WorldWideScience

Sample records for sonic enhanced ash

  1. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  2. PRODUCTION WELL PERFORMANCE ENHANCEMENT USING SONICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery

    2003-12-17

    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  3. Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules.

    Science.gov (United States)

    Chau, Ying; Suen, Wai Leung Langston; Tse, Ho Yan; Wong, Hoi Sang

    2017-03-30

    We previously employed ultrasound as a needleless approach to deliver macromolecules via the transscleral route to the back of the eye in live animals (Suen et al., 2013). Here, we investigated the nature of the ultrasound-enhanced transport through sclera, the outermost barrier in the transscleral route. Thus, the possible role of cavitation from ultrasound was explored; its effect during and after sonication on scleral penetration was measured; and the dependence on the size of macromolecules was determined. We applied ultrasound frequency from 40kHz to 3MHz at I SATA (spatial-average-temporal-average intensity) of 0.05W/cm 2 to fresh rabbit sclera ex vivo. Fluorescent dextran of size 20kDa to 150kDa was used as macromolecular probes. We measured the distance of penetration of the probes through the sclera over 30s during sonication and over 15min after sonication from cryosectioned tissue images. Deeper penetration in the sclera was observed with decreasing frequency. The presence of stable cavitation was further verified by passive acoustic detection. The effect during sonication increased penetration distance up to 20 fold and was limited to macromolecular probes ≤70kDa. The effect post sonication increased penetration distance up to 3 fold and attributed to the improved intrasscleral transport of macromolecules ≥70kDa. Post-sonication enhancement diminished gradually in 3h. As the extent of cavitation increased with decreasing frequency, the trend observed supports the contribution of (stable) cavitation to enhancing transport through sclera. Effect during sonication was attributed to flow associated with acoustic microstreaming. Effect post sonication was attributed to the temporary increase in scleral permeability. Flow-associated effect was more pronounced but only applied to smaller macromolecules. Copyright © 2017. Published by Elsevier B.V.

  4. Enhancing the engineering properties of expansive soil using bagasse ash

    Science.gov (United States)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  5. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  6. Enhanced inertia from lossy effective fluids using multi-scale sonic crystals

    Directory of Open Access Journals (Sweden)

    Matthew D. Guild

    2014-12-01

    Full Text Available In this work, a recent theoretically predicted phenomenon of enhanced permittivity with electromagnetic waves using lossy materials is investigated for the analogous case of mass density and acoustic waves, which represents inertial enhancement. Starting from fundamental relationships for the homogenized quasi-static effective density of a fluid host with fluid inclusions, theoretical expressions are developed for the conditions on the real and imaginary parts of the constitutive fluids to have inertial enhancement, which are verified with numerical simulations. Realizable structures are designed to demonstrate this phenomenon using multi-scale sonic crystals, which are fabricated using a 3D printer and tested in an acoustic impedance tube, yielding good agreement with the theoretical predictions and demonstrating enhanced inertia.

  7. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    Science.gov (United States)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  8. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug

    Directory of Open Access Journals (Sweden)

    Lin CY

    2012-04-01

    Full Text Available Chung-Yin Lin1*, Hsiao-Ching Tseng1*, Heng-Ruei Shiu1, Ming-Fang Wu2, Cheng-Ying Chou3, Win-Li Lin1,41Institute of Biomedical Engineering, 2Laboratory Animal Center, 3Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan; 4Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan*These authors contributed equally to this workAbstract: Ultrasound (US sonication with microbubbles (MBs has the potential to disrupt blood vessels and enhance the delivery of drugs into the sonicated tissues. In this study, mouse ear tumors were employed to investigate the therapeutic effects of US, MBs, and pegylated liposomal doxorubicin (PLD on tumors. Tumors started to receive treatments when they grew up to about 15 mm3 (early stage with injection of PLD 10 mg/kg, or up to 50 mm3 (medium stage with PLD 6 (or 4 mg/kg. Experiments included the control, PLD alone, PLD + MBs + US, US alone, and MBs + US groups. The procedure for the PLD + MBs + US group was that PLD was injected first, MB (SonoVue injection followed, and then US was immediately sonicated on the tumor. The results showed that: (1 US sonication with MBs was always able to produce a further hindrance to tumor growth for both early and medium-stage tumors; (2 for the medium-stage tumors, 6 mg/kg PLD alone was able to inhibit their growth, while it did not work for 4 mg/kg PLD alone; (3 with the application of MBs + US, 4 mg/kg PLD was able to inhibit the growth of medium-stage tumors; (4 for early stage tumors after the first treatment with a high dose of PLD alone (10 mg/kg, the tumor size still increased for several days and then decreased (a biphasic pattern; (5 MBs + US alone was able to hinder the growth of early stage tumors, but unable to hinder that of medium stage tumors. The results of histological examinations and blood perfusion measurements indicated that the application of MBs + US disrupts the tumor blood

  9. Enhancement of Dopaminergic Differentiation in Proliferating Midbrain Neuroblasts by Sonic Hedgehog and Ascorbic Acid

    Science.gov (United States)

    Volpicelli, Floriana; Consales, Claudia; Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Perrone-Capano, Carla; di Porzio, Umberto

    2004-01-01

    We analyzed the molecular mechanisms involved in the acquisition and maturation of dopaminergic (DA) neurons generated in vitro from rat ventral mesencephalon (MES) cells in the presence of mitogens or specific signaling molecules. The addition of basic fibroblast growth factor (bFGF) to MES cells in serum-free medium stimulates the proliferation of neuroblasts but delays DA differentiation. Recombinant Sonic hedgehog (SHH) protein increases up to three fold the number of tyrosine hydroxylase (TH)-positive cells and their differentiation, an effect abolished by anti-SHH antibodies. The expanded cultures are rich in nestin-positive neurons, glial cells are rare, all TH+ neurons are DA, and all DA and GABAergic markers analyzed are expressed. Adding ascorbic acid to bFGF/SHH-treated cultures resulted in a further five- to seven-fold enhancement of viable DA neurons. This experimental system also provides a powerful tool to generate DA neurons from single embryos. Our strategy provides an enriched source of MES DA neurons that are useful for analyzing molecular mechanisms controlling their function and for experimental regenerative approaches in DA dysfunction. PMID:15303305

  10. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    Science.gov (United States)

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  11. Enhanced Harnessing of the Graviola Bioactive Components Using a Neoteric Sonication Cum Microwave Coadjuvant Extraction Protocol

    Directory of Open Access Journals (Sweden)

    Se Chul Chun

    2018-02-01

    Full Text Available Graviola is one of the most accomplished natural anticancer therapists gaining popularity in recent times. Harnessing the full benefit from tapping all of its rich bioactive reservoirs is absolutely worthy and mandatory. It is in this regard that a well optimized extraction methodology gains paramount importance. In case of Graviola, no sophistication in terms of extraction methods is reported. A neoteric sonication cum microwave combined extraction technology was introduced that maximized the extraction process and minimized (7 min the extraction time. The extraction efficiency was validated based on the significant enrichment of bioactive ingredients in Graviola extracts following the sonication cum microwave combined protocol.

  12. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice.

    Science.gov (United States)

    Abid, Muhammad; Jabbar, Saqib; Wu, Tao; Hashim, Malik Muhammad; Hu, Bing; Lei, Shicheng; Zeng, Xiaoxiong

    2014-01-01

    A study was initiated with the objective of evaluating the effects of sonication treatment on quality characteristics of apple juice such as polyphenolic compounds (chlorogenic acid, caffeic acid, catechin, epicatechin and phloridzin), sugars (fructose, glucose and sucrose), mineral elements (Na, K, Ca, P, Mg, Cu and Zn), total carotenoids, total anthocyanins, viscosity and electrical conductivity. The fresh apple juice samples were sonicated for 0, 30 and 60 min at 20 °C (frequency 25 kHz and amplitude 70%), respectively. As results, the contents of polyphenolic compounds and sugars significantly increased (Papple juice. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Enhanced Harnessing of the Graviola Bioactive Components Using a Neoteric Sonication Cum Microwave Coadjuvant Extraction Protocol

    OpenAIRE

    Se Chul Chun; Shang Xiaomin; Vimala Anthonydhason; Hyejin Jung; Shimels Tilahun Belachew; Judy Gopal; Diby Paul

    2018-01-01

    Graviola is one of the most accomplished natural anticancer therapists gaining popularity in recent times. Harnessing the full benefit from tapping all of its rich bioactive reservoirs is absolutely worthy and mandatory. It is in this regard that a well optimized extraction methodology gains paramount importance. In case of Graviola, no sophistication in terms of extraction methods is reported. A neoteric sonication cum microwave combined extraction technology was introduced that maximized th...

  14. Paper mechanisms for sonic interaction

    DEFF Research Database (Denmark)

    Delle Monache, Stefano; Rocchesso, Davide; Qi, Ji

    2012-01-01

    Introducing continuous sonic interaction in augmented pop-up books enhances the expressive and performative qualities of movables, making the whole narrative experience more engaging and personal. The SaMPL Spring School on Sounding Popables explored the specific topic of paper-driven sonic...... narratives. Working groups produced several sketches of sonic interactions with movables. The most significant sketches of sounding popables are presented and analyzed....

  15. Sonic Watermarking

    Science.gov (United States)

    Tachibana, Ryuki

    2004-12-01

    Audio watermarking has been used mainly for digital sound. In this paper, we extend the range of its applications to live performances with a new composition method for real-time audio watermarking. Sonic watermarking mixes the sound of the watermark signal and the host sound in the air to detect illegal music recordings recorded from auditoriums. We propose an audio watermarking algorithm for sonic watermarking that increases the magnitudes of the host signal only in segmented areas pseudorandomly chosen in the time-frequency plane. The result of a MUSHRA subjective listening test assesses the acoustic quality of the method in the range of "excellent quality." The robustness is dependent on the type of music samples. For popular and orchestral music, a watermark can be stably detected from music samples that have been sonic-watermarked and then once compressed in an MPEG[InlineEquation not available: see fulltext.] layer[InlineEquation not available: see fulltext.] file.

  16. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  17. Sonic Watermarking

    Directory of Open Access Journals (Sweden)

    Ryuki Tachibana

    2004-10-01

    Full Text Available Audio watermarking has been used mainly for digital sound. In this paper, we extend the range of its applications to live performances with a new composition method for real-time audio watermarking. Sonic watermarking mixes the sound of the watermark signal and the host sound in the air to detect illegal music recordings recorded from auditoriums. We propose an audio watermarking algorithm for sonic watermarking that increases the magnitudes of the host signal only in segmented areas pseudorandomly chosen in the time-frequency plane. The result of a MUSHRA subjective listening test assesses the acoustic quality of the method in the range of “excellent quality.” The robustness is dependent on the type of music samples. For popular and orchestral music, a watermark can be stably detected from music samples that have been sonic-watermarked and then once compressed in an MPEG 1 layer 3 file.

  18. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  19. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal

    Science.gov (United States)

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703

  20. Optimization of fly ash incorporation into cow dung-waste paper mixtures for enhanced vermidegradation and nutrient release.

    Science.gov (United States)

    Mupambwa, Hupenyu A; Mnkeni, Pearson N S

    2015-05-01

    This study was conducted to establish an appropriate mixture ratio of fly ash (F) to optimized cow dung-waste paper mixtures (CP) to develop a high-quality vermicompost using earthworms (). Fly ash was mixed with cow dung-waste paper mixtures at ratios of (F:CP) 1:1, 1:2, 1:3, 2:1, and 3:1 or CP alone and composted for 14 wk. Olsen P, inorganic N (NO, NO, and NH), C:N ratio, ash content, microbial biomass C, and humification parameters were measured together with scanning electron micrograph images to determine compost maturity. Based on C:N ratio, the extent of vermidegradation of the waste mixtures followed the decreasing order (F:CP) of 1:3 > 1:2 > 1:1 > CP alone > 2:1 > 3:1. Similarly, Olsen P was significantly higher ( percentage increase in extractable P was in the order CP alone > 1:2 > 1:3 > 1:1 > 2:1 > 3:1, with earthworm addition almost doubling P release across the 1:1, 1:2, and CP alone treatments. Fly ash incorporation enhanced conversion of organic N to the plant-available inorganic forms, with the 1:3 treatment resulting in the highest conversion. Scanning electron micrograph images confirmed the extent of vermidegradation reflected by the various humification parameters determined. Fly ash incorporation at the 1:2 ratio proved to be the most appropriate because it allows processing of more fly ash while giving a vermicompost with desirable maturity and nutritional properties. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    Science.gov (United States)

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  2. Cylindrical Electrolyser Enhanced Electrokinetic Remediation of Municipal Solid Waste Incineration Fly Ashes

    Science.gov (United States)

    Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei

    2018-01-01

    The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.

  3. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  4. Sonic Interaction Design

    DEFF Research Database (Denmark)

    Sound is an integral part of every user experience but a neglected medium in design disciplines. Design of an artifact’s sonic qualities is often limited to the shaping of functional, representational, and signaling roles of sound. The interdisciplinary field of sonic interaction design (SID) cha...

  5. Effect of size of fly ash particle on enhancement of mullite content ...

    Indian Academy of Sciences (India)

    Administrator

    in the fly ash. Our aim in this investigation is to increase the formation of mullite in nanocrystalline form and study the effect of temperature. Quantitative estimation of mullite and residual quartz content were done by X- ray diffraction (XRD) and nanostructure and crystallization were studied using differential thermal analysis.

  6. Effect of size of fly ash particle on enhancement of mullite content ...

    Indian Academy of Sciences (India)

    Administrator

    quartz by fly ash in a normal porcelain body increases its flexural strength and density and decreases its porosity in the entire temperature range. Flexural strength increase may be due to the formation of small size secondary mul- lite needle, which gets embedded in the glassy matrix. (Kumar et al 2001; Dana et al 2004).

  7. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  8. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier.

    Science.gov (United States)

    Del Valle-Zermeño, R; Chimenos, J M; Giró-Paloma, J; Formosa, J

    2014-12-01

    The presence of neoformed cement-like phases during the weathering of non-stabilized freshly quenched bottom ash favors the development of a bound pavement material with improved mechanical properties. Use of weathered and freshly quenched bottom ash mix layers placed one over the other allowed the retention of leached heavy metals and metalloids by means of a reactive percolation barrier. The addition of 50% of weathered bottom ash to the total subbase content diminished the release of toxic species to below environmental regulatory limits. The mechanisms of retention and the different processes and factors responsible of leaching strongly depended on the contaminant under concern as well as on the chemical and physical factors. Thus, the immediate reuse of freshly quenched bottom ash as a subbase material in road constructions is possible, as both the mechanical properties and long-term leachability are enhanced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Use of coal ash for enhancing biocrust development in stabilizing sand dunes

    Science.gov (United States)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo

    2015-04-01

    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 μm) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand

  10. Ultrasonic/Sonic Jackhammer

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Herz, Jack L. (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  11. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  12. Sonic anemometry of planetary atmospheres

    Science.gov (United States)

    Cuerva, Alvaro; Sanz-Andrés, Angel; Lorenz, Ralph D.

    2004-02-01

    Sonic anemometers are robust, fast and reliable wind sensors which are able to measure the complete wind speed vector at high sampling rates. All these characteristics make sonic anemometers to be ideal candidates for atmospheric applications. Since sonic anemometers have not moving parts and they can be designed to have loss mass and power consumption, they have become adequate for planetary exploration purposes, both for atmosphere studies and for flying robot control. However, some challenges must be undertaken before implementing their use. Problems such as sound attenuation in different atmospheres, sensor/air acoustic impedance matching as well as flow/fluid dependence of sonic measurements have to be considered when these sensors are used in other atmospheres.

  13. Solubilization and Elimination of Coliforms from Sewage Sludge by Sonication.

    Science.gov (United States)

    Pathki, Snehal; Kumar, M Suresh; Vaidya, A N

    2014-01-01

    Disposal of sewage secondary excess sludge is a great problem globally, and stabilization of this excess sludge by anaerobic digestion is hampered due to its constituents resistant to biodegradation. Sludge pre-treatment enhances the performance of anaerobic digestion. In this study, sewage sludge was collected from a full-scale sewage treatment plant and characterized. Ultrasonic method was used for the excess sludge disintegration of microbial flocks and cells, so as to breakdown the intracellular or extracellular polymeric materials to enhance the anaerobic digestion. The studies related to the effect of sonication on release of nutrients, increase in soluble COD and reduction in pathogenic coliforms as well as heterotrophic microorganisms and the optimization of sonication time were carried out. The results showed that the twenty minutes sonication (25 kHz) increased the soluble COD content, nutrient release and complete disappearance of fecal as well as total coliforms in the treated sludge. The results are presented and discussed in this paper.

  14. Seismic detection of sonic booms.

    Science.gov (United States)

    Cates, Joseph E; Sturtevant, Bradford

    2002-01-01

    The pressure signals from a sonic boom will produce a small, but detectable, ground motion. The extensive seismic network in southern California, consisting of over 200 sites covering over 50000 square kilometers, is used to map primary and secondary sonic boom carpets. Data from the network is used to analyze three supersonic overflights in the western United States. The results are compared to ray-tracing computations using a realistic model of the stratified atmospheric at the time of the measurements. The results show sonic boom ground exposure under the real atmosphere is much larger than previously expected or predicted by ray tracing alone. Finally, seismic observations are used to draw some inferences on the origin of a set of "mystery booms" recorded in 1992-1993 in southern California.

  15. Sonic boom research: TsAGI approach

    OpenAIRE

    Chernyshev, S. L.; Ivanteeva, L. G.; Kovalenko, V. V.; Teperin, L. L.; Chernyshev, S. L.; Ivanteeva, L. G.; Kovalenko, V. V.; Teperin, L. L.

    2000-01-01

    Research into sonic booms is indispensable for the future supersonic flight. In particular, the issue of sonic boom becomes a crucial problem when supersonic flights are over thickly populated areas. The TsAGI (Russia Central Aerohydrodynamic Institute) has been studying the sonic boom problem theoretically, experimentally and numerically since 1960. Prof. Zhirin of this institute has developed a theory of sonic boom by aircraft flying along any specified trajectory in non-homogeneous atmosph...

  16. Real Time Sonic Boom Display

    Science.gov (United States)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  17. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  18. Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: The highly preferred c-axis (0 0 2) orientation enhances the final properties

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Khusaimi, Z.; Sahdan, M.Z.; Musa, M.Z.; Zainun, A.R.; Suriani, A.B.; Md Sin, N.D.; Abd Hamid, S.B.; Rusop, M.

    2014-01-01

    Highlights: • Minimum stress of highly c-axis oriented ZnO was grown at suitable deposition speed. • The ZnO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZnO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on deposition speed. -- Abstract: Zinc oxide (ZnO) thin films have been deposited onto glass substrates at various deposition speeds by a sonicated sol–gel dip-coating technique. This work studies the effects of deposition speed on the crystallisation behaviour and optical and electrical properties of the resulting films. X-ray diffraction (XRD) analysis showed that thin films were preferentially oriented along the (0 0 2) c-axis direction of the crystal. The transformation sequence of strain and stress effects in ZnO thin films has also been studied. The films deposited at a low deposition speed exhibited a large compressive stress of 0.78 GPa, which decreased to 0.43 GPa as the deposition speed increased to 40 mm/min. Interestingly, the enhancement in the crystallinity of these films led to a significant reduction in compressive stress. All films exhibited an average transmittance of greater than 90% in the visible region, with absorption edges at ∼380 nm. The photoluminescence (PL) measurements indicated that the intensity of the emission peaks varied significantly with deposition speed. The optical band gap energy (E g ) was evaluated as 3.276–3.289 eV, which increased with decreasing compressive stress along the c-axis. The energy band gap of the resulting ZnO films was found to be strongly influenced by the preferred c-axis (0 0 2) orientation

  19. Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: The highly preferred c-axis (0 0 2) orientation enhances the final properties

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z. [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Sahdan, M.Z. [Microelectronic and Nanotechnology Centre (MiNT), Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Batu Pahat, Johor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Zainun, A.R. [Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Kuantan, Pahang (Malaysia); Suriani, A.B. [Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak (Malaysia); Md Sin, N.D. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Abd Hamid, S.B. [Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2014-01-05

    Highlights: • Minimum stress of highly c-axis oriented ZnO was grown at suitable deposition speed. • The ZnO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZnO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on deposition speed. -- Abstract: Zinc oxide (ZnO) thin films have been deposited onto glass substrates at various deposition speeds by a sonicated sol–gel dip-coating technique. This work studies the effects of deposition speed on the crystallisation behaviour and optical and electrical properties of the resulting films. X-ray diffraction (XRD) analysis showed that thin films were preferentially oriented along the (0 0 2) c-axis direction of the crystal. The transformation sequence of strain and stress effects in ZnO thin films has also been studied. The films deposited at a low deposition speed exhibited a large compressive stress of 0.78 GPa, which decreased to 0.43 GPa as the deposition speed increased to 40 mm/min. Interestingly, the enhancement in the crystallinity of these films led to a significant reduction in compressive stress. All films exhibited an average transmittance of greater than 90% in the visible region, with absorption edges at ∼380 nm. The photoluminescence (PL) measurements indicated that the intensity of the emission peaks varied significantly with deposition speed. The optical band gap energy (E{sub g}) was evaluated as 3.276–3.289 eV, which increased with decreasing compressive stress along the c-axis. The energy band gap of the resulting ZnO films was found to be strongly influenced by the preferred c-axis (0 0 2) orientation.

  20. Autopoiesis and sonic immersion

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas

    2008-01-01

    In previous work I have provided a conceptual framework for the design and analysis of sound in First-Person Shooter games and have suggested that the relationship between player and soundscape in such games can be modeled as an acoustic ecology. This paper develops these ideas further in the con......In previous work I have provided a conceptual framework for the design and analysis of sound in First-Person Shooter games and have suggested that the relationship between player and soundscape in such games can be modeled as an acoustic ecology. This paper develops these ideas further......, explains and enhances player immersion in the game....

  1. Sonic journeys with the dead

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits

    and the metaphor of travelling, in an attempt to establish an alternative method for meaning-making of urban cemeteries. By using recorded environmental sounds and publicly accessible online digital material an awareness of cemeteries as significant parts of our shared social and cultural history is established...... with friends and usergenerated online media based on Youtube. The sonic journey through the city is constructed from available digital material based on the author’s own subjective assessment. As potential experience design a well-established design framework as well as careful implementation of ethical......This audio-paper is a site-specific investigation of relations between a gravesite at Vor Frelser Cemetery (Cemetery of Our Saviour), Copenhagen, Denmark, its cultural history and publicly co-constructed memories. The audio-paper follows a non-representational approach to sonic media...

  2. Comparison and flowering valuation of New Guinea Impatiens cultivars from Sonic and Super Sonic groups

    Directory of Open Access Journals (Sweden)

    Ludmiła Startek

    2012-12-01

    Full Text Available In the years 2002-2003 the flowering of four New Guinea Impatiens cultivars from Sonic and Super Sonic groups were compared. They were the following cultivars: 'Sonic Pink', 'Sonic Sweet Cherry', 'Super Sonic Cherry Cream' and 'Super Sonic Hot Pink'. The experiments were carried out from the middle of April till the middle of October. Neutralised sphagnum peat with slow release fertiliser Osmocote Plus 5/6 was used as medium. It was found that the cultivar 'Sonic Pink' began blooming 1-4 weeks earlier than the other cultivars. The cultivars 'Sonic Sweet Cherry' and 'Super Sonic Cherry Cream' had significantly more abundant flowering (105.3-113.3 flowers per plant than the cultivars 'Sonic Pink' and 'Super Sonic Hot Pink' (72.0-92.8 flowers per plant. All the cultivars had big flowers (6.3-7.8 cm in diameter. The most similar flowers were found in 'Sonic Sweet Cherry' and the least similar in 'Super Sonic Hot Pink'.

  3. Determination of technologically enhanced naturally occurring radioactive material (TENORM) in ashes from coal-fired thermal power plants in the Philippines

    International Nuclear Information System (INIS)

    Parami, Vangeline Kinilitan

    2008-04-01

    The activity concentration (AC) of TENORM - 238 U, 226 Ra ( 238 U series), 232 Th, 228 Ra, 228 Th ( 232 Th series) and 40 K in feed coal, bottom ash and fly ash samples from four coal-fired thermal power plants C, M, P and S were determined using two techniques: inductively coupled plasma mass spectrometry (ICP-MS) and high purity germanium (HPGe) gamma spectrometry. For 232 Th and 238 U [determined at National Institute for Radiological Sciences (NIRS) by the ICP-MS)], Plant S feed coal (FC) sample that originated from China had the highest AC (15.77 ± 0.32 Bq/kg and 13.67 ± 0.82 Bq/kg, respectively), followed by Plant M FC sample also from China (8.31 ± 0.33 Bq/kg and 5.84 ± 0.12 Bq/kg, respectively), while Plants C and P FC samples that originated from the Philippines and Indonesia had the lowest ACs of 232 Th and 238 U. Plant S also had the highest bottom ash (BA) AC of 80.86 ± 3.23 Bq/kg and 100.20 ± 4.01 Bq/kg, respectively while Plant P had the highest fly ash (FA) AC of 155.96 ± 6.24 Bq/kg and 268.03 ± 10.72 Bq/kg, respectively. For AC's of 226 Ra, 228 Ra, 228 Th and 40 K determined by NIRS HPGe, Plant C had the highest in the FC sample (11.70 ± 1.39 Bq/kg, 13.65 ± 4.99 Bq/kg, 11.35 ± 3.96 Bq/kg ad 80.23 ± 10.91 Bq/kg, respectuvely). For AC's in the BA samples, Plant M had the highest 226 Ra (106.73 ± 6.74 Bq/kg) and Plant S had the highest 228 Ra and 40 K (66.64 ± 8.16 Bq/kg and 400.93 ± 43.06 Bq/kg, respectively For AC's in the FA samples, Plant S had the highest 226 Ra and 228 Ra AC's (131.13 ± 8.09 Bq/kg and 87.70 ± 10.45 Bq/kg, respectively) while Plant C had the highest 40 K AC (369.08 ± 40.87 Bq/kg). The highest AC enhancement of 238 U, 226 Ra ( 238 U series), 232 Th, 228 Ra, 228 Th ( 232 Th series) 40 K relative to feed coal occurred in Plant P FA sample, with 238 U showing the highest enhancement of 93.72 among the radionuclides. When normalized with 40 K, 238 U in Plant P FA sample also had the highest enrichment factor (EF

  4. Sonic boom propagation through atmospheric turbulence

    OpenAIRE

    Yamashita, Hiroshi; Obayashi, Shigeru; 山下, 博; 大林, 茂

    2009-01-01

    The effect of the homogeneous atmospheric turbulence on the sonic boom propagation has been investigated. The turbulence field is represented by a finite sum of discrete Fourier modes based on the von Karman and Pao energy spectrum. The sonic boom signature is calculated by the modified Waveform Parameter Method, considering the turbulent velocities. The results show that in 59 % of the cases, the intensity of the sonic boom had decreased, and in other 41 % of the cases had increased the soni...

  5. Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2014-01-01

    Full Text Available Nanofluids containing Al2O3 nanoparticles (either 11 or 30 nm in size dispersed in distilled water at low concentrations (0.125–0.5 wt% were prepared using two different ultrasonic devices (a probe and a bath sonicator as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.

  6. Sonic Virtuality, Environment, and Presence

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2018-01-01

    The article presents a brief introduction to the concept of sonic virtuality, a view of sound as a multi-modal, emergent perception that provides a framework that has since been used to provide an explanation of the formation of environments. Additionally, the article uses such concepts to explain...... the phenomenon of presence, not only in virtual worlds but also in actual worlds. The view put forward is that environment is an emergent perception, formed from the hypothetical modelling of salient worlds of sensory things, and it is in the environment that we feel present. The article ends with some thoughts...

  7. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  8. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  9. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  10. Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): Roles of biochemical changes and decreased stomatal conductance in enhancement of growth

    International Nuclear Information System (INIS)

    Paoletti, Elena; Contran, Nicla; Manning, William J.; Castagna, Antonella; Ranieri, Annamaria; Tagliaferro, Francesco

    2008-01-01

    Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450 ppm by gravitational trunk infusion in May-September 2005 (32.5 ppm h AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O 3 effects on leaf growth and visible injury is controversial. - Both biochemical and biophysical processes may regulate EDU action

  11. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  12. A Remotely Deployable Wind Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-12-01

    Full Text Available Communication and computing shape up base for explosion of Internet of Things (IoT era. Humans can efficiently control the devices around their environment as per requirements because of IoT, the communication between different devices brings more flexibility in surrounding. Useful data is also gathered from some of these devices to create Big Data; where, further analysis assist in making life easier by developing good business models corresponding to user needs, enhance scientific research, formulating weather prediction or monitoring systems and contributing in other relative fields as well. Thus, in this research a remotely deployable IoT enabled Wind Sonic Anemometer has been designed and deployed to calculate average wind speed, direction, and gust. The proposed design is remotely deployable, user-friendly, power efficient and cost-effective because of opted modules i.e., ultrasonic sensors, GSM module, and solar panel. The testbed was also deployed at the roof of Computer & Information Systems Engineering (CIS department, NED UET. Further, its calibration has been carried out by using long short-term memory (LSTM, a deep learning technique; where ground truth data has been gathered from mechanical wind speed sensor (NRG-40 H deployed at top of Industrial & Manufacturing (IM department of NED UET. The obtained results are satisfactory and the performance of designed sensor is also good under various weather conditions.

  13. Sonic Rarefaction Wave Low Recoil Gun

    National Research Council Canada - National Science Library

    Kathe, E

    2002-01-01

    .... The sonic RArefaction waVE low recoil guN (RAVEN) is a novel invention to dramatically reduce the gas momentum contribution to recoil with absolutely no reduction in me ballistic efficiency of launch...

  14. Phase I ResonantSonic CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Richterich, L.R.; Amos, L.O.; Fancher, J.D.; McLellan, G.W.; Setzer, W.V.; Tuttle, B.G. [Westinghouse Hanford Co., Richland, WA (United States); Hockey, R.L.; Ferris, R.H.; Riechers, D.M.; Pitman, S.G. [Pacific Northwest Lab., Richland, WA (United States)

    1994-03-28

    This test report describes the Phase 1 testing and results of the ResonantSonic drilling method. This effort was conducted as part of a Cooperative Research and Development Agreement (CRADA) between the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The purpose of this demonstration was to evaluate the Water Development Corporation`s ResonantSonic drilling system, modify components as necessary and determine compatible drilling applications for the ResonantSonic drilling method for use at facilities in the DOE complex and private industry. Initially, the ResonantSonic drill was used to drill several test holes at the Drilling Technology Test Site to assess the feasibility of drilling vertical and angle holes. After this initial phase, a 45 degree angle vapor extraction well was drilled to a depth of 168 feet at the 200 West Carbon Tetrachloride Site. This well was drilled and completed in nine days. Extensive geologic and vapor sampling were conducted while drilling this well. In addition, testing was also conducted at the test site to evaluated drilling with larger diameter casing (8 5/8 inch). Evaluation of the Resonant Sonic drilling method will be continued during the Phase 2 portion of testing to determine if improvements to the ResonantSonic system will make it a more viable method for drilling and sampling.

  15. Phase I ResonantSonic CRADA report

    International Nuclear Information System (INIS)

    Richterich, L.R.; Amos, L.O.; Fancher, J.D.; McLellan, G.W.; Setzer, W.V.; Tuttle, B.G.; Hockey, R.L.; Ferris, R.H.; Riechers, D.M.; Pitman, S.G.

    1994-01-01

    This test report describes the Phase 1 testing and results of the ResonantSonic drilling method. This effort was conducted as part of a Cooperative Research and Development Agreement (CRADA) between the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The purpose of this demonstration was to evaluate the Water Development Corporation's ResonantSonic drilling system, modify components as necessary and determine compatible drilling applications for the ResonantSonic drilling method for use at facilities in the DOE complex and private industry. Initially, the ResonantSonic drill was used to drill several test holes at the Drilling Technology Test Site to assess the feasibility of drilling vertical and angle holes. After this initial phase, a 45 degree angle vapor extraction well was drilled to a depth of 168 feet at the 200 West Carbon Tetrachloride Site. This well was drilled and completed in nine days. Extensive geologic and vapor sampling were conducted while drilling this well. In addition, testing was also conducted at the test site to evaluated drilling with larger diameter casing (8 5/8 inch). Evaluation of the Resonant Sonic drilling method will be continued during the Phase 2 portion of testing to determine if improvements to the ResonantSonic system will make it a more viable method for drilling and sampling

  16. Mineralogy of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Young; Park, Suk Whan [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Lee, Moo Seung [Chonbuk National University, Chonju (Korea, Republic of)

    1995-12-01

    This study is focused on mineralogical and chemical characteristics of coal fly ash collected from Boreong, Honam, Samcheonpo, Gunsan, Seocheon power plants. Mineralogical and chemical characters of fly ashes are clarified by experimental studies, using x-ray diffractometer, scanning electron microscope, differential thermal analyzer, grain size analyzer and chemical analysis. The results of this study can be summarized as follows; The coal fly ashes from the all power plants are mainly consisted with mullite and quartz, and minor quantity of hematite. In particular, fly ash from the Honam power plant is converted into the anorthite under the 1200 degree. According to the result grain size analysis, most of the fly ashes are under the 200 mesh except 66% of fly ashes from the Boreong and Honam, 54% from Seocheon, 83% from Gunsan and 31% from Samcheonpo power plants. The unburned carbon contents are decreased in the small grain size of fly ashes. Under the 200 mesh grain size of Honam fly ashes shows particularly less than 1% content of unburned carbon. Chemical components of fly ashes are found to be 49-80% of SiO{sub 2} and Al{sub 2}O{sub 3} contents in the bituminous and anthracite coal ash are 49-69% and 75-80%, respectively. The Fe{sub 2}O{sub 3} and CaO concentrations in the bituminous coal ash are higher than anthracite coal ash. The trace elements such as Pb and Zn are higher anthracite coal ash than bituminous coal ash, which is mainly due to the grain size characteristic. The fly ash from Honam power plant with high CaO content can be used potassium silicate fertilizer and raw materials for cements after separation of 200 mesh. Anorthite are formed after 1200 degree heating of bituminous coal ash, which can be utilized as aggregate and bricks. (author). 21 refs., 32 figs., 7 tabs.

