. Where turbines contributed to sound pressure levels, the magnitude of the contribution was below levels of concern to human health. Ambient sound pressure levels were much higher than contributions from wind turbines. It was concluded that wind itself generates infrasound. Wind turbines generate low levels of infrasound, detectable very close to facilities at low to medium wind speeds. Wind turbines may reduce ambient infrasound levels at high wind speeds by converting the energy from the wind into electricity. refs., tabs., figs

  16. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  17. Field performance of an all-semiconductor laser coherent Doppler lidar

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    We implement and test what, to our knowledge, is the first deployable coherent Doppler lidar (CDL) system based on a compact, inexpensive all-semiconductor laser (SL). To demonstrate the field performance of our SL-CDL remote sensor, we compare a 36 h time series of averaged radial wind speeds...... measured by our instrument at an 80 m distance to those simultaneously obtained from an industry-standard sonic anemometer (SA). An excellent degree of correlation (R2=0.994 and slope=0.996) is achieved from a linear regression analysis of the CDL versus SA wind speed data. The lidar system is capable...

  18. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  19. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Science.gov (United States)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal

  20. Photoluminescence of MoS2 Prepared by Effective Grinding-Assisted Sonication Exfoliation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Wu

    2014-01-01

    Full Text Available Exfoliation of bulk molybdenum disulfide (MoS2 using sonication in appropriate solvent is a promising route to large-scale preparation of few-layered or monolayered crystals. Grinding-assisted sonication exfoliation was used for preparing monolayered MoS2 nanosheets from natural mineral molybdenite. By controlling the sonication time, larger crystallites could be further exfoliated to smaller as well as thinner nanosheets without damaging their structures. The concentration of 1.6 mg mL−1 of final solution could be achieved. Several microscopic techniques like scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were employed to evaluate the exfoliation results. Strong photoluminescence with the peak centered at 440 nm was also observed in the resulting dispersion which included several small lateral-sized (~3 nm nanostructures.

  1. The Social and Sonic Semantics of Reggae

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2017-01-01

    This study breaks new ground into the emerging discipline of sonic semantics and the study of language ideologies in postcolonial contexts. The case in point is the reggae sociality in Port Vila, Vanuatu, where young Pacific Islanders are forming new ways of socializing on the fragments of kastom...

  2. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  3. 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 2; Configuration Design, Analysis, and Testing

    Science.gov (United States)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.

  4. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    Science.gov (United States)

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  5. Personality Traits Bias the Perceived Quality of Sonic Environments

    Directory of Open Access Journals (Sweden)

    PerMagnus Lindborg

    2016-12-01

    Full Text Available There have been few empirical investigations of how individual differences influence the perception of the sonic environment. The present study included the Big Five traits and noise sensitivity as personality factors in two listening experiments (n = 43, n = 45. Recordings of urban and restaurant soundscapes that had been selected based on their type were rated for Pleasantness and Eventfulness using the Swedish Soundscape Quality Protocol. Multivariate multiple regression analysis showed that ratings depended on the type and loudness of both kinds of sonic environments and that the personality factors made a small yet significant contribution. Univariate models explained 48% (cross-validated adjusted R2 of the variation in Pleasantness ratings of urban soundscapes, and 35% of Eventfulness. For restaurant soundscapes the percentages explained were 22% and 21%, respectively. Emotional stability and noise sensitivity were notable predictors whose contribution to explaining the variation in quality ratings was between one-tenth and nearly half of the soundscape indicators, as measured by squared semipartial correlation. Further analysis revealed that 36% of noise sensitivity could be predicted by broad personality dimensions, replicating previous research. Our study lends empirical support to the hypothesis that personality traits have a significant though comparatively small influence on the perceived quality of sonic environments.

  6. Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation

    Science.gov (United States)

    Thota, M.; Wang, K. W.

    2017-10-01

    An origami sonic barrier composed of cylindrical inclusions attached onto an origami sheet is proposed. The idea allows for tunable sound blocking properties for application in attenuating complex traffic noise spectra. Folding of the underlying origami sheet transforms the periodicity of the inclusions between different Bravais lattices, viz. between a square and a hexagonal lattice, and such significant lattice re-configuration leads to drastic tuning of dispersion characteristics. The wave tuning capabilities are corroborated via performing theoretical and numerical investigations using a plane wave expansion method and an acoustic simulation package of COMSOL, while experiments are performed on a one-seventh scaled-down model of origami sonic barrier to demonstrate the lattice re-configuration between different Bravais lattices and the associated bandgap adaptability. Good sound blocking performance in the frequency range of traffic noise spectra combined with less efforts, required for actuating one-degree of freedom folding mechanism, makes the origami sonic barrier a potential candidate for mitigating complex traffic noise.

  7. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    Science.gov (United States)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  8. Synthesis of biodiesel from castor oil: Silent versus sonicated methylation and energy studies

    International Nuclear Information System (INIS)

    Sáez-Bastante, J.; Pinzi, S.; Jiménez-Romero, F.J.; Luque de Castro, M.D.; Priego-Capote, F.; Dorado, M.P.

    2015-01-01

    Highlights: • Sonicated transesterification leads to higher conversion than conventional one. • Energy consumption required by conventional and ultrasound-assisted transesterification was compared. • Ultrasound-assisted methylation is more competitive in terms of energy than conventional one. - Abstract: In recent years, biodiesel is evolving to be one of the most employed biofuels for partial replacement of petrodiesel. The most widely used feedstocks for biodiesel production are vegetable oils. Among them, castor oil presents two interesting features as biodiesel raw material; on one hand, it does not compete with edible oils; on the other, the cultivar does not require high inputs. In this research, a comparison between conventional and ultrasound-assisted transesterification was carried out in terms of castor oil methyl ester (COME) yield and energy efficiency. Results show that sonicated transesterification leads to higher COME yields under lower methanol-to-oil molar ratio, lower amount of catalyst, shorter reaction time and lower amount of energy required. Ultrasound-assisted transesterification parameters were optimized resulting in the following optimum conditions: 20 kHz fixed frequency, 70% duty cycle, 40% sonication amplitude, 4.87 methanol-to-oil molar ratio, 1.4% w/w amount of catalyst and 3 sonication cycles (3 min 48 s) that provided 86.57% w/w COME yield. The energy required along each type of transesterification was measured leading to the conclusion that sonicated transesterification consumes a significant lower amount of energy than conventional one, thus achieving higher COME yield

  9. Evaluating and Extending the Ocean Wind Climate Data Record

    Science.gov (United States)

    Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W.; Bourassa, Mark A.; Long, David G.; Hoffman, Ross N.; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W.; Farrar, J. Tomas; Vandemark, Douglas; Fore, Alexander G.; Hristova-Veleva, Svetla M.; Turk, F. Joseph; Gaston, Robert; Tyler, Douglas

    2017-01-01

    Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times. PMID:28824741

  10. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    Science.gov (United States)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  11. A brief argument for, and summary of, the concept of Sonic Virtuality

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2015-01-01

    Sonic virtuality is a conceptualization of sound devised with several purposes in mind. First, it provides a holistic definition of sound that takes account of factors beyond the bare physics of sound waves and their propagation. Second, in providing such a definition, it attempts to explain...... a number of sonic anomalies that existing definitions of sound, of which there are several, do not satisfactorily explain. Third, in its concept of sound as an emergent perception sited within the mind, it provides the conceptual framework to work with sound in the context of new and developing...... technologies. The essay begins with an enumeration of several existing definitions of sound and problems with them, focussing in particular upon the western world’s dominant definition of sound as a sound wave, and then provides a brief exposition of sonic virtuality before concluding with a speculative...

  12. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surf...... in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog....

  13. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    Science.gov (United States)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  14. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    International Nuclear Information System (INIS)

    Cucciati, G; Vara, N Di; Ghezzi, A; Paganoni, M; Pizzichemi, M; Auffray, E; Frisch, B; Lecoq, P; Bugalho, R; Neves, J; Cao, L; Peter, J; Farina, F; Felix, N; Juhan, V; Mundler, O; Siles, P; Jun, D; Lasaygues, P; Mensah, S

    2014-01-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information

  15. Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal

    International Nuclear Information System (INIS)

    Wang, Wei-Chung; Wu, Liang-Yu; Chen, Lien-Wen; Liu, Chia-Ming

    2010-01-01

    Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal is investigated. A resonant cavity of the sonic crystal is used to localize the acoustic wave as the acoustic waves are incident into the sonic crystal at the resonant frequency. The piezoelectric curved beam is placed in the resonant cavity and vibrated by the acoustic wave. The energy harvesting can be achieved as the acoustic waves are incident at the resonant frequency. A model for energy harvesting of the piezoelectric curved beam is also developed to predict the output voltage and power of the energy harvesting. The experimental results are compared with the theoretical

  16. Using homogenization, sonication and thermo-sonication to inactivate fungi

    Science.gov (United States)

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  17. Living Melodies - Coevolution Of Sonic Communication

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nordahl, Mats G.

    2001-01-01

    The authors have constructed an artificial world of coevolving communicating agents. The behavior of the agents is described in terms of a simple genetic programming framework, which allows the evolution of foraging behavior and movement in order to reproduce, as well as sonic communication....... The sound of the entire world is used as musical raw material for the work. Musically interesting and useful structures are found to emerge....

  18. Reply to comment by Mauder on "How well can we measure the vertical wind speed? Implications for fluxes of energy and mass"

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John M. Frank; William J. Massman; Mark W. Heuer

    2013-01-01

    In Kochendorfer et al. (Boundary-Layer Meteorol 145:383-398, 2012, hereafter K2012) the vertical wind speed (w) measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by 12%. Turbulent statistics and eddycovariance fluxes estimated using w were also affected by this underestimate in w. Methodologies used in K2012 are clarified...

  19. Efficacy of spatial averaging of infrasonic pressure in varying wind speeds

    International Nuclear Information System (INIS)

    DeWolf, Scott; Walker, Kristoffer T.; Zumberge, Mark A.; Denis, Stephane

    2013-01-01

    Wind noise reduction (WNR) is important in the measurement of infra-sound. Spatial averaging theory led to the development of rosette pipe arrays. The efficacy of rosettes decreases with increasing wind speed and only provides a maximum of 20 dB WNR due to a maximum size limitation. An Optical Fiber Infra-sound Sensor (OFIS) reduces wind noise by instantaneously averaging infra-sound along the sensor's length. In this study two experiments quantify the WNR achieved by rosettes and OFISs of various sizes and configurations. Specifically, it is shown that the WNR for a circular OFIS 18 m in diameter is the same as a collocated 32-inlet pipe array of the same diameter. However, linear OFISs ranging in length from 30 to 270 m provide a WNR of up to 30 dB in winds up to 5 m/s. The measured WNR is a logarithmic function of the OFIS length and depends on the orientation of the OFIS with respect to wind direction. OFISs oriented parallel to the wind direction achieve 4 dB greater WNR than those oriented perpendicular to the wind. Analytical models for the rosette and OFIS are developed that predict the general observed relationships between wind noise reduction, frequency, and wind speed. (authors)

  20. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  1. Improve the Recovery of Fermentable Sugar from Rice Straw by Sonication and Its Mathematical Modeling

    Science.gov (United States)

    Bhattacharyya, Saurav; Dutta, Somenath; Datta, Sidhartha; Bhattacharjee, Chiranjib

    2012-08-01

    Rice straw is waste renewable agricultural biomass, which contains sufficient amount of fermentable sugars like glucose, galactose fructose, xylose etc. These sugars can be treated with fermentation pathway to produce ethanol. Hydrolysis of pretreated rice straw in dilute sulfuric acid was investigated at different acid concentrations (0.25-0.75 % w/v), and sonication was carried out to improve the extent of sugar extraction. The current work examines the effect of sonication on extraction of total reducing sugar (TRS) and an empirical mathematical model has been established to predict it. Effects of various operating variables of sonication, including amplitude (60-100 %), cycle (0.6-1.0), treatment time (0-15 min) have been analyzed for each acid concentration. Observation shows that on optimization of the sonication conditions (100 % amplitude, 0.8 cycle and 10 min) around 90 % improvement of TRS extraction occurs at 0.5 % (w/v) acid concentration.

  2. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Directory of Open Access Journals (Sweden)

    D. M. Miles

    2017-10-01

    Full Text Available Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc. which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C−1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK engineering plastic (virgin, 30 % glass filled and 30 % carbon filled, and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C−1 had a thermal gain dependence within 5 ppm°C−1 of a traditional sensor constructed from MACOR ceramic (8.1

  3. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.

    Directory of Open Access Journals (Sweden)

    Michael Degtyarev

    Full Text Available Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication, takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.

  4. A field study of flow turbulence and sediment transport dynamics on a beach surface in the lee of a coastal foredune under offshore winds

    Science.gov (United States)

    Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.

    2010-12-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that

  5. Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.

    Science.gov (United States)

    Defense Documentation Center, Alexandria, VA.

    The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)

  6. ResonantSonic drilling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes

  7. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge

    2015-01-01

    models that compensate for axial and tangential induction, approximated by blade element momentum theory, radial expansion of the inflow, rotor tilt, dynamic and skew inflow, tip loss, as well as braking and circulation of the flow local to the airfoil. The wind speeds measured on the rotating blades...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...

  8. Calibration of a spinner anemometer for yaw misalignment measurements

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Zahle, Frederik

    2015-01-01

    constant, k1, mainly affects the measurement of wind speed. The ratio between the two constants, kα = k2/k1, however, only affects the measurement of flow angles. The calibration of kα is thus a basic calibration of the spinner anemometer. Theoretical background for the non-linear calibration is derived......The spinner anemometer is an instrument for yaw misalignment measurements without the drawbacks of instruments mounted on the nacelle top. The spinner anemometer uses a non-linear conversion algorithm that converts the measured wind speeds by three sonic sensors on the spinner to horizontal wind...... from the generic spinner anemometer conversion algorithm. Five different methods were evaluated for calibration of a spinner anemometer on a 500 kW wind turbine. The first three methods used rotor yaw direction as reference angular, while the wind turbine, was yawed in and out of the wind. The fourth...

  9. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  10. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    Science.gov (United States)

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  12. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  13. Design of LPV fault-tolerant controller for pitch system of wind turbine

    Science.gov (United States)

    Wu, Dinghui; Zhang, Xiaolin

    2017-07-01

    To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.

  14. Self-Correcting Electronically-Scanned Pressure Sensor

    Science.gov (United States)

    Gross, C.; Basta, T.

    1982-01-01

    High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.

  15. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.

    Science.gov (United States)

    Arrigo, Rossella; Teresi, Rosalia; Gambarotti, Cristian; Parisi, Filippo; Lazzara, Giuseppe; Dintcheva, Nadka Tzankova

    2018-03-05

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.

  16. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites

    Science.gov (United States)

    Teresi, Rosalia; Gambarotti, Cristian; Dintcheva, Nadka Tzankova

    2018-01-01

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena. PMID:29510595

  17. Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator.

    Science.gov (United States)

    Murugesan, Sivananth; Iyyaswami, Regupathi

    2017-08-15

    Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Auscultation of concrete hydraulic dams by sonic tomography; Auscultation des structures hydrauliques en beton par tomographie sonique

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, Y.; Rhazi, J.; Ballivy, G. [Sherbrooke Univ., PQ (Canada). Dept. de Genie Civil; Cote, P. [Centre de Nantes, Bouguenais (France)

    1995-12-31

    Sonic tomography, a new nondestructive testing method, was described to document the aging and internal degradation of concrete structures. The method is based on the transmission of sonic waves through concrete structures. New tomographic methodology similar to that used in medical or geophysical imaging was applied to existing sonic auscultation techniques used in civil engineering. In the process the speed of propagation of sonic waves in structures is measured with arrays of detectors. Fissures or zones of degradation can be spatially localized and an internal image of the structure can be constructed. Case studies of two hydraulic dams, one from France, the other in Quebec were presented as illustrations. . The theory and experimental procedures involved were described. 16 refs., 1 tab., 12 figs.

