WorldWideScience

Sample records for sonars deep water

  1. NMFS Water Column Sonar Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water column sonar data are an important component of fishery independent surveys, habitat studies and other research. NMFS water column sonar data are archived here.

  2. Water Column Sonar Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection and analysis of water column sonar data is a relatively new avenue of research into the marine environment. Primary uses include assessing biological...

  3. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    Science.gov (United States)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  4. Archaeological use of Synthetic Aperture Sonar on deepwater wreck sites in Skagerrak

    DEFF Research Database (Denmark)

    Maarleveld, Thijs J.; Ødegård, Øyvind; Hansen, Roy E.

    2018-01-01

    Marine archaeological surveying in deep waters has so far been challenging, mainly due to operational and technological constraints. The standard tool has been Side Scan Sonar (SSS) towed behind a surface vessel. Synthetic Aperture Sonar (SAS) technology is not subject to the traditional range....../resolution tradeoff, and produces results of considerably higher quality than traditional SSS. In 2015 and 2016 a comprehensive mapping of wrecks in Skagerrak, a large deepwater area off the south coast of Norway was undertaken, using an interferometric SAS system deployed on an autonomous underwater vehicle...

  5. Imaging beneath the skin of large tropical rivers: System morphodynamics of the Fly and Beni Rivers revealed by novel sub-surface sonar, deep coring, and modelling

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2011-12-01

    Tropical rivers dominate Earth's fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories, prolonged periods of flooding, and a clay-dominated sediment flux. However, the underlying bed & floodplain strata are poorly understood. Available data commonly stem from skin-deep approaches such as GIS analysis of imagery, shallow sampling & topographic profiling during lower river stages. Given the large temporal & spatial scales, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can interpret large tropical river morphology using analogies to small temperate systems. Systems in a dynamic state of response to sea level rise or an increase/contrast in sediment load would provide especially valuable insight. Last August we conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~5,350 CMS) and this September we investigated the Beni River in Northern Bolivia (discharge ~3,500 CMS). Results were obtained using a novel measurement method: a high-power (>4kW) dual-frequency SyQwest sub-bottom profiler customized to best image 10-20m below the river/lake bed in shallow water. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), bank samples, and push cores confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS records of water/bed elevations that could be used to parameterize numerical models. We have now analyzed these results in some detail. Findings for the Fly River include: 1) The prevalence of hard clay beneath the bed of the Lower Fly River and many locations along the Strickland River, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River, where the

  6. Monitoring upstream sinkhole development by detailed sonar profiling

    Energy Technology Data Exchange (ETDEWEB)

    Rigbey, S. [Acres International Ltd., Niagara Falls, ON (Canada)

    2004-09-01

    This paper describes the development and use of a simple sonar system that has been used by engineers for routine monitoring of small sinkholes on the upstream face of a distressed earth dam. Improper construction of the dam led to the development of several sinkholes measuring 10 to 20 m in diameter upstream from the dam which is founded on deep alluvial sands and gravels. The dam has a central core of silt and leakage varies between 200 and 500 l/s, depending on the water level of the reservoir. The main issues with the upstream blanket are: improper fill placement due to the inability to dewater the area properly; omission of a filter material between the blanket and the alluvium foundation; thin placement of fill and runnelling of the blanket prior to impoundment; and, short upstream extent of the blanket. A downstream weighting toe of material was placed to address the seepage and piping that developed immediately following impounding. Other incidents continued over the years, such as downstream sinkholes, slumping of the crest and repairs about 12 years after construction. An inverter filter was also constructed to better control the seepage. Simple bathymetric surveys conducted by sounding the bottom of the reservoir from the ice surface each winter revealed the presence of several large sinkholes. Although infilling programs were conducted, sinkholes redeveloped after each program. The bathymetric surveys were found to be limited in accuracy and repeatability. Therefore, it was not possible to monitor small developments on a yearly basis. A 3-dimensional seepage model was developed to reconcile some of the unexplained piezometric patterns and to better understand the seepage patterns. However, this was also unsuccessful on its own. A trial sonar survey was then undertaken in 2002 by a Vancouver-based sonar company using an Imagenix profiling sonar head. It was successful in locating a small, previously unknown sinkhole measuring a few metres in diameter at

  7. Analysis of the Detectability of Sonar Under the Virtual Battlefield

    Directory of Open Access Journals (Sweden)

    Hou Chengyu

    2014-08-01

    Full Text Available Due to the high propagation speed and the low attenuation in the water, the sonar has played a crucial role in developing the ocean resources and the marine target detection. Therefore, simulation of the sonar detectability is indispensable to the virtual battlefield. This paper will combine the background noise model of the ocean, the reverberation model, the target strength model and the transmission loss to build the sonar performance model, and realize the calculation of the sonar detectability. Ultimately, the parameters’ effect in the sonar equation on the performance of the sonar detection is analyzed, and the validity of this model is verified by two serving sonars parameters.

  8. Review: Marine Seismic And Side-Scan Sonar Investigations For Seabed Identification With Sonar System

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-06-01

    Full Text Available Marine seismic reflection data have been collected for decades and since the mid-to late- 1980s much of this data is positioned relatively accurately. Marine geophysical acquisition of data is a very expensive process with the rates regularly ship through dozens of thousands of euros per day. Acquisition of seismic profiles has the position is determined by a DGPS system and navigation is performed by Hypack and Maxview software that also gives all the offsets for the equipment employed in the survey. Examples of some projects will be described in terms of the project goals and the geophysical equipment selected for each survey and specific geophysical systems according to with the scope of work. For amplitude side scan sonar image, and in the multi-frequency system, color, becoming a significant properties of the sea floor, the effect of which is a bully needs to be fixed. The main confounding effect is due to absorption of water; geometric spread; shape beam sonar function (combined transmit-receive sonar beam intensity as a function of tilt angle obtained in this sonar reference frame; sonar vehicle roll; form and function of the seabed backscatter (proportion incident on the seabed backscattered signal to sonar as a function of the angle of incidence relative to the sea floor; and the slope of the seabed. The different angles of view are generated by the translation of the sonar, because of the discrete steps involved by the sequential pings, the angular sampling of the bottom.

  9. Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold

    Directory of Open Access Journals (Sweden)

    Hamed Komari Alaie

    2018-01-01

    Full Text Available This paper presents the results of an experimental investigation about target detecting with passive sonar in Persian Gulf. Detecting propagated sounds in the water is one of the basic challenges of the researchers in sonar field. This challenge will be complex in shallow water (like Persian Gulf and noise less vessels. Generally, in passive sonar, the targets are detected by sonar equation (with constant threshold that increases the detection error in shallow water. The purpose of this study is proposed a new method for detecting targets in passive sonars using adaptive threshold. In this method, target signal (sound is processed in time and frequency domain. For classifying, Bayesian classification is used and posterior distribution is estimated by Maximum Likelihood Estimation algorithm. Finally, target was detected by combining the detection points in both domains using Least Mean Square (LMS adaptive filter. Results of this paper has showed that the proposed method has improved true detection rate by about 24% when compared other the best detection method.

  10. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  11. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    Science.gov (United States)

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  12. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    Science.gov (United States)

    2015-09-30

    Sonar Signals in Norwegian Waters Peter L. Tyack University of St Andrews School of Biology Scottish Oceans Institute East Sands St Andrews...with a tagged minke whale. Data in the top 4 panels were derived from observations from the trackboat (‘ MOB ’). Note the strong change in diving

  13. Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii

    Science.gov (United States)

    Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.

    2018-01-01

    Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.

  14. Use of Multibeam and Dual-Beam Sonar Systems to Observe Cavitating Flow Produced by Ferryboats: In a Marine Renewable Energy Perspective

    Directory of Open Access Journals (Sweden)

    Francisco Francisco

    2017-07-01

    Full Text Available With the prospect to deploy hydrokinetic energy converters in areas with heavy boat traffic, a study was conducted to observe and assess the depth range of cavitating flow produced by ferryboats in narrow channels. This study was conducted in the vicinity of Finnhamn Island in Stockholm Archipelago. The objectives of the survey were to assess whether the sonar systems were able to observe and measure the depth of what can be cavitating flow (in a form of convected cloud cavitation produced by one specific type of ferryboats frequently operating in that route, as well as investigate if the cavitating flow within the wake would propagate deep enough to disturb the water column underneath the surface. A multibeam and a dual-beam sonar systems were used as measurement instruments. The hypothesis was that strong and deep wake can disturb the optimal operation of a hydrokinetic energy converter, therefore causing damages to its rotors and hydrofoils. The results showed that both sonar system could detect cavitating flows including its strength, part of the geometrical shape and propagation depth. Moreover, the boat with a propeller thruster produced cavitating flow with an intense core reaching 4 m of depth while lasting approximately 90 s. The ferry with waterjet thruster produced a less intense cavitating flow; the core reached depths of approximately 6 m, and lasted about 90 s. From this study, it was concluded that multibeam and dual-beam sonar systems with operating frequencies higher than 200 kHz were able to detect cavitating flows in real conditions, as long as they are properly deployed and the data properly analyzed.

  15. Principles of Sonar Performance Modeling

    NARCIS (Netherlands)

    Ainslie, M.A.

    2010-01-01

    Sonar performance modelling (SPM) is concerned with the prediction of quantitative measures of sonar performance, such as probability of detection. It is a multidisciplinary subject, requiring knowledge and expertise in the disparate fields of underwater acoustics, acoustical oceanography, sonar

  16. FPGA-Based Sonar Processing

    National Research Council Canada - National Science Library

    Graham, Paul; Nelson, Brent

    1998-01-01

    This paper presents the application of time-delay sonar beamforming and discusses a multi-board FPGA system for performing several variations of this beamforming method in real-time for realistic sonar arrays...

  17. Mega Scale Constructions and Art on Deep Gulf of Mexico Sonar Images Reveal Extensive Very Ancient Civilizations. Radical Holocene Climate Changes May Relate to Large Shifts in Gulf Surface Areas.

    Science.gov (United States)

    Allen, R. L.

    2017-12-01

    Enhanced images from subsea sonar scanning of the Western Gulf of Mexico have revealed quite large temples (4 km. in length), ruins of cities (14 km. by 11 km.), pyramids, amphitheaters, and many other structures. Some human faces have beards implying much earlier migrations of Europeans or North Africans. Several temples have paleo astronomy alignments and similarities to Stone Henge. Southern and Southwestern USA satellite land images display characteristics in common with several subsea designs. Water depths indicate that many structures go back about as far as the late Ice Age and are likely to be over ten thousand years old. Chronologies of civilizations, especially in North America will need to be seriously reconsidered. Greatly rising sea levels and radical climate changes must have helped to destroy relatively advanced cultures. Suprisingly deep water depths of many architectures provide evidence for closures within the Gulf of Mexico to open seas. Closures and openings may have influenced ancient radical climate swings between warmth and cooling as Gulf contributions to water temperatures contracted or expanded. These creations of very old and surprisingly advanced civilizations need protection.

  18. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Directory of Open Access Journals (Sweden)

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  19. Imaging beneath the skin of large tropical rivers: Clay controls on system morphodynamics revealed by novel CHIRP sub-surface sonar and deep coring along the Fly and Strickland Rivers, Papua New Guinea (Invited)

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2010-12-01

    Tropical rivers dominate Earth’s fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories (in comparison to many temperate rivers), frequent and prolonged periods of flooding, and a clay-dominated sediment flux transported above a sandy bed. However, limited insight is available regarding the underlying bed & floodplain strata -- material that underpins system mobility and morphodynamics. Available data commonly stems from “skin-deep” approaches such as GIS analysis of imagery, shallow sampling of a surface veneer, & topographic profiling during lower river stages. Given the large temporal & spatial scales of such systems, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can usefully interpret large tropical river morphology using direct analogies to observations from small temperate sytems. Systems responding to sea level rise, pending avulsions, or an increase/contrast in sediment load would provide especially valuable insight. We conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~ 5,400 CMS). Immediate results were obtained using a dual-frequency CHIRP sub-bottom profiler optimized for fluvial environments, with which we were able to image 10-20m below the river/lake bed. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), push cores, and cutbank profiles of material strength confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS water/bed elevations. Findings include: 1) The prevalence of hard clay beneath the bed at many locations along the Lower Fly and Strickland Rivers, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River

  20. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    Science.gov (United States)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  1. Sonar backscatter differentiation of dominant macrohabitat types in a hydrothermal vent field.

    Science.gov (United States)

    Durand, Sébastien; Legendre, Pierre; Juniper, S Kim

    2006-08-01

    Over the past 20 years, sonar remote sensing has opened ways of acquiring new spatial information on seafloor habitat and ecosystem properties. While some researchers are presently working to improve sonar methods so that broad-scale high-definition surveys can be effectively conducted for management purposes, others are trying to use these surveying techniques in more local areas. Because ecosystem management is scale-dependent, there is a need to acquire spatiotemporal knowledge over various scales to bridge the gap between already-acquired point-source data and information available at broader scales. Using a 675-kHz single-pencil-beam sonar mounted on the remotely operated vehicle ROPOS, 2200 m deep on the Juan de Fuca Ridge, East Pacific Rise, five dominant habitat types located in a hydrothermal vent field were identified and characterized by their sonar signatures. The data, collected at different altitudes from 1 to 10 m above the seafloor, were depth-normalized. We compared three ways of handling the echoes embedded in the backscatters to detect and differentiate the five habitat types; we examined the influence of footprint size on the discrimination capacity of the three methods; and we identified key variables, derived from echoes that characterize each habitat type. The first method used a set of variables describing echo shapes, and the second method used as variables the power intensity values found within the echoes, whereas the last method combined all these variables. Canonical discriminant analysis was used to discriminate among the five habitat types using the three methods. The discriminant models were constructed using 70% of the data while the remaining 30% were used for validation. The results showed that footprints 20-30 cm in diameter included a sufficient amount of spatial variation to make the sonar signatures sensitive to the habitat types, producing on average 82% correct classification. Smaller footprints produced lower percentages of

  2. Sidescan Sonar Image Matching Using Cross Correlation

    DEFF Research Database (Denmark)

    Thisen, Erik; Sørensen, Helge Bjarup Dissing; Stage, Bjarne

    2003-01-01

    When surveying an area for sea mines with a sidescan sonar, the ability to find the same object in two different sonar images is helpful to determine the nature of the object. The main problem with matching two sidescan sonar images is that a scene changes appearance when viewed from different vi...

  3. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    Science.gov (United States)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  4. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  5. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  6. Colour Sonar: Multi-Frequency Sidescan Sonar Images of the Seabed in the Inner Sound of the Pentland Firth, Scotland

    Directory of Open Access Journals (Sweden)

    Duncan Tamsett

    2016-03-01

    Full Text Available The backscatter response of a seabed to an incident sonar signal is dependent on the carrier wave frequency: i.e., the seabed is acoustically colourful. Colour is implemented in a prototype three-frequency sidescan sonar system deployed in the Pentland Firth, north Scotland. Sonar amplitude data as a function of frequency are processed to render them an unconfounded effect of the seabed normalized to the response at a reference inclination angle, for colour to be a meaningful property of the seabed. Methods for mapping data at sonar frequencies to optical primary colours for human visualisation are explored. We recommend methods that in our opinion generate colour characteristics harmonious with human vision in which: shadow is white; saturation black; colour shade darkness is proportional to backscatter strength; and shades of red, green and blue are seen in proportion to the backscatter amplitudes of the low-, mid- and high-frequency sonar data. Frequency equalisation is applied to achieve a balance in colour responses in images. The seabed in the survey area is acoustically colourful. Using the “negative BGR” colour mapping method: a weakly backscattering sand dune in the north of the survey area appears as shades of light blue and purple; a strongly backscattering halo of cobbles around the dune appears as shades of hazel brown; a strongly backscattering gravel ridge across the south of the survey area appears as shades of royal blue; and exposed rock as textures ranging in colour from light brown to light blue/green. There is evidence for colour anisotropy (a dependence of colour on the direction of ensonification. Similarities between anthropic colour sonar and the natural sonar of Microchiropteran bats are noted. Bats’ sonar satisfies the information criteria for acoustic colour, and it is hypothesized that it informs a colourfully-perceived world view.

  7. A risk function for behavioral disruption of Blainville's beaked whales (Mesoplodon densirostris from mid-frequency active sonar.

    Directory of Open Access Journals (Sweden)

    David Moretti

    Full Text Available There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155 This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.

  8. Multibeam sonar backscatter data processing

    Science.gov (United States)

    Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel

    2018-06-01

    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

  9. Discoveries and Conservation Efforts of Extensive Deep-Sea Coral Habitat off the Southeastern U.S.

    Science.gov (United States)

    Reed, J. K.; Messing, C. G.; Walker, B. K.; Farrington, S.; Brooke, S.; Correa, T.; Brouwer, M.

    2012-12-01

    The deep-sea floor of the Western Atlantic off the southeastern U.S. supports a variety of deep-sea coral ecosystem (DSCE) habitats, including: coral mounds, rock terraces (Miami and Pourtalès Terraces), canyons (Agassiz and Tortugas Valleys), and island slopes (western Bahamas and northern Cuba). We used NOAA bathymetric contour maps and digital elevation models to identify and delineate the areal extent of potential DSCE habitat (50-1000 m) from northeastern Florida through the Straits of Florida. Recently, shipboard and AUV side-scan and multibeam sonar have further documented portions of the region. The resulting maps have been ground-truthed with over 250 submersible and remotely operated vehicle (ROV) dives, revealing that high-relief topographic features, including steep escarpments and rocky terraces, are good predictors of DSCE habitat in this region. The benthic biota is diverse but locally variable; for example, Lophelia and Enallopsammia stony corals dominate the deep-water mounds, whereas stylasterid corals dominate the rocky terraces where Lophelia is sporadic. Octocorals, black corals, and sponges are common at most sites but different species exhibit site-specific distributional variability. In 2011, the first of two NOAA-sponsored cruises using sonar mapping and an ROV discovered the southernmost Lophelia coral mound in the continental United States, south of the Florida Keys, offering the possibility that more Lophelia mounds may exist in this region where they were previously thought to be absent. The second cruise discovered that deep-water Oculina varicosa coral reefs extend over 70 nmi north of the current boundaries of the Oculina Habitat Area of Particular Concern (OHAPC), which was first designated as a marine protected area in 1984. These studies indicate that cold-water coral mounds are significantly more diverse and abundant in this region than previously thought. These research results were presented to NOAA and the South Atlantic

  10. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    Science.gov (United States)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand

  11. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  12. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  13. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  14. Real-Time 3D Sonar Modeling And Visualization

    Science.gov (United States)

    1998-06-01

    looking back towards Manta sonar beam, Manta plus sonar from 1000m off track. 185 NUWC sponsor Erik Chaum Principal investigator Don Brutzman...USN Sonar Officer LT Kevin Byrne USN Intelligence Officer CPT Russell Storms USA Erik Chaum works in NUWC Code 22. He supervised the design and...McGhee, Bob, "The Phoenix Autonomous Underwater Vehicle," chapter 13, AI-BasedMobile Robots, editors David Kortenkamp, Pete Bonasso and Robin Murphy

  15. Adaptive motion compensation in sonar array processing

    NARCIS (Netherlands)

    Groen, J.

    2006-01-01

    In recent years, sonar performance has mainly improved via a significant increase in array ap-erture, signal bandwidth and computational power. This thesis aims at improving sonar array processing techniques based on these three steps forward. In applications such as anti-submarine warfare and mine

  16. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats

    DEFF Research Database (Denmark)

    Hulgard, K.; Ratcliffe, J. M.

    2016-01-01

    to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking...

  17. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is

  18. Side-Scan-Sonar Points for Hudson River, NY

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Side Scan Point Files. These points correspond to individual pings which produced hte side-scan-sonar backscatter imagery. Sonar data were collected November 6 to...

  19. Deep water recycling through time.

    Science.gov (United States)

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-11-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.

  20. U.S. and Australian Mine Warfare Sonar Performance Assessment Using SWAT and Hodgson Models

    National Research Council Canada - National Science Library

    Dubsky, Barbra

    2000-01-01

    The purpose of this thesis was to investigate a shallow coastal region to compile a detailed environmental picture of its sediment composition and water characteristics and from this model MCM sonar...

  1. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  2. Boundary layer structure observed by Shipborne Doppler Sonar in the Suez Canal zone

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, G. (Rome Univ. (Italy). Ist. di Fisica); Mastrantonio, G.; Ricotta, A. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio)

    Observations of the boundary layer with a monostatic Sonar and other instrumentation were carried out in the Suez canal zone in January and March 1979, from the Italian m.v. Salernum on its way to and from a GARP assignment. The Sonar was operated almost continuously throughout the passages. In addition to the intensity records, an off-line Doppler analysis involving the use of the fast Fourier transform of the digitized Sonar echoes has provided the vertical component w of the velocity. In general, because of efficient filtering and of the good quality of the data, a vertical profile of w has been determined for each transmitted pulse. During a prolonged stay in the Bitter lakes vertical profiles of temperature and humidity were also obtained by deploying a tethered balloon. Large temporal and spatial temperature contrasts exist in the canal zone due to the presence of the desert and of large and small bodies of water. The ensuring phenomenology during the time of observation was quite varied.

  3. Long range echo classification for minehunting sonars

    NARCIS (Netherlands)

    Theije, P.A.M. de; Groen, J.; Sabel, J.C.

    2006-01-01

    This paper focesus on single-ping classification of sea mines, at a range of about 400 m, and combining a hull mounted sonar (HMS) and a propelled variable-depth sonar (PDVS). The deleoped classifier is trained and tested on a set of simulated realistic echoes of mines and non-mines. As the mines

  4. Recreational-Grade Sidescan Sonar: Transforming a Low-Cost Leisure Gadget into a High Resolution Riverbed Remote Sensing Tool

    Science.gov (United States)

    Hamill, D. D.; Buscombe, D.; Wheaton, J. M.; Wilcock, P. R.

