WorldWideScience

Sample records for sonic enhanced ash

  1. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  2. PRODUCTION WELL PERFORMANCE ENHANCEMENT USING SONICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery

    2003-12-17

    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  3. Paper mechanisms for sonic interaction

    DEFF Research Database (Denmark)

    Delle Monache, Stefano; Rocchesso, Davide; Qi, Ji

    2012-01-01

    Introducing continuous sonic interaction in augmented pop-up books enhances the expressive and performative qualities of movables, making the whole narrative experience more engaging and personal. The SaMPL Spring School on Sounding Popables explored the specific topic of paper-driven sonic...

  4. Enhanced inertia from lossy effective fluids using multi-scale sonic crystals

    Directory of Open Access Journals (Sweden)

    Matthew D. Guild

    2014-12-01

    Full Text Available In this work, a recent theoretically predicted phenomenon of enhanced permittivity with electromagnetic waves using lossy materials is investigated for the analogous case of mass density and acoustic waves, which represents inertial enhancement. Starting from fundamental relationships for the homogenized quasi-static effective density of a fluid host with fluid inclusions, theoretical expressions are developed for the conditions on the real and imaginary parts of the constitutive fluids to have inertial enhancement, which are verified with numerical simulations. Realizable structures are designed to demonstrate this phenomenon using multi-scale sonic crystals, which are fabricated using a 3D printer and tested in an acoustic impedance tube, yielding good agreement with the theoretical predictions and demonstrating enhanced inertia.

  5. Enhancing the engineering properties of expansive soil using bagasse ash

    Science.gov (United States)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  6. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  7. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    Science.gov (United States)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  8. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug

    Directory of Open Access Journals (Sweden)

    Lin CY

    2012-04-01

    Full Text Available Chung-Yin Lin1*, Hsiao-Ching Tseng1*, Heng-Ruei Shiu1, Ming-Fang Wu2, Cheng-Ying Chou3, Win-Li Lin1,41Institute of Biomedical Engineering, 2Laboratory Animal Center, 3Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan; 4Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan*These authors contributed equally to this workAbstract: Ultrasound (US sonication with microbubbles (MBs has the potential to disrupt blood vessels and enhance the delivery of drugs into the sonicated tissues. In this study, mouse ear tumors were employed to investigate the therapeutic effects of US, MBs, and pegylated liposomal doxorubicin (PLD on tumors. Tumors started to receive treatments when they grew up to about 15 mm3 (early stage with injection of PLD 10 mg/kg, or up to 50 mm3 (medium stage with PLD 6 (or 4 mg/kg. Experiments included the control, PLD alone, PLD + MBs + US, US alone, and MBs + US groups. The procedure for the PLD + MBs + US group was that PLD was injected first, MB (SonoVue injection followed, and then US was immediately sonicated on the tumor. The results showed that: (1 US sonication with MBs was always able to produce a further hindrance to tumor growth for both early and medium-stage tumors; (2 for the medium-stage tumors, 6 mg/kg PLD alone was able to inhibit their growth, while it did not work for 4 mg/kg PLD alone; (3 with the application of MBs + US, 4 mg/kg PLD was able to inhibit the growth of medium-stage tumors; (4 for early stage tumors after the first treatment with a high dose of PLD alone (10 mg/kg, the tumor size still increased for several days and then decreased (a biphasic pattern; (5 MBs + US alone was able to hinder the growth of early stage tumors, but unable to hinder that of medium stage tumors. The results of histological examinations and blood perfusion measurements indicated that the application of MBs + US disrupts the tumor blood

  9. Defatting and Sonication Enhances Protein Extraction from Edible Insects.

    Science.gov (United States)

    Choi, Byoung Deug; Wong, Nathan A K; Auh, Joong-Hyuck

    2017-01-01

    Edible insects are attracting growing interest as a sustainable source of protein for addition to processed meat and dairy products. The current study investigated the optimal method for protein extraction from mealworm larvae ( Tenebrio molitor ), cricket adults ( Gryllus bimaculatus ), and silkworm pupae ( Bombyx mori ), for use in further applications. After defatting with n-hexane for up to 48 h, sonication was applied for 1-20 min and the protein yield was measured. All samples showed a total residual fat percentage below 1.36%, and a 35% to 94% improvement in protein yield (%). In conclusion, defatting with n-hexane combined with sonication improves the protein yield from insect samples.

  10. Comparison and flowering valuation of New Guinea Impatiens cultivars from Sonic and Super Sonic groups

    Directory of Open Access Journals (Sweden)

    Ludmiła Startek

    2012-12-01

    Full Text Available In the years 2002-2003 the flowering of four New Guinea Impatiens cultivars from Sonic and Super Sonic groups were compared. They were the following cultivars: 'Sonic Pink', 'Sonic Sweet Cherry', 'Super Sonic Cherry Cream' and 'Super Sonic Hot Pink'. The experiments were carried out from the middle of April till the middle of October. Neutralised sphagnum peat with slow release fertiliser Osmocote Plus 5/6 was used as medium. It was found that the cultivar 'Sonic Pink' began blooming 1-4 weeks earlier than the other cultivars. The cultivars 'Sonic Sweet Cherry' and 'Super Sonic Cherry Cream' had significantly more abundant flowering (105.3-113.3 flowers per plant than the cultivars 'Sonic Pink' and 'Super Sonic Hot Pink' (72.0-92.8 flowers per plant. All the cultivars had big flowers (6.3-7.8 cm in diameter. The most similar flowers were found in 'Sonic Sweet Cherry' and the least similar in 'Super Sonic Hot Pink'.

  11. New mechanism for enhancing ash removal efficiency and reducing tritium inventory

    International Nuclear Information System (INIS)

    Li Chengyue; Deng Baiquan; Yan Jiancheng

    2007-01-01

    A new mechanism is suggested to suppress ash particle back streams in the divertor region of our fusion experimental breeder (FEB) reactor for enhancing the ash removal efficiency and reducing the tritium inventory by applications of the nonlinear effect of high power rf ponderomotive force potential which reflects the plate-released and re-ionized He + back to the plate. Meanwhile, the potential does not hinder α particles, which are coming from scraping of the layer, flowing to the target plate. However, it does stop tritium ions flowing to the target. Based on the FEB design parameters, our calculations have shown that the ash removal efficiency can be improved by as much as 40% if the parallel component of rf field 150-200 V/cm is applied to the location at a perpendicular distance L=20 cm apart from the plate and the plate-recycling neutral helium atom energy is about 0.75 eV, at the same time, the tritium inventory can be reduced to some extent. (authors)

  12. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  13. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    Science.gov (United States)

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  14. Sonic Interaction Design

    DEFF Research Database (Denmark)

    ) challenges these prevalent approaches by considering sound as an active medium that can enable novel sensory and social experiences through interactive technologies. This book offers an overview of the emerging SID research, discussing theories, methods, and practices, with a focus on the multisensory......Sound is an integral part of every user experience but a neglected medium in design disciplines. Design of an artifact’s sonic qualities is often limited to the shaping of functional, representational, and signaling roles of sound. The interdisciplinary field of sonic interaction design (SID...... aspects of sonic experience. Sonic Interaction Design gathers contributions from scholars, artists, and designers working at the intersections of fields ranging from electronic music to cognitive science. They offer both theoretical considerations of key themes and case studies of products and systems...

  15. Mutations in ash1 and trx enhance P-element-dependent silencing in Drosophila melanogaster.

    Science.gov (United States)

    McCracken, Allen; Locke, John

    2016-08-01

    In Drosophila melanogaster, the mini-w(+) transgene in Pci is normally expressed throughout the adult eye; however, when other P or KP elements are present, a variegated-eye phenotype results, indicating random w(+) silencing during development called P-element-dependent silencing (PDS). Mutant Su(var)205 and Su(var)3-7 alleles act as haplo-suppressors/triplo-enhancers of this variegated phenotype, indicating that these heterochromatic modifiers act dose dependently in PDS. Previously, we recovered a spontaneous mutation of P{lacW}ci(Dplac) called P{lacW}ci(DplacE1) (E1) that variegated in the absence of P elements, presumably due to the insertion of an adjacent gypsy element. From a screen for genetic modifiers of E1 variegation, we describe here the isolation of five mutations in ash1 and three in trx that enhance the E1 variegated phenotype in a dose-dependent and cumulative manner. These mutant alleles enhance PDS at E1, and in E1/P{lacW}ci(Dplac), but suppress position effect variegation (PEV) at In(1)w(m)(4). This opposite action is consistent with a model where ASH1 and TRX mark transcriptionally active chromatin domains. If ASH1 or TRX function is lost or reduced, heterochromatin can spread into these domains creating a sink that diverts heterochromatic proteins from other variegating locations, which then may express a suppressed phenotype.

  16. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  17. Sonic Watermarking

    Directory of Open Access Journals (Sweden)

    Ryuki Tachibana

    2004-10-01

    Full Text Available Audio watermarking has been used mainly for digital sound. In this paper, we extend the range of its applications to live performances with a new composition method for real-time audio watermarking. Sonic watermarking mixes the sound of the watermark signal and the host sound in the air to detect illegal music recordings recorded from auditoriums. We propose an audio watermarking algorithm for sonic watermarking that increases the magnitudes of the host signal only in segmented areas pseudorandomly chosen in the time-frequency plane. The result of a MUSHRA subjective listening test assesses the acoustic quality of the method in the range of “excellent quality.” The robustness is dependent on the type of music samples. For popular and orchestral music, a watermark can be stably detected from music samples that have been sonic-watermarked and then once compressed in an MPEG 1 layer 3 file.

  18. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  19. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  20. Negative refractions by triangular lattice sonic crystals in partial band gaps

    International Nuclear Information System (INIS)

    Alagoz, S.; Sahin, A.; Alagoz, B. B.; Nur, S.

    2015-01-01

    This study numerically demonstrates the effects of partial band gaps on the negative refraction properties of sonic crystal. The partial band gap appearing at the second band edge leads to the efficient transmissions of scattered wave envelopes in the transverse directions inside triangular lattice sonic crystal, and therefore enhances the refraction property of sonic crystal. Numerical simulation results indicate a diagonal guidance of coupled scattered wave envelopes inside crystal structure at the partial band gap frequencies and then output waves are restored in the vicinity of the output interface of sonic crystal by combining phase coherent scattered waves according to Huygens’ principles. This mechanism leads to two operations for wavefront engineering: one is spatial wavefront shifting operation and the other is convex–concave wavefront inversion operation. The effects of this mechanism on the negative refraction and wave focalization are investigated by using the finite difference time domain (FDTD) simulations. This study contributes to a better understanding of negative refraction and wave focusing mechanisms at the band edge frequencies, and shows the applications of the slab corner beam splitting and SC-air multilayer acoustic system. (paper)

  1. Steam hydration-reactivation of FBC ashes for enhanced in situ desulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Fabio Montagnaro; Marianna Nobili; Antonio Telesca; Gian Lorenz Valenti; Edward J. Anthony; Piero Salatino [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Chimica

    2009-06-15

    Bed and fly ashes originating from industrial-scale fluidized bed combustors (FBCs) were steam hydrated to produce sorbents suitable for further in situ desulphurization. Samples of the hydrated ash were characterized by X-ray diffraction analysis, scanning electron microscopy and porosimetry. Bed ashes were hydrated in a pressure bomb for 30 and 60 min at 200{sup o}C and 250{sup o}C. Fly ash was hydrated in an electrically heated tubular reactor for 10 and 60 min at 200{sup o}C and 300{sup o}C. The results were interpreted by considering the hydration process and the related development of accessible porosity suitable for resulphation. The performance of the reactivated bed ash as sulphur sorbent improved with a decrease of both the hydration temperature and time. For reactivated fly ash, more favourable porosimetric features were observed at longer treatment times and lower hydration temperatures. Finally, it was shown that an ashing treatment (at 850{sup o}C for 20 min) promoted a speeding up of the hydration process and an increase in the accessible porosity. 36 refs., 6 figs., 2 tabs.

  2. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  3. Optimization of fly ash incorporation into cow dung-waste paper mixtures for enhanced vermidegradation and nutrient release.

    Science.gov (United States)

    Mupambwa, Hupenyu A; Mnkeni, Pearson N S

    2015-05-01

    This study was conducted to establish an appropriate mixture ratio of fly ash (F) to optimized cow dung-waste paper mixtures (CP) to develop a high-quality vermicompost using earthworms (). Fly ash was mixed with cow dung-waste paper mixtures at ratios of (F:CP) 1:1, 1:2, 1:3, 2:1, and 3:1 or CP alone and composted for 14 wk. Olsen P, inorganic N (NO, NO, and NH), C:N ratio, ash content, microbial biomass C, and humification parameters were measured together with scanning electron micrograph images to determine compost maturity. Based on C:N ratio, the extent of vermidegradation of the waste mixtures followed the decreasing order (F:CP) of 1:3 > 1:2 > 1:1 > CP alone > 2:1 > 3:1. Similarly, Olsen P was significantly higher ( percentage increase in extractable P was in the order CP alone > 1:2 > 1:3 > 1:1 > 2:1 > 3:1, with earthworm addition almost doubling P release across the 1:1, 1:2, and CP alone treatments. Fly ash incorporation enhanced conversion of organic N to the plant-available inorganic forms, with the 1:3 treatment resulting in the highest conversion. Scanning electron micrograph images confirmed the extent of vermidegradation reflected by the various humification parameters determined. Fly ash incorporation at the 1:2 ratio proved to be the most appropriate because it allows processing of more fly ash while giving a vermicompost with desirable maturity and nutritional properties. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. The Sound of Stigmatization: Sonic Habitus, Sonic Styles, and Boundary Work in an Urban Slum.

    Science.gov (United States)

    Schwarz, Ori

    2015-07-01

    Based on focus groups and interviews with student renters in an Israeli slum, the article explores the contributions of differences in sonic styles and sensibilities to boundary work, social categorization, and evaluation. Alongside visual cues such as broken windows, bad neighborhoods are characterized by sonic cues, such as shouts from windows. Students understand "being ghetto" as being loud in a particular way and use loudness as a central resource in their boundary work. Loudness is read as a performative index of class and ethnicity, and the performance of middle-class studentship entails being appalled by stigmatized sonic practices and participating in their exoticization. However, the sonic is not merely yet another resource of boundary work. Paying sociological attention to senses other than vision reveals complex interactions between structures anchored in the body, structures anchored in language, and actors' identification strategies, which may refine theorizations of the body and the senses in social theory.

  5. Bottom ash handling: why the outlook is dry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The author believes that dry systems are the way forward for bottom ash handling at coal fired power plants. The first two commercial installations of Clyde Bergemann's DRYCON system, in China, are due to enter operation shortly. The DRY ash CONveyor (DRYCON) employs fresh air flow to cool the ash, returning reheat energy to the boiler. It also addresses some problems encountered with previous dry technologies whilst increasing ash capacity and enhancing ash cooking. The advantages of the DRYCON over the wet submerged scraper conveyor are listed. 7 figs.

  6. The sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-09-01

    This report deals with the sonic borehole tool. First a review of the various elastic wave types is given and velocity values of compressional waves in various materials listed. Next follows a discussion of 3 models for the relation between transit time and porosity, and a comparison between the 3 models is made. The design of sonic tools is described including their geometry. The path of the sonic signals is discussed. Also the effect of environmental factors on the results of the tools are considered. Finally a number of applications are described. In two appendices the mechanics of deformable bodies and formulas for the velocity of sound are reviewed. (author)

  7. Phase I ResonantSonic CRADA report

    International Nuclear Information System (INIS)

    Richterich, L.R.; Amos, L.O.; Fancher, J.D.; McLellan, G.W.; Setzer, W.V.; Tuttle, B.G.; Hockey, R.L.; Ferris, R.H.; Riechers, D.M.; Pitman, S.G.

    1994-01-01

    This test report describes the Phase 1 testing and results of the ResonantSonic drilling method. This effort was conducted as part of a Cooperative Research and Development Agreement (CRADA) between the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The purpose of this demonstration was to evaluate the Water Development Corporation's ResonantSonic drilling system, modify components as necessary and determine compatible drilling applications for the ResonantSonic drilling method for use at facilities in the DOE complex and private industry. Initially, the ResonantSonic drill was used to drill several test holes at the Drilling Technology Test Site to assess the feasibility of drilling vertical and angle holes. After this initial phase, a 45 degree angle vapor extraction well was drilled to a depth of 168 feet at the 200 West Carbon Tetrachloride Site. This well was drilled and completed in nine days. Extensive geologic and vapor sampling were conducted while drilling this well. In addition, testing was also conducted at the test site to evaluated drilling with larger diameter casing (8 5/8 inch). Evaluation of the Resonant Sonic drilling method will be continued during the Phase 2 portion of testing to determine if improvements to the ResonantSonic system will make it a more viable method for drilling and sampling

  8. Field intercomparison of prevailing sonic anemometers

    Science.gov (United States)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  9. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  10. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  11. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  12. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  13. Enhanced Harnessing of the Graviola Bioactive Components Using a Neoteric Sonication Cum Microwave Coadjuvant Extraction Protocol

    Directory of Open Access Journals (Sweden)

    Se Chul Chun

    2018-02-01

    Full Text Available Graviola is one of the most accomplished natural anticancer therapists gaining popularity in recent times. Harnessing the full benefit from tapping all of its rich bioactive reservoirs is absolutely worthy and mandatory. It is in this regard that a well optimized extraction methodology gains paramount importance. In case of Graviola, no sophistication in terms of extraction methods is reported. A neoteric sonication cum microwave combined extraction technology was introduced that maximized the extraction process and minimized (7 min the extraction time. The extraction efficiency was validated based on the significant enrichment of bioactive ingredients in Graviola extracts following the sonication cum microwave combined protocol.

  14. Realism Assessment of Sonic Boom Simulators

    Science.gov (United States)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  15. Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator.

    Science.gov (United States)

    Murugesan, Sivananth; Iyyaswami, Regupathi

    2017-08-15

    Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Quantification of Radicals Generated in a Sonicator

    Directory of Open Access Journals (Sweden)

    Kassim Badmus

    2016-06-01

    Full Text Available The hydroxyl radical (OH• is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA and potassium iodide dosimetry were used to quantify and investigate the behaviour of the generated OH radical in a laboratory scale sonicator. The 2-hydroxyl terephthalic acid (HTA formed during terephthalic acid dosimetry was determined by optical fibre spectrometer. The production rate of HTA served as a means of evaluating and characterizing the OH• generated over given time in a sonicator. The influence of sonicator power intensity, solution pH and irradiation time upon OH• generation were investigated. Approximately 2.2 ´ 10-9 M s-1 of OH radical was generated during the sonication process. The rate of generation of the OH radicals was established to be independent of the concentration of the initial reactant. Thus, the rate of generation of OH• can be predicted by zero order kinetics in a sonicator.

  17. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    Science.gov (United States)

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Electrodialytic removal of heavy metals from MSWI fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    In this work a method called electrodialytic remediation, which is a combination of electrokinetic remediation and electrodialysis, is used for the extraction of heavy metals from MSWI fly ashes. It is shown that the use of electric current enhances the metal desorption significantly compared to traditional, chemical extraction. The metals of concern are Cd, Pb, Zn, Cu and Cr. Addition of ammonium citrate to the ash before and during remediation enhances the desorption and removal rate of all the examined heavy metals (Cd, Pb, Zn, Cu and Cr) compared to experiments only added distilled water. By introducing continuous stirring of the ash slurry during electrodialytic remediation, it is shown that the remediation rate is improved significantly compared to 'traditional' electrodialytic remediation experiments. The development of the acidic front is avoided due to better pH-control, and a better contact between the ash particles and the liquid is achieved. Up to 62% of the initial Cd, 8.3% Pb, 73% Zn, 59% Cu, and 20% Cr has been removed from two different fly ashes in electrodialytic remediation experiments. (orig.)

  19. Subjective Response to Simulated Sonic Booms in Homes

    Science.gov (United States)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic

  20. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    Science.gov (United States)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  1. Dispersion characteristics of negative refraction sonic crystals

    International Nuclear Information System (INIS)

    Wu, L.-Y.; Chen, L.-W.; Wang, R.C.-C.

    2008-01-01

    Dispersion characteristics of negative refraction sonic crystals are investigated. The plane wave expansion method is used to calculate the equifrequency surface; the dependences of refractive direction on frequencies and incident angles for triangular lattices are shown. There exist the positive and negative refractive waves which include k.V g ≥0 and k.V g ≤0 in the second band for the triangular system. We also use the finite element method to demonstrate that the relative intensity of the transmitted acoustic waves is dependent on incident frequencies and angles. The positions of the partial band gaps obtained by the plane wave expansion method are in good agreement with those obtained by the finite element method. The sonic crystals with negative effective index are shown to have higher transmission intensities. By using the negative refraction behavior, we can design a sonic crystal plane lens to focus a sonic wave

  2. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haibo [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Graduate University of the Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Hermann, Sascha, E-mail: sascha.hermann@zfm.tu-chemnitz.de [Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Schulz, Stefan E.; Gessner, Thomas [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Li, Wen J., E-mail: wenjungli@gmail.com [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR (China)

    2012-10-26

    Graphical abstract: We study the dispersing behavior of SWCNTs based on the surfactant and the optimization of sonication parameters including the sonication power and running time. Highlights: Black-Right-Pointing-Pointer We study the optimization of sonication for the surfactant-based dispersion of SWCNTs. Black-Right-Pointing-Pointer The absorption spectrum of SWCNT solution strongly depend on the sonication conditions. Black-Right-Pointing-Pointer The sonication process has an important influence on the average length and diameters of SWCNTs in solution. Black-Right-Pointing-Pointer Centrifugation mainly contributes to the decrease of nonresonant absorption background. Black-Right-Pointing-Pointer Under the same sonication parameters, the large-diameter tip performs dispersion of SWCNTs better than the small-diameter tip. -- Abstract: Non-covalent functionalization based on surfactants has become one of the most common methods for dispersing of single-walled carbon nanotubes (SWCNTs). Previously, efforts have mainly been focused on experimenting with different surfactant systems, varying their concentrations and solvents. However sonication plays a very important role during the surfactant-based dispersion process for SWCNTs. The sonication treatment enables the surfactant molecules to adsorb onto the surface of SWCNTs by overcoming the interactions induced by the hydrophobic, electrostatic and van der Waals forces. This work describes a systematic study of the influence of the sonication power and time on the dispersion of SWCNTs. UV-vis-NIR absorption spectra is used to analyze and to evaluate the dispersion of SWCNTs in an aqueous solution of 1 w/v% sodium deoxycholate (DOC) showing that the resonant and nonresonant background absorption strongly depends on the sonication conditions. Furthermore, the diameter and length of SWCNTs under different sonication parameters are investigated using atomic force microscopy (AFM).

  3. Recent Progress on Sonic Boom Research at NASA

    Science.gov (United States)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  4. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  5. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    Science.gov (United States)

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  6. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.

    Science.gov (United States)

    Shin, Jaewoo; Kong, Chanho; Cho, Jae Sung; Lee, Jihyeon; Koh, Chin Su; Yoon, Min-Sik; Na, Young Cheol; Chang, Won Seok; Chang, Jin Woo

    2018-02-01

    OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use. In the present study, the authors examined several sonication parameters of FUS influencing BBB opening in small animals. METHODS Changes in BBB permeability were observed during transcranial sonication using low-intensity FUS in 20 adult male Sprague-Dawley rats. The authors examined the effects of FUS sonication with different sonication parameters, varying acoustic pressure, center frequency, burst duration, microbubble (MB) type, MB dose, pulse repetition frequency (PRF), and total exposure time. The focal region of BBB opening was identified by Evans blue dye. Additionally, H & E staining was used to identify blood vessel damage. RESULTS Acoustic pressure amplitude and burst duration were closely associated with enhancement of BBB opening efficiency, but these parameters were also highly correlated with tissue damage in the sonicated region. In contrast, MB types, MB dose, total exposure time, and PRF had an influence on BBB opening without conspicuous tissue damage after FUS sonication. CONCLUSIONS The study aimed to identify these influential conditions and provide safety and efficacy values for further studies. Future work based on the current results is anticipated to facilitate the implementation of FUS sonication for drug delivery in various CNS disease states in the near future.

  7. Continuous and pulse sonication effects on transesterification of used vegetable oil

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2015-01-01

    Highlights: • We studied continuous and pulse sonication effects on transesterification reaction. • Pulse sonication appears to have superior effects on transesterification reaction. • Effects of various process parameters on FAMEs yield were discussed in detail. • Effects of ultrasonic intensity and power density were compared for both conditions. • Continuous sonication may be beneficial for short time and plug-flow conditions. - Abstract: This study reports on the effects of direct application of continuous and pulse sonication on transesterification reaction of used vegetable oil. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with the effects of different ultrasonic intensities and power densities were reported. Two process parametric evaluation studies were conducted to compare the effects of continuous and pulse sonication. These included methanol to oil ratio, catalyst concentration and reaction time effects on the transesterification reaction. For continuous sonication, a catalyst amount of 0.5% (wt/wt), methanol to oil ratio of 9:1 was sufficient to complete the transesterification reaction in 1–2 min at a power output of 150 W with a biodiesel yield of 93.5%. For pulse sonication, a maximum biodiesel yield of 98% was achieved at 2.5 min of reaction time, 9:1 methanol to oil ratio, and 1.25% catalyst. Generally, higher biodiesel yields were observed for pulse sonication compared to continuous sonication under any given process condition. Power density and ultrasonic intensity tests revealed that biodiesel yields were more sensitive to continuous sonication due to intense mixing. A plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction under continuous sonication

  8. On/off ratio enhancement in single-walled carbon nanotube field-effect transistor by controlling network density via sonication

    Science.gov (United States)

    Jang, Ho-Kyun; Choi, Jun Hee; Kim, Do-Hyun; Kim, Gyu Tae

    2018-06-01

    Single-walled carbon nanotube (SWCNT) is generally used as a networked structure in the fabrication of a field-effect transistor (FET) since it is known that one-third of SWCNT is electrically metallic and the remains are semiconducting. In this case, the presence of metallic paths by metallic SWCNT (m-SWCNT) becomes a significant technical barrier which hinders the networks from achieving a semiconducting behavior, resulting in a low on/off ratio. Here, we report on an easy method of controlling the on/off ratio of a FET where semiconducting SWCNT (s-SWCNT) and m-SWCNT constitute networks between source and drain electrodes. A FET with SWCNT networks was simply sonicated under water to control the on/off ratio and network density. As a result, the FET having an almost metallic behavior due to the metallic paths by m-SWCNT exhibited a p-type semiconducting behavior. The on/off ratio ranged from 1 to 9.0 × 104 along sonication time. In addition, theoretical calculations based on Monte-Carlo method and circuit simulation were performed to understand and explain the phenomenon of a change in the on/off ratio and network density by sonication. On the basis of experimental and theoretical results, we found that metallic paths contributed to a high off-state current which leads to a low on/off ratio and that sonication formed sparse SWCNT networks where metallic paths of m-SWCNT were removed, resulting in a high on/off ratio. This method can open a chance to save the device which has been considered as a failed one due to a metallic behavior by a high network density leading to a low on/off ratio.

  9. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier.