  17. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  18. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  19. Field intercomparison of prevailing sonic anemometers

    Science.gov (United States)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  20. Field intercomparison of prevailing sonic anemometers

    Directory of Open Access Journals (Sweden)

    M. Mauder

    2018-01-01

    Full Text Available Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3, confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  1. Quantification of Radicals Generated in a Sonicator

    Directory of Open Access Journals (Sweden)

    Kassim Badmus

    2016-06-01

    Full Text Available The hydroxyl radical (OH• is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA and potassium iodide dosimetry were used to quantify and investigate the behaviour of the generated OH radical in a laboratory scale sonicator. The 2-hydroxyl terephthalic acid (HTA formed during terephthalic acid dosimetry was determined by optical fibre spectrometer. The production rate of HTA served as a means of evaluating and characterizing the OH• generated over given time in a sonicator. The influence of sonicator power intensity, solution pH and irradiation time upon OH• generation were investigated. Approximately 2.2 ´ 10-9 M s-1 of OH radical was generated during the sonication process. The rate of generation of the OH radicals was established to be independent of the concentration of the initial reactant. Thus, the rate of generation of OH• can be predicted by zero order kinetics in a sonicator.

  2. Realism Assessment of Sonic Boom Simulators

    Science.gov (United States)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  3. Effect of sonication on eliminating of phorate in apple juice.

    Science.gov (United States)

    Zhang, Yuanyuan; Zhang, Zhe; Chen, Fang; Zhang, Hui; Hu, Xiaosong

    2012-01-01

    The degradation of phorate in apple juice by sonication was investigated in the present study. Results showed that sonication was effective in eliminating phorate in apple juice, and the ultrasonic power and sonication time significantly influenced the degradation of phorate (papple juice samples spiked with phorate was significantly reduced by sonication (papple juice including pH, titratable acidity (TA), electrical conductivity (EC), total soluble solids (TSS), and the contents of sucrose, glucose and fructose were not affected by sonication, and no visible difference in color was observed between the sonicated samples and the control. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Disturbance of sleep by sonic booms.

    Science.gov (United States)

    Griefahn, B; Jansen, G

    1975-05-01

    After a pilot study (2 subjects, 19 nights) we tested two different subjects during 57 nights, administering sonic booms (1 mb, 300 ms; sound level of sonic boom in the bedroom 80-85 dB (A) and recording EEG and peripheral blood volume. After 7 nights without noise, 30 nights with either 2 or 4 sonic booms (alternately) were applied. After 10 more nights without noise, four nights with 8 and 16 bangs followed alternately. The last 6 nights were used as a comparison phase. Results showed that distrubance was obvious during all periods of noise. No adaptation could be observed during any of the experiments. On the contrary, during the night with 4 bangs there was a tendency for compensation, e.g., in the last two thirds of nights with 4 bangs, the total time of deep sleep was comparable with the nights without any noise.

  5. Sonic Booms in Atmospheric Turbulence (SonicBAT) Ground Measurements in a Hot Desert Climate

    Science.gov (United States)

    Haering, Edward A., Jr.

    2017-01-01

    The Sonic Booms in Atmospheric Turbulence (SonicBAT) Project flew a series of 20 F-18 flights with 69 supersonic passes at Edwards Air Force Base in July 2016 to quantify the effect of atmospheric turbulence on sonic booms. Most of the passes were at a pressure altitude of 32,000 feet and a Mach number of 1.4, yielding a nominal sonic boom overpressure of 1.6 pounds per square foot. Atmospheric sensors such as GPS sondeballoons, Sonic Detection and Ranging (SODAR) acoustic sounders, and ultrasonic anemometers were used to characterize the turbulence state of the atmosphere for each flight. Spiked signatures in excess of 7 pounds per square foot were measured at some locations, as well as rounded sonic-boom signatures with levels much lower than the nominal. This presentation will quantify the range of overpressure and Perceived Level of the sonic boom as a function of turbulence parameters, and also present the spatial variation of these quantities over the array. Comparison with historical data will also be shown.

  6. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    , the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  7. Environmental Pollution: Noise Pollution - Sonic Boom

    Science.gov (United States)

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  8. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    Science.gov (United States)

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Development of a sonic boom measurement system at JAXA

    OpenAIRE

    VEGGEBERG, Kurt

    2012-01-01

    International audience; The Japan Aerospace Exploration Agency (JAXA) is actively conducting supersonic transport research toward the realization of civil supersonic aircraft. Technology that precisely measures sonic booms is essential to demonstrating JAXA’s sonic boom reduction concept in the planned drop test of a research aircraft. This is a part of the D-SEND Program (Drop Test for Simplified Evaluation of Non-Symmetrically Distributed sonic boom). Capturing detailed multichannel sonic b...

  10. 14 CFR 91.817 - Civil aircraft sonic boom.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... sonic boom to reach the surface within the United States; and (2) The operator complies with the flight...

  11. Sonic Boom: Six Decades of Research

    Science.gov (United States)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Plotkin, Kenneth J.; Shepherd, Kevin P.; Coen, Peter G.; Richwine, David M.

    2014-01-01

    Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.

  12. Sonication assisted Agrobacterium -mediated transformation of ...

    African Journals Online (AJOL)

    In this study, a protocol was developed to obtain stable lines of the Spring Dendrobium cultivar 'Sanya' via sonication assisted Agrobacterium-mediated transformation (SAAT) of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strain LBA4404 was used with the binary vector AG205 containing the chalcone ...

  13. Evaluation of fracture strength by sonic testing

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1981-01-01

    The Griffith-Irwin equation is used to describe the fracture characteristics of graphite. The material constants, Young's modulus and mean flaw size, are measured sonically from velocity and attenuation measurements. The effects of steam oxidation and neutron irradiation on fracture strength are shown to be predictable assuming a constant strain-energy release rate

  14. Low Sonic Boom Design Activities at Boeing

    Science.gov (United States)

    Haglund, George T.

    1999-01-01

    Low sonic boom studies have continued during the last year with the goal of exploring the ability of practical airplane designs to achieve significantly reduced sonic boom-loudness with reasonable performance penalties. At the 1993 Sonic Boom Workshop, improvements to the low-boom design methods were described and early results of two low-boom configurations -935 and -936) were presented. Now that the low boom design methods are reasonably mature, recent design activities have broadened somewhat to explore refinements to the -935 and -936 designs. In this paper the results are reported of a detailed systems study and performance sizing of the -935 (Hybrid sonic boom waveform) and the -936 (Flat-top waveform). This analysis included a second design cycle for reduced cruise drag and balance considerations. Another design study was of a small-wing version of the -935. Finally, some preliminary results of the recent LARC UPWT test of the -935 configuration are given, along with a proposed alternative method for extrapolating wind tunnel pressure signatures to the ground. The various configurations studied is also summarized. The topics covered by this paper are as follows: Systems study results of the Baseline -939 and low boom configurations -935 and -936, Small wing derivative of the -935, Wind tunnel test results of the -935, Test-derived F-function and propagation to the ground, and Future considerations (boom-softened baseline, overwater issues, and operations).

  15. The Social and Sonic Semantics of Reggae

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2017-01-01

    This study breaks new ground into the emerging discipline of sonic semantics and the study of language ideologies in postcolonial contexts. The case in point is the reggae sociality in Port Vila, Vanuatu, where young Pacific Islanders are forming new ways of socializing on the fragments of kastom...

  16. Merging Metallic Catalysts and Sonication: A Periodic Table Overview

    Directory of Open Access Journals (Sweden)

    Claudia E. Domini

    2017-04-01

    Full Text Available This account summarizes and discusses recent examples in which the combination of ultrasonic waves and metal-based reagents, including metal nanoparticles, has proven to be a useful choice in synthetic planning. Not only does sonication often enhance the activity of the metal catalyst/reagent, but it also greatly enhances the synthetic transformation that can be conducted under milder conditions relative to conventional protocols. For the sake of clarity, we have adopted a structure according to the periodic-table elements or families, distinguishing between bulk metal reagents and nanoparticles, as well as the supported variations, thus illustrating the characteristics of the method under consideration in target synthesis. The coverage focuses essentially on the last decade, although the discussion also strikes a comparative balance between the more recent advancements and past literature.

  17. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  18. A Study of Reflected Sonic Booms Using Airborne Measurements

    Science.gov (United States)

    Kantor, Samuel R.; Cliatt, Larry J.

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.

  19. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    Application of Fly Ash from Solid Fuel Combustion in Concrete Kim H. Pedersen Abstract Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization...... is as pozzolanic additive in the production of concrete. However, the residual carbon in fly ash can adsorb the air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increase its workability and resistance toward freezing and thawing conditions. The problem has increased...... with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...

  20. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  1. Concorde sonic booms as an atmospheric probe.

    Science.gov (United States)

    Balachandran, N K; Donn, W L; Rind, D H

    1977-07-01

    Infrasound generated by the sonic boom from the inbound Concorde supersonic transport is recorded at Palisades, New York (Lamont-Doherty Geological Observatory), as a series of impulses from distances varying from 165 to about 1000 kilometers. Refraction effects determined by temperature and wind conditions return the signal to the surface from both stratospheric (40 to 50 kilometers) and thermospheric (100 to 130 kilometers) levels. The frequency of the recorded signal is a function of the level of reflection; the frequency decreases from impulse stretching as the atmosphere becomes more rarified relative to the sound pressure. The horizontal trace velocity of the signal across the array of instruments is equal to the acoustic velocity at the reflection level. The sonic boom can thus be used to provide temperature-wind parameters at reflection levels estimated from the signal frequency. Daily observed signal variations have indicated significant variations in these parameters.

  2. Sonic hedgehog signaling in basal cell carcinomas.

    Science.gov (United States)

    Daya-Grosjean, Leela; Couvé-Privat, Sophie

    2005-07-28

    The development of basal cell carcinoma, the commonest human cancer in fair skinned populations, is clearly associated with constitutive activation of sonic hedgehog signaling. Insight into the genesis of BCC came from the identification of germline mutations of the tumor suppressor gene, PATCHED, a key regulatory component of hedgehog signaling in the nevoid basal cell carcinoma syndrome. Analysis of sporadic basal cell carcinomas and those from repair deficient xeroderma pigmentosum patients has revealed mutational inactivation of PATCHED and gain of function mutations of the proto-oncogenes, SMOOTHENED and SONIC HEDGEHOG associated with solar UV exposure. The molecular mechanisms involved in alterations of the hedgehog signaling pathway that lead to the formation of basal cell carcinomas are being unraveled and has already allowed the investigation of future therapeutic strategies for treating these skin cancers.

  3. Six propositions on the sonics of pornography

    OpenAIRE

    Mowlabocus, Sharif; Medhurst, Andy

    2017-01-01

    Pornography (and all its contentious pleasures, contested politics and attendant problematics) is enjoying a fresh wave of academic attention. The overwhelming majority of these studies, however, focus on the visual discourses of sexually explicit material. This risks the sonic dimensions of pornography being overlooked entirely. Yet porn is anything but silent. This speculative article maps out some of the ways in which the sounds of pornography (and the pornography of sound) might be approa...

  4. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    . Deposit shedding can be defined as the process of deposit removal from the heat transfer surfaces. Mechanical and thermal shock devices for deposit removal can be implemented within into the boiler, which can be then referred to as artificial shedding. Sootblowing is one such process, where a pressurized...... on the ash characteristics and the boiler operation. Different deposit characteristics will govern the ash deposit behaviour, and thus the mechanism of deposit shedding. The deposit strength will influence the erosion and gravity shedding mechanisms. The ash viscosity and the melting behaviour will govern...

  5. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  6. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  7. First international ash marketing and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A total of 42 papers were presented in sessions with the following headings: production and disposal of ash - an international review; environmental, health, safety, and legal aspects of ash handling; marketing of ash; development of new uses for ash; cementitious use of ash; ash in manufactured products; and geotechnical uses of ash.

  8. Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size.

    Science.gov (United States)

    Lee, Kun Loong; Zhou, Yufeng

    2015-03-01

    Transdermal drug delivery makes a critical contribution to medical practice and some advantages over conventional oral administration and hypodermic injection. Enhancement of percutaneous absorption or penetration of therapeutic agents (ie, drugs and macromolecules) by ultrasound, termed sonophoresis, has been applied and studied for decades. In this study, the penetration percentage through porcine ear skin specimens was determined quantitatively by measuring the fluorescence from nanoparticles of 60, 220, and 840 nm in size in a receptor chamber at different sonication parameters (ie, duty cycle, 20%-100%; acoustic intensity, 0.3-1.0 W/cm(2); duration, 7-30 minutes; and frequency, 1 MHz). In general, the sonophoresis efficiency increased with the acoustic intensity, duty cycle, and sonication duration but decreased with the particle size (mean ± SD, 62.6% ± 5.4% for 60-nm versus 11.9% ± 1.1% for 840-nm polystyrene nanospheres after 30 minutes of sonication at 0.5 W/cm(2) and a 100% duty cycle; P sonophoresis efficiency is dependent on the ultrasound parameters and particle size. Sufficient sonication would lead to satisfactory penetration of even submicrometer objects through the pores. © 2015 by the American Institute of Ultrasound in Medicine.

  9. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  10. Form Follows Sound: Designing Interactions from Sonic Memories

    OpenAIRE

    Caramiaux, Baptiste; Altavilla, Alessandro; Pobiner, Scott; Tanaka, Atau

    2015-01-01

    Sonic interaction is the continuous relationship between user actions and sound, mediated by some technology. Because interaction with sound may be task oriented or experience-based it is important to understand the nature of action-sound relationships in order to design rich sonic interactions. We propose a participatory approach to sonic interaction design that first considers the affordances of sounds in order to imagine embodied interaction, and based on this, generates interaction models...

  11. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    depth, density, and size fraction distribution compared to that of the underlying soil, f) To measure the spatial variability of ash at the plot or hillslope scale, g) To address issues of how much ash stays on site after fire, especially how much is incorporated into underlying soil layers, compared to how much is eroded by wind and water and becomes incorporated into depositional environments located away from the site. iii) ash effects h) To study the connectivity of patches of ash to make progress in understanding the role of ash in infiltration, the generation of runoff and erosion, i) To take into account the role of ash in the fate of the ecosystem immediately after the fire, as well as the combination of ash and other cover, such as the needles, in the post-fire period, j) To study the amount and forms of C in ash, including studies characterizing its chemical and biological reactivity and degradability in soil and sedimentary environments, k) To understanding the legacy of atmospherically-deposited elements (e.g. P, Si, Mn) and dust to fully understand the complex chemistry of ash, and at the same time assess its effects on human health. iii) enhance collaboration across the globe on the multidisciplinary topic of ash research since research in large areas of the world that burn (e.g., Africa and Russia) is underrepresented. We are sure that several activities, such as land and water supply management, risk reduction, and planning for societal and ecosystem resilience in the face of a changing climate, will benefit from the insights gained from the ash research community. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References: Bodí, M. B., Mataix-Solera, J., Doerr, S. H., Cerdà, A. 2011.The wettability of ash from burned vegetation and its relatioship to Mediterranean plant species type, burn. Geoderma 160: 599-607. Bodí, M.B. Doerr, S.H., Cerdà, A. and Mataix-Solera, J. 2012

  12. Ultra-sonication assisted cross-linking of cellulose polymers.

    Science.gov (United States)

    Udoetok, Inimfon A; Wilson, Lee D; Headley, John V

    2018-04-01

    Cross-linked cellulose-epichlorohydrin polymers were synthesized by a conventional heating with stirring (C-EP heating) and a parallel process using ultra-sonication (C-EP sonication) in the presence of aqueous ammonia. Structural characterization of modified cellulose was carried out using FTIR/ 13 C solid state NMR spectroscopy and thermal methods (DSC and TGA). Evidence of products with variable textural properties and morphology was supported by nitrogen gas adsorption, solvent swelling, and microscopy (SEM, TEM) results. C-EP sonication possess greater cross-linker content judging by the loss of the cellulose fibril structure which was facilitated by acoustic cavitation effects due to ultra-sonication. Equilibrium sorption studies in aqueous solution with 2-naphthoxy acetic acid (NAA) revealed that C-EP heating had slightly greater sorption capacity than C-EP sonication at alkaline pH. By contrast, C-EP sonication had greater uptake of NAA at acidic pH. Kinetic uptake studies at pH 3 is described by the pseudo-second order model, where the surface sites of C-EP heating became saturated within ca. 75 min; whereas, ca. 350 min occurred for C-EP sonication. This study demonstrates that the yield of sonication assisted cross-linking of cellulose is greater with improved adsorption properties. The study also reveals the utility of sonication assisted synthesis for the valorization and utilization of cellulose modified materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  14. Mechanics of carbon nanotube scission under sonication.

    Science.gov (United States)

    Stegen, J

    2014-06-28

    As-produced carbon nanotubes come in bundles that must be exfoliated for practical applications in nanocomposites. Sonication not only causes the exfoliation of nanotube bundles but also unwanted scission. An understanding of how precisely sonication induces the scission and exfoliation of nanotubes will help maximising the degree of exfoliation while minimising scission. We present a theoretical study of the mechanics of carbon nanotube scission under sonicaton, based on the accepted view that it is caused by strong gradients in the fluid velocity near a transiently collapsing bubble. We calculate the length-dependent scission rate by taking the actual movement of the nanotube during the collapse of a bubble into account, allowing for the prediction of the temporal evolution of the length distribution of the nanotubes. We show that the dependence of the scission rate on the sonication settings and the nanotube properties results in non-universal, experiment-dependent scission kinetics potentially explaining the variety in experimentally observed scission kinetics. The non-universality arises from the dependence of the maximum strain rate of the fluid experienced by a nanotube on its length. The maximum strain rate that a nanotube experiences increases with decreasing distance to the bubble. As short nanotubes are dragged along more easily by the fluid flow they experience a higher maximum strain rate than longer nanotubes. This dependence of the maximum strain rate on nanotube length affects the scaling of tensile strength with terminal length. We find that the terminal length scales with tensile strength to the power of 1/1.16 instead of with an exponent of 1/2 as found when nanotube motion is neglected. Finally, we show that the mechanism we propose responsible for scission can also explain the exfoliation of carbon nanotube bundles.

  15. Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO{sub 2} on fly ash cenospheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jingke; Wang, Xuejiang, E-mail: wangxj@tongji.edu.cn; Bu, Yunjie; Wang, Xin; Zhang, Jing; Huang, Jiayu; Ma, RongRong; Zhao, Jianfu

    2017-01-01

    Highlights: • Multifunctional TiO{sub 2} was coated on floating fly ash cenospheres. • TiO{sub 2} was integrated with carbonaceous layer from chitosan and Fe-N co-doping. • Carbonized chitosan improved the adsorption of pollutant and photon absorption ability of TiO{sub 2}. • Modified TiO{sub 2} exhibited superior photocatalytic activity and better recyclability. - Abstract: Due to the advantage of floating on water surface, floating photocatalysts show higher rates of radical formation and collection efficiencies. And they were expected to be used for solar remediation of non-stirred and non-oxygenated reservoirs. In this research, floating fly ash cenospheres (FAC) supported layer-by- layer hybrid carbonized chitosan and Fe-N-codoped TiO{sub 2} was prepared by a simple sol-gel method. The catalysts were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy(DRS), nitrogen adsorption analyses for Brunauer-Emmett-Teller (BET) specific surface area. It is indicated that Fe-N codoped narrowed the material’s band gap, and the layer of carbonized chitosan (Cts) increased the catalyst’s adsorption capacity and the absorption ability of visible light. Comparing with Fe-N-TiO{sub 2}/FAC and N-TiO{sub 2}/FAC, the composite photocatalyst show excellent performance on the degradation of RhB. Photodegradation rate of RhB by Fe-N-TiO{sub 2}/FAC-Cts was 0.01018 min{sup −1}, which is about 1.5 and 2.09 times higher than Fe-N-TiO{sub 2}/FAC and N-TiO{sub 2}/FAC under visible light irradiation in 240 min, respectively. The dye photosentization, capture of holes and electrons by Fe{sup 3+} ion, and synergistic effect of adsorption and photodegradation were attributed to the results for the improvement of photocatalytic performance. The floating photocatalyst can be reused for at least three consecutive

  16. Indoor Sonic Boom Reproduction Using ANC

    OpenAIRE

    Epain, Nicolas; Friot, Emmanuel; Rabau, Guy

    2005-01-01

    The European programs for development of supersonic air-flights involve new studies on the human perception of sonic boom. Because this noise includes high-level components at very low-frequency, the usual psycho-acoustic tests with headphones are not relevant; instead, the original sound-field can be reproduced with many loudspeakers in a small room, but the loudspeakers must be controlled for an accurate reproduction, both in time and space, in an area large enough to enclose a listener's h...

  17. Sonic testing in assessment of casting quality

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-04-01

    Full Text Available The aim of the present study has been designing and putting in operation of a stand for sonic testing equipped with modern and readily available numerical devices and with the author’s own computer program, which enables recording and analysis of acoustic fields and of the frequency of free vibrations in selected castings made from Fe and Al alloys, and specifically also from magnesium alloys, and mastering the technique of making such tests along with their practical application in assessment of the quality of castings made from magnesium alloys and investment castings made from carbon steel.

  18. Sonic Boom Generated by Reentry of Mir

    Science.gov (United States)

    Moody, D. M.

    2002-09-01

    The Russian space station, Mir, was actively deorbited to impact in the South Pacific on 23 March 2001. Mir was the largest body in Earth orbit ever to be deorbited in a controlled fashion. As such, it provided a unique opportunity to observe, at a known time and location, what happens to such a large object as it re-enters the earth's atmosphere. The reentry and breakup were videotaped from the Fiji Sheraton hotel by a CNN cameraman. About four to five minutes after the streaking Mir debris left his view, he described hearing a number of sonic booms which were generated by pieces of the wreckage. This report contains the camera-man's description of what he heard and a calculation of the sonic boom amplitude and duration which would have been generated by a single Mir module on its reentry trajectory. Results of the calculation are consistent with the reported estimated time of boom arrival past visual sighting. However, no actual measurements were made at the hotel of the boom strength (sound level.) Thus the code results for boom amplitude cannot be quantitatively verified.

  19. Emerald ash borer aftermath forests: the future of ash ecosystems

    Science.gov (United States)

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  20. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  1. Enhancement of reactivity in Li4SiO4-based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture

    International Nuclear Information System (INIS)

    Wang, Ke; Zhao, Pengfei; Guo, Xin; Li, Yimin; Han, Dongtai; Chao, Yang

    2014-01-01

    Highlights: • The Li 4 SiO 4 sorbent from nano-sized rice husk ash was prepared and characterized. • The Aerosil and Quartz were comparably used for synthesized Li 4 SiO 4 . • The structure of sorbent was depended on the morphology of heated silicon materials. • The pretreatment sorbent showed increase in the CO 2 uptake and kinetic behavior. • This promising sorbent also maintained higher capacities during the multiple cycles. - Abstract: Using the cost-effective, renewable and nano-sized of citric acid pretreatment rice husk ash (CRHA) as silicon source, high efficient Li 4 SiO 4 (lithium orthosilicate)-based sorbents (CRHA-Li 4 SiO 4 ) for high-temperature CO 2 capture were prepared through the solid-state reaction at lower temperature (700 °C). Two typical raw materials (nano-structured Aerosil and crystalline Quartz powders) were used to synthesize Li 4 SiO 4 sorbents (Aerosil-Li 4 SiO 4 and Quartz-Li 4 SiO 4 ) for comparison purposes. The phase composition behavior, surface area, and morphology of the silicon sources, heat treated raw materials and as-received Li 4 SiO 4 sorbents were studied by analytical techniques. The CO 2 adsorption capacity and adsorption–desorption performance were tested by the thermo-gravimetric analyses (CO 2 atmosphere) and a fixed bed reactor, respectively. Compared with the case of its original samples, the morphology of heat treated raw materials had a greater effect on the phase composition, microstructure, special surface area and CO 2 adsorption properties of their resulting sorbents. Although the calcined Quartz sample maintained the structure of micron particles, its reactivity was not enough to react completely with Li 2 CO 3 . Due to the greater reactivity of nanoparticles, Aerosil-Li 4 SiO 4 presented pure of Li 4 SiO 4 whereas it obtained large particles with dense morphology, which was coming from the pronounced fusing of silica nanoparticles during the calcined process. Conversely, CRHA-Li 4 SiO 4

  2. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  3. [The role of sonic hedgehog pathway in skin carcinogenesis].

    Science.gov (United States)

    Lesiak, Aleksandra; Sysa-Jedrzejowska, Anna; Narbutt, Joanna

    2010-08-01

    Non melanoma skin cancers (NMSC) involving basal (BCC)--and squamosus cell carcinomas (SCC) and are the most frequent skin cancers in Caucasians. Ultraviolet radiation is the main environmental risk factor for NMSC development. The aim of this paper is to review the latest opinions concerning the role of sonic hedgehog pathway in non-melanoma skin cancers development. Experimental data indicate that sonic hedgehog pathway might be involved in skin carcinogenesis. Under physiological conditions sonic hedgehog pathway is responsible for normal embryogenesis, regeneration of damaged tissues and for regulation of cell proliferation. It was revealed that UVR caused inactivated mutation in PATCHED gene encoding Ptch1 protein. These events lead to deregulation of sonic hedgehog pathway trough activation of Smo protein and Gli transcriptional factors what stimulates cell proliferation and in consequence NMSC development. Literature data indicate that understanding of molecular background of skin cancers might be a reason for introduction of new therapeutic approaches including sonic hedgehog pathway inhibitors.

  4. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  5. Silica from Ash

    Indian Academy of Sciences (India)

    and may change the product characteristics (colour, etc.). This method of quality assessment is more suitable to workers at the processing site as it does not involve lab-scale analysis. Process. The initial step is extraction of silica from ash as sodium silicate using caustic soda. This reaction is carried out at a temperature.

  6. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    Science.gov (United States)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  7. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Science.gov (United States)

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  8. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  9. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  10. Acidic extraction and precipitation of heavy metals from biomass incinerator cyclone fly ash

    Directory of Open Access Journals (Sweden)

    Kröppl M.

    2013-04-01

    Full Text Available Biomass incineration is increasingly used for the generation of heat and/or electricity. After incineration two ash fractions remain. Bottom ashes (the coarser ash fraction can usually be used as fertilizing agent on fields as it contains valuable elements for soils and plants and only minor concentrations of heavy metals. Fly ashes (the finer ash fraction are in most cases disposed as their heavy metal concentrations are too high for a usage as soil enhancer. In this study highly heavy metal contaminated fly ash has been cleaned through extraction with hydrochloric acid. The heavy metals were removed from the extract by precipitation with sodium hydroxide. After the cleaning procedure the ash can be pelletized and be returned to the soils.

  11. Potential for Sonic Boom Reduction of the Boeing HSCT

    Science.gov (United States)

    Haglund, George T.

    1999-01-01

    The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.

  12. State of the art of sonic boom modeling.

    Science.gov (United States)

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  13. Mud-filtrate correction of sonic logs by fluid substitution

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne

    seismograms generated from velocity versus depth trends recorded as a sonic log in a borehole. Such a comparison is referred to as a well-tie. A high-quality well-tie requires a highquality sonic log, but shallow depth of penetration makes sonic logs sensitive to invasion of mud-filtrate from the borehole...... of wetting phase saturation, and the clay content. When the water saturation is at the irreducible water saturation or higher only the effect of clay on the elastic velocities have a differential effect on the elastic velocities. Mixed saturations are fluid substituted using effective fluid moduli formulated...

  14. Sonic Boom Minimization Efforts on Boeing HSCT Baseline

    Science.gov (United States)

    Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene

    1999-01-01

    A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.

  15. Effect of probe sonication and sodium hexametaphosphate on the microhardness and wear behavior of electrodeposited Ni–SiC composite coating

    International Nuclear Information System (INIS)

    Aruna, S.T.; Anandan, C.; Grips, V.K. William

    2014-01-01

    Highlights: • Sodium hexametaphosphate (SHMP) explored as dispersant for SiC in Ni-bath. • SHMP and probe sonication (PS) enhances SiC incorporation in Ni matrix. • SHMP and PS enhances wear resistance and microhardness of Ni–SiC. - Abstract: Electrodeposited Ni–SiC composite coating is the most widely used engineering coating. Ni–SiC coating is bestowed with higher wear resistance and microhardness compared to plain nickel. In this study, the feasibility of using sodium hexametaphosphate as a dispersant in the electrodeposition of Ni–SiC composite coating has been investigated. The effect of sodium hexametaphosphate and probe sonication on the microhardness, microstructure and wear resistance of the electrodeposited Ni–SiC composite coating has been studied. X-ray photoelectron spectroscopy analysis of the coatings showed the absence of Na and P elements from sodium hexametaphosphate in the bath. Ni–SiC coating deposited using probe sonication followed by the addition of sodium hexametaphosphate exhibited microhardness as high as 680 HK. The microstructure of the coatings varied with probe sonication and SHMP addition and Ni–SiC–PS–SHMP coating possessed lowest roughness. This study has revealed that a synergistic combination of probe sonication of the electrolyte bath containing particles followed by sodium hexametaphosphate addition enhances the co-deposition of finer SiC particles and thereby enhances the coating properties like microhardness and wear resistance

  16. EEG and Sonic Platforms to Enhance Mindfulness Meditation

    Directory of Open Access Journals (Sweden)

    Caitilin de Berigny

    2016-09-01

    Full Text Available This paper explores interactive applications that encourage mindfulness through sensors and novel input technology. Research in psychology and neuroscience demonstrating the benefits of mindfulness is initiating a new movement in interactive design. As cutting edge technologies become more accessible they are being employed to research and explore the practice of mindfulness. We examine three interactive installation artworks that promote mindfulness. In order to contextualize the interactive artworks discussed we first examine the historical background of the Electroencephalogram (EEG. We then discuss the physiological processes of meditation and the history behind the clinical practice of mindfulness. We show how artists and designers employ EEG sensors, to record the electrical activity of the brain to visualize mindfulness meditation practices. Lastly, we conclude the paper by discussing the future of the three artworks.

  17. Ashes for organic farming

    OpenAIRE

    Kousa, T.; Heinonen, M.; Suoniitty, T.; Peltonen, K.

    2013-01-01

    Nowadays only eight percent of the cultivated field area is used for organic farming. The Ministry of Agriculture and Forestry has published the guidelines for the program of organic farming to diversify the supply and the consumption of organic food. The aim is to increase organically arable land to 20% by the year 2020.The demand of organic fertilizer products is strongly increasing. Interest in forestry by-products (ash, bark, zero fiber, etc.) for use in organic production has recently be...

  18. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman

    2012-10-01

    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  19. Sonication-assisted production of biodiesel using soybean oil and supercritical methanol.

    Science.gov (United States)

    Gobikrishnan, Sriramulu; Park, Jae-Hee; Park, Seok-Hwan; Indrawan, Natarianto; Rahman, Siti Fauziyah; Park, Don-Hee

    2013-06-01

    High temperature and pressure are generally required to produce biodiesel using supercritical methanol. We reduced the harsh reaction conditions by means of sonicating the reaction mixture prior to transesterification using supercritical methanol. Soybean oil was selected as the raw material for transesterification. As soybean oil contains more unsaturated fatty acid triglycerides, the biodiesel degraded more at high temperature. The reactants were sonicated for 60 min at 35 °C prior to transesterification to avoid degradation of the product and to enhance biodiesel yield at temperatures methanol molar ratio. The temperature and oil to methanol molar ratios were varied from 250 to 280 °C and 1:40-1:50, respectively. The reaction time was tested between 4 and 12 min. The biodiesel was analyzed for any possible degradation by gas chromatography-mass spectroscopy and for the wt% of fatty acid methyl esters (FAME) obtained. The maximum FAME yield (84.2 wt%) was obtained at a temperature of 265.7 °C, an oil to alcohol molar ratio of 1:44.7, and a time of 8.8 min. The optimum yield was obtained at a pressure of 1,500 psi. The pressure and optimum temperature used to obtain the maximum yield were the lowest reported so far without the use of a co-solvent. Thus, the severity of the supercritical reactions was reduced by adding sonication prior to the reaction.

  20. Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Manning, J. [Argonne National Lab., IL (US); Hoffman, M.R. [California Inst. of Tech., Pasadena, CA (US); Gorelick, S. [Stanford Univ., CA (US)

    1997-01-01

    'This project investigates the in-situ degradation of semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs) using in-well sonication, in-well vapor stripping, and bioremediation. Pretreating groundwaters with sonication techniques in-situ would form VOCs that can be effectively removed by in-well vapor stripping and bioremediation. The mechanistic studies focus on the coupling of megasonics and ultrasonics to soften (i.e., partially degrade) the SVOCs; oxidative reaction mechanism studies; surface corrosion studies (on the reactor walls/well); enhancement due to addition of oxidants, quantification of the hydroxyl radical formation; identification/quantification of degradation products; volatility/degradability of the treated waters; development of a computer simulation model to describe combined in-well sonication/in-well vapor stripping/bioremediation; systems analysis/economic analysis; large laboratory-scale experiment verification; and field demonstration of the integrated technology. Benefits of this approach include: (1) Remediation is performed in-situ; (2) The treatment systems complement each other; their combination can drastically reduce or remove SVOCs and VOCs; (3) Ability to convert hard-to-degrade organics into more volatile organic compounds; (4) Ability to remove residual VOCs and softened SVOCs through the combined action of in-well vapor stripping and biodegradation; (5) Does not require handling or disposing of water at the ground surface; and (6) Cost-effective and improved efficiency, resulting in shortened clean-up times to remediate a site.'