    2016-12-01

    The size and spatial organization of bed material, bed texture, is a fundamental physical attribute of lotic ecosystems. Traditional methods to map bed texture (such as physical samples and underwater video) are limited by low spatial coverage, and poor precision in positioning. Recreational grade sidescan sonar systems now offer the possibility of imaging submerged riverbed sediments at coverages and resolutions sufficient to identify subtle changes in bed texture, in any navigable body of water, with minimal cost, expertise in sonar, or logistical effort, thereby facilitating the democratization of acoustic imaging of benthic environments, to support ecohydrological studies in shallow water, not subject to the rigors of hydrographic standards, nor the preserve of hydroacoustic expertise and proprietary hydrographic industry software. We investigate the possibility of using recreational grade sidescan sonar for sedimentary change detection using a case study of repeat sidescan imaging of mixed sand-gravel-rock riverbeds in a debris-fan dominated canyon river, at a coverage and resolution that meets the objectives of studies of the effects of changing bed substrates on salmonid spawning. A repeat substrate mapping analysis on data collected between 2012 and 2015 on the Colorado River in Glen, Marble, and Grand Canyons will be presented. A detailed method has been developed to interpret and analyze non-survey-grade sidescan sonar data, encoded within an open source software tool developed by the authors. An automated technique to quantify bed texture directly from sidescan sonar imagery is tested against bed sediment observations from underwater video and multibeam sonar. Predictive relationships between known bed sediment observations and bed texture metrics could provide an objective means to quantify bed textures and to relate changes in bed texture to biological components of an aquatic ecosystem, at high temporal frequency, and with minimal logistical effort

  5. Review of research on sonar imaging technology in China

    Science.gov (United States)

    Guo, Haitao; Li, Renping; Xu, Feng; Liu, Liyuan

    2013-11-01

    Over the past 20 years, sonar imaging technology particularly for the high-technology sector has been a focus of research, in which many developed countries, especially those with coast lines, have been competing with each other. It has seen a rapid development with increasing widespread applications that has played an important and irreplaceable role in underwater exploration with great prospects for social, economic, scientific, and military benefits. The fundamental techniques underlying sonar imaging, including multi-beamforming, synthetic-aperture and inverse synthetic-aperture sonar, acoustic lensing, and acoustical holography, are described in this paper. This is followed by a comprehensive and systematic review on the advantages and disadvantages of these imaging techniques, applicability conditions, development trends, new ideas, new methods, and improvements in old methods over recent years with an emphasis on the situation in China, along with a bold and constructive prediction to some development characteristics of sonar imaging technology in the near future in China. The perspectives presented in this paper are offered with the idea of providing some degree of guidance and promotion of research on sonar imaging technology.

  6. An overview of latest deep water technologies

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 8th Deep Offshore Technology Conference (DOT VIII, Rio de Janeiro, October 30 - November 3, 1995) has brought together renowned specialists in deep water development projects, as well as managers from oil companies and engineering/service companies to discuss state-of-the-art technologies and ongoing projects in the deep offshore. This paper is a compilation of the session summaries about sub sea technologies, mooring and dynamic positioning, floaters (Tension Leg Platforms (TLP) and Floating Production Storage and Off loading (FPSO)), pipelines and risers, exploration and drilling, and other deep water techniques. (J.S.)

  7. Distributary channel meandering and bifurcation patterns on the Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA)

    Science.gov (United States)

    Damuth, John E.; Kolla, Venkatarathnam; Flood, Roger D.; Kowsmann, Renato O.; Monteiro, Marcelo C.; Gorini, Marcus A.; Palma, Jorge J. C.; Belderson, Robert H.

    1983-02-01

    We mapped the distributary channel system of the Amazon deep-sea fan using the GLORIA long-range side-scan sonar. Individual channels were continuously traced for distances of up to 150 km. Channel bifurcation, although observed in only a few places, results in many cases from breaching of channel levees on the outsides of meander loops. Whether both channels remain active after branching or the original channel is abandoned by avulsion generally cannot be determined. The most striking channel characteristic is high sinuosity that results in extensive, intricate, often recurving meanders. Cutoffs and abandoned meander loops (oxbows) are observed in a few places. These meandering channels are comparable in size and appearance to those of mature fluvial systems on land, such as on the lower Mississippi River. The formation, maintenance, and modification of such extensive, well-developed meander systems would seem to require large volumes of continuous turbidity flow through the channels for relatively long time periods. This may challenge the traditional concept that channel formation and modification are accomplished by intermittent or sporadic turbidity-current events. *Present address: Superior Oil Company, 12401 Westheimer, Houston, Texas 77077

  8. Oceanographic data collected during the EX1602 Mission System Shakedown/CAPSTONE Mapping on NOAA Ship OKEANOS EXPLORER in the North Pacific Ocean from 2016-02-12 to 2016-02-17 (NCEI Accession 0145342)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations used the ship's deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp sub-bottom profiler...

  9. Deep Water Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The deep water biodiversity surveys explore and describe the biodiversity of the bathy- and bentho-pelagic nekton using Midwater and bottom trawls centered in the...

  10. The Method of a Standalone Functional Verifying Operability of Sonar Control Systems

    Directory of Open Access Journals (Sweden)

    A. A. Sotnikov

    2014-01-01

    Full Text Available This article describes a method of standalone verifying sonar control system, which is based on functional checking of control system operability.The main features of realized method are a development of the valid mathematic model for simulation of sonar signals at the point of hydroacoustic antenna, a valid representation of the sonar control system modes as a discrete Markov model, providing functional object verification in real time mode.Some ways are proposed to control computational complexity in case of insufficient computing resources of the simulation equipment, namely the way of model functionality reduction and the way of adequacy reduction.Experiments were made using testing equipment, which was developed by department of Research Institute of Information Control System at Bauman Moscow State Technical University to verify technical validity of industrial sonar complexes.On-board software was artificially changed to create malfunctions in functionality of sonar control systems during the verifying process in order to estimate verifying system performances.The method efficiency was proved by the theory and experiment results in comparison with the basic methodology of verifying technical systems.This method could be also used in debugging of on-board software of sonar complexes and in development of new promising algorithms of sonar signal processing.

  11. Environmental challenges of deep water activities

    International Nuclear Information System (INIS)

    Sande, Arvid

    1998-01-01

    In this presentation there are discussed the experiences of petroleum industry, and the projects that have been conducted in connection with the planning and drilling of the first deep water wells in Norway. There are also presented views on where to put more effort in the years to come, so as to increase the knowledge of deep water areas. Attention is laid on exploration drilling as this is the only activity with environmental potential that will take place during the next five years or so. The challenges for future field developments in these water depths are briefly discussed. 7 refs

  12. Digital Signal Processing Applied to the Modernization Of Polish Navy Sonars

    Directory of Open Access Journals (Sweden)

    Marszal Jacek

    2014-04-01

    Full Text Available The article presents the equipment and digital signal processing methods used for modernizing the Polish Navy’s sonars. With the rapid advancement of electronic technologies and digital signal processing methods, electronic systems, including sonars, become obsolete very quickly. In the late 1990s a team of researchers of the Department of Marine Electronics Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, began work on modernizing existing sonar systems for the Polish Navy. As part of the effort, a methodology of sonar modernization was implemented involving a complete replacement of existing electronic components with newly designed ones by using bespoke systems and methods of digital signal processing. Large and expensive systems of ultrasound transducers and their dipping and stabilisation systems underwent necessary repairs but were otherwise left unchanged. As a result, between 2001 and 2014 the Gdansk University of Technology helped to modernize 30 sonars of different types.

  13. Opportunities and constraints of deep water projects

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    While oil output from deep water areas still is scarce, it however has become a reality in water depths over 300 m. Specific constraints linked to these developments lead to the selection of appropriate concepts for production supports. First deep water developments occurred off Brazil (see other articles in this issue) and the Gulf of Mexico and now expand to other areas worldwide, such as the West of Shetland discoveries, the Northern part of the Norwegian waters and potentially West Africa, the Barents sea and South-East Asia. Fixed platforms and compliant towers have shown their limits (in terms of water depth capacity) and new deep water projects mainly rely on tension leg platforms (TLP) and floaters, either FPSOs or semi-sub based. Research is at work on alternative materials for lighter flexible risers and mooring systems. Operators and manufacturers are eager to develop for the 300 m range systems and equipments that could be used with little modification for oil fields located in deeper waters. (author). 1 fig., 1 tab

  14. Okeanos Explorer (EX1703): Howland/Baker PRIMNM and PIPA (ROV/Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will include the use of the ship's deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp...

  15. Okeanos Explorer (EX1702): American Samoa Expedition: Suesuega o le Moana o Amerika Samoa (ROV/Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will include the use of the ship's deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp...

  16. Okeanos Explorer (EX1705): American Samoa, Kingman/Palmyra, Jarvis (ROV & Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will include the use of the ship's deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp...

  17. Okeanos Explorer (EX1706): Johnston Atoll (ROV/Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will include the use of the ship's deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp...

  18. A Study for Optimum Survey Method of Underwater Structure Using the Dual Sonar Sensor

    Directory of Open Access Journals (Sweden)

    Youngseok Kim

    2017-01-01

    Full Text Available We have developed dual sonar equipment and an improved operating method for improving resolution in order to solve the problems of limitations of the optical equipment and the application method of SSS (side scan sonar in the investigation of damage of underwater structures. We analyzed the influence factors of the resolution of sonar data through the comparison of resolution and data quality in indoor test. Also we confirmed the problems about the overlapping area of the dual sonar. Depth and distance were analyzed as major influencing factors for survey angle. Specimens were scanned while adjusting distance and towfish angle according to depth change in order to verify applicability of the developed dual sonar in the field experiment. Optimal resolution was found to be 3 cm in specimen spacing, and 20 sample data items were extracted. We developed the regression model based on the multiple regression analysis and developed the RealDualSONAR-DAQ tool, the dual sonar optimum operating method program based on proposed correlation equations. We can use the developed tools to get the value of the major influencing factors for dual sonar operation and obtain high quality sonar data to analyze damage of underwater structures.

  19. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  20. Deep-water subsea lifting operations

    Energy Technology Data Exchange (ETDEWEB)

    Nestegaard, Arne; Boee, Tormod

    2010-07-01

    Significant costs are related to marine operations in the installation phase of deep water subsea field developments. In order to establish safe operational criteria and procedures for the installation, detailed planning is necessary, including numerical modelling and analysis of the environmental conditions and hydrodynamic loads on the installed object as well as the installation equipment. This paper presents recommendations for modelling and analysis of deep water subsea lifting operations developed for the new DNV RP-H103 [1]. During installation of subsea structures, the highest dynamic forces are most often encountered in the splash zone. Recommendations for estimation of maximum forces will be presented. For small structures and tools, installation through the moon pool of a small installation vessel is often preferred. Calculation methods for loading on structures installed through a moon pool will be presented. During intervention or installation in deep water a significant amplification of amplitude and forces can be experienced when the frequency range of vertical crane tip motion coincides with the natural vertical oscillation of the lift wire and load. Vertical resonance may reduce the operability of the operation. Simplified calculation methods for such operations are presented. (Author)

  1. Evidence of mud diapirism and coral colonies in the ionian sea (central mediterranean from high resolution chirp sonar survey

    Directory of Open Access Journals (Sweden)

    C. Corselli

    2006-06-01

    Full Text Available A chirp sonar survey in the Ionian Sea investigated the Calabrian margin, the Calabrian accretionary wedge, the Taranto Trench and the Apulian foreland. Shallow tectonics structures have been related to deeper ones, recognised on CROP seismic profiles. The identified echo characters have been compared with those described in the modern literature and have been related to different kinds of sediments, on the basis of core samples. Based on echo character and morphology we have recognised: 1 A widespread presence of mounds, up to 50 m high, occurring on the Apulian plateau as isolated mounds in the deepest zones (1600-800 m and in groups in the shallower ones (800-600 m; they have been interpreted as coral mounds, according to a recent discovery of living deep water coral colonies in this zone. 2 Some mud diapirs, isolated or in groups of two or three elements, widespread in the whole study area. In analogy of what has been observed on the Mediterranean Ridge, their presence suggests the activity of deep tectonic structures (thrusts and faults and a reduced thickness (or absence of Messinian evaporites in this part of the Ionian Sea.

  2. Multiresolution 3-D reconstruction from side-scan sonar images.

    Science.gov (United States)

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  3. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  4. Exploration in the Deep water Niger Delta: Technical to Business Perspectives

    International Nuclear Information System (INIS)

    Feeley, M.H.

    2002-01-01

    Prolific source rocks, high quality deep water reservoirs and a high technical success rate in finding hydrocarbons make the Nigeria deep water one of the top exploration opportunities in the world. Several major discoveries have resulted from exploration on blocks awarded in 1993. Enthusiastic participation by industry in the 2000 Tender Round clearly indicates the continuing appeal of deep water exploration in Nigeria.Commercially, challenges still exist in the Nigerian deep water. Industry has spent more than $2 Billion USD on exploration and appraisal, yet only a handful of developments are moving forward to development. First oil from the deep water is not expected until 2004, 11 years after acreage award and 8 years after discovery. Tougher economic terms, OPEC quota constraints, an abundance of deep water gas, lengthy approval processes and high up-front bonus and exploration costs challenge the economic returns on deep water gas, lengthy approval processes and high up-front bonus and exploration costs challenge the economic returns on deep water investments. Will deep water exploration, development and production deliver the financial returns industry expected when it signed up for the blocks 10 years ago? What are the indications for the 2000 Tender Round blocks?A good explorer learns form experience. What can be learned technically and commercially by looking back over the results of the last 10 years of exploration in Nigeria's deep water? A perspective is provided on the successes, the failures and the challenges to be overcome in realizing the commercial potential of the basin

  5. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  6. Barbabos Deep-Water Sponges

    NARCIS (Netherlands)

    Soest, van R.W.M.; Stentoft, N.

    1988-01-01

    Deep-water sponges dredged up in two locations off the west coast of Barbados are systematically described. A total of 69 species is recorded, among which 16 are new to science, viz. Pachymatisma geodiformis, Asteropus syringiferus, Cinachyra arenosa, Theonella atlantica. Corallistes paratypus,

  7. NPS ARIES Forward Look Sonar Integration

    National Research Council Canada - National Science Library

    Healey, A. J; Horner, D. P

    2004-01-01

    This work integrated an experimental Blazed Array Forward Looking Sonar (FLS) developed by the University of Washington, Applied Physics Laboratories into the ARIES autonomous underwater vehicle (AUV...

  8. Okeanos Explorer (EX1606): CAPSTONE Wake Island Unit PRIMNM (ROV & Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, ADCPs, and Knudsen 3260 chirp...

  9. Okeanos Explorer (EX1608): FY17 Ship and ROV Shakedown

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, ADCPs, and Knudsen 3260 chirp...

  10. Okeanos Explorer (EX1602): Mission System Shakedown/CAPSTONE Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp sub-bottom...

  11. Okeanos Explorer (EX1605L2): CAPSTONE CNMI and Mariana Trench MNM (Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, ADCPs, and Knudsen 3260 chirp...

  12. Revised estimate for the radiocarbon age of North Atlantic deep water

    International Nuclear Information System (INIS)

    Broecker, W.S.

    1979-01-01

    The extent to which the admixture of water of Antarctic origin influences the 14 C/C ratio in North Atlantic deep water (NADW) has been heretofore underestimated. When this correction is properly made, a ventilation time for the deep western Atlantic is reduced to only about 100 years. The production rate of the northern component of NADW entering the western basin must be of the order of 30 Sv. If this northern component water is assumed to be the major supplier of new 14 C to the deep sea, the carbon isotope ventilation time of the world deep ocean must be of the order of 900 years. However, since the new deep waters formed around the perimeter of the Antarctic are thought to enter the deep sea at a rate of about 20 Sv, the water ventilation time for the deep sea is of the order of 550 years

  13. A Mobile Robot Sonar System with Obstacle Avoidance.

    Science.gov (United States)

    1994-03-01

    WITH OBSTACLE - AVOIDANCE __ by __ Patrick Gerard Byrne March 1994 Thesis Advisor : Yutaka Kanayama Approved for public release; distribution is...point p is on a line L whose normal has an orientation a and whose distance from the origin is r (Figure 5). This method has an advantage in expressing...sonar(FRONTR); Wine(&pl); while(hitl I >’- 100.0 11 hitl 1 - 0.0 ){ hitl I = sonar(FRONTR); I skipO; line(&p3); gat- robO (&posit 1); while(positl.x

  14. Deep challenges for China's war on water pollution.

    Science.gov (United States)

    Han, Dongmei; Currell, Matthew J; Cao, Guoliang

    2016-11-01

    China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.

  15. Adaptive beamforming for low frequency SAS imagery and bathymetry

    NARCIS (Netherlands)

    Hayes, M.P.; Hunter, A.J.

    2012-01-01

    Synthetic aperture side-scan sonar (SAS) is a mature technology for high-resolution sea floor imaging [1]. Interferometric synthetic aperture sonars (InSAS) use additional hydrophones in a vertical array for bathymetric mapping [2]. This has created high-resolution bathymetry in deep water

  16. Okeanos Explorer (EX1701): Kingman/Palmyra, Jarvis (Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will include the use of the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, ADCPs, and Knudsen...

  17. Airborne Low-Frequency Sonar (ALFS) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The ALFS lab is dedicated to support acoustic data analysis and processing software support to the AN/AQS-22 dipping sonar system. It includes stand-alone Software...

  18. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...

  19. Olympic Coast National Marine Sanctuary - mos120_0602b - Side scan sonar mosaic from survey effort 120_0602

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (70-90 m water depths) was mosaiced from acoustic data collected in 2006 aboard the R/V Tatoosh. A Klein System 3000...

  20. Olympic Coast National Marine Sanctuary - mos120_0602a - Side scan sonar mosaic from survey effort 120_0602

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (35-55 m water depths) was mosaiced from acoustic data collected in 2006 aboard the R/V Tatoosh. A Klein System 3000...

  1. Olympic Coast National Marine Sanctuary - mos122_0702.tif - Side scan sonar mosaic from survey effort 122_0702.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (15-35 m water depths) was mosaiced from acoustic data collected in 2007 aboard the R/V Tatoosh. A Klein System 3000...

  2. Multi-sourced, 3D geometric characterization of volcanogenic karst features: Integrating lidar, sonar, and geophysical datasets (Invited)

    Science.gov (United States)

    Sharp, J. M.; Gary, M. O.; Reyes, R.; Halihan, T.; Fairfield, N.; Stone, W. C.

    2009-12-01

    Karstic aquifers can form very complex hydrogeological systems and 3-D mapping has been difficult, but Lidar, phased array sonar, and improved earth resistivity techniques show promise in this and in linking metadata to models. Zacatón, perhaps the Earth’s deepest cenote, has a sub-aquatic void space exceeding 7.5 x 106 cubic m3. It is the focus of this study which has created detailed 3D maps of the system. These maps include data from above and beneath the the water table and within the rock matrix to document the extent of the immense karst features and to interpret the geologic processes that formed them. Phase 1 used high resolution (20 mm) Lidar scanning of surficial features of four large cenotes. Scan locations, selected to achieve full feature coverage once registered, were established atop surface benchmarks with UTM coordinates established using GPS and Total Stations. The combined datasets form a geo-registered mesh of surface features down to water level in the cenotes. Phase 2 conducted subsurface imaging using Earth Resistivity Imaging (ERI) geophysics. ERI identified void spaces isolated from open flow conduits. A unique travertine morphology exists in which some cenotes are dry or contain shallow lakes with flat travertine floors; some water-filled cenotes have flat floors without the cone of collapse material; and some have collapse cones. We hypothesize that the floors may have large water-filled voids beneath them. Three separate flat travertine caps were imaged: 1) La Pilita, which is partially open, exposing cap structure over a deep water-filled shaft; 2) Poza Seca, which is dry and vegetated; and 3) Tule, which contains a shallow (<1 m) lake. A fourth line was run adjacent to cenote Verde. La Pilita ERI, verified by SCUBA, documented the existence of large water-filled void zones ERI at Poza Seca showed a thin cap overlying a conductive zone extending to at least 25 m depth beneath the cap with no lower boundary of this zone evident

  3. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    Science.gov (United States)

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Reliability of fish size estimates obtained from multibeam imaging sonar

    Science.gov (United States)

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of

  5. Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1995-01-01

    Full Text Available Flow-induced structural noise of a sonar dome in which the sonar transducer is housed, constitutes a major source of self-noise above a certain speed of the vessel. Excitation of the sonar dome structure by random pressure fluctuations in turbulent boundary layer flow leads to acoustic radiation into the interior of the dome. This acoustic radiation is termed flow-induced structural noise. Such noise contributes significantly to sonar self-noise of submerged vessels cruising at high speed and plays an important role in surface ships, torpedos, and towed sonars as well. Various turbulent boundary layer wall pressure models published were analyzed and the most suitable analytical model for the sonar dome application selected while taking into account high frequency, fluid loading, low wave number contribution, and pressure gradient effects. These investigations included type of coupling that exists between turbulent boundary layer pressure fluctuations and dome wall structure of a typical sonar dome. Comparison of theoretical data with measured data onboard a ship are also reported.

  6. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  7. How man-made interference might cause gas bubble emboli in deep diving whales

    Directory of Open Access Journals (Sweden)

    Andreas eFahlman

    2014-01-01

    Full Text Available Recent cetacean mass strandings in close temporal and spatial association with sonar activity has raised the concern that anthropogenic sound may harm breath-hold diving marine mammals. Necropsy results of the stranded whales have shown evidence of bubbles in the tissues, similar to those in human divers suffering from decompression sickness (DCS. It has been proposed that changes in behavior or physiological responses during diving could increase tissue and blood N2 levels, thereby increasing DCS risk. Dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked and Cuvier’s beaked whales before and during exposure to low- (1-2 kHz and mid- (2-7 kHz frequency active sonar were used to estimate the changes in blood and tissue N2 tension (PN2. Our objectives were to determine if differences in 1 dive behavior or 2 physiological responses to sonar are plausible risk factors for bubble formation. The theoretical estimates indicate that all species may experience high N2 levels. However, unexpectedly, deep diving generally result in higher end-dive PN2 as compared with shallow diving. In this focused review we focus on three possible explanations: 1 We revisit an old hypothesis that CO2, because of its much higher diffusivity, form bubble precursors that continue to grow in N2 supersaturated tissues. Such a mechanism would be less dependent on the alveolar collapse depth but affected by elevated levels of CO2 following a burst of activity during sonar exposure. 2 During deep dives, a greater duration of time might be spent at depths where gas exchange continues as compared with shallow dives. The resulting elevated levels of N2 in deep diving whales might also make them more susceptible to anthropogenic disturbances. 3 Extended duration of dives even at depths beyond where the alveoli collapse could result in slow continuous accumulation of N2 in the adipose tissues that eventually becomes a liability.