    Science.gov (United States)

    Del Valle-Zermeño, R; Chimenos, J M; Giró-Paloma, J; Formosa, J

    2014-12-01

    The presence of neoformed cement-like phases during the weathering of non-stabilized freshly quenched bottom ash favors the development of a bound pavement material with improved mechanical properties. Use of weathered and freshly quenched bottom ash mix layers placed one over the other allowed the retention of leached heavy metals and metalloids by means of a reactive percolation barrier. The addition of 50% of weathered bottom ash to the total subbase content diminished the release of toxic species to below environmental regulatory limits. The mechanisms of retention and the different processes and factors responsible of leaching strongly depended on the contaminant under concern as well as on the chemical and physical factors. Thus, the immediate reuse of freshly quenched bottom ash as a subbase material in road constructions is possible, as both the mechanical properties and long-term leachability are enhanced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Production of talc nano sheets via fine grinding and sonication processes

    International Nuclear Information System (INIS)

    Samayamutthirian Palaniandy; Noorina Hidayu Jamil Khairun Azizi Mohd Azizli; Syed Fuad Saiyid Hashim; Hashim Hussin

    2009-01-01

    Fine grinding of high purity talc in jet mill at low grinding pressure was carried out by varying the feed rate and classifier rotational speed. These ground particles were sonicated in laboratory ultrasonic bath by varying the soniction period at five levels. The ground and sonicated particles were characterized in terms of particle size and particle size distribution. Mechanochemical and sonochemical effect of talc was determine via X-ray diffraction. Particle shape and surface texture of the ground and sonicated product was determined via scanning electron microscope and transmission electron microscope. The ground particle size exhibited particle size below 10 μm with narrow size distribution. The reduction of peak intensity in (002) plane indicated the layered structure has been distorted. The sonicated talc shows that the thickness of the talc particles after the sonication process is 20 nm but the lateral particle size still remains in micron range. The reduction of the XRD peak intensity for (002) plane and thickness of sonicated talc as shown in SEM and TEM micrographs proves that fine grinding and sonication process produces talc nano sheets. (author)

  11. Comparison of sequential and single extraction in order to estimate environmental impact of metals from fly ash

    Directory of Open Access Journals (Sweden)

    Tasić Aleksandra M.

    2016-01-01

    Full Text Available The aim of this paper was to simulate leaching of metals from fly ash in different environmental conditions using ultrasound and microwave-assisted extraction techniques. Single-agent extraction and sequential extraction procedures were used to determine the levels of different metals leaching. The concentration of metals (Al, Fe, Mn, Cd, Co, Cr, Ni, Pb, Cu, As, Be in fly ash extracts were measured by Inductively Coupled Plasma-Atomic Emission Spectrometry. Single-agent extractions of metals were conducted during sonication times of 10, 20, 30, 40 and 50 min. Single-agent extraction with deionized water was also undertaken by exposing samples to microwave radiation at the temperature of 50°C. The sequential extraction was undertaken according to the BCR procedure which was modified and applied to study the partitioning of metals in coal fly ash. The microwave-assisted sequential extraction was performed at different extraction temperatures: 50, 100 and 150°C. The partitioning of metals between the individual fractions was investigated and discussed. The efficiency of the extraction process for each step was examined. In addition, the results of the microwave-assisted sequential extraction are compared to the results obtained by standard ASTM method. The mobility of most elements contained in fly ash is markedly pH sensitive. [Projekat Ministarstva nauke Republike Srbije, br. 172030, br. 176006 i br. III43009

  12. Incineration ashes conditioning by isostatic pressing and melting

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Alpha-bearing solid incineration wastes are conditioned for two principal reasons: to enhance the quality of the finished product for long-term storage, and to reduce the total waste volume. Isostatic pressing parameters were defined using containers 36 mm in diameter; the physicochemical properties of the compacted ashes were determined with 140 mm diameter containers and industrial feasibility was demonstrated with a large (300 mm diameter) container. Two types of ashes were used: ashes fabricated at Marcoule (either in devices developed by the CEA for the MELOX project with a standard MELOX composition, or by direct incineration at COGEMA's UP1 plant) and fly ash from a domestic waste incinerator. A major engineering study was also undertaken to compare the three known ash containment processes: isostatic pressing, melting, and cement-resin matrix embedding. The flowsheet, operational chronology and control principles were detailed for each process, and a typical plant layout was defined to allow comparisons of both investment and operating costs

  13. From Ecological Sounding Artifacts Towards Sonic Artifact Ecologies

    DEFF Research Database (Denmark)

    Erkut, Cumhur; Serafin, Stefania

    2016-01-01

    The discipline of sonic interaction design has been focused on the interaction between a single user and an artifact. This strongly limits one of the fundamental aspects of music as a social and interactive experience. In this paper we propose sonic artifact ecologies as a mean to examine interac...

  14. Environmental Pollution: Noise Pollution - Sonic Boom

    Science.gov (United States)

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  15. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  16. State of the art of sonic boom modeling

    Science.gov (United States)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  17. Evaluation of the IRAD flexible probe sonic extensometer

    International Nuclear Information System (INIS)

    Glenn, H.D.; Patrick, W.C.; Rector, N.L.; Butler, L.S.

    1986-08-01

    Evaluation of the IRAD sonic extensometer was initiated with an electronic-circuit analysis which indicated an accuracy of +-0.001 in. (0.025 mm). Readings from two sonic probes consistently were low by 2% for distances between magnetic anchors, but were accurate to +-0.002 and +-0.003 in. (0.051 and 0.076 mm) for small displacements. Although a series of high explosive tests subjected magnetic anchors to peak accelerations of from 2100 g to 32,000 g the anchors generally did not experience detectable damage. Sonic probe readings exhibited a sensitivity to temperature changes with two of the four segments monitored exceeding the correction factor cited by the manufacturer

  18. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  19. Merging Metallic Catalysts and Sonication: A Periodic Table Overview

    Directory of Open Access Journals (Sweden)

    Claudia E. Domini

    2017-04-01

    Full Text Available This account summarizes and discusses recent examples in which the combination of ultrasonic waves and metal-based reagents, including metal nanoparticles, has proven to be a useful choice in synthetic planning. Not only does sonication often enhance the activity of the metal catalyst/reagent, but it also greatly enhances the synthetic transformation that can be conducted under milder conditions relative to conventional protocols. For the sake of clarity, we have adopted a structure according to the periodic-table elements or families, distinguishing between bulk metal reagents and nanoparticles, as well as the supported variations, thus illustrating the characteristics of the method under consideration in target synthesis. The coverage focuses essentially on the last decade, although the discussion also strikes a comparative balance between the more recent advancements and past literature.

  20. Cleaning technologies with sonic horns and gas explosions at the waste-fired power plant in Offenbach (Germany); Reinigung mit Schall und Explosionsgenerator im Muellheizkraftwerk Offenbach

    Energy Technology Data Exchange (ETDEWEB)

    Fuele, Tibor Horst [Energieversorgung Offenbach AG, Offenbach am Main (Germany). Abt. Betrieb Kraftwerke

    2013-10-01

    During the operation of boiler systems, fouling (dirt, slag, ash, and soot deposits) appears to be inevitable in the combustion chamber and the flue gas path of power plants. The paper informs about the practical operating experience made in the waste incineration power plant in Offenbach with two not too well-known online cleaning technologies that can be easily retrofitted, i.e. acoustic sonic soot cleaning that can be used e.g. at air preheaters, economisers, catalysers and electrostatic precipitators, and explosion generator which is an automatic cleaning system that operates with controlled gas explosions to clean e.g. superheaters and evaporisers. (orig.)

  1. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  2. Geotechnical and Physico-Chemical Characterization of Low Lime Fly Ashes

    Directory of Open Access Journals (Sweden)

    Arif Ali Baig Moghal

    2013-01-01

    Full Text Available In order to explore the possibility of using low-lime fly ashes, the physical and chemical properties which have a direct bearing on their geotechnical and geoenvironmental behaviors have been investigated. In this paper, two types of low-lime fly ashes, originating from India, have been used. A brief account of various methods adopted in characterizing their physical, chemical, and geotechnical properties is presented. The relative importance of each of these properties in enhancing the bulk applicability of fly ashes has been brought out.

  3. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Koh, Byumseok; Cheng, Wei

    2015-08-01

    Sonication process is regularly adopted for dispersing single-walled carbon nanotubes (SWCNTs) in an aqueous medium. This can be achieved by either covalent functionalization of SWCNTs with strong acid or by noncovalent functionalization using dispersants that adsorb onto the surface of SWCNTs during dispersion. Because the dispersion process is usually performed using sonication, unintentional free radical formation during sonication process may induce covalent modification of SWCNT surface. Herein, we have systematically investigated the status of SWCNT surface modification under various sonication conditions using Raman spectroscopy. Comparing ID /IG (Raman intensities between D and G bands) ratio of SWCNTs under various sonication conditions suggests that typical sonication conditions (1-6 h bath sonication with sonication power between 3 and 80 W) in aqueous media do not induce covalent modification of SWCNT surface. In addition, we confirm that SWCNT dispersion with single-stranded DNA (ssDNA) involves noncovalent adsorption of ssDNA onto the surface of SWCNTs, but not covalent linkage between ssDNA and SWCNT surface. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor.

    Science.gov (United States)

    Zhang, Yongsheng; Zhao, Lilin; Guo, Ruitao; Song, Na; Wang, Jiawei; Cao, Yan; Orndorff, William; Pan, Wei-ping

    2015-07-01

    In this study, the mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor were investigated through thermal decomposition methods. The results show that the mercury adsorption performance of the HBr-modified fly ash was enhanced significantly. The mercury species adsorbed by unmodified fly ash were HgCl2, HgS and HgO. The mercury adsorbed by HBr-modified fly ash, in the entrained-flow reactor, existed in two forms, HgBr2 and HgO, and the HBr was the dominant factor promoting oxidation of elemental mercury in the entrained-flow reactor. In the current study, the concentration of HgBr2 and HgO in ash from the fine ash vessel was 4.6 times greater than for ash from the coarse ash vessel. The fine ash had better mercury adsorption performance than coarse ash, which is most likely due to the higher specific surface area and longer residence time. Copyright © 2015. Published by Elsevier B.V.

  5. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  6. Applications of antireflection coatings in sonic crystal-based acoustic devices

    International Nuclear Information System (INIS)

    Wang Yun; Deng Ke; Xu Shengjun; Qiu Chunyin; Yang Hai; Liu Zhengyou

    2011-01-01

    The unwanted reflection seriously baffles the practical applications of sonic crystals, such as for various acoustic lenses designed by utilizing the in-band properties of sonic crystals. Herein we introduce the concept of the antireflection coating into the sonic crystal-based devices. The efficiency of such accessorial structures is demonstrated well by an originally high reflection system. Promising perspectives can be anticipated in extending the antireflection coating layers into more general acoustic applications through a flexible design process.

  7. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    Directory of Open Access Journals (Sweden)

    Sam Stade

    2014-07-01

    Full Text Available An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol’skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21–39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol’skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  8. Shuttle sonic boom - Technology and predictions. [environmental impact

    Science.gov (United States)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  9. Acoustic transparency in two-dimensional sonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es

    2009-01-15

    Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.

  10. Evaluation of Rheological Properties and Swelling Behaviour of Sonicated Scleroglucan Samples

    Directory of Open Access Journals (Sweden)

    Siddique Akber Ansari

    2012-02-01

    Full Text Available Scleroglucan is a natural polysaccharide that has been proposed for various applications. However there is no investigation on its property variations when the molecular weight of this polymer is reduced. Scleroglucan was sonicated at two different polymer concentrations for different periods of time and the effect of sonication was investigated with respect to molecular weight variations and rheological properties. Molar mass, estimated by viscometric measurements, was drastically reduced already after a sonication for a few min. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording the mechanical spectra and the flow curves. A comparison with the system prepared with the dialysed polymer was also carried out. The anisotropic elongation, observed with tablets of scleroglucan and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  11. Superior photocatalytic, electrocatalytic, and self-cleaning applications of Fly ash supported ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Thirumalai, Kuppulingam; Balachandran, Subramanian [Department of Chemistry, Annamalai University, Annamalainagar, 608 002, Tamil Nadu (India); Swaminathan, Meenakshisundaram, E-mail: chemres50@gmail.com [Department of Chemistry, Annamalai University, Annamalainagar, 608 002, Tamil Nadu (India); Nanomaterials Laboratory, International Research Centre, Kalasalingam Universty, Krihnankoil, 626126 (India)

    2016-11-01

    Ever growing research on modified semiconductor oxides made a significant progress in catalytic functional materials. In this article, we report the modification of ZnO photocatalyst by a simple hydrothermal decomposition method utilizing the cheaply available industrial waste fly ash. This modified Fly ash-ZnO photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HR-TEM), Atomic force microscopy (AFM), photoluminescence spectroscopy (PL) and diffuse reflectance spectroscopy (DRS). The XRD pattern indicates the presence of fly ash components and the hexagonal wurtzite structured ZnO. TEM images reveal well defined nanorod like structure. Reduction of photoluminescence intensity of Fly ash-ZnO at 418 nm, when compared to, prepared ZnO, indicates the suppression of recombination of the photogenerated electron–hole pair by loaded Fly ash on ZnO. Fly ash-ZnO exhibits enhanced photocatalytic activity for the degradation of azo dyes Reactive Orange 4, Rhodamine-B and Trypan Blue. This catalyst shows higher electrocatalytic activity than ZnO in the oxidation of methanol. Significant hydrophobicity of Fly ash-ZnO reveals its self cleaning property. - Highlights: • The degradation efficiency of Fly ash-ZnO under UV and Solar irradiation is greater than prepared ZnO and TiO{sub 2}‒P25. • Electrocatalytic activity of Fly ash-ZnO exhibits enhanced current production by methanol oxidation. • Fly ash-ZnO shows the high hydrophobicity than ZnO, it can be used as a self cleaning material for industrial applications.

  12. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  13. High-resolution proton and carbon-13 NMR of membranes: why sonicate?

    International Nuclear Information System (INIS)

    Oldfield, E.; Bowers, J.L.; Forbes, J.

    1987-01-01

    The authors have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-chloresterol (1:1) multibilayers, using magic-angle sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol system, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while the 13 C NMR, the authors demonstrate that most 13 C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13 C MASS NMR spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultransonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra

  14. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    Science.gov (United States)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  15. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  16. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    Directory of Open Access Journals (Sweden)

    Baraba Anja

    2015-01-01

    Full Text Available The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group, according to the pretreatment of the dentin: (1 control group, (2 air abrasion group, and (3 sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05. Mean microtensile bond strength (MPa values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.

  17. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  18. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  19. An Intermediate in the evolution of superfast sonic muscles

    Directory of Open Access Journals (Sweden)

    Mok Hin-Kiu

    2011-11-01

    Full Text Available Abstract Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1 causing the tendon and bladder to snap back (part 2 generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.

  20. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  1. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  2. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  3. Increased sensitivity in thick-target particle induced X-ray emission analyses using dry ashing for preconcentration

    International Nuclear Information System (INIS)

    Lill, J.-O.; Harju, L.; Saarela, K.-E.; Lindroos, A.; Heselius, S.-J.

    1999-01-01

    The sensitivity in thick-target particle induced X-ray emission (PIXE) analyses of biological materials can be enhanced by dry ashing. The gain depends mainly on the mass reduction factor and the composition of the residual ash. The enhancement factor was 7 for the certified reference material Pine Needles and the limits of detection (LODs) were below 0.2 μg/g for Zn, Cu, Rb and Sr. When ashing biological materials with low ash contents such as wood of pine or spruce (0.3% of dry weight) and honey (0.1% of wet weight) the gain was far greater. The LODs for these materials were 30 ng/g for wood and below 10 ng/g for honey. In addition, the ashed samples were more homogenous and more resistant to changes during the irradiation than the original biological samples. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Reuse of Partially Sulphated CFBC Ash as an SO2 Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yinghai; Jia, Lufei; Anthony, E.J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A1M1 (Canada); Nobili, M.; Telesca, A. [Department of Environmental Engineering and Physics, University of Basilicata, Viale dell' Ateneo, Lucano 10, 85100 Potenza (Italy); Montagnaro, F. [Department of Chemistry, University of Naples ' Federico II' , Monte Sant' Angelo, 80126 Naples (Italy)

    2010-06-15

    Ashes produced from fluidized bed combustors (FBC) burning high-sulphur fuels often contain 20-30 % unreacted CaO because of the limestone added to remove SO2 in situ. This paper presents the results from experiments into reactivating partially sulphated FBC ash (both bed ash and fly ash) with liquid water, steam and sodium carbonate. The water- or steam-hydrated ashes were subsequently re-sulphated in a thermogravimetric analyzer (TGA) with simulated flue gas. The TGA results show that, while liquid water and steam successfully hydrate and reactivate the unreacted CaO in the bed ash, the treated ashes sulphated to widely different extents. Attempts to reactivate fly ash with hydration failed, although fly ash by itself is extremely reactive. A pilot-scale mini-circulating FBC (CFBC) was also used to evaluate the results of reactivation on the bed ash by hydrating with liquid water and admixtures of inorganic salt (Na2CO3) in the form of either powder or solution. When the treated ash was re-injected into the combustor with the fuel, the effect on SO2 removal efficiency was negligible if Na2CO3 was added as powder. Doping with aqueous solution resulted in enhanced SO2 removal; however, the extent was lower than the level achieved if only water hydration was employed. Increasing the amount of water (from 10% to 30%) to reactivate the ash did not improve the sulphur capture capacity in the mini-CFBC. Overall, this study suggests that the most practical way for re-use of the partially sulphated bed ash as a sulphur sorbent is reactivation by water. A proposal for utilization of the fly ash in an economically reasonable way is also discussed.

  5. Research on Test-bench for Sonic Logging Tool

    Directory of Open Access Journals (Sweden)

    Xianping Liu

    2016-01-01

    Full Text Available In this paper, the test-bench for sonic logging tool is proposed and designed to realize automatic calibration and testing of the sonic logging tool. The test-bench System consists of Host Computer, Embedded Controlling Board, and functional boards. The Host Computer serves as the Human Machine Interface (HMI and processes uploaded data. The software running on Host Computer is designed on VC++, which is developed based on multithreading, Dynamic Linkable Library (DLL and Multiple Document Interface (MDI techniques. The Embedded Controlling Board uses ARM7 as the microcontroller and communicates with Host Computer via Ethernet. The Embedded Controlling Board software is realized based on embedded uclinux operating system with a layered architecture. The functional boards are designed based on Field Programmable Gate Array (FPGA and provide test interfaces for the logging tool. The functional board software is divided into independent sub-modules that can repeatedly be used by various functional boards and then integrated those sub-modules in the top layer. With the layered architecture and modularized design, the software system is highly reliable and extensible. With the help of designed system, a test has been conducted quickly and successfully on the electronic receiving cabin of the sonic logging tool. It demonstrated that the system could greatly improve the production efficiency of the sonic logging tool.

  6. Soybean growth on fly ash-amended strip mine soils

    Energy Technology Data Exchange (ETDEWEB)

    Fail, Jr, J L; Wochok, Z S

    1977-01-01

    The use of fly ash as an amendment for strip mine soils has been studied under field conditions. Soils ranging in pH from 4.0 to 6.0 were tested. The addition of fly ash in all cases was effective as an acid soil neutralizer and substantially enhanced the growth and development of all experimental plants. The parameters used in growth analyses were plant height, dry weight, root/shoot ratios, nodulation, pod production, and nitrogen fixing capacity for legumes.

  7. Trace element toxicity in VA mycorrhizal cucumber grown on weathered coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dosskey, M.G.; Adriano, D.C. (University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1993-11-01

    Mycorrhizal colonization is widely recognized as enhancing plant growth on severely disturbed sites. A greenhouse pot experiment was conducted to determine if inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi will enhance vegetation establishment on abandoned coal fly ash basinss, Spores of Glomus intraradices (Schenck and Smith) and Glomus etunicatum (Becker and Gerdemann) were added to weathered precipitator ash (EC-0.91 dSm[sup -1], pH 5.0) and to a pasteurized soils of the same pH (Grossarenic Paleudult, 92% sand, 1% organic matter). Some soil and ash were left unamended as non-mycorrhizal controls. Cucumber (Cucumis sativus L. cv. Poinsette 76) seeds were sown, watered regularly, and fertilized periodically with macronutrient solution. By 8 weeks all ash-grown plants exhibited smaller leaves with leaf margin curl and necrosis, and plant biomass was significantly less (0.75x) than soil-grown plants. Based on analysis of 18 elements in plant tissues, toxicity to B, Mn, or Zn could have caused growth suppression, confirming trace element problems for plant growth on fly ash. For plants grown on fly ash, G. etunicatum was the only fungus that colonized roots (20% of root length reduced from 67% on soil) and it suppressed plant growth to 0.80 x that of uninoculated ash-grown plants. Correspondingly, shoot Zn concentration in G. etunicatum-inoculated plants was 3.5 x higher than in uninoculated plants and at generally toxic levels (273 mg kg[sup -1]). Glomus etunicatum had no other significant effects on elemental concentrations. These results indicate that VAM colonization in acid, weathered fly ash suppressed plant growth by facilitating uptake of Zn to toxic levels, and implies a limitation to successful use of VAM for vegetation establishment on abandoned coal fly ash basins.

  8. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  9. Promoting effect of various biomass ashes on the steam gasification of low-rank coal

    International Nuclear Information System (INIS)

    Rizkiana, Jenny; Guan, Guoqing; Widayatno, Wahyu Bambang; Hao, Xiaogang; Li, Xiumin; Huang, Wei; Abudula, Abuliti

    2014-01-01

    Highlights: • Biomass ash was utilized to promote gasification of low rank coal. • Promoting effect of biomass ash highly depended on AAEM content in the ash. • Stability of the ash could be improved by maintaining AAEM amount in the ash. • Different biomass ash could have completely different catalytic activity. - Abstract: Application of biomass ash as a catalyst to improve gasification rate is a promising way for the effective utilization of waste ash as well as for the reduction of cost. Investigation on the catalytic activity of biomass ash to the gasification of low rank coal was performed in details in the present study. Ashes from 3 kinds of biomass, i.e. brown seaweed/BS, eel grass/EG, and rice straw/RS, were separately mixed with coal sample and gasified in a fixed bed downdraft reactor using steam as the gasifying agent. BS and EG ashes enhanced the gas production rate greater than RS ash. Higher catalytic activity of BS or EG ash was mainly attributed to the higher content of alkali and alkaline earth metal (AAEM) and lower content of silica in it. Higher content of silica in the RS ash was identified to have inhibiting effect for the steam gasification of coal. Stable catalytic activity was remained when the amount of AAEM in the regenerated ash was maintained as that of the original one

  10. Sonic Hedgehog Signaling Promotes Tumor Growth

    National Research Council Canada - National Science Library

    Bushman, Wade

    2007-01-01

    ... of the DOD New Investigator award indicate that Shh signaling promotes tumor growth. This proposal addresses the hypothesis that Sonic hedgehog signaling promotes tumor growth by activating stromal cell gene expression...

  11. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    Science.gov (United States)

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  12. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  13. Sonic journeys with the dead

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits

    This audio-paper is a site-specific investigation of relations between a gravesite at Vor Frelser Cemetery (Cemetery of Our Saviour), Copenhagen, Denmark, its cultural history and publicly co-constructed memories. The audio-paper follows a non-representational approach to sonic media and the meta...

  14. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show th...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...... that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  15. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    Science.gov (United States)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  16. Strength Performance of Blended Ash Based Geopolymer Mortar

    Science.gov (United States)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

  17. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  18. Resveratrol Enhances Neurite Outgrowth and Synaptogenesis Via Sonic Hedgehog Signaling Following Oxygen-Glucose Deprivation/Reoxygenation Injury

    Directory of Open Access Journals (Sweden)

    Fanren Tang

    2017-09-01

    Full Text Available Background/Aims: Neurite outgrowth and synaptogenesis are critical steps for functional recovery after stroke. Resveratrol promotes neurite outgrowth and synaptogenesis, but the underlying mechanism is not well understood, although the Sonic hedgehog (Shh signaling pathway may be involved. Given that resveratrol activates sirtuin (Sirt1, the present study examined whether this is mediated by Shh signaling. Methods: Primary cortical neuron cultures were pretreated with drugs before oxygen-glucose deprivation/reoxygenation (OGD/R. Cell viability and apoptosis were evaluated with Cell Counting Kit 8 and by terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Neurite outgrowth and synaptogenesis were assessed by immunocytochemistry and western blotting, which was also used to examine the expression of Sirt1 and Shh signaling proteins. Results: Resveratrol and the Smoothened (Smo agonist purmophamine, which activates Shh signaling, increased viability, reduced apoptosis, and stimulated neurite outgrowth after OGD/R injury. Moreover, the expression of growth-associated protein(GAP-43, synaptophysin, Shh, Patched (Ptc-1, Smo, glioma-associated oncogene homolog (Gli-1, and Sirt1 were upregulated under these conditions. These effects were reversed by treatment with the Smo inhibitor cyclopamine, whereas the Sirt1 inhibitor sirtinol reduced the levels of Shh, Ptc-1, Smo, and Gli-1. Conclusions: Resveratrol reduces neuronal injury following OGD/R injury and enhances neurite outgrowth and synaptogenesis by activating Shh signaling, which in turn induces Sirt1.

  19. Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Dawei Xu

    2018-04-01

    Full Text Available Fly ash includes different mineral phases. This paper reported on the preparation of a novel lauric acid (LA/fly ash (FA composite by vacuum impregnation as a form-stable phase change material (PCM for thermal energy, and especially investigated the effect of the hydrochloric acid-treated fly ash (FAh on the thermal energy storage performance of the composites. The morphology, crystalline structure, and porous textures of the samples were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray fluorescence (XRF, and differential scanning calorimetry (DSC. The results indicated that hydrochloric acid treatment was beneficial to the increase of loading capacity and crystallinity of LA in the LA/FAh composite, which caused an enhanced thermal storage capacity with latent heats for melting and freezing of LA/FAh (80.94 and 77.39 J/g, higher than those of LA/FA (34.09 and 32.97 J/g, respectively. Furthermore, the mechanism of enhanced thermal storage properties was investigated in detail.

  20. Effect of sonication on technological properties of beef

    Directory of Open Access Journals (Sweden)

    Z. J. Dolatowski

    2007-06-01

    Full Text Available Ultrasound treatment during rigor mortis period led to an acceleration of aging processes. No significant influence of sonication on acidity during ageing was observed. Ultrasound treatment did not influence the lightness, but according to the shear force measurements, improve meat tenderness. Differentiated technological properties of examined samples may result from influence of ultrasound on protein structures of meat. As a result of ultrasound treatment an increase of free calcium ions concentration occurred. Obtained results pointed out that sonication may be an effective method of formation of technological properties of beef during ageing.

  1. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  2. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Science.gov (United States)

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  3. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  4. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  5. A brief review on fly ash and its use in surface engineering

    Science.gov (United States)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  6. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  7. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  8. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E.; Thompson, K.M.; Barrow, J.C.

    1993-01-01

    ResonantSonic SM drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  9. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  10. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    Science.gov (United States)

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (PCR, especially of low-virulent organisms.

  11. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  12. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  13. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  14. Glass-ceramic from mixtures of bottom ash and fly ash.

    Science.gov (United States)

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Natural radioactivity of coal and fly ash at the Nikola Tesla B TPP

    Directory of Open Access Journals (Sweden)

    Kisić Dragica M.