  1. Sonic hedgehog signaling in Basal cell nevus syndrome.

    Science.gov (United States)

    Athar, Mohammad; Li, Changzhao; Kim, Arianna L; Spiegelman, Vladimir S; Bickers, David R

    2014-09-15

    The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012. ©2014 American Association for Cancer Research.

  2. Effect of sonic driving on maximal aerobic performance.

    Science.gov (United States)

    Brilla, L.R.; Hatcher, Stefanie

    2000-07-01

    The study purpose was to evaluate antecedent binaural stimulation (ABS) on maximal aerobic physical performance. Twenty-two healthy, physically active subjects, 21-34 years, randomly received one of two preparations for each session: 15 min of quiet (BLANK) or percussive sonic driving at 200+ beats per minute (bpm) using a recorded compact disc (FSS, Mill Valley, CA) with headphones (ABS). Baseline HR, blood pressure (BP), and breathing frequency (f(br)) were obtained. During each condition, HR and f(br) were recorded at 3-min intervals. The graded maximal treadmill testing was administered immediately postpreparation session on separate days, with at least 48 h rest between sessions. There were significant differences in the antecedent period means between the two conditions, ABS (HR: 70.2 +/- 10.7 bpm; f(br): 18.5 +/- 3.3 br min(-1); BP: 134.5/87.9 +/- 13.6/9.2 mm Hg) and BLANK (HR: 64.6 +/- 7.9; f(br): 14.3 +/- 2.9; BP: 126.7/80.3 +/- 12.1/8.6). Differences were noted for each 3-min interval and pre- postantecedent period. The maximal graded exercise test (GXT) results showed that there was a small but significant (P 0.05). There may be a latency to ABS related to entrainment or imagery-enhanced warm-up. Am. J. Hum. Biol. 12:558-565, 2000. Copyright 2000 Wiley-Liss, Inc.

  3. MSW fly ash stabilized with coal ash for geotechnical application.

    Science.gov (United States)

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  4. Detection and assessment of secondary sonic booms in New England

    Science.gov (United States)

    1980-05-01

    This report documents the results of a secondary sonic boom detection and assessment program conducted by the U.S. Dept. of Transportation, Transportation Systems Center in New England during the summer of 1979. Measurements of both acoustic and infr...

  5. Cavitation Measurement during Sonic and Ultrasonic Activated Irrigation

    NARCIS (Netherlands)

    Macedo, Ricardo; Verhaagen, Bram; Rivas, David Fernandez; Versluis, Michel; Wesselink, Paul; van der Sluis, Luc

    Introduction: The aims of this study were to quantify and to visualize the possible occurrence of transient cavitation (bubble formation and implosion) during sonic and ultrasonic (UAI) activated irrigation. Methods: The amount of cavitation generated around several endodontic instruments was

  6. Confidence Intervals for Laboratory Sonic Boom Annoyance Tests

    Science.gov (United States)

    Rathsam, Jonathan; Christian, Andrew

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.

  7. An improved ashing procedure for biologic sample

    International Nuclear Information System (INIS)

    Wu Zongmei

    1992-01-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches

  8. Aerodynamical and sonic boom optimization of a supersonic aircraft

    OpenAIRE

    Vázquez, M.; Dervieux, Alain; Koobus, B.

    2002-01-01

    Sonic Boom Reduction will be an issue of utmost importance in future supersonic carriers, due to strong regulations on acoustic nuisance. The present work introduces a technique for optimizing the aerodynamical performan- ce and the sonic boom production, through optimal shape design. Based in a so-called CAD-free parametrization method, which relies on the discretized shape by working in a parameter space determined by the skin nodes physical location, this methodology introduces several dis...

  9. From Ecological Sounding Artifacts Towards Sonic Artifact Ecologies

    DEFF Research Database (Denmark)

    Erkut, Cumhur; Serafin, Stefania

    2016-01-01

    The discipline of sonic interaction design has been focused on the interaction between a single user and an artifact. This strongly limits one of the fundamental aspects of music as a social and interactive experience. In this paper we propose sonic artifact ecologies as a mean to examine...... interactions between one or many users with one or many artifacts. Case studies from a recently run workshop on product sound design are examined....

  10. Cellular and molecular effects of electromagnetic radiation and sonic waves

    OpenAIRE

    Patricia Froes Meyer; Oscar Ariel Ronzio; Adenilson de Souza da Fonseca; Sebastiao David Santos-Filho; Mario Bernardo-Filho

    2013-01-01

    Electromagnetic radiation (in the form of pulsed magnetic fields, radiofrequency and intense pulsed light) and mechanical agents (such as sonic waves) have been used in physical therapy. The aim of this study was to assess the effects of low-intensity magnetic fields, sonic and radiofrequency waves, and intense pulsed light on the survival of Escherichia coli cultures and on the electrophoretic mobility of plasmid DNA. Exponentially growing E. coli AB1157 cultures and plasmid DNA samples were...

  11. Acoustic transparency in two-dimensional sonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es

    2009-01-15

    Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.

  12. Ash in the Soil System

    Science.gov (United States)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  13. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  14. OPTIMIZATION OF MIXING TEMPERATURE AND SONICATION DURATION IN LIPOSOME PREPARATION

    Directory of Open Access Journals (Sweden)

    Dina Christin Ayuning Putri

    2017-11-01

    Full Text Available Liposomes are a delivery system used in pharmaceutical products and cosmetics. Liposomes have many advantages such as increase stability and efficacy, can be targeted to reduce toxicity and increase accumulation at the target site and are biocompatible.  Preparation of liposomes can be done by conventional or new methods which are still being developed. Conventional methods often require a long time and organic solvents which may be toxic. Heating (Mozafari method is one of the new methods developed in the manufacture of liposomes without organic solvents. Mixing temperature can affect the physical properties of liposomes. The particle size has become one of the important physical properties because it affects the absorption of the drug. Sonication is an easy method of choice in reducing the size of liposomes. Optimization of mixing temperature and duration of sonication in liposomes’ preparation using new heating methods and sonication were performed by factorial design with 2 factors and 3-levels to obtain optimal liposome size. Data were analyzed with two-way ANOVA. The results showed that both mixing temperature and sonication duration significantly affect liposome size, but the interaction was not statistically significant. Data analysis also showed that mixing temperature, sonication, and their interaction do not affect the polydispersity index of liposome. Results showed the optimum mixing temperature and sonication duration that can produce liposomes with size below 100 nm is at 60°C for 30 minutes.

  15. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  16. Innervation of sonic muscles in teleosts: occipital vs. spinal nerves.

    Science.gov (United States)

    Onuki, Atsushi; Somiya, Hiroaki

    2007-01-01

    The innervation of sonic muscles in teleosts has been categorized into three types: occipital nerve, spinal nerve, and a combination of occipital and spinal nerves. The innervation patterns of sonic muscles were examined (or re-examined) in seven sonic fish species (rockfish, pinecone fish, sweeper, tigerfish, piranha, dory, and pollack) that use the sonic muscles to vibrate the swimbladder. The peripheral nerves (occipital or spinal) were identified based on skeletal preparations. The sonic muscle innervation was of the occipital type in four species (rockfish, pinecone fish, sweeper, and tigerfish) and of the spinal type in three species (piranha, dory, and pollack); none of the seven species examined showed the combination type. Therefore, we hypothesized that innervation patterns could be divided simply into occipital and spinal types. Moreover, the present results revealed that previously reported innervation patterns are inaccurate for three species (tigerfish, piranha, and dory) re-examined in this study. Therefore, it is important to define the peripheral nerves precisely, by using skeletal preparations, in future investigations of sonic muscle innervation. Copyright 2007 S. Karger AG, Basel.

  17. Electrodialytic treatment of fly ash

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Pedersen, Anne Juul; Kirkelund, Gunvor Marie

    Heavy metals are removed from the fly ashes by an electrodialytic treatment with the aim of up-grading the ashes for reuse in stead of disposal in landfill.A great potential for upgrading of bio- and waste incineration ashes by electrodialytic treatment exists. In the future, the applicability...... of the treated products for reuse in construction or farming sectors should be explored further, as should the possibility of recycling of valuable, extracted elements in the metallurgical industry....

  18. Utilization of Coal Fly Ash

    Science.gov (United States)

    1992-01-01

    T1 Thallium Br Bromine U Uranium C Carbon V Vanadium Ca Calcium W Tungsten Cd Cadmium Zn Zinc Ce Cerium Cl Chlorine Co Cobalt Cr Chromium Cu Copper...2933 (1987). £ 46 I A 3 Christensen, J., L. Kryger, and N. Pind, "The Determination of Traces of Cadmium, Lead, and Thallium in Fly Ash by...Elements and Radioactivity in Fly Ashes, Adsorption of Elements by Cabbage Grown in Fly Ash-Soil Mixtures," Environmental Science and Technology, v.11

  19. Subjective loudness of "minimized" sonic boom waveforms.

    Science.gov (United States)

    Niedzwiecki, A; Ribner, H S

    1978-12-01

    For very long supersonic aircraft the "midfield" sonic boom signature may not have evolved fully into an N wave at ground level. Thus in current boom minimization techniques the shape of the aircraft may be tailored to optimize this midfield wave form for reduced subjective loudness. The present investigation tests a family of "flat-top" waveforms cited by Darden: all but one have a front shock height (deltapSH) less than the peak amplitude (deltapMAX). For equal subjective loudness, "flat top" vs N wave (peak overpressure deltapN), the peak amplitude of the "flat top" signature was found to be substantially higher than that of the N wave; thus for equal peak amplitude the "flat-top" signature was quieter. The results for equal loudness were well fitted by an emperical law deltapSH + 0.11deltapMAX = deltapN; the equivalence shows how the front shock amplitude (deltapSH) dominates the loudness. All this was found compatible with predictions by the method of Johnson and Robinson.

  20. Epithelial trafficking of Sonic hedgehog by megalin.

    Science.gov (United States)

    Morales, Carlos R; Zeng, Jibin; El Alfy, Mohamed; Barth, Jeremy L; Chintalapudi, Mastan Rao; McCarthy, Robert A; Incardona, John P; Argraves, W Scott

    2006-10-01

    We present here evidence of in vivo epithelial endocytosis and trafficking of non-lipid-modified Sonic hedgehog (ShhN) when infused into rat efferent ducts via microinjection. Initially, exogenous ShhN is detected in endocytic vesicles and early endosomes located near the apical plasma membrane of non-ciliated cells. Within 30-60 min following infusion, ShhN can be detected in lysosomes and at basolateral regions of non-ciliated cells. Basolaterally, ShhN was observed along the extracellular surfaces of interdigitated plasma membranes of adjacent cells and in the extracellular compartment underlying the efferent duct epithelium. Uptake and subcellular trafficking of infused ShhN by non-ciliated cells could be blocked by either anti-megalin IgG or the megalin antagonist, RAP. Ciliated cells, which do not express megalin, displayed little if any apical internalization of ShhN even though they were found to express Patched-1. However, ShhN was found in coated pits of lateral plasma membranes of ciliated cells as well as in underlying endocytic vesicles. We conclude that megalin-mediated endocytosis of ShhN can occur in megalin-expressing epithelia in vivo, and that the internalized ShhN can be targeted to the lysosome or transcytosed in the plane of the epithelium or across the epithelium. These findings highlight the multiple mechanisms by which megalin may influence Shh morphogen gradients in vivo.

  1. Acoustical Wave Propagation in Sonic Composites

    Directory of Open Access Journals (Sweden)

    Iulian Girip

    2015-09-01

    Full Text Available The goal of this paper is to discuss the technique of controlling the mechanical properties of sonic composites. The idea is to architecture the scatterers and material from which they are made, their number and geometry in order to obtain special features in their response to external waves. We refer to perfectly reflecting of acoustical waves over a desired range of frequencies or to prohibit their propagation in certain directions, or confining the waves within specified volumes. The internal structure of the material has to be chosen in such a way that to avoid the scattering of acoustical waves inside the material. This is possible if certain band-gaps of frequencies can be generated for which the waves are forbidden to propagate in certain directions. These bandgaps can be extended to cover all possible directions of propagation by resulting a full band-gap. If the band-gaps are not wide enough, their frequency ranges do not overlap. These band-gaps can overlap due to reflections on the surface of thick scatterers, as well as due to wave propagation inside them. growth.

  2. AFRL/NASA Shaped Sonic Boom Experiment Flight Test Program. Delivery Order 0021: Origins and Overview of the Shaped Sonic Boom Demonstration Program

    National Research Council Canada - National Science Library

    Pawlowski, Joseph W; Graham, David H; Boccadoro, Charles H; Coen, Peter G; Maglieri, Domenic J

    2005-01-01

    The goal of the DARPA Shaped Sonic Boom Demonstration (SSBD) Program was to demonstrate for the first time in flight that sonic booms can be substantially reduced by incorporating specialized aircraft shaping techniques...

  3. Behavioral, autonomic, and subjective reactions to low- and moderate-level simulated sonic booms : a report of two experiments and a general evaluation of sonic boom startle effects.

    Science.gov (United States)

    1974-09-01

    Two separate studies are reported. The first attempted to determine a sonic boom exposure level below which startle reactions would not occur. Subjects were exposed indoors to six simulated sonic booms having various outside overpressures. In the sec...

  4. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  5. CALIBRATION AND TESTING OF SONIC STIMULATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Roger Turpening; Wayne Pennington; Christopher Schmidt; Sean Trisch

    2005-03-01

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are (1) a borehole test site that will remain constant and is available all the time and for any length of time, (2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and (3) a set of procedures that ensures that the amplitude and frequency parameters of a wide range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 x 10{sup -5} cm/sec and a peak to peak pressure of approx. 2.5 x 10{sup -7} microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. Igor Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.

  6. Calibration and Testing of Sonic Stimulation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roger M. Turpening; Wayne D.Pennington

    2005-03-31

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are 1) a borehole test site that will remain constant and is available all the time and for any length of time, 2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and 3) a set of procedures that ensures that the amplitude and frequency parameters of a wide range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 X 10-5 cm/sec and a peak to peak pressure of approx. 2.5 X 10-7 microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. I. Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.

  7. Evaluation of the IRAD flexible-probe sonic extensometer

    International Nuclear Information System (INIS)

    Glenn, H.D.; Patrick, W.C.; Rector, N.L.; Butler, L.S.

    1984-11-01

    The evaluation of the IRAD flexible-probe sonic extensometer consisted of: a performance analysis of the MB-7D readout electronic circuit; an accuracy check of the system for both distances and small displacements; measurements of sensitivity to strong shocks; and measurements of sensitivity to temperature changes. The electronic-circuit analysis indicated an accuracy of +-0.001 in. (0.025 mm) that is limited primarily by the counter circuit. Other components of the readout circuit (e.g., crystal oscillator, pulse generator, and amplifiers) gave consistently stable and reliable responses. Sensitivity of the sonic-probe system to strong shock waves in granite was investigated with a series of high-explosive tests in the Climax tunnel complex at the Nevada Test Site. Five magnetic anchors were located in a borehole, and three 50,000 g accelerometers were installed in separate boreholes nearby. Peak radial accelerations of from 2100 g up to about 32,000 g were measured after the detonation of individual line charges at varying distances. Sonic-probe readings of the distance between magnetic anchors, taken before and after each line-charge detonation, had differences that generally fell within the inherent accuracy (+-0.002 in. [0.051 mm]) for the sonic extensometer that was used. A temperature bath, which incorporated the test bed used in the displacement-accuracy tests, was designed and built to check the sensitivity of the sonic probe to temperature variations. Sonic-probe readings exhibited a definite sensitivity to temperature changes over the range of 20 to 50 0 C for the four segments of the probe that were monitored. Recommendations are made for increasing the accuracy and performance of the IRAD sonic extensometer and other studies are suggested to supplement the present report. 17 refs., 24 figs., 4 tabs

  8. Emerald ash borer flight potential

    Science.gov (United States)

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  9. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    Unknown

    Fly ash (FA) is a coal product generated from coal fired thermal power stations. ... million tons during 2001–2010 AD (Muraka et al 1987;. Satyanarayan and Pushpalata 1991). Disposal of FA and bottom ash are today's burning problems as they have .... Muraka I P, Boyd R H and Harbert H P 1987 Solid waste disposal and ...

  10. Emerald ash borer biological control

    Science.gov (United States)

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  11. Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  12. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  13. Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor.

    Science.gov (United States)

    Zhang, Yongsheng; Zhao, Lilin; Guo, Ruitao; Song, Na; Wang, Jiawei; Cao, Yan; Orndorff, William; Pan, Wei-ping

    2015-07-01

    In this study, the mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor were investigated through thermal decomposition methods. The results show that the mercury adsorption performance of the HBr-modified fly ash was enhanced significantly. The mercury species adsorbed by unmodified fly ash were HgCl2, HgS and HgO. The mercury adsorbed by HBr-modified fly ash, in the entrained-flow reactor, existed in two forms, HgBr2 and HgO, and the HBr was the dominant factor promoting oxidation of elemental mercury in the entrained-flow reactor. In the current study, the concentration of HgBr2 and HgO in ash from the fine ash vessel was 4.6 times greater than for ash from the coarse ash vessel. The fine ash had better mercury adsorption performance than coarse ash, which is most likely due to the higher specific surface area and longer residence time. Copyright © 2015. Published by Elsevier B.V.

  14. A brief review on fly ash and its use in surface engineering

    Science.gov (United States)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  15. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2004-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC)

  16. Strength Performance of Blended Ash Based Geopolymer Mortar

    Science.gov (United States)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

  17. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  18. Field measurements of sonic boom penetration into the ocean

    Science.gov (United States)

    Sohn; Vernon; Hildebrand; Webb

    2000-06-01

    Six sonic booms, generated by F-4 aircraft under steady flight at a range of altitudes (610-6100 m) and Mach numbers (1.07-1.26), were measured just above the air/sea interface, and at five depths in the water column. The measurements were made with a vertical hydrophone array suspended from a small spar buoy at the sea surface, and telemetered to a nearby research vessel. The sonic boom pressure amplitude decays exponentially with depth, and the signal fades into the ambient noise field by 30-50 m, depending on the strength of the boom at the sea surface. Low-frequency components of the boom waveform penetrate significantly deeper than high frequencies. Frequencies greater than 20 Hz are difficult to observe at depths greater than about 10 m. Underwater sonic boom pressure measurements exhibit excellent agreement with predictions from analytical theory, despite the assumption of a flat air/sea interface. Significant scattering of the sonic boom signal by the rough ocean surface is not detected. Real ocean conditions appear to exert a negligible effect on the penetration of sonic booms into the ocean unless steady vehicle speeds exceed Mach 3, when the boom incidence angle is sufficient to cause scattering on realistic open ocean surfaces.

  19. Dispersal of Volcanic Ash on Mars: Ash Grain Shape Analysis

    Science.gov (United States)

    Langdalen, Z.; Fagents, S. A.; Fitch, E. P.

    2017-12-01

    Many ash dispersal models use spheres as ash-grain analogs in drag calculations. These simplifications introduce inaccuracies in the treatment of drag coefficients, leading to inaccurate settling velocities and dispersal predictions. Therefore, we are investigating the use of a range of shape parameters, calculated using grain dimensions, to derive a better representation of grain shape and effective grain cross-sectional area. Specifically, our goal is to apply our results to the modeling of ash deposition to investigate the proposed volcanic origin of certain fine-grained deposits on Mars. Therefore, we are documenting the dimensions and shapes of ash grains from terrestrial subplinian to plinian deposits, in eight size divisions from 2 mm to 16 μm, employing a high resolution optical microscope. The optical image capture protocol provides an accurate ash grain outline by taking multiple images at different focus heights prior to combining them into a composite image. Image composite mosaics are then processed through ImageJ, a robust scientific measurement software package, to calculate a range of dimensionless shape parameters. Since ash grains rotate as they fall, drag forces act on a changing cross-sectional area. Therefore, we capture images and calculate shape parameters of each grain positioned in three orthogonal orientations. We find that the difference between maximum and minimum aspect ratios of the three orientations of a given grain best quantifies the degree of elongation of that grain. However, the average aspect ratio calculated for each grain provides a good representation of relative differences among grains. We also find that convexity provides the best representation of surface irregularity. For both shape parameters, natural ash grains display notably different shape parameter values than sphere analogs. Therefore, Mars ash dispersal modeling that incorporates shape parameters will provide more realistic predictions of deposit extents

  20. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    Science.gov (United States)

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  1. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    Science.gov (United States)

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards. Copyright © 2015. Published by Elsevier Ltd.

  2. Review and status of sonic boom penetration into the ocean.

    Science.gov (United States)

    Sparrow, Victor W

    2002-01-01

    Since the 1970 Sonic Boom Symposium, held at the ASA's 80th meeting in Houston, TX, substantial progress has been made in understanding the penetration of sonic booms into the ocean. The state of the art at that time was documented by J. C. Cook, T. Goforth, and R. K. Cook [J. Acoust. Soc. Am. 51, 729-741 (1972)]. Since then, additional experiments have been performed which corroborate Cook's and Sawyers' theory for sonic boom penetration into a flat ocean surface. In addition, computational simulations have validated that theory and extended the work to include arbitrarily shaped waveforms penetrating flat ocean surfaces. Further numerical studies have investigated realistic ocean surfaces including large-scale ocean swell. Research has also been performed on the effects of ocean inhomogeneities due to bubble plumes. This paper provides a brief overview of these developments.

  3. Scattering of sonic booms by anisotropic turbulence in the atmosphere

    Science.gov (United States)

    Kelly; Raspet; Bass

    2000-06-01

    An earlier paper [J. Acoust. Soc. Am. 98, 3412-3417 (1995)] reported on the comparison of rise times and overpressures of sonic booms calculated with a scattering center model of turbulence to measurements of sonic boom propagation through a well-characterized turbulent layer under moderately turbulent conditions. This detailed simulation used spherically symmetric scatterers to calculate the percentage of occurrence histograms of received overpressures and rise times. In this paper the calculation is extended to include distorted ellipsoidal turbules as scatterers and more accurately incorporates the meteorological data into a determination of the number of scatterers per unit volume. The scattering center calculation overpredicts the shifts in rise times for weak turbulence, and still underpredicts the shift under more turbulent conditions. This indicates that a single-scatter center-based model cannot completely describe sonic boom propagation through atmospheric turbulence.

  4. Evaluation of the IRAD flexible probe sonic extensometer

    International Nuclear Information System (INIS)

    Glenn, H.D.; Patrick, W.C.; Rector, N.L.; Butler, L.S.

    1986-08-01

    Evaluation of the IRAD sonic extensometer was initiated with an electronic-circuit analysis which indicated an accuracy of +-0.001 in. (0.025 mm). Readings from two sonic probes consistently were low by 2% for distances between magnetic anchors, but were accurate to +-0.002 and +-0.003 in. (0.051 and 0.076 mm) for small displacements. Although a series of high explosive tests subjected magnetic anchors to peak accelerations of from 2100 g to 32,000 g the anchors generally did not experience detectable damage. Sonic probe readings exhibited a sensitivity to temperature changes with two of the four segments monitored exceeding the correction factor cited by the manufacturer

  5. Microbially augmented ash and pyrite physical separation (MAAPPS): Quarterly report, September 1, 1986-November 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The overall objective of this research is to optimize the MAAPPS process to clean finely ground coal to less than or equal to 1% ash and less than or equal to 0.5% pyritic sulfur. The MAAPPS process uses a microbial surfactant which selectively increases the hydrophilicity of ash and pyrite, thereby enhancing separation and removal of these contaminants during flotation. In experiment No. 3, good cleaning of the coal was achieved without pretreatment of the coal. Sulfur and ash levels were generally equivalent to those obtained following pretreatment in experiment No. 2. Results of experiment No. 4 confirm the results obtained in experiment No. 2. Significant decreases in sulfur and ash were noted when the coal was pretreated with the ''cell-free'' media. Yields were good, with Btu recoveries near 80%, with pyritic sulfur decreases of about 60%, and with ash reduction of 67%. Results of these experiments are preliminary and do not represent optimized conditions for ash and sulfur removal. The lack of enhanced rejection of ash and sulfur in coal pretreated with concentrated microrganisms could be the direct result of bacterial stress or injury during concentration or, more likely, the result of separating the microbial surfactant from the biomass. The enhanced rejection of ash and pyrite following treatment with the surfactant (no microbes) indicates that this surfactant may be the active material producing the desired MAAPPS effect during flotation. 10 tabs.

  6. Biomass ashes from pyrolytic wood liquefaction as novel soil amendments

    Science.gov (United States)

    Fernández-Delgado Juárez, Marina; Gómez Brandón, María; Mazzier, Thomas; Schönegger, Deborah; Hermanns, Roy; Leijenhorst, Evert; Insam, Heribert

    2017-04-01

    columns were arranged in a completely randomized design and destructively sampled after 60 and 100 days. The amendment with ashes induced a soil pH increase of almost 2 units over time and independent of the crop presence. Moreover, ash addition did also increase soil plant available P and dissolved organic carbon content; however, it also increased nitrogen loss to the soil eluates compared to the control. On the other hand, the presence of ashes enhanced both plant growth and grain yield after 60 and 100 days. Similar effects have been observed when "traditional" biomass ashes have been applied to agricultural soils, leading us to conclude that ashes derived from FPBO process might be used for agricultural purposes. The Residue2Heat project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No. 654650.

  7. Effect of sonication on technological properties of beef

    Directory of Open Access Journals (Sweden)

    Z. J. Dolatowski

    2007-06-01

    Full Text Available Ultrasound treatment during rigor mortis period led to an acceleration of aging processes. No significant influence of sonication on acidity during ageing was observed. Ultrasound treatment did not influence the lightness, but according to the shear force measurements, improve meat tenderness. Differentiated technological properties of examined samples may result from influence of ultrasound on protein structures of meat. As a result of ultrasound treatment an increase of free calcium ions concentration occurred. Obtained results pointed out that sonication may be an effective method of formation of technological properties of beef during ageing.

  8. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...... distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies...

  9. Large sonic band gaps in 12-fold quasicrystals

    Science.gov (United States)

    Lai, Yun; Zhang, Xiangdong; Zhang, Zhao-Qing

    2002-05-01

    The sonic band-gap structures of 12-fold symmetry quasicrystals consisting of rigid cylinders in air are investigated by using the multiple scattering method. Large full gaps are found in this system owing to its high symmetry. At filling fractions between 0.2 and 0.4, this 12-fold square-triangle tiling is much better for the realization of sonic band gaps than the square or triangular lattice. This makes the 12-fold quasicrystal a promising structure for acoustic-wave band-gap materials.

  10. A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models.

    Science.gov (United States)

    Lipkens, Bart

    2002-01-01

    In previous papers, we have shown that model experiments are successful in simulating the propagation of sonic booms through the atmospheric turbulent boundary layer. The results from the model experiment, pressure wave forms of spark-produced N waves and turbulence characteristics of the plane jet, are used to test various sonic boom models for propagation through turbulence. Both wave form distortion models and rise time prediction models are tested. Pierce's model [A. D. Pierce, "Statistical theory of atmospheric turbulence effects on sonic boom rise times," J. Acoust. Soc. Am. 49, 906-924 (1971)] based on the wave front folding mechanism at a caustic yields an accurate prediction for the rise time of the mean wave form after propagation through the turbulence.

  11. Natural radioactivity of coal and fly ash at the Nikola Tesla B TPP

    Directory of Open Access Journals (Sweden)

    Kisić Dragica M.

    2013-01-01

    Full Text Available Serbian thermal power plants (TPPs produce siliceous fly ash from lignite in the quantity of approximately 6 million tons per year. The potential market for the use of fly ash is operational, but for the time being, only used by cement producers. Fly ash radioactivity could be one of the major points of concern when larger use of fly ash is planned, particularly in the Serbian construction industry. Radioactivity measurements have been conducted regularly for decades. This paper presents the results of a ten-year fly ash radioactivity measurements at the Nikola Tesla B TPP located in Obrenovac. In addition, the paper compares the natural radionuclides coal content data combusted by the Nikola Tesla B TPP boilers coming from the Kolubara Basin and ash created during coal combustion. Fly ash created in the Nikola Tesla TPPs boilers is characterised by the increased concentration of the natural radionuclides content compared to coal. This is the so-called technologically enhanced natural radioactivity (Technologically Enhanced Occurring Radioactive Material - TENORM of industrial waste, whereas the average specific activities: 232Th in coal amount to 25.2 Bq/kg, and in fly ash and coal 84.2 Bq/kg and 238U 38.3 Bq/kg, respectively. Following the obtained natural radionuclides content results it may be concluded that the Nikola Tesla B TPP ash may be disposed into the environment. Ash may be used also in the construction industry (civil engineering. In building construction applications, ash share as the additive to other building materials depends from its physical and chemical characteristics, as well as from the radionuclides activity: 266Ra, 232Th and 40K. Unlike the thermal power plants regularly (once a year testing the specific natural radionuclides activity in the combusted coal and boiler fly ash, Electric Power Industry of Serbia has not performed large-scale investigations of the natural radionuclides content in coal within the Kolubara

  12. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  13. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  14. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  15. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Martín, María Ángeles; González, Inmaculada; Serrano, Antonio; Siles, José Ángel

    2015-01-01

    Sewage sludge is a polluting and hazardous waste generated in wastewater treatment plants with severe management problems. The high content in heavy metal, pathogens and micropolluting compounds limit the implementation of the available management methods. Anaerobic digestion could be an interesting treatment method, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A sonication pre-treatment at lab scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. Sonication time was optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) at different pre-treatment times. The pre-treatment time was fixed at 45 min under the study conditions given that the solubilisation of organic matter did not increase significantly at lower sonication times, whereas the concentration of total nitrogen increased markedly at higher times. The volatile fatty acids generation rate was also evaluated for the pre-treatment conditions. The anaerobic digestion of untreated and pre-treated sewage sludge was subsequently compared and promising results were obtained for loads of 1.0 g VS/L (VS, total volatile solids). The methane yield coefficient increased from 88 to 172 mLSTP/g VS (STP, 0 °C, 1 atm) after the pre-treatment, while biodegradability was found to be around 81% (in VS). Moreover, the allowed organic loading rate and methane production rate observed for the sewage sludge reached values of up to 4.1 kg VS/m(3)·d and 1270 LSTP/m(3)·d, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of a Sonic Device Designed to Activate Irrigant in the Root Canal

    NARCIS (Netherlands)

    Jiang, Lei-Meng; Verhaagen, Bram; Versluis, Michel; van der Sluis, Lucas W. M.

    Introduction: The aims of this study were to evaluate the removal of dentin debris from the root canal by sonic or ultrasonic activation of the irrigant and the physical mechanisms of sonic activation by visualizing the oscillations of the sonic tip, both inside and outside the confinement of the

  17. Evaluation of a sonic device designed to activate irrigant in the root canal

    NARCIS (Netherlands)

    Jiang, L.M.; Verhaagen, B.; Versluis, M.; van der Sluis, L.W.M.

    2010-01-01

    Introduction The aims of this study were to evaluate the removal of dentin debris from the root canal by sonic or ultrasonic activation of the irrigant and the physical mechanisms of sonic activation by visualizing the oscillations of the sonic tip, both inside and outside the confinement of the

  18. Evaluation of a Sonic Device Designed to Activate Irrigant in the Root Canal

    NARCIS (Netherlands)

    Jiang, Lei-Meng; Verhaagen, B.; Versluis, Michel; van der Sluis, Lucas W.M.

    2010-01-01

    Introduction The aims of this study were to evaluate the removal of dentin debris from the root canal by sonic or ultrasonic activation of the irrigant and the physical mechanisms of sonic activation by visualizing the oscillations of the sonic tip, both inside and outside the confinement of the

  19. Toward an integrated Volcanic Ash Observing System in Europe

    Science.gov (United States)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  20. Sonic boom startle effects : report of a field study.

    Science.gov (United States)

    1973-07-01

    The study reports the results of a sonic boom field study conducted in Sweden during October 1972. Ten female subjects were tested indoors on each of six days. Two age groups were studied: 20-35 and 50-65 years. Fighter aircraft flying at various hei...

  1. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  2. Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.

    Science.gov (United States)

    Defense Documentation Center, Alexandria, VA.

    The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)

  3. Interdisciplinarity in Medialogy with applications to Sonic Interaction Design

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Serafin, Stefania

    2009-01-01

    Medialogy is a novel education developed in Denmark since 2002, whose goal is to combine technology and creativity in the design, contextualization and evaluation of media technology. In this paper we describe the progression of the sonic interaction design curriculum in the Medialogy education, ...

  4. Stationarity: Insights toward Determining a Sonic Anemometer's Coordinate System

    Science.gov (United States)

    Pan, Y.; Patton, E. G.

    2017-12-01

    The steady-state planar averaged mean momentum budget equation above horizontally homogeneous roughness elements predicts that the magnitude of mean vertical turbulent momentum flux should remain constant with height. However, during the Canopy Horizontal Array Turbulence Study (CHATS), data sampled on a vertical tower show more than 30% variability for mean vertical turbulent momentum flux between canopy top and three canopy heights. This large variability results from the data preparation procedure used to determine the sonic anemometer's coordinate system. Specifically, the planar fit technique employs mean velocities during time periods of fixed length (e.g., 30 minutes), regardless of the stationarity of the time periods used in performing the planar fit. A newly constructed statistical technique objectively determines both the occurrence and duration of stationary episodes, which enables a more rigorous approach to estimate a sonic anemometer's coordinate system. Applying the planar fit technique to stationary mean velocities yields new estimates of the sonic coordinate system which consequently yields mean vertical turbulent momentum flux estimates with only 10% variability above the canopy. The improvement in determining the sonic anemometer's coordinate system also yields significant improvements in estimating scalar fluxes.