  8. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    International Nuclear Information System (INIS)

    McKee, Shawn; Lake, Andrew; Laurens, Philippe; Severini, Horst; Wlodek, Tomasz; Wolff, Stephen; Zurawski, Jason

    2012-01-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  9. Reprint of - Deep-sea coral and hardbottom habitats on the west Florida slope, eastern Gulf of Mexico

    Science.gov (United States)

    Ross, Steve W.; Rhode, Mike; Brooke, Sandra

    2017-09-01

    Until recently, benthic habitats dominated by deep-sea corals (DSC) appeared to be less extensive on the slope of the Gulf of Mexico (GOM) than in the northeast Atlantic Ocean or off the southeastern US. There are relatively few bioherms (i.e., coral-built mounds) in the northern GOM, and most DSCs are attached to existing hard substrata (e.g., authigenically formed carbonate). The primary structure-forming, DSC in the GOM is Lophelia pertusa, but structure is also provided by other living and dead scleractinians, antipatharians (black corals), octocorals (gorgonians, soft corals), hydrocorals and sponges, as well as abundant rocky substrata. The best development of DSCs in the GOM was previously documented within Viosca Knoll oil and gas lease blocks 826 and 862/906 (north-central GOM) and on the Campeche Bank (southern GOM in Mexican waters). This paper documents extensive deep reef ecosystems composed of DSC and rocky hard-bottom recently surveyed on the West Florida Slope (WFS, eastern GOM) during six research cruises (2008-2012). Using multibeam sonar, CTD casts, and video from underwater vehicles, we describe the physical and oceanographic characteristics of these deep reefs and provide size or area estimates of deep coral and hardground habitats. The multibeam sonar analyses revealed hundreds of mounds and ridges, some of which were subsequently surveyed using underwater vehicles. Mounds and ridges in <525 m depths were usually capped with living coral colonies, dominated by L. pertusa. An extensive rocky scarp, running roughly north-south for at least 229 km, supported lower abundances of scleractinian corals than the mounds and ridges, despite an abundance of settlement substrata. Areal comparisons suggested that the WFS may exceed other parts of the GOM slope in extent of living deep coral coverage and other deep-reef habitat (dead coral and rock). The complex WFS region warrants additional studies to better understand the influences of oceanography and

  10. DeepBlow - a Lagrangian plume model for deep water blowouts

    International Nuclear Information System (INIS)

    Johansen, Oeistein

    2000-01-01

    This paper presents a sub-sea blowout model designed with special emphasis on deep-water conditions. The model is an integral plume model based on a Lagrangian concept. This concept is applied to multiphase discharges in the formation of water, oil and gas in a stratified water column with variable currents. The gas may be converted to hydrate in combination with seawater, dissolved into the plume water, or leaking out of the plume due to the slip between rising gas bubbles and the plume trajectory. Non-ideal behaviour of the gas is accounted for by the introduction of pressure- and temperature-dependent compressibility z-factor in the equation of state. A number of case studies are presented in the paper. One of the cases (blowout from 100 m depth) is compared with observations from a field experiment conducted in Norwegian waters in June 1996. The model results are found to compare favourably with the field observations when dissolution of gas into seawater is accounted in the model. For discharges at intermediate to shallow depths (100-250 m), the two major processes limiting plume rise will be: (a) dissolution of gas into ambient water, or (b) bubbles rising out of the inclined plume. These processes tend to be self-enforcing, i.e., when a gas is lost by either of these processes, plume rise tends to slow down and more time will be available for dissolution. For discharges in deep waters (700-1500 m depth), hydrate formation is found to be a dominating process in limiting plume rise. (Author)

  11. High frequency sonar variability in littoral environments: Irregular particles and bubbles

    Science.gov (United States)

    Richards, Simon D.; Leighton, Timothy G.; White, Paul R.

    2002-11-01

    Littoral environments may be characterized by high concentrations of suspended particles. Such suspensions contribute to attenuation through visco-inertial absorption and scattering and may therefore be partially responsible for the observed variability in high frequency sonar performance in littoral environments. Microbubbles which are prevalent in littoral waters also contribute to volume attenuation through radiation, viscous and thermal damping and cause dispersion. The attenuation due to a polydisperse suspension of particles with depth-dependent concentration has been included in a sonar model. The effects of a depth-dependent, polydisperse population of microbubbles on attenuation, sound speed and volume reverberation are also included. Marine suspensions are characterized by nonspherical particles, often plate-like clay particles. Measurements of absorption in dilute suspensions of nonspherical particles have shown disagreement with predictions of spherical particle models. These measurements have been reanalyzed using three techniques for particle sizing: laser diffraction, gravitational sedimentation, and centrifugal sedimentation, highlighting the difficulty of characterizing polydisperse suspensions of irregular particles. The measurements have been compared with predictions of a model for suspensions of oblate spheroids. Excellent agreement is obtained between this model and the measurements for kaolin particles, without requiring any a priori knowledge of the measurements.

  12. A wideband connection to sperm whales: A fiber-optic, deep-sea hydrophone array

    DEFF Research Database (Denmark)

    Heerfordt, Anders; Møhl, Bertel; Wahlberg, Magnus

    2007-01-01

    A 10-element, 950 m long, vertical hydrophone array based on fiber-optic data transmission has been developed primarily for studying the beam pattern from deep diving cetaceans emitting sonar pulses. The array elements have a configurable sampling rate and resolution with a maximum signal bandwidth...

  13. Mid-Frequency Sonar Interactions with Beaked Whales

    National Research Council Canada - National Science Library

    Foote, Kenneth G; Feijoo, Gonzalo R; Rye, Kent; Reidenberg, Joy; Hastings, Mardi

    2007-01-01

    The top-level goal of this project is to build an interactive online modeling and visualization system, called the Virtual Beaked Whale, to enable users to predict mid-frequency sonar-induced acoustic...

  14. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  15. A novel approach to surveying sturgeon using side-scan sonar and occupancy modeling

    Science.gov (United States)

    Flowers, H. Jared; Hightower, Joseph E.

    2013-01-01

    Technological advances represent opportunities to enhance and supplement traditional fisheries sampling approaches. One example with growing importance for fisheries research is hydroacoustic technologies such as side-scan sonar. Advantages of side-scan sonar over traditional techniques include the ability to sample large areas efficiently and the potential to survey fish without physical handling-important for species of conservation concern, such as endangered sturgeons. Our objectives were to design an efficient survey methodology for sampling Atlantic Sturgeon Acipenser oxyrinchus by using side-scan sonar and to developmethods for analyzing these data. In North Carolina and South Carolina, we surveyed six rivers thought to contain varying abundances of sturgeon by using a combination of side-scan sonar, telemetry, and video cameras (i.e., to sample jumping sturgeon). Lower reaches of each river near the saltwater-freshwater interface were surveyed on three occasions (generally successive days), and we used occupancy modeling to analyze these data.We were able to detect sturgeon in five of six rivers by using these methods. Side-scan sonar was effective in detecting sturgeon, with estimated gear-specific detection probabilities ranging from 0.2 to 0.5 and river-specific occupancy estimates (per 2-km river segment) ranging from 0.0 to 0.8. Future extensions of this occupancy modeling framework will involve the use of side-scan sonar data to assess sturgeon habitat and abundance in different river systems.

  16. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  17. Deep water overflow in the Faroe Bank Channel; modelling, processes, and impact

    DEFF Research Database (Denmark)

    Rullyanto, Arief

    , creating new water masses with distinct temperature, salinity and density characteristics. The change of water mass characteristics not only affects the local environment, but also far distant regions. The Faroe Bank Channel, which is located in the southern part of Faroe Islands, is one of the most...... under different circumstances. The focus is on the Faroe Bank Channel, a relatively small region, which has a significant impact on the global ocean circulation and marine organisms that live in its environment....... or tides, but also deep beneath the surface, where deep-water currents circulate waters throughout the world’s oceans. In certain very-localized regions, the flow of the deep-water has to travel over a sill in a narrow submarine channel. This overflow process mixes the deep water with overlying waters...

  18. An integrated environment for fast development and performance assessment of sonar image processing algorithms - SSIE

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1996-01-01

    The sonar simulator integrated environment (SSIE) is a tool for developing high performance processing algorithms for single or sequences of sonar images. The tool is based on MATLAB providing a very short lead time from concept to executable code and thereby assessment of the algorithms tested...... of the algorithms is the availability of sonar images. To accommodate this problem the SSIE has been equipped with a simulator capable of generating high fidelity sonar images for a given scene of objects, sea-bed AUV path, etc. In the paper the main components of the SSIE is described and examples of different...... processing steps are given...

  19. On the design and construction of drifting-mine test targets for sonar, radar and electro-optical detection experiments

    NARCIS (Netherlands)

    Dol, H.S.

    2014-01-01

    The timely detection of small hazardous objects at the sea surface, such as drifting mines, is challenging for ship-mounted sensor systems, both for underwater sensor systems like sonar and above-water sensor systems like radar and electro-optics (lidar, infrared/visual cameras). This is due to the

  20. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    CERN Document Server

    McKee, S; The ATLAS collaboration; Laurens, P; Severini, H; Wlodek, T; Wolff, S; Zurawski, J

    2012-01-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multidomain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit[8] at ATLAS sites in the United States. This software cr...

  1. A novel underwater dam crack detection and classification approach based on sonar images.

    Science.gov (United States)

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  2. A novel underwater dam crack detection and classification approach based on sonar images.

    Directory of Open Access Journals (Sweden)

    Pengfei Shi

    Full Text Available Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  3. Deep-water fisheries at the Atlantic Frontier

    Science.gov (United States)

    Gordon, J. D. M.

    2001-05-01

    The deep sea is often thought of as a cold, dark and uniform environment with a low-fish biomass, much of which is highly adapted for life in a food-poor environment. While this might be true of the pelagic fish living in the water column, it is certainly not true of the demersal fish which live on or close to the bottom on the continental slopes around the British Isles (the Atlantic Frontier). These fish are currently being commercially exploited. There is growing evidence to support the view that success of the demersal fish assemblages depends on the pelagic or benthopelagic food sources that impinge both vertically and horizontally onto the slope. There are several quite separate and distinct deep-water fisheries on the Atlantic Frontier. It is a physical barrier, the Wyville-Thomson Ridge, which results in the most significant division of the fisheries. The Ridge, which has a minimum depth of about 500 m, separates the warmer deep Atlantic waters from the much colder Norwegian Sea water and as a result, the deep-water fisheries to the west of the Hebrides and around the offshore banks are quite different from those of the Faroe-Shetland Channel (West of Shetland). The fisheries to the West of the Hebrides can be further divided by the fishing method used into bottom trawl, semipelagic trawl and longline. The bottom-trawl fisheries extend from the shelf-slope break down to about 1700 m and the target species varies with depth. The smallest vessels in the fleet fish on the upper slope, where an important target species is the anglerfish or monkfish ( Lophius spp.). On the mid-slope the main target species are blue ling ( Molva dypterygia) and roundnose grenadier ( Coryphaenoides rupestris), with bycatches of black scabbardfish ( Aphanopus carbo) and deep-water sharks. On the lower slope orange roughy ( Hoplostethus atlanticus) is an important target species. The major semipelagic trawl fishery is a seasonal fishery on spawning aggregations of blue whiting

  4. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  5. Deep and shallow water effects on developing preschoolers' aquatic skills.

    Science.gov (United States)

    Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta

    2012-05-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (pdeep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.

  6. Cardiovascular responses during deep water running versus shallow water running in school children

    Directory of Open Access Journals (Sweden)

    Anerao Urja M, Shinde Nisha K, Khatri SM

    2014-03-01

    Full Text Available Overview: As the school going children especially the adolescents’ need workout routine; it is advisable that the routine is imbibed in the school’s class time table. In India as growing number of schools provide swimming as one of the recreational activities; school staff often fails to notice the boredom that is caused by the same activity. Deep as well as shallow water running can be one of the best alternatives to swimming. Hence the present study was conducted to find out the cardiovascular response in these individuals. Methods: This was a Prospective Cross-Sectional Comparative Study done in 72 healthy school going students (males grouped into 2 according to the interventions (Deep water running and Shallow water running. Cardiovascular parameters such as Heart rate (HR, Saturation of oxygen (SpO2, Maximal oxygen consumption (VO2max and Rate of Perceived Exertion (RPE were assessed. Results: Significant improvements in cardiovascular parameters were seen in both the groups i.e. by both the interventions. Conclusion: Deep water running and Shallow water running can be used to improve cardiac function in terms of various outcome measures used in the study.

  7. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    Science.gov (United States)

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  8. Deep water characteristics and circulation in the South China Sea

    Science.gov (United States)

    Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin

    2018-04-01

    This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.

  9. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.

    Science.gov (United States)

    Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek

    2017-08-24

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.

  10. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  11. HULU SUNGAI PERAK BED SEDIMENT MAPPING USING UNDERWATER ACOUSTIC SONAR

    Directory of Open Access Journals (Sweden)

    N. Arriafdi

    2016-09-01

    Full Text Available Development in acoustic survey techniques in particular side scan sonar have revolutionized the way we are able to image, map and understand the riverbed environment. It is now cost effective to image large areas of the riverbed using these techniques and the backscatter image created from surveys provides base line data from which thematic maps of the riverbed environment including maps of morphological geology, can be derived when interpreted in conjunction with in situ sampling data. This article focuses on investigation characteristics of sediments and correlation of side scan backscatter image with signal strength. The interpretation of acoustic backscatter rely on experienced interpretation by eye of grey scale images produced from the data. A 990F Starfish Side Scan Sonar was used to collect and develop a series of sonar images along 6 km of Hulu Sungai Perak. Background sediments could be delineated accurately and the image textures could be linked to the actual river floor appearance through grab sampling. A major difference was found in the acoustic returns from the two research area studies: the upstream area shows much rougher textures. This is due to an actual differences in riverbed roughness, caused by a difference in bottom currents and sediment dynamics in the two areas. The highest backscatter correlates with coarsest and roughness sediment. Result suggest that image based backscatter classification shows considerable promise for interpretation of side scan sonar data for the production of geological maps.

  12. Deep-water northern Gulf of Mexico hydrocarbon plays

    International Nuclear Information System (INIS)

    Peterson, R.H.; Cooke, D.W.

    1995-01-01

    The geologic setting in the deep-water (depths greater than 1,500 feet) Gulf of Mexico is very favorable for the existence of large, commercial hydrocarbon accumulations. These areas have active salt tectonics that create abundant traps, underlying mature Mesozoic source rocks that can be observed expelling oil and gas to the ocean surface, and good quality reservoirs provided by turbidite sand deposits. Despite the limited amount of drilling in the deep-water Gulf of Mexico, 11 deep-water accumulations have been discovered which, when developed, will rank in the top 100 largest fields in the Gulf of Mexico. Proved field discoveries (those with announced development plans) have added over 1 billion barrels of oil equivalent to Gulf of Mexico reserves, and unproved field discoveries may add to additional billion barrels of oil equivalent. The Minerals Management Service, United States Department of the Interior, has completed a gulf-wide review of over 1,086 oil and gas fields and placed every pay sand in each field into a hydrocarbon play (plays are defined by chronostratigraphy, lithostratigraph, structure, and production). Seven productive hydrocarbon plays were identified in the deep-water northern Gulf of Mexico. Regional maps illustrate the productive limits of each play. In addition, field data, dry holes, and wells with sub-economic pay were added to define the facies and structural limits for each play. Areas for exploration potential are identified for each hydrocarbon play. A type field for each play is chosen to demonstrate the play's characteristics

  13. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  14. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  15. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    Science.gov (United States)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  16. Recent Developments in SOBEK Passive Sonar Technology

    NARCIS (Netherlands)

    Hunter, A.J.; Fillinger, L.; Zampolli, M.; Clarijs, M.C.

    2012-01-01

    Surveillance of waterside locations for protection against threats from small fast surface vessels and underwater intruders is a very relevant but challenging problem. For this reason, the Netherlands Organisation for Applied Scientific Research (TNO) is developing SOBEK – a family of passive sonar

  17. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  18. Sensor Fusion - Sonar and Stereo Vision, Using Occupancy Grids and SIFT

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Bendtsen, Jan Dimon

    2006-01-01

    to the occupied and empty regions. SIFT (Scale Invariant Feature Transform) feature descriptors are  interpreted using gaussian probabilistic error models. The use of occupancy grids is proposed for representing the sonar  as well as the features descriptors readings. The Bayesian estimation approach is applied...... to update the sonar and the SIFT descriptors' uncertainty grids. The sensor fusion yields a significant reduction in the uncertainty of the occupancy grid compared to the individual sensor readings....

  19. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  20. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  1. Biologically-inspired radar and sonar lessons from nature

    CERN Document Server

    Balleri, Alessio; Baker, Chris

    2017-01-01

    This book presents some of the recent work that has been carried out to investigate how sophisticated sensing techniques used in nature can be applied to radar and sonar systems to improve their performance.

  2. A new data transmission system for deep water applications

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    A novel data transmission system is now available. Conventional data transmission methods include systems that require satellites, hard wires, fiber optics and other methods that do not lend themselves to buried, remote, or deep water applications. The Data Transmission System (DTS) induces a signal into a structure such as the transmission line and retrieving the signal at a distant point. In deep water applications the power required comes from an anode array that generates its own power. In addition to deep water applications, the DTS can be used in onshore, drilling, and downhole applications. With repeater stations, most lengths of gathering and transmission lines can be used. Therefore data from control valves, strain gauges, corrosion monitoring, sand monitoring, valve position and other process variables can all be transmitted. Comparisons are made between the different data transmission systems showing the advantages and disadvantages of each type with comparative costs showing the advantages of the new DTS system. (author)

  3. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts.

    Science.gov (United States)

    Schramm, Chaim A; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic "birthday" trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.

  4. Side-Scan-Sonar Lines for Hudson River, NY

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Side Scan Sonar and Subbottom Profiler Tracklines. Data was collected November 5 to December 15, 2009, in the estuary north from Saugerties to Troy. Fugro utilized...

  5. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    Science.gov (United States)

    Twichell, David C.; Schwab, William C.; Nelson, C. Hans; Kenyon, Neil H.; Lee, Homa J.

    1992-01-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  6. ASSESSMENT OF THE DEEP SEA WRECK USS INDEPENDENCE

    Directory of Open Access Journals (Sweden)

    Lisa C. Symons

    2016-07-01

    Full Text Available As part of ongoing efforts to better understand the nature of shipwrecks in National Marine Sanctuaries which may pose some level of pollution risk, and in this case, to definitively locate what is likely the only shipwreck in a sanctuary involved in both nuclear testing and nuclear waste disposal, NOAA’s Office of National Marine Sanctuaries collaborated with NOAA’s Office of Ocean Exploration and The Boeing Company, which provided their autonomous underwater vehicle, Echo Ranger, to conduct the first deep-water archaeological survey of the scuttled aircraft carrier USS Independence in the waters of Monterey Bay National Marine Sanctuary (MBNMS in March 2015. The presence of the deep-sea scuttled radioactive aircraft carrier USS Independence off the California coast has been the source of consistent media speculation and public concern for decades. The survey confirmed that a sonar target charted at the location was Independence, and provided details on the condition of the wreck, and revealed no detectable levels of radioactivity. At the same time, new information from declassified government reports provided more detail on Independence’s use as a naval test craft for radiological decontamination as well as its use as a repository for radioactive materials at the time of its scuttling in 1951. While further surveys may reveal more, physical assessment and focused archival work has demonstrated that the level of concern and speculation of danger from either a radioactive or oil pollution threat posed may be exaggerated.

  7. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    Science.gov (United States)

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  8. Improving Protection Agains Intruders Using Passive Sonar

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.; Verolme, J.L.

    2011-01-01

    Divers and small vessels are increasingly recognized as a potential threat to high value assets. Harbour and waterside surveillance systems that are used to counter the threat of divers are usually based on active sonar, whose performance can be limited by reverberation in a harbour environment.

  9. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    Directory of Open Access Journals (Sweden)

    Jenna eJarvis

    2013-06-01

    Full Text Available How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat’s echoes, but additional mechanisms are needed to explain the bat sonar system’s exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other’s pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat’s emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  10. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    Science.gov (United States)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  11. Modulation, resolution and signal processing in radar, sonar and related systems

    CERN Document Server

    Benjamin, R; Costrell, L

    1966-01-01

    Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications.Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a

  12. Angola. Petroleum discovery by Elf on the block number 17 in deep water

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This article describes the petroleum discovery in deep water in Angola. The drilling was executed by 1365 meters deep and gave a petroleum of good quality. The Elf company emphasizes that it is its third discovery in deep water in the Guinea gulf after Nkossa and Moho in Congo. (N.C.)

  13. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    Science.gov (United States)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  14. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    Science.gov (United States)

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.

  15. Sonar Headphone Selection for Optimum Performance: An Overview

    National Research Council Canada - National Science Library

    Russotti, Joseph

    1995-01-01

    .... The advantages and disadvantages of open and sealed circumaural headsets and recent developments in noise canceling headsets are discussed, along with the possibility of reducing noise levels in sonar spaces to permit use of higher fidelity headphone designs.

  16. SONAR: A high-throughput pipeline for inferring antibody ontogenies from longitudinal sequencing of B cell transcripts

    Directory of Open Access Journals (Sweden)

    Chaim A Schramm

    2016-09-01

    Full Text Available The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, leading to a proliferation of software tools for processing and annotating this data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intra-donor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR, capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic birthday trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.

  17. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  18. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    Science.gov (United States)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  19. Persistence profile of polyaromatic hydrocarbons in shallow and deep Gulf waters and sediments: Effect of water temperature and sediment–water partitioning characteristics

    International Nuclear Information System (INIS)

    Tansel, B.; Fuentes, C.; Sanchez, M.; Predoi, K.; Acevedo, M.

    2011-01-01

    Highlights: ► The half-lives of PAHs in the deep waters (over 1000 m) are about twice longer than the shallow areas (100–150 m). ► In the water column, anthracene levels can decrease by 50% within 1–2 days. ► The half-lives of the PAHs in the sediments are significantly longer than those in the water column. ► The half-life of pyrene in the shallow and deep sediments is 9 and 16 years, respectively. - Abstract: Persistence profiles of selected polyaromatic hydrocarbons (PAHs) were analyzed depending on temperature variations in the water column and water–sediment interactions in the Gulf of Mexico. The PAHs studied include anthracene, fluoranthene, pyrene, and chrysene. The half-lives of PAHs in the deep waters (over 1000 m) are about twice as long as those in the shallow areas (100–150 m), and almost 2.5 times as long as those in the top layer (0–10 m) of the water column. The half-lives of the PAHs in the sediments are significantly longer. Among the PAHs studied, chrysene is the most persistent in the water column, and pyrene is the most persistent in the sediments. The half-life of chrysene in the shallow and deep waters is over 2.5 and about 5 years, respectively. For pyrene, the half-life in the shallow and deep sediments is about 9 and 16 years, respectively.