    2013-01-01

    Full Text Available Serbian thermal power plants (TPPs produce siliceous fly ash from lignite in the quantity of approximately 6 million tons per year. The potential market for the use of fly ash is operational, but for the time being, only used by cement producers. Fly ash radioactivity could be one of the major points of concern when larger use of fly ash is planned, particularly in the Serbian construction industry. Radioactivity measurements have been conducted regularly for decades. This paper presents the results of a ten-year fly ash radioactivity measurements at the Nikola Tesla B TPP located in Obrenovac. In addition, the paper compares the natural radionuclides coal content data combusted by the Nikola Tesla B TPP boilers coming from the Kolubara Basin and ash created during coal combustion. Fly ash created in the Nikola Tesla TPPs boilers is characterised by the increased concentration of the natural radionuclides content compared to coal. This is the so-called technologically enhanced natural radioactivity (Technologically Enhanced Occurring Radioactive Material - TENORM of industrial waste, whereas the average specific activities: 232Th in coal amount to 25.2 Bq/kg, and in fly ash and coal 84.2 Bq/kg and 238U 38.3 Bq/kg, respectively. Following the obtained natural radionuclides content results it may be concluded that the Nikola Tesla B TPP ash may be disposed into the environment. Ash may be used also in the construction industry (civil engineering. In building construction applications, ash share as the additive to other building materials depends from its physical and chemical characteristics, as well as from the radionuclides activity: 266Ra, 232Th and 40K. Unlike the thermal power plants regularly (once a year testing the specific natural radionuclides activity in the combusted coal and boiler fly ash, Electric Power Industry of Serbia has not performed large-scale investigations of the natural radionuclides content in coal within the Kolubara

  16. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  17. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  18. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  19. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Science.gov (United States)

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi. Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  20. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  1. Intensification of transesterification via sonication numerical simulation and sensitivity study

    International Nuclear Information System (INIS)

    Janajreh, Isam; ElSamad, Tala; Noorul Hussain, Mohammed

    2017-01-01

    Highlights: • 3D numerical simulation of transesterification is accomplished. • A non-isothermal, reactive Navier–stokes was carried out. • Conventional and sonicated process was compared as far as reaction kinetics and yield. • Higher kinetic rates are achieved at lower molar ratios in sonicated process. • It validates feasibility of numerical simulation for transesterification assessment. - Abstract: Transesterification is known as slow reaction that can take over several hours to complete. The process involves two immiscible reactants to produce the biodiesel and the byproduct glycerol. Biodiesel commercialization has always been hindered by the long process times of the transesterification reaction. Catalyzing the process and increasing the agitation rate is the mode of intensifying the process additional to the increase of the molar ratio, temperature, circulation that all penalize the overall process metrics. Finding shorter path by reducing the reaction into a few minutes and ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction moves the technology from the slow batch process into the high throughput continuous process. In a practical sense this means a huge optimization for the biodiesel production process which opens pathways for faster, voluminous and cheaper production. The mechanism of sonication assisted reaction is explained by the creation of microbubbles which increases the interfacial surface reaction areas and the presence of high localized temperature and turbulence as these microbubbles implode. As a result the reaction kinetics of sonicated transesterification as inferred by several authors is much faster. The aim of this work is to implement the inferred rates in a high fidelity numerical reactive flow simulation model while considering the reactor geometry. It is based on Navier–Stokes equations coupled with energy equation for non-isothermal flow and the transport

  2. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  3. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  4. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  5. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  6. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  8. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  9. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  10. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  11. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-01-01

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  12. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes

    KAUST Repository

    Thompson, Joshua A.

    2012-08-01

    The effect of typical membrane processing conditions on the structure, interfacial morphology, and gas separation performance of MOF/polymer nanocomposite membranes is investigated. In particular, the ZIF-8/Matrimid® nanocomposite membrane system is examined, and it is shown that ultrasonication - a commonly employed particle dispersion method - induces significant changes in the shape, size distribution, and structure of ZIF-8 particles suspended in an organic solvent during membrane processing. Dynamic light scattering and electron microscopy reveal that ZIF-8 nanoparticles undergo substantial Ostwald ripening when subjected to high intensity ultrasonication as often required in the formation of MOF/polymer nanocomposite membranes. Other characterization techniques reveal that the ripened particles exhibit lower pore volumes and lower surface areas compared to the as-made material. ZIF-8/Matrimid® composite membranes fabricated using two sonication methods show significant differences in microstructure. Permeation measurements show significant enhancement in permeability of CO 2 and increased CO 2/CH 4 selectivity in membranes fabricated with high-intensity sonication. In contrast, composite membranes prepared with low-intensity sonication are found to be defective. A careful evaluation of MOF membrane processing conditions, as well as knowledge of the properties of the MOF material after these membrane processing steps, are necessary to develop reliable processing-structure-property relations for MOF-containing membranes. © 2012 Elsevier Inc. All rights reserved.

  13. Flow tilt angles near forest edges – Part 1: Sonic anemometry

    Directory of Open Access Journals (Sweden)

    E. Dellwik

    2010-05-01

    Full Text Available An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges.

    Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty were evaluated and found to be highly significant. Since the attack angle distribution of the wind on the sonic anemometer is a function of atmospheric stratification, an instrumental error caused by imperfect flow distortion correction is also a function of the atmospheric stratification. In addition, it is discussed that the sonic anemometers have temperature dependent off-sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b, sonic anemometer accuracy for measuring mean flow tilt angles was estimated to between 2° and 3°. Use of planar fit algorithms, where the mean vertical velocity is calculated as the difference between the neutral and non-neutral flow, does not solve this problem of low accuracy and is not recommended.

    Because of the large uncertainties caused by flow distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies at the site.

    Since the mean flow tilt angles do not follow the terrain, an estimate of the vertical advection

  14. Enhanced chlorophenol sorption of soils by rice-straw-ash amendment

    International Nuclear Information System (INIS)

    Liu, Jen-Chyi; Tzou, Yu-Min; Lu, Yi-Hsien; Wu, Jeng-Tzung; Cheng, Mei-Ping; Wang, Shan-Li

    2010-01-01

    Rice-straw burning is a common post-harvest practice on rice paddy land, which results in the accumulation of rice-straw ash (RSA) in paddy soil. Because the occurrence of RSA in soil may affect the fate and transport of contaminants, this study investigated the sorption of 3-chlorophenol (3-CP) on RSA and RSA amended soils to evaluate the sorptive properties of RSA in soils. The results showed that the sorption of 3-CP to RSA proceeds through a surface reaction rather than through partitioning and that the neutral form of 3-CP is preferentially sorbed to the surface when compared to the deprotonated anionic form of 3-CP. The addition of RSA to the soils enhanced the overall 3-CP sorption, indicating that RSA amendment may be applied to retard the movement of 3-CP in contaminated soils. As the RSA content in the soils was increased from 0% to 2%, the Langmuir sorption maximum of the soils increased from 18-80 to 256-274 mg kg -1 . Thus, RSA contributed more to the total sorption of the soils than other major components in the soils. Nonetheless, the 3-CP sorption of the soils containing RSA was less than the combination of pure RSA and the soils, thereby indicating that the 3-CP sorption of RSA was suppressed. This may be attributed to the competition of organic matter or other soil components for the surface binding sites of RSA.

  15. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  16. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Science.gov (United States)

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  17. Sonication assisted Agrobacterium -mediated transformation of ...

    African Journals Online (AJOL)

    In this study, a protocol was developed to obtain stable lines of the Spring Dendrobium cultivar 'Sanya' via sonication assisted Agrobacterium-mediated transformation (SAAT) of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strain LBA4404 was used with the binary vector AG205 containing the chalcone ...

  18. A Review of the Application of Ultrasound in Bioleaching and Insights from Sonication in (BioChemical Processes

    Directory of Open Access Journals (Sweden)

    Shruti Vyas

    2017-12-01

    Full Text Available Chemical and biological leaching is practiced on a commercial scale for the mining of metals from ores. Although bioleaching is an environmentally-friendly alternative to chemical leaching, one of the principal shortcomings is the slow rate of leaching which needs to be addressed. The application of ultrasound in bioleaching, termed sonobioleaching, is a technique which has been reported to increase the rate and extent of metal extraction. This article reviews efforts made in the field of sonobioleaching. Since bioleaching is effectively a biological and chemical process, the effects of sonication on chemical leaching/reactions and biological processes are also reviewed. Although sonication increases metal extraction by increasing the metabolite production and enhanced mixing at a micro scale, research is limited in terms of the microorganisms explored. This paper highlights some shortcomings and limitations of existing techniques, and proposes directions for future research.

  19. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  20. Design methodology for a community response questionnaire on sonic boom exposure

    Science.gov (United States)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-01-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  1. Synthesis of zeolite from coal fly ashes with different silica-alumina composition

    Energy Technology Data Exchange (ETDEWEB)

    Miki Inada; Yukari Eguchi; Naoya Enomoto; Junichi Hojo [Kyushu University, Fukuoka (Japan). Department of Chemistry and Biochemistry, Graduate School of Engineering

    2005-02-01

    Coal fly ashes can be converted into zeolites by hydrothermal alkaline treatment. This study focuses on the effect of Si/Al molar ratio of the fly ash source on the type of formed zeolite, which also is affected by the alkaline condition. The fly ashes were mixed with an aqueous NaOH solution and hydrothermally treated at about 100{degree}C. Zeolite Na-P1 and/or hydroxy-sodalite appeared after the treatment. Zeolite Na-P1 predominantly formed from silica-rich fly ash at a low-NaOH concentration. The cation exchange capacity of the product with a large content of zeolite Na-P1 reached a value of 300 meq/100 g. The type of the product was controlled by addition of aerosil silica or alumina. It was found that silica addition effectively enhances the formation of zeolite Na-P1, even at a high-NaOH concentration. These results were discussed on the basis of a formation mechanism of zeolite from coal fly ash through dissolution-precipitation process. 10 refs., 6 figs., 1 tab.

  2. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    Science.gov (United States)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  3. Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy.

    Directory of Open Access Journals (Sweden)

    Jessica Gagné-Sansfaçon

    Full Text Available BACKGROUND: Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. CONCLUSIONS/SIGNIFICANCE: Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.

  4. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  5. Survey for tolerance to emerald ash borer within North American ash species

    Science.gov (United States)

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  6. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  7. Cast-concrete products made with FBC ash and wet-collected coal-ash

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D. [University of Wisconsin, Milwaukee, WI (United States)

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  8. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  9. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  10. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog.

    Science.gov (United States)

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-10-04

    The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants.

  11. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor.

    Science.gov (United States)

    Jagodzinski, Lucas S; O'Donoghue, Marian T; Heffernan, Liam B; van Pelt, Frank N A M; O'Halloran, John; Jansen, Marcel A K

    2018-06-01

    The use of wood as a sustainable biofuel results in the generation of residual wood ash. The ash contains high amounts of plant macronutrients such as phosphorus, potassium, calcium as well as several micronutrients. To explore the potential use of wood ash as a fertiliser, the growth enhancing properties of Sitka spruce (Picea sitchensis Bong.) wood ash were contrasted with the potential toxic action, using common duckweed (Lemna minor L.) as a model test species. The growth of L. minor exposed to wood bottom and fly ash solids and corresponding leachates was assessed in ultra-oligotrophic and eutrophic media. Ash solids and leachates were also tested as neutralized preparations. Suspended ash solids promoted L. minor growth up to concentrations of 2.5-5g/L. Leachates promoted growth up to 10g ash equivalents per litre, but for bottom ash only. Beneficial effects of wood ash were most pronounced on ultra-oligotrophic medium. However, on such nutrient-deficient medium severe inhibition of L. minor biomass and frond growth was observed at relatively low concentrations of fly ash (EC 50 =14g/L). On standard, eutrophic medium, higher concentrations of fly ash (EC 50 =21g/L), or neutralized fly ash (EC 50 =37g/L) were required to impede growth. Bottom ash, or neutralized bottom ash retarded growth at concentrations of 51g/L and 74g/L (EC 50 ), respectively, in eutrophic medium. It appears that phytotoxicity is due to the elemental composition of the ash, its alkaline character, and possible interactions between these two properties. Growth promotion was due to the substantial content of plant nutrients. This study underlines the importance of the receiving environment (nutrient status and pH) in determining the balance between toxicity and growth promotion, and shows that the margin between growth promoting and toxicity inducing concentrations can be enlarged through ash neutralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  13. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Fullana, Andrés; Yoshikawa, Kunio

    2016-01-01

    Highlights: • Ash behavior of 29 different feedstock interpreted using multivariate data analysis. • Two different groups identified based on char ash content and ash yield. • Solubility of individual elements evaluated based on a smaller data set. • Ash from industrial sludge contained anthropogenic metals with low solubility. - Abstract: Differences in ash behavior during hydrothermal treatment were identified based on multivariate data analysis of literature information on 29 different feedstock. In addition, the solubility of individual elements was evaluated based on a smaller data set. As a result two different groups were distinguished based on char ash content and ash yield. Virgin terrestrial and aquatic biomass, such as different types of wood and algae, in addition to herbaceous and agricultural biomass, bark, brewer’s spent grain, compost and faecal waste showed lower char ash content than municipal solid wastes, anaerobic digestion residues and municipal and industrial sludge. Lower char ash content also correlated with lower ash yield indicating differences in chemical composition and ash solubility. Further evaluation of available data showed that ash in industrial sludge mainly contained anthropogenic Al, Fe and P or Ca and Si with low solubility during hydrothermal treatment. Char from corn stover, miscanthus, switch grass, rice hulls, olive, artichoke and orange wastes and empty fruit bunch had generally higher contents of K, Mg, S and Si than industrial sludge although differences existed within the group. In the future information on ash behavior should be used for enhancing the fuel properties of char based on feedstock type and hydrothermal treatment conditions.

  14. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  15. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  16. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    Science.gov (United States)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  17. Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation.

    Science.gov (United States)

    Rai, U N; Pandey, K; Sinha, S; Singh, A; Saxena, R; Gupta, D K

    2004-05-01

    A revegetation trial was conducted to evaluate the feasibility of growing a legume species, Prosopis juliflora L., on fly ash ameliorated with combination of various organic amendments, blue-green algal biofertilizer and Rhizobium inoculation. Significant enhancements in plant biomass, photosynthetic pigments, protein content and in vivo nitrate reductase activity were found in the plants grown on ameliorated fly ash in comparison to the plants growing in unamended fly ash or garden soil. Higher growth was obtained in fly ash amended with blue-green algae (BGA) than farmyard manure or press mud (PM), a waste from sugar-processing industry, due to the greater contribution of plant nutrients, supply of fixed nitrogen and increased availability of phosphorus. Nodulation was suppressed in different amendments of fly ash with soil in a concentration-duration-dependent manner, but not with other amendments. Plants accumulated higher amounts of Fe, Mn, Cu, Zn and Cr in various fly ash amendments than in garden soil. Further, inoculation of the plant with a fly ash tolerant Rhizobium strain conferred tolerance for the plant to grow under fly ash stress conditions with more translocation of metals to the above ground parts. The results showed the potential of P. juliflora to grow in plantations on fly ash landfills and to reduce the metal contents of fly ash by bioaccumulation in its tissues.

  18. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  19. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  20. Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time?

    Science.gov (United States)

    Belviso, Claudia

    2018-05-01

    The action of direct sonication (US) versus conventional hydrothermal method (HY) was investigated to determine the differences in the crystallization mechanism of zeolite formed from fly ash. The results showed that ultrasonic energy is decisive in very fast faujasite and A-type zeolite transformation into more stable sodalite phase. The data display the main presence of sodalite together with a low amount of faujasite and zeolite A after the first 3 h of sonication. The full transformation of the latter two phases into sodalite takes place after 1 h more of treatment. The samples incubated by hydrothermal process for 3 h, instead, are characterized by the main presence of faujasite and A-type zeolites. The progressive synthesis of sodalite at the expense of the other two phases begins only after 4 h of treatment. The conclusion is that the crystallization of zeolites by ultrasonic and hydrothermal method proceeds via two different mechanisms. The data also show that the two approaches affect the stability of the synthetic products in a different way over the years. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  2. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    International Nuclear Information System (INIS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-01-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm −2 , 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP–AES, LECO and SEM–EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO 3 concentration

  3. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    Science.gov (United States)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  4. Hydrogen storage in sonicated carbon materials

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G.S.; Choi, Y.J.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P.

    2001-01-01

    The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this

  5. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  6. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal

    Science.gov (United States)

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703

  7. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    depth, density, and size fraction distribution compared to that of the underlying soil, f) To measure the spatial variability of ash at the plot or hillslope scale, g) To address issues of how much ash stays on site after fire, especially how much is incorporated into underlying soil layers, compared to how much is eroded by wind and water and becomes incorporated into depositional environments located away from the site. iii) ash effects h) To study the connectivity of patches of ash to make progress in understanding the role of ash in infiltration, the generation of runoff and erosion, i) To take into account the role of ash in the fate of the ecosystem immediately after the fire, as well as the combination of ash and other cover, such as the needles, in the post-fire period, j) To study the amount and forms of C in ash, including studies characterizing its chemical and biological reactivity and degradability in soil and sedimentary environments, k) To understanding the legacy of atmospherically-deposited elements (e.g. P, Si, Mn) and dust to fully understand the complex chemistry of ash, and at the same time assess its effects on human health. iii) enhance collaboration across the globe on the multidisciplinary topic of ash research since research in large areas of the world that burn (e.g., Africa and Russia) is underrepresented. We are sure that several activities, such as land and water supply management, risk reduction, and planning for societal and ecosystem resilience in the face of a changing climate, will benefit from the insights gained from the ash research community. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References: Bodí, M. B., Mataix-Solera, J., Doerr, S. H., Cerdà, A. 2011.The wettability of ash from burned vegetation and its relatioship to Mediterranean plant species type, burn. Geoderma 160: 599-607. Bodí, M.B. Doerr, S.H., Cerdà, A. and Mataix-Solera, J. 2012

  8. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog

    OpenAIRE

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-01-01

    The Hedgehog-signaling pathway plays key roles in animal development and physiology. Insufficient Hedgehog signaling causes birth defects, whereas uncontrolled signaling is implicated in cancer. Signaling is triggered by the secreted protein, Sonic Hedgehog, which inhibits the membrane protein Patched1, leading to pathway activation. Despite its fundamental importance, we do not understand how Sonic Hedgehog inhibits Patched1. Here, we uncover a critical interaction between the fatty-acid?mod...

  9. First international ash marketing and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A total of 42 papers were presented in sessions with the following headings: production and disposal of ash - an international review; environmental, health, safety, and legal aspects of ash handling; marketing of ash; development of new uses for ash; cementitious use of ash; ash in manufactured products; and geotechnical uses of ash.

  10. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  11. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Energy Technology Data Exchange (ETDEWEB)

    Mardon, Sarah M. [Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY 40601 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Department of Physical Sciences, Morehead, KY 40351 (United States); Marks, Maria N. [Environmental Consulting Services, Lexington, KY 40508 (United States); Hedges, Daniel H. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States)

    2008-09-15

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents. (author)

  12. Sonication technique improves microbiological diagnosis in patients treated with antibiotics before surgery for prosthetic joint infections.

    Science.gov (United States)

    Scorzolini, Laura; Lichtner, Miriam; Iannetta, Marco; Mengoni, Fabio; Russo, Gianluca; Panni, Alfredo Schiavone; Vasso, Michele; Vasto, Michele; Bove, Marco; Villani, Ciro; Mastroianni, Claudio M; Vullo, Vincenzo

    2014-07-01

    Microbiological diagnosis is crucial for the appropriate management of implant-associated orthopedic infections (IAOIs). Sonication of biomaterials for microbiological diagnosis has not yet been introduced in routine clinical practice. Aim of this study was to describe the advantages and feasibility of this procedure in the clinical setting. We prospectively studied 56 consecutive patients undergoing revision because of IAOI and compared the sensitivity of sonication of explanted orthopedic implants with standard cultures. Patients were divided into two groups: those with foreign body infection (FBI, 15 patients) and those with prosthetic joint infection (PJI, 41 patients). Clinical, radiological and microbiological features were recorded. In the PJI group the sensitivity of sonication in detecting bacterial growth was higher than conventional culture (77% vs 34.1% respectively, p0.05). Coagulase-negative Staphylococci accounted for 90% of the bacteria detected by sonication. Moreover, we found that in the PJI group the sensitivity of sonication was not affected by the timing of antibiotic interruption before surgery. Sonication remains an important tool to improve microbiological diagnosis in PJIs, especially in patients who received previous antimicrobial treatment.

  13. Cylindrical Electrolyser Enhanced Electrokinetic Remediation of Municipal Solid Waste Incineration Fly Ashes

    Science.gov (United States)

    Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei

    2018-01-01

    The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.

  14. Determining ash content in flotation wastes by means of the MPOF optical ash meter. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-03-01

    The paper evaluates an experimental unit of the MPOF optical ash meter, developed by the EMAG Research and Production Center for Electrical Engineering and Mining Automation. The MPOF, which is being tested at the coal preparation plant of the 30 lecia PRL mine, is the first system for continuous determination of ash content in flotation tailings developed in Poland. A block scheme of the system is given. It consists of a measuring head and electronic system which processes data supplied by the measuring head and calculates ash content. System operation is based on the principle of determining ash content in a mixture of coal and mineral wastes by measuring mixture reflectivity. Determining ash content in the mixture is possible as reflectivity coefficients for coal and ash are constant. Performance of the MPOF optical ash meter is evaluated; the results are shown in a table and a scheme. Measurement accuracy is satisfactory.

  15. The Effect of Sonic Bloom Fertilizing Technology on The Seed Germination and Growth of Acacia mangium Willd Seedling

    Directory of Open Access Journals (Sweden)

    Mulyadi A T

    2012-11-01

    Full Text Available Acacia mangium Willd is one of the promising wood species, it is a fast growing species and can be used as raw materials for pulp, furniture and wood working. Musi Hutan Persada Company has planted Acacia mangium Willd in large scale for pulp processing raw materials and for wood working industry. The faculty of forestry of the Nusa Bangsa University in collaboration with the Musi Hutan Persada have examined  the effect of “Sonic Bloom” to the Acacia mangium Willd germination and seedling growth. The results of the research are the following : (1 The seed germination with “Sonic Bloom” provided percented of germination of 82%, better than those without “Sonic Bloom”, i.e. only 34%; (2 With Sonic Bloom,  the height of 80-days old seedling is 129.6 cm higher than those without “Sonic Bloom”of only 90.7 cm  ; (3 the diameter of 80-days old seedling with “Sonic Bloom” is 0,24 cm higher than those without “Sonic Bloom” harving diameters of only 0.19 cm.The study concludes that sonic bloom treatment is very useful for the seed germination and the growth of Acacia mangium Willd seedling Key Words : Sonic Bloom, persemaian, Acacia mangium, perkecambahan, bibit   Normal 0 false false false IN X-NONE X-NONE

  16. ResonantSonic drilling: History, progress, and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Moak, D.J.

    1995-01-01

    ResonantSonic drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. The ResonantSonic drilling method requires no mud, air, or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. A specialized drill head imparts high frequency vibrations into steel drill pipe and creates a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ResonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs utilize the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  17. Effects of soil application of fly ash on the fusarial wilt on tomato cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.R.; Singh, W.N. [Aligarh Muslim University, Aligarh (India). Dept. of Plant Protection, Rafi Ahmad Kidwai Institute of Agricultural Science

    2001-07-01

    A study was carried out in microplots to evaluate the effect of fly ash on the plant growth and yield of tomato cultivars, Pusa Ruby, Pusa Early Dwarf and New Uday, and on wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Fly ash was applied to soil by broadcast or in rows at the rate of 1, 2, 3 and 4 kg ash m{sup -2} in place of inorganic fertilizers. In control plots, NPK (about 40 : 20 : 20 kg acre{sup -1}) and compost were added in place of fly ash. Ash application greatly increased the soil contents of P, K, B, Ca, Mg, Mn, Zn, carbonates, bicarbonates and sulphates. Plants grown in the ash-treated plots, especially at 3 or 4 kg dose, showed luxuriant growth and greener foliage, and plant growth and yield of the three cultivars were significantly increased in comparison with the plants grown in plots without fly ash. The wilt fungus, F. oxysporum f. sp. lycopersiciat the inoculum level of 2 g plant{sup -1} caused significant suppression of growth and yield in all three cultivars. Application of fly ash, however, checked the suppressive effect of the fungus, leading to a significant increase in the considered variables compared with the inoculated control. Soil population of the fungus gradually decreased with an increase in ash dose. Row application was found to be relatively more effective in enhancing the yield of tomato cultivars and suppressing the wilt disease.

  18. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  19. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  20. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    International Nuclear Information System (INIS)

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-01-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  1. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Energy Technology Data Exchange (ETDEWEB)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Lee, Hyung Woo, E-mail: leehw@che.itb.ac.id [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Research and Business Foundation, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746 (Korea, Republic of)

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  2. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  3. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Science.gov (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  4. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  5. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    Science.gov (United States)

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  6. Prospects for ash pond reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Shyyam, A.K.; Shukla, K.S.; Agrawal, D. (National Thermal Power Corporation Ltd., New Delhi (India))

    1993-01-01

    A typical modern coal fired station in India burns 0.7 t/MWh of coal and consequently generates ash at 0.245 t/MWh. The physical nature of ash, low available concentrations of certain plant nutrients and the presence of phytotoxic trace elements render fly ash marginally adequate for plant growth. As fly ash itself was thought to be an inappropriate growth medium for plants, regulators decided that a soil cover is mandatory. There is ample data to suggest that the attributes of fly ash detrimental to plant growth can be ameliorated, allowing the establishment of vegetation directly on fly ash surfaces. The natural revegetation of fly ash disposal sites has been reported in the world. The natural vegetation pioneered by Cynodon at different stages of ecological succession and comprising of species such as [ital Calotropis gigantea], [ital Lippia nodiflora], [ital Ipomea, cornea], [ital Xanthium parviflorum] has been noted at one of the NTPC projects, in Badarpur Thermal Power Station. Since natural reclamation is a time-consuming process, experimental trials of growing some species over the temporary ash lagoon directly (without soil cover) were carried out at Ramagundam Super Thermal Power Project (RSTPP) of NTPC, in South India to achieve faster results than the natural process. 6 refs., 8 figs.

  7. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  8. Bioleaching of trace metals from coal ash using local isolate from coal ash ponds

    Directory of Open Access Journals (Sweden)

    Pangayao Denvert

    2018-01-01

    Full Text Available Bioleaching of chromium, copper, manganese and zinc from coal ash were investigated using isolates from coal ash ponds particularly Psuedomonas spp. Six (6 different coal ash ponds were examined however, after initial screening Psuedomonas spp. were only present in three (3 coal ash ponds. Among the three coal ash ponds, results showed that eight (8 putative Pseudomonas spp. isolates were present that were identified using the Polymerase Chain Reaction (PCR. Using the eight putative Pseudomonas spp. for bioleaching at optimum conditions and 15 days, the pH value ranges from 8.26 to 8.84 which was basic in nature. Moreover, the maximum metal leached were 8.04% Cr, 12.05% Cu, 4.34% Mn and 10.63% Zn.

  9. Carbon isotope discrimination, ash, and canopy temperature in three wheatgrass species

    International Nuclear Information System (INIS)

    Frank, A.B.; Ray, I.M.; Berdahl, R.D.; Karn, J.F.