  19. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    Science.gov (United States)

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  20. Diagnosis of Persistent Infection in Prosthetic Two-Stage Exchange: Evaluation of the Effect of Sonication on Antibiotic Release from Bone Cement Spacers.

    Science.gov (United States)

    Mariaux, Sandrine; Furustrand Tafin, Ulrika; Borens, Olivier

    2018-01-01

    Introduction : When treating periprosthetic joint infection with a two-stage procedure, antibiotic-impregnated spacers can be used in the interval between prosthetic removal and reimplantation. In our experience, cultures of sonicated spacers are most often negative. The objective of the study was to assess whether that sonication causes an elution of antibiotics, leading to elevated antibiotic concentrations in the sonication fluid inhibiting bacterial growth and thus causing false-negative cultures. Methods : A prospective monocentric study was performed from September 2014 to March 2016. Inclusion criteria were a two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Spacers were made of gentamicin-containing cement to which tobramycin and vancomycin were added. Antibiotic concentrations in the sonication fluid were determined by mass-spectometry (LC-MS). Results : 30 patients were identified (15 hip and 14 knee and 1 ankle arthroplasties). No cases of culture positive sonicated spacer fluid were observed in our serie. In the sonication fluid median concentrations of 13.2µg/ml, 392 µg/ml and 16.6 µg/ml were detected for vancomycin, tobramycin and gentamicin, respectively. According to the European Committee on antimicrobial susceptibility testing (EUCAST), these concentrations released from cement spacer during sonication are higher than the minimal inhibitory concentrations (MICs) for most bacteria relevant in prosthetic joint infections. Conclusion: Spacer sonication cultures remained sterile in all of our cases. Elevated concentrations of antibiotics released during sonication could explain partly negative-cultured sonicated spacers. Indeed, the absence of antibiotic free interval during the two-stages can also contribute to false-negative spacers sonicated cultures.

  1. Characterization of sound emitted by wind machines used for frost control

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, V.; Gambino, T. [Aercoustics Engineering Ltd., Toronto, ON (Canada); Fraser, H.W. [Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, ON (Canada)

    2007-07-01

    Wind machines are used in Niagara-on-the-Lake to protect cold-sensitive crops against cold injury during winter's extreme cold temperatures,spring's late frosts and autumn's early frosts. The number of wind machines in Ontario has about doubled annually from only a few in the late 1990's, to more than 425 in 2006. They are not used for generating power. Noise complaints have multiplied as the number of wind machines has increased. The objective of this study was to characterize the sound produced by wind machines; learn why residents are annoyed by wind machine noise; and suggest ways to possibly reduce sound emissions. One part of the study explored acoustic emission characteristics, the sonic differences of units made by different manufacturers, sound propagation properties under typical use atmospheric conditions and low frequency noise impact potential. Tests were conducted with a calibrated Larson Davis 2900B portable spectrum analyzer. Sound was measured with a microphone whose frequency response covered the range 4 Hz to 20 kHz. The study examined and found several unique acoustic properties that are characteristic of wind machines. It was determined that noise from wind machines is due to both aerodynamic and mechanical effects, but aerodynamic sounds were found to be the most significant. It was concluded that full range or broadband sounds manifest themselves as noise components that extend throughout the audible frequency range from the bladepass frequency to upwards of 1000 Hz. The sound spectrum of a wind machine is full natural tones and impulses that give it a readily identifiable acoustic character. Atmospheric conditions including temperature, lapse rate, relative humidity, mild winds, gradients and atmospheric turbulence all play a significant role in the long range outdoor propagation of sound from wind machines. 6 refs., 6 figs.

  2. Theory of elementary excitations in unstable Bose-Einstein condensates and the instability of sonic horizons

    International Nuclear Information System (INIS)

    Leonhardt, U.; Kiss, T.; Oehberg, P.

    2003-01-01

    Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper develops a quantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary excitations in unstable Bose-Einstein condensates. In unstable condensates the excitation modes have complex frequencies. We derive the normalization conditions for unstable modes such that they can serve in a mode decomposition of the noncondensed component. Furthermore, we develop approximative techniques to determine the spectrum and the mode functions. Finally, we apply our theory to sonic horizons - sonic black and white holes. For sonic white holes the spectrum of unstable modes turns out to be intrinsically discrete, whereas black holes may be stable

  3. Open noise barriers based on sonic crystals. Advances in noise control in transport infraestructures

    Energy Technology Data Exchange (ETDEWEB)

    Peiro Torres, M.P.; Redondo Pastor, J.; Bravo Plana-Sala, J.M.; Sanchez Perez, J.V.

    2016-07-01

    Noise control is an environmental problem of first magnitude nowadays. In this work, we present a new concept of acoustic screen designed to control the specific noise generated by transport infrastructures, based on new materials called sonic crystals. These materials are formed by arrangements of acoustic scatterers in air, and provide a new and different mechanism in the fight against noise from those of the classical screens. This mechanism is usually called multiple scattering and is due to their structuring in addition to their physical properties. Due to the separation between scatterers, these barriers are transparent to air and water allowing a reduction on their foundations. Tests carried out in a wind tunnel show a reduction of 42% in the overturning momentum compared to classical barriers. The acoustical performance of these barriers is shown in this work, explaining the new characteristics provided in the control of noise. Finally, an example of these barriers is presented and classified according to acoustic standardization tests. The acoustic barrier reported in this work provides a high technological solution in the field of noise control. (Author)

  4. The sonic window: second generation results

    Science.gov (United States)

    Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.

    2006-03-01

    Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further

  5. Study on combined effects of acidification and sonication on selected quality attributes of carrot juice during storage

    International Nuclear Information System (INIS)

    Jabbar, S.; Hu, B.; Ali, S.

    2014-01-01

    This study evaluated the combined effects of acid blanching and sonication treatments on selected quality parameters of carrot juice stored at 4 degree C for 18 days. Carrots were blanched in acidified water (40g/L citric acid) at 100 degree C for 4 min and the juice was then extracted. Sonication of the juice was done at an amplitude level of 70% and a frequency of 20 kHz for 2 min at 15 degree C, keeping the pulse duration of 5 Sec on and 5 Sec off. As results, the combined treatment of acidification and sonication of carrot juice showed a significant decrease in pH and increase (P < 0.05) in acidity which remained stable during storage period. No significant changes were observed in Brix. Color values (L, a, b) and non enzymatic browning (NEB) influenced significantly in acidified and sonicated carrot juice during storage period. Maximum stability of total phenol, total antioxidant capacity, cloud value and ascorbic acid were also observed in the combined treatment of acidification and sonication. The findings of this study indicated that the combined treatments of acidification and sonication may successfully be utilized for the production of high quality carrot juice with improved stability of total phenol, total antioxidant capacity, cloud value and ascorbic acid during 18 days of storage. (author)

  6. Antibacterial Efficacy of Calcium Hypochlorite with Vibringe Sonic Irrigation System on Enterococcus faecalis: An In Vitro Study

    Science.gov (United States)

    Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek

    2016-01-01

    Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106

  7. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  8. Computer method to detect and correct cycle skipping on sonic logs

    International Nuclear Information System (INIS)

    Muller, D.C.

    1985-01-01

    A simple but effective computer method has been developed to detect cycle skipping on sonic logs and to replace cycle skips with estimates of correct traveltimes. The method can be used to correct observed traveltime pairs from the transmitter to both receivers. The basis of the method is the linearity of a plot of theoretical traveltime from the transmitter to the first receiver versus theoretical traveltime from the transmitter to the second receiver. Theoretical traveltime pairs are calculated assuming that the sonic logging tool is centered in the borehole, that the borehole diameter is constant, that the borehole fluid velocity is constant, and that the formation is homogeneous. The plot is linear for the full range of possible formation-rock velocity. Plots of observed traveltime pairs from a sonic logging tool are also linear but have a large degree of scatter due to borehole rugosity, sharp boundaries exhibiting large velocity contrasts, and system measurement uncertainties. However, this scatter can be reduced to a level that is less than scatter due to cycle skipping, so that cycle skips may be detected and discarded or replaced with estimated values of traveltime. Advantages of the method are that it can be applied in real time, that it can be used with data collected by existing tools, that it only affects data that exhibit cycle skipping and leaves other data unchanged, and that a correction trace can be generated which shows where cycle skipping occurs and the amount of correction applied. The method has been successfully tested on sonic log data taken in two holes drilled at the Nevada Test Site, Nye County, Nevada

  9. Doppler lidar mounted on a wind turbine nacelle - UPWIND deliverable D6.7.1

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mann, J.; Courtney, M.; Sjoeholm, M.

    2010-12-15

    A ZephIR prototype wind lidar manufactured by QinetiQ was mounted on the nacelle of a Vestas V27 wind turbine and measurements of the incoming wind flow towards the rotor of the wind turbine were acquired for approximately 3 months (April - June 2009). The objective of this experiment was the investigation of the turbulence attenuation induced in the lidar measurements. In this report are presented results from data analysis over a 21-hour period (2009-05-05 12:00 - 2009-05-06 09:00). During this period the wind turbine was not operating and the line-of-sight of the lidar was aligned with the wind direction. The analysis included a correlation study between the ZephIR lidar and a METEK sonic anemometer. The correlation analysis was performed using both 10 minutes and 10 Hz wind speed values. The spectral transfer function which describes the turbulence attenuation, which is induced in the lidar measurements, was estimated by means of spectral analysis. An attempt to increase the resolution of the wind speed measurements of a cw lidar was performed, through the deconvolution of the lidar signal. A theoretical model of such a procedure is presented in this report. A simulation has validated the capability of the algorithm to deconvolve and consequently increase the resolution of the lidar system. However the proposed method was not efficient when applied to real lidar wind speed measurements, probably due to the effect, that the wind direction fluctuations along the lidar's line-of-sight have, on the lidar measurements. (Author)

  10. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  11. A Phase-Locked Loop Continuous Wave Sonic Anemometer-Thermometer

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Weller, F. W.; Busings, J. A.

    1979-01-01

    A continuous wake sonic anemometer-thermometer has been developed for simultaneous measurements of vertical velocity and temperature. The phase angle fluctuations are detected by means of a monolithic integrated phase-locked loop, the latter feature providing for inexpensive and accurate...

  12. Multiple refraction switches realized by stretching elastomeric scatterers in sonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-02-01

    Full Text Available The effect of out-of-plane pre-stretch on the 2D sonic crystal with stretchable elastomeric scatterers is explored. The hyperelastic scatterers are characterized by a compressible neo-Hookean model. The Dirichlet-to-Neumann (DtN map is adopted to obtain the band structure and equi-frequency contours. We focus on the first passband and find that a variety of switching functionalities for refraction behaviors can be realized in selected frequencies under a specific pre-stretch range. These refraction switches enable an active control of wave propagation and are applicable in advanced technologies where switchable and multifunctional sonic crystals are required.

  13. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose.

    Science.gov (United States)

    Hamid, Sharifah Bee Abd; Zain, Siti Khadijah; Das, Rasel; Centi, Gabriele

    2016-03-15

    The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications. Copyright © 2015. Published by Elsevier Ltd.

  14. Sonic Virtuality, Environment, and Presence

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2018-01-01

    The article presents a brief introduction to the concept of sonic virtuality, a view of sound as a multi-modal, emergent perception that provides a framework that has since been used to provide an explanation of the formation of environments. Additionally, the article uses such concepts to explain...... the phenomenon of presence, not only in virtual worlds but also in actual worlds. The view put forward is that environment is an emergent perception, formed from the hypothetical modelling of salient worlds of sensory things, and it is in the environment that we feel present. The article ends with some thoughts...

  15. Validation of sentinel-1A SAR coastal wind speeds against scanning LiDAR

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Karagali, Ioanna

    2017-01-01

    High-accuracy wind data for coastal regions is needed today, e.g., for the assessment of wind resources. Synthetic Aperture Radar (SAR) is the only satellite borne sensor that has enough resolution to resolve wind speeds closer than 10 km to shore but the Geophysical Model Functions (GMF) used fo...

  16. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    Science.gov (United States)

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    Science.gov (United States)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  18. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  19. Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented. A Structure-Material-FBG model......, such as compression fields ahead the crack or non-uniform strain fields, and then identify the presence of such damage in the structure. Experimental tests were conducted to fully characterize this concept and support the model. Double Cantilever Beams (DCB), made with two glass fibre beams glued with structural...

  20. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    Science.gov (United States)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  1. Diagnosis Of Persistent Infection In Prosthetic Two-Stage Exchange: PCR analysis of Sonication fluid From Bone Cement Spacers.

    Science.gov (United States)

    Mariaux, Sandrine; Tafin, Ulrika Furustrand; Borens, Olivier

    2017-01-01

    Introduction: When treating periprosthetic joint infections with a two-stage procedure, antibiotic-impregnated spacers are used in the interval between removal of prosthesis and reimplantation. According to our experience, cultures of sonicated spacers are most often negative. The objective of our study was to investigate whether PCR analysis would improve the detection of bacteria in the spacer sonication fluid. Methods: A prospective monocentric study was performed from September 2014 to January 2016. Inclusion criteria were two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Beside tissues samples and sonication, broad range bacterial PCRs, specific S. aureus PCRs and Unyvero-multiplex PCRs were performed on the sonicated spacer fluid. Results: 30 patients were identified (15 hip, 14 knee and 1 ankle replacements). At reimplantation, cultures of tissue samples and spacer sonication fluid were all negative. Broad range PCRs were all negative. Specific S. aureus PCRs were positive in 5 cases. We had two persistent infections and four cases of infection recurrence were observed, with bacteria different than for the initial infection in three cases. Conclusion: The three different types of PCRs did not detect any bacteria in spacer sonication fluid that was culture-negative. In our study, PCR did not improve the bacterial detection and did not help to predict whether the patient will present a persistent or recurrent infection. Prosthetic 2-stage exchange with short interval and antibiotic-impregnated spacer is an efficient treatment to eradicate infection as both culture- and molecular-based methods were unable to detect bacteria in spacer sonication fluid after reimplantation.

  2. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.

    Science.gov (United States)

    Shin, Jaewoo; Kong, Chanho; Cho, Jae Sung; Lee, Jihyeon; Koh, Chin Su; Yoon, Min-Sik; Na, Young Cheol; Chang, Won Seok; Chang, Jin Woo

    2018-02-01

    OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use. In the present study, the authors examined several sonication parameters of FUS influencing BBB opening in small animals. METHODS Changes in BBB permeability were observed during transcranial sonication using low-intensity FUS in 20 adult male Sprague-Dawley rats. The authors examined the effects of FUS sonication with different sonication parameters, varying acoustic pressure, center frequency, burst duration, microbubble (MB) type, MB dose, pulse repetition frequency (PRF), and total exposure time. The focal region of BBB opening was identified by Evans blue dye. Additionally, H & E staining was used to identify blood vessel damage. RESULTS Acoustic pressure amplitude and burst duration were closely associated with enhancement of BBB opening efficiency, but these parameters were also highly correlated with tissue damage in the sonicated region. In contrast, MB types, MB dose, total exposure time, and PRF had an influence on BBB opening without conspicuous tissue damage after FUS sonication. CONCLUSIONS The study aimed to identify these influential conditions and provide safety and efficacy values for further studies. Future work based on the current results is anticipated to facilitate the implementation of FUS sonication for drug delivery in various CNS disease states in the near future.

  3. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    International Nuclear Information System (INIS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque

  4. Passenger Spaceplanes and Airplanes that Have Variable Configuration for Sonic Boom Reduction

    Directory of Open Access Journals (Sweden)

    Constantin SANDU

    2018-06-01

    Full Text Available In the last time, the interest for passenger space plane, supersonic passenger aircraft and supersonic business jets is increasing. For reducing sonic boom effects at ground level, some companies proposed airplanes having fuselage with small traversal section or having curved fuselage. This paper presents a new practical method for exciting vibrations in the leading edge of wing, tail and airplane's nose surfaces in order to scatter the shock wave and to reduce the sonic boom impact at ground level. The leading edges of wing, tail and airplane nose are covered with thin elastic fairings made of carbon fiber composite material which are separated through small gaps by the adjacent surfaces of wing, tail and nose. When the aircraft flies over populated areas, compressed air bleed from the engine compressors excites the vibration of carbon fiber fairings. The air is released through calibrated nozzles and directly impinges on the fairing surface generating their vibration. Thus, the shock waves are scattered and the impact of sonic boom on ground is much reduced.