  20. Deep Water Horizon (HB1006, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monitor and measure the biological, chemical, and physical environment in the area of the oil spill from the deep water horizon oil rig in the Gulf of Mexico. A wide...

  1. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  2. Correlation Based Testing for Passive Sonar Picture Rationalization

    National Research Council Canada - National Science Library

    Mellema, Garfield R

    2007-01-01

    .... The sample correlation coefficient, is a statistical measure of relatedness. This paper describes the application of a test based on that measure to compare tracks produced by a probabilistic data association filter from a set of towed array sonar data. Keywords.

  3. Deep Water Coral (HB1402, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The cruise will survey and collect samples of deep-sea corals and related marine life in the canyons in the northern Gulf of Maine in U.S. and Canadian waters. The...

  4. High-Resolution Multibeam Sonar Survey and Interactive 3-D Exploration of the D-Day Wrecks off Normandy

    Science.gov (United States)

    Mayer, L. A.; Calder, B.; Schmidt, J. S.

    2003-12-01

    Historically, archaeological investigations use sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. The combination of 3-D mapping and interactive 3-D visualization techniques provides a powerful new means to explore underwater artifacts. A clear demonstration of the applicability of high-resolution multibeam sonar to wreck and artifact investigations occurred when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller

  5. Economic considerations for deep water Gulf of Mexico development

    International Nuclear Information System (INIS)

    Brown, R.; O'Sullivan, J.; Bayazitoglu, Y.O.

    1994-01-01

    This paper examines the economic drivers behind deep water development in the Gulf of Mexico. Capital costs are also examined versus water depth and required system. Cost categories are compared. The cost analysis was carried out by using the SEAPLAN computer program. The program is an expert system that identifies, conceptually defines, and economically compares technically feasible approaches for developing offshore oil and gas fields. The program's sizing logic and cost data base create physical and cost descriptions of systems representative of developments being planned in the deep water GOM. The examination was done separately for oil and gas developments. The material presented here is for only oil, it serves as a useful framework for viewing development economics and technology trends

  6. mos113_0401r.tif -- Side scan sonar image from survey effort HMPR-113-2004-01r in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (50-80 m water depths) was mosaiced from acoustic data collected in 2004 aboard the NOAA ship McArthurII.A Klein System...

  7. mos119_0601c.tif-- Side scan sonar image from survey effort HMPR-119-2006-01c in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (120-210 m water depths) was mosaiced from acoustic data collected in April 2006 aboard the NOAA ship McArthurII. A...

  8. mos113_0401d.tif -- Side scan sonar image from survey effort HMPR-113-2004-01d in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (120-350 m water depths) was mosaiced from acoustic data collected in 2004 aboard the NOAA ship McArthurII. A Klein...

  9. mos119_0601a.tif-- Side scan sonar image from survey effort HMPR-119-2006-01a in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (90-270 m water depths) was mosaiced from acoustic data collected in April 2006 aboard the NOAA ship McArthurII.A Klein...

  10. mos118_0503a.tif -- Side scan sonar image from survey effort HMPR-118-2005-03a in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar imagery of the sea floor (140-350 m water depths) was mosaiced from acoustic data collected in 2005 aboard the NOAA ship McArthurII. A Klein...

  11. Deep sea mega-geomorphology: Progress and problems

    Science.gov (United States)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  12. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Subsea innovative boosting technologies on deep water scenarios -- Impacts and demands

    International Nuclear Information System (INIS)

    Caetano, E.F.; Mendonca, J.E.; Pagot, P.R.; Cotrim, M.L.; Camargo, R.M.T.; Assayag, M.I.

    1995-01-01

    This paper presents the importance of deep water scenario for Brazil, the PETROBRAS Deep and Ultra-Deep Water R and D Program (PROCAP-2000) and the candidate fields for the deployment of subsea innovative boosting technologies (ESPS -- electrical submersible pump in subsea wells, SSS -- subsea separation systems and SBMS -- subsea multiphase flow pumping system) as well as the problems associated with the flow assurance in such conditions. The impact of those innovative systems, their technological stage and remaining demands to make them available for deployment in offshore subsea areas, mainly in giant deepwater fields, are discussed and predicted

  14. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    Directory of Open Access Journals (Sweden)

    Wu-Jung Lee

    2017-12-01

    Full Text Available Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  15. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    Science.gov (United States)

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  16. Adaptive Port-Starboard Beamforming of Triplet Sonar Arrays

    NARCIS (Netherlands)

    Groen, J.; Beerens, S.P.; Been, R.; Doisy, Y.

    2005-01-01

    Abstract—For a low-frequency active sonar (LFAS) with a triplet receiver array, it is not clear in advance which signal processing techniques optimize its performance. Here, several advanced beamformers are analyzed theoretically, and the results are compared to experimental data obtained in sea

  17. MSPOT a performance optimisation tool for ASW sonar

    NARCIS (Netherlands)

    Beerens, S.P.; Benders, F.P.A.

    2012-01-01

    Several navies are operating or procuring low-frequency active sonar systems (LFAS) as the primary part of their ASW capability. Since LFAS is a relatively new sensor with a performance strongly depending on environmental conditions, the proper operational sensor settings, such as depth and pulse

  18. Sonar Image Enhancements for Improved Detection of Sea Mines

    DEFF Research Database (Denmark)

    Jespersen, Karl; Sørensen, Helge Bjarup Dissing; Zerr, Benoit

    1999-01-01

    In this paper, five methods for enhancing sonar images prior to automatic detection of sea mines are investigated. Two of the methods have previously been published in connection with detection systems and serve as reference. The three new enhancement approaches are variance stabilizing log...... transform, nonlinear filtering, and pixel averaging for speckle reduction. The effect of the enhancement step is tested by using the full prcessing chain i.e. enhancement, detection and thresholding to determine the number of detections and false alarms. Substituting different enhancement algorithms...... in the processing chain gives a precise measure of the performance of the enhancement stage. The test is performed using a sonar image database with images ranging from very simple to very complex. The result of the comparison indicates that the new enhancement approaches improve the detection performance....

  19. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    Science.gov (United States)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  20. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  1. Subsea surveying: a guide for oilmen. Deep-tow and digital techniques

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F M

    1977-05-01

    Hydrodynamically stable tow fishes into which the acoustic energy source is mounted are examined. The advantages of deep-towed devices extends beyond the use of bottom and subbottom profiling systems. When used with side-scan sonar devices any small seabed relief or feature is enhanced by towing the sonar close to the seabed. The distortion of the records which is produced by observing slant ranges as opposed to the true range is also reduced. The use of marine magnetometers can greatly improve detection capabilities when searching for objects which produce some magnetic disturbance. The amplitude of this magnetic ''anomaly'' increases as the range between the magnetic sensor and the object is decreased. Areas where digital processing of data can be of significant value include navigational positioning (both of surface and sub-surface vessels); signal processing of seismic profiling data; and data presentation of all forms.

  2. Environmental isotopes as early warning tools to control the abstraction of deep ground waters

    International Nuclear Information System (INIS)

    Seiler, K.P.; Maloszewski, P.; Weise, S.M.; Loosli, H.H.

    1999-01-01

    Early warning system for the exploitation of ground water from the passive zone can not be based on the measurement of pollutant concentrations itself. The environmental tracer data are suggested to be used as indicators for changes in conservative mass transport processes from shallow to deep or very deep to deep ground waters

  3. hab108_0201_east.tif -- Side scan sonar image (East mosaic) from survey effort HMPR-108-2002-01 in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar image of the sea floor (120-350 m water depths) was mosaiced from data collected in 2002.An Edgetech DF1000 side scan system was used for...

  4. On the environmental impact of continuous active sonar

    NARCIS (Netherlands)

    Vossen, R. van; Spek, E. van der; Dekeling, R.P.A.; Beerens, S.P.; Lam, F.P.A.; Benda Beckmann, A.M. von

    2013-01-01

    Continuous Active Sonar (CAS) is an emerging technology in anti-submarine warfare operations. The feasibility of the technology has been demonstrated and it has been shown that CAS has a potential to reduce false alarm rates in reverberation-limited conditions. Now that the feasibility has been

  5. Cost reduction in deep water production systems

    International Nuclear Information System (INIS)

    Beltrao, R.L.C.

    1995-01-01

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project

  6. Deep water challenges for drilling rig design

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [Transocean Sedco Forex, Houston, TX (United States)

    2001-07-01

    Drilling rigs designed for deep water must meet specific design considerations for harsh environments. The early lessons for rig design came from experiences in the North Sea. Rig efficiency and safety considerations must include structural integrity, isolated/redundant ballast controls, triple redundant DP systems, enclosed heated work spaces, and automated equipment such as bridge cranes, pipe handling gear, offline capabilities, subsea tree handling, and computerized drill floors. All components must be designed to harmonize man and machine. Some challenges which are unique to Eastern Canada include frequent storms and fog, cold temperature, icebergs, rig ice, and difficult logistics. This power point presentation described station keeping and mooring issues in terms of dynamic positioning issues. The environmental influence on riser management during forced disconnects was also described. Design issues for connected deep water risers must insure elastic stability, and control deflected shape. The design must also keep stresses within acceptable limits. Codes and standards for stress limits, flex joints and tension were also presented. tabs., figs.

  7. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser

    DEFF Research Database (Denmark)

    Doble, Martin J.; Skourup, Henriette; Wadhams, Peter

    2011-01-01

    Data are presented from a survey by airborne scanning laser profilometer and an AUV-mounted, upward looking swath sonar in the spring Beaufort Sea. The air-snow (surface elevation) and water-ice (draft) surfaces were mapped at 1 x 1 m resolution over a 300 x 300 m area. Data were separated into l...

  8. Contact-Level Multistatic Sonar Data Simulator for Tracker Performance Assessment

    National Research Council Canada - National Science Library

    Grimmett, Doug; Coraluppi, Stefano

    2006-01-01

    ...). A brief description of the simulation approach is given, which includes simple sonar equation modeling, resulting in sensor-to-sensor target fading effects, as well as contact localization modeling...

  9. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Science.gov (United States)

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  10. Enhanced echolocation via robust statistics and super-resolution of sonar images

    Science.gov (United States)

    Kim, Kio

    Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust

  11. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    DEFF Research Database (Denmark)

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information....... The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment........ In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim...

  12. Studies on a Spatialized Audio Interface for Sonar

    Science.gov (United States)

    2011-10-03

    addition of spatialized audio to visual displays for sonar is much akin to the development of talking movies in the early days of cinema and can be...than using the brute-force approach. PCA is one among several techniques that share similarities with the computational architecture of a

  13. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  14. Inversion of Side Scan Sonar Motion and Posture in Seabed Geomorphology

    Directory of Open Access Journals (Sweden)

    Tao Weiliang

    2017-08-01

    Full Text Available Side scan sonar measurement platform, affected by underwater environment and its own motion precision, inevitably has posture and motion disturbance, which greatly affects accuracy of geomorphic image formation. It is difficult to sensitively and accurately capture these underwater disturbances by relying on auxiliary navigation devices. In this paper, we propose a method to invert motion and posture information of the measurement platform by using the matching relation between the strip images. The inversion algorithm is the key link in the image mosaic frame of side scan sonar, and the acquired motion posture information can effectively improve seabed topography and plotting accuracy and stability. In this paper, we first analyze influence of platform motion and posture on side scan sonar mapping, and establish the correlation model between motion, posture information and strip image matching information. Then, based on the model, a reverse neural network is established. Based on input, output of neural network, design of and test data set, a motion posture inversion mechanism based on strip image matching information is established. Accuracy and validity of the algorithm are verified by the experimental results.

  15. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  16. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  17. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  18. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  19. mos115_0403.TIF -- Multibeam backscatter sonar image for the nearshore Cape Flattery area: Data from survey effort HMPR-115-2004-03 in the Olympic Coast national marine sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This multibeam backscatter sonar image of the sea floor (0-200 m water depths) was mosaiced from data collected fromvarious mapping efforts each October from...

  20. A micro-Doppler sonar for acoustic surveillance in sensor networks

    Science.gov (United States)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  1. The circulation of deep water in the Tasman and Coral seas

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-07-01

    The physical oceanography of the Tasman and Coral Seas is reviewed with an emphasis on the deep currents. There are many uncertainties in the deep circulation pattern. The available data are used to develop an idealised circulation to estimate the likely path taken by water flowing from a depth of 5000 m in the Tasman Sea. The model suggests that the water would finally reach the surface layers south of the Antarctic Convergence with a median delay of 600 years. (author)

  2. AWARE Sonar and Sperm Whale Tagging (DE9906, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AWARE sonar and sperm whale tagging cruise primarily focuses on whales in the continental shelf areas, with the following objectives: 1) Develop a better...

  3. AWARE Sonar and Sperm Whale Tagging (DE0007, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AWARE sonar and sperm whale tagging cruise primarily focuses on whales in the continental shelf areas, with the following objectives: 1) Develop a better...

  4. Implementation of Signal Processing in Stereo-Scopic Active Sonar Using Heterodyne System

    Directory of Open Access Journals (Sweden)

    BOKHARI Syed Umar

    2012-10-01

    Full Text Available “SONAR” is an acronym for sound ranging and navigation. It uses sound waves to detect an object in the surroundings and calculate its distance. This device has a very important applications in shipbuilding industry and military systems. Moreover it’s also being extensively used in deep sea research of new species of plants and minerals, where it is practically impossible for humans to go. The most important feature of this system is the usage of ultrasonicfrequency to detect objects that are important for data collection or detection. Transmitting an ultra sonic frequency using an electronic oscillator is not a very difficult task, the real challenge is to design a reciever that could carry out a particular modulation technique to convert an ultra-sonic frequency to an audiblefrequency. In this paper, we propose aseteroscopic active SONAR proto-type. Further, we performed a seriers of expeirments using modulation techniques. The results obtained from the experiments gives us a braod understanding of the different behaviour of asignal.

  5. Deep waters : the Ottawa River and Canada's nuclear adventure

    International Nuclear Information System (INIS)

    Krenz, F.H.K.

    2004-01-01

    Deep Waters is an intimate account of the principal events and personalities involved in the successful development of the Canadian nuclear power system (CANDU), an achievement that is arguably one of Canada's greatest scientific and technical successes of the twentieth century. The author tells the stories of the people involved and the problems they faced and overcame and also relates the history of the development of the town of Deep River, built exclusively for the scientists and employees of the Chalk River Project and describes the impact of the Project on the traditional communities of the Ottawa Valley. Public understanding of nuclear power has remained confused, yet decisions about whether and how to use it are of vital importance to Canadians today - and will increase in importance as we seek to maintain our standard of living without doing irreparable damage to the environment around us. Deep Waters examines the issues involved in the use of nuclear power without over-emphasizing its positive aspects or avoiding its negative aspects.

  6. Bermuda Deep Water Caves 2011: Dives of Discovery between 20110607 and 20110627

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the three week NOAA Ocean Exploration project, Bermuda Deep Water Caves 2011: Dives of Discovery, our four member deep team, aided by numerous assistants,...

  7. Side-Scan_Sonar backscatter tiles for Hudson River, NY (.xtf)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw XTF files. Sonar data were collected November 6 to December 15, 2009, in the estuary north from Saugerties to Troy. Data Collection and Processing: The...

  8. Assessing Sonar Performance in Realistic Environments

    Science.gov (United States)

    2012-10-01

    Her Majesty the Queen in Right of Canada (Department of National Defence), 2012 c© Sa Majesté la Reine en droit du Canada (Ministère de la Défense... Victoria Class submarine. Q316 included a number of objectives specific to the ASPIRE project. These included demonstrating the use of gliders for the... Victoria Class C3 Optimization’ for the high level architecture for synthetic environment simulations • 20EA05: ‘Support to CMS: Ruggedized Sonar Test

  9. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  10. Control of fjordic deep water renewal by runoff modification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A; Edelsten, D J

    1976-09-01

    Loch Etive is a Scottish fjord subject to fresh-water run off which renders it markedly brackish. This paper considers the frequency of deep water renewal, developing a model which relates the timing of all such renewals to runoff records. Using the model one can examine the effect of changes caused by interference with the natural runoff pattern.

  11. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    Science.gov (United States)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  12. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  13. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  14. Cetacean Social Behavioral Response to Sonar Exposure

    Science.gov (United States)

    2015-09-30

    likely a social response which anticipates against potential loss of social cohesion, which may be induced by masking of their communication signals...Discrimination of fast click series produced by Risso’s dolphins for echolocation or communication . Wensveen P. et al (in review). The effectiveness of ramp...up of naval sonar to reduce sound levels received by marine mammals : experimental tests with humpback whales. Kvadsheim et al. (2015). The 3S2

  15. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  16. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  17. Submarine Upward Looking Sonar Ice Draft Profile Data and Statistics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of upward looking sonar draft data collected by submarines in the Arctic Ocean. It includes data from both U.S. Navy and Royal Navy...

  18. IDENTIFIKASI PROFIL DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DENGAN METODE BEAM PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-05-01

    which was a sea of Riau Island in Indonesia. Side scan sonar (SSS is an instrument based on sonar system wich capable of showing the image of two-dimensional surface of the seabed with contour conditions, topography, and the underwater target simultaneously. Beam Pattern Discrete-equispaced unshaded Line Array Method is used to compute the two-dimensional beam pattern which depends on the angle of the incoming sound waves from the axis of the array are acceptable depending on the angle at which the sound beam array. This research was conducted in December 2016 in the sea Punggur, Batam, Riau Islands-Indonesia, with coordinate system  104 ° 08,7102 E and 1° 03,2448 N until 1 ° 03.3977N and 104 ° 08,8133 E,  using Side Scan Sonar Tow C-Max CM2 fish instruments with a frequency of 325 kHz. The Results obtained from the recording there are 7 targets, and Beam pattern of Discrete-Beam method Equi-Spaced unshaded Line Array in targets 4 have the highest value in the Pattern is 21:08 dB directivity. The results of the model's beam pattern have anaxis value at the incidence angle (o of the directivity pattern (dB are not on the value 0 or the central beam pattern generated on the target 6 with incident angle -1.5 o and 1.5o have declined by -40 dB. Characteristics of bottom sediment in the sea waters Punggur found more sand.Discrete-method result Beam Equi-Spaced unshaded Line Array discovered the sunken wreck. Keywords: Side Scan Sonar, Beam Pattern Discrete-Equi-Spaced Unshaded Line Array, Incidence angle, Directivity pattern

  19. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  20. Geometrical constraint on the localization of deep water formation

    Science.gov (United States)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and

  1. Hydrophobic deep eutectic solvents as water-immiscible extractants

    NARCIS (Netherlands)

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  2. Chronobiology of deep-water decapod crustaceans on continental margins.

    Science.gov (United States)

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the

  3. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  4. Property changes of deep and bottom waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-06-01

    The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5±0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989-2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the

  5. Design of a water-powered DTH hammer for deep drilling application

    Science.gov (United States)

    Cho, Min Jae; Kim, Donguk; Oh, Joo Young; Yook, Se-Jin; Kim, Young Won

    2017-11-01

    A DTH (Down-the-hole) hammer powered by highly pressurized fluid is a drilling tool using the motion of percussion of a drill bit. In retrospect, a DTH by using compressed air as a power source has been widely used in drilling industries such as applications of mining, geothermal etc. On the other hand, another type of a DTH that uses pressurized water, called a water hammer, has recently seen deep drilling applications, while it has been rarely investigated. In this study, we designed a water-powered DTH hammer which mainly consists of several components such as a piston, a poppet valve, a cap and a bit for deep drilling applications. We optimized the components of the hammer on the basis of the results of 1D analysis using commercial software of AMESIM. An experimental study has been also conducted to investigate a performance of the designed water hammer. We measured a pressure distribution inside the hammer system as a function of time, and it thus estimates a frequency of impaction of the bit, which has been also analyzed in frequency domain. In addition, some important parameters have been discussed in conjunction with a limitation of impaction frequency as input pressure. We believe that this study provides design rules of a water-based DTH for deep drilling applications. This work is supported by KITECH of Korean government.

  6. The fusion of large scale classified side-scan sonar image mosaics.

    Science.gov (United States)

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  7. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    Science.gov (United States)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  8. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  9. Robot path Planning Using  SIFT and Sonar Sensor Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Raposo, Hector

    2007-01-01

    and evidential grid maps, respectively. The approach is illustrated using actual measurements from a laboratory robot. The sensory information is obtained from a sonar array and the Scale Invariant Feature Transform (SIFT) algorithm. Finally, the resulting two evidential maps based on Bayes and Dempster theories...

  10. Sonar: a multibase and parametric interface software for SDI

    International Nuclear Information System (INIS)

    Fonseca Passos, M.C.J. da

    1986-01-01

    Sonar - an automated service for selective dissemination of information (SDI) - developed by the Centro de Informacoes Nucleares (CIN) of the Comissao Nacional de Energia Nuclear (CNEN) is described. Emphasis is given to the multibase feature of the system based on the parametric interface between the system and an external data base reading subroutine. (Author) [pt

  11. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  12. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  13. Bayesian reconstruction of seafloor shape from side-scan sonar measurements using a Markov Random Field

    OpenAIRE

    Woock, P.; Pak, Alexey

    2014-01-01

    To explore the seafloor, a side-scan sonar emits a directed acoustic signal and then records the returning (reflected) signal intensity as a function of time. The inversion of that process is not unique: multiple shapes may lead to identical measured responses. In this work, we suggest a Bayesian approach to reconstructing the 3D shape of the seafloor from multiple sonar measurements, inspired by the state-of-the-art methods of inverse raytracing that originated in computer vision. The space ...

  14. Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example

    Science.gov (United States)

    Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing

    2017-11-01

    Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.