    1997-01-01

    Soil water is the main factor influencing forage production in the semiarid Northern Great Plains. Developing germplasm that uses limited water more efficiently would benefit forage production for hay and livestock grazing. Development of selection criteria suited to screening large breeding populations for water-use efficiency (WUE) are needed to enhance this effort. This study evaluated carbon isotope discrimination (delta), tissue ash concentration, and canopy temperature of populations of diploid crested wheatgrass (Agropyron cristatum L.), tetraploid crested wheatgrass [A. desertorum (Fisch. ex. Link) Schult.], and western wheatgrass [Pascopyrum smithii (Rybd.) Love] to determine the utility of using ash concentration and canopy temperature as alternative criteria to delta for selecting plants with high WUE. Tissue ash concentration, canopy temperature, and delta were measured on half-sib families from genetically broad-based populations of each species across two field growing seasons. Sufficient genetic variation was present for delta and ash concentration among families within each species to suggest possible use of these traits as criteria for selecting plants with higher WUE. Differences in canopy temperature among families were present only in 1994. Correlations between ash and delta were greatest for tetraploid crested wheatgrass and least for western wheatgrass. Correlation of canopy temperature with delta was significant for tetraploid crested wheatgrass both years and for diploid crested wheatgrass in 1993, but neither year for western wheatgrass. Ash concentration and delta were moderately heritable in all three grass populations, indicating that both traits are under genetic control and could likely be altered through breeding. Using ash and canopy temperature as criteria for selecting plants with greater WUE would provide a relatively low-cost, simple approach to develop cultivars with improved WUE

  10. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  11. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  12. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  13. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  14. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Maria, E-mail: mariaizq@ija.csic.es [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Querol, Xavier [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Davidovits, Joseph [Cordi-Geopolymere, Espace Creatis, Z.A. Bois de la Chocque 02100 Saint-Quentin (France); Antenucci, Diano [Institut Scientifique de Service Public (ISSeP) 200, rue du Chera, B-4000 Liege (Belgium); Nugteren, Henk [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Particle Technology Group, Julianalaan 136, 2628 BL Delft (Netherlands); Fernandez-Pereira, Constantino [University of Seville, School of Industrial Engineering, Department of Chemical and Environmental Engineering, Camino de los Descubrimientos s/n, 41092 Seville (Spain)

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  15. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    International Nuclear Information System (INIS)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernandez-Pereira, Constantino

    2009-01-01

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  16. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  17. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  18. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  19. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  20. Development of iron oxide and titania treated fly ash based ceramic and its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, Parveen [Physics Department, Jadavpur University, Kolkata-700 032 (India); Das, Sukhen, E-mail: das_sukhen@yahoo.com [Physics Department, Jadavpur University, Kolkata-700 032 (India); Bhattacharya, Alakananda [Physics Department, West Bengal State University, Barasat (India); Basu, Ruma [Physics Department, Jogamaya Devi College, Kolkata-700026 (India); Nandy, Papiya [Centre for Interdisciplinary Research and Education, Kolkata-700 068 (India)

    2012-08-01

    The increasing accumulation of fly ash from thermal power plants poses a major problem to the environment. The present work reflects the novel utilization of this profusely available industrial waste in the form of an antibacterial hard ceramic material by treating fly ash with ferric oxide (Fe{sub 2}O{sub 3}) and titania (TiO{sub 2}) during sintering process at 1600 Degree-Sign C. The developed material shows more than 90% bacterial reduction against both Gram-positive and Gram-negative bacteria. The mechanism of their antibacterial action was studied by transmission electron microscopy (TEM) image analysis of the bacterial cross-section. The developed ceramic material acquires hardness due to the enhancement of the natural mullite content in the matrix. The mullite content and the crystallinity of mullite have shown their increasing trend with increasing concentration of the metal oxide during sintering process. A maximum of {approx} 37% increase in mullite was obtained for 7% w/w Fe{sub 2}O{sub 3} and TiO{sub 2}. Metal oxide lowered the activation energy of the reaction and enhanced the reaction rate of alumina (Al{sub 2}O{sub 3})-silica (SiO{sub 2}) to form mullite which increases the hardness. The study highlights novel utilization of fly ash as a hard ceramic antibacterial product (bioceramics) for both structural and hygiene applications in an eco-friendly way. - Highlights: Black-Right-Pointing-Pointer A novel antibacterial hard ceramic material by treating fly ash with metal oxide. Black-Right-Pointing-Pointer The material shows excellent antibacterial activity (> 90%) against pathogenic bacteria. Black-Right-Pointing-Pointer Mechanism of antibacterial action by TEM analysis. Black-Right-Pointing-Pointer Enhancement of the concentration of 'natural mullite content' in the material. Black-Right-Pointing-Pointer Hardness induced by enhanced mullite content is an added advantage for prolonged product life.

  1. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  2. Photoluminescence of MoS2 Prepared by Effective Grinding-Assisted Sonication Exfoliation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Wu

    2014-01-01

    Full Text Available Exfoliation of bulk molybdenum disulfide (MoS2 using sonication in appropriate solvent is a promising route to large-scale preparation of few-layered or monolayered crystals. Grinding-assisted sonication exfoliation was used for preparing monolayered MoS2 nanosheets from natural mineral molybdenite. By controlling the sonication time, larger crystallites could be further exfoliated to smaller as well as thinner nanosheets without damaging their structures. The concentration of 1.6 mg mL−1 of final solution could be achieved. Several microscopic techniques like scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were employed to evaluate the exfoliation results. Strong photoluminescence with the peak centered at 440 nm was also observed in the resulting dispersion which included several small lateral-sized (~3 nm nanostructures.

  3. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    Science.gov (United States)

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  4. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  5. The Social and Sonic Semantics of Reggae

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2017-01-01

    This study breaks new ground into the emerging discipline of sonic semantics and the study of language ideologies in postcolonial contexts. The case in point is the reggae sociality in Port Vila, Vanuatu, where young Pacific Islanders are forming new ways of socializing on the fragments of kastom...

  6. Effect of CaCO_3 addition on ash sintering behaviour during K_2CO_3 catalysed steam gasification of a Chinese lignite

    International Nuclear Information System (INIS)

    Zhang, Jiguang; Li, Jianbo; Mao, Yandong; Bi, Jicheng; Zhu, Mingming; Zhang, Zhezi; Zhang, Li; Zhang, Dongke

    2017-01-01

    Highlights: • K_2CO_3 decreased ash sintering temperature and enhanced ash melting in gasification. • CaCO_3 addition enhanced ash melting and lowered ash sintering temperatures. • CaCO_3 reacted with SiO_2 to form fluxing phases and amorphous materials. • CaCO_3 addition inhibited the potassium aluminium silicate formation. • CaCO_3 addition preserved the catalytic activity of potassium. - Abstract: The ash sintering behaviour of a Chinese lignite (LLI) with different amounts of CaCO_3 addition during K_2CO_3-catalysed gasification was investigated. 0–10 wt% K_2CO_3 was doped into the lignite for catalytic gasification, and CaCO_3 was added into the K_2CO_3-doped samples, varying in the range of 0–20 wt% relative to the lignite, for understanding its impact on ash sintering and catalytic gasification activity. Ash samples were prepared by completely gasifying the lignite samples with steam in a fixed-bed catalytic gasification system operating at 1073 K and atmospheric pressure. Sintering temperature, mineralogy and morphology of the ash samples thus obtained were determined using a pressure-drop sintering device, XRD and SEM-EDS, respectively. The results showed that the ash sintering temperature decreased as the K_2CO_3 addition increased, indicating that K_2CO_3 as the catalyst for gasification would promote ash sintering. SEM imaging analysis showed that all the ash samples from LLI with K_2CO_3 addition were composed of agglomerated particles with smooth surfaces, indicating the ashes had incurred partial melting. The degree of melting became more apparent as the K_2CO_3 addition ratio increased. These molten phases were identified as K-bearing arcanite and kaliophilite, which contributed to the formation of liquid phases at lower temperatures, resulting in lowered ash sintering temperatures. It was also revealed that the addition of CaCO_3 decreased the sintering temperatures of ash samples, indicating that the ash sintering was further

  7. Study of a large rapid ashing apparatus and a rapid dry ashing method for biological samples and its application

    International Nuclear Information System (INIS)

    Jin Meisun; Wang Benli; Liu Wencang

    1988-04-01

    A large rapid-dry-ashing apparatus and a rapid ashing method for biological samples are described. The apparatus consists of specially made ashing furnace, gas supply system and temperature-programming control cabinet. The following adventages have been showed by ashing experiment with the above apparatus: (1) high speed of ashing and saving of electric energy; (2) The apparatus can ash a large amount of samples at a time; (3) The ashed sample is pure white (or spotless), loose and easily soluble with few content of residual char; (4) The fresh sample can also be ashed directly. The apparatus is suitable for ashing a large amount of the environmental samples containing low level radioactivity trace elements and the medical, food and agricultural research samples

  8. 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 2; Configuration Design, Analysis, and Testing

    Science.gov (United States)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.

  9. Personality Traits Bias the Perceived Quality of Sonic Environments

    Directory of Open Access Journals (Sweden)

    PerMagnus Lindborg

    2016-12-01

    Full Text Available There have been few empirical investigations of how individual differences influence the perception of the sonic environment. The present study included the Big Five traits and noise sensitivity as personality factors in two listening experiments (n = 43, n = 45. Recordings of urban and restaurant soundscapes that had been selected based on their type were rated for Pleasantness and Eventfulness using the Swedish Soundscape Quality Protocol. Multivariate multiple regression analysis showed that ratings depended on the type and loudness of both kinds of sonic environments and that the personality factors made a small yet significant contribution. Univariate models explained 48% (cross-validated adjusted R2 of the variation in Pleasantness ratings of urban soundscapes, and 35% of Eventfulness. For restaurant soundscapes the percentages explained were 22% and 21%, respectively. Emotional stability and noise sensitivity were notable predictors whose contribution to explaining the variation in quality ratings was between one-tenth and nearly half of the soundscape indicators, as measured by squared semipartial correlation. Further analysis revealed that 36% of noise sensitivity could be predicted by broad personality dimensions, replicating previous research. Our study lends empirical support to the hypothesis that personality traits have a significant though comparatively small influence on the perceived quality of sonic environments.

  10. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  11. Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation

    Science.gov (United States)

    Thota, M.; Wang, K. W.

    2017-10-01

    An origami sonic barrier composed of cylindrical inclusions attached onto an origami sheet is proposed. The idea allows for tunable sound blocking properties for application in attenuating complex traffic noise spectra. Folding of the underlying origami sheet transforms the periodicity of the inclusions between different Bravais lattices, viz. between a square and a hexagonal lattice, and such significant lattice re-configuration leads to drastic tuning of dispersion characteristics. The wave tuning capabilities are corroborated via performing theoretical and numerical investigations using a plane wave expansion method and an acoustic simulation package of COMSOL, while experiments are performed on a one-seventh scaled-down model of origami sonic barrier to demonstrate the lattice re-configuration between different Bravais lattices and the associated bandgap adaptability. Good sound blocking performance in the frequency range of traffic noise spectra combined with less efforts, required for actuating one-degree of freedom folding mechanism, makes the origami sonic barrier a potential candidate for mitigating complex traffic noise.

  12. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    2011-01-01

    Full Text Available Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

  13. Spectral analysis of white ash response to emerald ash borer infestations

    Science.gov (United States)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  14. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  15. Synthesis of biodiesel from castor oil: Silent versus sonicated methylation and energy studies

    International Nuclear Information System (INIS)

    Sáez-Bastante, J.; Pinzi, S.; Jiménez-Romero, F.J.; Luque de Castro, M.D.; Priego-Capote, F.; Dorado, M.P.

    2015-01-01

    Highlights: • Sonicated transesterification leads to higher conversion than conventional one. • Energy consumption required by conventional and ultrasound-assisted transesterification was compared. • Ultrasound-assisted methylation is more competitive in terms of energy than conventional one. - Abstract: In recent years, biodiesel is evolving to be one of the most employed biofuels for partial replacement of petrodiesel. The most widely used feedstocks for biodiesel production are vegetable oils. Among them, castor oil presents two interesting features as biodiesel raw material; on one hand, it does not compete with edible oils; on the other, the cultivar does not require high inputs. In this research, a comparison between conventional and ultrasound-assisted transesterification was carried out in terms of castor oil methyl ester (COME) yield and energy efficiency. Results show that sonicated transesterification leads to higher COME yields under lower methanol-to-oil molar ratio, lower amount of catalyst, shorter reaction time and lower amount of energy required. Ultrasound-assisted transesterification parameters were optimized resulting in the following optimum conditions: 20 kHz fixed frequency, 70% duty cycle, 40% sonication amplitude, 4.87 methanol-to-oil molar ratio, 1.4% w/w amount of catalyst and 3 sonication cycles (3 min 48 s) that provided 86.57% w/w COME yield. The energy required along each type of transesterification was measured leading to the conclusion that sonicated transesterification consumes a significant lower amount of energy than conventional one, thus achieving higher COME yield

  16. Derivation of site-specific selenium criteria for a Kentucky stream receiving fly ash effluent

    International Nuclear Information System (INIS)

    Reash, R.J.; Van Hassel, J.H.

    1993-01-01

    Blaine Creek, a fifth-order tributary to the Big Sandy River in eastern Kentucky, receives fly ash effluent from Kentucky Power Company's Big Sandy Plant fly ash pond near the creek's mouth. Long-term biosurvey/physicochemical data and speciation studies were used to derive proposed site-specific selenium water quality criteria. Biosurvey results from 1982--1990 were consistent in showing no adverse effects of fly ash discharge, even during low flow conditions when the effluent comprised 75% of creek flow. Five macroinvertebrate parameters (taxa richness, total abundance, EPT taxa, number caddisflies and chironomids) were significantly correlated with % effluent, indicating enhanced communities at high instream waste concentrations. Several fish metrics similarly showed greater enhancement at high % effluent conditions. Selenium speciation studies indicated that selenite (Se 4+ ) represented 100% of total selenium in the effluent. Total selenium concentrations were low at fully mixed downstream reaches. US EPA's Recalculation Procedure was used to calculate site-specific selenium criteria based on Se 4+ toxicity data for resident species. These criteria are higher than statewide criteria which are based on selenium, effects at waterbodies having low turnover rates

  17. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    Science.gov (United States)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  18. A brief argument for, and summary of, the concept of Sonic Virtuality

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2015-01-01

    Sonic virtuality is a conceptualization of sound devised with several purposes in mind. First, it provides a holistic definition of sound that takes account of factors beyond the bare physics of sound waves and their propagation. Second, in providing such a definition, it attempts to explain...... a number of sonic anomalies that existing definitions of sound, of which there are several, do not satisfactorily explain. Third, in its concept of sound as an emergent perception sited within the mind, it provides the conceptual framework to work with sound in the context of new and developing...... technologies. The essay begins with an enumeration of several existing definitions of sound and problems with them, focussing in particular upon the western world’s dominant definition of sound as a sound wave, and then provides a brief exposition of sonic virtuality before concluding with a speculative...

  19. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  20. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  1. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  2. An improved ashing procedure for biologic sample

    Energy Technology Data Exchange (ETDEWEB)

    Zongmei, Wu [Zhejiang Province Enviromental Radiation Monitoring Centre (China)

    1992-07-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches.

  3. An improved ashing procedure for biologic sample

    International Nuclear Information System (INIS)

    Wu Zongmei

    1992-01-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches

  4. Some Durability Aspects of Ambient Cured Bottom Ash Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Saravanakumar R.

    2017-09-01

    Full Text Available The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC.

  5. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  6. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  7. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    Science.gov (United States)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  9. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    International Nuclear Information System (INIS)

    Cucciati, G; Vara, N Di; Ghezzi, A; Paganoni, M; Pizzichemi, M; Auffray, E; Frisch, B; Lecoq, P; Bugalho, R; Neves, J; Cao, L; Peter, J; Farina, F; Felix, N; Juhan, V; Mundler, O; Siles, P; Jun, D; Lasaygues, P; Mensah, S

    2014-01-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information

  10. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  11. Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal

    International Nuclear Information System (INIS)

    Wang, Wei-Chung; Wu, Liang-Yu; Chen, Lien-Wen; Liu, Chia-Ming

    2010-01-01

    Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal is investigated. A resonant cavity of the sonic crystal is used to localize the acoustic wave as the acoustic waves are incident into the sonic crystal at the resonant frequency. The piezoelectric curved beam is placed in the resonant cavity and vibrated by the acoustic wave. The energy harvesting can be achieved as the acoustic waves are incident at the resonant frequency. A model for energy harvesting of the piezoelectric curved beam is also developed to predict the output voltage and power of the energy harvesting. The experimental results are compared with the theoretical

  12. Determining the ash content of coal flotation tailings using an MPOF optical ash meter

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-01-01

    The block layout, a description of the design and principles of operation of an automatic optical, continuous action MPOF type ash meter are presented. The difference in the optical properties of coal and rock is used in the ash meter. The identification of the ash content is conducted on the basis of the spectral characteristics of reflection of a finely dispersed aqueous coal and rock suspension.

  13. Using homogenization, sonication and thermo-sonication to inactivate fungi

    Science.gov (United States)

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  14. Fluorination of incinerator ash by hydrofluorination or ammonium bifluoride fusion for plutonium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.D.; Gray, J.H.; Kent, S.J.; Apgar, S.A.

    1989-01-01

    Incinerator ash containing small quantities of plutonium has been accumulating across the defense complex for many years. Although the total Pu inventory is small, the ash is a nondiscardable residue which presents storage and accountability difficulties. The work discussed here is the result of a joint exploratory effort between members of Savannah River Laboratory and Los Alamos National Laboratory to compare two proposed pyrochemical pretreatments of incinerator ash prior to aqueous processing. These experiments attempted to determine the relative effectiveness of hydrofluorination and ammonium bifluoride fusion as head-end operations for a two step aqueous recovery method. The two pretreatments are being considered as possible second generation enhancements for the New Special Recovery Facility nearing operation at Savannah River Plant. Experimental results and potential engineering concerns are discussed. 3 figs.

  15. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Living Melodies - Coevolution Of Sonic Communication

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nordahl, Mats G.

    2001-01-01

    The authors have constructed an artificial world of coevolving communicating agents. The behavior of the agents is described in terms of a simple genetic programming framework, which allows the evolution of foraging behavior and movement in order to reproduce, as well as sonic communication....... The sound of the entire world is used as musical raw material for the work. Musically interesting and useful structures are found to emerge....

  17. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    Science.gov (United States)

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  18. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  19. MANUAL. Fly ash in civil engineering, Gravel roads; HANDBOK. Flygaska i mark- och vaegbyggnad, Grusvaegar

    Energy Technology Data Exchange (ETDEWEB)

    Munde, Hanna; Svedberg, Bo; Macsik, Josef; Maijala, Aino; Lahtinen, Pentti; Ekdahl, Peter; Neren, Jens [Vattenfall AB, Stockholm (Sweden). Vaerme Norden

    2006-01-15

    Fly ash based on biofuels or coal has been used as construction material for a long time in roads and other civil engineering applications. Some example, where it has been used in roadbase and subbase of gravel roads, are in the counties of Uppsala, Soedermanland, Vaestmanland and in Finland. The use of fly ash has contributed to good function for example as bearing capacity, thaw and frost capacity and good durability. This has also reduced costs for maintenance. The objective of this project was to develop a manual to provide a base for contemporary use of fly ash in road constructions. In the manual experience from studies, field tests and regulations has been compiled. The manual handles fly ash as base for products to be used in base and subbase in gravel roads. Future user of the guidelines are mainly consultant engineers and contractors. However the aim of the manual is to also support road administrators, environmental authorities and industry. The project has been carried out parallel to another ongoing national project titled 'Guidelines, Use of alternative materials in civil engineering'. The objective of that project is to establish a base for handling of alternative materials in Sweden. Fly ash in gravel roads are mainly used in two typical applications, one without any additive in a single layer and one with fly ash mixed with gravel. The use of flyash provides functional properties such as increased stiffness, stability and enhanced frost and thaw capacity for the road construction in total. Furthermore the products based on fly ash will have low permeability and good frost and thaw durability. These properties are for example related to fly ash quality, design and construction and are in general expected to be better than for traditional constructions using, for example, sand or gravel. The properties can be enhanced further by using binders such as cement and Merit. Fly ash should always be used above the ground water table with

  20. Improve the Recovery of Fermentable Sugar from Rice Straw by Sonication and Its Mathematical Modeling

    Science.gov (United States)

    Bhattacharyya, Saurav; Dutta, Somenath; Datta, Sidhartha; Bhattacharjee, Chiranjib

    2012-08-01

    Rice straw is waste renewable agricultural biomass, which contains sufficient amount of fermentable sugars like glucose, galactose fructose, xylose etc. These sugars can be treated with fermentation pathway to produce ethanol. Hydrolysis of pretreated rice straw in dilute sulfuric acid was investigated at different acid concentrations (0.25-0.75 % w/v), and sonication was carried out to improve the extent of sugar extraction. The current work examines the effect of sonication on extraction of total reducing sugar (TRS) and an empirical mathematical model has been established to predict it. Effects of various operating variables of sonication, including amplitude (60-100 %), cycle (0.6-1.0), treatment time (0-15 min) have been analyzed for each acid concentration. Observation shows that on optimization of the sonication conditions (100 % amplitude, 0.8 cycle and 10 min) around 90 % improvement of TRS extraction occurs at 0.5 % (w/v) acid concentration.

  1. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    Science.gov (United States)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  2. Effect of Lignite Fly Ash on the Growth and Reproduction of Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    S. Sarojini

    2009-01-01

    Full Text Available Fly ash is an amorphous ferroalumino silicate, an important solid waste around thermal power plants. It creates problems leading to environmental degradation due to improper utilization or disposal. However, fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of soils and is a source of readily available plant macro and micronutrients when it is used with biosolids. Supply of nutrients from fly ash with biosolids may enhance their agricultural use. The growth and reproduction of Eisenia fetida was studied during vermicomposting of fly ash with cowdung and pressmud in four different proportions (T1,T2,T3 & T4 and one control i.e., cow dung and pressmud alone. The growth, cocoon and hatchlings production were observed at the interval of 15 days over a period of 60 days. The maximum worm growth and reproduction was observed in bedding material alone. Next to that the T1 was observed as the best mixture for vermiculture.

  3. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  4. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  5. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  6. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.

    Directory of Open Access Journals (Sweden)

    Michael Degtyarev

    Full Text Available Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication, takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.

  7. Hazards Associated With Recent Popocatepetl Ash Emissions

    Science.gov (United States)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  8. Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.

    Science.gov (United States)

    Defense Documentation Center, Alexandria, VA.

    The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)

  9. ResonantSonic drilling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes

  10. Analysis list: ash2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash2 Larvae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2.1.tsv ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/ash2.Larvae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Larvae.gml ...

  11. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Science.gov (United States)

    Deborah McCullough; Therese Poland; David. Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  12. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  13. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  14. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    Science.gov (United States)

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    Science.gov (United States)

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  16. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  17. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  18. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  19. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Nelson, R., E-mail: nelson.90.mech@gmail.com [Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph.2001@gmail.com [Center for Research in Metallurgy, School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa)

    2016-08-15

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneously in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.

  20. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1999-01-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  1. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  2. Review of ecosystem level impacts of emerald ash borer on black ash wetlands: What does the future hold?

    Science.gov (United States)

    Randall K. Kolka; Anthony W. D' Amato; Joseph W. Wagenbrenner; Robert A. Slesak; Thomas G. Pypker; Melissa B. Youngquist; Alexis R. Grinde; Brian J. Palik

    2018-01-01

    The emerald ash borer (EAB) is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western...

  3. High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing

    Science.gov (United States)

    McCurdy, David A. (Editor)

    1999-01-01

    The third High-Speed Research Sonic Boom Workshop was held at NASA Langley Research Center on June 1-3, 1994. The purpose of this workshop was to provide a forum for Government, industry, and university participants to present and discuss progress in their research. The workshop was organized into sessions dealing with atmospheric propagation; acceptability studies; and configuration design, and testing. Attendance at the workshop was by invitation only. The workshop proceedings include papers on design, analysis, and testing of low-boom high-speed civil transport configurations and experimental techniques for measuring sonic booms. Significant progress is noted in these areas in the time since the previous workshop a year earlier. The papers include preliminary results of sonic boom wind tunnel tests conducted during 1993 and 1994 on several low-boom designs. Results of a mission performance analysis of all low-boom designs are also included. Two experimental methods for measuring near-field signatures of airplanes in flight are reported.

  4. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  5. Variation in the Volatile Profiles of Black and Manchurian Ash in Relation to Emerald Ash Borer Oviposition Preferences.

    Science.gov (United States)

    Rigsby, Chad M; McCartney, Nathaniel B; Herms, Daniel A; Tumlinson, James H; Cipollini, Don

    2017-08-01

    Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.

  6. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.

    Science.gov (United States)

    Arrigo, Rossella; Teresi, Rosalia; Gambarotti, Cristian; Parisi, Filippo; Lazzara, Giuseppe; Dintcheva, Nadka Tzankova

    2018-03-05

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.

  7. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites

    Science.gov (United States)

    Teresi, Rosalia; Gambarotti, Cristian; Dintcheva, Nadka Tzankova

    2018-01-01

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena. PMID:29510595

  8. Auscultation of concrete hydraulic dams by sonic tomography; Auscultation des structures hydrauliques en beton par tomographie sonique

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, Y.; Rhazi, J.; Ballivy, G. [Sherbrooke Univ., PQ (Canada). Dept. de Genie Civil; Cote, P. [Centre de Nantes, Bouguenais (France)

    1995-12-31

    Sonic tomography, a new nondestructive testing method, was described to document the aging and internal degradation of concrete structures. The method is based on the transmission of sonic waves through concrete structures. New tomographic methodology similar to that used in medical or geophysical imaging was applied to existing sonic auscultation techniques used in civil engineering. In the process the speed of propagation of sonic waves in structures is measured with arrays of detectors. Fissures or zones of degradation can be spatially localized and an internal image of the structure can be constructed. Case studies of two hydraulic dams, one from France, the other in Quebec were presented as illustrations. . The theory and experimental procedures involved were described. 16 refs., 1 tab., 12 figs.

  9. Diagnosis of Persistent Infection in Prosthetic Two-Stage Exchange: Evaluation of the Effect of Sonication on Antibiotic Release from Bone Cement Spacers.

    Science.gov (United States)

    Mariaux, Sandrine; Furustrand Tafin, Ulrika; Borens, Olivier

    2018-01-01

    Introduction : When treating periprosthetic joint infection with a two-stage procedure, antibiotic-impregnated spacers can be used in the interval between prosthetic removal and reimplantation. In our experience, cultures of sonicated spacers are most often negative. The objective of the study was to assess whether that sonication causes an elution of antibiotics, leading to elevated antibiotic concentrations in the sonication fluid inhibiting bacterial growth and thus causing false-negative cultures. Methods : A prospective monocentric study was performed from September 2014 to March 2016. Inclusion criteria were a two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Spacers were made of gentamicin-containing cement to which tobramycin and vancomycin were added. Antibiotic concentrations in the sonication fluid were determined by mass-spectometry (LC-MS). Results : 30 patients were identified (15 hip and 14 knee and 1 ankle arthroplasties). No cases of culture positive sonicated spacer fluid were observed in our serie. In the sonication fluid median concentrations of 13.2µg/ml, 392 µg/ml and 16.6 µg/ml were detected for vancomycin, tobramycin and gentamicin, respectively. According to the European Committee on antimicrobial susceptibility testing (EUCAST), these concentrations released from cement spacer during sonication are higher than the minimal inhibitory concentrations (MICs) for most bacteria relevant in prosthetic joint infections. Conclusion: Spacer sonication cultures remained sterile in all of our cases. Elevated concentrations of antibiotics released during sonication could explain partly negative-cultured sonicated spacers. Indeed, the absence of antibiotic free interval during the two-stages can also contribute to false-negative spacers sonicated cultures.