  5. Atmospheric Boundary Layer Wind Data During the Period January 1, 1998 Through January 31, 1999 at the Dallas-Fort Worth Airport. Volume 1; Quality Assessment

    Science.gov (United States)

    Zak, J. Allen; Rodgers, William G., Jr.

    2000-01-01

    The quality of the Aircraft Vortex Spacing System (AVOSS) is critically dependent on representative wind profiles in the atmospheric boundary layer. These winds observed from a number of sensor systems around the Dallas-Fort Worth airport were combined into single vertical wind profiles by an algorithm developed and implemented by MIT Lincoln Laboratory. This process, called the AVOSS Winds Analysis System (AWAS), is used by AVOSS for wake corridor predictions. During times when AWAS solutions were available, the quality of the resultant wind profiles and variance was judged from a series of plots combining all sensor observations and AWAS profiles during the period 1200 to 0400 UTC daily. First, input data was evaluated for continuity and consistency from criteria established. Next, the degree of agreement among all wind sensor systems was noted and cases of disagreement identified. Finally, the resultant AWAS solution was compared to the quality-assessed input data. When profiles differed by a specified amount from valid sensor consensus winds, times and altitudes were flagged. Volume one documents the process and quality of input sensor data. Volume two documents the data processing/sorting process and provides the resultant flagged files.

  6. Stability of sonicated aqueous suspensions of phospholipids under air.

    Science.gov (United States)

    Almog, R; Forward, R; Samsonoff, C

    1991-12-01

    The stability of phospholipids in liposomal aqueous suspension against oxidative degradation in air was investigated using spectrophotometric indices, glutathione peroxidase reactivity and thin layer chromatography. Zwitterionic phospholipid was found to be susceptible to degradation via oxidation of polyunsaturated hydrocarbon chains and ester hydrolysis, producing oxidized lysophosphatide and free fatty acid derivatives. These products were characterized as hydroperoxides based on their reactivity with the selenium-dependent glutathione peroxidase isolated from human erythrocytes. Lecithin in Tris buffer was more resistant to hydrolysis than in water. The sonication of 8.0 mM of soybean phosphatidylcholine (SB-PC) suspension in 0.1 M Tris (pH 7.5) in the presence of air produced relatively high concentration of conjugated diene hydroperoxide, but a small amount of hydrolyzed products. Anionic phospholipids, such as egg-phosphatidylglycerol (egg-PG), demonstrated higher resistance to air oxidation than the zwitterionic lecithin, but its oxidation was promoted by sonication.

  7. Particle formation induced by sonication during yogurt fermentation - Impact of exopolysaccharide-producing starter cultures on physical properties.

    Science.gov (United States)

    Körzendörfer, Adrian; Nöbel, Stefan; Hinrichs, Jörg

    2017-07-01

    Two major quality defects of yogurt are syneresis and the presence of large particles, and several reasons have been extensively discussed. Vibrations during fermentation, particularly generated by pumps, must be considered as a further cause as latest research showed that both ultrasound and low frequencies induced visible particles. The aim of this study was to investigate the impact of sonication during fermentation with starter cultures differing in exopolysaccharide (EPS) synthesis on the physical properties of set (syneresis, firmness) and stirred yogurt (large particles, laser diffraction, rheology). Skim milk was fermented with starter cultures YC-471 (low EPS) or YF-L 901 (high EPS) (Chr. Hansen) and sonicated for 5min at pH5.2. Sonicated set gels exhibited syneresis and were softer than respective controls. The mechanical treatment was adjusted to quantify visible particles (d≥0.9mm) in stirred yogurts properly. Sonication significantly increased particle numbers, however, the effect was less pronounced when YF-L 901 was used, indicating EPS as a tool to reduce syneresis and particle formation due to vibrations. Rheological parameters and size of microgel particles were rather influenced by starter cultures than by sonication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a Combined Docking and QM/MM MD Study

    Directory of Open Access Journals (Sweden)

    Manuel Hitzenberger

    2017-10-01

    Full Text Available Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as Supplementary Material and can be used for further reference.

  9. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  10. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  11. Bacterial recovery using sonication versus swabbing of titanium and stainless steel implants inoculated with Staphylococcus pseudintermedius or Pseudomonas aeruginosa.

    Science.gov (United States)

    Keeshen, Thomas; Case, J Brad; Wellehan, James F; Dujowich, Mauricio

    2017-09-12

    To evaluate the use of sonication to improve recovery of bacteria from metal discs infected with bacteria commonly associated with implant infections in veterinary medicine. In vitro study in which sterile titanium (Ti6Al4V) and stainless steel (AIS1316-L) discs were incubated with either Staphylococcus pseudintermedius or Pseudomonas aeruginosa for 24 hours. The following three groups were compared: 1) the sonication group involved immersing the discs in sterile saline and sonicating for five minutes; 2) the sham group was considered a negative control in which the discs were immersed in saline for five minutes without sonication; and 3) the swab group involved systematically swabbing the implant with a sterile culturette. All samples were plated on blood agar and incubated for 24 hours. Colonies were then counted and compared. For both species of bacteria, there was a significant increase in bacterial colonies isolated using sonication compared to the other two study groups (p = 0.0001). No differences in bacterial growth were found between the two types of metal implants. There was a significant increase in bacterial colony counts for S. pseudintermedius when comparing the swab group versus the sham group, but this was not significant for P. aeruginosa. Sonication significantly improves recovery of bacteria commonly associated with veterinary implant-associated surgical site infections compared to swabbing of implants in vitro. A prospective clinical evaluation is indicated to determine the in vivo efficacy of sonication in veterinary patients.

  12. Fundamentals for remote condition monitoring of offshore wind turbines. Summary report; Fjernovervaagning af vindmoellevingers tilstand (fase II)

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Larsen, Gunner C.; Soerensen, Bent F.; Borum, K.K.; Engelhardt, J.

    2008-04-15

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis necessary for the use of sensors as a structural health monitoring system for wind turbine blades. This includes creating knowledge that will allow sensor signals to be used for remotely identifying the presence and position of any damage, the damage type and severity, and a structural condition assessment of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early development of significant damage in fibre reinforced composite, are investigated. In each case specific approaches have been proposed, developed and implemented in models or laboratory test specimens. The sensor approaches are based on acoustic emission (various passive and active applications including mobile sensors), fibre optics (including a new microbend transducer design and various Bragg-grating based applications), wireless approaches involving both battery and energy harvesting options, and inertia sensor based system identification approaches able to deal with linear periodic systems. In addition to the sensor investigations, a life-estimate approach for the wind turbines is described based on identifying and characterising critical material failure modes then integrating detailed models of damage progression rates into full scale models of the blade structure under operating loading regimes. The application of sensors is addressed during a full-scale blade test and recommendations are made regarding improvement to the commercial blade certification process of test

  13. Sonic Fiction as the Mapping of Difference

    DEFF Research Database (Denmark)

    Holmboe, Rasmus; Stricker, Jan Høgh

    2015-01-01

    The here proposed audio paper/audio lecture performance is an iteration of a site-specific participatory performance piece by Danish artist, composer and musician, Andreas Führer. The piece, which has the title THE MAP IS NOT THE TERRITORY D’OR, is a scored sound walk, which shows a map designati......) as a discussion and contextualisation of sonic materialist (Cox, 2011) and signifying representationalist (Kim-Cohen, 2009) positions....

  14. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can...

  15. Facile fabrication of CNT-based chemical sensor operating at room temperature

    Science.gov (United States)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  16. Sonic branding: a framework for understanding sound branding and an overview of its most noticeable practices across industries

    OpenAIRE

    Bollue, Sebastien

    2015-01-01

    This thesis presents the importance and relevance of sound in branding, as very few studies on sonic branding have been conducted so far. The aim of this thesis is to lay out a framework for understanding sonic branding as a phenomenon and for getting an overview of the most notable practices of sonic branding across various industries. The study is commissioned by the advertising agency Wondergarden for who a workshop was also created. Additionally this thesis hopefully can inspire other...

  17. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  18. Spark-safe mechanical fluctuation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Retek, S; Galisz, T

    1979-04-20

    The subject of the invention is a mechanical fluctuation sensor in a spark-safe design for use at mines which are dangerous for gas, as an element of different systems for remote control information transfer. The patented sensor of mechanical fluctuations contains: magnetic-induction transformer characterized by the fact that its inert mass consists of a plane permanent magnet placed in the suspended state on springs between 2 coils, which together with their cores are rigidly fixed to the walls of the ferromagnetic vessels. The ends of the coil windings are interconnected, while the beginnings of the windings are lead out with connection to the outlet of the electronic amplifier with binary outlet signal. The electronic amplifier is placed between the transformer in the common ferromagnetic housing which is a screen for protection from the effect of external magnetic fields.

  19. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  20. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  1. Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy...... into electric power. They do so through incorporation of generators, which convert mechanical torque into electricity. Wind turbines are designed to keep the overall cost per produced Kilo Watt hour as low as possible. One way of improving the performance and lifetime of the wind turbine is through active flow...

  2. Mathematical modeling and optimization of sonication remediation of soil polluted with 2-methylpropane-2-thiol

    Directory of Open Access Journals (Sweden)

    pejman roohi

    2015-10-01

    Full Text Available Existence of 2-methylpropane-2-thiol as an organosulfur and odorant compound in the soil could causes environmental problem and social dissatisfaction. In this study, remediation of this type of thiol using ultrasound is investigated. Central Composite Design (CCD based on Response Surface Model (RSM was used to obtain effects of the main factor (Power, sonication time and amount of water and their interactions. Analysis of variance and Pareto analysis shows that all main factors are effective (the percentage effects of 43.30%, 30.35% and 9.62% on removal efficiency for power, sonication time and amount of water respectively. Moreover, interaction between water content and power, and sonication time and power are effective interaction (with P-values of 0.025 and 0.007 respectively. Base on experiment results and analysis of variance effects of the daylight is not significant (P-value=0.825. P-value of lack of fit (0.176 suggested model assessed as a good model and adequately fits data. Highest levels of power and sonication time (86 watt and 38 minute respectively and water content in lower level (27 ml in studied interval lead to maximum removal efficiency (82.83%.

  3. Six propositions on the sonics of pornography

    OpenAIRE

    Mowlabocus, Sharif; Medhurst, Andy

    2017-01-01

    Pornography (and all its contentious pleasures, contested politics and attendant problematics) is enjoying a fresh wave of academic attention. The overwhelming majority of these studies, however, focus on the visual discourses of sexually explicit material. This risks the sonic dimensions of pornography being overlooked entirely. Yet porn is anything but silent. This speculative article maps out some of the ways in which the sounds of pornography (and the pornography of sound) might be approa...

  4. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Zhu, Rong

    2016-01-01

    We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave...

  5. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    the turbine are unknown, a Kalman filter-based wind speed estimator is developed that relies on turbine sensor outputs. Using simulated lidar measurements in conjunction with wind speed estimator outputs based on aeroelastic simulations of the NREL 5-MW turbine model, it is shown how the optimal prefilter can adapt to varying degrees of measurement quality.

  6. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    Science.gov (United States)

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. I cristalli sonici come barriere antirumore - Sonic crystals as tunable noise barriers

    Directory of Open Access Journals (Sweden)

    Federica Morandi

    2017-02-01

    Full Text Available Il presente contributo riporta un'introduzione al tema della propagazione del suono nei cristalli sonici e un excursus sulla letteratura scientifica più recente. Si discutono i risultati di alcune indagini sperimentali condotte presso l’Università di Bologna inerenti misure di Insertion Loss, misure effettuate all’interno del reticolo e misure di intensimetria. Infine i valori di Sound Insulation misurati per un cristallo sonico sono confrontati con valori misurati su barriere tradizionali, evidenziando come il cristallo sonico permetta di raggiungere un isolamento confrontabile con il valore soglia di Insertion Loss raggiungibile a causa della diffrazione del bordo superiore della barriera. ------ This work reports an introduction to the topic of wave propagation in sonic crystals and a review of the recent scientific literature. The paper presents the results of some experimental investigations carried out at the University of Bologna by discussing Insertion Loss measurements, measurements performed inside the lattice and sound intensity measurements. Finally, the Sound Insulation Index measured for a sonic crystal is compared to the values measured for common noise barriers, pointing out that sonic crystals reach insulation values comparable to the maximum Insertion Loss achievable due to the top edge diffraction.

  8. Estimation of the Lagrangian structure function constant ¤C¤0 from surface-layer wind data

    DEFF Research Database (Denmark)

    Anfossi, D.; Degrazia, G.; Ferrero, E.

    2000-01-01

    Eulerian turbulence observations, made in the surface layer under unstable conditions (z/L > 0), by a sonic anemometer were used to estimate the Lagrangian structure function constant C(0). Two methods were considered. The first one makes use of a relationship, widely used in the Lagrangian...... stochastic dispersion models, relating C(0) to the turbulent kinetic energy dissipation rate epsilon, wind velocity variance and Lagrangian decorrelation time. The second one employs a novel equation, connecting C(0) to the constant of the second-order Eulerian structure function. Before estimating C(0...

  9. Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions

    International Nuclear Information System (INIS)

    Wu Liangyu; Chen Lienwen; Liu Chiaming

    2009-01-01

    This study theoretically and experimentally investigates the acoustic pressure in the cavity of a 2D sonic crystal. Such crystals are composed of polymethyl methacrylate cylinders with a square array embedded in air background. The plane wave expansion method and the supercell calculation are employed to calculate the band structure and obtain the defect band. The finite element method is adopted to simulate the pressure field in the sonic crystal and calculate the pressure in the middle of the cavity as a function of frequency. The effects of sizes and filling fractions are investigated, and the quality factor of the cavity is discussed. The measured spectra and pressures in the defect of the sonic crystal demonstrate that the acoustic waves can be localized in the defect at the resonant frequency

  10. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early...

  11. Lessons in the Design and Characterization Testing of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    Science.gov (United States)

    2012-01-01

    This paper focuses on some of the more challenging design processes and characterization tests of the Semi-Span Super-Sonic Transport (S4T)-Active Controls Testbed (ACT). The model was successfully tested in four entries in the National Aeronautics and Space Administration Langley Transonic Dynamics Tunnel to satisfy the goals and objectives of the Fundamental Aeronautics Program Supersonic Project Aero-Propulso-Servo-Elastic effort. Due to the complexity of the S4T-ACT, only a small sample of the technical challenges for designing and characterizing the model will be presented. Specifically, the challenges encountered in designing the model include scaling the Technology Concept Airplane to model scale, designing the model fuselage, aileron actuator, and engine pylons. Characterization tests included full model ground vibration tests, wing stiffness measurements, geometry measurements, proof load testing, and measurement of fuselage static and dynamic properties.

  12. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km......Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...

  13. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

    OpenAIRE

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K.

    2012-01-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility t...

  14. Basic DTU Wind Energy controller

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Henriksen, Lars Christian

    2013-01-15

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring smooth switching between the two modes of operation. The partial and full load controllers are both based on classical proportional-integral control theory as well as additional filters such as an optional drive train damper and a notch filter mitigating the influence of rotor speed dependent variations in the feedback. The controller relies on generator speed as the primary feedback sensor. Additionally, the reference generator power is used as a feedback term to smoothen the switching between partial and full load operation. Optionally, a low-pass filtered wind speed measurement can be used for wind speed dependent minimum blade pitch in partial load operation. The controller uses the collective blade pitch angle and electromagnetic generator torque to control the wind turbine. In full load operation a feedback term from the collective blade pitch angle is used to schedule the gains of the proportional-integral controller to counter the effects of changing dynamics of the wind turbine for different wind speeds. Blade pitch servo and generator models are not included in this controller and should be modeled separately, if they are to be included in the simulations. (Author)

  15. Real-time Wind Profile Estimation using Airborne Sensors

    NARCIS (Netherlands)

    In 't Veld, A.C.; De Jong, P.M.A.; Van Paassen, M.M.; Mulder, M.