  15. Weldability prequalification of steels for deep water service

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael D. [Acute Technological Services, Inc., Houston, TX (United States); Ibarra, S. Jim [BP America (United States); Fazackerley, W.J. [EWI Microalloying, Houston, TX (United States)

    2004-07-01

    The weldability of steels for deep water applications must be determined long before welding procedures are qualified. The weldments of deep water equipment such as steel Catenary risers (SCRs) are subjected to currents which result in high cyclic stresses. It is imperative that steels selected for such service have high CTOD fracture toughness values after welding to ensure good defect tolerance. Through fracture mechanics analyses, these CTOD values are used to determine the defect acceptance criteria that is used for inspection of such weldments. The base metal and weld metal are more easily obtained, but because the weld joint design changes the position of the HAZs, the CTOD value for the HAZ is usually a combination of the base, weld consumable, and HAZ. The value obtained from such a test is suspect, and may give an optimistic value if the weld metal or base metal have high CTOD values. This paper discusses the various strategies for determining the true weldability long before construction commences, using API RP 2Z (1) Type tests for prequalification of base materials. (author)

  16. Prospects for using sonar for underwater archeology on the Yenisei: surveying a 19th century shipwreck

    Science.gov (United States)

    Goncharov, A. E.; Mednikov, D. M.; Karelin, N. M.; Nasyrov, I. R.

    2016-11-01

    Current progress in underwater archeology is based on a rich arsenal of high-tech appliances, among which sonar technology plays a key role; it enables scientists not only to detect submerged archeological objects, but to examine them in high definition without having to conduct diving operations or use expensive underwater unmanned vehicles. While the majority of sensational scientific discoveries using sonar have been made in saltwater environments, freshwater ones, rivers in particular, have seen limited activity. The river Yenisei in central Siberia contains an unrecorded number of shipwrecks that await being discovered and studied. In this article we focus on the peculiarities of using sonar for detecting archeological sites on the Yenisei. This article is based on the results of the 2016 expedition, which has determined the location of Thames, a 19th century British steam schooner which was wrecked on the Yenisei.

  17. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    CERN Document Server

    McKee, S; The ATLAS collaboration; Laurens, P; Severini, H; Wlodek, T; Wolff, S; Zurawski, J

    2012-01-01

    We will present our motivations for deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States and describe our experience in using it. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. USATLAS has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  18. Okeanos Explorer (EX1607): CAPSTONE Wake Island PRI MNM (Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will include 24 hour/day mapping operations using the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries...

  19. 'Merge' - A Filter for the Fusion of Dual-Frequency Sidescan Sonar Data

    National Research Council Canada - National Science Library

    Neill, Roger

    1997-01-01

    A filtering and data fusion technique is described which uses the correlation between the two data streams of a dual-frequency sidescan sonar in order to discriminate against noise and preferentially...

  20. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    Science.gov (United States)

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  1. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    Science.gov (United States)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg

  2. Automatic Detection of Sand Ripple Features in Sidescan Sonar Imagery

    Science.gov (United States)

    2014-07-09

    Among the features used in forensic scientific fingerprint analysis are terminations or bifurcations of print ridges. Sidescan sonar imagery of ripple...always be pathological cases. The size of the blocks of pixels used in determining the ripple wavelength is evident in the output images on the right in

  3. Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    Science.gov (United States)

    Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander

    2017-05-01

    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.

  4. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    Science.gov (United States)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  5. New sonar waveforms for active torpedo warning using an LFAS system

    NARCIS (Netherlands)

    IJsselmuide, S.P. van; Beerens, S.P.; Doisy, Y.; Deruaz, L.

    2003-01-01

    Low Frequency Active Sonar (LFAS) systems are originally designed for ASW purposes. Although their main purpose is detection of submarines, they can, if adjusted waveforms are transmitted, also be used for detection of small fast moving targets (torpedoes). In this study the Detection,

  6. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    Science.gov (United States)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for

  7. Mapping coral and sponge habitats on a shelf-depth environment using multibeam sonar and ROV video observations: Learmonth Bank, northern British Columbia, Canada

    Science.gov (United States)

    Neves, Bárbara M.; Du Preez, Cherisse; Edinger, Evan

    2014-01-01

    Efforts to locate and map deep-water coral and sponge habitats are essential for the effective management and conservation of these vulnerable marine ecosystems. Here we test the applicability of a simple multibeam sonar classification method developed for fjord environments to map the distribution of shelf-depth substrates and gorgonian coral- and sponge-dominated biotopes. The studied area is a shelf-depth feature Learmonth Bank, northern British Columbia, Canada and the method was applied aiming to map primarily non-reef forming coral and sponge biotopes. Aside from producing high-resolution maps (5 m2 raster grid), biotope-substrate associations were also investigated. A multibeam sonar survey yielded bathymetry, acoustic backscatter strength and slope. From benthic video transects recorded by remotely operated vehicles (ROVs) six primary substrate types and twelve biotope categories were identified, defined by the primary sediment and dominant biological structure, respectively. Substrate and biotope maps were produced using a supervised classification mostly based on the inter-quartile range of the acoustic variables for each substrate type and biotope. Twenty-five percent of the video observations were randomly reserved for testing the classification accuracy. The dominant biotope-defining corals were red tree coral Primnoa pacifica and small styasterids, of which Stylaster parageus was common. Demosponges and hexactinellid sponges were frequently observed but no sponge reefs were observed. The substrate classification readily distinguished fine sediment, Sand and Bedrock from the other substrate types, but had greater difficulty distinguishing Bedrock from Boulders and Cobble. The biotope classification accurately identified Gardens (dense aggregations of sponges and corals) and Primnoa-dominated biotopes (67% accuracy), but most other biotopes had lower accuracies. There was a significant correspondence between Learmonth's biotopes and substrate types

  8. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  9. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    Science.gov (United States)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  10. Development and verification of deep-water blowout models

    International Nuclear Information System (INIS)

    Johansen, Oistein

    2003-01-01

    Modeling of deep-water releases of gas and oil involves conventional plume theory in combination with thermodynamics and mass transfer calculations. The discharges can be understood in terms of multiphase plumes, where gas bubbles and oil droplets may separate from the water phase of the plume and rise to the surface independently. The gas may dissolve in the ambient water and/or form gas hydrates--a solid state of water resembling ice. All these processes will tend to deprive the plume as such of buoyancy, and in stratified water the plume rise will soon terminate. Slick formation will be governed by the surfacing of individual oil droplets in a depth and time variable current. This situation differs from the conditions observed during oil-and-gas blowouts in shallow and moderate water depths. In such cases, the bubble plume has been observed to rise to the surface and form a strong radial flow that contributes to a rapid spreading of the surfacing oil. The theories and behaviors involved in deepwater blowout cases are reviewed and compared to those for the shallow water blowout cases

  11. Experiences from using Autonomous Underwater Vehicles and Synthetic Aperture Sonar for Sediment and Habitat Mapping

    Science.gov (United States)

    Thorsnes, T.; Bjarnadóttir, L. R.

    2017-12-01

    Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.

  12. A long history of equatorial deep-water upwelling in the Pacific Ocean

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia

    2017-06-01

    Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a "permanent El Niño-like" climate state. For this study, we test this supposition by reconstructing EEP "excess CO2" and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene "biogenic bloom".

  13. Succeeding in deep water by combining technology qualification and production forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Oiungen, B.; Raposo, C. [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    All the easy oil and gas is gone, and, as a result the Oil and Gas industry is continuously targeting deeper and more remote fields. The exploration and development of deep water oil and gas fields is associated with enormous costs and multiple uncertainties with regard to equipment reliability and performance. Proper risk management can be used to evaluate the impact of these uncertainties thereby helping to ensure optimal business performance of the future assets, as well as helping the decision maker target investment towards areas where the financial impact will be the greatest. This paper reviews the principles of Technology Qualification and Production Forecasting methodology, both of which are risk management solutions with a proven track record for deep water field developments. (author)

  14. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  15. Turbidite Systems in Brazil: From Outcrops to Deep Waters

    Science.gov (United States)

    ´Avila, R. S. F.; Arienti, L. M.; Vesely, F. F.; Santos, S. F.; Voelcker, H. E.

    2012-04-01

    Reliable depositional models depend on careful observation of rocks, to allow the correct description and interpretation of facies and facies associations and their formative processes. They are of paramount importance to characterize deep water depositional systems, which still are the most important siliciclastic reservoirs for the oil industry. Turbidite sandstone reservoirs are responsible for almost 80% of petroleum produced from Brazilian Basins. A comprehensive characterization of these systems, depicting the main differences in terms of their geometries and facies will be presented. In Brazilian basins most of the turbidites were originated from extremely catastrophic flows, essentially linked to fluvio-deltaic influx that generates very dense hyperpycnal flows. Based on outcrop and subsurface data, two main zones with characteristic geometries and facies associations are commonly identified in turbidite systems: the transference zone and the depositional zone. Erosion and bypass dominate in the transference zone, which frequently occur as submarine canyons and channels. Turbidite channels can contain residual conglomeratic facies and coarser sandstone facies. The depositional area comprises lobes that constitute a major exploratory target because of their greater lateral continuity and the concentration of clean reservoirs. Turbidite lobes can be tabular or lenticular deposits associated with channelized bodies. Taking into account outcrop and subsurface data we can distinguish five main turbidite systems: foredeep turbidite systems, prodelta turbidite systems, mixed turbidite systems, meandering channels turbidite systems and channel-levee turbidite systems. In the Brazilian margin, deep water turbidites and other gravity-flow deposits are commonly associated with bottom current deposits, largely in Tertiary strata. Such bottom current deposits, often called contourites, are also important petroleum reservoirs, commonly mistaken as turbidites. Integration

  16. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    Science.gov (United States)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  17. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models

    Directory of Open Access Journals (Sweden)

    Hans Burchard

    2006-06-01

    Full Text Available The ventilation of the Baltic Sea deep wateris driven by either gale-forced barotropic or baroclinic salt water inflows.During the past two decades, the frequency of large barotropic inflows(mainly in winter has decreased and the frequency of medium-intensity baroclinic inflows(observed in summer has increased. As a result of entrainment of ambient oxygen-rich water,summer inflows are also important for the deep water ventilation.Recent process studies of salt water plumes suggest that the entrainmentrates are generally smaller than those predicted by earlier entrainment models.In addition to the entrance area, the Słupsk Sill andthe Słupsk Furrow are important locations for the transformation of water masses. Passing the Słupsk Furrow, both gravity-driven dense bottom flows and sub-surface cyclonic eddies,which are eroded laterally by thermohaline intrusions,ventilate the deep water of the eastern Gotland Basin.A recent study of the energy transfer from barotropic to baroclinicwave motion using a two-dimensional shallow water model suggests thatabout 30% of the energy needed below the halocline for deep water mixingis explained by the breaking of internal waves.In the deep water decade-long stagnation periods with decreasingoxygen and increasing hydrogen sulphide concentrations might be caused by anomalously largefreshwater inflows and anomalously high mean zonal wind speeds. In differentstudies the typical response time scale of average salinity was estimated tobe between approximately 20 and 30 years.The review summarizes recent research resultsand ends with a list of open questions and recommendations.

  18. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  19. Spawning period and first maturity size of deep water rose shrimp ...

    African Journals Online (AJOL)

    Administrator

    2011-11-02

    Nov 2, 2011 ... index (GSI), ranged throughout the year, reaching its peak two times; first peak occurred in autumn ... The deep water rose shrimp, Parapenaeus longirostris .... macroscopic examination of the gonads (development and.

  20. Multibeam sonar (DIDSON) assessment of American shad (Alosa sapidissima) approaching a hydroelectric dam

    Science.gov (United States)

    Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph D.; Hightower, Joseph E.

    2014-01-01

    We investigated the fish community approaching the Veazie Dam on the Penobscot River, Maine, prior to implementation of a major dam removal and river restoration project. Multibeam sonar (dual-frequency identification sonar, DIDSON) surveys were conducted continuously at the fishway entrance from May to July in 2011. A 5% subsample of DIDSON data contained 43 793 fish targets, the majority of which were of Excellent (15.7%) or Good (73.01%) observation quality. Excellent quality DIDSON targets (n = 6876) were apportioned by species using a Bayesian mixture model based on four known fork length distributions (river herring (alewife,Alosa psuedoharengus, and blueback herring, Alosa aestivalis), American shad, Alosa sapidissima) and two size classes (one sea-winter and multi-sea-winter) of Atlantic salmon (Salmo salar). 76.2% of targets were assigned to the American shad distribution; Atlantic salmon accounted for 15.64%, and river herring 8.16% of observed targets. Shad-sized (99.0%) and salmon-sized (99.3%) targets approached the fishway almost exclusively during the day, whereas river herring-sized targets were observed both during the day (51.1%) and at night (48.9%). This approach demonstrates how multibeam sonar imaging can be used to evaluate community composition and species-specific movement patterns in systems where there is little overlap in the length distributions of target species.

  1. Sources of the deep water masses in the northern Red Sea

    OpenAIRE

    Said, M.A.

    1998-01-01

    The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the nort...

  2. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  3. Sea ice draft in the Weddell Sea, measured by upward looking sonars

    Directory of Open Access Journals (Sweden)

    A. Behrendt

    2013-06-01

    Full Text Available The presented database contains time-referenced sea ice draft values from upward looking sonar (ULS measurements in the Weddell Sea, Antarctica. The sea ice draft data can be used to infer the thickness of the ice. They were collected during the period 1990–2008. In total, the database includes measurements from 13 locations in the Weddell Sea and was generated from more than 3.7 million measurements of sea ice draft. The files contain uncorrected raw drafts, corrected drafts and the basic parameters measured by the ULS. The measurement principle, the data processing procedure and the quality control are described in detail. To account for the unknown speed of sound in the water column above the ULS, two correction methods were applied to the draft data. The first method is based on defining a reference level from the identification of open water leads. The second method uses a model of sound speed in the oceanic mixed layer and is applied to ice draft in austral winter. Both methods are discussed and their accuracy is estimated. Finally, selected results of the processing are presented. The data can be downloaded from doi:10.1594/PANGAEA.785565.

  4. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  5. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  6. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Science.gov (United States)

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  7. Neural network modeling of a dolphin's sonar discrimination capabilities

    OpenAIRE

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL; Nachtigall, PE; Roitblat, H.

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer ...

  8. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering...... of the incident acoustic energy. A highfrequency active sonar is selected to insonify the medium and receive the backscattered waves. High-frequency acoustic methods can both overcome the optical opacity of water (unlike methods based on electromagnetic waves) and resolve the small-scale structure...... of the submerged oil field (unlike low-frequency acoustic methods). The study shows that high-frequency acoustic methods are suitable not only for large-scale localization of the oil contamination in the water column but also for statistical characterization of the submerged oil field through inference...

  9. On doing two things at once: dolphin brain and nose coordinate sonar clicks, buzzes and emotional squeals with social sounds during fish capture.

    Science.gov (United States)

    Ridgway, Sam; Samuelson Dibble, Dianna; Van Alstyne, Kaitlin; Price, DruAnn

    2015-12-01

    Dolphins fishing alone in open waters may whistle without interrupting their sonar clicks as they find and eat or reject fish. Our study is the first to match sound and video from the dolphin with sound and video from near the fish. During search and capture of fish, free-swimming dolphins carried cameras to record video and sound. A hydrophone in the far field near the fish also recorded sound. From these two perspectives, we studied the time course of dolphin sound production during fish capture. Our observations identify the instant of fish capture. There are three consistent acoustic phases: sonar clicks locate the fish; about 0.4 s before capture, the dolphin clicks become more rapid to form a second phase, the terminal buzz; at or just before capture, the buzz turns to an emotional squeal (the victory squeal), which may last 0.2 to 20 s after capture. The squeals are pulse bursts that vary in duration, peak frequency and amplitude. The victory squeal may be a reflection of emotion triggered by brain dopamine release. It may also affect prey to ease capture and/or it may be a way to communicate the presence of food to other dolphins. Dolphins also use whistles as communication or social sounds. Whistling during sonar clicking suggests that dolphins may be adept at doing two things at once. We know that dolphin brain hemispheres may sleep independently. Our results suggest that the two dolphin brain hemispheres may also act independently in communication. © 2015. Published by The Company of Biologists Ltd.

  10. [Effects of deep plowing time during the fallow period on water storage-consumption characteristics and wheat yield in dry-land soil.

    Science.gov (United States)

    Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping

    2016-09-01

    Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.

  11. Water transparency measurements in the deep Ionian Sea

    CERN Document Server

    Anassontzis, E G; Belias, A; Fotiou, A; Grammatikakis, G; Kontogiannis, H; Koske, P; Koutsoukos, S; Lykoussis, V; Markopoulos, E; Psallidas, A; Resvanis, L K; Siotis, I; Stavrakakis, S; Stavropoulos, G; Zhukov, V A

    2010-01-01

    A long optical base line spectrophotometer designed to measure light transmission in deep sea waters is described. The variable optical path length allows measurements without the need for absolute or external calibration. The spectrophotometer uses eight groups of uncollimated light sources emitting in the range 370–530 nm and was deployed at various depths at two locations in the Ionian Sea that are candidate sites for a future underwater neutrino telescope. Light transmission spectra at the two locations are presented and compared.

  12. The deep-water spiny lobster Palinurus gilchristi is one of five ...

    African Journals Online (AJOL)

    spamer

    The deep-water spiny lobster Palinurus gilchristi is one of five ... conditions because all features that can be used to determine the ... growth as a function of CL were calculated for each ..... (>85 mm CL) may bear eggs more than once per year.

  13. 75 FR 64507 - Taking and Importing Marine Mammals; Military Training Activities Conducted Within the Gulf of...

    Science.gov (United States)

    2010-10-19

    ... shallow and deep water. However, instead of using an explosive AN/SSQ-110A as an impulsive source for the... sensor and processing systems. In concept, the simplest active sonars emit omni-directional pulses... ASW acoustic processing and sonobuoy types that are deployed in pairs. The EER/IEER system's active...

  14. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  15. Channel Extension in Deep-Water Distributive Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  16. Deep-tow geophysical survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    Science.gov (United States)

    Bronner, A.; Munschy, M.; Sauter, D.; Carlut, J.; Searle, R.; Cannat, M.

    2012-04-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the easternmost part of the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining multibeam bathymetric data, magnetic data, geology mapping from sidescan sonar (TOBI) images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the sidescan sonar images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. We investigate the possibility that magnetic anomalies are either caused by serpentinized peridotites and/or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may result from fluid-rock interactions along the detachment faults as well as from the occurrence of small sized and thin volcanic patches and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in

  17. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Energy Technology Data Exchange (ETDEWEB)

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  18. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  19. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  20. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    Science.gov (United States)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  1. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  2. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    Science.gov (United States)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  3. Application of passive sonar technology to mineral processing and oil sands applications : if you can measure it, you can manage it

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Viega, J.; Fernald, M. [CiDRA Corp., Wallingford, CT (United States)

    2007-07-01

    SONAR-based flow and entrained air measurement instruments were described. This new class of industrial flow and compositional analyzers was developed by CiDRA to provide new measurement insight and quantifiable value to industrial process operators. Passive sonar array-based processing units have been installed worldwide in several industrial applications and are particularly suited for a wide range of mineral processing applications, including slurry flow rate measurement and fluid characterization. This paper also described the SONAR-based, clamp-on SONARtrac technology, a scalable platform that provides several other value added measurements and information such as speed of sound, entrained air/gas, gas hold-up, and velocity profile. Oil sands, tailings and bitumen slurries present considerable measurement challenges for in-line flow measurement devices in terms of measurement accuracy, reliability and maintenance. The sonar-based technology platform has been used in a variety of oil sands processes, hydrotransport, and minerals beneficiation applications. This paper described these applications with particular reference to difficult slurry flow measurement and control in the areas of comminution and flotation such as mill discharge, hydrocyclone feed/overflow, final concentrate, thickener discharge, and tailings. 5 refs., 4 tabs., 23 figs.

  4. The Blackboard Model of Computer Programming Applied to the Interpretation of Passive Sonar Data

    National Research Council Canada - National Science Library

    Liebing, David

    1997-01-01

    ... (location, course, speed, classification, etc.). At present the potential volume of data produced by modern sonar systems is so large that unless some form of computer assistance is provided with the interpretation of this data, information...

  5. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan.

    NARCIS (Netherlands)

    Prins, M.A.; Postma, G.; Cleveringa, J.; Cramp, A.; Kenyon, N.H.

    2000-01-01

    A previous study on the basis of long-range side-scan sonar data (Kenyon et al., 1995. Geometry of the younger sediment bodies of the Indus Fan. In: Pickering, K.T., Hiscott, R.N., Kenyon, N.H., Ricci Lucchi, F., Smith, R.D.A. (Eds.), Atlas of deep water environments: architectural style in

  6. Calculations of Asteroid Impacts into Deep and Shallow Water

    Science.gov (United States)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent

  7. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.; Clasen, S.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary...... on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical......-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2...

  8. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    Science.gov (United States)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  9. Effects of a deep-water running program on muscle function and functionality in elderly women community dwelling

    Directory of Open Access Journals (Sweden)

    Daisy Alberti

    2017-12-01

    Full Text Available Abstract AIMS The aim of the study was to determine the effects of deep-water running on muscle function and functionality in community dwelling old women. METHODS Older women (n=19 were randomly assigned to one of the two groups: deep-water running (DWR: n=09, 64.33±4.24 years, 75.15±12.53 kg, 160.45±7.52 cm; or control group CG: n=10, 64.40±4.22 years, 74.46±12.39 kg, 158.88±5.48 cm. The DWR group carried out 18 weeks of deep-water running, twice/week 50 min sessions. Dynamic isokinetic strength for the lower limb and functionality was assessed before and after intervention. RESULTS DWR group increased peak torque, total work and average power of the knee and hip flexors and extensors. Additionally showed better performance on gait speed, timed up and go test, five-times-sit-to-stand-test repetitions from a chair as well as the six-minute walk test. CONCLUSION The deep-water running program was effective to improve muscle function and functionality.

  10. Numerical Simulation and Experimental Study of Deep Bed Corn Drying Based on Water Potential

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2015-01-01

    Full Text Available The concept and the model of water potential, which were widely used in agricultural field, have been proved to be beneficial in the application of vacuum drying model and have provided a new way to explore the grain drying model since being introduced to grain drying and storage fields. Aiming to overcome the shortcomings of traditional deep bed drying model, for instance, the application range of this method is narrow and such method does not apply to systems of which pressure would be an influential factor such as vacuum drying system in a way combining with water potential drying model. This study established a numerical simulation system of deep bed corn drying process which has been proved to be effective according to the results of numerical simulation and corresponding experimental investigation and has revealed that desorption and adsorption coexist in deep bed drying.

  11. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  12. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  13. Survey and analysis of deep water mineral deposits using nuclear methods

    International Nuclear Information System (INIS)

    Staehle, C.M.; Noakes, J.E.; Spaulding, J.