  10. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    Science.gov (United States)

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-06-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  11. Ash characteristics and plant nutrients in some aquatic biomasses

    Science.gov (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    Aquatic biomasses are explored as potential fuel source for direct combustion because of their faster growth and no land requirement. The energy density and the ash characteristics of the aquatic biomasses are to be evaluated for their suitability for energy extraction. In the study, four aquatic plant samples namely Eichornia crassipes, Hydrilla verticilleta, Lemna minor, Spirogyra spp were collected from a pond in Digwadih Campus of Central Institute of Mining and Fuel Research, Dhanbad. The biomasses were air dried, powdered and ashed at different temperatures. Volatile C was relatively lower in Spirogyra and Hydrilla (53 %) than Eichornia (62.6 %) or Lemna (59.7 %), whereas fixed C was higher for Eichornia and Lemna (about 10 %) and lower for Hydrilla (1 %). Ultimate analysis showed that the carbon content was in the order Eichornia > Lemna > Spirogyra > Hydrilla. The IR spectra of each raw biomass is compared to their respective ashes obtained at different temperatures (500-900°C). With increase in ashing temperature from 500-900°C there is gradual breakdown of the cellulosic structure hence, peaks around 2900-2800cm-1 caused by aliphatic C-H vibration tends to disappear slowly in ash. More number of peaks appears at lower wavenumbers in ashes of all the biomass samples indicating towards increased percentage of inorganic ion species. Considerable enrichment of SiO2 is validated with prominent peaks at 1100-900 cm-1 in all the ashes. Lemna and Spirogyra has a similar ash composition (Si > Al > Ca > K), whereas, Ca was higher in Hydrilla (Si > Ca > K > Al). Eichornia (Si > K > Ca > Al) has higher K and Ca than Al. SiO2 and Al2O3 were higher in Spirogyra, while SiO2 and CaO in Eichornia and Hydrilla. K first increased from 500-700/800⁰C, and then decreased from 800-900⁰C. Cl is lost slowly in ash from 500-700/800⁰C and then by a drastic reduction from 800-900⁰C. S is enhanced in ash at all temperatures although the change is quite small. Most of the Cl

  12. A Remotely Deployable Wind Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-12-01

    Full Text Available Communication and computing shape up base for explosion of Internet of Things (IoT era. Humans can efficiently control the devices around their environment as per requirements because of IoT, the communication between different devices brings more flexibility in surrounding. Useful data is also gathered from some of these devices to create Big Data; where, further analysis assist in making life easier by developing good business models corresponding to user needs, enhance scientific research, formulating weather prediction or monitoring systems and contributing in other relative fields as well. Thus, in this research a remotely deployable IoT enabled Wind Sonic Anemometer has been designed and deployed to calculate average wind speed, direction, and gust. The proposed design is remotely deployable, user-friendly, power efficient and cost-effective because of opted modules i.e., ultrasonic sensors, GSM module, and solar panel. The testbed was also deployed at the roof of Computer & Information Systems Engineering (CIS department, NED UET. Further, its calibration has been carried out by using long short-term memory (LSTM, a deep learning technique; where ground truth data has been gathered from mechanical wind speed sensor (NRG-40 H deployed at top of Industrial & Manufacturing (IM department of NED UET. The obtained results are satisfactory and the performance of designed sensor is also good under various weather conditions.

  13. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    Science.gov (United States)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during

  14. Theory of elementary excitations in unstable Bose-Einstein condensates and the instability of sonic horizons

    International Nuclear Information System (INIS)

    Leonhardt, U.; Kiss, T.; Oehberg, P.

    2003-01-01

    Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper develops a quantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary excitations in unstable Bose-Einstein condensates. In unstable condensates the excitation modes have complex frequencies. We derive the normalization conditions for unstable modes such that they can serve in a mode decomposition of the noncondensed component. Furthermore, we develop approximative techniques to determine the spectrum and the mode functions. Finally, we apply our theory to sonic horizons - sonic black and white holes. For sonic white holes the spectrum of unstable modes turns out to be intrinsically discrete, whereas black holes may be stable

  15. Proceedings of symposium on ash in North America

    Science.gov (United States)

    Charles H. Michler; Matthew D., eds. Ginzel

    2010-01-01

    Includes 5 papers and 30 abstracts covering topics related to the biology and ecology of the ash species, ash utilization and management, emerald ash borer, and other threats to ash, and genetics and conservation of ash species. A paper titled "Population-level variation of Fraxinus americana L. is influenced by climate...

  16. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Science.gov (United States)

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  17. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Science.gov (United States)

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  18. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    Science.gov (United States)

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability. © 2013 John Wiley & Sons Ltd.

  19. The sonic window: second generation results

    Science.gov (United States)

    Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.

    2006-03-01

    Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further

  20. Review of Ecosystem Level Impacts of Emerald Ash Borer on Black Ash Wetlands: What Does the Future Hold?

    Directory of Open Access Journals (Sweden)

    Randall K. Kolka

    2018-04-01

    Full Text Available The emerald ash borer (EAB is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western Great Lakes region. Using two companion studies that are simulating short- and long-term EAB infestations and what is known from the literature, we synthesize our current limited understanding and predict anticipated future impacts of EAB on black ash wetlands. A key response to the die-back of mature black ash will be higher water tables and the potential for flooding and resulting changes to both the vegetation and animal communities. Although seedling planting studies have shown some possible replacement species, little is known about how the removal of black ash from the canopy will affect non-ash species growth and regeneration. Because black ash litter is relatively high in nitrogen, it is expected that there will be important changes in nutrient and carbon cycling and subsequent rates of productivity and decomposition. Changes in hydrology and nutrient and carbon cycling will have cascading effects on the biological community which have been scarcely studied. Research to address these important gaps is currently underway and should lead to alternatives to mitigate the effects of EAB on black ash wetland forests and develop management options pre- and post-EAB invasion.

  1. Study on combined effects of acidification and sonication on selected quality attributes of carrot juice during storage

    International Nuclear Information System (INIS)

    Jabbar, S.; Hu, B.; Ali, S.

    2014-01-01

    This study evaluated the combined effects of acid blanching and sonication treatments on selected quality parameters of carrot juice stored at 4 degree C for 18 days. Carrots were blanched in acidified water (40g/L citric acid) at 100 degree C for 4 min and the juice was then extracted. Sonication of the juice was done at an amplitude level of 70% and a frequency of 20 kHz for 2 min at 15 degree C, keeping the pulse duration of 5 Sec on and 5 Sec off. As results, the combined treatment of acidification and sonication of carrot juice showed a significant decrease in pH and increase (P < 0.05) in acidity which remained stable during storage period. No significant changes were observed in Brix. Color values (L, a, b) and non enzymatic browning (NEB) influenced significantly in acidified and sonicated carrot juice during storage period. Maximum stability of total phenol, total antioxidant capacity, cloud value and ascorbic acid were also observed in the combined treatment of acidification and sonication. The findings of this study indicated that the combined treatments of acidification and sonication may successfully be utilized for the production of high quality carrot juice with improved stability of total phenol, total antioxidant capacity, cloud value and ascorbic acid during 18 days of storage. (author)

  2. Antibacterial Efficacy of Calcium Hypochlorite with Vibringe Sonic Irrigation System on Enterococcus faecalis: An In Vitro Study

    Science.gov (United States)

    Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek

    2016-01-01

    Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106

  3. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  4. Drycon dry ash conveyor: dry bottom ash handling system with reduced operating costs and improved plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Drycon dry bottom ash extraction system is designed to remove bottom ash beneath the furnace, cooling it without any need of water. Fresh air in countercurrent flow to the ash is used for the ash cooling. Data presented show how savings of time and costs can be achieved with this system and how a boiler efficiency can be increased using this technology. Considerable advantages in the reliability of operation with new improvements of the design are described. 7 figs.

  5. Characterization of ash pond ashes from 3rd thermal power plant by SEM/EDX and XRD methods

    OpenAIRE

    A Minjigmaa; Ts Zolzaya; E Bayanjargal; B Davaabal; J Temuujin

    2014-01-01

      Coal combustion by products from ash pond of 3rdthermal power plant of Ulaanbaatar city have been collected in 2010 and 2013 years. The ash samples have been characterized by XRD, XRF and SEM-EDX methods in order to evaluate their chemical and mineralogical composition changes with disposed times. The mineralogical composition of ash varies with time though the chemical composition of the ashes were close each other. Possibly, inefficient operating condition of the TPS shows influence on th...

  6. Project ash cultch: A report on optimal oyster cultch based on a prepared fly ash substratum

    International Nuclear Information System (INIS)

    Price, K.S.; Hansen, K.M.; Schlekat, C.E.

    1991-01-01

    Based on a three year study involving setting, growth, mortality, oyster condition, and metals accumulation, the evidence is extensive and convincing that stabilized coal ash is an acceptable oyster growing cultch (substratum). Oyster larvae are attracted to set on coal ash cultch at commercial fishery densities, tend to grow as well as on natural substrata (oyster shell), and are moderately more exposed to predators on the puck shaped ash materials as produced for this study. Oysters grown for one to two years on coal ash do not accumulate heavy metals and generally are in good health as measured by several biological condition indexes

  7. Effects of Wood Ash on Soil Fungi

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla

    ), copper (Cu) and nickel (Ni), is a major environmental concern. This work is part of the project ASHBACK (www.ashback.dk) which addresses the potentials and possible problems in re-distributing wood ash to the forest. The aim of this thesis was to determine the effects of biomass ash application...... in a Norway spruce forest where different amounts of wood ash were spread on the soil to study the effects on ectomycorrhizal (ECM) fungi, bioaccumulation of metals in sporocarps, and microbial communities. Laboratory microcosm experiments were run in parallel to the field studies, to compare the effects...... of wood ash with factorial additions of lime and Cd to disentangle the pH and Cd effects of wood ash amendments using community trait distributions. Barley yield, P content, and Cd content were not affected by biomass ashes. Some arbuscular mycorrhizal (AM) fungal species were reduced when biomass ashes...

  8. Pervious concrete using fly ash aggregate as coarse aggregate-an experimental study

    Science.gov (United States)

    Dash, Subhakanta; Kar, Biswabandita; Mukherjee, Partha Sarathi

    2018-05-01

    The present study deals with the fabrication of pervious concrete from fly ash aggregates. The pervious concrete were obtained by the mixture of three different size fly ash aggregates (4.75 mm,9.5 mm,12.5 mm), Portland cement, water with little amount of sand or without sand. Admixtures like Silica fume(SF) and Super plasticizer are added to the mixture to enhance the strength of concrete. Trial being taken on preparation of Fly ash based pervious concrete (FPC) with different w/c ratio i.e. 0.30, 0.35 and 0.40 respectively. Tests such as porosity, permeability and compressive, strength are studied for this concrete material and the result concluded that the concrete when cured for 28 days its compressive strength falls in between 7.15 - 15.74 MPa and permeability 9.38 - 16.07 mm/s with porosity 27.59 - 34.05% and these are suited to be used as for use as an environment friendly concrete.

  9. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  10. Life cycle adaption of biofuel ashes. Evaluation of new techniques for pelletizing of biofuel ashes, especially regarding operational properties and environmental effects in the forest after ash recycling. Stage 1

    International Nuclear Information System (INIS)

    Loevgren, Linnea; Lundmark, Jan-Erik; Jansson, Charlotta

    2000-11-01

    The aim of the project 'Adaptation of Wood Ashes to Recycling' is to evaluate a new technique - roll pelleting - for making wood ash suitable for reuse as a fertiliser for woodland. The project is being carried out at the forest product companies AssiDomaen and Stora Enso. The main financier is the Swedish National Energy Administration. Other financiers are AssiDomaen, Stora Enso, The Thermal Engineering Research Institute and The Forestry Research Institute of Sweden. The project has involved the construction of a full-scale roll pelleter in a mobile container and its trial operation at two Swedish pulp and paper mills. The leaching properties of the ash products were studied with a laboratory method. In addition, the effects of ash fertilisation with these products are being studied in a four-year field trial. Effects on soil pH, nutrient supply, soil water chemistry and ground vegetation are being evaluated by The Forestry Research Institute of Sweden and will be reported separately in the year 2003. In a laboratory prestudy, the leaching properties of pellets from twelve different ash products made in a laboratory prototype machine were evaluated. The ash products were made from residues from the AssiDomaen Froevi mill and the Stora Enso Fors mill. Fly ash from Froevi was used alone and mixed with green liquor sludge and lime sludge respectively. Fly ash from Fors was also used alone and mixed with coating colour. The laboratory method used for the evaluation of leaching properties is the method developed by IVL The Swedish Environmental Research Institute Ltd. The results show that the progress of the leaching of roll pelleted ash is significantly slower than for the corresponding crushed product and a reference lime product. The speed of leaching, measured as acid neutralisation capacity, ANC, was significantly lower for the roll pelleted ash compared to self-hardened and crushed ash products. Because of the high content of calcium, lime has on the whole, a

  11. Computer method to detect and correct cycle skipping on sonic logs

    International Nuclear Information System (INIS)

    Muller, D.C.

    1985-01-01

    A simple but effective computer method has been developed to detect cycle skipping on sonic logs and to replace cycle skips with estimates of correct traveltimes. The method can be used to correct observed traveltime pairs from the transmitter to both receivers. The basis of the method is the linearity of a plot of theoretical traveltime from the transmitter to the first receiver versus theoretical traveltime from the transmitter to the second receiver. Theoretical traveltime pairs are calculated assuming that the sonic logging tool is centered in the borehole, that the borehole diameter is constant, that the borehole fluid velocity is constant, and that the formation is homogeneous. The plot is linear for the full range of possible formation-rock velocity. Plots of observed traveltime pairs from a sonic logging tool are also linear but have a large degree of scatter due to borehole rugosity, sharp boundaries exhibiting large velocity contrasts, and system measurement uncertainties. However, this scatter can be reduced to a level that is less than scatter due to cycle skipping, so that cycle skips may be detected and discarded or replaced with estimated values of traveltime. Advantages of the method are that it can be applied in real time, that it can be used with data collected by existing tools, that it only affects data that exhibit cycle skipping and leaves other data unchanged, and that a correction trace can be generated which shows where cycle skipping occurs and the amount of correction applied. The method has been successfully tested on sonic log data taken in two holes drilled at the Nevada Test Site, Nye County, Nevada

  12. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  13. Formation and degradation of PCDD/F in waste incineration ashes

    International Nuclear Information System (INIS)

    Lundin, Lisa

    2007-11-01

    treatment can enhance the degradation of PCDD and PCDF. Thermal treatment is a viable option for degrading PCDD and PCDF in ashes from MSW. Shifts in chlorination degree occur during thermal treatment. Rapid heat transfer into the ash is a key factor for ensuring fast degradation of PCDD and PCDF. Degradation of other chlorinated organic compounds, e.g. PCB and HCB, also occurs during thermal treatment of ash. Reductions in levels of PCDD and PCDF were not solely due to their desorption to the gas phase. Differences between the behavior of 2378-substituted congeners of PCDD and PCDF and the other congeners during thermal treatment were observed. Differences in isomer patterns of both PCDD and PCDF were observed between the ash and gas phases after thermal treatment at both 300 and 500 deg C. Overall, the results show that the formation and degradation mechanisms of PCDDs differ substantially from those of PCDFs. Thus these groups of compounds should be separately considered in attempts to identify ways to reduce their concentrations

  14. A Phase-Locked Loop Continuous Wave Sonic Anemometer-Thermometer

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Weller, F. W.; Busings, J. A.

    1979-01-01

    A continuous wake sonic anemometer-thermometer has been developed for simultaneous measurements of vertical velocity and temperature. The phase angle fluctuations are detected by means of a monolithic integrated phase-locked loop, the latter feature providing for inexpensive and accurate...

  15. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  16. Multiple refraction switches realized by stretching elastomeric scatterers in sonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-02-01

    Full Text Available The effect of out-of-plane pre-stretch on the 2D sonic crystal with stretchable elastomeric scatterers is explored. The hyperelastic scatterers are characterized by a compressible neo-Hookean model. The Dirichlet-to-Neumann (DtN map is adopted to obtain the band structure and equi-frequency contours. We focus on the first passband and find that a variety of switching functionalities for refraction behaviors can be realized in selected frequencies under a specific pre-stretch range. These refraction switches enable an active control of wave propagation and are applicable in advanced technologies where switchable and multifunctional sonic crystals are required.

  17. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose.

    Science.gov (United States)

    Hamid, Sharifah Bee Abd; Zain, Siti Khadijah; Das, Rasel; Centi, Gabriele

    2016-03-15

    The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications. Copyright © 2015. Published by Elsevier Ltd.

  18. Sonic Virtuality, Environment, and Presence

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2018-01-01

    The article presents a brief introduction to the concept of sonic virtuality, a view of sound as a multi-modal, emergent perception that provides a framework that has since been used to provide an explanation of the formation of environments. Additionally, the article uses such concepts to explain...... the phenomenon of presence, not only in virtual worlds but also in actual worlds. The view put forward is that environment is an emergent perception, formed from the hypothetical modelling of salient worlds of sensory things, and it is in the environment that we feel present. The article ends with some thoughts...

  19. Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas.

    Science.gov (United States)

    Sowmya Packyam, G; Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In this study, ultrasonication was used for sludge deflocculation, followed by cell disintegration using ozone. The effect of this phase separated sono-ozone pretreatment is evaluated based on extra polymeric substances release, deoxyribonucleic acid (DNA) in the medium, solubilization of intra cellular components and suspended solids (SS) reduction. Ultrasonically induced deflocculation was optimized at an energy dosage of 76.4(log 1.88)kJ/kg TS. During cell disintegration (ozone dosage 0.0011 mgO3/mgSS), chemical oxygen demand solubilization (COD) and SS reduction of sonic mediated ozone pretreated sludge were 25.4% and 17.8% comparatively higher than ozone pretreated sludge, respectively. Further, biogas production potential of control (raw), flocculated (ozone pretreated), and deflocculated (sonic mediated ozone pretreated) sludges were observed to be 0.202, 0.535 and 0.637 L/(gVS), respectively. Thus, the phase separated pretreatment at lower ultrasonic specific energy and low dose ozone proved to enhance the anaerobic biodegradability efficiently. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  1. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  2. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    Science.gov (United States)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  3. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  4. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  5. Diagnosis Of Persistent Infection In Prosthetic Two-Stage Exchange: PCR analysis of Sonication fluid From Bone Cement Spacers.

    Science.gov (United States)

    Mariaux, Sandrine; Tafin, Ulrika Furustrand; Borens, Olivier

    2017-01-01

    Introduction: When treating periprosthetic joint infections with a two-stage procedure, antibiotic-impregnated spacers are used in the interval between removal of prosthesis and reimplantation. According to our experience, cultures of sonicated spacers are most often negative. The objective of our study was to investigate whether PCR analysis would improve the detection of bacteria in the spacer sonication fluid. Methods: A prospective monocentric study was performed from September 2014 to January 2016. Inclusion criteria were two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Beside tissues samples and sonication, broad range bacterial PCRs, specific S. aureus PCRs and Unyvero-multiplex PCRs were performed on the sonicated spacer fluid. Results: 30 patients were identified (15 hip, 14 knee and 1 ankle replacements). At reimplantation, cultures of tissue samples and spacer sonication fluid were all negative. Broad range PCRs were all negative. Specific S. aureus PCRs were positive in 5 cases. We had two persistent infections and four cases of infection recurrence were observed, with bacteria different than for the initial infection in three cases. Conclusion: The three different types of PCRs did not detect any bacteria in spacer sonication fluid that was culture-negative. In our study, PCR did not improve the bacterial detection and did not help to predict whether the patient will present a persistent or recurrent infection. Prosthetic 2-stage exchange with short interval and antibiotic-impregnated spacer is an efficient treatment to eradicate infection as both culture- and molecular-based methods were unable to detect bacteria in spacer sonication fluid after reimplantation.

  6. The UZPI ash content monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.P.; Bezverkhii, E.A.; Mozhaev, L.G.

    1987-07-01

    This paper describes the results of industrial trials (in coal preparation plants) to establish the accuracy of the UZPI device which determines coal ash content using X-ray detection. It is designed to monitor ash content in the 4-40% range in coal with a grain size of 0-100 mm and a coal layer thickness of 50-150 mm (depending on the ash content and grain size). The ash frequently contains oxides, and although variations in magnesium, aluminium, silicon and sulfur oxides have virtually no effect on accuracy of the UZPI, changes in the levels of calcium oxides and particularly iron oxides have a considerable influence on measurement accuracy (caused by changes in their gamma ray scattering cross section values and atomic numbers). The overall sensitivity to ash content in coal varies from 1.6 to 2.4% abs./% while that to iron oxides in ash is 0.4% abs./%. Concludes that this device is suitable for use in coal preparation plants on thin layers of coal, but its efficiency is affected by external influences, e.g. fluctuations in conveyor loading.

  7. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  8. Passenger Spaceplanes and Airplanes that Have Variable Configuration for Sonic Boom Reduction

    Directory of Open Access Journals (Sweden)

    Constantin SANDU

    2018-06-01

    Full Text Available In the last time, the interest for passenger space plane, supersonic passenger aircraft and supersonic business jets is increasing. For reducing sonic boom effects at ground level, some companies proposed airplanes having fuselage with small traversal section or having curved fuselage. This paper presents a new practical method for exciting vibrations in the leading edge of wing, tail and airplane's nose surfaces in order to scatter the shock wave and to reduce the sonic boom impact at ground level. The leading edges of wing, tail and airplane nose are covered with thin elastic fairings made of carbon fiber composite material which are separated through small gaps by the adjacent surfaces of wing, tail and nose. When the aircraft flies over populated areas, compressed air bleed from the engine compressors excites the vibration of carbon fiber fairings. The air is released through calibrated nozzles and directly impinges on the fairing surface generating their vibration. Thus, the shock waves are scattered and the impact of sonic boom on ground is much reduced.

  9. Breeding strategies for the development of emerald ash borer - resistant North American ash

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Kathleen S. Knight; Therese Poland; Daniel A. Herms; Mary E. Mason

    2012-01-01

    The emerald ash borer (Agrilus plannipennis; EAB) is a phloem-feeding beetle that is endemic to Asia. It was discovered in North America in 2002, found almost simultaneously near Detroit, Michigan and Windsor, Ontario, Canada. Adult beetles feed on ash (Fraxinus spp.) foliage, but larval feeding on phloem, cambium, and...

  10. Outlook for ash in your forest: results of emerald ash borer research and implications for management

    Science.gov (United States)

    Kathleen S. Knight

    2014-01-01

    Since its accidental introduction near Detroit, Michigan, in the mid-1990s, emerald ash borer (EAB) has rapidly spread through much of the U.S. and adjacent Canada, leaving millions of dead ash trees in Midwestern states (4,11). Unfortunately, EAB attacks trees as small as an inch in stem diameter and it attacks all five ash species native to the region - white, green...

  11. Analysis list: ash-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash-2 Adult,Embryo + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/as...h-2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/ash-2.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/ce10/target/ash-2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/ash-2.Adult.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/ce10/colo/ash-2.Embryo.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/ce10/colo/Adult.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Embryo.gml ...

  12. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  13. Stability of sonicated aqueous suspensions of phospholipids under air.

    Science.gov (United States)

    Almog, R; Forward, R; Samsonoff, C

    1991-12-01

    The stability of phospholipids in liposomal aqueous suspension against oxidative degradation in air was investigated using spectrophotometric indices, glutathione peroxidase reactivity and thin layer chromatography. Zwitterionic phospholipid was found to be susceptible to degradation via oxidation of polyunsaturated hydrocarbon chains and ester hydrolysis, producing oxidized lysophosphatide and free fatty acid derivatives. These products were characterized as hydroperoxides based on their reactivity with the selenium-dependent glutathione peroxidase isolated from human erythrocytes. Lecithin in Tris buffer was more resistant to hydrolysis than in water. The sonication of 8.0 mM of soybean phosphatidylcholine (SB-PC) suspension in 0.1 M Tris (pH 7.5) in the presence of air produced relatively high concentration of conjugated diene hydroperoxide, but a small amount of hydrolyzed products. Anionic phospholipids, such as egg-phosphatidylglycerol (egg-PG), demonstrated higher resistance to air oxidation than the zwitterionic lecithin, but its oxidation was promoted by sonication.

  14. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    Science.gov (United States)

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  15. Particle formation induced by sonication during yogurt fermentation - Impact of exopolysaccharide-producing starter cultures on physical properties.

    Science.gov (United States)

    Körzendörfer, Adrian; Nöbel, Stefan; Hinrichs, Jörg

    2017-07-01

    Two major quality defects of yogurt are syneresis and the presence of large particles, and several reasons have been extensively discussed. Vibrations during fermentation, particularly generated by pumps, must be considered as a further cause as latest research showed that both ultrasound and low frequencies induced visible particles. The aim of this study was to investigate the impact of sonication during fermentation with starter cultures differing in exopolysaccharide (EPS) synthesis on the physical properties of set (syneresis, firmness) and stirred yogurt (large particles, laser diffraction, rheology). Skim milk was fermented with starter cultures YC-471 (low EPS) or YF-L 901 (high EPS) (Chr. Hansen) and sonicated for 5min at pH5.2. Sonicated set gels exhibited syneresis and were softer than respective controls. The mechanical treatment was adjusted to quantify visible particles (d≥0.9mm) in stirred yogurts properly. Sonication significantly increased particle numbers, however, the effect was less pronounced when YF-L 901 was used, indicating EPS as a tool to reduce syneresis and particle formation due to vibrations. Rheological parameters and size of microgel particles were rather influenced by starter cultures than by sonication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a Combined Docking and QM/MM MD Study

    Directory of Open Access Journals (Sweden)

    Manuel Hitzenberger

    2017-10-01

    Full Text Available Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as Supplementary Material and can be used for further reference.

  17. Ash Stabilization Campaign Blend Plan

    International Nuclear Information System (INIS)

    Winstead, M.L.

    1995-01-01

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed

  18. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  19. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  20. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards.

    Science.gov (United States)

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew

    2010-06-01

    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  1. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Science.gov (United States)

    Nicholas Bolton; Joseph Shannon; Joshua Davis; Matthew Grinsven; Nam Noh; Shon Schooler; Randall Kolka; Thomas Pypker; Joseph Wagenbrenner

    2018-01-01

    Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations...

  2. Sonic anemometry to measure natural ventilation in greenhouses.

    Science.gov (United States)

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  3. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  4. Volcanic ash supply to the surface ocean – remote sensing of biological responses and their wider biogeochemical significance

    Directory of Open Access Journals (Sweden)

    Thomas J. Browning

    2015-03-01

    Full Text Available Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i synthesize findings from these recent studies; (ii report the results of a new remote sensing study of ash fertilization; and (iii calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with 0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.

  5. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  6. Bacterial recovery using sonication versus swabbing of titanium and stainless steel implants inoculated with Staphylococcus pseudintermedius or Pseudomonas aeruginosa.