  5. A Review of the Application of Ultrasound in Bioleaching and Insights from Sonication in (BioChemical Processes

    Directory of Open Access Journals (Sweden)

    Shruti Vyas

    2017-12-01

    Full Text Available Chemical and biological leaching is practiced on a commercial scale for the mining of metals from ores. Although bioleaching is an environmentally-friendly alternative to chemical leaching, one of the principal shortcomings is the slow rate of leaching which needs to be addressed. The application of ultrasound in bioleaching, termed sonobioleaching, is a technique which has been reported to increase the rate and extent of metal extraction. This article reviews efforts made in the field of sonobioleaching. Since bioleaching is effectively a biological and chemical process, the effects of sonication on chemical leaching/reactions and biological processes are also reviewed. Although sonication increases metal extraction by increasing the metabolite production and enhanced mixing at a micro scale, research is limited in terms of the microorganisms explored. This paper highlights some shortcomings and limitations of existing techniques, and proposes directions for future research.

  6. Sonic logging for detecting the excavation disturbed and fracture zones

    Science.gov (United States)

    Lin, Y. C.; Chang, Y. F.; Liu, J. W.; Tseng, C. W.

    2017-12-01

    This study presents a new sonic logging method to detect the excavation disturbed zone (EDZ) and fracture zones in a tunnel. The EDZ is a weak rock zone where its properties and conditions have been changed by excavation, which results such as fracturing, stress redistribution and desaturation in this zone. Thus, the EDZ is considered as a physically less stable and could form a continuous and high-permeable pathway for groundwater flow. Since EDZ and fracture zone have the potential of affecting the safety of the underground openings and repository performance, many studies were conducted to characterize the EDZ and fracture zone by different methods, such as the rock mass displacements and strain measurements, seismic refraction survey, seismic tomography and hydraulic test, etc. In this study, we designed a new sonic logging method to explore the EDZ and fracture zone in a tunnel at eastern Taiwan. A high power and high frequency sonic system was set up which includes a two hydrophones pitch-catch technique with a common-offset immersed in water-filled uncased wells and producing a 20 KHz sound to scan the well rock. Four dominant sonic events were observed in the measurements, they are refracted P- and S-wave along the well rock, direct water wave and the reverberation in the well water. Thus the measured P- and S-wave velocities, the signal-to-noise ratio of the refraction and the amplitudes of reverberation along the well rock were used as indexes to determine the EDZ and fracture zone. Comparing these indexes with core samples shows that significant changes in the indexes are consistent with the EDZ and fracture zone. Thus, the EDZ and fracture zone can be detected by this new sonic method conclusively.

  7. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  8. Immobilization of Trametes versicolor cultures for improving laccase production in bubble column reactor intensified by sonication.

    Science.gov (United States)

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-01-01

    The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.

  9. An aerodynamic design method for generating low sonic-boom pressure signatures

    OpenAIRE

    Makino, Yoshikazu; Aoyama, Takashi; Iwamiya, Toshiyuki; Watanuki, Tadaharu; Kubota, Hirotoshi; 牧野 好和; 青山 剛史; 岩宮 敏幸; 綿貫 忠晴; 久保田 弘敏

    2000-01-01

    A study was conducted of an aerodynamic design for the sonic-boom reduction of supersonic transport. Sonic-boom is one of the most important environmental problems for supersonic transport and methods for reduction of sonic-boom intensity have been published. These previous low sonic-boom design methods utilize the F-function method which is based on a linear theory. In comparison a new low sonic-boom design method is proposed in this study in order to deal with the nonlinear effects of the s...

  10. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  11. Optimizing sonication protocols for transthoracic focused ultrasound surgery

    Science.gov (United States)

    Gao, J.; Volovick, A.; Cao, R.; Nabi, G.; Cochran, S.; Melzer, A.; Huang, Z.

    2012-11-01

    During transthoracic focused ultrasound surgery (TFUS), the intervening ribs absorb and reflect the majority of the ultrasound energy excited by an acoustic source, resulting in pain, bone injuries and insufficient energy delivered to the target organs of liver, kidney, and pancreas. Localized hot spots may also exist at the interfaces between the ribs and soft tissue and in the highly absorptive regions such as the skin and connective tissue. The aims of this study were to clarify the effects of focal beam distortion and frequency-dependent rib heating in TFUS and to propose possible techniques to reduce the side-effects of rib heating and increase ultrasound efficacy. Frequency-dependent heating at the target and the ribs were estimated using finite element analysis (PZFlex, Weidlinger Associates Inc, USA) along with experimental verification on a range of different phantoms. The ratio of ultrasonic power density at the target and the ribs, the time-varying spatial distribution of temperature, and the ablated focus of each sonication were taken as key indicators to determine the optimal operating frequency. Comparison with a patient specific model was also made. TFUS seems to be useful to treat tumours that are small and near the surface of the abdominal organs. For targets deep inside these organs, severe attenuation of energy occurs, suggesting that purely ultrasound thermal ablation with advanced heating patterns will have limited effects in improving the treatment efficacy. Results demonstrate that the optimal ultrasound frequency is around 0.8 MHz for the configurations considered, but this may shift to higher frequencies with changes in the axial and lateral positions of the tumours relative to the ribs. To date, we have elucidated the most important effects and correlated these with idealised anatomical geometry. The changes in frequency and other techniques such as selection of excited element patterns in FUS arrays had some effect. However, more advanced

  12. Broadband acoustic energy confinement in hierarchical sonic crystals composed of rotated square inclusions

    Science.gov (United States)

    Shakouri, Amir; Xu, Feifei; Fan, Zheng

    2017-07-01

    The propagation of acoustic waves in hierarchical sonic crystals is studied computationally and experimentally. These sonic crystals are composed of a hierarchical order of square inclusions rotated 45° with respect to the square lattice structure. It is shown that these hierarchical sonic crystals are capable of confining acoustic energy over a broad frequency range and at multiple lattice points inside the sonic crystal based on Bragg's scattering effect. Fused deposition modeling additive manufacturing is applied to prepare a finite-sized sample of the hierarchical sonic crystal. Acoustic measurements are conducted on the hierarchical sonic crystal sample in a direct and closely plane-wave field inside an anechoic room. The experimental measurements are in good agreement with the band structure calculated using the finite element method. Potential applications of the hierarchical sonic crystals for acoustic energy harvesting and noise measurements are discussed.

  13. A review of the interference of carbon containing fly ash with air entrainment in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Skjøth-Rasmussen, Martin Skov

    2008-01-01

    Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization is as pozzolanic additive in the production of concrete. However, the residual carbon in fly ash...... may interfere with air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increase its workability and resistance toward freezing and thawing conditions. The problem has increased with implementation of low-NOx combustion technologies. This review presents the past...... on the adsorption capacity of AEAs. The type of fuel used in the combustion process influences the amount and properties of the residual carbon. Fly ash derived from bituminous coal has generally higher carbon content compared with fly ash produced from subbituminous coal or lignite, but shows a lower AEA...

  14. Alkali ash material: a novel fly ash-based cement

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Rostami; William Brendley [Philadelphia University, Philadelphia, PA (United States)

    2003-08-01

    The United States generates 110 million t of coal ash annually. Approximately 70 million t of this coal ash is fly ash, of which 27% is recycled and the remaining 73% is landfilled. Disposal of such a huge quantity of ash poses a significant environmental problem. A new cementitious material has been developed, called alkali ash material (AAM), which is used to produce concrete for construction. AAM can be used to create a variety of concrete strengths and could revolutionize the concrete product manufacturing industry due to its economic advantage. AAM contains 40-95% Class F fly ash and is used as cement to bind sand, stone, and fibers creating concrete. AAM concrete has been tested for strength, durability, mechanical properties, and, most importantly, economic viability. AAM concrete is economically and technically viable for many construction applications. Some properties include rapid strength gain (90% of ultimate in 1 d), high ultimate strengths (110 MPa or 16 000 psi in 1 d), excellent acid resistance, and freeze-thaw durability. AAM's resistance to chemical attack, such as sulfuric (H{sub 2}SO{sub 4}), nitric (HNO{sub 3}), hydrochloric (HCl), and organic acids, is far better than portland cement concrete. AAM is resistant to freeze-thaw attack based on ASTM C-666 specifications. Potential immediate applications of AAM are blocks, pipe, median barriers, sound barriers, and overlaying materials. Eventual markets are high strength construction products, bridge beams, prestressed members, concrete tanks, highway appurtenances, and other concrete products. 28 refs., 7 figs., 2 tabs.

  15. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  16. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes

    KAUST Repository

    Thompson, Joshua A.

    2012-08-01

    The effect of typical membrane processing conditions on the structure, interfacial morphology, and gas separation performance of MOF/polymer nanocomposite membranes is investigated. In particular, the ZIF-8/Matrimid® nanocomposite membrane system is examined, and it is shown that ultrasonication - a commonly employed particle dispersion method - induces significant changes in the shape, size distribution, and structure of ZIF-8 particles suspended in an organic solvent during membrane processing. Dynamic light scattering and electron microscopy reveal that ZIF-8 nanoparticles undergo substantial Ostwald ripening when subjected to high intensity ultrasonication as often required in the formation of MOF/polymer nanocomposite membranes. Other characterization techniques reveal that the ripened particles exhibit lower pore volumes and lower surface areas compared to the as-made material. ZIF-8/Matrimid® composite membranes fabricated using two sonication methods show significant differences in microstructure. Permeation measurements show significant enhancement in permeability of CO 2 and increased CO 2/CH 4 selectivity in membranes fabricated with high-intensity sonication. In contrast, composite membranes prepared with low-intensity sonication are found to be defective. A careful evaluation of MOF membrane processing conditions, as well as knowledge of the properties of the MOF material after these membrane processing steps, are necessary to develop reliable processing-structure-property relations for MOF-containing membranes. © 2012 Elsevier Inc. All rights reserved.

  17. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  18. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  19. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    Science.gov (United States)

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  20. Effects of Wood Ash on Soil Fungi

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla

    Reutilizing biomass ash on soil has been proposed to counteract soil acidity and to save fertilizer inputs by recycling valuable nutrients contained in biomass ash such as calcium (Ca), magnesium (Mg) and phosphorus (P). However, the heavy metal content of biomass ashes, such as cadmium (Cd...... in agricultural and forest soils focusing on soil microbial communities’ composition and function, particularly mycorrhizal fungi. Two study sites were used for this study, one in an agricultural field where different biomass ashes were evaluated as replacements for P fertilizers in barley, and a second one...... of wood ash with factorial additions of lime and Cd to disentangle the pH and Cd effects of wood ash amendments using community trait distributions. Barley yield, P content, and Cd content were not affected by biomass ashes. Some arbuscular mycorrhizal (AM) fungal species were reduced when biomass ashes...

  1. A novel plasmid and SonoVue formulation plus ultrasound sonication for effective gene delivery in nude mice.

    Science.gov (United States)

    Wang, Xin-Lu; Zhao, Xiao-Yun; Li, Shuo; Jia, Chang-Jun; Jiang, Luo; Shi, Tei-Mei; Ren, Wei-Dong

    2013-10-11

    This study aimed to identify the effectiveness of gene therapy mediated by ultrasound-targeted SonoVue using the herpes simplex virus-thymidine kinase (TSV-TK) driven by the kinase insert domain receptor (KDR) promoter (KDR-TK) for the treatment of ovarian carcinomas in nude mice. The optimized conditions for gene transfection were also explored. In this study, we developed a novel technique to deliver a plasmid vector-carried gene into tumor xenografts in sixty nude mice. We first mixed plasmid DNA with SonoVue to form microbubbles and then treated the mice with ultrasound sonication to enhance plasmid gene transfection and expression in tumor xenografts. The data showed that injection of pBluescript-KDR-TK cDNA mixed with SonoVue into nude mice plus ultrasound sonication significantly (Group E) increased the transfection efficiency and expression of KDR-TK mRNA in tumor xenografts. The growth of tumor xenografts in nude mice was significantly suppressed in Group E compared to the other four control groups (Groups A, B, C, and D, namely, treatment with phosphate-buffered saline (PBS), KDR-TK+PBS, KDR-TK+SonoVue, KDR-TK+PBS+ultrasound sonication, respectively). TUNEL staining showed that SonoVue plus ultrasound sonication significantly induced apoptosis and reduced microvessel density (MVD). This study revealed that the formulation of plasmid with SonoVue plus ultrasound could provide efficient gene delivery into tumor xenografts. Increased gene expression was observed in vivo, which effectively reduced the tumor growth and MVD of tumor xenografts and induced apoptosis in tumor cells. Future clinical trials are necessary to further analyze the relevance of this technique. © 2013.

  2. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Science.gov (United States)

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi. Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  3. Pendaphonics: A Tangible Pendulum-based Sonic Interaction Experience

    DEFF Research Database (Denmark)

    Overholt, Daniel; Hansen, Anne-Marie S.; Burleson, Winslow

    2009-01-01

    Pendaphonics is a tangible physical-digital-sonic environment and interactive system that engages users in individual, collaborative, group, and distributed interactive experiences. The development of this system, as an element of urban revitalization and as a trans-disciplinary research endeavor...... along with descriptions of the broad potential of this system as a compositional and choreographic tool, an educational exhibit and classroom manipulative, and as an interface that facilitates playful interaction, exploration, discovery and creativity.......Pendaphonics is a tangible physical-digital-sonic environment and interactive system that engages users in individual, collaborative, group, and distributed interactive experiences. The development of this system, as an element of urban revitalization and as a trans-disciplinary research endeavor......, and is now active within five different research university interaction laboratories. This paper presents the development process and findings from observations and evaluation of Pendaphonics’ users and the social interaction patterns among performers and members of the public. In particular, the repeated...

  4. Sonic memory interventions against politics of urban silencing

    Directory of Open Access Journals (Sweden)

    Hofman Ana

    2017-01-01

    Full Text Available We discuss the political implications of the noise/silence dialectic in order to reflect on the urban and social materialities of sonic memory activism in the post- Yugoslav space. We see the privatization of public space as one of the defining issues of current socio-political tensions and we strive to offer a more nuanced model for thinking about grassroots practices of musicking and listening in the context of resistance and power and control redistribution. Discussing sonic interventions in Ljubljana and Belgrade enables us both to uncover how important global processes are reflected in these local contexts and to locate diversity of present practices of resistance. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 177004: Serbian Musical Identities Within Local and Global Frameworks: Traditions, Changes, Challenges

  5. Interment of ashes: Cremation service

    Directory of Open Access Journals (Sweden)

    Maake Masango

    2006-09-01

    Full Text Available This article develops a liturgy of worship service which is to be conducted at the crematorium. This interment of ashes service can also take place at the church in the garden of remembrance. The aim of this service is to help members of the family achieve closure as far as the issue of the ashes of their loved one is concerned. The liturgy developed is focused on a continuation of the pastoral elements which aim to take care of the souls of those who are bereaved.

  6. ASH exhibition at the ICA

    OpenAIRE

    Dening, Geraldine; Elmer, Simon

    2017-01-01

    From the 14-20 August ASH had a residency in the Upper Galleries of the Institute of Contemporary Arts in London. During the week we hosted several talks on aspects of London’s housing ‘crisis’, including a presentation by Co-ops for London, a workshop by Achilles Fanzine, and an ASH meeting on the terms of reference in the Public Inquiry into the Grenfell Tower fire. During our residency we created a wall-size map identifying the site of every London estate regeneration, and on the weekend w...

  7. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    2011-01-01

    Full Text Available Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

  8. Sonic black holes in dilute Bose-Einstein condensates

    OpenAIRE

    Garay, L. J.; Anglin, J. R.; Cirac, J. I.; Zoller, P.

    2000-01-01

    The sonic analog of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated. It is shown that there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit behaviors completely analogous to that of gravitational black holes. The dynamical instabilities involve the creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models, namel...

  9. Radioactive wastes dispersed in stabilized ash cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-01-01

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO 2 ) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO 2 to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO 2 to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms

  10. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  11. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  12. Personality Traits Bias the Perceived Quality of Sonic Environments

    Directory of Open Access Journals (Sweden)

    PerMagnus Lindborg

    2016-12-01

    Full Text Available There have been few empirical investigations of how individual differences influence the perception of the sonic environment. The present study included the Big Five traits and noise sensitivity as personality factors in two listening experiments (n = 43, n = 45. Recordings of urban and restaurant soundscapes that had been selected based on their type were rated for Pleasantness and Eventfulness using the Swedish Soundscape Quality Protocol. Multivariate multiple regression analysis showed that ratings depended on the type and loudness of both kinds of sonic environments and that the personality factors made a small yet significant contribution. Univariate models explained 48% (cross-validated adjusted R2 of the variation in Pleasantness ratings of urban soundscapes, and 35% of Eventfulness. For restaurant soundscapes the percentages explained were 22% and 21%, respectively. Emotional stability and noise sensitivity were notable predictors whose contribution to explaining the variation in quality ratings was between one-tenth and nearly half of the soundscape indicators, as measured by squared semipartial correlation. Further analysis revealed that 36% of noise sensitivity could be predicted by broad personality dimensions, replicating previous research. Our study lends empirical support to the hypothesis that personality traits have a significant though comparatively small influence on the perceived quality of sonic environments.

  13. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    International Nuclear Information System (INIS)

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-01-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  14. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  15. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Energy Technology Data Exchange (ETDEWEB)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Lee, Hyung Woo, E-mail: leehw@che.itb.ac.id [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Research and Business Foundation, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746 (Korea, Republic of)

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  16. FLY ASH: AN ALTERNATIVE TO POWDERED ACTIVATED ...

    African Journals Online (AJOL)

    Preferred Customer

    fly ash were measured through N2 adsorption at 77 K using a TRISTAR-3000 surface area and porosity analyzer (Micromeritics). Surface morphology of fly ash was characterized by a SM-. 6700F field emission scanning electron microscope. Table 2. Chemical composition of fly ash. Oxide of metal. Percentage composition.

  17. A method for treating bottom ash

    NARCIS (Netherlands)

    Rem, P.C.; Van Craaikamp, H.; Berkhout, S.P.M.; Sierhuis, W.; Van Kooy, L.A.

    2007-01-01

    A method for treating bottom ash from a waste incineration plant. The invention relates in particular to a method for treating bottom ash from a domestic waste incineration plant. In accordance with the invention bottom ash having a size ranging up to 2 mm is treated by removing a previously

  18. Evaluation of fly ash quality control tools.

    Science.gov (United States)

    2010-06-30

    Many entities currently use fly ash in portland cement concrete (PCC) pavements and structures. Although the body of knowledge is : great concerning the use of fly ash, several projects per year are subject to poor performance where fly ash is named ...

  19. Pemanfaatan Bottom Ash Dan Fly Ash Tipe C Sebagai Bahan Pengganti Dalam Pembuatan Paving Block

    OpenAIRE

    Klarens, Kevin; Indranata, Michael; Antoni, Antoni; Hardjito, Djwantoro

    2016-01-01

    PT. PLTU Paiton menghasilkan 7.5 ton fly ash dan 2.5 ton bottom ash setiap jam. Pemanfaatan bottom ash masih sangat minimal, sehingga mengakibatkkan timbunan bottom ash yang semakin meningkat, dan cendrung mencemari lingkungan dan kesehatan. Berdasarkan alasan tersebut maka perlu adanya USAha untuk memanfaatkan limbah batu bara, salah satunya melalui pembuatan paving block. Sampel tahap pertama terbuat dari campuran semen dan bottom ash (lolos ayakan 2 atau 5 mm) dengan perbandingan massa 1:3...

  20. Geotechnical and Physico-Chemical Characterization of Low Lime Fly Ashes

    Directory of Open Access Journals (Sweden)

    Arif Ali Baig Moghal

    2013-01-01

    Full Text Available In order to explore the possibility of using low-lime fly ashes, the physical and chemical properties which have a direct bearing on their geotechnical and geoenvironmental behaviors have been investigated. In this paper, two types of low-lime fly ashes, originating from India, have been used. A brief account of various methods adopted in characterizing their physical, chemical, and geotechnical properties is presented. The relative importance of each of these properties in enhancing the bulk applicability of fly ashes has been brought out.

  1. Thermodynamics of ultra-sonic cavitation bubbles in flotation ore processes

    Science.gov (United States)

    Royer, J. J.; Monnin, N.; Pailot-Bonnetat, N.; Filippov, L. O.; Filippova, I. V.; Lyubimova, T.

    2017-07-01

    Ultra-sonic enhanced flotation ore process is a more efficient technique for ore recovery than classical flotation method. A classical simplified analytical Navier-Stokes model is used to predict the effect of the ultrasonic waves on the cavitations bubble behaviour. Then, a thermodynamics approach estimates the temperature and pressure inside a bubble, and investigates the energy exchanges between flotation liquid and gas bubbles. Several gas models (including ideal gas, Soave-Redlich-Kwong, and Peng-Robinson) assuming polytropic transformations (from isothermal to adiabatic) are used to predict the evolution of the internal pressure and temperature inside the bubble during the ultrasonic treatment, together with the energy and heat exchanges between the gas and the surrounding fluid. Numerical simulation illustrates the suggest theory. If the theory is verified experimentally, it predicts an increase of the temperature and pressure inside the bubbles. Preliminary ultrasonic flotation results performed on a potash ore seem to confirm the theory.

  2. A comparison between sludge ash and fly ash on the improvement in soft soil.

    Science.gov (United States)

    Lin, Deng-Fong; Lin, Kae-Long; Luo, Huan-Lin

    2007-01-01

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil.

  3. Coal ash removal in Schkopau

    Energy Technology Data Exchange (ETDEWEB)

    Geisler

    1945-05-22

    This short paper outlined an ash removal process as revealed by a conversation with a Mr. Boerner. Boerner worked with Dr. Strohfeldt in February and March of 1945 on an ash removal process performed at the Schkopau Works. A mill supplied 3 tons/hr of crushed coal, which was mixed with a dilute HCl solution. The acid suspension was immediately supplied to the first concentrator. The thickened paste was transferred by means of a diaphragm pump to the second concentator where a small amount of HCl solution was added. After concentrating in the second apparatus, the paste went to a tank car where the suspension was maintained by air bubbling. Difficulty in filtration was avoided by introduction of a rotating filter cake remover and equally-sized coal granules. The filter yield was estimated at 150 kg of wet cake per m/sup 2/ per hr. The water content of the cake was approximately 50% to 55%, and it was thought that a decrease in water content would result by slowing down the throughput rate. Ash and water analyses of the processed coal were set up, but were not run. No other specific values were given such as ash content, acid concentation, or amounts of reagents added.

  4. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  5. Compression Behavior of Confined Columns with High-Volume Fly Ash Concrete

    OpenAIRE

    Sung-Won Yoo; Young Cheol Choi; Wonchang Choi

    2017-01-01

    The use of fly ash in ordinary concrete provides practical benefits to concrete structures, such as a gain in long-term strength, reduced hydration heat, improved resistance to chloride, and enhanced workability. However, few studies with high-volume fly ash (HVFA) concrete have been conducted that focus on the structural applications such as a column. Thus, there is a need to promote field applications of HVFA concrete as a sustainable construction material. To this end, this study investiga...

  6. Geotechnical engineering properties of incinerator ash mixes.

    Science.gov (United States)

    Muhunthan, B; Taha, R; Said, J

    2004-08-01

    The incineration of solid waste produces large quantities of bottom and fly ash. Landfilling has been the primary mode of disposal of these waste materials. Shortage in landfill space and the high cost of treatment have, however, prompted the search for alternative uses of these waste materials. This study presents an experimental program that was conducted to determine the engineering properties of incinerator ash mixes for use as construction materials. Incinerator ash mixes were tested as received and around optimum compacted conditions. Compaction curves, shear strength, and permeability values of fly ash, bottom ash, and their various blends were investigated. Bottom ash tends to achieve maximum dry density at much lower water content than does fly ash. The mixes displayed a change in their cohesion and friction angle values when one of the two mix components was altered or as a result of the addition of water. The permeability of bottom ash is quite comparable to that of sand. The permeability of fly ash lies in the range of those values obtained for silts and clays. A 100% bottom ash compacted at the optimum water content has a lower density value and yields a higher friction angle and cohesion values than most construction fills. This would encourage the use of bottom ash as a fill or embankment material because free drainage of water will prevent the buildup of pore water pressures.

  7. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  8. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    Directory of Open Access Journals (Sweden)

    Baraba Anja

    2015-01-01

    Full Text Available The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group, according to the pretreatment of the dentin: (1 control group, (2 air abrasion group, and (3 sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05. Mean microtensile bond strength (MPa values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.

  9. Influence of air abrasion and sonic technique on microtensile bond strength of one-step self-etch adhesive on human dentin.

    Science.gov (United States)

    Anja, Baraba; Walter, Dukić; Nicoletta, Chieffi; Marco, Ferrari; Pezelj Ribarić, Sonja; Ivana, Miletić

    2015-01-01

    The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group), according to the pretreatment of the dentin: (1) control group, (2) air abrasion group, and (3) sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05). Mean microtensile bond strength (MPa) values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.

  10. Strength Properties of Processed Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Sivakumar Anandan

    2015-07-01

    Full Text Available The present paper reports on the mechanical treatment of fly ash for improving the delayed reactivity of fly ash with the hydration product of cement. Grinding of fly ash was carried out in a ball mill for different time durations and processing time was optimized for maximum fineness. Concrete mixes were prepared using various proportions of processed and unprocessed fly ash replacement in cement (25% and 50%. The influence of steel fiber addition on the mechanical properties of the concrete was studied for different curing periods. The test results on pozzolanic activity and lime reactivity indicate that the processed fly ash exhibited a higher strength gain than the unprocessed fly ash, with a maximum increase in compressive strength of up to 12%. Improved pozzolanic properties were noticed due to the increase in fineness of the fly ash particles.

  11. Risk to ash from emerald ash borer: can biological control prevent the loss of ash stands?

    Science.gov (United States)

    Jian J. Duan; Roy G. Van Driesche; Leah S. Bauer; Daniel M. Kashian; Daniel A. Herms

    2015-01-01

    Ash trees (Fraxinus spp.) are an important components of both natural forests and urban plantings in the United States and Canada (Federal Register, 2003; Nowak et al., 2003). There are approximately 16 species of Fraxinus native to North America (Harlow et al., 1996; USGS, 2014), each adapted to different ecological niches across...

  12. effect of neem seed husk ash em seed husk ash em seed husk ash ...

    African Journals Online (AJOL)

    User

    therefore can be used for non-structural and mass concrete application structural and ... ilable material with minor. Waste materials can concrete if they are not term properties of. Neem seed husk ash (NSHA) the waste husk obtained during the ex from neem seed. ... strength of 25 N/mm2 at 28 days was designed using.

  13. Applications of antireflection coatings in sonic crystal-based acoustic devices

    International Nuclear Information System (INIS)

    Wang Yun; Deng Ke; Xu Shengjun; Qiu Chunyin; Yang Hai; Liu Zhengyou

    2011-01-01

    The unwanted reflection seriously baffles the practical applications of sonic crystals, such as for various acoustic lenses designed by utilizing the in-band properties of sonic crystals. Herein we introduce the concept of the antireflection coating into the sonic crystal-based devices. The efficiency of such accessorial structures is demonstrated well by an originally high reflection system. Promising perspectives can be anticipated in extending the antireflection coating layers into more general acoustic applications through a flexible design process.

  14. Vascular access: comparison of US guidance with the sonic flashlight and conventional US in phantoms.

    Science.gov (United States)

    Chang, Wilson M; Amesur, Nikhil B; Klatzky, Roberta L; Zajko, Albert B; Stetten, George D

    2006-12-01

    To prospectively evaluate whether ultrasonography (US)-guided vascular access can be learned and performed faster with the sonic flashlight than with conventional US and to demonstrate sonic flashlight-guided vascular access in a cadaver. Institutional review board approval and oral and written informed consent were obtained. The sonic flashlight replaces the standard US monitor with a real-time US image that appears to float beneath the skin and is displayed where it is scanned. In studies 1 and 2, participants performed sonic flashlight-guided needle insertion tasks in vascular phantoms. In study 1, 16 participants (nine women, seven men) with no US experience performed 60 simulated vascular access trials with sonic flashlight or conventional US guidance. With analysis of variance (ANOVA) and power-curve fitting, improvement with practice rate and mean differences between techniques and tasks were examined. In study 2, 14 female nurses (mean age, 50.1 years) proficient with conventional US performed simulated vascular access trials on three tasks with the sonic flashlight and conventional US. With random assignment, half the participants used the sonic flashlight first and half used conventional US first. Mean performance with each technique and that with each task were compared by using ANOVA. In study 3, feasibility of sonic flashlight guidance for access to internal jugular and basilic veins was demonstrated in a cadaver. For study 1, learning rates (ie, decrease in access time over trials) did not differ for vascular access with sonic flashlight and conventional US. Overall, participants achieved faster vascular access times with sonic flashlight guidance (P vascular access was gained in the cadaver. Learning and performance of vascular access were significantly faster with the sonic flashlight than with conventional US, and vascular access could be gained in a cadaver; the sonic flashlight is ready for clinical trials. (c) RSNA, 2006.

  15. Effects of endophytic fungi on the ash dieback pathogen.

    Science.gov (United States)

    Schlegel, Markus; Dubach, Vivanne; von Buol, Larissa; Sieber, Thomas N

    2016-09-01

    While Hymenoscyphus fraxineus causes dieback of the European ash (Fraxinus excelsior), flowering ash (F. ornus) appears resistant to the pathogen. To date, contributions of endophytic fungi to host resistance are unknown. The following hypotheses were tested: (i) endophytic fungi enhance the resistance of F. excelsior to the pathogen; (ii) resistance of F. ornus relies on its community of endophytic fungi. Two experiments were performed. (i) The effect of exudates of ash endophytes on the germination rate of H. fraxineus ascospores was studied in vitro Isolates of abundant Fraxinus leaf endophytes, such as Venturia fraxini, Paraconiothyrium sp., Boeremia exigua, Kretzschmaria deusta and Neofabraea alba inhibited ascospore germination. (ii) Ash seedlings inoculated in a climate chamber, with fungi sporulating on the previous year's leaf litter, were exposed to natural infections by the pathogen present in the forest. Non-inoculated seedlings were used as controls. Venturia spp. dominated the inoculated endophyte 'communities'. Subsequent exposure to H. fraxineus led to infection of F. excelsior leaves by the pathogen, but no differences in health status between pre-inoculated and non-inoculated seedlings were detected. Fraxinus ornus leaves experienced a low infection rate, independent of their colonization by endophytic fungi. These results did not support either hypothesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.

    Science.gov (United States)

    Doebler, William J; Sparrow, Victor W

    2017-06-01

    The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from sonic booms. Eight N-wave shaped sonic booms from NASA's FaINT experiment and five simulated "low-boom" sonic booms were turbulized by Locey's ten atmospheric filter functions. The B-weighted sound exposure level value changed the least due to the turbulence filters for twelve of thirteen booms. This makes it the most turbulence stable metric which may be useful for quiet supersonic aircraft certification.

  17. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  18. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    Science.gov (United States)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  19. Sonic boom predictions using a modified Euler code

    Science.gov (United States)

    Siclari, Michael J.

    1992-04-01

    The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.

  20. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  1. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Kagadgar Sarfaraz Ahmed

    2017-06-01

    Full Text Available Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content on mechanical and durability properties (Permit ion permeability test and corrosion current density of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  2. Properties of High-Volume Fly Ash Concrete Reinforced with Natural Fibres

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2012-12-01

    Full Text Available Properties of high-volume fly ash concrete incorporating san fibres are presented in this paper. For this investigation, initially, three concrete mixtures were made with 35%, 45%, and 55% of Class F fly as partial replacement of cement. After this, three percentages (0.25, 0.50, and 0.75% of san fibres (25 mm length were added in each of the fly ash concrete mixtures. San is a natural bast fibre, and is also known as Sunn Hemp (Botanical name: Crotalaria Juncea. It is grown in Indian Sub-Continent, Brazil, Eastern and Southern Africa, and also in some parts of U.S.A. Tests were performed for compressive strength, splitting tensile strength, flexural strength, and impact strength at the ages of 28, 91 and 365 days. Tests were also performed for fresh concrete properties. 28 days test results indicated that san fibres reduced the compressive strength of high-volume fly ash concrete by 2 to 13%, increased splitting tensile strength by 6 to 26%, flexural strength by 5 to 14%, and enhanced impact strength tremendously (by 100 to 300% depending upon the fly ash content and fibre percentage. Later age (91 and 365 days results showed continuous increase in strength properties of high-volume fly ash concrete. This was probably be possible due to the pozzolanic action of fly ash, leading to more densification of the concrete matrix, and development of more effective bond between fibres and fly ash concrete matrix.

  3. [Research on degradation of methylene blue by coal bottom ash-microwave irradiation method].

    Science.gov (United States)

    Wu, Shi-Wei; Li, Na; Li, Guang-Zhe; Li, Guo-De

    2010-05-01

    Coal bottom ash is rich in metals and transition metals, and with microwave irradiation these metals can effectively degradate organic matter. Methylene blue degradation by coal bottom ash-microwave irradiation mainly through hydroxyl radicals to degrade organic matter, and metals and rare metals in bottom ash can be used as a catalyst for deep oxidation of organic matter, can reduce processing costs, and reduce environmental pollution. In the present paper the main parameters including the amount of coal bottom ash, H2O2 dosage and time of microwave irradiation were investigated. The UV-visible spectra of methylene blue were determined. The results show that: under coal bottom ash and H2O2 microwave condition the degeneration rate of methylene blue was almost 100%. The dosage of coal ash can accelerate the reaction process, speeding up the degradation of methylene blue. The increase of H2O2 may provide more * OH and speed up the reaction process, but when up to a certain amount, the influence is weakened. The lengthening of microwave time may enhance the reaction temperature, and urge the methylene blue to degrade completely. For 0.125 g x L(-1) of methylene blue, by adding 1.0 g coal bottom ash, 5 mL H2O2 and under mesotherm microwave temperature for 4 min, the methylene blue can be all degradated.