    1991-01-01

    Present knowledge of the location, quality, quantity and recoverability of sea floor minerals is severely limited, particularly in the abyssal depths and deep water within the 200 mile Exclusion Economic Zone (EEZ) surrounding the U.S. Pacific Islands. To improve this understanding and permit exploitation of these mineral reserves much additional data is needed. This paper will discuss a sponsored program for extending existing proven nuclear survey methods currently used on the shallow continental margins of the Atlantic and Gulf of Mexico into the deeper waters of the Pacific. This nuclear technology can be readily integrated and extended to depths of 2000 m using the existing RCV-150 remotely operated vehicle (ROV) and the PISCESE V manned deep submersible vehicle (DSV) operated by The University of Hawaii's, Hawaii Underseas Research Laboratory (HURL). Previous papers by the authors have also proposed incorporating these nuclear analytical methods for survey of the deep ocean through the use of Autonomous Underwater Vehicle (AUX). Such a vehicle could extend the use of passive nuclear instrument operation, in addition to conventional analytical methods, into the abyssal depths and do so with speed and economy not otherwise possible. The natural radioactivity associated with manganese nodules and crustal deposits is sufficiently above normal background levels to allow discrimination and quantification in near real time

  14. Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars

    Science.gov (United States)

    Lamarche, Geoffroy; Lurton, Xavier

    2018-06-01

    Multibeam echosounders are becoming widespread for the purposes of seafloor bathymetry mapping, but the acquisition and the use of seafloor backscatter measurements, acquired simultaneously with the bathymetric data, are still insufficiently understood, controlled and standardized. This presents an obstacle to well-accepted, standardized analysis and application by end users. The Marine Geological and Biological Habitat Mapping group (Geohab.org) has long recognized the need for better coherence and common agreement on acquisition, processing and interpretation of seafloor backscatter data, and established the Backscatter Working Group (BSWG) in May 2013. This paper presents an overview of this initiative, the mandate, structure and program of the working group, and a synopsis of the BSWG Guidelines and Recommendations to date. The paper includes (1) an overview of the current status in sensors and techniques available in seafloor backscatter data from multibeam sonars; (2) the presentation of the BSWG structure and results; (3) recommendations to operators, end-users, sonar manufacturers, and software developers using sonar backscatter for seafloor-mapping applications, for best practice methods and approaches for data acquisition and processing; and (4) a discussion on the development needs for future systems and data processing. We propose for the first time a nomenclature of backscatter processing levels that affords a means to accurately and efficiently describe the data processing status, and to facilitate comparisons of final products from various origins.

  15. Sustainable development of deep-water seaport: the case of Lithuania.

    Science.gov (United States)

    Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta

    2011-06-01

    In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the

  16. Slope angle studies from multibeam sonar data on three seamounts in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Slope angles are powerful morphometric tools. Slope angle studies in manganese nodule areas using the Multi Beam Sonar (MBS) data is useful to the mining geologist. A technique to convert depth grid generated from MBS data to slope angle values data...

  17. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    Science.gov (United States)

    2017-01-18

    Reverberation Experiment 2005 (OREX-05); 0.6−5 kHz • Deep Water o Scotian Continental Rise, August 1993 (19 sites)  Low -Frequency Active 11 (LFA 11...reprocessed cross-CST- experiment results are shown (along with some physics -based model comparisons) in Figs. 9.A-2 and 9.A-3 (Gauss et al., 2008...Backscattering Measured Off the Carolina Coast During Littoral Warfare Advanced Development 98-4 Experiment ,” NRL Memorandum Report 7140- -98-8339

  18. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    Directory of Open Access Journals (Sweden)

    Borka Szabolcs

    2016-01-01

    Full Text Available The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin.

  19. Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R.; May, Cassandra

    2014-04-23

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  20. Combining split-beam and dual-frequency identification sonars to estimate abundance of anadromous fishes in the Roanoke River, North Carolina

    Science.gov (United States)

    Hughes, Jacob B.; Hightower, Joseph E.

    2015-01-01

    Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.

  1. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  2. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  3. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  4. Catwell and Sherdaps for deep-water production fields

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.P.; Rey, R. [Cameron, 34 - Beziers (France)

    2000-07-01

    The names Catwell and SherDaps are derived from: - Catenary Well - Subsea Horizontal Extended Reach Drilling And Production System. Both systems use the technique of being able to drill a well in deep-water either through a platform catenary carrier pipe or a catenary drilling riser. They also offer, in addition, significant advantages when drilling into shallow reservoirs and the ability to enhance production using platform artificial lift systems or easily serviceable pumps either in the well or at the mud-line. Catwell is a platform system with surface wellheads/trees whereas SherDaps uses a group of subsea wellheads/trees/BOP's that are accessible from one permanent catenary drilling riser. Both systems allow drilling/completing and future well intervention from a central location that otherwise would have required several drilling centres (i.e. platforms or subsea) if the conventional approach was followed. It is envisaged that well targets close to a platform will use well conductors possibly with mud-line wellheads, then Catwell to reach the medium range well targets and SherDaps for long range wells. It is considered that this arrangement would allow a single surface drilling/ production centre to have access to well targets giving a foot print range of up to a 20 km diameter. The total Capex savings on a Deep-water Field Development could be in the region of $200 m on a $1 billion development. Opex will be lower with the ability from the drilling center to quickly access any problem well and rectify any faults, minimising lost production. (authors)

  5. The development of a subsea power transmission system for deep water boosting applications

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, C.A.F. [Pirelli Cabos S.A. (Brazil); Campagnac, L.A. [Siemens S.A. (Brazil); Nicholson, A. [Tronic Electronics Services Ltd. (WEC); Magalhaes, W.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper presents the development of a sub sea power transmission in medium voltage and variable frequency, as a key system for application of Boosting technology and for electrical submersible Pumping in deep water wells. This work focuses on the design and manufacture of sub sea power cables and transformers for 1,000 m water depth. 8 refs., 6 figs.

  6. Deep-water anoxygenic photosythesis in a ferruginous chemocline

    DEFF Research Database (Denmark)

    Crowe, Sean; Maresca, J. A.; Jones, CarriAyne

    2014-01-01

    information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could...... not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea...

  7. Chemistry and origin of deep ground water in crystalline rocks; Kemi och genes av djupa grundvatten i kristallint berg

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1995-11-01

    This report discusses the interactions between water and crystalline rocks and its consequences for the chemical composition of the water. It also treats how flows of different types of water are modified by the rock, and the possible consequences for the ground water near a nuclear waste repository. The focus of the work is the changes in composition that ground water gets at deep levels in the rock. Data from Finnsjoen and Aespoe in Sweden show higher salinity in deep rock, which has been interpreted as a result of marine inflow of water during glaciation. Data from other, deeper boreholes in Finland, Canada, Russia, England and Sweden show that the increasing salinity is a rule and very high at great depths, higher than marine water can produce. Therefore, the deep waters from Finnsjoen and Aespoe are probably very old, and the high salinity a result from geological processes. Differing cation and isotopic composition than seawater also indicate geologic water. Differing theories on the origin of the ground water should be regarded in the safety analysis for a repository. 36 refs, 3 figs, 1 tab.

  8. Data fusion from multiple passive sonar nodes for target localisation and false alarm reduction

    NARCIS (Netherlands)

    Hunter, A.J.; Fillinger, L.; Zampolli, M.; Clarijs, M.C.

    2012-01-01

    A PHD particle filter implementation has been detailed for the fusion of measurements from multiple passive sonar nodes. It has been demonstrated on simulated metadata and on experimental passive acoustic data of divers and small boats collected in an operational port environment. Fusion at the

  9. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  10. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D.; Santos, Ricardo S.; Skomal, Gregory B.; Berumen, Michael L.

    2014-01-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite

  11. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  12. Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data.

    Directory of Open Access Journals (Sweden)

    Erik R Venteris

    Full Text Available Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay sediments overlapped a lower and narrower range for hard (gravel substrates. Thus, we used indicator kriging (IK to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  13. Modal Analysis of 27 mm Piezo Electric Plate for Small-Scale Underwater Sonar-Based Navigation

    Directory of Open Access Journals (Sweden)

    M. O. Afolayan

    2013-01-01

    Full Text Available This work presents progress towards the development of a small-scale, purely sonar-based navigation device for a robotic fish (~394 mm long. Aperture overloading of small (5 mm diameter ultrasonic transmitters does not allow them to be used effectively inside water. A test on a 27 mm diameter buzzer piezo plate shows promising performance under water at frequencies from 4.5 kHz to 80 kHz. ANSYS-based simulation was therefore used to find modal frequencies at higher frequencies so as to optimize this encouraging result. The simulation process also discovered several antiresonant frequencies such as 38.5 kHz, 54 kHz, and 57.5 kHz. All frequencies above the 8th harmonic (10,589.02 Hz are out of phase with the input load except a resonance frequency of 42.5 kHz and an antiresonance frequency of 56.5 kHz. Also, the first harmonic (1,648.73 Hz is the only frequency that gave a nodal deformation.

  14. Passive acoustic detection of deep-diving beaked whales

    DEFF Research Database (Denmark)

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.

    2008-01-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce...... clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range...... at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2  m...

  15. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    Science.gov (United States)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  16. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    Science.gov (United States)

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  18. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array: a dissertation

    OpenAIRE

    Gallaudet, Timothy C. (Timothy Cole), 1967-

    2001-01-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360 deg imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and hori...

  19. Structural setting and evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico: A case study

    NARCIS (Netherlands)

    Weimer, P.; Bouroullec, R.; Berg, A.A. van den; Lapinski, T.G.; Roesink, J.G.; Adson, J.

    2017-01-01

    The Mensa and Thunder Horse intraslope minibasins in southcentralMississippi Canyon, northern deep-water Gulf ofMexico, had a linked structural evolution from the Early Cretaceous through the late Miocene. Analysis of the two minibasins illustrates the complexities of deep-water sedimentation and

  20. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    Science.gov (United States)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  1. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  2. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  3. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios

    2009-01-01

    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  4. SIMONA: A multi-purpose acoustic data simulator for development and testing of sonar signal processing

    NARCIS (Netherlands)

    Robert, M.K.; Groen, J.; Konijnendijk, N.J.

    2005-01-01

    The development of undersea defence technologies such as sonar relies heavily on the availability of high quality acoustic data. However, data acquisition is particularly expensive as sea trials involve experienced manpower and costly high-tech equipment. Also, at sea, the environment remains

  5. Study of reverberation pattern and its cancellation method in shallow water

    Directory of Open Access Journals (Sweden)

    Yang Shiuh-Kuang

    2007-01-01

    Full Text Available In shallow water, the primary limitation of the performance of active sonar is the reverberation that originates from volume and boundaries scattering as well as multi-path propagation. There­fore, reverberation cancelation is an important research topic for increasing the performance of active sonar in shallow water. In this research, the reverberation pattern is simulated using MAT­LAB software. The simulated frequency is 30-kHz in the research. There are two main aims of this work. The first is to create the signals that include the reverberation and the target. The second is to perform the reverberation cancelation for the active sonar in shallow water. The analysis of the reverberation for the spherical target is based on the propagation theory of image source, surface scattering of Rayleigh criterion of roughness, bottom scattering of Lambert’s Law, and multiple scattering. The signal containing the reverberation and the target is then compressed or enhanced by AGC (Automatic Gain Control. The echo of the target is then distinguished through the method of cross correlation. The follow­ing phenomena can be found: (a AGC can compress the signal in a specific dynamic range. (b cross correlation can be used to locate and distinguish the echoes of the target in a high reverberation environment.

  6. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  7. Horizontal single-trip gravel pack and selective simulation system for deep water extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Most of the reservoirs located in the deep water and ultra-deep water offshore South America are described as unconsolidated sandstone that require sand control on both producers and water injection wells. Horizontal Open Hole Gravel Pack completions are the preferred method of development. If completing heavy oil reservoirs, there is a necessity of longer horizontal open hole sections. Low fracture gradients may limit the length of gravel pack in the open hole section because of the pressure increase during the Beta wave proppant deposition phase. This system allows the gravel pack assembly to be installed and the gravel pack to be pumped during the alpha and beta wave deposition phases without the limitation of high pressures that could fracture the well. The benefits of the Horizontal Single-Trip Gravel Pack and Selective Stimulation System (HSTSSS) using the differential valve include the ability to complete longer horizontal intervals, valuable rig-time savings and, efficient mechanical diversion of the stimulation fluid. This paper outlines the application of the HSTSSS system using a differential valve to complete a horizontal well in offshore deep waters. The need for a differential valve is primarily in horizontal gravel packing operations when normal circulating rates and pressures around the open hole would exceed formation break down pressure. The valve is intended to be easily spaced out and run in the wash pipe. At a predetermined differential pressure the valve opens and the return flow path distance around the bottom of the tailpipe is shortened, thus reducing back pressure preventing filter cake damage without slowing the pump rate. In addition the said valve has to close to allow the selective stimulation to take place. Economic considerations along with completion efficiencies are especially important on deep water, subsea completions. The utilization of differential valves allows completion of extended-reach open hole wells and/or low fracture

  8. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Science.gov (United States)

    2010-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... basis in deep water in the Gulf of Mexico or offshore of Alaska? You may apply for royalty relief under... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Pre-Act Deep Water Leases and...

  9. Approximate Stokes Drift Profiles in Deep Water

    Science.gov (United States)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  10. Molecular dynamics simulations of the Nip7 proteins from the marine deep- and shallow-water Pyrococcus species.

    Science.gov (United States)

    Medvedev, Kirill E; Alemasov, Nikolay A; Vorobjev, Yuri N; Boldyreva, Elena V; Kolchanov, Nikolay A; Afonnikov, Dmitry A

    2014-10-15

    The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.

  11. Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies

    Directory of Open Access Journals (Sweden)

    Erik E. Cordes

    2016-09-01

    Full Text Available The industrialization of the deep sea is expanding worldwide. Expanding oil and gas exploration activities in the absence of sufficient baseline data in these ecosystems has made environmental management challenging. Here, we review the types of activities that are associated with global offshore oil and gas development in water depths over 200 m, the typical impacts of these activities, some of the more extreme impacts of accidental oil and gas releases, and the current state of management in the major regions of offshore industrial activity including 18 exclusive economic zones. Direct impacts of infrastructure installation, including sediment resuspension and burial by seafloor anchors and pipelines, are typically restricted to a radius of approximately 100 m on from the installation on the seafloor. Discharges of water-based and low-toxicity oil-based drilling muds and produced water can extend over 2 km, while the ecological impacts at the population and community levels on the seafloor are most commonly on the order of 200-300 m from their source. These impacts may persist in the deep sea for many years and likely longer for its more fragile ecosystems, such as cold-water corals. This synthesis of information provides the basis for a series of recommendations for the management of offshore oil and gas development. An effective management strategy, aimed at minimizing risk of significant environmental harm, will typically encompass regulations of the activity itself (e.g. discharge practices, materials used, combined with spatial (e.g. avoidance rules and marine protected areas and temporal measures (e.g. restricted activities during peak reproductive periods. Spatial management measures that encompass representatives of all of the regional deep-sea community types is important in this context. Implementation of these management strategies should consider minimum buffer zones to displace industrial activity beyond the range of typical

  12. Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes

    Science.gov (United States)

    Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.

    2008-12-01

    Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.

  13. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  14. Killer whale presence in relation to naval sonar activity and prey abundance in northern Norway

    NARCIS (Netherlands)

    Kuningas, S.; Kvadsheim, P.H.; Lam, F.P.A.; Miller, P.J.O.

    2013-01-01

    In this study, retrospective data on naval sonar activity and prey abundance were correlated with killer whale sightings within a fjord basin in northern Norway. In addition, passive acoustic and visual marine mammal surveys were conducted before, during, and after a specific navy exercise in 2006.

  15. Final report of DOE project "Detection, Localization and Diagnosis of Performance Problems Using PerfSONAR"

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Konstantinos [Georgia Tech

    2014-04-15

    We present the development of a middleware service, called Pythia, that is able to detect, localize, and diagnose performance problems in the network paths that interconnect research sites that are of interest to DOE. The proposed service can analyze perfSONAR data collected from all participating sites.

  16. Diversity-based acoustic communication with a glider in deep water.

    Science.gov (United States)

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway.

  17. Wall-corner classification using sonar: a new approach based on geometric features.

    Science.gov (United States)

    Martínez, Milagros; Benet, Ginés

    2010-01-01

    Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances-80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20° to 70°. Experimental results show an enhancement on the success in classification rates when these geometric features are considered.

  18. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  19. Industrial automation in floating production vessels for deep water oil and gas fields

    International Nuclear Information System (INIS)

    de Garcia, A.L.; Ferrante, A.J.

    1990-01-01

    The process supervision in offshore platforms was performed in the past through the use of local pneumatic instrumentation, based on relays, semi-graphic panels and button operated control panels. Considering the advanced technology used in the new floating production projects for deep water, it became mandatory to develop supervision systems capable of integrating different control panels, increasing the level of monitorization and reducing the number of operators and control rooms. From the point of view of field integration, a standardized architecture makes the communication between different production platforms and the regional headquarters, where all the equipment and support infrastructure for the computerized network is installed, possible. This test paper describes the characteristics of the initial systems, the main problems observed, the studies performed and the results obtained in relation to the design and implementation of computational systems with open architecture for automation of process control in floating production systems for deep water in Brazil

  20. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 ms-1 to depths of almost 2,000 m and water temperatures <4 C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. 2014 Macmillan Publishers Limited. All rights reserved.

  1. Development of temporal trends of radioactivity in benthic organisms and in water from the deep sea (Atlantic)

    International Nuclear Information System (INIS)

    Kanisch, G.; Kellermann, H.-J.; Vobach, M.; Krueger, A.

    2003-01-01

    Since 20 years the Federal Research Centre for Fisheries is performing radioecological studies in the deep sea of the Northeast Atlantic, especially in the area north-west of Spain used for dumping of radioactive waste until 1982. Until 1998/2000, in Benthos some decrease was observed for 137 Cs, however, almost not for 238 Pu, 239,240 Pu and 241 Am. In the dumpsite area the ratio 238 Pu/ 239,240 Pu, about 0.072, showed higher values than in comparison sites, about 0,044. Alpha spectrometric measurements of the atom based ratio 240 Pu/ 239 Pu in Benthos, due to slight deviations from the global fallout value of 0.18, indicated a special impact of the ''Nevada Test Site'' fallout. In rat-tailed fish (Macrouridae) from the deep sea 137Cs decreased since 1989 with an effective half-live of 14.5 years, comparable to that of 16.2 years in the surface water. Related to the concentration in the surface water a 137 Cs concentration factor of 83 was obtained. It is concluded that the dominant source for 137 Cs in deep sea fish is the global fallout. For plutonium isotopes measured in sea water samples from the deep the values of 238 Pu/ 239,240 Pu and 238 Pu, being higher for the dumpsite area, were interpreted as impact of leaking radioactive drums. For this leakage acting as a plutonium source a 238 Pu/ 239,240 Pu ratio of 0.17 was estimated. However, the total plutonium inventory in the deep sea thereby increased by only about 20 %. (orig.)

  2. Manned underwater intervention during deep-water operations

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Mikal Sjur

    2010-07-01

    The focus for deep and remote areas operations are Remote Operated systems. Manned intervention is generally first choice when looking for intervention methods in most areas of the world. As an industry we need to focus on the most cost effective and safe method for construction, Maintenance and Repair. The focus is on advances in diving methods related to surface oriented and saturation diving, such as shallow water tie-ins of risers and umbilicals, inspection and evaluations of FPSOs including thruster change-out and wet docking. Also, the options for efficient repair scenarios utilizing man's ability to work in low visibility areas by feel etc. Finally the presentation will show new technology in Saturation Diving based on the 24 man saturation systems onboard the 3rd generation Divex systems used by Technip and Subsea 7. (Author)

  3. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column

    KAUST Repository

    Scoma, Alberto; Barbato, Marta; Borin, Sara; Daffonchio, Daniele; Boon, Nico

    2016-01-01

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises

  4. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...

  5. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ... Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic Environmental Assessment and... each alternative on the human and natural environments. FOR FURTHER INFORMATION CONTACT: If you have... Programmatic Environmental Assessment The scope of the PEA focuses on potential impacts associated with the...

  6. Overflow Water Pathways in the Subpolar North Atlantic Observed with Deep Floats

    Science.gov (United States)

    Bower, Amy; Furey, Heather; Lozier, Susan

    2017-04-01

    As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), a total of 135 acoustically tracked RAFOS floats have been deployed in the deep boundary currents of the Iceland, Irminger and Labrador Basins, and in the Charlie-Gibbs Fracture Zone, to investigate the pathways of Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW). Floats were released annually in 2014, 2015 and 2016 at depths between 1800 and 2800 m for two-year missions. The array of sound sources used for tracking was expanded from 10 to 13 moorings in 2016 when it was discovered that wintertime surface roughness was negatively impacting acoustic ranges. The floats from the first setting reveal several examples of persistent , deep coherent eddy motion, including a cyclonic eddy spinning off the tip of Eirik Ridge (southwest of Cape Farewell), a cyclonic eddy in the northeastern Labrador Basin near where anticyclonic Irminger Rings are formed, and an anticyclonic eddy under the North Atlantic Current (NAC) in the central Iceland Basin. A consistent region of boundary-interior exchange was observed near Hamilton Bank on the western boundary of the Labrador Sea. Deep cyclonic recirculation gyres are revealed in all three basins. Floats released in the southward-flowing deep boundary current over the eastern flank of the Reykjanes Ridge show that shallower layers of ISOW peel off to the west and cross the Ridge into the Irminger Basin through various gaps south of 60°N, including the Bight Fracture Zone. These floats tend to turn northward and continue along the slope in the Irminger Basin. Interestingly, floats released at the ISOW level in the CGFZ did not turn into the Irminger Basin as often depicted in deep circulation schematics, but rather drifted west-northwestward toward the Labrador Sea, or eddied around west of the CGFZ and (in some cases) turned southward. This result is consistent with some previous hydrographic and high-resolution model results

  7. Isotope paleoclimatology and Atlantic deep water history since 15 million years

    International Nuclear Information System (INIS)

    Blanc, P.L.