    2011-01-01

    Wind is one of the major contributors to uncertainty in continuous descent approach operations. Especially when aircraft that are flying low or idle thrust approaches are issued a required time of arrival over the runway threshold, as is foreseen in some of the future ATC scenarios, the on-board

  16. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  17. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    Science.gov (United States)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  18. Prediction of sonic flow conditions at drill bit nozzles to minimize complications in UBD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Ghalambor, A. [Louisiana Univ., Lafayette, LA (United States); Al-Bemani, A.S. [Sultan Qaboos Univ. (Oman)

    2002-06-01

    Sonic flow at drill bit nozzles can complicate underbalanced drilling (UBD) operations, and should be considered when choosing bit nozzles and fluid injection rates. The complications stem from pressure discontinuity and temperature drop at the nozzle. UBD refers to drilling operations where the drilling fluid pressures in the borehole are maintained at less than the pore pressure in the formation rock in the open-hole section. UBD has become a popular drilling method because it offers minimal lost circulation and reduces formation damage. This paper presents an analytical model for calculating the critical pressure ratio where two-phase sonic flow occurs. In particular, it describes how Sachdeva's two-phase choke model can be used to estimate the critical pressure ratio at nozzles that cause sonic flow. The critical pressure ratio charts can be coded in spreadsheets. The critical pressure ratio depends on the in-situ volumetric gas content, or gas-liquid ratio, which depends on gas injection and pressure. 6 refs., 2 tabs., 5 figs.

  19. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  20. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  1. Condition monitoring of rotor blades of modern wind power systems; Ueberwachung mit Hertz. Condition Monitoring von Rotorblaettern moderner Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, Nikolaus

    2010-06-15

    With seven wind turbines, the Austrian wind farm ''Sternwald'' is the biggest wind farm in Upper Austria. It is the only wind farm in a forest, and all turbines are therefore equipped with automatic fire fighting equipment. The mountain range on which the wind farm is located is about 1000 m high, with strong wind and much ice and snow in the winter season. For this reason, the owner decided to instal a condition monitoring system with ice detectors. The piezoelectric sensors are mounted directly on the rotor blades as measurements on the nacelle will always be incorrect. Installation on the rotor blades, on the other hand, makes high demands on the fastenings and sensors as the velocity of the blade tips may be up to 250 km per hour. (orig.)

  2. Flexible micro flow sensor for micro aerial vehicles

    Science.gov (United States)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-12-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  3. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    Directory of Open Access Journals (Sweden)

    Colin Price

    2008-01-01

    Full Text Available Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors, to regional (using very low frequency [VLF] sensors, and even global scales(using extremely low frequency [ELF] sensors. Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting.

  4. OPACITY BROADENING OF {sup 13}CO LINEWIDTHS AND ITS EFFECT ON THE VARIANCE-SONIC MACH NUMBER RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Correia, C.; De Medeiros, J. R. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 (Brazil); Burkhart, B.; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 North Charter Street, WI 53711 (United States); Ossenkopf, V.; Stutzki, J. [Physikalisches Institut der Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Kainulainen, J. [Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kowal, G., E-mail: caioftc@dfte.ufrn.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-090 (Brazil)

    2014-04-10

    We study how the estimation of the sonic Mach number (M{sub s} ) from {sup 13}CO linewidths relates to the actual three-dimensional sonic Mach number. For this purpose we analyze MHD simulations that include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes M{sub s} to be overestimated by a factor of ≈1.16-1.3 when calculated from optically thick {sup 13}CO lines. We also find that there is a dependence on the magnetic field: super-Alfvénic turbulence shows increased line broadening compared with sub-Alfvénic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number-density standard deviation (σ{sub ρ/(ρ)}) relationship, σ{sub ρ/〈ρ〉}{sup 2}=b{sup 2}M{sub s}{sup 2}, and the related column density standard deviation (σ {sub N/(N)}) sonic Mach number relationship. In particular, we find that the parameter b, as an indicator of solenoidal versus compressive driving, will be underestimated as a result of opacity broadening. We compare the σ {sub N/(N)}-M{sub s} relation derived from synthetic dust extinction maps and {sup 13}CO linewidths with recent observational studies and find that solenoidally driven MHD turbulence simulations have values of σ {sub N/(N)}which are lower than real molecular clouds. This may be due to the influence of self-gravity which should be included in simulations of molecular cloud dynamics.

  5. Sensor Development for Active Flow Control

    Science.gov (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  6. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David; Wright, Alan; Johnson, Kathryn; Wang, Na

    2016-08-01

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation of an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  7. Fault Tolerant Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Kinnaert, Michel

    2013-01-01

    This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator......, and the converter system. Since it is a system-level model, converter and pitch system models are simplified because these are controlled by internal controllers working at higher frequencies than the system model. The model represents a three-bladed pitch-controlled variable-speed wind turbine with a nominal power...

  8. Wind turbine power performance measurement with the use of spinner anemometry

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    The spinner anemometer was patented by DTU in 2004 and licenced to ROMO Wind in 2011. By 2015 the spinner anemometer was installed on several hundred wind turbines for yaw misalignment measurements. The goal of this PhD project was to investigate the feasibility of use of spinner anemometry......-mast and spinner anemometer were then compared. Application of the NTF from one turbine to the other was made with a difference of only 0.38% in AEP. Different methods of analysis of fast sampled measurements such as the Langevin power curve were tested, concluding that the method of bins (IEC61400...... measurements was further improved with an innovation step to calibrate without use of the yaw position sensor, saving cost and time of installing the additional yaw sensor. The so called "wind speed response method" was validated by comparing 27 different calibration tests to the fist methods. This method...

  9. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  10. Fiber optic pressure sensors in skin-friction measurements

    Science.gov (United States)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  11. Assessment of Wind Turbine for Site-Specific Conditions using Probabilistic Methods

    DEFF Research Database (Denmark)

    Heras, Enrique Gómez de las; Gutiérrez, Roberto; Azagra, Elena

    2013-01-01

    turbines, helping to the decision making during the site assessment phase of wind farm designs. First, the design equation for the failure mode of interest is defined, where the loads associated to the site-specific wind conditions are compared with the design limits of the structural component. A limit...... be very dependent on the site. The uncertainties on the wind properties depend on issues like the available wind data, the quality of the measurement sensors, the type of terrain or the accuracy of the engineering models for horizontal and vertical spatial extrapolation. An example is included showing two...

  12. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  13. COMPARISON OF CULTURE OF SYNOVIAL FLUID, PERIPROSTHETIC TISSUE AND PROSTHESIS SONICATE FOR THE DIAGNOSIS OF KNEE PROSTHESIS INFECTION

    Directory of Open Access Journals (Sweden)

    Andrej Trampuž

    2003-03-01

    Full Text Available Background. Synovial fluid and periprosthetic tissue specimens are the standard specimens cultured for the diagnosis of prosthetic joint infection (PJI. We hypothesize that ultrasonication of the explanted prosthesis may improve diagnosis of PJI by dislodging biofilm bacteria from the prosthesis surface and improve the sensitivity and specificity of diagnosis of PJI.Methods. Included were patients undergoing knee prosthesis exchange for septic or biomechanical failure and have not received antimicrobial therapy in the last 2 weeks prior specimen collection. Cultures of synovial fluid and periprosthetic tissue specimens were performed per the usual clinical practice. Additionally, explanted joint components were sonicated for 5 minutes at frequency 40 kHz in sterile Ringer’s solution; aliquots of 0.5 ml sonicate were plated onto five aerobic and five anaerobic blood agar plates, and incubated at 37 °C and examined for the next seven days. The number and identity of each colony morphology was recorded.Results. 35 patients undergoing knee replacement have been studied (24 for aseptic biomechanical failure and 11 for suspected PJI. In patients with PJI, coagulase-negative staphylococci (7 cases, Corynebacterium spp. (2 cases, Staphylococcus aureus (1 case, and viridans group streptococcus (1 case were recovered. Culture sensitivity and specificity were for synovial fluid 88% and 100%, for periprosthetic tissue 83% and 81%, and for explant sonicate 91% and 100%, respectively. In sonicate cultures higher numbers of microorganisms than in periprosthetic tissue cultures were consistently detected.Conclusions. Using synovial fluid, periprosthetic tissue, and explant sonicate cultures, 12%, 17% and 9% of PJI were missed, respectively. Explant sonicate cultures were the most sensitive with respect to the diagnosis of PJI, indicating that explant ultrasonication may improve bacterial recovery. In sonicate cultures, infecting organisms were detected in

  14. Interdisciplinarity in Medialogy with applications to Sonic Interaction Design

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Serafin, Stefania

    2009-01-01

    Medialogy is a novel education developed in Denmark since 2002, whose goal is to combine technology and creativity in the design, contextualization and evaluation of media technology. In this paper we describe the progression of the sonic interaction design curriculum in the Medialogy education, ......, stressing the importance of a transdisciplinary training for engineers working on interactive sound....

  15. A Benchmark Evaluation of Fault Tolerant Wind Turbine Control Concepts

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    As the world’s power supply to a larger and larger degree depends on wind turbines, it is consequently and increasingly important that these are as reliable and available as possible. Modern fault tolerant control (FTC) could play a substantial part in increasing reliability of modern wind turbin...... accommodation is handled in software sensor and actuator blocks. This means that the wind turbine controller can continue operation as in the fault free case. The other two evaluated solutions show some potential but probably need improvements before industrial applications....

  16. A New Acoustic Emission Sensor Based Gear Fault Detection Approach

    Directory of Open Access Journals (Sweden)

    Junda Zhu

    2013-01-01

    Full Text Available In order to reduce wind energy costs, prognostics and health management (PHM of wind turbine is needed to ensure the reliability and availability of wind turbines. A gearbox is an important component of a wind turbine. Therefore, developing effective gearbox fault detection tools is important to the PHM of wind turbine. In this paper, a new acoustic emission (AE sensor based gear fault detection approach is presented. This approach combines a heterodyne based frequency reduction technique with time synchronous average (TSA and spectrum kurtosis (SK to process AE sensor signals and extract features as condition indictors for gear fault detection. Heterodyne technique commonly used in communication is first employed to preprocess the AE signals before sampling. By heterodyning, the AE signal frequency is down shifted from several hundred kHz to below 50 kHz. This reduced AE signal sampling rate is comparable to that of vibration signals. The presented approach is validated using seeded gear tooth crack fault tests on a notational split torque gearbox. The approach presented in this paper is physics based and the validation results have showed that it could effectively detect the gear faults.

  17. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  18. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Lading, L.; Sendrup, P. (and others)

    2002-05-01

    This summary-report describes the results of a pre-project that has the aim of establishing the basic technical knowledge to evaluate whether remote surveillance of the rotor blades of large off-shore wind turbines has technical and economical potential. A cost-benefit analysis was developed, showing that it is economically attractive to use sensors embedded in the blade. Specific technical requirements were defined for the sensors capability to detect the most important damage types in wind turbine blades. Three different sensor types were selected for use in laboratory experiments and full-scale tests of a wind turbine blade developing damage: 1) detection of stress wave emission by acoustic emission, 2) measurement of modal shape changes by accelerometers and 3) measurement of crack opening of adhesive joint by a fibre optics micro-bend displacement transducer that was developed in the project. All types of sensor approaches were found to work satisfactory. The techniques were found to complement each other: Acoustic emission has the capability of detecting very small damages and can be used for locating the spatial position and size of evolving damages. The fibre optics displacement transducer was found to work well for detecting adhesive failure. Modelling work shows that damage in a wind turbine blade causes a significant change in the modal shape when the damage is in the order of 0.5-1 m. Rough estimates of the prices of complete sensor systems were made. The system based on acoustic emission was the most expensive and the one based on accelerometers was the cheapest. NDT methods (ultrasound scanning and X-ray inspection) were found to be useful for verification of hidden damage. Details of the work are described in annexes. (au)

  19. CERN, World's largest particle physics lab, selects Progress SonicMQ

    CERN Document Server

    2007-01-01

    "Progress Software Corporation (NADAQ: PRGS), a global supplier of application insfrastructure software used to develop, deploy, integrate and manage business applications, today announced that CERN the world's largest physis laboratory and particle accelerator, has chosen Progress® SonicMQ® for mission-critical message delivery." (1 page)

  20. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    International Nuclear Information System (INIS)

    Cannon, N.S.

    1994-01-01

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported

  1. Review of Potential Wind Tunnel Balance Technologies

    Science.gov (United States)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  2. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  3. Mammalian mesocarnivore visitation at tortoise burrows in a wind farm

    Science.gov (United States)

    Agha, Mickey; Smith, Amanda L.; Lovich, Jeffrey E.; Delaney, David F.; Ennen, Joshua R.; Briggs, Jessica R.; Fleckenstein, Leo J.; Tennant, Laura A.; Puffer, Shellie R.; Walde, Andrew D.; Arundel, Terry; Price, Steven J.; Todd, Brian D.

    2017-01-01

    There is little information on predator–prey interactions in wind energy landscapes in North America, especially among terrestrial vertebrates. Here, we evaluated how proximity to roads and wind turbines affect mesocarnivore visitation with desert tortoises (Gopherus agassizii) and their burrows in a wind energy landscape. In 2013, we placed motion-sensor cameras facing the entrances of 46 active desert tortoise burrows in a 5.2-km2 wind energy facility near Palm Springs, California, USA. Cameras recorded images of 35 species of reptiles, mammals, and birds. Counts for 4 species of mesocarnivores at desert tortoise burrows increased closer to dirt roads, and decreased closer to wind turbines. Our results suggest that anthropogenic infrastructure associated with wind energy facilities could influence the general behavior of mammalian predators and their prey. Further investigation of proximate mechanisms that underlie road and wind turbine effects (i.e., ground vibrations, sound emission, and traffic volume) and on wind energy facility spatial designs (i.e., road and wind turbine configuration) could prove useful for better understanding wildlife responses to wind energy development. © 2017 The Wildlife Society.

  4. Measurements of Waves in a Wind-wave Tank Under Steady and Time-varying Wind Forcing.

    Science.gov (United States)

    Zavadsky, Andrey; Shemer, Lev

    2018-02-13

    This manuscript describes an experimental procedure that allows obtaining diverse quantitative information on temporal and spatial evolution of water waves excited by time-dependent and steady wind forcing. Capacitance-type wave gauge and Laser Slope Gauge (LSG) are used to measure instantaneous water surface elevation and two components of the instantaneous surface slope at a number of locations along the test section of a wind-wave facility. The computer-controlled blower provides airflow over the water in the tank whose rate can vary in time. In the present experiments, the wind speed in the test section initially increases quickly from rest to the set value. It is then kept constant for the prescribed duration; finally, the airflow is shut down. At the beginning of each experimental run, the water surface is calm and there is no wind. Operation of the blower is initiated simultaneously with the acquisition of data provided by all sensors by a computer; data acquisition continues until the waves in the tank fully decay. Multiple independent runs performed under identical forcing conditions allow determining statistically reliable ensemble-averaged characteristic parameters that quantitatively describe wind-waves' variation in time for the initial development stage as a function of fetch. The procedure also allows characterizing the spatial evolution of the wave field under steady wind forcing, as well as decay of waves in time, once the wind is shut down, as a function of fetch.