  4. Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash.

    Science.gov (United States)

    Lin, Kae-Long; Chen, Bor-Yann

    2006-11-02

    This feasibility study using Escherichia coli DH5alpha as a reporter microorganism tended to disclose toxicity ranking of various ashes of municipal solid waste incinerator (MSWI) in comparison with typical toxic chemicals for reusability in further applications. Previous study indicated that growth inhibition to bacterial cells occurred at concentrations above 0.156, 0.625 and 0.0195g/L for bottom ash (BA), cyclone ash (CA), scrubber ash (SA), respectively, suggesting the toxicity ranking of SA>BA>CA. This follow-up study clearly stated that compared to cadmium(II) and chromium(II) SA seemed to be the most toxic species to DH5alpha. Large amounts of supplemented lime (CaO) were used for neutralization of acid gas in incinerator, SA was thus contained high-levels of sulfate, chloride and nitrate salts. Therefore, compared to other ashes a marked increase in toxicity was observed in SA. Regarding soluble cations and anions in ashes, nitrite ion seemed to stimulate instead of repress cell growth. In contrast, nitrate ion showed so-called "sufficient challenge" characteristics for growth enhancement and inhibition at low and high concentration, respectively. Low solubility of metallic ions (e.g., Pb(II) and Cu(II)) in ashes likely resulted in low mobility in the environment and low risk to humans. The findings showed that toxicity attenuation of SA will be inevitably required as SA is even more toxic than Cr(II) and Cd(II).

  5. Fly ash as a soil ameliorant for improving crop production--a review.

    Science.gov (United States)

    Jala, Sudha; Goyal, Dinesh

    2006-06-01

    Fly ash, a resultant of combustion of coal at high temperature, has been regarded as a problematic solid waste all over the world. Many possible beneficial applications of fly ash are being evaluated to minimize waste, decrease cost of disposal and provide value-added products. The conventional disposal methods for fly ash lead to degradation of arable land and contamination of the ground water. However fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of problem soils and is a source of readily available plant macro and micronutrients. In conjunction with organic manure and microbial inoculants, fly ash can enhance plant biomass production from degraded soils. Detailed studies on the nature and composition of fly ash, conducted during the latter half of the 20th century have helped in repeatedly confirming the various useful applications of this hitherto neglected industrial waste. The purpose of this paper is to review the available information on various attributes of fly ash and explore the possibility of exploiting them for agronomic advantage.

  6. Evanescent waves and deaf bands in sonic crystals

    Science.gov (United States)

    Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.

    2011-12-01

    The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  7. LAVA Simulations for the AIAA Sonic Boom Prediction Workshop

    Science.gov (United States)

    Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.

    2014-01-01

    Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.

  8. Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Iskenderian, Theodore; Sherrit, Stewart; Bao, Xiaoqi; Linderman, Randel

    2010-01-01

    Long tool bits are undergoing development that can be stowed compactly until used as rock- or ground-penetrating probes actuated by ultrasonic/sonic mechanisms. These bits are designed to be folded or rolled into compact form for transport to exploration sites, where they are to be connected to their ultrasonic/ sonic actuation mechanisms and unfolded or unrolled to their full lengths for penetrating ground or rock to relatively large depths. These bits can be designed to acquire rock or soil samples and/or to be equipped with sensors for measuring properties of rock or soil in situ. These bits can also be designed to be withdrawn from the ground, restowed, and transported for reuse at different exploration sites. Apparatuses based on the concept of a probe actuated by an ultrasonic/sonic mechanism have been described in numerous prior NASA Tech Briefs articles, the most recent and relevant being "Ultrasonic/ Sonic Impacting Penetrators" (NPO-41666) NASA Tech Briefs, Vol. 32, No. 4 (April 2008), page 58. All of those apparatuses are variations on the basic theme of the earliest ones, denoted ultrasonic/sonic drill corers (USDCs). To recapitulate: An apparatus of this type includes a lightweight, low-power, piezoelectrically driven actuator in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary twist drilling, ordinary hammering, or ordinary steady pushing. Examples of properties that could be measured by use of an instrumented tool bit include electrical conductivity, permittivity, magnetic

  9. Sonic Kayaks: Environmental monitoring and experimental music by citizens.

    Science.gov (United States)

    Griffiths, Amber G F; Kemp, Kirsty M; Matthews, Kaffe; Garrett, Joanne K; Griffiths, David J

    2017-11-01

    The Sonic Kayak is a musical instrument used to investigate nature and developed during open hacklab events. The kayaks are rigged with underwater environmental sensors, which allow paddlers to hear real-time water temperature sonifications and underwater sounds, generating live music from the marine world. Sensor data is also logged every second with location, time and date, which allows for fine-scale mapping of water temperatures and underwater noise that was previously unattainable using standard research equipment. The system can be used as a citizen science data collection device, research equipment for professional scientists, or a sound art installation in its own right.

  10. Pendaphonics: A Tangible Pendulum-based Sonic Interaction Experience

    DEFF Research Database (Denmark)

    Overholt, Daniel; Hansen, Anne-Marie S.; Burleson, Winslow

    2009-01-01

    Pendaphonics is a tangible physical-digital-sonic environment and interactive system that engages users in individual, collaborative, group, and distributed interactive experiences. The development of this system, as an element of urban revitalization and as a trans-disciplinary research endeavor......, and is now active within five different research university interaction laboratories. This paper presents the development process and findings from observations and evaluation of Pendaphonics’ users and the social interaction patterns among performers and members of the public. In particular, the repeated...

  11. Evanescent waves and deaf bands in sonic crystals

    Directory of Open Access Journals (Sweden)

    V. Romero-García

    2011-12-01

    Full Text Available The properties of sonic crystals (SC are theoretically investigated in this work by solving the inverse problem k(ω using the extended plane wave expansion (EPWE. The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  12. Empirical Musicology Review: Serialist Claims versus Sonic Reality

    Directory of Open Access Journals (Sweden)

    William Thomson

    2010-08-01

    Full Text Available This study examines the descriptive mores of Serialism, as found in writings of leading American academics of the past half-century. A serious gap is revealed, especially between claims made for structural conditions rooted in dodecaphonic procedures and the actual kinetics of music as heard. Curious (and debilitating ambiguities and dead ends are noted in terms used to define critical perceptual conditions in such music; some claims of significance for features of 12- tone rows in certain works are revealed as wholly irrelevant to music as sonic event. Most prominent of the writings discussed are those of Milton Babbitt, Allen Forte and David Lewin.

  13. Noise control by sonic crystal barriers made of recycled materials.

    Science.gov (United States)

    Sánchez-Dehesa, José; Garcia-Chocano, Victor M; Torrent, Daniel; Cervera, Francisco; Cabrera, Suitberto; Simon, Francisco

    2011-03-01

    A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled materials like absorbing component is reported here. The barriers consist of only three rows of perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance by these barriers are reported. Their attenuation properties result from a combination of sound absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is concluded that the porous cylinders can be used as building blocks whose physical parameters can be optimized in order to design efficient barriers adapted to different noisy environments. © 2011 Acoustical Society of America

  14. Homogenization theory for designing graded viscoelastic sonic crystals

    International Nuclear Information System (INIS)

    Qu Zhao-Liang; Ren Chun-Yu; Pei Yong-Mao; Fang Dai-Ning

    2015-01-01

    In this paper, we propose a homogenization theory for designing graded viscoelastic sonic crystals (VSCs) which consist of periodic arrays of elastic scatterers embedded in a viscoelastic host material. We extend an elastic homogenization theory to VSC by using the elastic-viscoelastic correspondence principle and propose an analytical effective loss factor of VSC. The results of VSC and the equivalent structure calculated by using the finite element method are in good agreement. According to the relation of the effective loss factor to the filling fraction, a graded VSC plate is easily and quickly designed. Then, the graded VSC may have potential applications in the vibration absorption and noise reduction fields. (paper)

  15. Volcanic ash supply to the surface ocean – remote sensing of biological responses and their wider biogeochemical significance

    Directory of Open Access Journals (Sweden)

    Thomas J. Browning

    2015-03-01

    Full Text Available Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i synthesize findings from these recent studies; (ii report the results of a new remote sensing study of ash fertilization; and (iii calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with 0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.

  16. Comparison of sequential and single extraction in order to estimate environmental impact of metals from fly ash

    Directory of Open Access Journals (Sweden)

    Tasić Aleksandra M.

    2016-01-01

    Full Text Available The aim of this paper was to simulate leaching of metals from fly ash in different environmental conditions using ultrasound and microwave-assisted extraction techniques. Single-agent extraction and sequential extraction procedures were used to determine the levels of different metals leaching. The concentration of metals (Al, Fe, Mn, Cd, Co, Cr, Ni, Pb, Cu, As, Be in fly ash extracts were measured by Inductively Coupled Plasma-Atomic Emission Spectrometry. Single-agent extractions of metals were conducted during sonication times of 10, 20, 30, 40 and 50 min. Single-agent extraction with deionized water was also undertaken by exposing samples to microwave radiation at the temperature of 50°C. The sequential extraction was undertaken according to the BCR procedure which was modified and applied to study the partitioning of metals in coal fly ash. The microwave-assisted sequential extraction was performed at different extraction temperatures: 50, 100 and 150°C. The partitioning of metals between the individual fractions was investigated and discussed. The efficiency of the extraction process for each step was examined. In addition, the results of the microwave-assisted sequential extraction are compared to the results obtained by standard ASTM method. The mobility of most elements contained in fly ash is markedly pH sensitive. [Projekat Ministarstva nauke Republike Srbije, br. 172030, br. 176006 i br. III43009

  17. Volcanic Ash on Slopes of Karymsky

    Science.gov (United States)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  18. Geopolymer Mortar with Fly Ash

    Directory of Open Access Journals (Sweden)

    Saloma

    2016-01-01

    Full Text Available The cement industry accounts for about 7% of all CO2 emissions caused by humans. Therefore, it is necessary to find another material in order to support sustainable material. An alternative way is replacing cement material with alternative material as fly ash. Fly ash as binder need to be added alkaline activator in the form of sodium silicate (Na2SiO3 or potassium silicate (K2SiO3 and sodium hydroxide (NaOH or potassium hydroxide (KOH. The purpose of this research is to analyze the effect of activator liquid concentration on geopolymer mortar properties and to know the value of compressive strength. Molarity variation of NaOH are 8, 12, 14, and 16 M with ratio of Na2SiO3/NaOH = 1.0. Ratio of sand/fly ash = 2.75 and ratio of activator/fly ash = 0.8. The cube-shaped specimen 50 × 50 × 50 mm is cured by steam curing with a temperature of 60°C for 48 hours. The experimental result of fresh mortar reported that the molarity of NaOH affect the slump flow and setting time, higher of NaOH produces the smaller value of slump and the faster time of setting. The experimental of density results reported that the increase of specific gravity when the molarity of NaOH increased. The experimental results of the compressive strength are showed that the maximum compressive strength of geopolymer mortar 14 M is 10.06 MPa and the lowest compressive strength produced by geopolymer mortar 8 M is 3.95 MPa. Testing the compressive strength of geopolymer mortar 16 M produces compressive strength lower than 14 M geopolymer mortar is 9.16 MPa.

  19. Asháninka Messianism

    DEFF Research Database (Denmark)

    Veber, Hanne

    2003-01-01

    as 'messianic' has significant interpretive implications. In their readeing og historical records and narratives, anthropologists have attributed a messianic proclivity to the Asháninka and other native populations in the Peruvian Amazon. Taking off from interpretation of the figure of Juan Santos Atahuallpa...... scholarly repetition than from grounded analysis; it has created a 'black hole' in place of ethnography that an approach that takes heed of practices, narrative and structural, may begin to fill....

  20. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  1. Continuous and pulse sonication effects on transesterification of used vegetable oil

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2015-01-01

    Highlights: • We studied continuous and pulse sonication effects on transesterification reaction. • Pulse sonication appears to have superior effects on transesterification reaction. • Effects of various process parameters on FAMEs yield were discussed in detail. • Effects of ultrasonic intensity and power density were compared for both conditions. • Continuous sonication may be beneficial for short time and plug-flow conditions. - Abstract: This study reports on the effects of direct application of continuous and pulse sonication on transesterification reaction of used vegetable oil. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with the effects of different ultrasonic intensities and power densities were reported. Two process parametric evaluation studies were conducted to compare the effects of continuous and pulse sonication. These included methanol to oil ratio, catalyst concentration and reaction time effects on the transesterification reaction. For continuous sonication, a catalyst amount of 0.5% (wt/wt), methanol to oil ratio of 9:1 was sufficient to complete the transesterification reaction in 1–2 min at a power output of 150 W with a biodiesel yield of 93.5%. For pulse sonication, a maximum biodiesel yield of 98% was achieved at 2.5 min of reaction time, 9:1 methanol to oil ratio, and 1.25% catalyst. Generally, higher biodiesel yields were observed for pulse sonication compared to continuous sonication under any given process condition. Power density and ultrasonic intensity tests revealed that biodiesel yields were more sensitive to continuous sonication due to intense mixing. A plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction under continuous sonication

  2. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haibo [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Graduate University of the Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Hermann, Sascha, E-mail: sascha.hermann@zfm.tu-chemnitz.de [Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Schulz, Stefan E.; Gessner, Thomas [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Li, Wen J., E-mail: wenjungli@gmail.com [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR (China)

    2012-10-26

    Graphical abstract: We study the dispersing behavior of SWCNTs based on the surfactant and the optimization of sonication parameters including the sonication power and running time. Highlights: Black-Right-Pointing-Pointer We study the optimization of sonication for the surfactant-based dispersion of SWCNTs. Black-Right-Pointing-Pointer The absorption spectrum of SWCNT solution strongly depend on the sonication conditions. Black-Right-Pointing-Pointer The sonication process has an important influence on the average length and diameters of SWCNTs in solution. Black-Right-Pointing-Pointer Centrifugation mainly contributes to the decrease of nonresonant absorption background. Black-Right-Pointing-Pointer Under the same sonication parameters, the large-diameter tip performs dispersion of SWCNTs better than the small-diameter tip. -- Abstract: Non-covalent functionalization based on surfactants has become one of the most common methods for dispersing of single-walled carbon nanotubes (SWCNTs). Previously, efforts have mainly been focused on experimenting with different surfactant systems, varying their concentrations and solvents. However sonication plays a very important role during the surfactant-based dispersion process for SWCNTs. The sonication treatment enables the surfactant molecules to adsorb onto the surface of SWCNTs by overcoming the interactions induced by the hydrophobic, electrostatic and van der Waals forces. This work describes a systematic study of the influence of the sonication power and time on the dispersion of SWCNTs. UV-vis-NIR absorption spectra is used to analyze and to evaluate the dispersion of SWCNTs in an aqueous solution of 1 w/v% sodium deoxycholate (DOC) showing that the resonant and nonresonant background absorption strongly depends on the sonication conditions. Furthermore, the diameter and length of SWCNTs under different sonication parameters are investigated using atomic force microscopy (AFM).

  3. Characterization of fly ash from bio and municipal waste

    DEFF Research Database (Denmark)

    Lima, Ana T.; Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2008-01-01

    Four different fly ashes are characterized in the present paper. The ashes differ in the original fuel type and were sampled at distinct plants. The investigation includes two different ashes from municipal solid waste incineration (with and without sorbents addition), a straw ash and an ash from...

  4. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    fly ashes was studied. Four fly ashes were investigated, originating from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. One of the straw ashes had been pre-washed and was obtained suspended in water, the other ashes were obtained naturally dry...

  5. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  6. Underwater measurements and modeling of a sonic boom.

    Science.gov (United States)

    Desharnais, Francine; Chapman, David M F

    2002-01-01

    During a sea trial on the Scotian Shelf, acoustic signals from a sonic boom were recorded on 11 hydrophones of a vertical array. The array spanned the lower 50 m of the water column above a sand bank at 76 m water depth. The source of the sonic boom was deduced to be a Concorde supersonic airliner traveling at about Mach 2. The waterborne waveform was observed to decay as an evanescent wave below the sea surface, as expected. The calm weather (sea state 1) resulted in low ambient noise and low self-noise at the hydrophones, and good signal-to-noise ratio on the upper hydrophones; however, the decreased signal amplitude is more difficult to detect towards the lower part of the water column. The period of the observed waveform is of the order 0.23 s, corresponding to a peak frequency of about 3 Hz. The shape of the measured waveform differs noticeably from the theoretical N-shape waveform predicted with Sawyers' theory [J. Acoust. Soc. Am. 44, 523-524 (1968)]. A simple shallow-ocean geoacoustic model suggests that this effect may be caused in part by seismo-acoustic interaction of the infrasonic waves with the elastic sediments that form the seabed.

  7. Unstructured Grids for Sonic Boom Analysis and Design

    Science.gov (United States)

    Campbell, Richard L.; Nayani, Sudheer N.

    2015-01-01

    An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.

  8. USM3D Simulations for Second Sonic Boom Workshop

    Science.gov (United States)

    Elmiligui, Alaa; Carter, Melissa B.; Nayani, Sudheer N.; Cliff, Susan; Pearl, Jason M.

    2017-01-01

    The NASA Tetrahedral Unstructured Software System with the USM3D flow solver was used to compute test cases for the Second AIAA Sonic Boom Prediction Workshop. The intent of this report is to document the USM3D results for SBPW2 test cases. The test cases included an axisymmetric equivalent area body, a JAXA wing body, a NASA low boom supersonic configuration modeled with flow through nacelles and engine boundary conditions. All simulations were conducted for a free stream Mach number of 1.6, zero degrees angle of attack, and a Reynolds number of 5.7 million per meter. Simulations were conducted on tetrahedral grids provided by the workshop committee, as well as a family of grids generated by an in-house approach for sonic boom analyses known as BoomGrid using current best practices. The near-field pressure signatures were extracted and propagated to the ground with the atmospheric propagation code, sBOOM. The USM3D near-field pressure signatures, corresponding sBOOM ground signatures, and loudness levels on the ground are compared with mean values from other workshop participants.

  9. Cellular and molecular effects of electromagnetic radiation and sonic waves

    Directory of Open Access Journals (Sweden)

    Patricia Froes Meyer

    2013-07-01

    Full Text Available Electromagnetic radiation (in the form of pulsed magnetic fields, radiofrequency and intense pulsed light and mechanical agents (such as sonic waves have been used in physical therapy. The aim of this study was to assess the effects of low-intensity magnetic fields, sonic and radiofrequency waves, and intense pulsed light on the survival of Escherichia coli cultures and on the electrophoretic mobility of plasmid DNA. Exponentially growing E. coli AB1157 cultures and plasmid DNA samples were exposed to these physical agents and 0.9% NaCl (negative control and SnCl2 (positive control solutions. Aliquots of the cultures were diluted and spread onto a solidified rich medium. The colony-forming units were counted after overnight incubation and the survival fraction was calculated. Agarose gel electrophoresis was performed to visualise and quantify the plasmid topological forms. The results suggest that these agents do not alter the survival of E. coli cells or plasmid DNA electrophoresis mobility. Moreover, they do not protect against the lesive action of SnCl2. These physical agents therefore had no cytotoxic or genotoxic effects under the conditions studied.

  10. Morphology and crystallinity of sisal nanocellulose after sonication

    Science.gov (United States)

    Sosiati, H.; Wijayanti, D. A.; Triyana, K.; Kamiel, B.

    2017-09-01

    Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 µm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication.

  11. The immersion freezing behavior of ash particles from wood and brown coal burning

    Directory of Open Access Journals (Sweden)

    S. Grawe

    2016-11-01

    Full Text Available It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite burning are up to 2 orders of magnitude more ice active in the immersion mode below −32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash–water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  12. X-Ray Diffraction Analysis of Bottom Ash Waste after Plasma Treatment

    Science.gov (United States)

    Volokitin, G.; Abzaev, Yu; Skripnikova, N.; Volokitin, O.; Shekhovtsov, V.

    2017-04-01

    The paper deals with the plasma-chemical synthesis of melts produced from the bottom ash waste for the production of new construction materials with enhanced performance characteristics. Phase composition of the plasma-treated bottom ash waste is detected by the X-ray diffraction analysis. The bottom ash waste is a mixture of SiO2 minerals. The structure and phase composition of this mixture are investigated after the plasma treatment. The obtained results are compared with the original state of the mixture. The identification and the qualitative content of ash waste as a multi-phase system are complicated by the overlapped reflections and a possible existence of the intermediate amorphous phase.

  13. Characterization and valorization of biomass ashes.

    Science.gov (United States)

    Trivedi, Nikhilesh S; Mandavgane, Sachin A; Mehetre, Sayaji; Kulkarni, Bhaskar D

    2016-10-01

    In India, farming is the primary source of income for many families. Following each harvest, a huge amount of biomass is generated. These are generally discarded as "agrowaste," but recent reports have indicated several beneficial uses for these biomasses and their ashes. However, before the utilization of biomass ashes (BMAs), their chemical and physical properties need to be investigated (characterized) so as to utilize their potential benefit to the fullest. In this paper, eight different biomass ashes (soybean plant ash, mustard plant ash, maize ash, groundnut plant ash, cotton plant ash, wheat plant ash, pigeon peas ash, and groundnut shell ash) were characterized, and their chemical properties are discussed. Surface chemical composition analysis, proximate analysis, and ultimate analysis were performed on all BMA samples, and properties such as porosity, particle density, bulk density, point of zero charge, BET surface area, water-absorption capacity, and bulk parameters such as surface pH and surface charges were determined. BMAs were characterized by SEM and FTIR. The surface areas of biomass ashes vary from 1.9 to 46 m 2 /g, and point of zero charge for all BMAs exceed 9.8, which confirmed the alkaline nature of these samples. Based on the chemical composition, BMAs are categorized into four types (S, C, K, and CK), and their utilization is proposed based on the type. BMAs find applications in agriculture and construction industries; glass, rubber, and zeolite manufacturing; and in adsorption (as a source of silica/zeolites). The paper also discusses the research challenges and opportunities in utilization of BMAs.

  14. Summary of recent NASA studies of human response to sonic booms.

    Science.gov (United States)

    Leatherwood, Jack D; Sullivan, Brenda M; Shepherd, Kevin P; McCurdy, David A; Brown, Sherilyn A

    2002-01-01

    NASA Langley Research Center has conducted three groups of studies on human response to sonic booms: laboratory, "inhome," and field. The laboratory studies were designed to: (1) quantify loudness and annoyance response to a wide range of shaped sonic boom signatures and (2) assess several noise descriptors as estimators of sonic boom subjective effects. The studies were conducted using a sonic boom simulator capable of generating and playing, with high fidelity, both user-prescribed and recorded boom waveforms to test subjects. Results showed that sonic boom waveform shaping provided substantial reductions in loudness and annoyance and that perceived level was the best estimator of subjective effects. Booms having asymmetrical waveforms were found to be less loud than symmetrical waveforms of equivalent perceived level. Subjective responses to simulated ground-reflected waveforms were fully accounted for by perceived level. The inhome study presented participants with simulated sonic booms played within their normal home environment. The results showed that the equal energy theory of annoyance applied to a variety of multiple sonic boom exposures. The field studies concluded that sonic boom annoyance is greater than that in a conventional aircraft noise environment with the same continuous equivalent noise exposure.

  15. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, Jean-Pierre; Courtney, Michael

    2009-01-01

    to a 3D sonic anemometer mounted at 78 m above the ground. The results show generally very good correlation between the lidar and the sonic times series, except that the variance of the velocity measured by the lidar is attenuated due to spatial filtering. The amount of attenuation can however...

  16. Dynamic Response and Simulations of Nanoparticle-Enhanced Composites

    National Research Council Canada - National Science Library

    Mantena, P. R; Al-Ostaz, Ahmed; Cheng, Alexander H

    2007-01-01

    ...) molecular dynamics simulations of nanoparticle-enhanced composites and fly- ash based foams that are being considered for the future generation naval structures or retrofitting of existing ones...

  17. Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Dawei Xu

    2018-04-01

    Full Text Available Fly ash includes different mineral phases. This paper reported on the preparation of a novel lauric acid (LA/fly ash (FA composite by vacuum impregnation as a form-stable phase change material (PCM for thermal energy, and especially investigated the effect of the hydrochloric acid-treated fly ash (FAh on the thermal energy storage performance of the composites. The morphology, crystalline structure, and porous textures of the samples were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray fluorescence (XRF, and differential scanning calorimetry (DSC. The results indicated that hydrochloric acid treatment was beneficial to the increase of loading capacity and crystallinity of LA in the LA/FAh composite, which caused an enhanced thermal storage capacity with latent heats for melting and freezing of LA/FAh (80.94 and 77.39 J/g, higher than those of LA/FA (34.09 and 32.97 J/g, respectively. Furthermore, the mechanism of enhanced thermal storage properties was investigated in detail.

  18. Method of reversibly immobilizing sulfate ash

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1984-01-01

    A sulphate ash at least 20% by weight of which consists of sulphates of transuranic elements is immobilised by heating to melting a mixture of the ash, a metal, and a fluxing agent; the metal used is Al, Ce, Sm, Eu or mixtures thereof and it is used in an amount sufficient to reduce the transuranic sulphates in the ash to metal and form an alloy with the metal so produced; sufficient of the fluxing agent is used to reduce the percentage of transuranic sulphates in the mix to form 1% to 10% of the mix and the molten mixture is cooled and the alloy containing the immobilised ash separated. (author)

  19. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  20. Hazards Associated With Recent Popocatepetl Ash Emissions

    Science.gov (United States)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  1. Solidification on fly ash, Yugoslav experiences

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D. [Mining Institute, Belgrade (Yugoslavia); Popov, S.; Salatic, D. [Faculty of Mining and Geology, Belgrade (Yugoslavia)

    1997-12-31

    A study was performed on ashes produced in the combustion process of coal from the Kosovo coal basin, in order to determine the potential and conditions of ash self-solidification. Investigations showed that the ash properties allows for the transformation into a solid mass through a controlled mixing with water. The optimal concentration of ash is 50 percent and the hydro-mixture is behaving as a Bingham plastic fluid. Solidification is obtained in a relatively short period (within 3 to 5 days) without additives. The resulting solidified mass is very consistent and stable

  2. Emerald Ash Borer: Invasion of the Urban Forest and the Threat to North America's Ash Resource

    Science.gov (United States)

    Therese M. Poland; Deborah G. McCullough

    2006-01-01

    The emerald ash borer (EAB), a phloem-feeding beetle native to Asia, was discovered killing ash trees in southeastern Michigan and Windsor, Ontario, in 2002. Like several other invasive forest pests, the EAB likely was introduced and became established in a highly urbanized setting, facilitated by international trade and abundant hosts. Up to 15 million ash trees in...

  3. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry

    Science.gov (United States)

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region...

  4. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Science.gov (United States)

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  5. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    Science.gov (United States)

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  6. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Science.gov (United States)

    Deborah McCullough; Therese Poland; David. Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  7. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Science.gov (United States)

    Deborah G. McCullough; Therese M. Poland; David Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fainnaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling(bark and phloem removed from a 15...

  8. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  9. Some Durability Aspects of Ambient Cured Bottom Ash Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Saravanakumar R.

    2017-09-01

    Full Text Available The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC.

  10. Effect of Legionella pneumophila sonicate on killing of Listeria monocytogenes by human polymorphonuclear neutrophils and monocytes

    DEFF Research Database (Denmark)

    Rechnitzer, C; Bangsborg, Jette Marie; Shand, G H

    1993-01-01

    polymorphonuclear neutrophils and monocytes. Preincubation of neutrophils with L. pneumophila sonicate did not affect phagocytosis of L. monocytogenes, whereas Listeria killing was significantly inhibited at sonicate concentrations of 1 and 2 mg/ml. The phenol phase of a phenol-water extraction, containing most...... of the lipopolysaccharide (LPS), had no inhibitory effect on the listericidal activity of neutrophils. Killing of Listeria by monocytes was inhibited in a similar manner. The inhibitory activity was mainly recovered in the sonicate fraction above 100 kDa, suggesting that components organized in larger molecular complexes...... are most likely to represent the inhibitory factors. The inhibitory activity of L. pneumophila sonic extract appears to be related to inhibition of killing mechanisms since uptake of Listeria was not affected by the sonicate. Our observations indicate that as Legionella infection progresses, bacterial...

  11. Optimization of soil stabilization with class C fly ash.

    Science.gov (United States)

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  12. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  13. Emerald ash borer biocontrol in ash saplings: The potential for early stage recovery of North American ash trees

    Science.gov (United States)

    Jian J. Duan; Leah S. Bauer; Roy G. Van Driesche

    2017-01-01

    In many parts of North America, ash (Fraxinus) stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees, saplings, basal sprouts, and seedlings. Without a soil seed bank for Fraxinus spp., tree recovery will require survival and maturation of these...

  14. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Science.gov (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  15. The oligolectic bee Osmia brevis sonicates Penstemon flowers for pollen: A newly documented behavior for the Megachilidae

    Science.gov (United States)

    James H. Cane

    2014-01-01

    Flowers with poricidally dehiscent anthers are typically nectarless but are avidly visited and often solely pollinated by bees that sonicate the flowers to harvest pollen. Sonication results from shivering the thoracic flight muscles. Honey bees (Apis) and the 4,000+ species of Megachilidae are enigmatic in their seeming inability to sonicate flowers. The oligolectic...

  16. Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2013-01-01

    Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...

  17. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  18. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  19. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  20. Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor.

    Science.gov (United States)

    Falconieri, Alfredo; Cooke, Michael C; Filizzola, Carolina; Marchese, Francesco; Pergola, Nicola; Tramutoli, Valerio

    2018-01-27

    The Eyjafjallajökull (Iceland) volcanic eruption of April-May 2010 caused unprecedented air-traffic disruption in Northern Europe, revealing some important weaknesses of current operational ash-monitoring and forecasting systems and encouraging the improvement of methods and procedures for supporting the activities of Volcanic Ash Advisory Centers (VAACs) better. In this work, we compare two established satellite-based algorithms for ash detection, namely RST ASH and the operational London VAAC method, both exploiting sensor data of the spinning enhanced visible and infrared imager (SEVIRI). We analyze similarities and differences in the identification of ash clouds during the different phases of the Eyjafjallajökull eruption. The work reveals, in some cases, a certain complementary behavior of the two techniques, whose combination might improve the identification of ash-affected areas in specific conditions. This is indicated by the quantitative comparison of the merged SEVIRI ash product, achieved integrating outputs of the RST ASH and London VAAC methods, with independent atmospheric infrared sounder (AIRS) DDA (dust-detection algorithm) observations.

  1. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of leachate solutions from fly ash bottom ash on groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Kopsick, D.A.; Angino, E.E.

    1981-12-01

    Leaching experiments on fly ash and bottom ash for Ca, Mg, Na, K, Fe, Mn, Zn, Cu and Pb indicated a potential for contamination of ground- and surface-water supplies. Due to the variability in chemical composition of coals, it is difficult to make generalizations concerning the chemistry of leachate solutions from the ashes of the coals. A decrease in concentration with time of leaching was observed for all elements, except for Ca which was released at a constant rate. Fly ash from a Missouri coal generated a leachate enriched in Pb, Zn, Cu, Fe, Mn and Cd, reflective of the high Pb-Zn mineralization present in the surrounding area. With a pH of 3.0 this ash has the greatest potential for groundwater contamination. Conversely, leachates from Wyoming fly and bottom ashes exhibited low trace-metal concentrations. These same solutions were high in K, Na, Ca and Mg, and also showed strong pozzolanic behaviour, which will reduce the leachability of these ashes. In most instances, fly and bottom ash from Kentucky and Illinois coals yielded leachates intermediate in elemental composition to leachates of Missouri and Wyoming coal ashes. Leaching experiments indicate that it is not valid to predict the chemistry of leachates from fly and bottom ash based solely on the chemical composition of the ash. (16 refs.)

  3. Feasibility study of ultrasonic/sonic flowmeters for coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Raptis, A.C.; Doolittle, R.; Popper, G.F.; Fitzgerald, J.W.; Carey, W.M.

    1976-10-01

    An analysis of sonic techniques for flow measurement in coal slurries shows that operation of a transmission type flowmeter is feasible for a range of one meter at a frequency range of 32.5 kHz to 400 kHz and a range of ten centimeters at a frequency range of 325 kHz to 1 MHz using the sonar equation as the measure of performance. Slurries with moderate concentrations of 10 to 30 percent solids by volume and particle size of 100 microns are assumed. Based on this assumption, the attenuation constant, the transmission loss, the directional gain, the source level and the processing gain for the transmission type flowmeter are determined.

  4. Sonic Hedgehog Signaling and Development of the Dentition

    Directory of Open Access Journals (Sweden)

    Maisa Seppala

    2017-05-01

    Full Text Available Sonic hedgehog (Shh is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.

  5. Sub-sonic thermal explosions investigated by radiography

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory

    2010-01-01

    This paper reviews the past 5 years of experiments utilizing radiographic techniques to study defiagration in thermal explosions in HMX based formulations. Details of triggering and timing synchronization are given. Radiographic images collected using both protons and x-rays are presented. Comparisons of experiments with varying size, case confinement, binder, and synchronization are presented. Techniques for quantifying the data in the images are presented and a mechanism for post-ignition burn propagation in a thermal explosion is discussed. From these experiments, we have observed a mechanism for sub-sonic defiagration with both gas phase convective and solid phase conductive burning. The convective front velocity is directly measured from the radiographic images and consumes only a small fraction of the HE. It lights the HE as it passes beginning the slower solid state conductive burn process. This mechanism is used to create a model to simulate the radiographic results and a comparison will be shown.