    Science.gov (United States)

    Keeshen, Thomas; Case, J Brad; Wellehan, James F; Dujowich, Mauricio

    2017-09-12

    To evaluate the use of sonication to improve recovery of bacteria from metal discs infected with bacteria commonly associated with implant infections in veterinary medicine. In vitro study in which sterile titanium (Ti6Al4V) and stainless steel (AIS1316-L) discs were incubated with either Staphylococcus pseudintermedius or Pseudomonas aeruginosa for 24 hours. The following three groups were compared: 1) the sonication group involved immersing the discs in sterile saline and sonicating for five minutes; 2) the sham group was considered a negative control in which the discs were immersed in saline for five minutes without sonication; and 3) the swab group involved systematically swabbing the implant with a sterile culturette. All samples were plated on blood agar and incubated for 24 hours. Colonies were then counted and compared. For both species of bacteria, there was a significant increase in bacterial colonies isolated using sonication compared to the other two study groups (p = 0.0001). No differences in bacterial growth were found between the two types of metal implants. There was a significant increase in bacterial colony counts for S. pseudintermedius when comparing the swab group versus the sham group, but this was not significant for P. aeruginosa. Sonication significantly improves recovery of bacteria commonly associated with veterinary implant-associated surgical site infections compared to swabbing of implants in vitro. A prospective clinical evaluation is indicated to determine the in vivo efficacy of sonication in veterinary patients.

  7. Sonic Fiction as the Mapping of Difference

    DEFF Research Database (Denmark)

    Holmboe, Rasmus; Stricker, Jan Høgh

    2015-01-01

    The here proposed audio paper/audio lecture performance is an iteration of a site-specific participatory performance piece by Danish artist, composer and musician, Andreas Führer. The piece, which has the title THE MAP IS NOT THE TERRITORY D’OR, is a scored sound walk, which shows a map designati......) as a discussion and contextualisation of sonic materialist (Cox, 2011) and signifying representationalist (Kim-Cohen, 2009) positions....

  8. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  9. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  10. Crowdsourcing genomic analyses of ash and ash dieback – power to the people

    Directory of Open Access Journals (Sweden)

    MacLean Dan

    2013-02-01

    Full Text Available Abstract Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository.

  11. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  12. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  13. Sonic branding: a framework for understanding sound branding and an overview of its most noticeable practices across industries

    OpenAIRE

    Bollue, Sebastien

    2015-01-01

    This thesis presents the importance and relevance of sound in branding, as very few studies on sonic branding have been conducted so far. The aim of this thesis is to lay out a framework for understanding sonic branding as a phenomenon and for getting an overview of the most notable practices of sonic branding across various industries. The study is commissioned by the advertising agency Wondergarden for who a workshop was also created. Additionally this thesis hopefully can inspire other...

  14. Analysis list: Ash2l [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ash2l Blood + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ash2l.1.tsv... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ash2l.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ash2...l.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ash2l.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Blood.gml ...

  15. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  16. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  17. Method of reversibly immobilizing sulfate ash

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1984-01-01

    A sulphate ash at least 20% by weight of which consists of sulphates of transuranic elements is immobilised by heating to melting a mixture of the ash, a metal, and a fluxing agent; the metal used is Al, Ce, Sm, Eu or mixtures thereof and it is used in an amount sufficient to reduce the transuranic sulphates in the ash to metal and form an alloy with the metal so produced; sufficient of the fluxing agent is used to reduce the percentage of transuranic sulphates in the mix to form 1% to 10% of the mix and the molten mixture is cooled and the alloy containing the immobilised ash separated. (author)

  18. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  19. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    Directory of Open Access Journals (Sweden)

    Marlinda

    2015-08-01

    Full Text Available Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated to a temperature of 550 0C for 3 hours. Results of preparation banana stem ash contains potassium of 36.52 and surface area of 41.901 m2g. This work presents the effect of ultrasonic assisted of waste cooking oil with methanol as solvent using banana stem ash and coal fly ash as catalyst. The diameter of catalyst particles of banana stem ash and coal fly ash varied at 50 100 150 200 and 250 mesh. The transesterification reaction was performed in the presence of ultrasonic operating frequency constant at 40 kHz methanol molar ratio to oil of 9 1 and reaction time of 30 minutes. The methyl ester biodiesel content of product was 93.26 of banana stems ash and 57 of coal fly ash respectively. The physical property was compared with the National Indonesia Standard SNI 2006 with a density viscosity cloud point flash point and cetane number.

  20. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    International Nuclear Information System (INIS)

    Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin

    2007-01-01

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons

  1. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wan; Hua, Zheng; Honglei, Xiao; Zhenjue, She [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China); Zhou Guomin [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China)], E-mail: gmzhou185@yahoo.com.cn

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.

  2. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  3. Physico-chemical characterisation of Indian biomass ashes

    Energy Technology Data Exchange (ETDEWEB)

    K. Umamaheswaran; Vidya S. Batra [Energy and Resources Institute (TERI), New Delhi (India)

    2008-05-15

    India stands fourth in biomass utilisation for various purposes like domestic, commercial and industrial applications. While extensive studies have been made for coal ash characterisation and utilisation, studies on characterisation of biomass ash and its utilisation has not been addressed. In this paper, biomass ash from five sources i.e. rice husk, bagasse, groundnut shell, cashewnut shell, and arecanut shell have been characterised. Chemical composition analysis, particle size analysis, thermal analysis, and microstructure analysis were carried out. Results show that in all ashes silica is the major compound with particle size ranging from 15 to 30 {mu}m and having irregular shape. Ash powders originating from cashewnut shell, arecanut shell and groundnut shell also have compounds of calcium, magnesium and potassium. Bagasse and cashewnut shell ashes have high LOI due to presence of unburnt carbon, P{sub 2}O{sub 5} and other volatiles. 16 refs., 22 figs., 3 tabs.

  4. Mathematical modeling and optimization of sonication remediation of soil polluted with 2-methylpropane-2-thiol

    Directory of Open Access Journals (Sweden)

    pejman roohi

    2015-10-01

    Full Text Available Existence of 2-methylpropane-2-thiol as an organosulfur and odorant compound in the soil could causes environmental problem and social dissatisfaction. In this study, remediation of this type of thiol using ultrasound is investigated. Central Composite Design (CCD based on Response Surface Model (RSM was used to obtain effects of the main factor (Power, sonication time and amount of water and their interactions. Analysis of variance and Pareto analysis shows that all main factors are effective (the percentage effects of 43.30%, 30.35% and 9.62% on removal efficiency for power, sonication time and amount of water respectively. Moreover, interaction between water content and power, and sonication time and power are effective interaction (with P-values of 0.025 and 0.007 respectively. Base on experiment results and analysis of variance effects of the daylight is not significant (P-value=0.825. P-value of lack of fit (0.176 suggested model assessed as a good model and adequately fits data. Highest levels of power and sonication time (86 watt and 38 minute respectively and water content in lower level (27 ml in studied interval lead to maximum removal efficiency (82.83%.

  5. Immobilization and encapsulation during vitrification of incineration ashes in a coke bed furnace

    International Nuclear Information System (INIS)

    Kuo, Y.-M.; Lin, T.-C.; Tsai, P.-J.

    2006-01-01

    A real-scale coke bed furnace system has been successfully applied to vitrify the incineration ashes into glassy slags. The object of this research was to evaluate the effect of the system on the immobilization of metal species in the slag. Ashes and slag specimens were tested to identify their metal phase distribution following a sequential extraction procedure. The mobility of Al, Ca, Cd, Cr, Mg, Mn and Pb was noticeably reduced by vitrification. An important implication is the reduction of Cr 6+ to Cr 3+ along with its immobilization with this coke bed furnace. The Ni and Zn contents were relatively low in slag, indicating that their availability of mobile phases in ashes was reduced during vitrification. The XRD analyses identified the major crystalline phase in slag as akermanite, which is inert and helpful in metal immobilization. The phase distribution analysis also contributed to verify that the incorporation of Ca and Mg enhanced the encapsulation in the slag matrix. The low oxygen content in slag made the structure of silicate resistant to the proton-promoted attack and also enhanced the mobility reduction of matrix elements (Ca, Mg and Al) in the moderately reducible phase and also contributed to the immobilization of other metal species. However, the properties of slag also deserve further studies to ensure its long-term stability and safety

  6. Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    Science.gov (United States)

    Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.

    2005-01-01

    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.

  7. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  8. Prospects for long-term ash survival in the core emerald ash borer mortality zone

    Science.gov (United States)

    Jordan M. Marshall; Andrew J. Storer; Roger Mech; Steven A. Katovich

    2011-01-01

    Attacking all North American ash species (Fraxinus spp.), emerald ash borer (EAB) (Agrilus planipennis Fairmaire) has caused significant mortality within its introduced range. For other forest pests, host bark plays an important role in infestation density and oviposition behavior. The objectives of this study were to (1) locate...

  9. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  10. Characterization of ash pond ashes from 3rd thermal power plant by SEM/EDX and XRD methods

    Directory of Open Access Journals (Sweden)

    A Minjigmaa

    2014-10-01

    Full Text Available   Coal combustion by products from ash pond of 3rdthermal power plant of Ulaanbaatar city have been collected in 2010 and 2013 years. The ash samples have been characterized by XRD, XRF and SEM-EDX methods in order to evaluate their chemical and mineralogical composition changes with disposed times. The mineralogical composition of ash varies with time though the chemical composition of the ashes were close each other. Possibly, inefficient operating condition of the TPS shows influence on the mineralogical composition.DOI: http://dx.doi.org/10.5564/mjc.v14i0.201Mongolian Journal of Chemistry 14 (40, 2013, p61-65

  11. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    Science.gov (United States)

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  12. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  13. Six propositions on the sonics of pornography

    OpenAIRE

    Mowlabocus, Sharif; Medhurst, Andy

    2017-01-01

    Pornography (and all its contentious pleasures, contested politics and attendant problematics) is enjoying a fresh wave of academic attention. The overwhelming majority of these studies, however, focus on the visual discourses of sexually explicit material. This risks the sonic dimensions of pornography being overlooked entirely. Yet porn is anything but silent. This speculative article maps out some of the ways in which the sounds of pornography (and the pornography of sound) might be approa...

  14. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Science.gov (United States)

    Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.

    2018-03-01

    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  15. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Robert C.G.

    2018-01-01

    Full Text Available Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA and bottom ash (BA mixtures with difference component percentage treated with sodium lauryl sulphate (SLS and polyvinyl alcohol (PVA at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  16. Coastal structures, waste materials and fishery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Collins, K.J.; Jensen, A.C.; Lockwood, A.P.M.; Lockwood, S.J. [University of Southampton, Southampton (United Kingdom). Dept. of Oceanography

    1994-09-01

    Current UK practice relating to the disposal of material at sea is reviewed. The use of stabilization technology relating to bulk waste materials, coal ash, oil ash and incinerator ash is discussed. The extension of this technology to inert minestone waste and tailings, contaminated dredged sediments and phosphogypsum is explored. Uses of stabilized wastes are considered in the areas of habitat restoration, coastal defense and fishery enhancement. It is suggested that rehabilitation of marine dump sites receiving loose waste such as pulverized fuel ash (PFA) could be enhanced by the continued dumping of the material but in a stabilized block form, so creating new habitat diversity. Global warming predictions include sea level rise and increased storm frequency. This is of particular concern along the southern and eastern coasts of the UK. The emphasis of coastal defense is changing from hard seawalls to soft options which include offshore barriers to reduce wave energy reaching the coast. Stabilized waste materials could be included in these and other marine constructions with possible economic benefit. Ministry of Agriculture, Fisheries and Food (MAFF), the regulatory authority in England and Wales for marine disposal/construction, policy regarding marine structures and fishery enhancement is outlined. A case is made for the inclusion of fishery enhancement features in future coastal structures. Examples of the productivity of man-made structures are given. Slight modification of planned structures and inclusion of suitable habitat niches could allow for the cultivation of kelp, molluscs, crustacea and fish.

  17. Improved prediction and tracking of volcanic ash clouds

    Science.gov (United States)

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  18. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  19. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  20. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  1. Future fly ash marketing; Flugaschevermarktung in der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Mauder, R.; Hugot, A. [Evonik Power Minerals GmbH, Dinslaken (Germany)

    2008-07-01

    It can be assumed that the fly ash production volumes will undergo a marked increase over the next few years. The conditions of fly ash production will improve as a result of modern and refurbished power plants, yielding a positive effect on the quality of fly ashes. Other vital parameters of future fly ash marketing are fly ash logistics and the infrastructure of power plants. Basically, economic utilisation of the increased production volumes is possible; however, new and long-term strategies are necessary. (orig.)

  2. Recirculation of biomass ashes onto forest soils: Ash composition, mineralogy and leaching properties

    DEFF Research Database (Denmark)

    Maresca, Alberto; Hyks, J.; Astrup, Thomas Fruergaard

    2017-01-01

    In Denmark, increasing amounts of wood ashes are generated from biomass combustion for energy production. The utilisation of ashes on top of forest soil for liming purposes has been proposed asan alternative to landfilling. Danish wood ash samples were collected and characterised with respect......, minor and trace elements were affected significantly by pH: high releases of PO4 3-, Mg, Zn, Cu and Cd were found for acidic conditions relevant to forest soils, while the highest releases of Mo and Cr were observed in alkaline conditions. Mineral phases were selected based on XRD analyses...... critical element compared with soil quality criteria, whereas the maximum theoretical loads of Ba, Cd, Cr, Sr, Mo, Ni, Pb, Sb, Se, Sn and V were relatively low....

  3. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  4. Production of mineral ash-wool

    International Nuclear Information System (INIS)

    Micevic, Z.; Djekic, S.

    1996-01-01

    The project entitled 'Production of Mineral Ash-Wool' presents a new technology of possible use of the fly ash, generated as a waste product from the fossil fueled power plants, as a basic raw material for manufacturing of different products from a new mineral ash-wool. The wide area of mineral ash-wool application (civil engineering, industry, power generation, etc.) and the advantages of this new technology (important raw material obtained free of charge, substitution of expensive silicate stone, use of electric energy for melting instead for coke, vicinity of factory location close to the fossil fueled power plant, lower product price, reduction of environmental pollution, etc.) have resulted in the performance of the bench scale tests. Positive results have been obtained, as a good initial base for the realization of this project. The named study as an detailed analysis has been carried out for the assessment of: supply and sales market, analysis of possible and selection of an optimal location of the factory in the frame of fossil fueled power plant 'Kosovo', selection of the production capacity and alternative preliminary technical designs of the factory for the mineral ash-wool production. For the studied alternatives, specifications and capital investments evaluations for equipment and works (mechanical, civil engineering and electromechanical part) have been made as well as assessments of production costs. Based on the performed economical and financial analyses, as well as the sensitivity analyses one could be concluded that the investments in the factory for the mineral ash-wool production is highly economically acceptable. (author). 1 fig., 1 tab., 3 refs

  5. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    Science.gov (United States)

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. I cristalli sonici come barriere antirumore - Sonic crystals as tunable noise barriers

    Directory of Open Access Journals (Sweden)

    Federica Morandi

    2017-02-01

    Full Text Available Il presente contributo riporta un'introduzione al tema della propagazione del suono nei cristalli sonici e un excursus sulla letteratura scientifica più recente. Si discutono i risultati di alcune indagini sperimentali condotte presso l’Università di Bologna inerenti misure di Insertion Loss, misure effettuate all’interno del reticolo e misure di intensimetria. Infine i valori di Sound Insulation misurati per un cristallo sonico sono confrontati con valori misurati su barriere tradizionali, evidenziando come il cristallo sonico permetta di raggiungere un isolamento confrontabile con il valore soglia di Insertion Loss raggiungibile a causa della diffrazione del bordo superiore della barriera. ------ This work reports an introduction to the topic of wave propagation in sonic crystals and a review of the recent scientific literature. The paper presents the results of some experimental investigations carried out at the University of Bologna by discussing Insertion Loss measurements, measurements performed inside the lattice and sound intensity measurements. Finally, the Sound Insulation Index measured for a sonic crystal is compared to the values measured for common noise barriers, pointing out that sonic crystals reach insulation values comparable to the maximum Insertion Loss achievable due to the top edge diffraction.

  7. Coal ash parameters by neutron activation

    International Nuclear Information System (INIS)

    Chrusciel, Edward; Chau, N.D.; Niewodniczanski, J.W.

    1994-01-01

    The coal parameters, ash content and ash slagging index, may be strongly related to the chemical composition of mineral impurities in coal. Based on this assumption the authors have examined the feasibility of neutron activation techniques, both as a laboratory and a well logging method, by recording induced γ-rays in the two energy intervals with the help of a scintillation γ-ray spectrometer. Results from the Upper Silesiab Coal Basin have shown that the method can be used to evaluate the ash content and ash fusion temperature, both in the laboratory and in well logging; the corresponding mean standard deviations being 1.5 wt% and 35 o C; and 3 wt% and 45 o C respectively. (author)

  8. Basic soil benefits from ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Martens, D.C.; Plank, C.O.

    1970-01-01

    The beneficial effects of fly ash application shown herein are expected to encourage future disposal of the material in agricultural soils. It is foreseen, however, that fly ash disposal in agricultural soils would be unsuccessful if adverse effects on crop production result from its misuse. It seems evident, therefore, that quality control measures will be required to insure proper disposal of the material in agricultural soils. It will be necessary to consider differences in chemical properties of various samples of fly ash and in chemical reactions of samples of fly ash and soils. Differences in tolerances of plants to soluble salt damage and to specific nutrient deficiencies and toxicities will also have to be taken into account. 9 tables.

  9. Methodology on quantification of sonication duration for safe application of MR guided focused ultrasound for liver tumour ablation.

    Science.gov (United States)

    Mihcin, Senay; Karakitsios, Ioannis; Le, Nhan; Strehlow, Jan; Demedts, Daniel; Schwenke, Michael; Haase, Sabrina; Preusser, Tobias; Melzer, Andreas

    2017-12-01

    Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). The evidence obtained via this

  10. Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions

    International Nuclear Information System (INIS)

    Wu Liangyu; Chen Lienwen; Liu Chiaming

    2009-01-01

    This study theoretically and experimentally investigates the acoustic pressure in the cavity of a 2D sonic crystal. Such crystals are composed of polymethyl methacrylate cylinders with a square array embedded in air background. The plane wave expansion method and the supercell calculation are employed to calculate the band structure and obtain the defect band. The finite element method is adopted to simulate the pressure field in the sonic crystal and calculate the pressure in the middle of the cavity as a function of frequency. The effects of sizes and filling fractions are investigated, and the quality factor of the cavity is discussed. The measured spectra and pressures in the defect of the sonic crystal demonstrate that the acoustic waves can be localized in the defect at the resonant frequency

  11. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  12. Plant growth on 'fly ash'

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R; Hodgson, D R; Townsend, W N; Wood, J W

    1958-04-12

    Plants were grown in plot and pot experiments to assess the toxicity of the fly ash. It was found that plants grouped into three classes: tolerant, moderately tolerant, and sensitive. Boron was found to be a major compoent of the toxic principle of fly ash.

  13. Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF model data

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.

    2012-01-01

    anemometer at 15 m height and potential temperature differences between the water and the air above. Surface flux estimations from the advanced weather research and forecast (WRF) model are also validated against the sonic and bulk data. The correlation between the sonic and bulk estimates of friction...... to the surface, not only from a systematic bulk and WRF under‐prediction of the friction velocity when compared with the sonic value but also because of the lower magnitude of the sonic heat flux compared with that from the WRF simulations. Although they are not measured but parameterized or estimated, the bulk......–WRF comparisons of friction velocity and 10 m wind speed show good agreement. It is also shown that on a long‐term basis, the WRF and bulk estimates of stability are nearly equal and that a correction towards a slightly stable atmospheric condition has to be applied to the long‐term wind profile at Horns Rev...

  14. Measuring ash content of coal

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1980-01-01

    An apparatus for measuring the ash content of coal is claimed. It comprises a means for irradiating a known quantity of coal in a transport container with a known dose of neutrons, a means for detecting γ-rays having a predetermined energy emitted by the irradiated coal, the γ-rays being indicative of the presence of an ash-forming element in the coal, a means for producing a signal related to the intensity of the γ-ray emission and a means responsive to the signal to provide an indication of the concentration of the ash-forming element in the coal

  15. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Science.gov (United States)

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  16. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  17. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  18. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults

    Science.gov (United States)

    David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth

    2009-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...

  19. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  20. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  1. Emerald ash borer life cycle

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  2. Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  3. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    marble sludge was considered as the main reason to prevent sintering of two biomass ashes. Addition of sewage sludge enhanced contents of inert minerals and reduced melted fraction in two biomass ashes. These inert minerals are (1) directly from the added sludge and (2) formed due to reaction between aluminosilicates in sludge and K containing species in the biomass ashes. Therefore, sintering degrees of the two biomass ashes were reduced upon sewage sludge addition. Clay sludge addition resulted in more severe sintering behaviors of the wood waste ash, as a result of formation of more Si rich melts upon heating. Effects of additives on ash slagging behaviors were further investigated during combustion of wood waste pellets in an industry scale boiler. It was found that the wood waste ash had a high slagging tendency and silicate-alkali chemistry played a dominating role during the ash sintering process. The addition of marble sludge significantly reduced the slag formation during wood waste pellets combustion. This occurred because marble sludge restrained accumulation of melted ash and contributed to formation of high temperature melting potassium/sodium calcium silicates. The sewage sludge addition gave a less pronounced anti-slagging effect on wood waste pellets combustion. The composition of the formed slag was changed from low temperature melting silicates to high temperature melting mineral phases. In addition, the size and sintering degree of the formed slag decreased considerably, improving the operation conditions of the boiler.(Author)

  4. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

    OpenAIRE

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K.

    2012-01-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility t...

  5. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  6. Volcanic Ash fall Impact on Vegetation, Colima 2005

    Science.gov (United States)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  7. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  8. Radioactive wastes dispersed in stabilized ash cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-01-01

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO 2 ) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO 2 to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO 2 to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms

  9. Ashéninka y asháninka : ¿de cuántas lenguas hablamos?

    NARCIS (Netherlands)

    Pedrós, Caballero T.

    2018-01-01

    Este artículo intenta esclarecer cuántas lenguas hay en todo el complejo ashéninka-asháninka, en el cual el Ethnologue y el Glottolog distinguen siete o seis lenguas respectivamente, algo que resulta evidentemente erróneo cuando se estudia la escasa bibliografía existente de las distintas

  10. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  11. Geotechnical properties of ash deposits near Hilo, Hawaii

    Science.gov (United States)

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  12. Emerald ash borer flight potential

    Science.gov (United States)

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  13. Emerald ash borer biological control

    Science.gov (United States)

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  14. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    Science.gov (United States)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  15. Prediction of sonic flow conditions at drill bit nozzles to minimize complications in UBD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Ghalambor, A. [Louisiana Univ., Lafayette, LA (United States); Al-Bemani, A.S. [Sultan Qaboos Univ. (Oman)

    2002-06-01

    Sonic flow at drill bit nozzles can complicate underbalanced drilling (UBD) operations, and should be considered when choosing bit nozzles and fluid injection rates. The complications stem from pressure discontinuity and temperature drop at the nozzle. UBD refers to drilling operations where the drilling fluid pressures in the borehole are maintained at less than the pore pressure in the formation rock in the open-hole section. UBD has become a popular drilling method because it offers minimal lost circulation and reduces formation damage. This paper presents an analytical model for calculating the critical pressure ratio where two-phase sonic flow occurs. In particular, it describes how Sachdeva's two-phase choke model can be used to estimate the critical pressure ratio at nozzles that cause sonic flow. The critical pressure ratio charts can be coded in spreadsheets. The critical pressure ratio depends on the in-situ volumetric gas content, or gas-liquid ratio, which depends on gas injection and pressure. 6 refs., 2 tabs., 5 figs.

  16. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  17. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  18. Fire severity effects on ash extractable Total Phosphorous

    Science.gov (United States)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher

  19. Effects of sonication and ultraviolet-C treatment as a hurdle concept on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    Science.gov (United States)

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2015-04-01

    The growing demand for fresh-like food products has encouraged the development of hurdle technology of non-thermal processing. In this study, freshly squeezed Chokanan mango juice was treated by paired combinations of sonication (for 15 and 30 min at 25 ℃, 40 kHz frequency) and UV-C treatment (for 15 and 30 min at 25 ℃). Selected physicochemical properties, antioxidant activities, microbial inactivation and other quality parameters of combined treated juice were compared to conventional thermal treatment (at 90 ℃ for 60 s). After thermal and combined treatment, no significant changes occurred in physicochemical properties. A significant increase in extractability of carotenoids (15%), polyphenols (37%), flavonoids (35%) and enhancement in antioxidant capacity was observed after combined treatment. Thermal and combined treatment exhibited significant reduction in microbial load. Results obtained support the use of sonication and UV-C in a hurdle technology to improve the quality of Chokanan mango juice along with safety standards. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    Due to a high concentration of Cd, biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. In this work the potential of using the method Electrodialytic Remediation to reduce the concentration of Cd in different biomass combustion....... The initial Cd concentration in the ashes varied between 8.8 mg Cd/kg DM (co-firing ash) and 64 mg Cd/kg DM (pre-washed straw ash), and pH varied from 3.7 to 13.3. In spite of large differences in ash characteristics, the electrodialytic remediation experiments indicated a good remediation potential for all...... four ashes. Final Cd concentrations below 2.0 mg Cd/kg were reached in all ashes within 14 days of remediation and legislative requirements were met. After further optimization of the remediation process on the pre-washed straw ash, limiting concentrations were reached after only 48 hours...

  1. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence mea...... measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the Mar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically.......Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  2. Sonic boom predictions using a modified Euler code

    Science.gov (United States)

    Siclari, Michael J.

    1992-04-01

    The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.

  3. Granulated wood ash to forest soil - Ecological effects

    International Nuclear Information System (INIS)

    Rosen, K.; Eriksson, H.; Clarholm, M.; Lundkvist, H.; Rudebeck, A.

    1993-01-01

    This report describes research concerning ecological effects of wood ash recycling to forest soils. The main part of the minerals in the wood fuels are retained in the ashes after combustion. By returning the ashes back to the cleared forest areas, the mineral losses can be reduced. Adding ashes and limestone is a method to vitalize acidified forest soils and restore the production capacity. 48 refs, 26 figs, 8 tabs

  4. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  5. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  6. Reduction of metal leaching in brown coal fly ash using geopolymers

    International Nuclear Information System (INIS)

    Bankowski, P.; Zou, L.; Hodges, R.