  5. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  6. Detection and Classification of Transformer Winding Mechanical Faults Using UWB Sensors and Bayesian Classifier

    Science.gov (United States)

    Alehosseini, Ali; A. Hejazi, Maryam; Mokhtari, Ghassem; B. Gharehpetian, Gevork; Mohammadi, Mohammad

    2015-06-01

    In this paper, the Bayesian classifier is used to detect and classify the radial deformation and axial displacement of transformer windings. The proposed method is tested on a model of transformer for different volumes of radial deformation and axial displacement. In this method, ultra-wideband (UWB) signal is sent to the simplified model of the transformer winding. The received signal from the winding model is recorded and used for training and testing of Bayesian classifier in different axial displacement and radial deformation states of the winding. It is shown that the proposed method has a good accuracy to detect and classify the axial displacement and radial deformation of the winding.

  7. Value of PCR in sonication fluid for the diagnosis of orthopedic hardware-associated infections: Has the molecular era arrived?

    Science.gov (United States)

    Renz, Nora; Cabric, Sabrina; Morgenstern, Christian; Schuetz, Michael A; Trampuz, Andrej

    2018-04-01

    Bone healing disturbance following fracture fixation represents a continuing challenge. We evaluated a novel fully automated polymerase chain reaction (PCR) assay using sonication fluid from retrieved orthopedic hardware to diagnose infection. In this prospective diagnostic cohort study, explanted orthopedic hardware materials from consecutive patients were investigated by sonication and the resulting sonication fluid was analyzed by culture (standard procedure) and multiplex PCR (investigational procedure). Hardware-associated infection was defined as visible purulence, presence of a sinus tract, implant on view, inflammation in peri-implant tissue or positive culture. McNemar's chi-squared test was used to compare the performance of diagnostic tests. For the clinical performance all pathogens were considered, whereas for analytical performance only microorganisms were considered for which primers are included in the PCR assay. Among 51 patients, hardware-associated infection was diagnosed in 38 cases (75%) and non-infectious causes in 13 patients (25%). The sensitivity for diagnosing infection was 66% for peri-implant tissue culture, 84% for sonication fluid culture, 71% (clinical performance) and 77% (analytical performance) for sonication fluid PCR, the specificity of all tests was >90%. The analytical sensitivity of PCR was higher for gram-negative bacilli (100%), coagulase-negative staphylococci (89%) and Staphylococcus aureus (75%) than for Cutibacterium (formerly Propionibacterium) acnes (57%), enterococci (50%) and Candida spp. (25%). The performance of sonication fluid PCR for diagnosis of orthopedic hardware-associated infection was comparable to culture tests. The additional advantage of PCR was short processing time (PCR has the potential to complement conventional cultures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1994-01-01

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development's Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination

  9. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

    Science.gov (United States)

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K

    2013-11-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

  10. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    Science.gov (United States)

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  11. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    Directory of Open Access Journals (Sweden)

    Bruno Srbinovski

    2016-03-01

    Full Text Available Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind. Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources and power hungry sensors (ultrasonic wind sensor and gas sensors. The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  12. High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling.

    Science.gov (United States)

    Peng, Zeyu; Parker, Amanda S; Peralta, Maria D R; Ravikumar, Krishnakumar M; Cox, Daniel L; Toney, Michael D

    2017-11-07

    We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 ± 3.2-5.5 ± 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 ± 1.5-2.5 ± 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  14. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    Science.gov (United States)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  15. Effect of sonication treatment on fibrilating snake fruit (Sallaca) frond fiber

    Science.gov (United States)

    Darmanto, Seno; Rochardjo, Heru S. B.; Jamasri, Widyorini, Ragil

    2018-02-01

    Aim of this research is to investigate influence of chemical and sonication treatment on fibrillating and mechanical properties of snake fruit frond fiber. The presence of surface impurities and the large amount of hydroxyl groups in natural fibers make less attractive for polymeric materials reinforcement. Effort to remove the impurities can be done by few treatments that consist of physical, chemical and mechanical treatment. Snake fruit frond bundle fiber were firstly subjected to chemical treatments with alkali solution, steaming at 2 bar and steam explosion at 6 bar by 40 times releasing of steam. Advanced treatment is done by flowing ultrasonic wave at 20 kHz by 90 - 210 watt. The output of fibrillation can reach fiber in range 10 - 25 nm compared with 10.72 µm in diameter for sonication and 6 bar in pressure of steam with 40x of rapidly steam release respectively.

  16. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    Science.gov (United States)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  17. Optimizing data access for wind farm control over hierarchical communication networks

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Findrik, Mislav; Madsen, Tatiana Kozlova

    2016-01-01

    delays and also by the choice of the time instances at which sensor information is accessed. In order to optimize the latter, we introduce an information quality metric and a mathematical model based on Markov chains, which are compared performance-wise to a heuristic approach for finding this parameter......In this paper we investigate a centralized wind farm controller which runs periodically. The controller attempts to reduce the damage a wind turbine sustains during operation by estimating fatigue based on the wind turbine state. The investigation focuses on the impact of information access...

  18. Lidar Wind Profiler for the NextGen Airportal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  19. Design of a wind tunnel scale model of an adaptive wind turbine blade for active aerodynamic load control experiments

    NARCIS (Netherlands)

    Hulskamp, A.W.; Beukers, A.; Bersee, H.E.N.; Van Wingerden, J.W.; Barlas, T.

    2007-01-01

    Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are

  20. Effect of sonic agitation, manual dynamic agitation on removal of Enterococcus faecalis biofilm

    Directory of Open Access Journals (Sweden)

    Rajshekhar Chatterjee

    2015-01-01

    Full Text Available Objectives: The aim of the study was to compare manual dynamic agitation with sonic agitation on removal of intra radicular Enterococcus faecalis (E. faecalis biofilm. Material and Methods: Extracted mandibular premolars for orthodontic purpose were sectioned at cervical level and divided into three groups (n = 30. The root canals were instrumented using Protaper rotary instruments up to apical file F4. Roots were sterilized and E. faecalis bacteria were incubated within their root canal space for four weeks. Confirmation of biofilm was done using scanning electron microscopy and Gram staining. All groups were irrigated with side vented needle by using three percent sodium hypochlorite (NaOCl for 60 seconds. Two experimental groups were agitated with manual dynamic agitation (with master gutta-percha cone and sonic agitation (EndoActivator. Remaining bacteria were collected using sterile paper point, which were incubated inside brain-heart infusion (BHI broth to check turbidity. The turbid broth was streaked on blood agar plate for colony counts. Result: Both experimental groups showed highly significant difference in their mean colony count when compared with control group; with P < 0.001. Conclusion: Passive sonic agitation with EndoActivator has proven to be the best irrigating system followed by manual dynamic agitation and conventional needle irrigation.

  1. Novel Sensor for Wind Tunnel Calibration and Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computational capabilities for modeling the performance of advanced flight vehicles depend on verification measurements made in ground-based wind...

  2. Computer control for remote wind turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  3. A comparison of the reduced and approximate systems for the time dependent computation of the polar wind and multiconstituent stellar winds

    International Nuclear Information System (INIS)

    Browning, G.L.; Holzer, T.E.

    1992-01-01

    The reduced system of equations commonly used to describe the time evolution of the polar wind and multiconstituent stellar winds is derived from the equations for a multispecies plasma with known temperature profiles by assuming that the electron thermal speed approaches infinity. The reduced system is proved to have unbounded growth near the sonic point of the protons for many of the standard parameter cases. For the same parameter cases, however, the unmodified system (from which the reduced system is derived) exhibits growth in some of the Fourier modes, but this growth is bounded. An alternate system (the approximate system) in which the electron thermal speed is slowed down is introduced. The approximate system retains the mathematical behavior of the unmodified system and can be shown to accurately describe the smooth solutions of the unmodified system. The approximate system has a number of other advantages over the reduced system becomes inaccurate. Also, for three-dimensional flows the correct reduced system requires the solution of an elliptic equation, while the approximate system is hyperbolic and only requires a time step approximately 1 order of magnitude less than the reduced system. Numerical solutions from models based on the two systems are compared with each other to illustrate these points

  4. Verification test for three WindCube WLS7 LiDARs at the Høvsøre test site

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael

    The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7-0062, and ......-0062, and in a summary for units WLS7-0064 and WLS7-0066. The verification test covers the evaluation of measured mean wind speeds, wind directions and wind speed standard deviations. The data analysis is basically performed in terms of different kinds of regression analyses.......The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7...

  5. Biodiesel from waste cooking oils via direct sonication

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Grant, Georgene Elizabeth

    2013-01-01

    Highlights: • Thermal effects of direct sonication on transesterification reaction were studied. • Ultrasonics may effectively transesterify waste oils without external heating. • Intense mixing with temperature rise completes transesterification instantly. • Plug flow process reactor design with ultrasound may prove energy efficient. • Process optimization and biodiesel conversion analysis was presented. - Abstract: This study investigates the effect of direct sonication in conversion of waste cooking oil into biodiesel. Waste cooking oils may cause environmental hazards if not disposed properly. However, waste cooking oils can serve as low-cost feedstock for biodiesel production. Ultrasonics, a non-conventional process technique, was applied to directly convert waste cooking oil into biodiesel in a single step. Ultrasonics transesterify waste cooking oils very efficiently due to increased mass/heat transfer phenomena and specific thermal/athermal effects at molecular levels. Thus, energy and chemical consumption in the overall process is greatly reduced compared to conventional biodiesel processes. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with effects of different ultrasonic, energy intensities and energy density are reported. Optimization of process parameters such as methanol to oil ratio, catalyst concentration and reaction time are also presented. It was observed that small reactor design such as plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction due to increased energy density and ultrasonic intensity

  6. Morphology and crystallinity of sisal nanocellulose after sonication

    Science.gov (United States)

    Sosiati, H.; Wijayanti, D. A.; Triyana, K.; Kamiel, B.

    2017-09-01

    Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 µm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication.

  7. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity.

    Science.gov (United States)

    Cohen, Joel M; Beltran-Huarac, Juan; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-04-01

    Typical in vitro assays used for high throughput toxicological screening and measuring nano-bio interactions are conducted by pipetting suspensions of engineered nanomaterials (ENMs) dispersed in nutrient-rich culture media directly onto cells. In order to achieve fairly monodisperse and stable suspensions of small agglomerates, ultrasonic energy is usually applied to break apart large agglomerates that can form upon suspension in liquid. Lack of standardized protocols and methods for delivering sonication energy can introduce variability in the ENM suspension properties ( e.g . agglomerate size, polydispersity, suspension stability over time), and holds significant implications for in vitro dosimetry, toxicity, and other nano-bio interactions. Careful assessment of particle transformations during dispersion preparation and sonication is therefore critical for accurate interpretation of in vitro toxicity studies. In this short communication, the difficulties of preparing stable suspensions of rapidly settling ENMs are presented. Furthermore, methods to optimize the delivery of the critical sonication energy required to break large agglomerates and prepare stable, fairly monodispersed suspensions of fast settling ENMs are presented. A methodology for the efficient delivery of sonication energy in a discrete manner is presented and validated using various rapidly agglomerating and settling ENMs. The implications of continuous vs. discrete sonication on average hydrodynamic diameter, and polydispersity was also assessed for both fast and slow settling ENMs. For the rapidly agglomerating and settling ENMs (Ag15%/SiO 2 , Ag and CeO 2 ), the proposed discrete sonication achieved a significant reduction in the agglomerate diameter and polydispersity. In contrast, the relatively slow agglomerating and settling Fe 2 O 3 suspension did not exhibit statistically significant differences in average hydrodynamic diameter or polydispersity between the continuous and discrete

  8. Safeguarding the wind turbine from abnormal environmental condition

    Energy Technology Data Exchange (ETDEWEB)

    Narendran, N.V.; Nagaraja, M.; Mohammed, S. [Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu (India)

    2012-07-01

    A necessity to predict the noise generated by natural/artificial disaster such as sand storm, cyclone, thunder, heavy rainfall etc. this kind of noisy disaster noise can be predicted by one of the application of acoustic sensor. The acoustic sensor will receive noise from the surrounding areas of wind turbine and compare with pre-defined noise. If not exceeds the limit, then actuator will be connected to hollow rotor blades and said to be in original position. If exceeds the limit, then compare with the predefined set of stored disaster noisy and any matches with input noise signals level thereby rotation of hollow wind turbine blades gets slow down or stops. Hereafter if there is any increases in the matched noise signals level, then actuator will be activated to reduce the rotor blades height depending upon the range value. The entire operation will be transmitted to monitoring station and shown in LCD display. (Author)

  9. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    Directory of Open Access Journals (Sweden)

    Ioanna Karagali

    2013-11-01

    Full Text Available Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent with those obtained from several thousands of samples. Long-term spectra from QuikSCAT show that during the winter, slightly higher energy content is identified compared to the other seasons.

  10. Power Performance Verification of a Wind Farm Using the Friedman's Test.

    Science.gov (United States)

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L

    2016-06-03

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.

  11. AFSC/RACE/SAP/Cummiskey: Red king crab sonic tagging and dive database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is data from a long-term monitoring project which utilized sonic tags to follow aggregations of red king crab in Womens Bay near Kodiak Alaska. The database...

  12. A risk-based sensor placement methodology

    International Nuclear Information System (INIS)

    Lee, Ronald W.; Kulesz, James J.

    2008-01-01

    A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the number of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors

  13. Effects of rust in the crack face on crack detection based on Sonic-IR method

    International Nuclear Information System (INIS)

    Harai, Y.; Izumi, Y.; Tanabe, H.; Takamatsu, T.; Sakagami, T.

    2015-01-01

    Sonic-IR, which is based on the thermographic detection of the temperature rise due to frictional heating at the defect faces under ultrasonic excitation, has an advantage in the detection of closed and small defects. However, this method has a lot of nuclear factors relating to heat generation. In this study, effects of rust in the crack faces on the crack detection based on the sonic-IR method is experimentally investigated by using crack specimens. The heat generation by ultrasonic excitation was observed regularly during rust accelerated test using original device. The distribution of temperature change around the crack was changed with the progress of rust. This change in heat generation, it believed to be due to change in the contact state of the crack surface due to rust. As a result, it was found that heat generation by ultrasonic excitation is affected by rust in the crack faces. And it was also found that crack detection can be conducted by sonic-IR even if rust was generated in the crack faces. (author)

  14. Direct measurements of wind-water momentum coupling in a marsh with emergent vegetation and implications for gas transfer estimates

    Science.gov (United States)

    Tse, I.; Poindexter, C.; Variano, E. A.

    2013-12-01

    Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.

  15. Advanced Offshore Wind Energy - Atlantic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  16. An innovative method to calibrate a spinner anemometer without the use of yaw position sensor

    Directory of Open Access Journals (Sweden)

    G. Demurtas

    2016-09-01

    Full Text Available A spinner anemometer can be used to measure the yaw misalignment and flow inclination experienced by a wind turbine. Previous calibration methods used to calibrate a spinner anemometer for flow angle measurements were based on measurements of a spinner anemometer with default settings (arbitrary values, generally k1,d  =  1 and k2,d  =  1 and a reference yaw misalignment signal measured with a yaw position sensor. The yaw position sensor is normally present in wind turbines for control purposes; however, such a signal is not always available for a spinner anemometer calibration. Therefore, an additional yaw position sensor was installed prior to the spinner anemometer calibration. An innovative method to calibrate the spinner anemometer without a yaw positions sensor was then developed. It was noted that a non-calibrated spinner anemometer that overestimates (underestimates the inflow angle will also overestimate (underestimate the wind speed when there is a yaw misalignment. The new method leverages the non-linearity of the spinner anemometer algorithm to find the calibration factor Fα by an optimization process that minimizes the dependency of the wind speed on the yaw misalignment. The new calibration method was found to be rather robust, with Fα values within ±2.7 % of the mean value for four successive tests at the same rotor position.