  6. Boundary layer height estimation by sodar and sonic anemometer measurements

    International Nuclear Information System (INIS)

    Contini, D; Cava, D; Martano, P; Donateo, A; Grasso, F M

    2008-01-01

    In this paper an analysis of different methods for the calculation of the boundary layer height (BLH) using sodar and ultrasonic anemometer measurements is presented. All the methods used are based on single point surface measurements. In particular the automatic spectral routine developed for Remtech sodar is compared with the results obtained with the parameterization of the vertical velocity variance, with the calculation of a prognostic model and with a parameterization based on horizontal velocity spectra. Results indicate that in unstable conditions the different methods provide similar pattern, with BLH relatively low, even if the parameterization of the vertical velocity variance is affected by a large scatter that limits its efficiency in evaluating the BLH. In stable nocturnal conditions the performances of the Remtech routine are lower with respect to the ones in unstable conditions. The spectral method, applied to sodar or sonic anemometer data, seems to be the most promising in order to develop an efficient routine for BLH determination

  7. Music, Mechanism, and the "Sonic Turn" in Physical Diagnosis.

    Science.gov (United States)

    Pesic, Peter

    2016-04-01

    The sonic diagnostic techniques of percussion and mediate auscultation advocated by Leopold von Auenbrugger and R. T. H. Laennec developed within larger musical contexts of practice, notation, and epistemology. Earlier, François-Nicolas Marquet proposed a musical notation of pulse that connected felt pulsation with heard music. Though contemporary vitalists rejected Marquet's work, mechanists such as Albrecht von Haller included it into the larger discourse about the physiological manifestations of bodily fluids and fibers. Educated in that mechanistic physiology, Auenbrugger used musical vocabulary to present his work on thoracic percussion; Laennec's musical experience shaped his exploration of the new timbres involved in mediate auscultation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A new model for the sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-12-01

    A number of models for the sonic borehole logging tool has earlier been developed. These models which are mainly based on experimental data, are discussed and compared. On this background the new model is developed. It is based on the assumptions that the pores of low porosity formations and the grains of high porosity media may be approximated by cylinders, and that the dimension of these cylinders are given by distribution functions. From these assumptions the transit time Δt p of low porosity formations and Δt g of high porosity media are calculated by use of the Monte Carlo method. Combining the Δt p and Δt g values obtained by use of selected weighting functions seems to permit the determination of the transit time Δt for the full porosity range (0 ≤ φ ≤ 100%). (author)

  9. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  10. Acoustic resonances in two-dimensional radial sonic crystal shells

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)

    2010-07-15

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  11. Acoustic metamaterials for new two-dimensional sonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)

    2007-09-15

    It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.

  12. Acoustic resonances in two-dimensional radial sonic crystal shells

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2010-07-01

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  13. Flight potential of the emerald ash borer

    Science.gov (United States)

    Leah S. Bauer; Deborah L. Miller; Robin A.J. Taylor; Robert A. Haack

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) in North America. Native to several Asian countries, EAB was discovered in six southeastern Michigan counties and southwestern Ontario in 2002. EAB presumably emerged from infested solid wood...

  14. Biology of emerald ash borer parasitoids

    Science.gov (United States)

    Leah S. Bauer; Jian J. Duan; Jonathan P. Lelito; Houping Liu; Juli R. Gould

    2015-01-01

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle introduced from China (Bray et al., 2011), was identified as the cause of ash (Fraxinus spp.) mortality in southeast Michigan and nearby Ontario in 2002 (Haack et al., 2002; Federal Register, 2003; Cappaert et al., 2005)....

  15. Emerald ash borer biology and invasion history

    Science.gov (United States)

    Robert A. Haack; Yuri Baranchikov; Leah S. Bauer; Therese M. Poland

    2015-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to eastern Asia and is primarily a pest of ash (Fraxinus) trees (Fig. 1). Established populations of EAB were first detected in the United States and Canada in 2002 (Haack et al., 2002), and based on a dendrochronology study by Siegert...

  16. Ash Leachate Can Reduce Surface Erosion

    Science.gov (United States)

    George J. Holcomb; Philip B. Durgin

    1979-01-01

    In laboratory analyses of the Larabee soil from north-western California, ash leachate flocculated the clay fractions. As a result, the soil quickly settled out of suspension. To test the hypothesis that field plots on disturbed areas treated with ash leachate would be more resistant to erosion than nontreated plots, a study was done in July and August 1978, on two...

  17. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  18. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  19. Emerald ash borer survival in firewood

    Science.gov (United States)

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to Asia and was first discovered in Michigan and Ontario in 2002. As of October 2004, EAB was only found to breed in ash (Fraxinus) trees in North America. EAB is spreading naturally through adult flight as well as artificially through...

  20. Bottom ash test section evaluation Erwinville, LA.

    Science.gov (United States)

    2009-02-01

    Bottom ash is a by-product of the energy industry and the residual of burning coal in a kiln : firing process. Bottom ash is black and the consistency of coarse sand with gravel clinker : traces. The product is used in other states as embankment mate...

  1. AsH3 ultraviolet photochemistry.

    Science.gov (United States)

    Smith-Freeman, L A; Schroeder, W P; Wittig, C

    2009-03-12

    High-n Rydberg time-of-flight spectroscopy has been used to study the 193.3 nm photolysis of AsH(3). The center-of-mass translational energy distribution for the 1-photon process, AsH(3) + h nu --> AsH(2) + H, P(E(c.m.)), indicates that AsH(2) internal excitation accounts for approximately 64% of the available energy [i.e., h nu - D(0)(H(2)As - H)]. Secondary AsH(2) photodissociation also takes place. Analyses of superimposed structure atop the broad P(E(c.m.)) distribution suggest that AsH(2) is formed with significant a-axis rotation as well as bending excitation. Comparison of the results obtained with AsH(3) versus those of the lighter group-V hydrides (NH(3), PH(3)) lends support to the proposed mechanisms. Of the group-V hydrides, AsH(3) lies intermediate between the nonrelativistic and relativistic regimes, requiring high-level electronic structure theory.

  2. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...

  3. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    Ash deposition on boiler surfaces is a major problem encountered during biomass combustion. Ash deposition adversely influences the boiler efficiency, may corrode heat transfer surfaces, and may even completely block flue gas channels in severe cases, causing expensive unscheduled boiler shutdown...

  4. Coal Bottom Ash for Portland Cement Production

    Directory of Open Access Journals (Sweden)

    Cristina Argiz

    2017-01-01

    Full Text Available Because of industrialization growth, the amount of coal power plant wastes has increased very rapidly. Particularly, the disposal of coal bottom ash (CBA is becoming an increasing concern for many countries because of the increasing volume generated, the costs of operating landfill sites, and its potential hazardous effects. Therefore, new applications of coal bottom ash (CBA have become an interesting alternative to disposal. For instance, it could be used as a Portland cement constituent leading to more sustainable cement production by lowering energy consumption and raw material extracted from quarries. Coal fly and bottom ashes are formed together in the same boiler; however, the size and shape of these ashes are very different, and hence their effect on the chemical composition as well as on the mineralogical phases must be studied. Coal bottom ash was ground. Later, both ashes were compared from a physical, mechanical, and chemical point of view to evaluate the potential use of coal bottom ash as a new Portland cement constituent. Both ashes, produced by the same electrical power plant, generally present similar chemical composition and compressive strength and contribute to the refill of mortar capillary pores with the reaction products leading to a redistribution of the pore size.

  5. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Unknown

    disposal or to minimize the environmental impact. One of the approaches is the conversion of fly ash to zeolites, which have wide applications in ion exchange, as mole- cular sieves, catalysts, and adsorbents (Breck 1974). The present study is concerned with the synthesis of zeolite from coal fly ash and its characterization ...

  6. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice...

  7. Evaluation of atomic absorption Spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    Three commonly used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and AAS-Non Ashing) and titrimetry (potassium permanganate titration) have been evaluated in this study to determine the calcium content in six food samples whose calcium levels ranged from 0 to more than 250mg/100g ...

  8. Mazama ash in the northeastern pacific.

    Science.gov (United States)

    Nelson, C H; Kulm, L D; Carlson, P R; Duncan, J R

    1968-07-05

    Volcanic glass in marine sediments off Oregon and Washington correlates with continental deposits of Mount Mazama ash by stratigraphic position, refractive index, and radiocarbon dating. Ash deposited in the abyssal regions by turbidity currents is used for tracing of the dispersal routes of postglacial sediments and for evaluation of marine sedimentary processes.

  9. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  10. Local regularity analysis of strata heterogeneities from sonic logs

    Directory of Open Access Journals (Sweden)

    S. Gaci

    2010-09-01

    Full Text Available Borehole logs provide geological information about the rocks crossed by the wells. Several properties of rocks can be interpreted in terms of lithology, type and quantity of the fluid filling the pores and fractures.

    Here, the logs are assumed to be nonhomogeneous Brownian motions (nhBms which are generalized fractional Brownian motions (fBms indexed by depth-dependent Hurst parameters H(z. Three techniques, the local wavelet approach (LWA, the average-local wavelet approach (ALWA, and Peltier Algorithm (PA, are suggested to estimate the Hurst functions (or the regularity profiles from the logs.

    First, two synthetic sonic logs with different parameters, shaped by the successive random additions (SRA algorithm, are used to demonstrate the potential of the proposed methods. The obtained Hurst functions are close to the theoretical Hurst functions. Besides, the transitions between the modeled layers are marked by Hurst values discontinuities. It is also shown that PA leads to the best Hurst value estimations.

    Second, we investigate the multifractional property of sonic logs data recorded at two scientific deep boreholes: the pilot hole VB and the ultra deep main hole HB, drilled for the German Continental Deep Drilling Program (KTB. All the regularity profiles independently obtained for the logs provide a clear correlation with lithology, and from each regularity profile, we derive a similar segmentation in terms of lithological units. The lithological discontinuities (strata' bounds and faults contacts are located at the local extrema of the Hurst functions. Moreover, the regularity profiles are compared with the KTB estimated porosity logs, showing a significant relation between the local extrema of the Hurst functions and the fluid-filled fractures. The Hurst function may then constitute a tool to characterize underground heterogeneities.

  11. Ecoacoustic Music for Geoscience: Sonic Physiographies and Sound Casting

    Science.gov (United States)

    Burtner, M.

    2017-12-01

    The author describes specific ecoacoustic applications in his original compositions, Sonic Physiography of a Time-Stretched Glacier (2015), Catalog of Roughness (2017), Sound Cast of Matanuska Glacier (2016) and Ecoacoustic Concerto (Eagle Rock) (2014). Ecoacoustic music uses technology to map systems from nature into music through techniques such as sonification, material amplification, and field recording. The author aspires for this music to be descriptive of the data (as one would expect from a visualization) and also to function as engaging and expressive music/sound art on its own. In this way, ecoacoustic music might provide a fitting accompaniment to a scientific presentation (such as music for a science video) while also offering an exemplary concert hall presentation for a dedicated listening public. The music can at once support the communication of scientific research, and help science make inroads into culture. The author discusses how music created using the data, sounds and methods derived from earth science can recast this research into a sonic art modality. Such music can amplify the communication and dissemination of scientific knowledge by broadening the diversity of methods and formats we use to bring excellent scientific research to the public. Music can also open the public's imagination to science, inspiring curiosity and emotional resonance. Hearing geoscience as music may help a non-scientist access scientific knowledge in new ways, and it can greatly expand the types of venues in which this work can appear. Anywhere music is played - concert halls, festivals, galleries, radio, etc - become a venue for scientific discovery.

  12. Local regularity analysis of strata heterogeneities from sonic logs

    Science.gov (United States)

    Gaci, S.; Zaourar, N.; Hamoudi, M.; Holschneider, M.

    2010-09-01

    Borehole logs provide geological information about the rocks crossed by the wells. Several properties of rocks can be interpreted in terms of lithology, type and quantity of the fluid filling the pores and fractures. Here, the logs are assumed to be nonhomogeneous Brownian motions (nhBms) which are generalized fractional Brownian motions (fBms) indexed by depth-dependent Hurst parameters H(z). Three techniques, the local wavelet approach (LWA), the average-local wavelet approach (ALWA), and Peltier Algorithm (PA), are suggested to estimate the Hurst functions (or the regularity profiles) from the logs. First, two synthetic sonic logs with different parameters, shaped by the successive random additions (SRA) algorithm, are used to demonstrate the potential of the proposed methods. The obtained Hurst functions are close to the theoretical Hurst functions. Besides, the transitions between the modeled layers are marked by Hurst values discontinuities. It is also shown that PA leads to the best Hurst value estimations. Second, we investigate the multifractional property of sonic logs data recorded at two scientific deep boreholes: the pilot hole VB and the ultra deep main hole HB, drilled for the German Continental Deep Drilling Program (KTB). All the regularity profiles independently obtained for the logs provide a clear correlation with lithology, and from each regularity profile, we derive a similar segmentation in terms of lithological units. The lithological discontinuities (strata' bounds and faults contacts) are located at the local extrema of the Hurst functions. Moreover, the regularity profiles are compared with the KTB estimated porosity logs, showing a significant relation between the local extrema of the Hurst functions and the fluid-filled fractures. The Hurst function may then constitute a tool to characterize underground heterogeneities.

  13. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  14. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  15. Fly Ash Amendments Catalyze Soil Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Kim, Jungbae; Russell, Colleen K.; Palumbo, A. V.; Daniels, William L.

    2003-09-15

    We tested the effects of four alkaline fly ashes {Class C (sub-bituminous), Class F (bituminous), Class F [bituminous with flue-gas desulfurization (FGD) products], and Class F (lignitic)} on a reaction that simulates the enzyme-mediated formation of humic materials in soils. The presence of FGD products completely halted the reaction, and the bituminous ash showed no benefit over an ash-free control. The sub-bituminous and lignitic fly ashes, however, increased the amount of polymer formed by several-fold. The strong synergetic effect of these ashes when enzyme is present apparently arises from the combined effects of metal oxide co-oxidation (Fe and Mn oxides), alkaline pH, and physical stabilization of the enzyme (porous silica cenospheres).

  16. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.

    Science.gov (United States)

    Kuboňová, L; Langová, Š; Nowak, B; Winter, F

    2013-11-01

    Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050°C and in a muffle oven at temperatures from 500 to 1200°C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.

    Science.gov (United States)

    Mandal, A K; Sinha, O P

    2017-08-01

    The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.

  18. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  19. Display Provides Pilots with Real-Time Sonic-Boom Information

    Science.gov (United States)

    Haering, Ed; Plotkin, Ken

    2013-01-01

    Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.

  20. Laboratory Headphone Studies of Human Response to Low-Amplitude Sonic Booms and Rattle Heard Indoors

    Science.gov (United States)

    Loubeau, Alexandra; Sullivan, Brenda M.; Klos, Jacob; Rathsam, Jonathan; Gavin, Joseph R.

    2013-01-01

    Human response to sonic booms heard indoors is affected by the generation of contact-induced rattle noise. The annoyance caused by sonic boom-induced rattle noise was studied in a series of psychoacoustics tests. Stimuli were divided into three categories and presented in three different studies: isolated rattles at the same calculated Perceived Level (PL), sonic booms combined with rattles with the mixed sound at a single PL, and sonic booms combined with rattles with the mixed sound at three different PL. Subjects listened to sounds over headphones and were asked to report their annoyance. Annoyance to different rattles was shown to vary significantly according to rattle object size. In addition, the combination of low-amplitude sonic booms and rattles can be more annoying than the sonic boom alone. Correlations and regression analyses for the combined sonic boom and rattle sounds identified the Moore and Glasberg Stationary Loudness (MGSL) metric as a primary predictor of annoyance for the tested sounds. Multiple linear regression models were developed to describe annoyance to the tested sounds, and simplifications for applicability to a wider range of sounds are presented.

  1. Subjective response of people to simulated sonic booms in their homes.

    Science.gov (United States)

    McCurdy, David A; Brown, Sherilyn A; Hilliard, R David

    2004-09-01

    In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term "10 * log(number of occurrences)" to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics.

  2. Effect of Sonic Vibrations on Bond Strength of Fiberglass Posts Bonded to Root Dentin.

    Science.gov (United States)

    Mushashe, Amanda Mahammad; Amaral, Rodrigo Otavio Jatahy Ferreira do; Rezende, Carlos Eduardo Edwards; Filho, Flares Baratto; Cunha, Leonardo Fernandes da; Gonzaga, Carla Castiglia

    2017-01-01

    Sonic vibrations may improve the bond strength and durability of fiberglass posts by improving adhesive penetration into dentin as well as the cement flow. The objective of this study was to evaluate the effect of sonic vibrations on the bond strength between fiberglass posts and root dentin using the pull-out test. Bovine roots were endodontically treated and divided randomly into four groups (n=12): Group C - conventional cementation (control); Group SA - sonic vibration (Smart Sonic Device, FGM) of the adhesive system and conventional post accommodation; SP group - conventional adhesive application and sonic vibration of the post during accommodation; and SASP - sonic vibration of the system adhesive and the post during accommodation. The posts were cleaned, treated with a silane and adhesive system (Ambar, FGM), and cemented with a dual-cured resin cement (Allcem Core, FGM). After 24 h, the specimens were subjected to mechanical tests and failure analyses. Representative specimens were analyzed by a scanning electron microscope to observe the cementation line. The results were analyzed using ANOVA and Tukey's test (a=5%). The bond strengths were as follows: SASP (90.9±27.1 N), C (121.4±60.6 N), SA (127.6±31.8 N) and SP (156.4±41.3 N). The use of sonic vibrations during the application of adhesive or post cementation separately did not affect the bond strength but had a negative effect when used for both procedures.

  3. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    Directory of Open Access Journals (Sweden)

    Sam Stade

    2014-07-01

    Full Text Available An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol’skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21–39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol’skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  4. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  5. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Science.gov (United States)

    Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.

    2018-03-01

    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  6. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Robert C.G.

    2018-01-01

    Full Text Available Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA and bottom ash (BA mixtures with difference component percentage treated with sodium lauryl sulphate (SLS and polyvinyl alcohol (PVA at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  7. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    Science.gov (United States)

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    Science.gov (United States)

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (PCR, especially of low-virulent organisms.

  9. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.

    Science.gov (United States)

    Rosenkranz, Theresa; Kidd, Petra; Puschenreiter, Markus

    2018-03-01

    Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  11. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  12. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  13. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  14. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  15. Utilization of mixed pond ash in integrated steel plant for ...

    Indian Academy of Sciences (India)

    Unknown

    response. Keywords. Fly ash; integrated steel plant; fly ash bricks; ash disposal; building materials. 1. Introduction. The problem of collection and disposal of the process residues such as the fly ash (FA) and sludges from the various industrial operations has become one of the most potent environmental problems facing the ...

  16. Hypocotyl derived in vitro regeneration of pumpkin ash (Fraxinus profunda)

    Science.gov (United States)

    Micah E. Stevens; Paula M. Pijut

    2012-01-01

    Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the...

  17. Electrodialytic removal of Cd from biomass combustion fly ash suspensions

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor M.; Ottosen, Lisbeth M.; Damoe, Anne J.

    2013-01-01

    was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd...

  18. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  19. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2 g....../kg for zinc, 2,4 g/kg for lead, 1,7 g/kg for iron, and 7,9 g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91 mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash....

  20. Fusibility and sintering characteristics of ash

    International Nuclear Information System (INIS)

    Ots, A. A.

    2012-01-01

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R B/A of their alkaline and acid components between 0.03 and 4. Acritical value of R B/A is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  1. Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

    Science.gov (United States)

    Aftosmis, Michael J.; Nemec, Marian

    2014-01-01

    Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.

  2. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway.

    Science.gov (United States)

    Song, Libin; Chen, Xiangyuan; Gao, Song; Zhang, Chenyue; Qu, Chao; Wang, Peng; Liu, Luming

    2016-10-12

    Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.

  3. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    International Nuclear Information System (INIS)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Highlights: ► Shh activation in neonatal cochleae enhances sensory cell proliferation. ► Proliferating supporting cells can transdifferentiate into hair cells. ► Shh promotes proliferation by transiently modulating pRb activity. ► Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  4. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  5. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    Science.gov (United States)

    Brun, S N; Markant, S L; Esparza, L A; Garcia, G; Terry, D; Huang, J-M; Pavlyukov, M S; Li, X-N; Grant, G A; Crawford, J R; Levy, M L; Conway, E M; Smith, L H; Nakano, I; Berezov, A; Greene, M I; Wang, Q; Wechsler-Reya, R J

    2015-07-01

    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.

  6. Sonication of seeds increase germination performance of sesame under low temperature stress

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-11-01

    Full Text Available A laboratory experiment was conducted to determine the effect of ultrasound (US exposure time on germination behavior of sesame seeds. All tests were carried out at 20 kHz in a water bath ultrasonic device varying two factors, treatment duration (10, 20 and 30 min and germination temperature (15, 20 and 25 ºC. Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. US treatments enhanced seeds water uptake. At mild exposure time it improved sesame seed germination performance and seedling growth at suboptimal temperatures as indicated by higher germination percentage and germination rate. US applying for 20 min had relatively high superoxide dismutase activity; however, had not significant differences with control and US duration for 10 min. The catalase activity was strongly increased by applying the US for a 10 and 20 min. Among the treatments, application of US vibration for 10 and 20 min reduced both of malondialdehyde and H2O2 contents, however high US duration (30 min increased both of the traits. In general, ultrasonic priming technique can be useful for early planting the sesame seeds, and lead to higher yields.

  7. An Experimental Study of Sonic Boom Penetration Under a Wavy Air-Water Interface

    National Research Council Canada - National Science Library

    Fincham, Adam; Maxworthy, Tony

    2002-01-01

    A laboratory experiment was designed and performed to ascertain the difference in underwater response to sonic boom laboratory between flat and wavy surface models and their depth-dependent rule overpressure attenuation...

  8. Sonic Boom Vibro-Acoustic Simulations using Multiple Point Sources Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AVEC proposes an innovative concept for the evaluation of human response studies to sonic booms inside realistic structures. The approach proposed is to simulate the...

  9. AFSC/RACE/SAP/Cummiskey: Red king crab sonic tagging and dive database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is data from a long-term monitoring project which utilized sonic tags to follow aggregations of red king crab in Womens Bay near Kodiak Alaska. The database...

  10. A prospective Comparison of Porta-Sonic and Fisoneb Ultrasonic Nebulizers for Administering Aerosol Pentamidine

    Directory of Open Access Journals (Sweden)

    Andrew McIvor

    1994-01-01

    Full Text Available Objective: To report patient acceptability and overall therapeutic effectiveness of two different ultrasonic nebulizers, Fisoneb and Porta-sonic, for the administration of aerosol pentamidine for Pneumocysitis carinii prophylaxis in human immunodeficiency virus (hiv-infected individuals.

  11. Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT

    Science.gov (United States)

    Fouladi, Kamran

    1999-01-01

    NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.

  12. Improve the Recovery of Fermentable Sugar from Rice Straw by Sonication and Its Mathematical Modeling

    Science.gov (United States)

    Bhattacharyya, Saurav; Dutta, Somenath; Datta, Sidhartha; Bhattacharjee, Chiranjib

    2012-08-01

    Rice straw is waste renewable agricultural biomass, which contains sufficient amount of fermentable sugars like glucose, galactose fructose, xylose etc. These sugars can be treated with fermentation pathway to produce ethanol. Hydrolysis of pretreated rice straw in dilute sulfuric acid was investigated at different acid concentrations (0.25-0.75 % w/v), and sonication was carried out to improve the extent of sugar extraction. The current work examines the effect of sonication on extraction of total reducing sugar (TRS) and an empirical mathematical model has been established to predict it. Effects of various operating variables of sonication, including amplitude (60-100 %), cycle (0.6-1.0), treatment time (0-15 min) have been analyzed for each acid concentration. Observation shows that on optimization of the sonication conditions (100 % amplitude, 0.8 cycle and 10 min) around 90 % improvement of TRS extraction occurs at 0.5 % (w/v) acid concentration.

  13. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    Science.gov (United States)

    2007-11-01

    AD_________________ Award Number: W81XWH-06-1-0060 TITLE: Identification of Sonic Hedgehog -Induced...Annual Summary 3. DATES COVERED 1 Nov 2006 – 31 Oct 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Identification of Sonic Hedgehog -Induced... cancer in men after skin cancer . The advent of PSA testing has led to a surge in the number of prostate cancer cases detected, but most men diagnosed

  14. The influence of using sonicator type to produce alcohol in the glycerol degradation process

    Science.gov (United States)

    Kalla, Ruslan; Sumarno, S.; Mahfud., M.

    2017-05-01

    The last few years the energy crisis happens everywhere, not least in Indonesia. One reason is the need for fossil energy is increasing with the increasing population, in addition to the depletion of oil reserves on the Earth Indonesia. Therefore it takes a plant-based alternative energy, one of which is biodiesel. The transesterification process will produce primary products such as methyl ester and byproducts / waste in the form of about 10-15 % glycerol so that glycerol is quite abundant. This research aims to study the effect of the sonicator type (vibrating horn and cleaning bath) as well as the effect of γ-Al2O3 catalyst on the degradation of glycerol. The production process was conducted in a batch reactor equipped with an ultrasonic wave generator. Operating conditions of this study was the atmospheric pressure with mass ratio of glycerol water 1:10. The research variables were sonication temperature of 30 and 40 ° C, sonication time of 10, 30, 50, 70 and 90 minutes with and without the catalyst. Products of degradation were analyzed by Gas Chromatography (GC). The results showed that, the products of degradation product (methanol and allyl alcohol) using a sonicator vibrating horn type were greater compared to using cleaning bath type sonicator. The glycerol conversion was 63.21 % at sonication time of 90 minutes, a temperature of 40 °C using γ-Al2O3 catalyst. While the greatest product yield was 18.17 % methanol at sonication time of 90 minutes, a temperature of 40 °C with the use of vibrating horn sonicator type, with the addition of γ-Al2O3 catalyst.

  15. Effect of Sonication on the Elution of Antibiotics from Polymethyl Methacrylate (PMMA).

    Science.gov (United States)

    Kummer, Anne; Tafin, Ulrika Furustrand; Borens, Olivier

    2017-01-01

    Background: In the setting of prosthetic joint infections treated with a two-stage procedure, spacers can be sonicated after removal. We hypothesize that the sonication process may cause an increased elution of antibiotics from the spacer, leading to elevated concentrations of antibiotics in the sonication fluid inhibiting bacterial growth. We aimed to evaluate in vitro the influence of sonication on the elution of antibiotics from polymethyl methacrylate (PMMA) over time and to determine whether these concentrations are above the minimum inhibitory concentrations (MIC) for microorganisms relevant in prosthetic joint infections. Methods: PMMA blocks impregnated with vancomycin, fosfomycin, gentamicin or daptomycin were incubated in phosphate-buffered saline (PBS) at 37°C for up to 6 weeks. PBS was changed once a week. Concentrations were determined from samples of each antibiotic every week, and after 5 minutes of sonication at 2, 4 and 6 weeks. Results: With sonication there was a trend toward an increase of the elution of antibiotics. This increase was significant for vancomycin at 2 and 4 weeks (p=0.008 and 0.002 respectively) and for fosfomycin at 2 weeks (p=0.01). Conclusion: The effect of sonication could play a role in clinical results, especially for daptomycin and gentamicin for which the MIC is close to the concentration of antibiotics at 4 and 6 weeks. We conclude that elution of antibiotics from PMMA along with the effect of sonication could inhibit bacterial growth from spacers, resulting in false negative results in the setting of two-stage exchange procedures for prosthetic joint infections.

  16. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog

    OpenAIRE

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-01-01

    The Hedgehog-signaling pathway plays key roles in animal development and physiology. Insufficient Hedgehog signaling causes birth defects, whereas uncontrolled signaling is implicated in cancer. Signaling is triggered by the secreted protein, Sonic Hedgehog, which inhibits the membrane protein Patched1, leading to pathway activation. Despite its fundamental importance, we do not understand how Sonic Hedgehog inhibits Patched1. Here, we uncover a critical interaction between the fatty-acid?mod...

  17. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

    OpenAIRE

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K.

    2012-01-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility t...

  18. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied ...

  19. Penggunaan Bottom Ash Sebagai Pengganti Agregat Halus Pada Mortar Hvfa

    OpenAIRE

    Sulistio, Aldi Vincent; Wahjudi, Samuel; Hardjito, Djwantoro; Antoni, Antoni

    2016-01-01

    Bottom ash adalah material limbah PLTU yang melimpah dan kurang dimanfaatkan. Terdapat potensi pemanfaatan bottom ash sebagai agregat halus dalam campuran beton. Dalam penelitian ini, bottom ash diberi treatment ayak dan tumbuk untuk digunakan sebagai pengganti pasir dalam campuran beton. Hal pertama yang dilakukan adalah pengujian karateristik fisik dan kimiawi dari bottom ash. Dilakukan pengujian water content, sieve analysis, fineness modulus, dan berat isi dari pasir dan bottom ash yang d...

  20. Ash Decline Assessment in Emerald Ash Borer Infested Natural Forests Using High Spatial Resolution Images

    Directory of Open Access Journals (Sweden)

    Justin Murfitt

    2016-03-01

    Full Text Available The invasive emerald ash borer (EAB, Agrilus planipennis Fairmaire infects and eventually kills endemic ash trees and is currently spreading across the Great Lakes region of North America. The need for early detection of EAB infestation is critical to managing the spread of this pest. Using WorldView-2 (WV2 imagery, the goal of this study was to establish a remote sensing-based method for mapping ash trees undergoing various infestation stages. Based on field data collected in Southeastern Ontario, Canada, an ash health score with an interval scale ranging from 0 to 10 was established and further related to multiple spectral indices. The WV2 image was segmented using multi-band watershed and multiresolution algorithms to identify individual tree crowns, with watershed achieving higher segmentation accuracy. Ash trees were classified using the random forest classifier, resulting in a user’s accuracy of 67.6% and a producer’s accuracy of 71.4% when watershed segmentation was utilized. The best ash health score-spectral index model was then applied to the ash tree crowns to map the ash health for the entire area. The ash health prediction map, with an overall accuracy of 70%, suggests that remote sensing has potential to provide a semi-automated and large-scale monitoring of EAB infestation.

  1. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.

    Science.gov (United States)

    Chou, Jing-Dong; Wey, Ming-Yen; Liang, Hsiu-Hao; Chang, Shih-Hsien

    2009-08-30

    Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate.

  2. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  3. A computational analysis of sonic booms penetrating a realistic ocean surface.

    Science.gov (United States)

    Rochat, J L; Sparrow, V W

    2001-03-01

    The last decade has seen a revival of sonic boom research, a direct result of the projected market for a new breed of supersonic passenger aircraft, its design, and its operation. One area of the research involves sonic boom penetration into the ocean, one concern being the possible disturbance of marine mammals from the noise generated by proposed high-speed civil transport (HSCT) flyovers. Although theory is available to predict underwater sound levels due to a sonic boom hitting a homogeneous ocean with a flat surface, theory for a realistic ocean, one with a wavy surface and bubbles near the surface, is missing and will be presented in this paper. First, reviews are given of a computational method to calculate the underwater pressure field and the effects of a simple wavy ocean surface on the impinging sonic boom. Second, effects are described for the implementation of three additional conditions: a sonic boom/ocean "wavelength" comparison, complex ocean surfaces, and bubbles near the ocean surface. Overall, results from the model suggest that the realistic ocean features affect the penetrating proposed HSCT sonic booms by modifying the underwater sound-pressure levels only about 1 decibel or less.

  4. An analysis of the response of Sooty Tern eggs to sonic boom overpressures.

    Science.gov (United States)

    Ting, Carina; Garrelick, Joel; Bowles, Ann

    2002-01-01

    It has been proposed that sonic booms caused a mass hatching failure of Sooty Terns in the Dry Tortugas in Florida by cracking the eggshells. This paper investigates this possibility analytically, complementing previous empirical studies. The sonic boom is represented as a plane-wave excitation with an N-wave time signature. Two models for the egg are employed. The first model, intended to provide insight, consists of a spherical shell, with the embryo represented as a rigid, concentric sphere and the albumen as an acoustic fluid filling the intervening volume. The substrate is modeled as a doubling of the incident pressure. The second, numerical model includes the egg-shape geometry and air sac. More importantly, the substrate is modeled as a rigid boundary of infinite extent with acoustic diffraction included. The peak shell stress, embryo acceleration, and reactive force are predicted as a function of the peak sonic boom overpressure and compared with damage criteria from the literature. The predicted peak sonic boom overpressure necessary for egg damage is much higher than documented sonic boom overpressures, even for extraordinary operational conditions. Therefore, as with previous empirical studies, it is concluded that it is unlikely that sonic boom overpressures damage avian eggs.

  5. Differentiating intracellular from extracellular alkaline phosphatase activity in soil by sonication.

    Directory of Open Access Journals (Sweden)

    Shuping Qin

    Full Text Available Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio  =  1/8 (w/v and power density  =  15 watt ml(-1], the activity of alkaline phosphomonoesterase (phosphatase in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first plateau of enzyme activity was reached between 60 and 100 s, and a second higher plateau after 300 s. We also found that sonication for 100 s under optimal conditions activated most (about 80% of the alkaline phosphatase that was added to an autoclaved soil, while total bacteria number was not affected. Sonication for 300 s reduced the total bacteria number by three orders of magnitude but had no further effects on enzyme activity. Our results indicate that the first plateau of alkaline phosphatase activity was derived from extracellular enzymes attached to soil particles, and the second plateau to the combination of extracellular and intracellular enzymes after cell lysis. We conclude that our adjusted sonication method may be an alternative to the currently used physiological and chloroform-fumigation methods for differentiating intracellular from extracellular phosphatase activity in soil. Further testing is needed to find out whether this holds for other soil types.

  6. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    Science.gov (United States)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  7. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Science.gov (United States)

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  8. Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy.