    2004-01-01

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60 wt% for fly ash obtained from the electrostatic precipitators and 70 wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition

  7. Determination of technologically enhanced naturally occurring radioactive material (TENORM) in ashes from coal-fired thermal power plants in the Philippines

    International Nuclear Information System (INIS)

    Parami, Vangeline Kinilitan

    2008-04-01

    The activity concentration (AC) of TENORM - 238 U, 226 Ra ( 238 U series), 232 Th, 228 Ra, 228 Th ( 232 Th series) and 40 K in feed coal, bottom ash and fly ash samples from four coal-fired thermal power plants C, M, P and S were determined using two techniques: inductively coupled plasma mass spectrometry (ICP-MS) and high purity germanium (HPGe) gamma spectrometry. For 232 Th and 238 U [determined at National Institute for Radiological Sciences (NIRS) by the ICP-MS)], Plant S feed coal (FC) sample that originated from China had the highest AC (15.77 ± 0.32 Bq/kg and 13.67 ± 0.82 Bq/kg, respectively), followed by Plant M FC sample also from China (8.31 ± 0.33 Bq/kg and 5.84 ± 0.12 Bq/kg, respectively), while Plants C and P FC samples that originated from the Philippines and Indonesia had the lowest ACs of 232 Th and 238 U. Plant S also had the highest bottom ash (BA) AC of 80.86 ± 3.23 Bq/kg and 100.20 ± 4.01 Bq/kg, respectively while Plant P had the highest fly ash (FA) AC of 155.96 ± 6.24 Bq/kg and 268.03 ± 10.72 Bq/kg, respectively. For AC's of 226 Ra, 228 Ra, 228 Th and 40 K determined by NIRS HPGe, Plant C had the highest in the FC sample (11.70 ± 1.39 Bq/kg, 13.65 ± 4.99 Bq/kg, 11.35 ± 3.96 Bq/kg ad 80.23 ± 10.91 Bq/kg, respectuvely). For AC's in the BA samples, Plant M had the highest 226 Ra (106.73 ± 6.74 Bq/kg) and Plant S had the highest 228 Ra and 40 K (66.64 ± 8.16 Bq/kg and 400.93 ± 43.06 Bq/kg, respectively For AC's in the FA samples, Plant S had the highest 226 Ra and 228 Ra AC's (131.13 ± 8.09 Bq/kg and 87.70 ± 10.45 Bq/kg, respectively) while Plant C had the highest 40 K AC (369.08 ± 40.87 Bq/kg). The highest AC enhancement of 238 U, 226 Ra ( 238 U series), 232 Th, 228 Ra, 228 Th ( 232 Th series) 40 K relative to feed coal occurred in Plant P FA sample, with 238 U showing the highest enhancement of 93.72 among the radionuclides. When normalized with 40 K, 238 U in Plant P FA sample also had the highest enrichment factor (EF

  8. Use of ash in the fertilisation of peatland forests

    International Nuclear Information System (INIS)

    Moilanen, M.; Korpilahti, A.

    2000-01-01

    About 100,000 tonnes of bark and other wood-based ash are produced annually by the forest industries and heating plants in Finland. This amount would be sufficient for fertilising about 25,000 hectares of forest. When applied to peatland forests, this would produce extra forest growth of about 75,000 m 3 per a year. When considering the objectives of forestry, the practical benefits and economic profitability of ash fertilisation are at their peak on peatlands rich in nitrogen. Wood ash induces added tree growth (measured in terms of stemwood) in pine stands on herb- and sedge-rich parklands within 2-3 years of application. On nitrogen-deficient dwarf-shrub and Sphagnum-rich peatlands this growth reaction manifests itself only after 7-8 years have passed and even then at a considerably lower level. The application of mere ash does not result in notable increases in tree growth on upland forest sites. However, ash does change the growth conditions by reducing the acidity of the soil and by accelerating microbial decomposition. The phosphorus contained in ash has not been observed to have been leached into drainage waters on drained sites, at least not during the first two years after application, provided that care has been practised when spreading ash. However, the movement of readily-soluble nutrients has been observed and more so on nutrient-poor sites than on nutrient-rich sites. Although the suitability of ash as fertiliser in peatland forests has been recognised on the basis of long-term ash trials established at the Finnish Forest Research Institute, ash fertilisation has not been carried out made on a practical scale mainly because of the dust problem when spreading it. The purpose of pretreatment with ash is first and foremost to transform the ash into sufficiently dust-free form to enable it to be spread readily. An added advantage is that pelletised ash causes a lesser pH shock to plank than ash in dust form. (orig.)

  9. OPACITY BROADENING OF {sup 13}CO LINEWIDTHS AND ITS EFFECT ON THE VARIANCE-SONIC MACH NUMBER RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Correia, C.; De Medeiros, J. R. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 (Brazil); Burkhart, B.; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 North Charter Street, WI 53711 (United States); Ossenkopf, V.; Stutzki, J. [Physikalisches Institut der Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Kainulainen, J. [Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kowal, G., E-mail: caioftc@dfte.ufrn.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-090 (Brazil)

    2014-04-10

    We study how the estimation of the sonic Mach number (M{sub s} ) from {sup 13}CO linewidths relates to the actual three-dimensional sonic Mach number. For this purpose we analyze MHD simulations that include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes M{sub s} to be overestimated by a factor of ≈1.16-1.3 when calculated from optically thick {sup 13}CO lines. We also find that there is a dependence on the magnetic field: super-Alfvénic turbulence shows increased line broadening compared with sub-Alfvénic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number-density standard deviation (σ{sub ρ/(ρ)}) relationship, σ{sub ρ/〈ρ〉}{sup 2}=b{sup 2}M{sub s}{sup 2}, and the related column density standard deviation (σ {sub N/(N)}) sonic Mach number relationship. In particular, we find that the parameter b, as an indicator of solenoidal versus compressive driving, will be underestimated as a result of opacity broadening. We compare the σ {sub N/(N)}-M{sub s} relation derived from synthetic dust extinction maps and {sup 13}CO linewidths with recent observational studies and find that solenoidally driven MHD turbulence simulations have values of σ {sub N/(N)}which are lower than real molecular clouds. This may be due to the influence of self-gravity which should be included in simulations of molecular cloud dynamics.

  10. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  11. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...... ashes. The process, thus, fixates the metals in the solid residues without altering the leaching properties of the bottom ash too significantly. (C) 2001 Elsevier Science Ltd. All rights reserved....... stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  12. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Photocatalytic Removal of Ortho Chlorophenol from Aqueous Solution Using Modified Fly Ash - Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Mohamad Malakootian

    2016-05-01

    Full Text Available The photocatalytic process is a useful method for the effective removal of phenolic compounds. Conducted in the spring‒summer 2013 at the Engineering Research Center for Environmental Health, Kerman University of Medical Sciences, this experimental study used a modified fly ash‒TiO2 mixture to enhance the photocatalytic removal efficiency of ortho-chlorophenol. Fly ash obatined from the Thermal Power Plant in Zarand, Kerman, was initially washed with sulfuric acid before being oxidized with potassium permanganate. The mixture of modified fly ash and TiO2 was then used for the removal of ortho-chlorophenol in the presence of UV light and the factors involved in the removal process were optimized. It was found that the ortho-chlorophenol removal efficiency recorded by the mixture of modified fly ash and TiO2 was higher than that by each of the modified fly ash or TiO2/UV alone. It was, further, observed that removal efficiency with a modified fly ash to TiO2 ratio of 3:1 rose to 98.8% under optimum conditions (i.e., pH: 2; contact time: 2 h; room temperature (29±2˚C, and a catalyst dose of 0.6 g. The ortho-chlorophenol removal efficiency in real wastewater from the Coal Wash Plant in Zarand was recorded at 88.4%. Based on the results obtained from simultaneous use of modified fly ash and TiO2, the proposed method may be recommended for industrial applications.

  14. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  15. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  16. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Science.gov (United States)

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  17. Experimental Study of Ageing Behaviour of Al-Cu-Mg/Bagasse Ash Particulate Composites

    Directory of Open Access Journals (Sweden)

    R. A. Mohammed

    2011-03-01

    Full Text Available The experimental correlation of ageing behaviour for Al-Cu-Mg/Bagasse ash particulate composites with 2-10wt% bagasse ash particles produced by double stir-casting method has been investigated. Hardness values measurement and microstructural analysis were used in determining the ageing behaviour, after solution and age-hardened heat-treatment. For comparison, the ageing characteristics of the unreinforced matrix alloy with an identical processing and ageing history were also examined. The results indicate that the composite exhibits an accelerated hardening response compared to the unreinforced matrix alloy at the three selected aging temperatures of 100, 200 and 300 °C. Ageing temperature has great influence on the hardening characteristics of the Al–Cu–Mg/BAp composite. TEM observations reveal that the addition of bagasse ash particles to the Al–Cu–Mg alloy can speed up the growth rate of precipitates S’ (Cu3Al2, and Al6CuMg4 phases. The accelerated precipitation of S’ phases is proposed to be responsible for the enhanced age-hardening of the Al–Cu–Mg/BAp composites.

  18. Environmentally friendly use of non-coal ashes in Sweden.

    Science.gov (United States)

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  19. COMPARISON OF CULTURE OF SYNOVIAL FLUID, PERIPROSTHETIC TISSUE AND PROSTHESIS SONICATE FOR THE DIAGNOSIS OF KNEE PROSTHESIS INFECTION

    Directory of Open Access Journals (Sweden)

    Andrej Trampuž

    2003-03-01

    Full Text Available Background. Synovial fluid and periprosthetic tissue specimens are the standard specimens cultured for the diagnosis of prosthetic joint infection (PJI. We hypothesize that ultrasonication of the explanted prosthesis may improve diagnosis of PJI by dislodging biofilm bacteria from the prosthesis surface and improve the sensitivity and specificity of diagnosis of PJI.Methods. Included were patients undergoing knee prosthesis exchange for septic or biomechanical failure and have not received antimicrobial therapy in the last 2 weeks prior specimen collection. Cultures of synovial fluid and periprosthetic tissue specimens were performed per the usual clinical practice. Additionally, explanted joint components were sonicated for 5 minutes at frequency 40 kHz in sterile Ringer’s solution; aliquots of 0.5 ml sonicate were plated onto five aerobic and five anaerobic blood agar plates, and incubated at 37 °C and examined for the next seven days. The number and identity of each colony morphology was recorded.Results. 35 patients undergoing knee replacement have been studied (24 for aseptic biomechanical failure and 11 for suspected PJI. In patients with PJI, coagulase-negative staphylococci (7 cases, Corynebacterium spp. (2 cases, Staphylococcus aureus (1 case, and viridans group streptococcus (1 case were recovered. Culture sensitivity and specificity were for synovial fluid 88% and 100%, for periprosthetic tissue 83% and 81%, and for explant sonicate 91% and 100%, respectively. In sonicate cultures higher numbers of microorganisms than in periprosthetic tissue cultures were consistently detected.Conclusions. Using synovial fluid, periprosthetic tissue, and explant sonicate cultures, 12%, 17% and 9% of PJI were missed, respectively. Explant sonicate cultures were the most sensitive with respect to the diagnosis of PJI, indicating that explant ultrasonication may improve bacterial recovery. In sonicate cultures, infecting organisms were detected in

  20. Advanced characterisation of municipal solid waste ashes

    Energy Technology Data Exchange (ETDEWEB)

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  1. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  2. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  3. A robust method to forecast volcanic ash clouds

    Science.gov (United States)

    Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin

    2012-01-01

    Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an

  4. Interdisciplinarity in Medialogy with applications to Sonic Interaction Design

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Serafin, Stefania

    2009-01-01

    Medialogy is a novel education developed in Denmark since 2002, whose goal is to combine technology and creativity in the design, contextualization and evaluation of media technology. In this paper we describe the progression of the sonic interaction design curriculum in the Medialogy education, ......, stressing the importance of a transdisciplinary training for engineers working on interactive sound....

  5. Acidolysis of coal fly ash by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.; Singh, A.K. (EG and G Idaho Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1993-12-01

    The kinetics of aluminium extraction were investigated, using as-received and calcined fly ash samples and a pure culture of [ital Aspergillus niger]. This fungus metabolized sucrose to citric and oxalic acids, which were involved in the acidolysis of fly ash. Aluminium extraction from as-received fly ash was only 5-8%, whereas from calcined fly ash it was up to 93.5%. The order of reaction and the overall reaction rate constant were determined by the van't Hoff technique with respect to the concentration of calcined fly ash. A linearized form of a modified Monod expression was applied to the experimental data to assess the kinetic constants for the acidolysis process. Statistically designed experiments were carried out with calcined fly ash and synthetic solutions containing citric and oxalic acids to determine the optimum leaching conditions. The acidolysis reaction mechanism is discussed. 28 refs., 6 figs., 3 tabs.

  6. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  7. Coal ash usage in environmental restoration at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, P.L.; Sonnichsen, J.C.; Phillips, S.J.

    1994-08-01

    The ash stockpiled next to the 284E steam plant is mixed fly ash, bottom ash, and slag. The ash consists of (1) baghouse residue and (2) a mixture of bottom ash and slag which is washed out of the bottom of the boilers daily. In 1991, a Toxicity Characteristic Leaching Procedure (TCLP) was performed on several samples of this ash (Hazen Research 1991). This procedure is designed to determine the mobility of organic and inorganic anatytes present in liquid, solid, or multiphasic wastes (EPA 1994). The ash tested came from surge bins, conveyor samples, and bottom ash and fly ash from the boilers at 284E. Antimony, cadmium, germanium, molybdenum, silver, thallium, tungsten, and vanadium were tested for, but on all samples were below detection Limits for the testing method. Analytes present in relatively high concentrations (but less than one part per thousand) included barium, boron, chromium, fluorine, and zinc. The size of ash particles passing through a Taylor sieve series was very evenly distributed from 1 to 200m.

  8. CERN, World's largest particle physics lab, selects Progress SonicMQ

    CERN Document Server

    2007-01-01

    "Progress Software Corporation (NADAQ: PRGS), a global supplier of application insfrastructure software used to develop, deploy, integrate and manage business applications, today announced that CERN the world's largest physis laboratory and particle accelerator, has chosen Progress® SonicMQ® for mission-critical message delivery." (1 page)

  9. Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash

    Science.gov (United States)

    Thang, Nguyen Hoc; Hoa, Nguyen Ngoc; Quyen, Pham Vo Thi Ha; Tuyen, Nguyen Ngoc Kim; Anh, Tran Vu Thao; Kien, Pham Trung

    2018-04-01

    Geopolymer technology was developed by Joseph Davidovits in 1970s based on reactions among alumino-silicate resources in high alkaline conditions. Geopolymer has been recently gaining attention as an alternative binder for Ordinary Portland cement (OPC) due to its low energy and CO2 burden. The raw materials used for geopolymerization normally contain high SiO2 and Al2O3 in the chemical compositions such as meta-kaoline, rice husk ash, fly ash, bottom ash, blast furnace slag, red mud, and others. Moreover, in this paper, coal bottom ash (CBA) and rice husk ash (RHA), which are industrial and agricultural wastes, respectively, were used as raw materials with high alumino-silicate resources. Both CBA and RHA were mixed with sodium hydroxide (NaOH) solution for 20 minutes to obtain the geopolymer pastes. The pastes were filled in 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room condition for hardening of the geopolymer specimens. After 24 hours, the specimens were removed out of the molds and continuously cured at room condition for 27 days. The geopolymer-based materials were then tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). Results indicated that the material can be considered lightweight with volumetric weight from 1192 to 1425 kg/m3; compressive strength at 28 days is in the range of 12.38 to 37.41 MPa; and water absorption is under 189.92 kg/m3.

  10. Greener management practices - ash mound reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, S.L.; Shyam, A.K.; Soni, R. [National Thermal Power Corp. Ltd., New Delhi (India)

    2002-12-01

    The dry ash handling system at Dadri has been pioneered for the first time in India by the National Thermal Power Corporation (NTPC). The system is similar to that at the Drax power station in England. The paper reports the successful experimental trials carried out on vegetation of temporary ash mounds to assess the growth potential of local herbs, shrubs, trees and grasses directly on ash with no soil cover or fertiliser. These were extended to trials directly on the available (completed) mound surfaces. The grass Cynodon dactylon germinated well as did seeds of tree species including the Casurarina and Eucalyptus. It is hoped that efforts at Dadri will ultimately transform the ash into a productive and self sustaining ecosystem, as leaf fall adds additional organic material and the weathering process continues. 6 refs., 6 figs.

  11. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  12. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    International Nuclear Information System (INIS)

    Cannon, N.S.

    1994-01-01

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported

  13. Automated Selection of Hotspots (ASH): enhanced automated segmentation and adaptive step finding for Ki67 hotspot detection in adrenal cortical cancer.

    Science.gov (United States)

    Lu, Hao; Papathomas, Thomas G; van Zessen, David; Palli, Ivo; de Krijger, Ronald R; van der Spek, Peter J; Dinjens, Winand N M; Stubbs, Andrew P

    2014-11-25

    In prognosis and therapeutics of adrenal cortical carcinoma (ACC), the selection of the most active areas in proliferative rate (hotspots) within a slide and objective quantification of immunohistochemical Ki67 Labelling Index (LI) are of critical importance. In addition to intratumoral heterogeneity in proliferative rate i.e. levels of Ki67 expression within a given ACC, lack of uniformity and reproducibility in the method of quantification of Ki67 LI may confound an accurate assessment of Ki67 LI. We have implemented an open source toolset, Automated Selection of Hotspots (ASH), for automated hotspot detection and quantification of Ki67 LI. ASH utilizes NanoZoomer Digital Pathology Image (NDPI) splitter to convert the specific NDPI format digital slide scanned from the Hamamatsu instrument into a conventional tiff or jpeg format image for automated segmentation and adaptive step finding hotspots detection algorithm. Quantitative hotspot ranking is provided by the functionality from the open source application ImmunoRatio as part of the ASH protocol. The output is a ranked set of hotspots with concomitant quantitative values based on whole slide ranking. We have implemented an open source automated detection quantitative ranking of hotspots to support histopathologists in selecting the 'hottest' hotspot areas in adrenocortical carcinoma. To provide wider community easy access to ASH we implemented a Galaxy virtual machine (VM) of ASH which is available from http://bioinformatics.erasmusmc.nl/wiki/Automated_Selection_of_Hotspots . The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_216.

  14. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  15. Statistical testing of input factors in the carbonation of brine impacted fly ash.

    Science.gov (United States)

    Grace, Muriithi N; Wilson, Gitari M; Leslie, Petrik F

    2012-01-01

    A D-optimal design was applied in the study of input factors: temperature, pressure, solid/liquid (S/L) ratio and particle size and their influence on the carbonation of brine impacted fly ash (FA) determined. Both temperature and pressure were at two levels (30°C and 90°C; 1 Mpa and 4 Mpa), S/L ratio was at three levels (0.1, 0.5 and 1) while particle size was at 4 levels (bulk ash, 150 μm). Pressure was observed to have a slight influence on the % CaCO(3) yield while higher temperatures led to higher percentage CaCO(3) yield. The particle size range of 20 μm - 150 μm enhanced the degree of carbonation of the fly ash/brine slurries. This was closely followed by the bulk ash while the >150 μm particle fraction had the least influence on the % CaCO(3). The effect of S/L ratio was temperature dependent. At low temperature, the S/L ratio of 1 resulted in the highest % CaCO(3) formation while at high temperature, the ratio of 0.5 resulted in the highest percentage CaCO(3) formation. Overall the two most important factors in the carbonation of FA and brine were found to be particle size and temperature.

  16. Simulated Impacts of Emerald Ash Borer on Throughfall and Stemflow Inputs of Water and Nitrogen in Black Ash Wetlands in Northern Michigan

    Science.gov (United States)

    Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.

    2014-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total

  17. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  18. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  19. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2004-02-13

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

  20. Iron dissolution from volcanic ash in low-pH atmospheric water: a key control on volcanic iron input to the surface ocean?

    Science.gov (United States)

    Maters, E.; Delmelle, P.; Ayris, P. M.; Opfergelt, S.

    2012-12-01

    A low concentration of dissolved iron (Fe) limits phytoplankton growth in approximately 30% of the ocean. The input of soluble Fe to these High-Nutrient Low-Chlorophyll (HNLC) regions has the potential to boost primary production and thereby enhance the drawdown of atmospheric carbon dioxide (CO2). Over geological timescales, volcanic activity may alter the flux of Fe to the surface ocean and so contribute to modulating atmospheric CO2 concentrations, ultimately impacting the global climate. Ocean Fe fertilisation has also recently been found to contribute to century-scale carbon sequestration via the export of biomass to the seafloor. Atmospherically deposited volcanic ash is now increasingly seen as an intermittent source of Fe to the surface ocean. Understanding the process of Fe release from ash in solution is key for assessing the potential for ash, particularly that produced by large but rare explosive eruptions or during sustained periods of intense volcanism, to fertilise the marine environment. Previous studies have measured the release of Fe from ash in near-neutral pH solution, but the influence of interaction between ash and acidic cloud- or rainwater during transport on Fe release is poorly understood. In this study, seven volcanic ash samples ranging from tephrite to rhyolite (49-74 wt.% SiO2) were leached in pH 1 H2SO4 in batch reactors for 336 h, at a 1:500 ash-to-solution ratio, to investigate Fe release under acidic conditions. Major element concentrations were measured by inductively coupled plasma- atomic emission spectroscopy (ICP-AES) across a time series of ash leachates. Changes in ash surface composition induced by contact with acid solution were assessed by X-ray photoelectron spectroscopy (XPS). The Fe2+/Fe3+ ratio in ash leachates was also determined for the first time, using the Ferrozine method. The ash samples released 42 to 411 μmol m-2 of Fe over 336 h of leaching. High initial Fe release rates (>1 μmol m-2 h-1) sustained for up

  1. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  2. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    OpenAIRE

    Marlinda; Ramli; Muh. Irwan

    2015-01-01

    Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated...

  3. Water retention properties of ashes; Vattenretentionsegenskaper hos aska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Ezziyani, Samir; Bendz, David

    2009-05-15

    The water holding properties of a material can be described with a water retention curve (also called pF curve or characteristic curve). The importance of this material property has until now been neglected in waste and rest products contexts. There is an eminent need for knowledge of the water holding properties of ash and rest products in order to improve the possibility to perform i) assessment of leaching from rest product used in constructions, ii) dimensioning of covers built with rest products and iii) assessment of long term properties of land fill waste concerning leaching, especially for stabilized ash with a monolithic characteristics. The aim of this project was to increase the knowledge of the water holding properties of ashes by determining water retention curves with laboratory methods on four ash materials with the potential to be used in constructions. In the project, four ashes has been studied; one MSWI bottom ash from SYSAV, one aged MSWI bottom ash from Gaerstadverket and two fly ashes from incineration of biofuels; one from SCA Ortviken and one from Jaemtkraft AB. For comparison, data from a silt soil studied in another SGI project is presented. When determining a water retention curve for a specific material water from the examined, beforehand water saturated, sample is eliminated under controlled circumstances in a pressure plate extractor. The sample is exposed to a pressure, with increasing degree, squeezing excess water out of the material. The excess water is measured for each increased pressure step and the remaining volumetric water content in the material can be calculated. The results from such measurements are presented in water retention curves, in which the volumetric water content is plotted as a function of the capillary pressure. The water retention curves shows how various materials differ in water content at the same pressure. The results from the study showed that ashes have great water holding capacity. The study also

  4. Environmental effects of ash application in forest ecosystems

    DEFF Research Database (Denmark)

    Hansen, Mette

    of ashes being produced and the export of nutrients from the forests. This PhD project aims at investigating how ash application in forest ecosystems affects soil and soil solution properties and whether ash application can be used in a Danish context without environmental harm but with positive effects...

  5. Plant nutrition on fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W J; Sidrak, G H

    1956-12-01

    Experiments were performed to determine the plant nutritional potential of fly ash. Chemical analysis indicates that it contains all the essential nutrients. It is deficient in nitrogen and only manganese and aluminum appear to be available in quantities toxic to plants. Barley and spinach grown on fly ash accumulate excessive quantities of Al and Mn in their leaves and exhibit symptoms of toxicities of these metals. Atriplex hastata grows vigorously on the ash, has a high Al and Mn leaf content, but does not show toxicity symptoms. Atriplex, barley and spinach grown at reduced N levels gave lower yields than the normal controls, but symptoms of N deficiency which were evident in barley and spinach were not observed in Atriplex. 17 references, 2 figures, 14 tables.

  6. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    Science.gov (United States)

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  7. Value of PCR in sonication fluid for the diagnosis of orthopedic hardware-associated infections: Has the molecular era arrived?

    Science.gov (United States)

    Renz, Nora; Cabric, Sabrina; Morgenstern, Christian; Schuetz, Michael A; Trampuz, Andrej

    2018-04-01

    Bone healing disturbance following fracture fixation represents a continuing challenge. We evaluated a novel fully automated polymerase chain reaction (PCR) assay using sonication fluid from retrieved orthopedic hardware to diagnose infection. In this prospective diagnostic cohort study, explanted orthopedic hardware materials from consecutive patients were investigated by sonication and the resulting sonication fluid was analyzed by culture (standard procedure) and multiplex PCR (investigational procedure). Hardware-associated infection was defined as visible purulence, presence of a sinus tract, implant on view, inflammation in peri-implant tissue or positive culture. McNemar's chi-squared test was used to compare the performance of diagnostic tests. For the clinical performance all pathogens were considered, whereas for analytical performance only microorganisms were considered for which primers are included in the PCR assay. Among 51 patients, hardware-associated infection was diagnosed in 38 cases (75%) and non-infectious causes in 13 patients (25%). The sensitivity for diagnosing infection was 66% for peri-implant tissue culture, 84% for sonication fluid culture, 71% (clinical performance) and 77% (analytical performance) for sonication fluid PCR, the specificity of all tests was >90%. The analytical sensitivity of PCR was higher for gram-negative bacilli (100%), coagulase-negative staphylococci (89%) and Staphylococcus aureus (75%) than for Cutibacterium (formerly Propionibacterium) acnes (57%), enterococci (50%) and Candida spp. (25%). The performance of sonication fluid PCR for diagnosis of orthopedic hardware-associated infection was comparable to culture tests. The additional advantage of PCR was short processing time (PCR has the potential to complement conventional cultures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  9. Physical, chemical and mineralogical properties of fly ash

    International Nuclear Information System (INIS)

    Khairul Nizar Ismail; Kamaruddin Hussin; Mohd Sobri Idris

    2007-01-01

    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ) and iron oxide (Fe 2 O 3 ). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F. (Author)

  10. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1994-01-01

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development's Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination

  11. Preliminary Evaluation of Potassium Extraction from Bamboo Ash

    Directory of Open Access Journals (Sweden)

    Samadhi Tjokorde W.

    2018-01-01

    Full Text Available Bamboo is a potentially economical fuel crop that has not been utilized at a substantial extent for energy generation in Indonesia. As a thermal conversion waste, bamboo ash is particularly interesting due to its high potassium content. This paper discusses the determination of several key parameters of a simple batchwise extraction process to recover potassium in the form of weak solution from bamboo ash. To produce the ash, black bamboo (Gigantochloa atroviolaceae is charred in a fixed bed combustor. The bamboo char is ground and ashed at 500 °C in an electric furnace. The ash yield is 3.3 %-mass relative to as-received ash, with an ash K2O content of 12.9 %-mass. The ash is ground until passing 100-mesh standard sieve, and extracted by deionized water on a 2-stage laboratory-scale batchwise extractor battery. Process variables include extractror battery configuration (counter-current and co-current, temperature (nominal setting at 45-80 °C, and contact period of 1-6 hours. The concentration of extracted K2O increases asymptotically with temperature and contact time. Counter-current extraction yields more than twice the extract K2O concentration compared to cross-current extraction. The optimum conditions for the counter-current extraction is identified as a temperature of 78 °C and contact time of 4 hours, resulting in a 0.70 %-mass K2O solution concentration. Spot sampling of commercial liquid fertilizer products in Indonesia indicates an equivalent K2O content of 0.08-13.6 %-mass, suggesting the potential of the bamboo ash extract as an intermediate for fertilizer product.

  12. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste.

    Science.gov (United States)

    Asquer, Carla; Cappai, Giovanna; De Gioannis, Giorgia; Muntoni, Aldo; Piredda, Martina; Spiga, Daniela

    2017-11-01

    In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Wood ash as a soil additive and liming agent

    International Nuclear Information System (INIS)

    Campbell, A.; Etiegni, L.; Mahler, R.L.