  17. Mixing volume determination in batch transfers through sonic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: renan@cenpes.petrobras.com.br; Rachid, Felipe Bastos de Freitas [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: rachid@mec.uff.br; Araujo, Jose Henrique Carneiro de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Ciencia da Computacao]. E-mail: jhca@dcc.ic.uff.br

    2000-07-01

    An experimental methodology to evaluate mixing volumes in batch transfers by means of sonic detectors has been reported in this paper. Mixing volumes have then been computed in a transfer of diesel/gasoline carried out through a pipeline operated by Petrobras for different interface points. It has been shown that an adequate choice of the interface points is crucial for keeping the mixing volume uncertainty within acceptable limits. (author)

  18. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  19. A Sensor Management Tool for Use with NASA World Wind, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The number of sensors that are deployed continues to increase for scientific, commercial and intelligence related applications. Quantities of sensor data are...

  20. Geophysical borehole logging in Lavia borehole - results and interpretation of sonic and tube wave measurements

    International Nuclear Information System (INIS)

    Andersson, P.; Stenberg, L.

    1985-02-01

    Swedish Nuclear Fuel and Waste Management Co, SKB has been contracted by Industrial Power Company LTD, TVO to perform geophysical logging in a borehole at Lavia in Western Finland. The logging has been conducted by Swedish Geological Co, SGAB in accordance with an agreement for cooperation with SKB. The depth of the borehole is 1001 m, diameter 56 mm and inclination 10-20 degrees to the vertical. The aim of the logging was to determine the various geophysical parameters in the borehole in order to interpret and understand the rock mass properties in the vicinity of the borehole. According to the contract the report covers the following main objectives: a technical description of the field work and the equipment used; a review of the theoretical base for the sonic and tube wave methods; an interpretation and presentation of the results obtained by sonic and tube wave mesurements. The evaluation of the sonic and tube wave measurements shows good correlation. On a qualitative basis there seems to be a correlation between tube wave generating points, the relative tube wave amplitudes and the hydraulic conductivity measurements performed as hydraulical tests between packers in the borehole. The low velocity anamalies in the sonic log are mainly caused by tectonic features like fractures and fracture zones but to some extent also by contacts between granite and diorite. The estimation of elastic properties of the rock mass from observation of tube wave velocity are in accordance with laboratory determinations made on core samples. (author)

  1. Floral Sonication is an Innate Behaviour in Bumblebees that can be Fine-Tuned with Experience in Manipulating Flowers.

    Science.gov (United States)

    Morgan, Tan; Whitehorn, Penelope; Lye, Gillian C; Vallejo-Marín, Mario

    Bumblebees demonstrate an extensive capacity for learning complex motor skills to maximise exploitation of floral rewards. This ability is well studied in nectar collection but its role in pollen foraging is less well understood. Floral sonication is used by bees to extract pollen from some plant species with anthers which must be vibrated (buzzed) to release pollen. Pollen removal is determined by sonication characteristics including frequency and amplitude, and thus the ability to optimise sonication should allow bees to maximise the pollen collection. We investigated the ability of the buff-tailed bumblebee ( Bombus terrestris ) to modify the frequency and amplitude of their buzzes with increasing experience manipulating flowers of the buzz-pollinated plant Solanum rostratum . We analysed flight and feeding vibrations generated by naïve workers across feeding bouts. Feeding buzzes were of a higher frequency and a lower amplitude than flight buzzes. Both flight and feeding buzzes had reduced amplitudes with increasing number of foraging trips. However, the frequency of their feeding buzzes was reduced significantly more than their flight buzzes as bumblebee workers gained experience manipulating flowers. These results suggest that bumblebees are able to modify the characteristics of their buzzes with experience manipulating buzz-pollinated flowers. We discuss our findings in the context of bumblebee learning, and the current understanding of the optimal sonication characteristics for releasing pollen in buzz-pollinated species. Our results present a tantalising insight into the potential role of learning in floral sonication, paving the way for future research in this area.

  2. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    Science.gov (United States)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  3. Closed and open magnetic fields in stellar winds

    Science.gov (United States)

    Mullan, D. J.; Steinolfson, R. S.

    1983-01-01

    A numerical study of the interaction between a thermal wind and a global dipole field in the sun and in a giant star is reported. In order for closed field lines to persist near the equator (where a helmet-streamer-like configuration appears), the coronal temperature must be less than a critical value Tc, which scales as M/R. This condition is found to be equivalent to the following: for a static helmet streamer to persist, the sonic point above the helmet must not approach closer to the star than 2.2-2.6 stellar radii. Implications for rapid mass loss and X-ray emission from cool giants are pointed out. The results strengthen the case for identifying empirical dividing lines in the H-R diagram with a magnetic topology transition locus (MTTL). Support for the MTTL concept is also provided by considerations of the breakdown of magnetostatic equilibrium.

  4. Artillery localization using networked wireless ground sensors

    Science.gov (United States)

    Swanson, David C.

    2002-08-01

    This paper presents the results of an installation of four acoustic/seismic ground sensors built using COTS computers and networking gear and operating on a continuous basis at Yuma Proving Grounds, Arizona. A description of the design can be found as well, which is essentially a Windows 2000 PC with 24-bit data acquisition, GPS timing, and environmental sensors for wind and temperature. A 4-element square acoustic array 1.8m on a side can be used to detect the time and angle of arrival of the muzzle blast and the impact explosion. A 3-component geophone allows the seismic wave direction to be estimated. The 8th channel of the 24-bit data acquisition system has a 1-pulse-per-second time signal from the GPS. This allows acoustic/seismic 'snapshots' to be coherently related from multiple disconnected ground sensor nodes. COTS 2.4 GHz frequency hopping radios (802.11 standard) are used with either omni or yagi antennas depending on the location on the range. Localization of the artillery or impact can be done by using the time and angle of arrival of the waves at 2 or more ground sensor locations. However, this straightforward analysis can be significantly complicated by weather and wind noise and is also the subject of another research contract. This work will present a general description of the COTS ground sensor installation, show example data autonomously collected including agent-based atmospheric data, and share some of the lessons learned from operating a Windows 2000 based system continuously outdoors.

  5. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  6. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  7. A Prognostic Method for Fault Detection in Wind Turbine Drivetrains

    DEFF Research Database (Denmark)

    Nejada, Amir R.; Odgaard, Peter Fogh; Gao, Zhen

    2014-01-01

    In this paper, a prognostic method is presented for fault detection in gears and bearings in wind turbine drivetrains. This method is based on angular velocity measurements from the gearbox input shaft and the output to the generator, using two additional angular velocity sensors on the intermedi......In this paper, a prognostic method is presented for fault detection in gears and bearings in wind turbine drivetrains. This method is based on angular velocity measurements from the gearbox input shaft and the output to the generator, using two additional angular velocity sensors...... bearing faults in three locations: the high-speed shaft stage, the planetary stage and the intermediate-speed shaft stage. Simulations of the faulty and fault-free cases are performed on a gearbox model implemented in multibody dynamic simulation software. The global loads on the gearbox are obtained from...

  8. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission sy...

  9. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  10. Non-contact current and voltage sensor

    Science.gov (United States)

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  11. Development and sexual dimorphism of the sonic system in deep sea neobythitine fishes: The upper continental slope

    Science.gov (United States)

    Ali, Heba A.; Mok, Hin-Kiu; Fine, Michael L.

    2016-09-01

    The anatomy of sound production in continental-slope fishes has been ignored since the work of NB Marshall in the 1960s. Due to food scarcity at great depths, we hypothesize that sonic muscles will be reduced in deep-water neobythitine cusk-eels (family Ophidiidae). Here we describe and quantify dimensions of the swimbladder and sonic muscles of three species from the upper slope. They have four pairs of well-developed sonic muscles (two medial and two lateral) with origins on the skull and insertions on the medial swimbladder (medial pair) or on modified epineural ribs that attach to the lateral swimbladder (lateral pair). Despite minor differences, relatively similar swimbladder dimensions, muscle length and external morphology suggest a conservative body plan. However, there are major differences in sonic muscle mass: medial muscles are heavier in males and made of relatively small fibers (ca 10 μm in diameter). Lateral muscles are generally larger in females and consist of larger fibers, as in epaxial trunk muscle. Muscle weight varies between species, and we suggest males produce advertisement calls that vary in amplitude and duration in different species. Due to differences in fiber size, we hypothesize that lateral muscles with larger fibers remain contracted during sound production, and medial muscles with smaller fibers will oscillate to drive swimbladder sound production.

  12. Tests Of Array Of Flush Pressure Sensors

    Science.gov (United States)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  13. 200 kHz Sonication of Mixed-Algae Suspension from a Eutrophic Lake: The Effect on the Caution vs. Outbreak Bloom Alert Levels

    Directory of Open Access Journals (Sweden)

    Andinet Tekile

    2017-11-01

    Full Text Available For effective ultrasonic algae removal, several studies have considered the ultrasound equipment linked factors, such as power and frequency. However, studies on the response of mixed algal cultures and associated water quality parameters to ultrasound are limited. In this lab-scale sonication, the removal of cyanobacteria at a pre-set frequency of 200 kHz on mixed algae suspensions collected from a eutrophic lake was investigated. The caution (17.5 µg/L and outbreak (1450 µg/L alert levels in terms of chlorophyll-a (Chl-a concentrations of the initial samples were each sonicated for 10, 15, and 20 min, and then kept in an incubator. Fifteen minutes of sonication resulted in best removal efficiency of 0.94 and 0.77, at an ultrasonic dose of 30 kWh/m3 at the outbreak and caution level concentrations, respectively. Immediately after 15 min sonication, and after standing in the incubator for a day, chlorophyll-a removal efficiencies of 0.28 and 0.90 were achieved in the outbreak level, respectively, and the matching removal efficiencies for the caution level were 0.23 and 0.64. Even though the removal was substantial in both cases, the final 147 µg/L chlorophyll-a concentration of the outbreak, which is itself still in the outbreak level range, shows that ultrasonication is not effective to satisfactorily remove algae from a concentrated suspension. Total dissolved nitrogen and chemical oxygen demand were reduced, overall, due to sonication. However, total dissolved phosphorus of the concentrated level was increased during the treatment. Although sonication needs further replicated experimental testing in whole-lake systems, our results show that 200 kHz sonication was able to reduce chlorophyll-a concentrations in small-scale laboratory tests.

  14. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.

    2010-12-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.

  15. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    Science.gov (United States)

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  16. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    Directory of Open Access Journals (Sweden)

    Wilmar Hernandez

    2016-06-01

    Full Text Available In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.

  17. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    Energy Technology Data Exchange (ETDEWEB)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  18. Ground-based Wind Field Construction from Mode-S and ADS-B Data with a Novel Gas Particle Model

    NARCIS (Netherlands)

    Sun, J.; Vû, Huy; Ellerbroek, J.; Hoekstra, J.M.

    2017-01-01

    Wind is an important parameter in many air traffic management researches, as it often introduces significant uncertainties in aircraft performance studies and trajectory predictions. Obtaining accurate wind field information has always been a challenge due to the availability of weather sensors.

  19. Cellular and molecular effects of electromagnetic radiation and sonic waves

    Directory of Open Access Journals (Sweden)

    Patricia Froes Meyer

    2013-07-01

    Full Text Available Electromagnetic radiation (in the form of pulsed magnetic fields, radiofrequency and intense pulsed light and mechanical agents (such as sonic waves have been used in physical therapy. The aim of this study was to assess the effects of low-intensity magnetic fields, sonic and radiofrequency waves, and intense pulsed light on the survival of Escherichia coli cultures and on the electrophoretic mobility of plasmid DNA. Exponentially growing E. coli AB1157 cultures and plasmid DNA samples were exposed to these physical agents and 0.9% NaCl (negative control and SnCl2 (positive control solutions. Aliquots of the cultures were diluted and spread onto a solidified rich medium. The colony-forming units were counted after overnight incubation and the survival fraction was calculated. Agarose gel electrophoresis was performed to visualise and quantify the plasmid topological forms. The results suggest that these agents do not alter the survival of E. coli cells or plasmid DNA electrophoresis mobility. Moreover, they do not protect against the lesive action of SnCl2. These physical agents therefore had no cytotoxic or genotoxic effects under the conditions studied.

  20. Effect of sonic application mode on the resin-dentin bond strength and dentin permeability of self-etching systems.

    Science.gov (United States)

    Mena-Serrano, Alexandra; Costa, Thays Regina Ferreira da; Patzlaff, Rafael Tiago; Loguercio, Alessandro Dourado; Reis, Alessandra

    2014-10-01

    To compare manual and sonic adhesive application modes in terms of the permeability and microtensile bond strength of a self-etching adhesive applied in the one-step or two-step protocol. Self-etching All Bond SE (Bisco) was applied as a one- or a two-step adhesive under manual or sonic vibration modes on flat occlusal dentin surfaces of 64 human molars. Half of the teeth were used to measure the hydraulic conductance of dentin at 200 cm H₂O hydrostatic pressure for 5 min immediately after the adhesive application. In the other half, composite buildups (Opallis) were constructed incrementally to create resin-dentin sticks with a cross-sectional area of 0.8 mm² to be tested in tension (0.5 mm/min) immediately after restoration placement. Data were analyzed using a two-way ANOVA and Tukey's test (α = 0.05). The fluid conductance of dentin was significantly reduced by the sonic vibration mode for both adhesives, but no effect on the bond strength values was observed for either adhesive. The sonic application mode at an oscillating frequency of 170 Hz can reduce the fluid conductance of the one- and two-step All Bond SE adhesive when applied on dentin.

  1. Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks

    Energy Technology Data Exchange (ETDEWEB)

    Greef, M. de, E-mail: m.degreef@umcutrecht.nl; Wijlemans, J. W.; Bartels, L. W.; Moonen, C. T. W.; Ries, M. [Imaging Division, University Medical Center Utrecht, Utrecht 3508GA (Netherlands); Schubert, G.; Koskela, J. [Philips Healthcare, Vantaa FI-01511 (Finland)

    2015-08-15

    Purpose: One of the major issues in high intensity focused ultrasound ablation of abdominal lesions is obstruction of the ultrasound beam by the thoracic cage. Beam shaping strategies have been shown by several authors to increase focal point intensity while limiting rib exposure. However, as rib obstruction leaves only part of the aperture available for energy transmission, conserving total emitted acoustic power, the intensity in the near-field tissues inherently increases after beam shaping. Despite of effective rib sparing, those tissues are therefore subjected to increased risk of thermal damage. In this study, for a number of clinically representative intercostal sonication geometries, modeling clinically available hardware, the effect of beam shaping on both the exposure of the ribs and near-field to acoustic energy was evaluated and the implications for the volumetric ablation rate were addressed. Methods: A relationship between rib temperature rise and acoustic energy density was established by means of in vivo MR thermometry and simulations of the incident acoustic energy for the corresponding anatomies. This relationship was used for interpretation of rib exposure in subsequent numerical simulations in which rib spacing, focal point placement, and the focal point trajectory were varied. The time required to heat a targeted region to 65 °C was determined without and with the application of beam shaping. The required sonication time was used to calculate the acoustic energy density at the fat–muscle interface and at the surface of the ribs. At the fat–muscle interface, exposure was compared to available literature data and rib exposure was interpreted based on the earlier obtained relation between measured temperature rise and simulated acoustic energy density. To estimate the volumetric ablation rate, the cool-down time between periods of energy exposure was estimated using a time-averaged power limit of 100 kJ/h. Results: At the level of the ribs

  2. Inductance position sensor for pneumatic cylinder

    Science.gov (United States)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  3. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  4. Development and sexual dimorphism of the sonic system in three deep-sea neobythitine fishes and comparisons between upper mid and lower continental slope

    Science.gov (United States)

    Fine, Michael L.; Ali, Heba A.; Nguyen, Thanh Kim; Mok, Hin-Kiu; Parmentier, Eric

    2018-01-01

    Based on morphology, NB Marshall identified cusk-eels (family Ophidiidae) as one of the chief sound-producing groups on the continental slope. Due to food scarcity, we hypothesized that sonic systems will be reduced at great depths despite their potential importance in sexual reproduction. We examined this hypothesis in the cusk-eel subfamily Neobythitinae by comparing sonic morphology in Atlantic species from the upper-mid (Dicrolene intronigra) and deeper continental slope (Porogadus miles and Bathyonus pectoralis) with three Taiwanese species previously described from the upper slope (Hoplobrotula armatus, Neobythites longipes and N. unimaculatus). In all six species, medial muscles are heavier in males than in females. Dicrolene has four pairs of sonic muscles similar to the shallow Pacific species, suggesting neobythitine sonic anatomy is conservative and sufficient food exists to maintain a well-developed system at depths exceeding 1 km. The sonic system in Porogadus and Bathyonus was reduced to a single pair of ventral medial muscles that connects to a smaller and thinner swimbladder via a long tendon. Small muscle fiber diameters, a likely indicator of rapid contraction, were present in males of five of the species. However, in Bathyonus, the deepest species (pale coloration, reduced eye size, shorter sonic muscles and longer tendons), muscle fibers were larger suggesting an adaptation to facilitate rapid bladder movement for sound production while using slower contractions and less metabolic energy. The six species separate into three groups in length-weight regressions: the three upper slope species have the greatest weights per unit length, Dicrolene is lower, and the two deep species are further reduced consistent with the hypothesis that food limitation affects sonic anatomy at great depths.