    Directory of Open Access Journals (Sweden)

    Jessica Gagné-Sansfaçon

    Full Text Available BACKGROUND: Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. CONCLUSIONS/SIGNIFICANCE: Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.

  9. SCAMP: Rapid Focused Sonic Boom Waypoint Flight Planning Methods, Execution, and Results

    Science.gov (United States)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Delaney, Michael M., Jr.; Plotkin, Kenneth J.; Maglieri, Domenic J.; Brown, Jacob C.

    2012-01-01

    Successful execution of the flight phase of the Superboom Caustic Analysis and Measurement Project (SCAMP) required accurate placement of focused sonic booms on an array of prepositioned ground sensors. While the array was spread over a 10,000-ft-long area, this is a relatively small region when considering the speed of a supersonic aircraft and sonic boom ray path variability due to shifting atmospheric conditions and aircraft trajectories. Another requirement of the project was to determine the proper position for a microphone-equipped motorized glider to intercept the sonic boom caustic, adding critical timing to the constraints. Variability in several inputs to these calculations caused some shifts of the focus away from the optimal location. Reports of the sonic booms heard by persons positioned amongst the array were used to shift the focus closer to the optimal location for subsequent passes. This paper describes the methods and computations used to place the focused sonic boom on the SCAMP array and gives recommendations for their accurate placement by future quiet supersonic aircraft. For the SCAMP flights, 67% of the foci were placed on the ground array with measured positions within a few thousand feet of computed positions. Among those foci with large caustic elevation angles, 96% of foci were placed on the array, and measured positions were within a few hundred feet of computed positions. The motorized glider captured sonic booms on 59% of the passes when the instrumentation was operating properly.

  10. Correlations between the Sonic Hedgehog pathway and basal cell carcinoma.

    Science.gov (United States)

    Lupi, Omar

    2007-11-01

    The Hedgehog (HH) family of intercellular signaling proteins has some essential functions in patterning both invertebrate and vertebrate embryos. Identified as an important regulator of segment polarity and tissue organization in flies, the HH pathway can also play a significant role in human development and in cutaneous carcinogenesis. The family received their name because when the D. melanogaster HH protein malfunctions the mutant fly ends up looking like a small prickly ball, similar to a curled up hedgehog. The Sonic hedgehog (SHH) pathway is implicated in the etiology of the most common human cancer, the basal cell carcinoma (BCC). Mutations in the receptor of SHH, the patched gene (PTCH), have been characterized in sporadic BCCs as well as those from patients with the rare genetic syndrome nevoid BCC. Human PTCH is mutated in sporadic as well as hereditary BCCs, and inactivation of this gene is probably a necessary if not sufficient step for tumorigenesis. Delineation of the biochemical pathway in which PTCH functions may lead to rational medical therapy for skin cancer and possibly other tumors.

  11. [Sonic Hedgehog signaling pathway and regulation of inner ear development].

    Science.gov (United States)

    Chen, Zhi-Qiang; Han, Xin-Huan; Cao, Xin

    2013-09-01

    During inner ear development, Sonic Hedgehog (Shh) signaling pathway is involved in the ventral otic identity, cell fate determination of statoacoustic ganglion neurons and hair cell development. Shh protein, secreted from floor plate, antagonizes Wnt protein from roof plate, which refines and maintains dorsoventral axial patterning in the ear. Shh, served as a mitogen during neurogenesis, directly promotes the development of spiral ganglion neuron. After Shh signaling pathway is activated, Ngn1 is freed from Tbx1 repression. As a result, Shh indirectly upregulates the expression of Ngn1, thus regulating neurogenic patterning of inner ear. In addition, Shh regulates the differentiation of hair cells by influencing cell cycle of the progenitor cells located in the cochlea. The basal-to-apical wave of Shh decline ensures the normal devel- opment pattern of hair cells. It is confirmed by a quantity of researches conducted in both animals and patients with hereditary hearing impairment that abnormal Shh signaling results in aberrant transcription of target genes, disturbance of the proper development of inner ear, and human hearing impairment. In humans, diseases accompanied by hearing disorders caused by abnormal Shh signaling include Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS), Waardenburg syndrome (WS) and medulloblastoma, etc. This review would provide a theoretical basis for further study of molecular mechanisms and clinical use of inner ear development.

  12. Megalin functions as an endocytic sonic hedgehog receptor.

    Science.gov (United States)

    McCarthy, Robert A; Barth, Jeremy L; Chintalapudi, Mastan R; Knaak, Christian; Argraves, W Scott

    2002-07-12

    Embryos deficient in the morphogen Sonic hedgehog (Shh) or the endocytic receptor megalin exhibit common neurodevelopmental abnormalities. Therefore, we have investigated the possibility that a functional relationship exists between the two proteins. During embryonic development, megalin was found to be expressed along the apical surfaces of neuroepithelial cells and was coexpressed with Shh in the ventral floor plate of the neural tube. Using enzyme-linked immunosorbent assay, homologous ligand displacement, and surface plasmon resonance techniques, it was found that the amino-terminal fragment of Shh (N-Shh) bound to megalin with high affinity. Megalin-expressing cells internalized N-Shh through a mechanism that was inhibited by antagonists of megalin, viz. anti-receptor-associated protein and anti-megalin antibodies. Heparin also inhibited N-Shh endocytosis, implicating proteoglycans in the internalization process, as has been described for other megalin ligands. Use of chloroquine to inhibit lysosomal proteinase activity showed that N-Shh endocytosed via megalin was not efficiently targeted to the lysosomes for degradation. The ability of megalin-internalized N-Shh to bypass lysosomes may relate to the finding that the interaction between N-Shh and megalin was resistant to dissociation with low pH. Together, these findings show that megalin is an efficient endocytic receptor for N-Shh. Furthermore, they implicate megalin as a new regulatory component of the Shh signaling pathway.

  13. 131-Iodine-Labeled Derivatives of the Sonic Hedgehog Protein

    Directory of Open Access Journals (Sweden)

    Jennifer Sims-Mourtada

    2012-01-01

    Full Text Available Activation of hedgehog (HH pathway signaling is observed in many tumors. Due to a feedback loop, the HH receptor Patched (PTCH-1 is overexpressed in tumors with activated HH signaling. Therefore, we sought to radiolabel the PTCH-1 ligand sonic (SHH for detection of cancer cells with canonical HH activity. Receptor binding of 131I-SHH was increased in cell lines with high HH pathway activation. Our findings also show that PTCH-1 receptor expression is decreased upon treatment with HH signaling inhibitors, and receptor binding of 131I-SHH is significantly decreased following treatment with cyclopamine. In vivo imaging and biodistribution studies revealed significant accumulation of 131I-SHH within tumor tissue as compared to normal organs. Tumor-to-muscle ratios were approximately 8 : 1 at 5 hours, while tumor to blood and tumor to bone were 2 : 1 and 5 : 1, respectively. Significant uptake was also observed in liver and gastrointestinal tissue. These studies show that 131I-SHH is capable of in vivo detection of breast tumors with high HH signaling. We further demonstrate that the hedgehog receptor PTCH-1 is downregulated upon treatment with hedgehog inhibitors. Our data suggests that radiolabeled SHH derivatives may provide a method to determine response to SHH-targeted therapies.

  14. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    Science.gov (United States)

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America

  15. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma.

    Science.gov (United States)

    Faria, Claudia C; Golbourn, Brian J; Dubuc, Adrian M; Remke, Marc; Diaz, Roberto J; Agnihotri, Sameer; Luck, Amanda; Sabha, Nesrin; Olsen, Samantha; Wu, Xiaochong; Garzia, Livia; Ramaswamy, Vijay; Mack, Stephen C; Wang, Xin; Leadley, Michael; Reynaud, Denis; Ermini, Leonardo; Post, Martin; Northcott, Paul A; Pfister, Stefan M; Croul, Sidney E; Kool, Marcel; Korshunov, Andrey; Smith, Christian A; Taylor, Michael D; Rutka, James T

    2015-01-01

    Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)-driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma. ©2014 American Association for Cancer Research.

  16. Morphological, physicochemical, and viscoelastic properties of sonicated corn starch.

    Science.gov (United States)

    Mohammad Amini, Asad; Razavi, Seyed Mohammad Ali; Mortazavi, Seyed Ali

    2015-05-20

    In the present work, different parameters of ultrasound treatment were studied for physical modification of corn starch. The results revealed that the influence of sonication strongly depends on temperature (25-65 °C) and exposure time (5-15 min), while concentration (10-20% w/w) and ultrasound amplitude (50 and 100%) have little influence on functional and rheological properties. SEM micrographs demonstrated the damage induced by ultrasound on starch granules' surface. The solubility, swelling power, and gel clarity were increased. Ultrasonication decreased the gelatinisation enthalpy and temperature range while the X-ray pattern and crystallinity remained almost unchanged, except for samples treated at onset temperature as measured by DSC. The pseudoplasticity and consistency coefficient decreased; also, apparent viscosity diminished prominently. The pasting behaviour of samples was altered without any clear change in gel strength characterised by loss factor. The results of the present work provide further insight into the mode of action of ultrasound on modifying corn starch granules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  18. Composite delamination depth profiling in sonic-IR imaging

    Science.gov (United States)

    Zhao, Selina X.; Han, Xiaoyan; Favro, Lawrence D.; Newaz, Golam; Thomas, Robert L.

    2012-05-01

    Impact damage remains a major issue for aerospace composite structures. Considerable internal damage can occur in laminated composites from external impact loads in service with only minimal visual detectability from the surface of the structure. Damage can occur at any ply depth without visual indications on the front surface. Accurate depth measurements can aid repair assessments. This method is focused on investigating depth profiling of composite delamination by using Sonic-IR, which is a nondestructive evaluation method (NDE) technique that makes images of defects using an infrared camera with an ultrasonic transducer as a stimulation source. The depth profiling relies on the time delays of the temperature increases at the surface from the different defect depths. To process the time vs. temperature data captured from the camera, polynomial curve fitting was used. A mathematical model has been built to calculated time vs. second derivative of temperature curves for depth measurements. The samples used to calibrate the mathematical model data are carbon fiber composite panels with ply thickness variance and inserts with known depths.

  19. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  20. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  1. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  2. Basic soil benefits from ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Martens, D.C.; Plank, C.O.

    1970-01-01

    The beneficial effects of fly ash application shown herein are expected to encourage future disposal of the material in agricultural soils. It is foreseen, however, that fly ash disposal in agricultural soils would be unsuccessful if adverse effects on crop production result from its misuse. It seems evident, therefore, that quality control measures will be required to insure proper disposal of the material in agricultural soils. It will be necessary to consider differences in chemical properties of various samples of fly ash and in chemical reactions of samples of fly ash and soils. Differences in tolerances of plants to soluble salt damage and to specific nutrient deficiencies and toxicities will also have to be taken into account. 9 tables.

  3. [Clinical use of the Sonic Air MM 1500 and the Meca Sonic 1400 in canal preparation in endodontics].

    Science.gov (United States)

    Gaye, F; Ba, I; Kane, A W; Mbaye, M; Ndoye Diop, A; Agboton-Johnson, C A

    1991-03-01

    The preparation for canalisation has remained manual for a long time, technically constrictive and lasting for a long time. The application of ultrasound in Endontony allows us to tackle more calmly the canal course of the teath. The aim of this work is to make a qualitative comparison of the endosonic technique and the manual technique with reference to cases treated in the Dentisterie Opératoire clinic in Dakar. 40 teeth of a complex canal anatomy and or in the posterior position in the buccal cavity were submitted to either a manual canalisation preparation or endosconic followed by monconic canal filling with a paste: 3 inc oxyde eugenol and iodoform. OPERATING FORMULA: Preparatory X rays: Allow us to evaluate the length of the work or the operating length after catheterisation: LO--length PRO, APEX RADIO-IMM LO--operating length PRO - occlusive point of reference The parietal support technique: The "synergetic" effect of ultrasonic oscillations of cavitation and of micro-acoustic currents associated with the action of the irrigation solution allow us to obtain canal incision. the pneumatic Sonic Air MM 1500; the Meca Sonic MMR 1400 coupled to a standard ISO motor; SHAPERS and Meca Shapers. Activated by shaper or Méca Shaper. Classic monoconic canal filling: Wadding paste + zinc oxyde paste-iodoform eugenol. X rays for orthocentric monitoring. RESULTS--DISCUSSION: In 60% of the cases treated, the patients presented with a complete dentition. The third inferior molar was in almost all the cases, the cause of the patient seeking a dental consultation. By endosonic treatment-conservation of teeth which would otherwise have been destined for extraction; biopulectomy or instituted pulpectomy for cases of desdodontite, endosconic amplication and canal sealing after the cooling of the inflammation. Duration of treatment: 2 sessions for gangrenous cases or desmodondite and one session for biopulpectomy or pulpectomy, with 4 sessions in 10% of the cases. Operation

  4. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    -moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases......Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected...

  5. Ash composition of oils of West Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Bakirova, S.F.; Aleshin, G.N.; Kalinin, S.K.; Kotova, A.V.; Nadirov, N.K.

    1982-01-01

    Results are presented of studying the distribution of trace elements in oils of new fields of West Kazakhstan. It is indicated that for the majority of oils studied, the concentration of trace elements does not depend on the ash content of oils. For resinous asphaltenes and highly sulfur oils of the Buzachi region, there is an increase in the content of iron, vanadium, nickel with a rise in ash content of oils. This is possibly associated with their secondary enrichment with trace elements.

  6. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  7. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    After forest fires, the ash and the remaining vegetation cover on the soil surface are the main protection against erosion agents. The control ash exert on runoff generation mechanism was researched during the 90's (Cerdà, 1998a; 1998b). This pioneer research demonstrated that after forest fires there is a short period of time that runoff and surface wash by water is controlled by the high infiltration rates achieved by the soil, which were high due to the effect of ash acting as a mulch. The research of Cerdà (1998a; 1998b) also contributed to demonstrate that runoff was enhanced four month later upon the wash of the ash by the runoff, but also due to the removal of ash due to dissolution and water infiltration. As a consequence of the ephemeral ash cover the runoff and erosion reached the peak after the removal of the ash (usually four month), and for two years the soil erosion reached the peak (Cerdà, 1998a). Research developed during the last decade shown that the ash and the litter cover together contribute to reduce the soil losses after the forest fire (Cerdà and Doerr, 2008). The fate of the ash is related to the climatic conditions of the post-fire season, as intense thunderstorms erode the ash layer and low intensity rainfall contribute to a higher infiltration rate and the recovery of the vegetation. Another, key factor found during the last two decades that determine the fate of the ash and the soil and water losses is the impact of the fauna (Cerdà and Doerr, 2010). During the last decade new techniques were developed to study the impact of ash in the soil system, such as the one to monitor the ash changes by means of high spatial resolution photography (Pérez Cabello et al., 2012), and laboratory approaches that show the impact of ash as a key factor in the soil hydrology throughout the control they exert on the soil water repellency (Bodí et al., 2012). Laboratory approaches also shown that the fire severity is a key factor on the ash chemical

  8. Aggregation of volcanic ash in explosive eruptions

    Science.gov (United States)

    Telling, J. W.; Dufek, J.

    2009-12-01

    We present the result of a recent experimental and numerical investigation of ash aggregation in volcanic plumes. Eruption dynamics are sensitive to microphysical processes, like ash aggregation, yet are difficult to parameterize based on dynamics simulations of whole eruption columns due to the lack of sufficient resolution. Here we present the results of experiments that develop a probabilistic relationship for ash aggregation based on impact velocity and atmospheric conditions (water vapor and atmospheric pressure). The probabilistic relationship can be integrated, in conjunction with a reconstructed velocity distribution of the ash in the column, and then can be readily incorporated in large-scale simulations of eruption column behavior. We also conduct detailed Eulerian-Lagrangian simulations at the scale of our experiment as a test of the ash aggregation relationship. The physical experiment was carried out in a contained tank designed to allow for the control of ‘atmospheric’ conditions. The tank can be depressurized as needed, using the gas inlet and the attached vacuum pump, and the ambient humidity can be altered by adjusting the gas mixture at the inlet. Image data is recorded with a high speed camera and post-processed to determine the number of collisions, energy of collisions and probability of aggregation. We will present the results of aggregation probability and the effects of incorporating these results into a multiphase model of a three-dimensional eruption column, where the effects of ash aggregation are especially important in regions of high shear and high granular temperature.

  9. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  10. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  11. Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation.

    Science.gov (United States)

    Takeuchi, Mio; Kawahata, Hodaka; Gupta, Lallan P; Itouga, Misao; Sakakibara, Hitoshi; Ohta, Hidekazu; Komai, Takeshi; Ono, Yoshiro

    2009-06-15

    The effects of waste ash leachates on soil microorganism were evaluated along with a chemical characterization of ash leachates. Thirty fly ash samples and cyclone ash samples obtained from the incineration of municipal solid waste, plastic waste, and construction waste were used. Twenty-one and 22 samples inhibited N transformation activity of soil microorganism and growth of Bacillus subtilis, respectively. On the other hand, 11 and 18 samples stimulated bacterial activity and growth, respectively, at low concentrations. Generally, cyclone ash contained a smaller amount of toxic metals than fly ash. Our results suggest that cyclone ash can be further studied for reuse, perhaps as a soil amendment. Pb was found to be highly accumulated in B. subtilis cells, and should be carefully monitored when waste ash is reused in the environment.

  12. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  13. Fluorination of incinerator ash by hydrofluorination or ammonium bifluoride fusion for plutonium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.D.; Gray, J.H.; Kent, S.J.; Apgar, S.A.

    1989-01-01

    Incinerator ash containing small quantities of plutonium has been accumulating across the defense complex for many years. Although the total Pu inventory is small, the ash is a nondiscardable residue which presents storage and accountability difficulties. The work discussed here is the result of a joint exploratory effort between members of Savannah River Laboratory and Los Alamos National Laboratory to compare two proposed pyrochemical pretreatments of incinerator ash prior to aqueous processing. These experiments attempted to determine the relative effectiveness of hydrofluorination and ammonium bifluoride fusion as head-end operations for a two step aqueous recovery method. The two pretreatments are being considered as possible second generation enhancements for the New Special Recovery Facility nearing operation at Savannah River Plant. Experimental results and potential engineering concerns are discussed. 3 figs.

  14. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  15. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    International Nuclear Information System (INIS)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernandez-Pereira, Constantino

    2009-01-01

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  16. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  17. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Environmental effects of ash application in forest ecosystems

    DEFF Research Database (Denmark)

    Hansen, Mette

    of ashes being produced and the export of nutrients from the forests. This PhD project aims at investigating how ash application in forest ecosystems affects soil and soil solution properties and whether ash application can be used in a Danish context without environmental harm but with positive effects...... rate, ash application can have negative impact on the soil capacity to store C. This PhD study shows that ash application can be used in a Danish context without environmental harm. To ensure the practice to be more widespread than it is today, measures can be made to improve the Danish legislation...... defining the rules for ash application. Based on my findings, I suggest that the dose of ash applied is increased to 6 Mg ha-1 instead of 3 Mg ha-1, while at the same time reducing the initial Cd concentration in the ash and/or prohibiting the use of fly ashes alone....

  19. Orographic effects on the transport and deposition of volcanic ash: A case study of Mount Sakurajima, Japan

    Science.gov (United States)

    Poulidis, Alexandros P.; Takemi, Tetsuya; Iguchi, Masato; Renfrew, Ian A.

    2017-09-01

    Volcanic ash is a major atmospheric hazard that has a significant impact on local populations and international aviation. The topography surrounding a volcano affects the transport and deposition of volcanic ash, but these effects have not been studied in depth. Here we investigate orographic impacts on ash transport and deposition in the context of the Sakurajima volcano in Japan, using the chemistry-resolving version of the Weather Research and Forecasting model. Sakurajima is an ideal location for such a study because of the surrounding mountainous topography, frequent eruptions, and comprehensive observing network. At Sakurajima, numerical experiments reveal that across the 2-8ϕ grain size range, the deposition of "medium-sized" ash (3-5ϕ) is most readily affected by orographic flows. The direct effects of resolving fine-scale orographic phenomena are counteracting: mountain-induced atmospheric gravity waves can keep ash afloat, while enhanced downslope winds in the lee of mountains (up to 50% stronger) can force the ash downward. Gravity waves and downslope winds were seen to have an effect along the dispersal path, in the vicinity of both the volcano and other mountains. Depending on the atmospheric conditions, resolving these orographic effects means that ash can be transported higher than the initial injection height (especially for ash finer than 2ϕ), shortly after the eruption (within 20 min) and close to the vent (within the first 10 km), effectively modifying the input plume height used in an ash dispersal model—an effect that should be taken into account when initializing simulations.

  20. Properties of concrete incorporating high volumes of class F fly ash and san fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rafat Siddique [University of Wisconsin-Milwaukee, Milwaukee, WI (United States). Department of Civil Engineering and Mechanics, UWM Center for By-Products Utilization, College of Engineering and Applied Science

    2004-01-01

    The results of an experimental investigation to study the effects of replacement of cement (by mass) with three percentages of fly ash and the effects of addition of natural san fibers on the slump, Vebe time, compressive strength, splitting tensile strength, flexural strength and impact strength of fly ash concrete are presented. San fibers belong to the category of 'natural bast fibers.' It is also known as 'sunn hemp.' Its scientific (botanical) name is Crotalaria juncea. A control mixture of proportions 1:1.4:2.19 with W/Cm of 0.47 and superplasticizer/cementitious ratio of 0.015 was designed. Cement was replaced with three percentages (35%, 45% and 55%) of class F fly ash. Three percentages of san fibers (0.25%, 0.50% and 0.75%) having 25-mm length were used. The test results indicated that the replacement of cement with fly ash increased the workability (slump and Vebe time), decreased compressive strength, splitting tensile strength and flexural strength and had no significant effect on the impact strength of plain (control) concrete. Addition of san fibers reduced the workability, did not significantly affect the compressive strength, increased the splitting tensile strength and flexural strength and tremendously enhanced the impact strength of fly ash concrete as the percentage of fibers increased.

  1. A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica.

    Science.gov (United States)

    Bontempi, E; Zacco, A; Borgese, L; Gianoncelli, A; Ardesi, R; Depero, L E

    2010-11-01

    Municipal solid waste incineration (MSWI) is a straightforward way to manage waste, however the disposal of process byproducts, mainly bottom and fly ash, is still a problem, because of their hazardous contents. Fly ash is a byproduct of many other processes that involve combustion to produce energy. In this paper we present and discuss a new method for MSWI fly ash inertization, mainly based on the use of colloidal silica as a stabilization agent for metals. In the patented procedure, fly ash of different provenance can be used to produce an inert and non-hazardous material, that can be reused. In fact to make the recovery process more efficient, landfilling should be totally avoided. For this reason, to enhance the possibility of reuse, a washing process, for salts recovery, is proposed as a final step of the inertization procedure. The obtained inert material is called COSMOS (COlloidal Silica Medium to Obtain Safe inert), and it is composed of calcium carbonate, calcium sulfate, silicon oxide and a wide quantity of non-soluble amorphous compounds. COSMOS does not contain any corrosive salts. This makes it extremely interesting for cement industry applications with several other advantages, and environmental benefits. The new proposed inertization procedure appears very promising, because it allows MSWI fly ash to be considered a valuable resource. Thanks to the obtained results, a demonstration project, in the frame of LIFE+, has been funded by the European Commission (LIFE+ 2008 project ENV/IT/000434, ).

  2. Adsorption of heavy metal ions from aqueous solution by fly ash

    Energy Technology Data Exchange (ETDEWEB)

    I.J. Alinnora [Federal University of Technology, Owerri (Nigeria). Department of Pure and Industrial Chemistry

    2007-03-15

    The removal characteristics of lead and copper ions from aqueous solution by fly ash were investigated under various conditions of contact time, pH and temperature. The influence of pH of the metal ion solutions on the uptake levels of the metal ions by fly ash were carried out between pH 4 and 12. The level of uptake of Pb{sup 2+} and Cu{sup 2+} ions by the fly ash generally increased, but not in a progressive manner, at higher pH values. The effect of temperature on the uptake of Pb{sup 2+} and Cu{sup 2+} ions was investigated between 30{sup o}C and 60{sup o}C, the adsorption of being enhanced at the lowest temperature. Rate constants were evaluated in terms of a first-order kinetics. The rate constant, k for uptake of Pb{sup 2+} and Cu{sup 2+} ions were 1.77 10{sup -2}s{sup -1} and 2.11 10{sup -2}s{sup -1}, respectively. The experimental results underline the potential of coal fly ash for the recovery of metal ions from waste water. The main mechanisms involved in the removal of heavy metal ions from solution were adsorption at the surface of the fly ash and precipitation. 43 refs., 4 figs., 1 tab.

  3. Influence of Fly Ash, Bottom Ash, and Light Expanded Clay Aggregate on Concrete

    Directory of Open Access Journals (Sweden)

    S. Sivakumar

    2015-01-01

    Full Text Available Invention of new methods in strengthening concrete is under work for decades. Developing countries like India use the extensive reinforced construction works materials such as fly ash and bottom ash and other ingredients in RCC construction. In the construction industry, major attention has been devoted to the use of fly ash and bottom ash as cement and fine aggregate replacements. In addition, light expanded clay aggregate has been introduced instead of coarse aggregate to make concrete have light weight. This paper presents the results of a real-time work carried out to form light weight concrete made with fly ash, bottom ash, and light expanded clay aggregate as mineral admixtures. Experimental investigation on concrete mix M20 is done by replacement of cement with fly ash, fine aggregate with bottom ash, and coarse aggregate with light expanded clay aggregate at the rates of 5%, 10%, 15%, 20%, 25%, 30%, and 35% in each mix and their compressive strength and split tensile strength of concrete were discussed for 7, 28, and 56 days and flexural strength has been discussed for 7, 28, and 56 days depending on the optimum dosage of replacement in compressive strength and split tensile strength of concrete.

  4. Density and morphology studies on bottom ash and fly ash geopolymer brick

    Science.gov (United States)

    Deraman, Laila Mardiah; Abdullah, Mohd Mustafa Al Bakri; Ming, Liew Yun; Hussin, Kamarudin

    2017-04-01

    This paper studies the finding density and morphology analysis of geopolymer bricks using bottom ash and fly ash as a geopolymer raw material. The study has been conducted to produce bottom ash and fly ash geopolymer bricks by varying the ratio of fly ash/bottom ash, ratio solid/liquid and ratio sodium silicate (Na2SiO3)/ sodium hydroxide (NaOH) in the mix design. The compressive strength range between 3.8-4.5 Mpa was obtained in theprevious study [9]. The density and morphology analysis are done based on the optimum ratio selected from bottom ash/fly ash, solid/liquidand Na2SiO3/NaOH which is 1:2, 2.0 and 4.0 respectively for non-loading application brick. The morphology analysis of the bricks is closely related to the density recorded. The highest density shows the highest value of compressive strength and a denser microstructure of morphology.

  5. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding

    Science.gov (United States)

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North...

  6. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    Science.gov (United States)

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Science.gov (United States)

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  8. Laboratory bioassay of emerald ash borer adults with a Bacillus thuringiensis formulation sprayed on ash leaves

    Science.gov (United States)

    Leah S. Bauer; Deborah L. Miller; Diana. Londono

    2011-01-01

    The emerald ash borer (EAB) (Agrilus planipennis), a buprestid native to Asia that feeds on ash trees (Fraxinus spp.), was discovered in southeast Michigan and nearby Ontario in 2002. It apparently arrived in the 1990's via infested solid-wood packing materials from China. As of 2011, areas considered generally infested with...

  9. The role of biocontrol of emerald ash borer in protecting ash regeneration after invasion

    Science.gov (United States)

    Jian J. Duan; Roy G. Van Driesche; Leah S. Bauer; Richard Reardon; Juli Gould; Joseph S. Elkinton

    2017-01-01

    Long-term monitoring in Michigan and several northeastern states has documented increasing parasitism and reduced EAB attack rates. Ash regeneration is currently benefiting from releases of introduced parasitoids, which now cause 20-80% parasitism of EAB larvae in ash saplings (1-2 inch dia.) and young trees (5-8 inch dia.).

  10. Sonication of orthopaedic implants: A valuable technique for diagnosis of prosthetic joint infections.

    Science.gov (United States)

    Sebastian, Sujeesh; Malhotra, Rajesh; Sreenivas, Vishnubhatla; Kapil, Arti; Chaudhry, Rama; Dhawan, Benu

    2018-03-01

    Accurate and prompt microbiological diagnosis of prosthetic joint infection (PJI) is crucial for successful antimicrobial treatment. Studies have shown the diagnostic utility of sonication of explanted implants in total joint arthroplasty but all did not use consensus statements for defining PJI. We evaluated the diagnostic utility of culture of samples obtained by sonication of explanted implants compared with periprosthetic tissue cultures (PTC) for the diagnosis of PJI using Musculoskeletal Infection Society (MSIS) consensus criteria. We also assessed the utility of culture of sonicate fluid for determining the microbial profile of PJI compared with standard culture methods. Forty consecutive revision arthroplasty cases were enrolled. Three to five periprosthetic tissue samples were obtained during each explant procedure. The 40 explanted implants were collected in sterile containers and sonicated under sterile conditions. MSIS criteria were used for the definition of PJI. Twenty - seven patients had PJI and thirteen were aseptic failures. Of the PJI cases, there were nine cases of early PJI's, 10 of delayed PJI's and eight of late PJI's. Twenty-five (92.5%) of the twenty-seven patients with PJI, had positive cultures in the sonicate fluid of implants and in 18 (66.7%) of them cultures of the periprosthetic tissues were also positive. Both PTC and SFC cultures of implants were negative in all the 13 cases of aseptic failure. Sensitivity of sonicate fluid culture (SFC) of implants was greater than PTC (92.5% vs. 66.7%), P = .02. The specificity of both was 100%. The incidence of gram-positive and gram-negative bacteria was nearly equal by both methods. However, SFC showed an increased ability to detect Gram-positive pathogens which was evidenced by better recovery of coagulase-negative staphylococci. Sonication of explanted implants is a simple and valuable microbiological technique and its routine use improves the diagnostic sensitivity of PJI. Copyright

  11. Instantaneous Attributes Applied to Full Waveform Sonic Log and Seismic Data in Integration of Elastic Properties of Shale Gas Formations in Poland

    Science.gov (United States)

    Wawrzyniak-Guz, Kamila

    2018-03-01

    Seismic attributes calculated from full waveform sonic log were proposed as a method that may enhance the interpretation the data acquired at log and seismic scales. Though attributes calculated in the study were the mathematical transformations of amplitude, frequency, phase or time of the acoustic full waveforms and seismic traces, they could be related to the geological factors and/or petrophysical properties of rock formations. Attributes calculated from acoustic full waveforms were combined with selected attributes obtained for seismic traces recorded in the vicinity of the borehole and with petrophysical parameters. Such relations may be helpful in elastic and reservoir properties estimation over the area covered by the seismic survey.

  12. The Effect of Sonic Bloom Fertilizing Technology on The Seed Germination and Growth of Acacia mangium Willd Seedling

    Directory of Open Access Journals (Sweden)

    Mulyadi A T

    2012-11-01

    Full Text Available Acacia mangium Willd is one of the promising wood species, it is a fast growing species and can be used as raw materials for pulp, furniture and wood working. Musi Hutan Persada Company has planted Acacia mangium Willd in large scale for pulp processing raw materials and for wood working industry. The faculty of forestry of the Nusa Bangsa University in collaboration with the Musi Hutan Persada have examined  the effect of “Sonic Bloom” to the Acacia mangium Willd germination and seedling growth. The results of the research are the following : (1 The seed germination with “Sonic Bloom” provided percented of germination of 82%, better than those without “Sonic Bloom”, i.e. only 34%; (2 With Sonic Bloom,  the height of 80-days old seedling is 129.6 cm higher than those without “Sonic Bloom”of only 90.7 cm  ; (3 the diameter of 80-days old seedling with “Sonic Bloom” is 0,24 cm higher than those without “Sonic Bloom” harving diameters of only 0.19 cm.The study concludes that sonic bloom treatment is very useful for the seed germination and the growth of Acacia mangium Willd seedling Key Words : Sonic Bloom, persemaian, Acacia mangium, perkecambahan, bibit   Normal 0 false false false IN X-NONE X-NONE

  13. Fresh Bottom Ash Characteristics Dependence on Fractional Composition

    OpenAIRE

    Jurgita Seniūnaitė; Saulius Vasarevičius

    2017-01-01

    Waste incineration process generates two main by-products streams: fly ash and bottom ash. Bottom ash is composed of a variety of oxides, heavy metals and salts. Chemical materials distributed unevenly in different fractions of bottom ash. This study investigates the heavy metals (Pb, Cd) content dependence of bottom ash and fraction composition. Studies were performed with five different fractions (0–2 mm; 2–5.6 mm; 5.6–11.2 mm; 11.2–22,4 mm; 22.4–40 mm) of fresh bottom ash. After a one-step...

  14. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants.