    1991-01-01

    This study evaluated wood ash as an agricultural soil supplement and liming material. Winter wheat (Triticum aestivum) and poplar (Populus sp.) were grown in a greenhouse on six different Idaho soils amended with different ash concentrations. At ash levels equal to or lower than 2%, no detrimental effects were observed. In fact, the biomass of the wheat and the caliper and height of the poplar cuttings increased more at 2% ash 940 metric tons/ha than with the control soil. These results suggest that wood ash could be used in agricultural applications as a low analysis fertilizer containing potassium and as a liming agent. Land application of wood ash could be less expensive and more environmentally sound than present landfilling practices

  14. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

    Science.gov (United States)

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K

    2013-11-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

  15. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Sakita, Shogo [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara City, Hiroshima 727-0023 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania)

    2014-08-30

    Graphical abstract: Schematic representation of possible mechanisms determining the Cs extraction and immobilization in fly ash during water, methanol or n-MCaS extraction. - Highlights: • nMCaS suspension for cesium extraction and immobilization in fly ash was developed. • Enhanced cesium immobilization was done by nanometallic Ca/CaO methanol suspension. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • nMCaS unique and a highly potential amendment for the remediation of Cs. - Abstract: In this work, the capability of nanometallic Ca/CaO methanol suspension in removing and/or immobilizing stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs) in contaminated fly ash was investigated. After a first methanol and second water washing yielded only 45% of {sup 133}Cs removal. While, after a first methanol washing, the second solvent with nanometallic Ca/CaO methanol suspension yielded simultaneous enhanced removal and immobilization about 99% of {sup 133}Cs. SEM-EDS analysis revealed that the mass percent of detectable {sup 133}Cs on the fly ash surface recorded a 100% decrease. When real radioactive cesium contaminated fly ash (containing an initial 14,040 Bq kg{sup −1134}Cs and {sup 137}Cs cumulated concentration) obtained from burning wastes from Fukushima were reduced to 3583 Bq kg{sup −1} after treatment with nanometallic Ca/CaO methanol suspension. Elution test conducted on the treated fly ash gave 100 Bq L{sup −1} total {sup 134}Cs and {sup 137}Cs concentrations in eluted solution. Furthermore, both ash content and eluted solution concentrations of {sup 134}Cs and {sup 137}Cs were much lower than the Japanese Ministry of the Environment regulatory limit of 8000 Bq kg{sup −1} and 150 Bq L{sup −1} respectively. The results of this study suggest that the nanometallic Ca/CaO methanol suspension is

  16. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  17. Trace elements of coal, coal ashes and fly ashes by activation analysis with shor-lived nuclides

    International Nuclear Information System (INIS)

    Boeck, H.; Sarac, I.; Grass, F.

    1981-01-01

    On irradiation with neutrons, some of the interesting trace elements in coal, coal ash and fly ash produce short-lived nuclides which may be determined - together with some of the matrix elements - by activation analysis. This enables the characterization of samples. To find out the distribution of elements in the gaseous or aerosol exhaust of fossil-fired power plants, the authors simulated the combustion in a quartz apparatus containing a cold trap, using the combustion temperature (780 deg C) employed for the standard ash determination. High Se values were found in the cold trap deposits of black coal from Poland. Halogens were also found in the deposits. (authors)

  18. Pemanfaatan limbah abu terbang (fly ash) , abu dasar (bottom ash) batubara dan limbah padat (sludge) industri karet sebagai bahan campuran pada pembuatan batako

    OpenAIRE

    Faisal, Hendri

    2012-01-01

    Brick-making research has been conducted from a mixture of fly ash as a cement mixed with aggregate materials based bottom ash and sludge, and sand, where fly ash and cement used as an adhesive matrix. The percentage addition of fly ash is 10%, 20%, 30%, 40% and 50% of initial weight of cement. The percentage addition of bottom ash and sludge as an aggregate is 5%, 10%, 15%, 20% and 25% of initial weight of sand with the time of hardening for 28 days. Parameter tests performed include: metals...

  19. Laboratory rearing of emerald ash borer

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Houping Liu; Toby Petrice

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified in 2002 as the cause of ash (Fraxinus spp.) mortality throughout southeastern Michigan and southwestern Ontario. More isolated infestations continue to be found throughout Lower Michigan, northern...

  20. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  1. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2016-06-01

    Full Text Available This paper assesses the feasibility of two industrial wastes, fly ash (FA and rice husk ash (RHA, as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S; (ii halloysite activated with rice husk ash dissolved into KOH solution (HL-R; (iii FA activated with the alkaline solution realized with the rice husk ash (FA-R. Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation.

  2. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Directory of Open Access Journals (Sweden)

    Nicholas Bolton

    2018-03-01

    Full Text Available Emerald ash borer (EAB continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations in depressional black ash wetlands in the Ottawa National Forest in Michigan to mimic the short-term and long-term effects of EAB. These wetlands were planted with 10 alternative tree species in 2013. Based on initial results in the Michigan sites, a riparian corridor in the Superior Municipal Forest in Wisconsin was planted with three alternative tree species in 2015. Results across both locations indicate that silver maple (Acer saccharinum L., red maple (Acer rubrum L., American elm (Ulmus americana L., and northern white cedar (Thuja occidentalis L. are viable alternative species to plant in black ash-dominated wetlands. Additionally, selectively planting on natural or created hummocks resulted in two times greater survival than in adjacent lowland sites, and this suggests that planting should be implemented with microsite selection or creation as a primary control. Regional landowners and forest managers can use these results to help mitigate the canopy and structure losses from EAB and maintain forest cover and hydrologic function in black ash-dominated wetlands after infestation.

  3. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling.

    Science.gov (United States)

    Peng, Zeyu; Parker, Amanda S; Peralta, Maria D R; Ravikumar, Krishnakumar M; Cox, Daniel L; Toney, Michael D

    2017-11-07

    We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 ± 3.2-5.5 ± 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 ± 1.5-2.5 ± 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Relation of ash composition to the uses of coal

    Energy Technology Data Exchange (ETDEWEB)

    Fieldner, A C; Selvig, W A

    1926-02-01

    The effects of coal ash and ash components on the utilization of coal for coke and gas production, steam generation, water gas production, smithing, and domestic uses were described in a review of literature. Calcite, gypsum, and pyrite which occur in high amounts in coal, increase the ash fusibility of the coal and render it unsuitable for many industrial and domestic uses. As a rule, coal ash of high Si content and low Fe content would not be readily fusible. High amounts of ash in coal also have the effect of reducing the heating value of the coal.

  6. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  7. The use of shale ash in dry mix construction materials

    Science.gov (United States)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  8. Dynamic evaluation of municipal solid waste ash leachate

    International Nuclear Information System (INIS)

    Theis, T.L.; Gardner, K.H.

    1992-01-01

    The incineration of municipal solid waste (MSW) produces ashes which are concentrated in many inorganic species. The release of toxic elements from the ash to the aqueous environment is of concern as present methods of ash disposal consist primarily of landfilling. It was the goal of this paper to achieve an understanding of the mechanisms by which elements are transported from the solid ash phase to the aqueous phase. Twelve ash samples were collected from six different incinerators with varying designs and capacities. The leaching experiments were conducted using small (mini) dynamic columns to investigate the variation of leachate chemical characteristics with time. In analyzing the data, a multicomponent chemical equilibrium model was used to determine chemical speciation and component activities. Auxiliary experiments included an array of physical measurements, and aqueous batch leach tests

  9. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    Science.gov (United States)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  10. Technologically enhanced natural radioactivity around the coal fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    1997-01-01

    In some situations the exposure to natural radiation sources is enhanced as a result to technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace. Lighter fly ash is carried up the chimney and into the atmosphere. The bottom ash and slag are usually deposited in a waste pile, from where some activity may leach into aquifers or be dispersed by wind.The main pathways through which the populations living around coal fired power plants are exposed to enhanced levels of natural radionuclides are inhalation and ingestion of the activity discharged into the Exosphere. For this reason, extensive investigations have been under way for several years in the coal fired power plant in Croatia, which uses an anthracite coal with a higher than usual uranium content. (authors)

  11. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    Science.gov (United States)

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T  450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new

  12. Effect of sonic driving on maximal aerobic performance.

    Science.gov (United States)

    Brilla, L.R.; Hatcher, Stefanie

    2000-07-01

    The study purpose was to evaluate antecedent binaural stimulation (ABS) on maximal aerobic physical performance. Twenty-two healthy, physically active subjects, 21-34 years, randomly received one of two preparations for each session: 15 min of quiet (BLANK) or percussive sonic driving at 200+ beats per minute (bpm) using a recorded compact disc (FSS, Mill Valley, CA) with headphones (ABS). Baseline HR, blood pressure (BP), and breathing frequency (f(br)) were obtained. During each condition, HR and f(br) were recorded at 3-min intervals. The graded maximal treadmill testing was administered immediately postpreparation session on separate days, with at least 48 h rest between sessions. There were significant differences in the antecedent period means between the two conditions, ABS (HR: 70.2 +/- 10.7 bpm; f(br): 18.5 +/- 3.3 br min(-1); BP: 134.5/87.9 +/- 13.6/9.2 mm Hg) and BLANK (HR: 64.6 +/- 7.9; f(br): 14.3 +/- 2.9; BP: 126.7/80.3 +/- 12.1/8.6). Differences were noted for each 3-min interval and pre- postantecedent period. The maximal graded exercise test (GXT) results showed that there was a small but significant (P 0.05). There may be a latency to ABS related to entrainment or imagery-enhanced warm-up. Am. J. Hum. Biol. 12:558-565, 2000. Copyright 2000 Wiley-Liss, Inc.

  13. The stability of clay using volcanic ash of Mount Sinabung North Sumatera and sugarcane bagasse ash with cbr and uct value

    Directory of Open Access Journals (Sweden)

    Hastuty Ika Puji

    2017-01-01

    Full Text Available Soil is the fundamental material that is extremely as the place of establishment of a structure or construction, both building and road constructions. However, not all soil is well used in the constructions field, as there are several types of soil that are problematic in terms of both the soil bearing capacity and deformation. The clay with carrying capacity and low shear strength needs to stabilized in order to meet the technical requirements to be used as sub grade. The add materials that are typically used for soil stabilization are cement, lime or a mixture of two or three of the added materials. In this study, the added material use volcanic ash of Mount Sinabung at North Sumatera and sugarcane bagasse ash. The purpose of this study was to determine an index value of properties as the result of the addition of 4% volcanic ash and variations in content of bagasse ash on clay and then to determine the compressive strength for maximum testing UCT (Unconfined Compression Test and understand the value of CBR (California Bearing Capacity as the consequence of the addition of a stabilizing agent, as well as optimum level of addition of bagasse ash. The result showed that the original soil sample has the water content 12.35%, specific gravity of 2.65, liquid limit of 46.73% and plasticity index of 26.44%. The compressive strength value of 1.38 kg/cm2. Base on the USCS classification, the soil sample including the type CL while base on AASHTO classification, soil samples are include this A-7-6 type. After the soil is stabilized with a wide variety of sugarcane bagasse ash content value obtained the largest unconfined compression test in 4% addition level volcanic ash + 10% sugarcane bagasse ash is equal to 5.1kg/cm2 and the result California Bearing capacity value on the optimal mix of 4% volcanic ash + 4% sugarcane bagasse ash is equal to 13.91%.

  14. Possibilities for the Use of Wood Ashes in Agriculture

    OpenAIRE

    Barbara Symanowicz; Marcin Becher; Dawid Jaremko; Korneliusz Skwarek

    2018-01-01

    The aim of the study was to determine the agricultural usefulness of the ashes obtained following the combustion of wood of fourteen tree species (pear tree, apple tree, aspen, ash, alder, birch, poplar, hornbeam, pine, common walnut, oak, hazel, bird cherry and spruce) in home fireplaces. The following physical properties of the ashes were determined: colour, solubility, porosity, absorbability, compression strength, degree of fineness, moisture content and spreadability. In the ashes...

  15. Effect of sonication treatment on fibrilating snake fruit (Sallaca) frond fiber

    Science.gov (United States)

    Darmanto, Seno; Rochardjo, Heru S. B.; Jamasri, Widyorini, Ragil

    2018-02-01

    Aim of this research is to investigate influence of chemical and sonication treatment on fibrillating and mechanical properties of snake fruit frond fiber. The presence of surface impurities and the large amount of hydroxyl groups in natural fibers make less attractive for polymeric materials reinforcement. Effort to remove the impurities can be done by few treatments that consist of physical, chemical and mechanical treatment. Snake fruit frond bundle fiber were firstly subjected to chemical treatments with alkali solution, steaming at 2 bar and steam explosion at 6 bar by 40 times releasing of steam. Advanced treatment is done by flowing ultrasonic wave at 20 kHz by 90 - 210 watt. The output of fibrillation can reach fiber in range 10 - 25 nm compared with 10.72 µm in diameter for sonication and 6 bar in pressure of steam with 40x of rapidly steam release respectively.

  16. Biology of emerald ash borer parasitoids

    Science.gov (United States)

    Leah S. Bauer; Jian J. Duan; Jonathan P. Lelito; Houping Liu; Juli R. Gould

    2015-01-01

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle introduced from China (Bray et al., 2011), was identified as the cause of ash (Fraxinus spp.) mortality in southeast Michigan and nearby Ontario in 2002 (Haack et al., 2002; Federal Register, 2003; Cappaert et al., 2005)....

  17. FEATURES OF ASH OF THERMAL POWER PLANTS AS AGGREGATE FOR CONCRETES

    Directory of Open Access Journals (Sweden)

    M. A. Storozhuk

    2017-10-01

    Full Text Available Purpose. The scientific work is dedicated to development of scientific-technical bases of production and application of concrete on the basis of ashes of thermal power plants (TPP. Methodology. The properties of TPP ash, as well as the peculiarities of its behavior in a concrete mix as a fine aggregate, have been studied. It is shown that the hydrolysis and hydration of cement occur in the active environment of ash, which has a huge specific surface area. This significantly affects the course of these processes and the quality of the concrete produced. A new technology of application of ash of TPP for preparation of concrete mixes is offered. Vibrated and vibrovacuumized concretes of optimum composition from slag and ash, as well as from granite crushed stone and ash, are tested. The chara-cteristics of ordinary concrete (from granite crushed stone and quartz sand are given to compare. Findings. The results of the tests showed the possibility of obtaining concretes of class C20/25…C25/30 on the basis of slag and ash of TPP at a limited consumption of cement. It is shown that the concrete with traditional aggregates has a lower strength than the concrete, which has ash as fine aggregate. This research results contribute to the increased use of ash in construction that solves the problem of aggregates as well as thermal power plants waste recycling. Originality. New method and technology of application of TPP ashes in concrete are developed. Ash concrete mix has rational flowability, which produces the greatest strength of ash vacuum concrete. This strength is twice or more as large as the strength of vibrated ash concrete mix with flowability S1. Practical value. The physico-chemical properties of TPP ash as aggregate for concrete are presented. Significant difference of ash from ordinary aggregates is shown. Chemical activity of the ash is justified. The special conditions of cement hardening in the case of using ash as aggregate for concrete

  18. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  19. Large-scale ash recycling in Central Sweden; Storskalig askhantering i mellansverige

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Mats [Stora Skog (Sweden)

    1998-08-01

    When logging residues (tops, branches) are withdrawn from the forest, most of the nutrient content of the trees is also lost. Some of the nutrient content of the soil is restored by weathering, but not all. When biomass is burnt as fuel most of the nutrients will be found in the ash. By recycling wood ash, in similar amounts as was withdrawn with the biomass, it is possible to compensate for the nutrient losses. This project was initiated to study how a rational recycling of wood ash could be performed under conditions valid for Stora, a large forest company in the middle of Sweden. A second aim was to give guiding principles for Stora`s own ash recycling while awaiting instructions from the authorities. In the project both theoretical studies and practical field studies were carried out. Studied areas are production of a stabilised ash product and different systems for transport and spreading of the ash product. The costs and results of spreading have also been monitored. The project showed that spreading of the ash can normally only take place when there is no snow. If production or transport is carried out during another time of the year, the ash has to be stored, either at the industry, in an intermediate storage, or in the forest. One important conclusion from the test period was that the result of the spreading depends heavily on the quality of the ash. Some of the ashes hardened in the spreading equipment, causing a complete stop of the spreading. It also caused problems if the ash was too wet. Plate-spreaders led to unequal quality of spreading, where some areas got more ash and some got less. Granulated ash was most easy to spread. Recommended system for spreading ash is: granulated ash transported unpacked in separate transports with lorries with exchangeable platforms. A large fores tractor spreads the ash in clearings, in the summer. The project has shown that large-scale ash recycling is possible to realize 22 figs, 5 tabs, 13 appendices

  20. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  1. SLAM: A multi-agency pilot project to SL.ow A.sh M.ortality caused by emerald ash borer in outlier sites

    Science.gov (United States)

    Therese M. Poland; Deborah G. McCullough

    2010-01-01

    Since its discovery in southeast Michigan in 2002, the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has continued to spread and kill ash (Fraxinus) trees at an alarming rate. As of February 2010, EAB has killed tens of millions of ash trees in Michigan, at least 12 additional U.S. states, and the...

  2. Electrodialytic removal of Cd from biomass combustion fly ash suspensions

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor M.; Ottosen, Lisbeth M.; Damoe, Anne J.

    2013-01-01

    was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd...

  3. Stabilization of Fly Ash Deposits through Selected Cereal Crops

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2012-10-01

    Full Text Available Fly ash, a waste product from burning coal in power plants, occupies important spaces and is a major harm forenvironment: water, air, soil and associated ecosystems. New deposits do not have available nutrients for plantgrowth. The study presents a process of stimulating growth of oats in deposits of fly ash, which eliminates listed.Phytostabilization of new deposit is fast after fertilization with sewage sludge-based compost in the presence/absence of native or modified volcanic tuff with grain species, Avena sativa L., and variety Lovrin 1. Experimentalstudies have shown the species adaptability to climatic conditions and a growth rate until the maturity correlated withtype of treatment of upper layers of fly ash deposit. Fly ash with sewage sludge compost treatment 50 t/hadetermined the growth with 75% of the amount of grains vs. the amount of grains harvested from untreated fly ash.Fly ash with sewage sludge compost mixed with modified indigenous volcanic tuff 2.5 t/ha treatment determined thegrowth with 80% vs. the amount of grains harvested from untreated fly ash. If oat straw harvested from fertilizedvariant without modified indigenous volcanic tuff increases in weight are 30% and for fertilized variant in thepresence of tuff increases in weight are 39.8% vs. quantities harvested from untreated fly ash.

  4. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  5. Determination of technologically enhanced naturally occurring radioactive material (TENORM) in ashes from coal-fired thermal power plants in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Parami, Vangeline Kinilitan

    2008-04-15

    The activity concentration (AC) of TENORM - {sup 238}U, {sup 226}Ra ({sup 238}U series), {sup 232}Th, {sup 228}Ra, {sup 228}Th ({sup 232}Th series) and {sup 40}K in feed coal, bottom ash and fly ash samples from four coal-fired thermal power plants C, M, P and S were determined using two techniques: inductively coupled plasma mass spectrometry (ICP-MS) and high purity germanium (HPGe) gamma spectrometry. For {sup 232}Th and {sup 238}U [determined at National Institute for Radiological Sciences (NIRS) by the ICP-MS)], Plant S feed coal (FC) sample that originated from China had the highest AC (15.77 {+-} 0.32 Bq/kg and 13.67 {+-} 0.82 Bq/kg, respectively), followed by Plant M FC sample also from China (8.31 {+-} 0.33 Bq/kg and 5.84 {+-} 0.12 Bq/kg, respectively), while Plants C and P FC samples that originated from the Philippines and Indonesia had the lowest ACs of {sup 232}Th and {sup 238}U. Plant S also had the highest bottom ash (BA) AC of 80.86 {+-} 3.23 Bq/kg and 100.20 {+-} 4.01 Bq/kg, respectively while Plant P had the highest fly ash (FA) AC of 155.96 {+-} 6.24 Bq/kg and 268.03 {+-} 10.72 Bq/kg, respectively. For AC's of {sup 226}Ra, {sup 228}Ra, {sup 228}Th and {sup 40}K determined by NIRS HPGe, Plant C had the highest in the FC sample (11.70 {+-} 1.39 Bq/kg, 13.65 {+-} 4.99 Bq/kg, 11.35 {+-} 3.96 Bq/kg ad 80.23 {+-} 10.91 Bq/kg, respectuvely). For AC's in the BA samples, Plant M had the highest {sup 226}Ra (106.73 {+-} 6.74 Bq/kg) and Plant S had the highest {sup 228}Ra and {sup 40}K (66.64 {+-} 8.16 Bq/kg and 400.93 {+-} 43.06 Bq/kg, respectively For AC's in the FA samples, Plant S had the highest {sup 226}Ra and{sup 228}Ra AC's (131.13 {+-} 8.09 Bq/kg and 87.70 {+-} 10.45 Bq/kg, respectively) while Plant C had the highest {sup 40}K AC (369.08 {+-} 40.87 Bq/kg). The highest AC enhancement of {sup 238}U, {sup 226}Ra ({sup 238}U series), {sup 232}Th,{sup 228}Ra, {sup 228}Th ({sup 232}Th series) {sup 40}K relative to feed coal occurred in Plant P FA sample

  6. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  7. Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands

    Science.gov (United States)

    Diamond, J.; Mclaughlin, D. L.; Slesak, R.

    2016-12-01

    Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also

  8. Effect of sonic agitation, manual dynamic agitation on removal of Enterococcus faecalis biofilm

    Directory of Open Access Journals (Sweden)

    Rajshekhar Chatterjee

    2015-01-01

    Full Text Available Objectives: The aim of the study was to compare manual dynamic agitation with sonic agitation on removal of intra radicular Enterococcus faecalis (E. faecalis biofilm. Material and Methods: Extracted mandibular premolars for orthodontic purpose were sectioned at cervical level and divided into three groups (n = 30. The root canals were instrumented using Protaper rotary instruments up to apical file F4. Roots were sterilized and E. faecalis bacteria were incubated within their root canal space for four weeks. Confirmation of biofilm was done using scanning electron microscopy and Gram staining. All groups were irrigated with side vented needle by using three percent sodium hypochlorite (NaOCl for 60 seconds. Two experimental groups were agitated with manual dynamic agitation (with master gutta-percha cone and sonic agitation (EndoActivator. Remaining bacteria were collected using sterile paper point, which were incubated inside brain-heart infusion (BHI broth to check turbidity. The turbid broth was streaked on blood agar plate for colony counts. Result: Both experimental groups showed highly significant difference in their mean colony count when compared with control group; with P < 0.001. Conclusion: Passive sonic agitation with EndoActivator has proven to be the best irrigating system followed by manual dynamic agitation and conventional needle irrigation.

  9. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  11. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  12. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  13. Volcanic ash and aviation–The challenges of real-time, global communication of a natural hazard

    Science.gov (United States)

    Lechner, Peter; Tupper, Andrew C.; Guffanti, Marianne C.; Loughlin, Sue; Casadevall, Thomas

    2017-01-01

    More than 30 years after the first major aircraft encounters with volcanic ash over Indonesia in 1982, it remains challenging to inform aircraft in flight of the exact location of potentially dangerous ash clouds on their flight path, particularly shortly after the eruption has occurred. The difficulties include reliably forecasting and detecting the onset of significant explosive eruptions on a global basis, observing the dispersal of eruption clouds in real time, capturing their complex structure and constituents in atmospheric transport models, describing these observations and modelling results in a manner suitable for aviation users, delivering timely warning messages to the cockpit, flight planners and air traffic management systems, and the need for scientific development in order to undertake operational enhancements. The framework under which these issues are managed is the International Airways Volcano Watch (IAVW), administered by the International Civil Aviation Organization (ICAO). ICAO outlines in its standards and recommended practices (International Civil Aviation Organization, 2014) the basic volcanic monitoring and communication that is necessary at volcano observatories in Member States (countries). However, not all volcanoes are monitored and not all countries with volcanoes have mandated volcano observatories or equivalents. To add to the efforts of volcano observatories, a system of Meteorological Watch Offices, Air Traffic Management Area Control Centres, and nine specialist Volcanic Ash Advisory Centres (VAACs) are responsible for observing, analysing, forecasting and communicating the aviation hazard (airborne ash), using agreed techniques and messages in defined formats. Continuous improvement of the IAVW framework is overseen by expert groups representing the operators of the system, the user community, and the science community. The IAVW represents a unique marriage of two scientific disciplines - volcanology and meteorology - with the

  14. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    International Nuclear Information System (INIS)

    Mann, J; Courtney, M S; Mikkelsen, T; Wagner, R; Lindeloew, P; Sjoeholm, M; Enevoldsen, K; Cariou, J-P; Parmentier, R

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the lidar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically

  15. evaluation of atomic absorption spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    cistvr

    1Department of Agricultural and Food Science and 2Department of ... used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and ..... fact that more preparation steps were involved in the Ashing procedure and thus.

  16. Optimization of soil stabilization with class C fly ash.

    Science.gov (United States)

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  17. Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors

    Science.gov (United States)

    Marti, Alejandro; Folch, Arnau

    2018-03-01

    Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally

  18. Comparison of emerald ash borer preference for ash of different species, sun exposure, age, and stress treatments in relation to foliar volatiles and nutrition

    Science.gov (United States)

    Therese M. Poland; Deepa S. Pureswaran; Yigen Chen

    2009-01-01

    We investigated the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) on six different species of ash including Manchurian ash (F...

  19. Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures

    Directory of Open Access Journals (Sweden)

    Suched Likitlersuang

    2016-09-01

    Full Text Available The influence of filler materials on volumetric and mechanical performances of asphalt concrete was investigated in this study. The AC60/70 asphalt binder incorporating with cement and fly ash as filler materials was mixed with limestone following the Marshall mix design method. The filler contents of cement and/or fly ash were varied. The non-filler asphalt concrete mixtures of the AC60/70 and the polymer modified asphalt were prepared for the purpose of comparison. The investigation programme includes the indirect tensile test, the resilient modulus test and the dynamic creep test. The tests are conducted under the humid temperate environments. All tests were then carried out under standard temperature (25 °C and high temperature (55 °C by using a controlled temperature chamber via the universal testing machine. The wet-conditioned samples were prepared to investigate the moisture susceptibility. Results show that cement and/or fly ash were beneficial in terms of improved strength, stiffness and stripping resistance of asphalt mixture. In addition, the combined use of cement and fly ash can enhance rutting resistance at wet and high temperature conditions. The results indicate that the strength, stiffness and moisture susceptibility performances of the asphalt concrete mixtures improved by filler are comparable to the performance of the polymer modified asphalt mixture. Keywords: Asphalt concrete, Filler, Resilient modulus, Dynamic creep test, Moisture susceptibility

  20. Progress and challenges of protecting North American ash trees from the emerald ash borer using biological control

    Science.gov (United States)

    Jian Duan; Leah Bauer; Roy van Driesche; Juli. Gould

    2018-01-01

    After emerald ash borer (EAB), Agrilus planipennis Fairmaire, was discovered in the United States, a classical biological control program was initiated against this destructive pest of ash trees (Fraxinus spp.). This biocontrol program began in 2007 after federal regulatory agencies and the state of Michigan approved release of...