    1981-12-01

    18 O/ 16 O and 13 C/ 12 C ratios measurements in foraminiferal calcite are applied to the paleoclimatology of the North Atlantic and to the reconstruction of deep water exchanges between the Atlantic and Pacific Oceans, from middle miocene time (15 m.y. ago) to the present, on samples from 2 DSDP wells. Chapters 1 to 4 describe the structural frame and hydrological setting of these sites, and the stratigraphy of the deposits. A .4 m.y. lag between the initiation of the first boreal ice-caps and their extension to northern Europe is explained by the persistency of the North-Atlantic Drift. In chapters 5 to 8, the 13 C/ 12 C ratio of dissolved mineral carbon is used as a tracer of the residence time of the deep waters, the indications of which are preserved in benthonic foraminiferal calcite. It is shown that present-day type thermo-haline circulation was initiated 13.2 m.y. ago in the northern Atlantic, when the volcanic Scotland-Iceland-Greenland ridge subsided; that the closure of the Mediterranean sea during the Messinian (6.2 to 5 m.y. ago) caused this circulation to stop, and that the present circulation started again when the Mediterranean re-opened, at the beginning of the Pliocene [fr

  8. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

    NARCIS (Netherlands)

    Prommer, H.; Stuijfzand, P.J.

    2005-01-01

    Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

  9. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    Science.gov (United States)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  10. Dispersion in North Atlantic Deep Water transfer between the northern source region and the South Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Oliver; Roether, Wolfgang [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2007-07-01

    North Atlantic Deep Water (NADW) represents the Atlantic part of the deep, southward return arm of the oceanic 'conveyor belt', which moderates Europe's climate and effects most of the water transfer from the ocean surface into the deep waters globally. The transfer starts from the NADW formation regions, which in the case of upper NADW (approx. 1500-2000 m depth) is the Labrador Sea (far NW Atlantic). NADW is found concentrated toward the continental slope of the Americas, but subject to meandering, and to recirculation into, and mixing with, the waters of the interior Atlantic. Individual water parcels thus follow a complex ensemble of trajectories. We have obtained characteristics of that ensemble by fitting the free parameters of a suitable function using extensive observations of the transient tracers CFC-11, CFC-12, CCl{sub 4}, and tritium. A tracer transfer function of ocean-surface concentrations to those in newly formed NADW was derived as a precursory step. In the upper NADW we obtain RMS transfer-time dispersions on the way from the Labrador Sea of 31 years at 6 N rising to 53 years at 20 S, compared to mean transfer times ranging 46 to 79 years ({+-}20 %); furthermore, approximately 10 % to 40 % of the water is old, tracer-free water admixed on the way. Similar results have been obtained for lower NADW (approx. 2500-4000 m). The combination of tritium and CFC observations is particularly suited to constrain the dispersion, since it acts on the concentrations of these tracers in an opposite way. The tracer-adjusted transfer functions allow quantification of the NADW transport of pollutants and other compounds delivered to the NADW formation region. The results can furthermore check mean transfer times and large-scale dispersion of the NADW part of dynamic ocean circulation models.

  11. Seafloor Characterisation of the Gakkel Ridge using Multibeam Sonar, Backscatter and Sidescan Data

    Science.gov (United States)

    Hatzky, J.; Schenke, H. W.

    2003-04-01

    The Gakkel Ridge in the Arctic Ocean was the object of the Arctic Mid-Ocean Ridge Expedition (AMORE) which was carried out by the research icebreakers R/V "Polarstern" (Germany) and USCGC "Healy" (USA) in the boreal summer 2001. This largely unexplored mid-ocean ridge (MOR) is of particular scientific interest due to its volcanic activity and tectonic structure. With spreading rates of 13mm/a in the western and 6 mm/a in the eastern part Gakkel Ridge is the slowest spreading MOR on earth (Michael et al., 2001). The surveyed area which is situated between 82°N / 8°W and 87°N / 75°E has a length of 8890 km and a varying width from 18 to 46 km. The range of measured depths reaches from 566 m on the top of a huge seamount to 5673 m in the central rift valley. Prominent underwater features of remarkable morphologic diversity (e.g. small volcanoes embedded in massive ridge flanks) were discovered in this region. One of the most important goals of the expedition was the compilation of a high resolution grid which serves as basis for a three dimensional digital terrain model (DTM), the derivation of contour lines and the production of bathymetric maps. Accordingly, two hull-mounted multibeam sonars were used for the depth data acquisition: the "Hydrosweep DS-2" system onboard "Polarstern" and the "Seabeam 2112" system onboard "Healy". In order to calculate a combined grid out of two independent data sets different technical specifications of both sonar systems (e.g. frequency, opening angle, number of beams, accuracy) had to be taken into account. Dense sea ice cover made the sonar measurements difficult. Thick floes caused hydroacoustic disturbances that heavily debased the data quality. Outliers and blunders of depths and navigation data had to be corrected in a drawn-out post-processing by appropriate software tools. Both echo sounding systems recorded backscatter information and sidescan data during the entire cruise. Onboard "Polarstern" the sub-bottom profiling

  12. 3D Imaging with a Sonar Sensor and an Automated 3-Axes Frame for Selective Spraying in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    David Reiser

    2017-02-01

    Full Text Available Autonomous selective spraying could be a way for agriculture to reduce production costs, save resources, protect the environment and help to fulfill specific pesticide regulations. The objective of this paper was to investigate the use of a low-cost sonar sensor for autonomous selective spraying of single plants. For this, a belt driven autonomous robot was used with an attached 3-axes frame with three degrees of freedom. In the tool center point (TCP of the 3-axes frame, a sonar sensor and a spray valve were attached to create a point cloud representation of the surface, detect plants in the area and perform selective spraying. The autonomous robot was tested on replicates of artificial crop plants. The location of each plant was identified out of the acquired point cloud with the help of Euclidian clustering. The gained plant positions were spatially transformed from the coordinates of the sonar sensor to the valve location to determine the exact irrigation points. The results showed that the robot was able to automatically detect the position of each plant with an accuracy of 2.7 cm and could spray on these selected points. This selective spraying reduced the used liquid by 72%, when comparing it to a conventional spraying method in the same conditions.

  13. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    Science.gov (United States)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  14. Numerical simulation of solitary waves on deep water with constant vorticity

    Science.gov (United States)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  15. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    Science.gov (United States)

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  16. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  17. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  18. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  19. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  20. Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales

    NARCIS (Netherlands)

    Miller, P.J.O.; Antunes, R.N.; Wensveen, P.J.; Samarra, F.I.P.; Alves, A.C.; Tyack, P.L.; Kvadsheim, P.H.; Kleivane, L.; Lam, F.P.A.; Ainslie, M.A.; Thomas, L.

    2014-01-01

    Eight experimentally controlled exposures to 1−2 kHz or 6−7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure

  1. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    Science.gov (United States)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces

  2. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    In 1998, the Danish Research Council launched the Global Change project 'Biochemical cycling of carbon and ocean circulation in the Northern North Atlantic'. The overall aim of the project was to describe the effect of high latitude carbon dynamics on the global ocean-atmosphere carbon system, in general, and on the atmospheric pCO 2 in particular. At present, knowledge concerning the seasonal differences in turnover rates of organic material in polar and sub-polar regions is limited. Thus, in order to achieve the aim of the project, it was necessary to obtain biological and chemical rate measurements for production and mineralization of dissolved and particulate organic material at high latitudes and relate these to ocean dynamics at different times of the year. This was investigated in the project by performing three cruises to the Greenland Sea area at different times of the year. The purpose of the present chapter is to give a review of: 1) The physical environment of the Northern North Atlantic (ocean circulation, deep convection, North Atlantic Oscillation) and its variability including the recent trends of importance to climate change. 2) The chemical and biological processes of importance to carbon cycle and the importance of the carbon cycle to our understanding of climate variability. Additionally preliminary results from the Danish global change investigation in the Greenland Sea will be presented. With regard to circulation it is concluded that the deep water in the Greenland Sea continues to warm up, indicating that the deep water formation in this area is reduced. The biological investigations are providing a highly needed basic knowledge of the structure and function of the pelagic food web as well as of the microbial food web of the intermediate and deep water. These studies form a basis for assessing the productivity, export mechanisms, mineralization rates and mineralization depth-scales in these areas. Especially the questions about the

  3. The diet and feeding ecology of Conger conger (L. 1758 in the deep waters of the Eastern Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. ANASTASOPOULOU

    2013-06-01

    Full Text Available The diet of the European conger eel Conger conger was investigated for the first time in the Eastern Mediterranean. Fish dominated the European conger eel diet in the deep waters of E. Ionian Sea. All other prey taxa were identified as accidental preys. However, intestine analysis showed that Natantia, Brachyura and Cephalopoda might have a more important contribution in the diet of the species. C. conger exhibited a benthopelagic feeding behavior as it preyed upon both demersal and mesopelagic taxa. The high vacuity index and the low stomach and intestine fullness indicated that the feeding intensity of the species in the deep waters of Eastern Ionian Sea was quite low. C. conger feeding strategy was characterised by specialisation in various resource items. A between-phenotype contribution to niche width was observed for some prey categories. European Conger eel feeding specialisation seemed to be an adaptation to a food-scarce environment, as typified in deep-water habitats

  4. How Stressful Is "Deep Bubbling"?

    Science.gov (United States)

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Offshore support vessel developments for deep water oil and gas E and P

    Energy Technology Data Exchange (ETDEWEB)

    Dielen, Baldo A.M. [SMIT, Rotterdam (Netherlands)

    2008-07-01

    The worldwide trend to move towards more exposed locations and deeper waters for O and G exploration and production activities resulted in an increased need for larger and more powerful tugs and offshore support vessels. These vessels must meet higher operational requirements under higher wind and sea-state conditions. This market-driven need, together with technological developments, is leading towards a new generation of powerful and sophisticated offshore support vessels (OSV's). This paper will describe the actual and future trends in OSV design for deep water offshore use. (author)

  6. The development of a remote repair system for deep water pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Ian; Giles, John [Stolt Offshore MS Ltd., Aberdeen (United Kingdom)

    2000-07-01

    The ability to maintain a high level of flexibility within the contingency plans for sub sea pipeline repair is a critical issue normally achieved by basing the repair plans on diver intervention. This allows the pipeline operator flexibility to respond to particular repair situations as they occur, minimize up front planning and optimize the investment in repair equipment and stock. However for deep water pipelines all intervention must be performed by remote methods, which require the development of suitable equipment and more detailed repair procedures. This paper describes the development of a remotely operated pipeline repair system capable of working down to 3000 m and allowing a relatively high level of flexibility with minimum investment in repair stock. The repair system is based upon the Modular Advanced Tie-In System (MATIS) which has been successfully developed for the tie-in of deep water flow lines. The MATIS repair system is based on the use of standard flanges to replace a damaged section of pipe with a spool piece in a similar manner to a hyperbaric welded repair. Various repair scenarios are discussed in the paper together with the equipment and the procedures used to perform the repair. The paper will also discuss the other remote repair options such as hot tapping and friction stitch welding. (author)

  7. Four new species of deep water agglutinated foraminifera from the Oligocene-Miocene of the Congo Fan (offshore Angola)

    OpenAIRE

    Kender, S.; Kaminski, M. A.; Jones, R. W.

    2006-01-01

    Four new species of deep-water agglutinated benthic foraminifera are described from the Oligocene and Miocene of the Congo Fan, offshore Angola. Scherochorella congoensis n.sp., Paratrochamminoides goroyskiformis n.sp., Haplophragmoides nauticus n.sp. and Portatrochammina profunda n.sp. all occur in deep-sea turbiditic shales and sands from the distal section of the Congo Fan.

  8. Fiscal 1999 research result report. Basic research on the evaluation method of deep water by fine algae; 1999 nendo bisai sorui wo mochiita shinsosui hyokaho ni kansuru kisoteki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Basic research was made on establishment of a bioassay for testing the effect of deep water on surface biota. Mixing of surface water and deep water with high-concentration nutrient salts has effect on fine algae (phytoplankton) immediately. In this research, based on conventional AGP (algae growth potential) method as water quality evaluation method by fine algae, the multiplication potential of 13 strains of algae in Kochi's and Toyama's deep water was evaluated by using the increase rate of the number of cells. The research result showed that (1) deep water has the potential increasing cell concentrations of every fine algae to several times or over ten times as compared with surface water, (2) most of both nitrogen and phosphorus in deep water are consumed during the above process, (3) cell concentrations of both harmful and usable species increase, and (4) although no difference in mean potential is found between Kochi's and Toyama's deep water, the patterns of strains promoting multiplication are different between them. (NEDO)

  9. The Delphinus array for passive marine mammal detection

    NARCIS (Netherlands)

    Sheldon-Robert, M.K.; Beerens, S.P.; Lam, F.P.A.

    2008-01-01

    To protect marine mammals from potential negative impacts of high-power sound from tactical sonar, the use of passive acoustic monitoring prior and during sonar exercises is a possible non-intrusive solution for the monitoring requirements for naval forces. Particularly deep-diving beaked whales

  10. Modeling Effectiveness of Gradual Increases in Source Level to Mitigate Effects of Sonar on Marine Mammals

    NARCIS (Netherlands)

    Benda-Beckmann, A.M. von; Wensveen, P.J.; Kvadsheim, P.H.; Lam, F.P.A.; Miller, P.J.O.; Tyack, P.L.; Ainslie, M.A.

    2013-01-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the

  11. A trans-disciplinary review of deep learning research for water resources scientists

    OpenAIRE

    Shen, Chaopeng

    2017-01-01

    Deep learning (DL), a new-generation artificial neural network research, has made profound strides in recent years. This review paper is intended to provide water resources scientists with a simple technical overview, trans-disciplinary progress update, and potentially inspirations about DL. Effective architectures, more accessible data, advances in regularization, and new computing power enabled the success of DL. A trans-disciplinary review reveals that DL is rapidly transforming myriad sci...

  12. Paraffin dispersant application for cleaning subsea flow lines in the deep water Gulf of Mexico cottonwood development

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning

  13. Applying ultrasonic in-line inspection technology in a deep water environment: exploring the challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thielager, N.; Nadler, M.; Pieske, M.; Beller, M. [NDT Systems and Services AG, Stutensee (Germany)

    2009-12-19

    The demand for higher inspection accuracies of in-line inspection tools (ILI tools) is permanently growing. As integrity assessment procedures are being refined, detection performances, sizing accuracies and confidence levels regarding detection and sizing play an ever increasing role. ILI tools utilizing conventional ultrasound technology are at the forefront of technology and fulfill the market requirements regarding sizing accuracies and the ability to provide quantitative measurements of wall thickness as well as crack inspection capabilities. Data from ultrasonic tools is ideally suited for advanced integrity assessment applications and run comparisons. Making this technology available for a deep-water environment of heavy wall, high pressures and temperatures comes with a wide range of challenges which have to be addressed. This paper will introduce developments recently made in order to adapt and modify ultrasonic in-line inspection tools for the application in a heavy wall, high pressure and high temperature environment as encountered in deep offshore pipelines. The paper will describe necessary design modifications and new conceptual approaches especially regarding tool electronics, cables, connectors and the sensor carrier. A tool capable of deep-water inspection with a pressure bearing capability of 275 bar will be introduced and data from inspection runs will be presented. As an outlook, the paper will also discuss future inspection requirements for offshore pipelines with maximum pressure values of up to 500 bar. (author)

  14. Sub-tidal benthic habitats of central San Francisco Bay and offshore Golden Gate area: A review

    Science.gov (United States)

    Greene, H. Gary; Endris, Charles; Vallier, Tracy; Golden, Nadine E.; Cross, Jeffery; Ryan, Holly F.; Dieter, Bryan; Niven, Eric; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Deep-water potential estuarine and marine benthic habitat types were defined from a variety of new and interpreted data sets in central San Francisco Bay and offshore Golden Gate area including multibeam echosounder (MBES), side-scan sonar and bottom grab samples. Potential estuarine benthic habitats identified for the first time range from hard bedrock outcrops on island and mainland flanks and some Bay floor

  15. Analysis of a new unidimensional model and lateral vibrations of 1-3 piezocomposite side scan sonar array

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-01-01

    Full Text Available . Lamb modes of the 1-3 piezocomposites are investigated in term of the Certon-Patat membrane model by means of direct variational method application. A new design of a 1-3 piezocomposite side scan SONAR array is considered. An implementation of the array...

  16. The roles of MCDW and deep water iron supply in sustaining a recurrent phytoplankton bloom on central Pennell Bank (Ross Sea)

    Science.gov (United States)

    Kustka, Adam B.; Kohut, Josh T.; White, Angelicque E.; Lam, Phoebe J.; Milligan, Allen J.; Dinniman, Michael S.; Mack, Stefanie; Hunter, Elias; Hiscock, Michael R.; Smith, Walker O.; Measures, Chris I.

    2015-11-01

    During January-February 2011 standing stocks of phytoplankton (chl a) in the Pennell Bank region of the Ross Sea were variable over 10-100 km spatial scales. One area of elevated chl a on central Pennell Bank (CPB) appeared to be a recurrent mid-summer feature. The western flank (WF) of Pennell Bank had pronounced signatures of Modified Circumpolar Deep Water (MCDW). We evaluated the spatial extent of Fe limitation and net primary production and tested whether MCDW may provide elevated amounts of Fe to the CPB region, through a combination of in situ measurements, shipboard incubations and a horizontally resolved physical model. Regional fluxes of dissolved Fe from deep to surface waters were compared to calculated Fe demands. Low in situ variable to maximum fluorescence (Fv/Fm; 0.24-0.37) and surface water dissolved Fe concentrations (~0.12-0.21 nM) were suggestive of widespread limitation, corroborated by the consistent responses (Fv/Fm, growth, and nutrient removal ratios) of incubation treatments to Fe addition. MCDW from the WF region had lower dissolved Fe concentrations than that measured in CDW (Circumpolar Deep Water), which suggests on-shelf modification with Fe deplete surface waters and is consistent with the lack of stimulation due to incubation amendments with filtered MCDW. Model results and empirical data suggest MCDW from the WF region is further modified and mixed en route to the CPB region, leading to both the erosion of the canonical MCDW signature and an elevated dissolved Fe inventory of CPB region deep water. This suggests the addition of Fe possibly via diagenesis, as suggested by Marsay et al. (2014). Calculated deep water supply rates to the surface waters of CPB were ~0.18-0.43 m d-1, while calculated rates at the WF or northern Pennell Bank (NPB) regions were negative. The CPB populations exhibited ~4.5-fold higher net production rates compared to those in the WF and NPB regions and required 520-3200 nmol Fe m-2 d-1. The modeled vertical

  17. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  18. Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-05

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  19. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.

    Science.gov (United States)

    Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A

    1993-04-01

    Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.

  20. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle

    Science.gov (United States)

    Skarke, A. D.

    2017-12-01

    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  1. Bermuda: Search for Deep Water Caves 2009 on the R/V Endurance between 20090905 and 20090930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-water marine caves are one of the Earth's last largely unexplored frontiers of undiscovered fauna (animal life). More than 150 limestone caves are known to...

  2. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  3. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    Science.gov (United States)

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  4. Tracer element studies on deep water formation and circulation in the European Artic Sea

    International Nuclear Information System (INIS)

    Boenisch, G.

    1991-01-01

    Tracer element investigations (tritium, helium 3, carbon 14, argon 39, krypton 85 and fluorohydrocarbons) were carried out in the European Arctic Sea. The findings are discussed with a view to their validity in the case of deep water formation and circulation. The data cover the period of 1972 through 1989. (BBR) [de

  5. Water extraction of coals - potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vieth, A.; Mangelsdorf, K.; Sykes, R.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2008-08-15

    With the recent increasing interest in the deep biosphere, the question arises as to where the carbon sources that support deep microbial communities are derived from. Our research was focussed on the water-soluble, low molecular weight (LMW) organic acids that are potentially available from different sedimentary lithologies to serve as a carbon source to feed the deep biosphere. A series of Eocene-Pleistocene coals, mudstones and sandstones of varying rank (maturity) and total organic carbon (TOC) content from the Waikato Basin, New Zealand, has been Soxhlet-extracted using water. The combined concentration of recovered formate, acetate and oxalate range from 366 to 2499 {mu} g/g sediment and appear to be dependent on rank, organofacies and TOC. The yields indicate the potential of carbonaceous sediments to feed the local deep terrestrial biosphere over geological periods of time. The existence of living microbial organisms in the mudstones and sandstones was proved by the identification of intact phospholipids (PLs).

  6. Reproductive traits of tropical deep-water pandalid shrimps ( Heterocarpus ensifer) from the SW Gulf of Mexico

    Science.gov (United States)

    Briones-Fourzán, Patricia; Barradas-Ortíz, Cecilia; Negrete-Soto, Fernando; Lozano-Álvarez, Enrique

    2010-08-01

    Heterocarpus ensifer is a tropical deep-water pandalid shrimp whose reproductive features are poorly known. We examined reproductive traits of a population of H. ensifer inhabiting the continental slope (311-715 m in depth) off the Yucatan Peninsula, Mexico (SW Gulf of Mexico). Size range of the total sample ( n=816) was 10.4-38.9 mm carapace length. Females grow larger than males, but both sexes mature at 57% of their maximum theoretical size and at ˜30% of their total lifespan. Among adult females, the proportion of ovigerous females was high in all seasons, indicating year-round reproduction. Most females carrying embryos in advanced stages of development had ovaries in advanced stages of maturation, indicating production of successive spawns. In the autumn, however, the proportion of ovigerous females and the condition index of these females were lower compared to other seasons. This pattern potentially reflects a reduction in food resources following the summer minimum in particulate organic carbon flux to the deep benthos, as reported in previous studies. Spawns consisting of large numbers (16024±5644, mean±SD) of small eggs (0.045±0.009 mm 3) are consistent with extended planktotrophic larval development, an uncommon feature in deep-water carideans. Egg number increased as a power function of female size but with substantial variability, and egg size varied widely within and between females. There was no apparent trade-off between egg number and egg size and neither of these two variables was influenced by female condition. These results indicate iteroparity and a high and variable reproductive effort, reflecting a reproductive strategy developed to compensate for high larval mortality. The present study provides a baseline to compare reproductive traits between Atlantic populations of this tropical deep-water pandalid.

  7. Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the Last Glacial Termination

    Science.gov (United States)

    Allen, Katherine A.; Sikes, Elisabeth L.; Hönisch, Bärbel; Elmore, Aurora C.; Guilderson, Thomas P.; Rosenthal, Yair; Anderson, Robert F.