  5. Beats, Flesh, and Grain : Sonic Tactility and Affect in Electronic Dance Music

    NARCIS (Netherlands)

    Garcia, Luis-Manuel

    2015-01-01

    This essay sets out to explore the tactilization of sound in electronic dance music (EDM), which offers an important sensory-affective bridge between touch, sonic experience, and an expansive sense of connection in dancing crowds. EDM events tend to engender spaces of heightened tactility and

  6. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  7. The Ongoing Addition of Infrasound Sensors and the Flexette Wind-Noise Reducing System to Global Seismic Network Stations Operated by Project IDA

    Science.gov (United States)

    Ebeling, C. W.; Coon, C.

    2017-12-01

    Infrasound sensors are now being installed at Global Seismic Network (GSN) stations meeting certain infrastructure criteria. Manufactured by Hyperion Technology Group, Inc., these instruments (model IFS-3312) have a nominal sensitivity of 140 mV/Pa (at 1 Hz), a full-scale range of ±100 Pa, and a dynamic range of 120 dB. Low power consumption (750 mW at 12 VDC) and small size (153 mm x 178 mm) ease incorporation into the mix of existing GSN instrumentation. The accompanying flexible rosette ("Flexette") acoustic wind-noise reducing system, designed by Project IDA (International Deployment of Accelerometers-IDA), optimally includes 24 inlets, 4 secondary manifolds, and a single primary manifold. Each secondary manifold is connected to 6 inlets and to the primary manifold by 10-ft air hoses, thus eliminating stresses and the greater potential for leaks associated with the use of pipe. While the main design goal was to maximize the reduction of acoustic wind-noise over the widest range of wind speeds possible, consideration of additional criteria resulted in a Flexette base design easily tailored to meet individual station constraints and restrictions, made up of inexpensive (total cost Marshall Islands), in August 2017. During the next 6 months infrasound capability will be extended to IDA GSN stations BORG (Borganes, Iceland), EFI (Mount Kent, East Falkland Islands), and SACV (Santiago Island, Cape Verde).As with other data from GSN stations, real-time infrasound data are freely available from the Incorporated Research Institutions for Seismology-Data Management Center (IRIS-DMC).

  8. Effect of sonication on the colloidal stability of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Colloidal stability of superparamagnetic iron oxide nanoparticles’ (SPION) suspensions, ultrasonically irradiated at various pH was studied. Electrophoresis measurement of the sonicated SPION showed that the shock waves and other unique conditions generated from the acoustic cavitation process (formation, growth and collapse of bubbles) affect the zeta potential value of the suspension. In this work, stabled colloidal suspensions of SPION were prepared and their pH is varied between 3 and 5. Prior to ultrasonic irradiation of the suspensions, their initial zeta potential values were determined. After ultrasonic irradiation of the suspensions, we observed that the sonication process interacts with colloidal stability of the nanoparticles. The results demonstrated that only suspensions with pH less 4 were found stable and able to retain more than 90% of its initial zeta potential value. However, at pH greater than 4, the suspensions were found unstable. The result implies that good zeta potential value of SPION can be sustained in sonochemical process as long as the pH of the mixture is kept below 4.

  9. Pressure sensor to determine spatial pressure distributions on boundary layer flows

    Science.gov (United States)

    Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.

    1997-03-01

    The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.

  10. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-03-01

    Full Text Available An electric commutated frog-leg winding permanent-magnet (PM DC machine is proposed in this paper. It has a semi-closed slotted stator with a classical type of mesh winding introduced from the conventional brushed DC machine and a polyphase electric commutation besides a PM excitation rotor and a circular arrayed Hall position sensor. Under the cooperation between the position sensor and the electric commutation, the proposed machine is basically operated on the same principle of the brushed one. Because of its simplex frog-leg winding, the combination between poles and slots is designed as 4/22, and the number of phases is set as 11. By applying an exact analytical method, which is verified comparable with the finite element analyses (FEA, to the prediction of its instantaneous magnetic field, electromotive force (EMF, cogging torque and output torque, it is well designed with a series of parameters in dimension aiming at the lowest cogging torque. A 230 W, 4-pole, and 22-slot new machine is prototyped and tested to verify the analysis.

  11. Optimal Wind Corrected Flight Path Planning for Autonomous Micro Air Vehicles

    National Research Council Canada - National Science Library

    Zollars, Michael D

    2007-01-01

    ...) fixed sensor on a target in the presence of a constant wind. Autonomous flight is quickly becoming the future of air power and over the past several years, the size and weight of autonomous vehicles has decreased dramatically...

  12. Short term prediction of the horizontal wind vector within a wake vortex warning system

    Energy Technology Data Exchange (ETDEWEB)

    Frech, M.; Holzaepfel, F.; Gerz, T. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Konopka, J. [Deutsche Flugsicherung (DFS) GmbH, Langen (Germany)

    2000-07-14

    A wake vortex warning system (WVWS) has been developed for Frankfurt airport. This airport has two parallel runways which are separated by 518 m, a distance too short to operate them independently because wake vortices may be advected to the adjacent runway. The objective of the WVWS is to enable operation with reduced separation between two aircraft approaching the parallel runways at appropriate wind conditions. The WVWS applies a statistical persistence model to predict the crosswind within a 20 minute period. One of the main problems identified in the old WVWS are discontinuities between successive forecasts. These forecast breakdowns were not acceptable to airtraffic controllers. At least part of the problem was related to the fact that the forecast was solely based on the prediction of crosswind. A new method is developed on the basis of 523 days of sonic anemometer measurements at Frankfurt airport. It is demonstrated that the prediction of the horizontal wind vector avoids these difficulties and significantly improves the system's performance. (orig.)

  13. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    Science.gov (United States)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  14. Use of sonic tomography to detect and quantify wood decay in living trees.

    Science.gov (United States)

    Gilbert, Gregory S; Ballesteros, Javier O; Barrios-Rodriguez, Cesar A; Bonadies, Ernesto F; Cedeño-Sánchez, Marjorie L; Fossatti-Caballero, Nohely J; Trejos-Rodríguez, Mariam M; Pérez-Suñiga, José Moises; Holub-Young, Katharine S; Henn, Laura A W; Thompson, Jennifer B; García-López, Cesar G; Romo, Amanda C; Johnston, Daniel C; Barrick, Pablo P; Jordan, Fulvia A; Hershcovich, Shiran; Russo, Natalie; Sánchez, Juan David; Fábrega, Juan Pablo; Lumpkin, Raleigh; McWilliams, Hunter A; Chester, Kathleen N; Burgos, Alana C; Wong, E Beatriz; Diab, Jonathan H; Renteria, Sonia A; Harrower, Jennifer T; Hooton, Douglas A; Glenn, Travis C; Faircloth, Brant C; Hubbell, Stephen P

    2016-12-01

    Field methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes. Living trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness. Sonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees.

  15. Durability assessment of soft elastomeric capacitor skin for SHM of wind turbine blades

    Science.gov (United States)

    Downey, Austin; Pisello, Anna Laura; Fortunati, Elena; Fabiani, Claudia; Luzi, Francesca; Torre, Luigi; Ubertini, Filippo; Laflamme, Simon

    2018-03-01

    Renewable energy production has become a key research driver during the last decade. Wind energy represents a ready technology for large-scale implementation in locations all around the world. While important research is conducted to optimize wind energy production efficiency, a critical issue consists of monitoring the structural integrity and functionality of these large structures during their operational life cycle. This paper investigates the durability of a soft elastomeric capacitor strain sensing membrane, designed for structural health monitoring of wind turbines, when exposed to aggressive environmental conditions. The sensor is a capacitor made of three thin layers of an SEBS polymer in a sandwich configuration. The inner layer is doped with titania and acts as the dielectric, while the external layers are filled with carbon black and work as the conductive plates. Here, a variety of samples, not limited to the sensor configuration but also including its dielectric layer, were fabricated and tested within an accelerated weathering chamber (QUV) by simulating thermal, humidity, and UV radiation cycles. A variety of other tests were performed in order to characterize their mechanical, thermal, and electrical performance in addition to their solar reflectance. These tests were carried out before and after the QUV exposures of 1, 7, 15, and 30 days. The tests showed that titania inclusions improved the sensor durability against weathering. These findings contribute to better understanding the field behavior of these skin sensors, while future developments will concern the analysis of the sensing properties of the skin after aging.

  16. The development of Sonic Pi and its use in educational partnerships: Co-creating pedagogies for learning computer programming

    OpenAIRE

    Aaron, S; Blackwell, Alan Frank; Burnard, Pamela Anne

    2017-01-01

    Sonic Pi is a new open source software tool and platform originally developed for the Raspberry Pi computer, designed to enable school children to learn programming by creating music. In this article we share insights from a scoping study on the development of Sonic Pi and its use in educational partnerships. Our findings draw attention to the importance of collaborative relationships between teacher and computer scientist and the value of creative pedagogies for learning computer programming...

  17. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    Science.gov (United States)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  18. Wind Farm Wake: The Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Pierre-Elouan Réthoré

    2013-02-01

    Full Text Available The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information at and near the wind farm, including Supervisory Control and Data Acquisition (SCADA data. The SCADA data reveal that the case of fog formation occurred 12 February 2008 on the 10:10 UTC. The fog formation is due to very special atmospheric conditions where a layer of cold humid air above a warmer sea surface re-condensates to fog in the wake of the turbines. The process is fed by warm humid air up-drafted from below in the counter-rotating swirl generated by the clock-wise rotating rotors. The condensation appears to take place primarily in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog.

  19. Inductance position sensor for pneumatic cylinder

    Directory of Open Access Journals (Sweden)

    Pavel Ripka

    2018-04-01

    Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  20. Application of ENN-1 for Fault Diagnosis of Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2012-01-01

    Full Text Available Maintaining a wind turbine and ensuring secure is not easy because of long-term exposure to the environment and high installation locations. Wind turbines need fully functional condition-monitoring and fault diagnosis systems that prevent accidents and reduce maintenance costs. This paper presents a simulator design for fault diagnosis of wind power systems and further proposes some fault diagnosis technologies such as signal analysis, feature selecting, and diagnosis methods. First, this paper uses a wind power simulator to produce fault conditions and features from the monitoring sensors. Then an extension neural network type-1- (ENN-1- based method is proposed to develop the core of the fault diagnosis system. The proposed system will benefit the development of real fault diagnosis systems with testing models that demonstrate satisfactory results.

  1. A study of sonic boom overpressure trends with respect to weight, altitude, Mach number, and vehicle shaping

    Science.gov (United States)

    Needleman, Kathy E.; Mack, Robert J.

    1990-01-01

    This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.

  2. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract

    NARCIS (Netherlands)

    van den Brink, G. R.; Hardwick, J. C. H.; Nielsen, C.; Xu, C.; ten Kate, F. J.; Glickman, J.; van Deventer, S. J. H.; Roberts, D. J.; Peppelenbosch, M. P.

    2003-01-01

    Background: Sonic hedgehog (Shh) is an important endodermal morphogenetic signal during the development of the vertebrate gut. It controls gastrointestinal patterning in general, and gastric gland formation in particular. We have previously shown that Shh regulates gastric gland proliferation in the

  3. Synthesis and characterization of PMMA/clay nanocomposites prepared by in situ polymerization assisted by sonication

    International Nuclear Information System (INIS)

    Prado, Bruna R.; Bartoli, Julio R.; Ito, Edson N.

    2015-01-01

    In this work is presented the synthesis of nanocomposites of poly(methyl methacrylate), PMMA, with organically montmorillonite (OMMT) modified clays by in situ polymerization assisted by sonication. A statistically designed experiment was used, central composing design (CCD), to study the effect of synthesis variables on the dispersion of nanoparticles in PMMA matrix. The processing and formulation factors studied were: energy of sonication and Flory-Huggins interaction parameter between PMMA and organoclay. The structural (XRD) and morphological (TEM) characterizations of the PMMA/OMMT nanocomposites are compared with the literature. It was observed significant exfoliation of OMMT modified with hydroxyl groups in the nanocomposites of PMMA, mainly at the low ultrasonic energy level (90 and 105 kJ) studied. (author)

  4. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    the evaluation of LIDAR-based wind measurement systems to validate the accuracy of remotely measured wind data in marine applications. Specifically, the test-bed will be utilized to systematically evaluate the capability of emerging scanning LIDAR and buoy mounted vertically profiling LIDAR by: (1) Evaluating a fixed scanning LIDAR against land-based 50 and 60 meter high meteorological masts fitted with research quality cup-vane and/or sonic anemometers; (2) Evaluating a buoy mounted vertically profiling LIDAR fixed on land and floating in a sheltered bay against a co-located 60 meter high meteorological mast fitted with a research quality cup-vane and/or sonic anemometers and the fixed scanning LIDAR; and (3) Offshore field evaluation of both LIDAR platforms through a comparison of the fixed scanning LIDAR data and data obtained by the buoy mounted LIDAR located 10 miles offshore. The proposed research will systematically validate Light Detection and Ranging (LIDAR) based wind measurement systems and assess the temporal and spatial variability of the offshore wind resource in the Mid-Atlantic east of New Jersey. The goal of the proposed project is to address the technical and commercial challenges of the offshore wind energy industry by validating and assessing cost-effective, over ocean wind resource characterization technologies. The objective is to systematically evaluate the capability of both scanning and vertically profiling LIDARs to accurately measure 3D wind fields through comparison with fixed met masts and intercomparison among LIDAR platforms. Once validated, data collected by both buoy mounted vertically profiling LIDARs and shore-based, pulsed horizontally scanning LIDARs can be used to accurately assess offshore wind resources and to quantify the spatial and temporal variability in the offshore wind fields. One of the fundamental research questions to be addressed in phase 1 is the assessment of various measurement and data processing schemes to

  5. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  6. Distributed maximum power point tracking in wind micro-grids

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2012-06-01

    Full Text Available With the aim of reducing the hardware requirements in micro-grids based on wind generators, a distributed maximum power point tracking algorithm is proposed. Such a solution reduces the amount of current sensors and processing devices to maximize the power extracted from the micro-grid, reducing the application cost. The analysis of the optimal operating points of the wind generator was performed experimentally, which in addition provides realistic model parameters. Finally, the proposed solution was validated by means of detailed simulations performed in the power electronics software PSIM, contrasting the achieved performance with traditional solutions.

  7. Evanescent waves and deaf bands in sonic crystals

    Science.gov (United States)

    Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.

    2011-12-01

    The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  8. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    Directory of Open Access Journals (Sweden)

    Baraba Anja

    2015-01-01

    Full Text Available The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group, according to the pretreatment of the dentin: (1 control group, (2 air abrasion group, and (3 sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05. Mean microtensile bond strength (MPa values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.