    Science.gov (United States)

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling

    2008-01-01

    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  15. Ultrasonic/Sonic Driller/Corer (USDC) as a Subsurface Sampler and Sensors Platform for Planetary Exploration Applications

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Aldrich, Jack; Chang, Zensheu

    2006-01-01

    The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. For this purpose, effective instruments that can sample and conduct in-situ astrobiology analysis are being developed. In support of this objective, a series of novel mechanisms that are driven by an Ultrasonic/Sonic actuator have been developed to probe and sample rocks, ice and soil. This mechanism is driven by an ultrasonic piezoelectric actuator that impacts a bit at sonic frequencies through the use of an intermediate free-mass. Ultrasonic/Sonic Driller/Corer (USDC) devices were made that can produce both core and powdered cuttings, operate as a sounder to emit elastic waves and serve as a platform for sensors. For planetary exploration, this mechanism has the important advantage of requiring low axial force, virtually no torque, and can be duty cycled for operation at low average power. The advantage of requiring low axial load allows overcoming a major limitation of planetary sampling in low gravity environments or when operating from lightweight robots and rovers. The ability to operate at duty cycling with low average power produces a minimum temperature rise allowing for control of the sample integrity and preventing damage to potential biological markers in the acquired sample. The development of the USDC is being pursued on various fronts ranging from analytical modeling to mechanisms improvements while considering a wide range of potential applications. While developing the analytical capability to predict and optimize its performance, efforts are made to enhance its capability to drill at higher power and high speed. Taking advantage of the fact that the bit does not require rotation, sensors (e.g., thermocouple and fiberoptics) were integrated into the bit to examine the borehole during drilling. The sounding effect of the drill was used to emit elastic waves in order to evaluate the surface characteristics of rocks. Since the USDC is

  16. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  17. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Science.gov (United States)

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  18. Voids in Sonic Fill(TM) restorations compared to traditional incrementally-filled composite restorations

    Science.gov (United States)

    Abourezq, Ibraheem A.

    SonicFill(TM) is a new composite resin and delivery system designed to provide rapid filling of cavity preparations by decreasing viscosity through application of sonic energy. However, it may produce unwanted air voids in the final restoration due to the short filling time. Air voids compromise long-term performance by providing weak foci, discontinuity at cavosurface margins and at internal cavity walls, and potential crack propagation. This study assessed the locations, sizes, and numbers of voids in SonicFill restorations compared with traditional composite resin restorations in a set of extracted molars with mesio-occlusal-distal (MOD) cavity preparations. Fifty noncarious intact extracted third molars were collected randomly from a large collection of discarded anonymous tooth specimens. Standardized MOD cavity preparations were cut, and teeth were assigned randomly to one of two groups ( n = 25). The first group was restored with SonicFill composite in two steps. The second group was restored with Herculite Ultra(TM) using an multiple increment layering technique (1-2 mm per layer). Cross-sectional images of the filling were taken by digital microscope. A total of 196 voids were found in the 50 specimens: 97 in SonicFill restorations and 99 in conventional restorations. Mean number of voids in SonicFill restorations was 3.88 versus 3.96 for conventional restorations. Mean percentage of void area in SonicFill restorations was 0.588% versus 0.508% for conventional restorations. Unpaired t tests for these differences indicated no statistically significant differences (p =.931 and p =.629, respectively). One-way ANOVA tests for mean void count and mean void area percentage differences by three location zones for conventional and SonicFill restorations also indicated no significant differences among the groups. The bulk-fill SonicFill system does not result in increased or decreased numbers or ii area of voids within Class II MOD restorations compared with a

  19. Ash aggregation in explosive volcanic eruptions

    Science.gov (United States)

    Telling, J. W.; Dufek, J.

    2010-12-01

    We present the result of a recent experimental and numerical investigation of ash aggregation in volcanic plumes. Eruption dynamics are sensitive to microphysical processes, like ash aggregation, yet are difficult to parameterize based on dynamics simulations of whole eruption columns due to the lack of sufficient resolution. Here we present the results of experiments that develop a probabilistic relationship for ash aggregation based on particle size, collisional energy and atmospheric water vapor. These relationships can be integrated into large-scale simulations of eruption column behavior in conjunction with a reconstructed velocity distribution of the ash in the column. The physical experiment was carried out in a contained tank designed to allow for the control of atmospheric water vapor. Image data is recorded with a high speed camera and post-processed to determine the number of collisions, energy of collisions and probability of aggregation. We will present the results of aggregation probability and the effects of incorporating these results into a multiphase model of a three-dimensional eruption column, where the effects of ash aggregation are especially important in regions of high shear and high granular temperature.

  20. Preliminary Study of Fly Ash Ceramic Process

    International Nuclear Information System (INIS)

    Herry-Poernomo; Djoko-Sardjono, Ign.

    2000-01-01

    Preliminary study of ceramic production process from two components ofwhich are fly ash and feldspar has been done. Aluminosilicate substancecontained in the fly ash is a basic material a former ceramic body, if itfired at the temperature of 1000 o C forms mullite (3Al 2 O 3 .2SiO 2 ). Mulliteis a refractory material which is very stable at the temperature changing.This experiment studies the ceramic production process of two componentsnamely fly ash with particle size of o C.Steps of processes are making paste of fly ash and feldspar, making of greenpellets, and firing of pellets, physical analysis of ceramic including volumedecrease, lost ignition, porosity, density, water sorption, compressivestrength. The experiment result at firing temperature of 1000 o C were shownthat best composition at the weight ratio of fly ash to feldspar are 60/40and 50/50. It physical characteristic respectively are decrease of volume0.54 and 0.69 %, lost ignition = 11.98 and 11.78 %, porosity = 0.159 and0.155, density = 2.05 and 2.06 g/cm 3 , water sorption = 18.96 and 18.36 %,compressive strength = 24.82 and 24.79 kN/mm 2 . (author)

  1. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  2. Effects of sonic booms on breeding gray seals and harbor seals on Sable Island, Canada.

    Science.gov (United States)

    Perry, Elizabeth A; Boness, Daryl J; Insley, Stephen J

    2002-01-01

    The Concorde produces audible sonic booms as it passes 15 km north of Sable Island, Nova Scotia, where gray and harbor seals occur year round. The purpose of this research was to assess how sonic booms affect these seals. The intensity of the booms was measured and three types of data (beach counts, frequency of behavior, and heart rate) were collected before and after booms during the breeding seasons of the two species. In addition to the data taken during breeding, beach counts were made before and after booms during the gray seal moult. The greatest range in overpressure within a single boom was 2.70 psf during gray seal breeding and 2.07 psf during harbor seal breeding. No significant differences were found in the behavior or beach counts of gray seals following sonic booms, regardless of the season. Beach counts and most behaviors of harbor seals also did not differ significantly following booms, however, harbor seals became more vigilant. The heart rates of four gray seal mothers and three pups showed no clear change as a result of booms, but six male harbor seals showed a nonsignificant tendency toward elevated heart rates during the 15-s interval of the boom. These results suggest sonic booms produced by the Concorde, in level flight at altitude and producing on average a sonic boom of 0.9 psf, do not substantially affect the breeding behavior of gray or harbor seals.

  3. Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models

    Science.gov (United States)

    Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.

    2015-01-01

    Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.

  4. Usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies.

    Science.gov (United States)

    Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo

    2012-01-01

    This paper summarizes the results of a longitudinal usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies. The usability test was conducted with fourteen (14) consumers from the St. Louis, MO, USA area who use manual toothbrushes. The study consisted of consumers using the specially engineered sonic powered toothbrush with unique sensing and control technologies for three weeks. During the study, users participated in four toothbrush trials during weekly visits to the research facility. These trials were videotaped and were analyzed regarding brushing time, behavior, and technique. In addition, the users were required to use the toothbrush twice a day for their at-home brushing. The toothbrush had a positive impact on consumers' tooth brushing behavior. Users spent more time brushing their teeth with this toothbrush as compared to their manual toothbrush. In addition, users spent more time keeping the sonic toothbrush in the recommended angle during use. Finally, users perceived their teeth to be cleaner when using the specially engineered sonic powered toothbrush with unique sensing and control technologies. The specially engineered sonic powered toothbrush with unique sensing and control technologies left a positive impression on the users. The users perceived the toothbrush to clean their teeth better than a manual toothbrush.

  5. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    Science.gov (United States)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  6. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  7. Synthesis of biodiesel from castor oil: Silent versus sonicated methylation and energy studies

    International Nuclear Information System (INIS)

    Sáez-Bastante, J.; Pinzi, S.; Jiménez-Romero, F.J.; Luque de Castro, M.D.; Priego-Capote, F.; Dorado, M.P.

    2015-01-01

    Highlights: • Sonicated transesterification leads to higher conversion than conventional one. • Energy consumption required by conventional and ultrasound-assisted transesterification was compared. • Ultrasound-assisted methylation is more competitive in terms of energy than conventional one. - Abstract: In recent years, biodiesel is evolving to be one of the most employed biofuels for partial replacement of petrodiesel. The most widely used feedstocks for biodiesel production are vegetable oils. Among them, castor oil presents two interesting features as biodiesel raw material; on one hand, it does not compete with edible oils; on the other, the cultivar does not require high inputs. In this research, a comparison between conventional and ultrasound-assisted transesterification was carried out in terms of castor oil methyl ester (COME) yield and energy efficiency. Results show that sonicated transesterification leads to higher COME yields under lower methanol-to-oil molar ratio, lower amount of catalyst, shorter reaction time and lower amount of energy required. Ultrasound-assisted transesterification parameters were optimized resulting in the following optimum conditions: 20 kHz fixed frequency, 70% duty cycle, 40% sonication amplitude, 4.87 methanol-to-oil molar ratio, 1.4% w/w amount of catalyst and 3 sonication cycles (3 min 48 s) that provided 86.57% w/w COME yield. The energy required along each type of transesterification was measured leading to the conclusion that sonicated transesterification consumes a significant lower amount of energy than conventional one, thus achieving higher COME yield

  8. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  9. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  10. Use of Biomass Ash as a stabilization agent for expansive marly soils (SE Spain)

    Science.gov (United States)

    Ureña, C.; Azañón, J. M.; Caro, J. M.; Irigaray, C.; Corpas, F.; Ramirez, A.; Rivas, F.; Salazar, L. M.; Mochón, I.

    2012-04-01

    to enhance mechanical properties of expansive soils. Given the widespread use of biomass in industry today, the secondary use of biomass ash might improve the sustainability and efficiency of the biomass generation, incineration and waste management process.

  11. Assessing the environmental impact of coal ash disposal

    International Nuclear Information System (INIS)

    Mudd, G.M.; Kodikara, J.; McKinley, T.

    1997-01-01

    Ash produced from the combustion of brown coal in Victoria's Latrobe Valley is currently slurried into ash disposal ponds for storage. Subsequent to a review of ash production rates at the Loy Yang Power Station, a number of options for ash pond management were considered. These included excavating the aged ash from the existing pond and then depositing them downstream of the pond or into a nearby overburden dump. Prior to the re-classifying of ash, analytical testing was generally conducted on a total concentration basis and did not consider the leachable fraction of various elements from the ash. The current study of ash leaching involved the collection and testing of ash in three states, aged ash, slurry ash, and fresh ash. The analysis confirms that the aged ash, deposited within the disposal pond for 6 to 12 months, has reached the steady state point and can be considered to have a low potential for adverse impact on the beneficial use of groundwater and surface waters when excavated from the pond and dumped at other locations. It should also be noted that batch tests, where the material is shaken overnight, represents a worst case scenario of leaching. Such vigorous mixing would not normally occur in the field and consequently the leachates produced in the field can be expected to have a lower salinity for a longer period of time. (author). 6 tabs., 10 refs

  12. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  13. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  14. The effect of fly ashes in the corrosion and durability in concretes; Efecto de las Cenizas Volantes en la Durabilidad y en la Corrosion en Armaduras del Hormigon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    From the beginning of this century, fly ashes have been the object of a variety of studies and research-looking for different ways of application. The construction industry reuses the highest volume of the fly ash actually produced. Researches carried out on the behaviour of hydraulic blended materials mixed with fly ash have supported the progressive use of these by-products, and simultaneously have opened new ways of application. Spanish fly ash producers together with research centers, as IETcc, have been involved in investigations since 70`s. The last important research carried out has been the one dealing with the durability of concrete made with fly ash and its interaction with the corrosion of reinforcements. In this work five fly ashes of silicon-aluminous type were mixed with portland cement containing low alkali and aluminates in order to enhance the effect of those components from the fly ash. The main goal was to study the degradation mechanisms of concretes made with fly ashes, substituting partially the cement (15 and 35%) in several aggressive media: containing sulfates, chlorides or sea water. The effect to these aggressive media on the durability has also been considered regarding reinforcements. Different type of tests were carried out in laboratory and under natural exposure. In the case of laboratory studies the objectives were: 1) to stablish the mechanisms of hardening. The effect of fly ashes in pozolanic reaction and in the microstructure of the material. 2) Resistance of the addition of fly ashes against chloride and sulfates. Definition of the deterioration mechanisms. 3) Effect of fly ashes on the corrosion of reinforcements. Influence on the passivation process. Resistance against carbonation and chloride attack. (Author)

  15. Differential developmental strategies by Sonic hedgehog in thalamus and hypothalamus.

    Science.gov (United States)

    Zhang, Yuanfeng; Alvarez-Bolado, Gonzalo

    2016-09-01

    The traditional concept of diencephalon (thalamus plus hypothalamus) and with it the entire traditional subdivision of the developing neural tube are being challenged by novel insights obtained by mapping the expression of key developmental genes. A model in which the hypothalamus is placed in the most rostral portion of the neural tube, followed caudally by a diencephalon formed by prethalamus, thalamus and pretectum has been proposed. The adult thalamus and hypothalamus are quite unlike each other in connectivity and functions. Here we review work on the role of the secreted morphogen protein Sonic hedgehog (Shh) in the developing diencephalon and hypothalamic region to show how different these two regions are also from this point of view. Shh from the prechordal plate (PCP) induces and patterns the hypothalamus but there is no evidence that this role is fulfilled by a morphogen gradient. Later, the hypothalamic primordium itself expresses Shh and a large part of the hypothalamus belongs to the Shh lineage, including the ventral domains. Neural Shh is necessary to complete the specification (lateral hypothalamus), differentiation and growth of the hypothalamus. Although Gli2A is the major effector of Shh in this region, hypothalamic specification also depends on the suppression of Gli3R by Shh secreted by the PCP as well as the neuroepithelium. The thalamus is patterned by an Shh morphogen gradient originated in the ZLI following similar mechanisms to those in the spinal cord. The thalamus itself does not belong to the Shh lineage. Gli2A is necessary for appropriate growth and specification of the thalamic nuclei, to the exception of the medial and intralaminar groups (limbic-related), whose development depends on Gli3R. Beyond specification and patterning, the scarce data available about cell sorting and aggregation in these two regions shows key differences between them as well. In summary, not only expression patterns but also developmental mechanisms support

  16. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction.

    Science.gov (United States)

    Mackie, Alexander R; Klyachko, Ekaterina; Thorne, Tina; Schultz, Kathryn M; Millay, Meredith; Ito, Aiko; Kamide, Christine E; Liu, Ting; Gupta, Rajesh; Sahoo, Susmita; Misener, Sol; Kishore, Raj; Losordo, Douglas W

    2012-07-20

    Ischemic cardiovascular disease represents one of the largest epidemics currently facing the aging population. Current literature has illustrated the efficacy of autologous, stem cell therapies as novel strategies for treating these disorders. The CD34+ hematopoetic stem cell has shown significant promise in addressing myocardial ischemia by promoting angiogenesis that helps preserve the functionality of ischemic myocardium. Unfortunately, both viability and angiogenic quality of autologous CD34+ cells decline with advanced age and diminished cardiovascular health. To offset age- and health-related angiogenic declines in CD34+ cells, we explored whether the therapeutic efficacy of human CD34+ cells could be enhanced by augmenting their secretion of the known angiogenic factor, sonic hedgehog (Shh). When injected into the border zone of mice after acute myocardial infarction, Shh-modified CD34+ cells (CD34(Shh)) protected against ventricular dilation and cardiac functional declines associated with acute myocardial infarction. Treatment with CD34(Shh) also reduced infarct size and increased border zone capillary density compared with unmodified CD34 cells or cells transfected with the empty vector. CD34(Shh) primarily store and secrete Shh protein in exosomes and this storage process appears to be cell-type specific. In vitro analysis of exosomes derived from CD34(Shh) revealed that (1) exosomes transfer Shh protein to other cell types, and (2) exosomal transfer of functional Shh elicits induction of the canonical Shh signaling pathway in recipient cells. Exosome-mediated delivery of Shh to ischemic myocardium represents a major mechanism explaining the observed preservation of cardiac function in mice treated with CD34(Shh) cells.

  17. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  18. Fly ash utilization to ecology purpose products

    Energy Technology Data Exchange (ETDEWEB)

    Sasae, T.; Kinugawa, M. (En-Tech Research Institute Inc. (Japan))

    1993-01-01

    Fly ash contains many elements necessary for plant growth. En-Tech Research Institute has a 100 ton/month fly ash granulation plant which produces 0.5-10mm diameter granules which are used in the cultivation of approximately 15,000 Onsidumu and Denpharae orchids in a 3,000 m[sup 2] greenhouse and as a soil improver for a 1,600m[sup 2] test lawn. The granules are also used as agricultural chemical adsorbents for drainage of the test lawn. Orchids cultivated using the fly ash granules are shipped to market as cut flowers regularly. There they fetch the same price or a higher price than orchids cultivated in the usual way. Good results have also been achieved with the soil improvement test and the adsorption test. Tests to obtain design data are being carried out on two golf courses in the Kumamoto Prefecture. 8 figs., 10 tabs., 7 photos.

  19. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China.

    Science.gov (United States)

    Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

  20. Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions.

    Science.gov (United States)

    Ribeiro, João Peres; Vicente, Estela Domingos; Gomes, Ana Paula; Nunes, Maria Isabel; Alves, Célia; Tarelho, Luís A C

    2017-06-01

    An experimental study was conducted at field conditions in order to evaluate the effect of application of ash from biomass combustion on some soil fertility characteristics and plant growth. Application of 7.5 Mg ha -1 industrial fly ash (IA), domestic ash (DA), and a 50:50 mix of domestic ash (DA) and spent coffee grounds (SCG) was made in different soil parcels. Lolium perenne seeds were sown and the grown biomass was harvested and quantified after 60 days. Soil samples from each parcel were also collected after that period and characterized. Both soil and grown biomass samples were analyzed for Ca, Mg, Na, K, P, Fe, Mn, Zn, and Al contents. Soil pH was determined before and after amendment. All applications rose significantly soil pH. Domestic ash, whether combined with coffee grounds or not, proved to be efficient at supplying available macronutrients Ca, Mg, K, and P to the soil and also reducing availability of Al (more than industrial ash). However, it inhibited plant growth, even more when combined with spent coffee grounds. As regards to elemental abundance in plant tissue, both domestic ash treatments reduced Ca and enhanced Al contents, unlike industrial ash, which proved less harmful for the load applied in the soil. Hence, it was possible to conclude that application load should be a limiting factor for this management option for the studied materials.

  1. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  3. Emerald ash borer infestation rates in Michigan, Ohio, and Indiana.

    Science.gov (United States)

    Eric L. Smith; Andrew J. Storer; Bryan K. Roosien

    2009-01-01

    The goal of this study was to obtain an estimate of the infestation rate of ash trees with emerald ash borer (EAB) (Agrilus planipennis, Fairmaire; Coleoptera; Buprestidae), across its primary infestation zone of...

  4. Production of mineral ash-wool

    International Nuclear Information System (INIS)

    Micevic, Z.; Djekic, S.

    1996-01-01

    The project entitled 'Production of Mineral Ash-Wool' presents a new technology of possible use of the fly ash, generated as a waste product from the fossil fueled power plants, as a basic raw material for manufacturing of different products from a new mineral ash-wool. The wide area of mineral ash-wool application (civil engineering, industry, power generation, etc.) and the advantages of this new technology (important raw material obtained free of charge, substitution of expensive silicate stone, use of electric energy for melting instead for coke, vicinity of factory location close to the fossil fueled power plant, lower product price, reduction of environmental pollution, etc.) have resulted in the performance of the bench scale tests. Positive results have been obtained, as a good initial base for the realization of this project. The named study as an detailed analysis has been carried out for the assessment of: supply and sales market, analysis of possible and selection of an optimal location of the factory in the frame of fossil fueled power plant 'Kosovo', selection of the production capacity and alternative preliminary technical designs of the factory for the mineral ash-wool production. For the studied alternatives, specifications and capital investments evaluations for equipment and works (mechanical, civil engineering and electromechanical part) have been made as well as assessments of production costs. Based on the performed economical and financial analyses, as well as the sensitivity analyses one could be concluded that the investments in the factory for the mineral ash-wool production is highly economically acceptable. (author). 1 fig., 1 tab., 3 refs

  5. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    Science.gov (United States)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  6. Reactions to sonic booms: a report of two studies and a general evaluation of startle effects.

    Science.gov (United States)

    Thackray, R I; Touchstone, R M; Bailey, J P

    1975-04-01

    Two separate studies are reported. The first attempted to determine a sonic boom level below which startle would not occurr. Subjects were exposed indoors to six simulated sonic booms having outside overpressures of 50, 30, and 16 N/m-2 (inside levels of 74, 71, and 65 dBA). Approximately 20% of the subjects gave small arm-hand responses to the two higher exposure levels, while none responded to the lowest level. In the second study, subjects were exposed indoors to a series of 12 simulated booms in order to assess habituation effects. Outside overpressures were 130 and 50 N/m-2 (indoor levels of 81 and 72 dBA). Significant, but not complete, habituation occurred to booms of both levels. Autonomic and eyeblink responses, as well as ratings of annoyance, were obtained in both studies. The final section summarizes the expected behavioral, autonomic, and subjective effects of exposure to various levels of sonic booms.

  7. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    Science.gov (United States)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  8. Influence of sonication on the phenolic content and antioxidant activity of Terminalia catappa L. leaves.

    Science.gov (United States)

    Annegowda, H V; Anwar, L N; Mordi, M N; Ramanathan, S; Mansor, S M

    2010-11-01

    This study was designed to evaluate the phenolic content and antioxidant activity of ethanolic extracts from T. catappa leaves obtained by different intervals of sonication. Three commonly used methods were followed to evaluate phenolic content and four in vitro methods like 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assay, ferric reducing antioxidant potency (FRAP), and total antioxidant capacity assays for measuring the antioxidant activities. Antioxidant values of these assays were expressed in terms of milligrams vitamin C equivalent (VCE) antioxidant activities. This study showed that extract obtained with 40 minutes of sonication possessed significant (P catappa leaf above 40 minutes was found to be unsuitable for extracting out phenolic contents. Even the results of antioxidant assays showed that 40 minutes of the sonicated extract exhibited significant (P catappa leaves.

  9. Final Technical Report for “A Heliportable Sonic Drilling Platform for Microhole Drilling and Exploration”

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, Peter [Resodyn Corporation, Butte, MT (United States)

    2008-05-05

    Exploration and development of new energy resources in remote and environmentally sensitive areas can benefit greatly from a reduction in the size of drilling equipment and the associated equipment for its operation. In particular, microhole sonic drilling technology can significantly reduce costs for: 1.) drilling equipment size, 2.) well construction, 3.) placement of subterranean instrumentation and 4.) exploratory drilling costs. The ultimate goal of the project is to provide reliable, small footprint, instrumentation deployment systems that can operate at lower costs and in environmentally sensitive areas that are not accessible to conventional drilling systems. Sonic drilling, combined with an advanced control technology, termed ResonantSonic Tracking™ (RST™) is proposed as a method to meet the DOE requirements.

  10. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

    Science.gov (United States)

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K

    2013-11-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

  11. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    Science.gov (United States)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  12. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose.

    Science.gov (United States)

    Hamid, Sharifah Bee Abd; Zain, Siti Khadijah; Das, Rasel; Centi, Gabriele

    2016-03-15

    The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications. Copyright © 2015. Published by Elsevier Ltd.

  13. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Van Zomeren, André; Comans, Rob N J

    2004-07-15

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC) was investigated with specific attention for the nature of the organic ligands. A competitive ligand exchange-solvent extraction (CLE-SE) method was used to measure Cu binding to DOC. Two types of binding sites for Cu were identified and geochemical modeling showed that the organically bound fraction varied from 82% to 100% between pH 6.6 and 10.6. Model calculations showed that complexation by previously identified aliphatic and aromatic acids was unable to explain the enhanced Cu leaching from the MSWI residues. High-performance size-exclusion chromatography (HPSEC) and the standard extraction procedure to isolate and purify natural organic matter revealed that about 0.5% of DOC consists of humic acids and 14.3-25.6% consists of fulvic acids. Calculated Cu binding isotherms based on these natural organic compounds, and the nonideal competitive adsorption-Donnan (NICA-Donnan) model, provide an adequate description of the organic Cu complexation in the bottom ash leachates. The results show that fulvic acid-type components exist in MSWI bottom ash leachates and are likely responsible for the generally observed enhanced Cu leaching from these residues. These findings enable the use of geochemical speciation programs, which include models and intrinsic parameters for metal binding to natural organic matter, to predict Cu leaching from this widely produced waste material under variable environmental conditions (e.g., pH, ionic strength, and concentrations of competing metals). The identified role of fulvic acids in the leaching of Cu and possibly other heavy metals can also be used in the development of techniques to improve the environmental quality of MSWI bottom ash.

  14. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  15. Proceedings: Ninth international ash use symposium

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of the 1991 International Coal Ash Use Symposium, the ninth in a series since 1967, is to publicize innovations in coal ash technology. The three-volume publication contains 80 papers, presented at seventeen sessions during the January 1991 event. Volume 1 contains papers related to concrete and related products like cellular concrete, and aggregates. This volume before (Volume 2) covers the growing market in waste stabilization/solidification and aquatic uses. Volume 3 brings together papers on a variety of high-volume uses, and R ampersand D projects. Individual projects are processed separately for the databases

  16. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  17. Possibilities for stabilization of fly ash from REK 'Bitola' dump

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica; Ivanovska, Pavlina; Ilievski, Zlatko; Peeva, Liljana

    2002-01-01

    The Coal Power Plants environmental problems, mainly, arise from deposited fly ash-solid particles which, under the influence of the wind, heavily pollute the atmospheric air. Prevention of the environmental problems, coming from spraying from the energetic dumps, is achieved with technical and biological stabilization of dumped fly ash. The choice of the stabilization means and methods depends on the physical-chemical properties of the ash. Therefore, the stabilization possibilities of REK 'Bitola' fly ash were investigated. (Original)

  18. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1999-01-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  19. 488-D Ash Basin Vegetative Cover Treatibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  20. Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate.

    Science.gov (United States)

    Arickx, S; Van Gerven, T; Knaepkens, T; Hindrix, K; Evens, R; Vandecasteele, C

    2007-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is of concern in many countries and may inhibit the beneficial reuse of this secondary material. Previous studies have focused on the role of dissolved organic carbon (DOC) on the leaching of copper. Recently, a study of the Energy Research Centre of The Netherlands (ECN) showed fulvic acid-type components to exist in the MSWI bottom ash leachates and to be likely responsible for the generally observed enhanced copper leaching. These findings were verified for a MSWI bottom ash (slashed circle 0.1-2 mm) fraction from an incinerator in Flanders. The filtered leachates were subjected to the IHSS fractionation procedure to identify and quantify the fractions of humic acid (HA), fulvic acid (FA) and hydrophilic organic carbon (Hi). The possible complexation of fulvic acid with other heavy metals (e.g., lead) was also investigated. The identified role of fulvic acids in the leaching of copper and other heavy metals can be used in the development of techniques to improve the environmental quality of MSWI bottom ash. Thermal treatment and extraction with a 0.2 M ammonium-citrate solution were optimized to reduce the leaching of copper and other heavy metals. The effect of these techniques on the different fractions of organic matter (HA, FA, Hi) was studied. However, due to the obvious drawbacks of the two techniques, research is focused on finding other (new) techniques to treat MSWI bottom ash. In view of this, particle size-based separation was performed to evaluate its effect on heavy metal leaching and on HA, FA and Hi in MSWI bottom ash leachates.

  1. Modification of sonic boom wave forms during propagation from the source to the ground.

    Science.gov (United States)

    Bass, Henry E; Raspet, Richard; Chambers, James P; Kelly, Mark

    2002-01-01

    A number of physical processes work to modify the shape of sonic boom wave forms as the wave form propagates from the aircraft to a receiver on the ground. These include frequency-dependent absorption, nonlinear steepening, and scattering by atmospheric turbulence. In the past two decades, each of these effects has been introduced into numerical prediction algorithms and results compared to experimental measurements. There is still some disagreement between measurements and prediction, but those differences are now in the range of tens of percent. The processes seem to be understood. The present understanding of sonic boom evolution will be presented along with experimental justification.

  2. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    Science.gov (United States)

    Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.

    2014-01-01

    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

  3. A brief argument for, and summary of, the concept of Sonic Virtuality

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2015-01-01

    Sonic virtuality is a conceptualization of sound devised with several purposes in mind. First, it provides a holistic definition of sound that takes account of factors beyond the bare physics of sound waves and their propagation. Second, in providing such a definition, it attempts to explain...... a number of sonic anomalies that existing definitions of sound, of which there are several, do not satisfactorily explain. Third, in its concept of sound as an emergent perception sited within the mind, it provides the conceptual framework to work with sound in the context of new and developing...

  4. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    Science.gov (United States)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  5. Multiple refraction switches realized by stretching elastomeric scatterers in sonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-02-01

    Full Text Available The effect of out-of-plane pre-stretch on the 2D sonic crystal with stretchable elastomeric scatterers is explored. The hyperelastic scatterers are characterized by a compressible neo-Hookean model. The Dirichlet-to-Neumann (DtN map is adopted to obtain the band structure and equi-frequency contours. We focus on the first passband and find that a variety of switching functionalities for refraction behaviors can be realized in selected frequencies under a specific pre-stretch range. These refraction switches enable an active control of wave propagation and are applicable in advanced technologies where switchable and multifunctional sonic crystals are required.

  6. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    Science.gov (United States)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic

  7. Evaluation of fly ash in water reduced paving mixtures.

    Science.gov (United States)

    1985-06-01

    Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete : paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class : C ashes and one Class F ash from Iowa approved sources were examined in each : mix. When Class C...

  8. 77 FR 55895 - Permanent Closure of Cincinnati Blue Ash Airport

    Science.gov (United States)

    2012-09-11

    ... Federal Aviation Administration Permanent Closure of Cincinnati Blue Ash Airport AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of permanent closure of Cincinnati Blue Ash Airport (ISZ). SUMMARY: The... Cincinnati advising that on August 29, 2012, it was permanently closing Cincinnati Blue Ash Airport (ISZ...

  9. Polycyclic aromatic hydrocarbons in municipal waste ashes from ...

    African Journals Online (AJOL)

    The levels of isolated polycyclic aromatic hydrocarbons (PAH) in ash residues of wastes from some major waste dumps in Lagos, Nigeria, were determined. The total amounts of the PAH in the ashes were in the range of 0.06 – 0.4 mg/g. The ash from the waste dump that contains the highest level also displayed greatest ...

  10. STABILIZATION OF EXPANSIVE SOIL USING BAGASSE ASH & LIME

    African Journals Online (AJOL)

    tekimerry

    Keywords: Expansive soil, bagasse ash, lime, plasticity, compaction and strength characteristics. INTRODUCTION. Expansive clays are known to exhibits dual .... Variations of plasticity index with the addition of 3% lime, 15% bagasse ash and 3% lime in combination with/plus 15% bagasse ash are presented in Fig. 1.

  11. Application of sugarcane bagasse ash as a partial cement ...

    African Journals Online (AJOL)

    This study examined the potential use of sugarcane bagasse ash as a partial cement replacement material. In this study, bagasse ash sample was collected from Wonji sugar factory and its chemical properties were investigated. The bagasse ash was then ground until the particles passing the 63μm sieve size reach about ...

  12. Effect of municipal solid waste ash on comprehensive strength ...

    African Journals Online (AJOL)

    The blocks were moulded in a CINVA-Ram machine by replacing 0%, 2%, 5% and 10% of municipal solid waste ash (MSW ash) as a stabilizing agent. The compressive strengths of individual blocks were obtained after curing for 7, 14 and 28 days. The 2%MSW ash replacement gave the highest compressive strength and ...

  13. Emerald ash borer biological control release and recovery guidelines

    Science.gov (United States)

    Juli S. Gould; Leah S. Bauer; Jonathan Lelito; Jian. Duan

    2012-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  14. The chemical composition of tertiary Indian coal ash and its ...

    Indian Academy of Sciences (India)

    coal ash, and a relationship has been established to predict the melting behaviour of the ash (Vassilev et al. 1995; Vassileva and Vassilev 2002). The effects of major oxides, the ratio of silica-alumina. Keywords. Ash Fusion Temperature (AFT); Detrital-authigenic index (DAI); fouling; slagging; abrasion indices. J. Earth Syst.

  15. Evaluation of fly ash quality control tools : tech summary.

    Science.gov (United States)

    2010-06-01

    Many entities currently use fl y ash in portland cement concrete (PCC) pavements and structures. Although : the body of knowledge is great concerning the use of fl y ash, several projects per year are subject to poor : performance where fl y ash is n...

  16. Evaluation of Fly Ash Quality Control Tools : Technical Summary

    Science.gov (United States)

    2010-06-01

    Many entities currently use fl y ash in portland cement concrete (PCC) pavements and structures. Although : the body of knowledge is great concerning the use of fl y ash, several projects per year are subject to poor : performance where fl y ash is n...

  17. Emerald ash borer in Russia: 2009 situation update

    Science.gov (United States)

    Y. Baranchikov; Y. Gninenko; G. Yurchenko

    2011-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a beetle native to East Asia and the Russian Far East where it is considered a minor pest, attacking weakened or dying ash trees. In 2006, EAB was found to be responsible for enormous damage of ash species in Moscow, which causes serious concern for Europe. Recently we reviewed the EAB...

  18. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    Science.gov (United States)

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  19. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    Science.gov (United States)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  20. Mazama and Glacier Peak Volcanic Ash Layers: Relative Ages.

    Science.gov (United States)

    Fryxell, R

    1965-03-12

    Physiographic and stratigraphic evidence supports the regional correlation of two volcanic ash layers with extinct Mount Mazama at Crater Lake, Oregon, and Glacier Peak in the northern Cascade Range of Washington. A radiocarbon age of 12,000 +/- 310 years confirms geological evidence that ash derived from the Glacier Peak eruption is substantially older than ash from the Mazama eruption of 6600 years ago.