  9. Influence and comparison of thermal, ultrasonic and thermo-sonic treatments on microbiological quality and sensory properties of rennet cheese whey

    Directory of Open Access Journals (Sweden)

    Rajka Božanić

    2012-09-01

    Full Text Available Ultrasonication and thermo-sonication belong to alternative, non-thermal food processing methods. The aim of this study was to investigate the influence of different ultrasound power inputs (240 W, 320 W, 400 W without and in combination with heat pre-treatment on microbial inactivation and sensory properties of rennet cheese whey in comparison with conventional pasteurization batch processes. Ultrasonication treatments had no impact on reduction of any group of studied microorganisms. Microbial inactivation caused by thermo-sonication treatments with pre-heating to 35 °C or 45 °C increased with nominal power input and/or exposure times and was probably due to the heat improved ultrasonic cavitation. Thermo-sonication treatments at nominal power input (400 W and preheating to 55 °C were the most effective resulting in greater microbial reduction compared to that observed by simulating pasteurization processes, but occurred probably due to developed heat solely. Sensory properties after ultrasonication and thermo-sonication were considerably improved in comparison with that after simulated pasteurization processes. Mouth feel of whey samples was considerably better, there was no occurrence of sediment and colour remained unchanged in almost all samples.

  10. Influence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study.

    Science.gov (United States)

    Huffaker, S Kirk; Safavi, Kamran; Spangberg, Larz S W; Kaufman, Blythe

    2010-08-01

    The present investigation evaluated the ability of a new passive sonic irrigation (sonic group) system (EndoActivator) to eliminate cultivable bacteria from root canals in vivo and compared it with that of standard syringe irrigation (control group). Data were obtained by using bacteriologic sampling of root canals treated by endodontic residents. Sampling results from 1 session of treatment were then compared with results obtained after intervisit calcium hydroxide disinfection and a second session of treatment. There was no significant difference in the ability of sonic group and control group to eliminate cultivable bacteria from root canals (P > .05). A second session and intervisit calcium hydroxide disinfection were able to eliminate cultivable bacteria from significantly more teeth than a single session of treatment (P treatment of apical periodontitis. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Compact 3D Wind Sensor for Unmanned Aerial Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate wide-area mapping of three-dimensional (3D) wind vectors plays an important role in our ability to understand climate processes, predict weather patterns...

  12. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  13. Field Demonstration of Real-Time Wind Turbine Foundation Strain Monitoring.

    Science.gov (United States)

    Rubert, Tim; Perry, Marcus; Fusiek, Grzegorz; McAlorum, Jack; Niewczas, Pawel; Brotherston, Amanda; McCallum, David

    2017-12-31

    Onshore wind turbine foundations are generally over-engineered as their internal stress states are challenging to directly monitor during operation. While there are industry drivers to shift towards more economical foundation designs, making this transition safely will require new monitoring techniques, so that the uncertainties around structural health can be reduced. This paper presents the initial results of a real-time strain monitoring campaign for an operating wind turbine foundation. Selected reinforcement bars were instrumented with metal packaged optical fibre strain sensors prior to concrete casting. In this paper, we outline the sensors' design, characterisation and installation, and present 67 days of operational data. During this time, measured foundation strains did not exceed 95 μ ϵ , and showed a strong correlation with both measured tower displacements and the results of a foundation finite element model. The work demonstrates that real-time foundation monitoring is not only achievable, but that it has the potential to help operators and policymakers quantify the conservatism of their existing design codes.

  14. Noise emission from wind turbines in wake. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Dam Madsen, K.; Plovsing, B. (DELTA, Hoersholm (Denmark)); Soerensen, Thomas (EMD International A/S, Aalborg (Denmark)); Aagaard Madsen, H.; Bertagnolio, F. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-03-15

    When installing wind turbines in clusters or wind farms the inflow conditions to the wind turbines can be disturbed due to wake effects from other wind turbines. The effect of wake on noise generation from wind turbines are described in this report. The work is based on measurements carried out on a M80 2 MW wind turbine. To investigate the relationship between the far field noise levels and the surface pressure and inflow angles measured by sensors on an instrumented wind turbine blade, a parabolic measurement system (PMMS) was designed and tested as part of this project. Based on the measurement results obtained with surface pressure sensors and results from the far field measurements using the PMMS it is concluded that: The variance of surface pressure at the trailing edge (TE) agrees with the theory with regard to variation of pressure spectra with varying inflow angle (AoA) to the blade. Low frequency TE surface pressure increases with increased AoA and high frequency surface pressure decreases with increased AoA. It seems that the TE surface pressure remains almost unaltered during wake operation. Results from the surface transducers at the leading edge (LE) and the inflow angles determined from the pitot tube indicates that the inflow at LE is more turbulent in wake for the same AoA and with a low frequency characteristic, thereby giving rise to more low frequency noise generated during wake operation. The far field measurements supports that on one hand there will be produced relative more low frequency noise due to a turbulent inflow to the blade and on the other hand there will be produced less noise in the broader frequency range/high frequency range due to a lower inflow angle caused by the wind deficit in the wake. The net effect of wake on the total noise level is unresolved. As a secondary result it is seen that noise observed from a position on the ground is related to directional effects of the noise radiated from the wind turbine blade. For an

  15. Laboratory modeling of air-sea interaction under severe wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10Ucr the dependencies of peak wave period, peak wavelength, significant wave height on the wind speed tend to saturation, in the same time the peak wave slope has the maximum at approximately Ucr and then decreases with the tendency to saturation. The surface drag also tends to saturation for U10>Ucr similarly to (Donelan et al, 2004). Video filming indicates onset of wave breaking with white-capping and spray generation at wind speeds approximately equal to Ucr. We compared the obtained experimental dependencies with the predictions of the quasi-linear model of the turbulent boundary layer over the waved water surface (Reutov&Troitskaya, 1995). Comparing shows that theoretical predictions give low estimates for the measured drag coefficient and wave fields. Taking into account momentum flux associated with the spray generation yields theoretical estimations in good agreement with the experimental data. Basing on the experimental data a possible physical mechanism of the drag is suggested. Tearing of the wave crests at severe wind conditions leads to the effective smoothing (decreasing wave slopes) of the water surface, which in turn reduces the aerodynamic roughness of the water surface. Quantitative agreement of the experimental data and theoretical estimations od the surface drag occurs

  16. High Accuracy, Miniature Pressure Sensor for Very High Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  17. Continued Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Russell, Richard; Wincheski, Russell; Jablonski, David; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used in essentially all NASA spacecraft, launch. vehicles and payloads to contain high-pressure fluids for propulsion, life support systems and science experiments. Failure of any COPV either in flight or during ground processing would result in catastrophic damage to the spacecraft or payload, and could lead to loss of life. Therefore, NASA continues to investigate new methods to non-destructively inspect (NDE) COPVs for structural anomalies and to provide a means for in-situ structural health monitoring (SHM) during operational service. Partnering with JENTEK Sensors, engineers at NASA, Kennedy Space Center have successfully conducted a proof-of-concept study to develop Meandering Winding Magnetometer (MWM) eddy current sensors designed to make direct measurements of the stresses of the internal layers of a carbon fiber composite wrapped COPV. During this study three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed good correlation with actual surface strain gage measurements. MWM-Array technology for scanning COPVs can reliably be used to image and detect mechanical damage. To validate this conclusion, several COPVs were scanned to obtain a baseline, and then each COPV was impacted at varying energy levels and then rescanned. The baseline subtracted images were used to demonstrate damage detection. These scans were performed with two different MWM-Arrays. with different geometries for near-surface and deeper penetration imaging at multiple frequencies and in multiple orientations of the linear MWM drive. This presentation will include a review of micromechanical models that relate measured sensor responses to composite material constituent properties, validated by the proof of concept study, as the basis for SHM and NDE data analysis as well as potential improvements including

  18. Enhanced Harnessing of the Graviola Bioactive Components Using a Neoteric Sonication Cum Microwave Coadjuvant Extraction Protocol

    Directory of Open Access Journals (Sweden)

    Se Chul Chun

    2018-02-01

    Full Text Available Graviola is one of the most accomplished natural anticancer therapists gaining popularity in recent times. Harnessing the full benefit from tapping all of its rich bioactive reservoirs is absolutely worthy and mandatory. It is in this regard that a well optimized extraction methodology gains paramount importance. In case of Graviola, no sophistication in terms of extraction methods is reported. A neoteric sonication cum microwave combined extraction technology was introduced that maximized the extraction process and minimized (7 min the extraction time. The extraction efficiency was validated based on the significant enrichment of bioactive ingredients in Graviola extracts following the sonication cum microwave combined protocol.

  19. Inflow measurements from blade-mounted flow sensors: Flow analysis, application and aeroelastic response

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard

    -mounted flow sensor, BMFS, e.g. a five-hole pitot tube, which has been used in several research experiments over the last 30 years. The BMFS measured flow velocity is, however, located inside the induction zone and thereby influenced by the aerodynamic properties, the control strategy and the operational......The power and load performance of wind turbines are both crucial for the development and expansion of wind energy. The power and loads are highly dependent on the inflow conditions, which can be measured using different types of sensors mounted on nearby met masts, on the nacelle, at the spinner...... or at the blade. Each combination of sensor type and mounting position has advantages and shortcomings. To characterise the inflow that results in high and low fatigue loads, information about the temporal and spatial variations within the rotor area is required. This information can be obtained from a blade...

  20. Influence of borehole-eccentred tools on wireline and logging-while-drilling sonic logging measurements

    KAUST Repository

    Pardo, David; Matuszyk, Paweł Jerzy; Torres-Verdí n, Carlos; Mora Cordova, Angel; Muga, Ignacio; Calo, Victor M.

    2013-01-01

    We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method

  1. protective and therapeutic effects of anaerobic bacteria sonicate on experimentally induced intestinal inflammation

    Czech Academy of Sciences Publication Activity Database

    Sokol, Dan; Rossmann, Pavel; Jelen, P.; Hudcovic, Tomáš; Horáková, Dana; Jelínková, Lenka; Tučková, Ludmila; Tlaskalová, Helena

    2003-01-01

    Roč. 87, č. 1 (2003), s. 87 ISSN 0165-2478. [European Immunology Congress /15./. Rhodes, 08.06.2003-12.06.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : anacrobic * bacteria * sonicate Subject RIV: EE - Microbiology, Virology Impact factor: 1.710, year: 2003

  2. Stimulation of lymphocytes in vitro by Bacteroides intermedius and Bacteroides (Porphyromonas) gingivalis sonicates

    NARCIS (Netherlands)

    Raber-Durlacher, J. E.; Zeijlemaker, W. P.; Meinesz, A. A.; Abraham-Inpijn, L.

    1990-01-01

    The present study was designed to assess whether the in vitro stimulation of lymphocytes by sonicates of Bacteroides intermedius and Bacteroides (Porphyromonas) gingivalis is antigen specific or non-specific. In addition, the role of T and B lymphocytes in these responses was assessed. Peripheral

  3. Response Analysis and Comparison of a Spar-Type Floating Offshore Wind Turbine and an Onshore Wind Turbine under Blade Pitch Controller Faults

    DEFF Research Database (Denmark)

    Etemaddar, M.; Blanke, Mogens; Gao, Z.

    2016-01-01

    in the controller dynamic link library and a short-term extreme response analysis is performed using the HAWC2 simulation tool.The main objectives of this paper are to investigate how different faults affect the performance of wind turbines for condition monitoring purposes and which differences exist...... in the structural responses between onshore and offshore floating wind turbines. Statistical analysis of the selected response parameters are conducted using the six1-hour stochastic samples for each load case.For condition monitoring purpose,the effects of faults on the responses at different wind speeds and fault...... amplitudes are investigated by comparing the same response under normal operation.The severities of the individual faults are categorized by the extreme values of structural loads and the structural components are sorted based on the magnitude of the fault effects on the extreme values.The pitch sensor fixed...

  4. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    Science.gov (United States)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  5. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  6. BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere

    Science.gov (United States)

    Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan

    2016-04-01

    also provides a reading of the temperature (less accurate than the HYT 271 but useful as a complement). Wind speed is measured using a low-cost hot-wire sensor, bought from a commercial source (Wind Sensor Rev. P, from Modern Device), that has also been calibrated against a WindSonic. This sensor also provides a reading of the temperature, with the same characteristics than the BMP080. Finally, the magnetometer and the accelerometer are used as a mean of tracking the position of the balloon, allowing us to additionally estimate the wind direction from the lateral acceleration. This system has been used successfully in different campaigns, comparing favorably the obtained values against data obtained using an unmanned aerial vehicle (UAV) and a WindRass. Possible additions to the system are a GPS tracker, a RF link to the base station, and different kinds of sensors. The current configuration of the system includes RS232, I2C, and purely analog input ports, giving it a wide flexibility to add different sensors.

  7. MRI monitoring of focused ultrasound sonications near metallic hardware.

    Science.gov (United States)

    Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A

    2018-07-01

    To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars; Buggy, Stephen; Olesen, Ib S.

    Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities....

  9. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    Science.gov (United States)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  10. The MIGHTI Wind Retrieval Algorithm: Description and Verification

    Science.gov (United States)

    Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.

    2017-10-01

    We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

  11. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    International Nuclear Information System (INIS)

    Hansen, K S; Larsen, G C; Ott, S

    2014-01-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow

  12. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq

    2010-08-01

    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  13. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Science.gov (United States)

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  14. PROGRESS ON DEVELOPING SONIC INFRARED IMAGING FOR DEFECT DETECTION IN COMPOSITE STRUCTURES

    International Nuclear Information System (INIS)

    Han Xiaoyan; He Qi; Li Wei; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2010-01-01

    At last year's QNDE conference, we presented our development of Sonic IR imaging technology in metal structures, with results from both experimental studies and theoretical computing. In the latest aircraft designs, such as the B787 from Boeing, composites have become the major materials in structures such as the fuselage and wings. This is in contrast to composites' use only in auxiliary components such as flaps and spoilers in the past. With today's advanced technology of fabrication, it is expected the new materials can be put in use in even more aircraft structures due to its light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, with increases in fuel cost, reducing the aircraft's body weight becomes more and more appealing. In this presentation, we describe the progress on our development of Sonic IR imaging for aircraft composite structures. In particular, we describe the some unexpected results discovered while modeling delaminations. These results were later experimentally verified with an engineered delamination.

  15. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  16. Evanescent waves and deaf bands in sonic crystals

    Directory of Open Access Journals (Sweden)

    V. Romero-García

    2011-12-01

    Full Text Available The properties of sonic crystals (SC are theoretically investigated in this work by solving the inverse problem k(ω using the extended plane wave expansion (EPWE. The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  17. Empirical Musicology Review: Serialist Claims versus Sonic Reality

    Directory of Open Access Journals (Sweden)

    William Thomson

    2010-08-01

    Full Text Available This study examines the descriptive mores of Serialism, as found in writings of leading American academics of the past half-century. A serious gap is revealed, especially between claims made for structural conditions rooted in dodecaphonic procedures and the actual kinetics of music as heard. Curious (and debilitating ambiguities and dead ends are noted in terms used to define critical perceptual conditions in such music; some claims of significance for features of 12- tone rows in certain works are revealed as wholly irrelevant to music as sonic event. Most prominent of the writings discussed are those of Milton Babbitt, Allen Forte and David Lewin.

  18. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    Science.gov (United States)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  19. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  20. Wind Turbine Measurement Technique—an Open Laboratory for Educational Purposes

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Hansen, Kurt Schaldemose; Schmidt Paulsen, Uwe

    2008-01-01

    operational parameters, (ii) meteorological onditions, (iii) electrical quantities and (iv) mechanical loads. The data acquisition system was PC based, and it was combined with a MySQL® database for data management.The system enabled online access for real-time recordings,which were used both...... of non-commercial time series, which would be available for practicing fatigue calculations and extreme load estimation in basic wind turbine courses. Power quality analysis was carried out based on high-speed-sampled, three-phase voltage and current signals. The wide spectrum of sensors enabled....... The WTMLAB was included in a new course entitled Wind Turbine Measurement Techniques....