    2015-08-01

    A greater amount of CO2 was stored in the deep sea during glacial periods, likely via greater efficiency of the biologic pump and increased uptake by a more alkaline ocean. Reconstructing past variations in seawater carbonate ion concentration (a major component of alkalinity) enables quantification of the relative roles of different oceanic CO2 storage mechanisms and also places constraints on the timing, magnitude, and location of subsequent deep ocean ventilation. Here, we present a record of deep-water inorganic carbon chemistry since the Last Glacial Maximum (LGM; ∼19-23 ka BP), derived from sediment core RR0503-83 raised from 1627 m in New Zealand's Bay of Plenty. The core site lies within the upper limit of southern-sourced Circumpolar Deep Water (CDW), just below the lower boundary of Antarctic Intermediate Water (AAIW). We reconstruct past changes in bottom water inorganic carbon chemistry from the trace element and stable isotopic composition of calcite shells of the epibenthic foraminifer Cibicidoides wuellerstorfi. A record of ΔCO32-(ΔCO32- = [COCO32-] in situ - [CO32-] saturation) derived from the foraminiferal boron to calcium ratio (B/Ca) provides evidence for greater ice-age storage of respired CO2 and reveals abrupt deglacial shifts in [CO32-] in situ of up to 30 μmol/kg (5 times larger than the difference between average LGM and Holocene values). The rapidity of these changes suggests the influence of changing water mass structure and atmospheric circulation in addition to a decrease in CO2 content of interior waters.

  8. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Science.gov (United States)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  9. Severity of Expert-Identified Behavioural Responses of Humpback Whale, Minke Whale, and Northern Bottlenose Whale to Naval Sonar

    NARCIS (Netherlands)

    Sivle, L.D.; Kvadsheim, P.H.; Cure, C.; Isojunno, S.; Wensveen, P.J.; Lam, F.P.A.; Visser, F.; Kleivane, L.; Tyack, P.L.; Harris, C.M.; Miller, P.J.O.

    2015-01-01

    Controlled exposure experiments using 1 to2 kHz sonar signals were conducted with 11 humpback whales (Megaptera novaeangliae), one minke whale (Balaenoptera acutorostrata), and one northern bottlenose whale (Hyperoodon ampullatus) during three field trials from 2011 to 2013. Ship approaches without

  10. Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines

    Directory of Open Access Journals (Sweden)

    Jingxuan Yang

    2017-11-01

    Full Text Available In extra-thick coal seams, mining operations can lead to large-scale disturbances, complex overburden structures, and frequent and strong strata behavior in the stope, which are serious threats to mine safety. This study analyzed the overburden structure and strata behavior and proposed the technique of confined blasting in water-filled deep holes as a measure to prevent strong rock pressure. It found that there are two primary reasons for the high effectiveness of the proposed technique in presplitting hard coal and rock. First, the fracture water enables much more efficient transfer of dynamic load due to its incompressibility. Second, the subsequent expansion of water can further split the rock by compression. A mechanical model was used to reveal how the process of confined blasting in water-filled deep holes presplit roof. Moreover, practical implementation of this technique was found to improve the structure of hard, thick roof and prevent strong rock pressure, demonstrating its effectiveness in roof control.

  11. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  12. Microbially-mediated fluorescent organic matter transformations in the deep ocean

    DEFF Research Database (Denmark)

    Aparicio, Fran L.; Nieto-Cid, Mar; Borrull, Encarna

    2015-01-01

    The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also b....... These findings contribute to the understanding of FDOM variability in deep waters and provide valuable information for studies where fluorescent compounds are used in order to track water masses and/or microbial processes.......The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also...

  13. Bubble Clouds and their Transport within the Surf Zone as Measured with a Distributed Array of Upward-Looking Sonars

    National Research Council Canada - National Science Library

    Dahl, Peter

    2000-01-01

    ... in the surf zone and the effects of these bubbles on acoustic propagation. This paper discusses data gathered by the Applied Physics Laboratory, University of Washington, using a set of four upward-looking sonars (frequency 240 kHz...

  14. Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea

    International Nuclear Information System (INIS)

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Kubota, Reiji; Mochizuki, Hiroko; Ramu, Karri; Nishida, Shuhei; Ohta, Suguru; Yeh, Hsin-ming; Subramanian, Annamalai; Tanabe, Shinsuke

    2010-01-01

    Trace elements (TEs) and stable isotope ratios (δ 15 N and δ 13 C) were analyzed in fish from deep-water of the Sulu Sea, the Celebes Sea and the Philippine Sea. Concentrations of V and Pb in pelagic fish from the Sulu Sea were higher than those from the Celebes Sea, whereas the opposite trend was observed for δ 13 C. High concentrations of Zn, Cu and Ag were found in non-migrant fish in deep-water, while Rb level was high in fish which migrate up to the epipelagic zone, probably resulting from differences in background levels of these TEs in each water environment or function of adaptation to deep-water by migrant and non-migrant species. Arsenic level in the Sulu Sea fish was positively correlated with δ 15 N, indicating biomagnification of arsenic. To our knowledge, this is the first study on relationship between diel vertical migration and TE accumulation in deep-water fish.

  15. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    Science.gov (United States)

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Six new deep-water sternaspid species (Annelida, Sternaspidae from the Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Sergio Salazar-Vallejo

    2013-11-01

    Full Text Available Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species bya bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp.n. was found off Peru in 1296–6489 m water depths and in the Southwestern Pacific in 795–3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592–1366 m, off California in 1585 m, Gulf of California in 1200–1274 m, and Western

  17. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean.

    Science.gov (United States)

    Salazar-Vallejo, Sergio I; Buzhinskaja, Galina

    2013-01-01

    Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296-6489 m water depths and in the Southwestern Pacific in 795-3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592-1366 m, off California in 1585 m, Gulf of California in 1200-1274 m, and Western Mexico in 2548 m; it

  18. Near-bottom Multibeam Survey Capabilities in the US National Deep Submergence Facility (Invited)

    Science.gov (United States)

    Yoerger, D. R.; McCue, S. J.; Jason; Sentry Operations Groups

    2010-12-01

    The US National Deep Submergence Facility (NDSF) provides near-bottom multibeam mapping capabilities from the autonomous underwater vehicle Sentry and the remotely operated vehicle Jason. These vehicles can be used to depths of 4500 and 6500m respectively. Both vehicles are equipped with Reson 7125 400khz multibeam sonars as well as compatible navigation equipment (inertial navigation systems, doppler velocity logs, and acoustic navigation systems). These vehicles have produced maps of rugged Mid-Ocean Ridge terrain in the Galapagos Rift, natural oil and gas seeps off the coast of Southern California, deep coral sites in the Gulf of Mexico, and sites for the Ocean Observing Initiative off the coast of Oregon. Multibeam surveys are conducted from heights between 20 and 80 meters, allowing the scientific user to select the tradeoff between resolution and coverage rate. In addition to conventional bathymetric mapping, the systems have used to image methane bubble plumes from natural seeps. This talk will provide summaries of these mapping efforts and describe the data processing pipeline used to produce maps shortly after each dive. Development efforts to reduce navigational errors and reconcile discrepancies between adjacent swaths will also be described.

  19. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  20. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters.

    Science.gov (United States)

    Wu, Xiaofen; Pedersen, Karsten; Edlund, Johanna; Eriksson, Lena; Åström, Mats; Andersson, Anders F; Bertilsson, Stefan; Dopson, Mark

    2017-03-23

    Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.

  1. Passive synthetic aperture sonar techniques in combination with tow ship noise canceling: application to a triplet towed array

    NARCIS (Netherlands)

    Colin, M.E.G.D.; Groen, J.

    2002-01-01

    An important issue in research on passive ASW operations is improvement in signal-to-noise ratio (SNR) and bearing resolution for targets emitting low frequency signals. One of the techniques believed to improve these characteristics is Synthetic Aperture Sonar (SAS). The method is based on the

  2. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    Science.gov (United States)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  3. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  4. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  5. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  6. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  7. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  8. Reliance on deep soil water in the tree species Argania spinosa.

    Science.gov (United States)

    Zunzunegui, M; Boutaleb, S; Díaz Barradas, M C; Esquivias, M P; Valera, J; Jáuregui, J; Tagma, T; Ain-Lhout, F

    2017-12-07

    In South-western Morocco, water scarcity and high temperature are the main factors determining species survival. Argania spinosa (L.) Skeels is a tree species, endemic to Morocco, which is suffering from ongoing habitat shrinkage. Argan trees play essential local ecological and economic roles: protecting soils from erosion, shading different types of crops, helping maintain soil fertility and, even more importantly, its seeds are used by the local population for oil production, with valuable nutritional, medicinal and cosmetic purposes. The main objective of this study was to identify the sources of water used by this species and to assess the effect of water availability on the photosynthetic rate and stem water potential in two populations: one growing on the coast and a second one 10 km inland. Stem water potential, photosynthetic rate and xylem water isotopic composition (δ18O) were seasonally monitored during 2 years. Trees from both populations showed a similar strategy in the use of the available water sources, which was strongly dependent on deep soil water throughout the year. Nevertheless, during the wet season or under low precipitation a more complex water uptake pattern was found with a mixture of water sources, including precipitation and soil at different depths. No evidence was found of the use of either groundwater or atmospheric water in this species. Despite the similar water-use strategy, the results indicate that Argania trees from the inland population explored deeper layers than coastal ones as suggested by more depleted δ18O values recorded in the inland trees and better photosynthetic performance, hence suggesting that the coastal population of A. spinosa could be subjected to higher stress. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Algorithms and data structures for automated change detection and classification of sidescan sonar imagery

    Science.gov (United States)

    Gendron, Marlin Lee

    During Mine Warfare (MIW) operations, MIW analysts perform change detection by visually comparing historical sidescan sonar imagery (SSI) collected by a sidescan sonar with recently collected SSI in an attempt to identify objects (which might be explosive mines) placed at sea since the last time the area was surveyed. This dissertation presents a data structure and three algorithms, developed by the author, that are part of an automated change detection and classification (ACDC) system. MIW analysts at the Naval Oceanographic Office, to reduce the amount of time to perform change detection, are currently using ACDC. The dissertation introductory chapter gives background information on change detection, ACDC, and describes how SSI is produced from raw sonar data. Chapter 2 presents the author's Geospatial Bitmap (GB) data structure, which is capable of storing information geographically and is utilized by the three algorithms. This chapter shows that a GB data structure used in a polygon-smoothing algorithm ran between 1.3--48.4x faster than a sparse matrix data structure. Chapter 3 describes the GB clustering algorithm, which is the author's repeatable, order-independent method for clustering. Results from tests performed in this chapter show that the time to cluster a set of points is not affected by the distribution or the order of the points. In Chapter 4, the author presents his real-time computer-aided detection (CAD) algorithm that automatically detects mine-like objects on the seafloor in SSI. The author ran his GB-based CAD algorithm on real SSI data, and results of these tests indicate that his real-time CAD algorithm performs comparably to or better than other non-real-time CAD algorithms. The author presents his computer-aided search (CAS) algorithm in Chapter 5. CAS helps MIW analysts locate mine-like features that are geospatially close to previously detected features. A comparison between the CAS and a great circle distance algorithm shows that the

  10. Discobahamins A and B, new peptides from the Bahamian deep water marine sponge Discodermia sp.

    Science.gov (United States)

    Gunasekera, S P; Pomponi, S A; McCarthy, P J

    1994-01-01

    Discobahamin A [1] and discobahamin B [2] are two bioactive peptides isolated from a new species of the Bahamian deep water marine sponge Discodermia. The discobahamins are inhibitors of the growth of Candida albicans, and the isolation and structure elucidation of 1 and 2 by nmr and chemical methods is described.

  11. The Structure of Sea Water and Gelatinous Water in the Deep Ocean

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Wojciechowicz, M.; Brewer, P. G.

    2016-12-01

    Gelatinous life forms are common in the deep sea and are able to maintain a careful combination of body integrity and easy fluidity of motion over a wide range of T and P. They accomplish this in part by modifying the molecular structure of water. Both the transparent body of the organism (the mesoglea) and the structure of the immediate surrounding sea water were investigated by in situ laser Raman spectroscopy at depths from 300m to 2,800m. The structure of water is reasonably well known; the basic unit is a hydrogen bonded pentamer with defined stretching and bending modes. The spectrum of the bending band is separable into two components while the stretching band spectrum is composed of five components representing both intra- and inter-molecular vibrations. The effect of temperature on the various vibrational modes is complex. While the effect of pressure on the bending modes is small, but the effect of temperature and pressure on the stretching modes is significant and can be modeled as a van `t Hoff function. Our in situ experiments were conducted using MBARI's ROV Ventana and ROV Doc Ricketts. We collected cnidarians and ctenophores into a 6 L glass detritus sampler fitted with a metal grid plate. Once the animal was captured, we introduced argon gas through the lid of the sampler displacing the contained sea water and leaving a motionless sea water free specimen for spectroscopy. The laser beam was focused through the glass wall of the container and the focal point adjusted to be inside the gelatinous body. Our results very clearly show that:i) The gelatinous mass effectively excludes salts with zero sulfate ion being detected.ii) The water bending modes are absent from the gelatinous spectra.iii) The water stretching modes are highly modified from the typical 5 band liquid pentamer structure with only 3 vibrational modes observable. These results stand in marked contrast to the familiar household gelatin which is typically derived from bovine sources

  12. On Estimation Of The Orientation Of Mobile Robots Using Turning Functions And SONAR Information

    Directory of Open Access Journals (Sweden)

    Dorel AIORDACHIOAIE

    2003-12-01

    Full Text Available SONAR systems are widely used by some artificial objects, e.g. robots, and by animals, e.g. bats, for navigation and pattern recognition. The objective of this paper is to present a solution on the estimation of the orientation in the environment of mobile robots, in the context of navigation, using the turning function approach. The results are shown to be accurate and can be used further in the design of navigation strategies of mobile robots.

  13. Discrimination of Cylinders with Different Wall Thicknesses using Neural Networks and Simulated Dolphin Sonar Signals

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Au, Whitlow; Larsen, Jan

    1999-01-01

    This paper describes a method integrating neural networks into a system for recognizing underwater objects. The system is based on a combination of simulated dolphin sonar signals, simulated auditory filters and artificial neural networks. The system is tested on a cylinder wall thickness...... difference experiment and demonstrates high accuracy for small wall thickness differences. Results from the experiment are compared with results obtained by a false killer whale (pseudorca crassidens)....

  14. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  15. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  16. Underwater object classification using scattering transform of sonar signals

    Science.gov (United States)

    Saito, Naoki; Weber, David S.

    2017-08-01

    In this paper, we apply the scattering transform (ST)-a nonlinear map based off of a convolutional neural network (CNN)-to classification of underwater objects using sonar signals. The ST formalizes the observation that the filters learned by a CNN have wavelet-like structure. We achieve effective binary classification both on a real dataset of Unexploded Ordinance (UXOs), as well as synthetically generated examples. We also explore the effects on the waveforms with respect to changes in the object domain (e.g., translation, rotation, and acoustic impedance, etc.), and examine the consequences coming from theoretical results for the scattering transform. We show that the scattering transform is capable of excellent classification on both the synthetic and real problems, thanks to having more quasi-invariance properties that are well-suited to translation and rotation of the object.

  17. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  18. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers

    International Nuclear Information System (INIS)

    Schlosser, Peter; Bayer, Reinhold

    1991-01-01

    The application of natural and anthropogenic trace substances in oceanographic studies of the Weddell Sea is reviewed. The potential of some steady-state and transient tracers (tritium, CFC-11 and CFC-12, 18 O, and helium isotopes) for studies of deep water formation and circulation is discussed on the basis of data sets collected mainly on cruises of R/V 'Polastern' to the Weddell Sea during the 1980s. CFC/ tritium ratio dating of young water masses is applied to estimate mean age and transit times of water involved in Weddell Sea Bottom Water formation. The history of the CFC-11/tritium ratio through time is derived for Weddell Sea shelf waters. (author). 36 refs.; 18 figs

  19. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    Science.gov (United States)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes

  20. Origin and biogeography of the deep-water Mediterranean Hydromedusae including the description of two new species collected in submarine canyons of Northwestern Mediterranean

    Directory of Open Access Journals (Sweden)

    J. M. Gili

    1998-06-01

    Full Text Available Two new species of hydromedusae (Foersteria antoniae and Cunina simplex are described from plankton collected in sediment traps placed in the Lacaze-Duthiers Submarine Canyon and along Banyuls-sur-Mer coast (northwestern Mediterranean. The Mediterranean hydromedusan deep-water fauna contains 41 species which represent 45.5 % of the world-wide deep-sea hydromedusae fauna (90 and 20% of the total number of Mediterranean hydromedusae (204. The Mediterranean deep-water hydromedusan fauna is characterised by a large percentage of holoplanktonic species (61%, mainly Trachymedusae. Nevertheless, contrary to the general opinion, the percentage of meroplanktonic species is equally high. The most original features of this fauna lies however in the importance of the number of endemic species (22% and in the fact that the majority of them are meroplanktonic Leptomedusae with a supposed bathybenthic stage. Some of the endemic species could still represent relics of the primitive Tethys fauna having survived to the Messinian crisis. The origin of the Mediterranean deep-water hydromedusan fauna is discussed and a general hypothesis is proposed.

  1. Determination of deep water circulation in the East Atlantic Ocean by means of a box-model based evaluation of C-14 measurements and other tracer data

    International Nuclear Information System (INIS)

    Schlitzer, R.

    1984-01-01

    Radiocarbon (C-14) measurements proved to be an efficient means of determining the average, large-area deep water circulation in the Atlantic Ocean. The thesis under review explains and discusses measurements carried out in the equatorial West Atlantic and North Atlantic Ocean. The samples have been taken during mission 56 of the RS 'meteor' in spring 1981. The gas has been obtained by vacuum extraction and the measurements have been performed in proportional counter tubes, the error to be accounted for amounting to 2per mille. These measured data, together with measurements of the potential temperatures, the silicate and CO 2 concentrations, and measured data from the South-East Atlantic Ocean, have been used to calculate on the basis of a box model of the Atlantic Ocean the deep water flow from the West to the East Atlantic Ocean, the deep water circulation between the various East Atlantic basins, and the turbulent diffusion coefficients required to parameterize the deep water mixing processes. (orig./HP) [de

  2. THE EFFECTS OF GRADIENT VELOCITY AND DETENTION TIME TO COAGULATION – FLOCCULATION OF DYES AND ORGANIC COMPOUND IN DEEP WELL WATER

    Directory of Open Access Journals (Sweden)

    Muhamad Lindu

    2010-06-01

    Full Text Available The treatment of deep well water of Trisakti University by coagulation and flocculation using baffle channel system has been conducted. The detention time of hydrolic were varied. The coagulant dose was varied as 50, 100, 150, 200, 300, 350, 400, 450 and 500 ppm. Water of well sampel was added by coagulant with rotation velocity 200 rpm for 1 minute. The optimal coagulant dose was determined by measuring turbidity, colour, total suspended solids and organic compound. The result showed that the organic compound and colour of deep well water of Trisakti University could be reduced by coagulation and flocculation process by hydrolyc system. The optimal dose of the coagulant was 250 ppm. The removal efficiency of colour and organic compound using optimal dose for continuous flow reactor reached after water flow passed the reactor for 3 - 5 times detention time in the reactor. The optimal gradient velocity (G was 30 - 35 sec-1 and collision energy (GT was 65.000 - 79.000 to get optimal flocculation. With this condition, the removal efficiency of turbidity, colour and organic was more than 90%.   Keywords: coagulation, flocculation, colour, organic compound, deep well

  3. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  4. Radon 222 levels in deep well waters of Toluca municipality (county)

    International Nuclear Information System (INIS)

    Olguin Gutierrez, Maria Teresa.

    1990-01-01

    The levels of Radon 222 were determined in 46 deep (50-180m) wells in the city and county of Toluca, as well as the annual radiation dose that the stomach admits when ingesting such water. The method used for the quantification of Radon 222 was liquid scintillation counting. The result revealed that levels of Radon 222 in the studied area in the range of 0 to 320 pCi l -1 . In the case of the equivalent annual dose that the stomach (empty) admits due to ingestion of water from the wells, values are in an interval between 0 to 95 mrem a -1 . This values are well below the level established by the International Commission of Radiological Protection (ICRP). The wells that had the higher concentration of Radon 222 were found in the regions of Lodo Prieto, Seminario; San Antonio Buenavista and La Trinidad Huichochitlan. (Author)

  5. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  6. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  7. A role for subducted super-hydrated kaolinite in Earth's deep water cycle

    Science.gov (United States)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-12-01

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  8. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    Science.gov (United States)

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  9. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    Science.gov (United States)

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  10. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  11. Preliminary physico-chemical results obtained on water using new data acquisition systems for deep wells

    International Nuclear Information System (INIS)

    Vinson, J.M.; Peyrus, J.C.

    1984-02-01

    Data acquisition systems recently developed in the context of research on deep storage facilities have provided with an initial set of interesting observations for the physico-chemical study of boreholes. It is possible to make correlations between the chemical compositions of water, pH and the nature of the substrate. The sampling done at Auriat with a Gerhardt-Owen probe shows the variability in the composition of water as a function of depth. The variation in calcium content, following that of pH, is particularly notable. Examination of pH measurements is of particular interest. A general gradient correlates exactly with the nature of the substrate. Whereas steel piping has a very alkaline pH, distinct pH values correspond to the two types of granite substrate. In this general gradient, series of disturbances can be seen which correspond perfectly to fracturation zones or large fractures. These most promising preliminary results lead to believe that in situ physico-chemical measurements should be continued and developed with a view to improved evaluation of the safety of deep storage facilities

  12. Seven new deep-water Tetractinellida (Porifera: Demospongiae) from the Galápagos Islands –morphological descriptions and DNA barcodes

    DEFF Research Database (Denmark)

    Schuster, Astrid; Cárdenas, Paco; Pisera, Andrzej

    2018-01-01

    , but little is known about the deep- and shallow-water sponge fau -nas. To date, only 70 sponge species have been described from the Galápagos Islands, 37 of which are endemic. Of these 70 species, only one shallow-water species of desma-bearing Tetractinellida (Demospongiae), Corallistes isabela , has been...

  13. Geometry of sandy deposits at the distal edge of the Mississippi Fan, Gulf of Mexico

    Science.gov (United States)

    Twichell, D.C.; Schwab, W.C.; Kenyon, Neil H.

    1995-01-01

    Sidescan sonar provides a map of the seafloor that has greatly improved the understanding of depositional processes on modern deep-sea fans (e.g. Mutti and Normark 1991). Here, we present a sidescan-sonar mosaic from the eastern Gulf of Mexico that images the distal reaches of a channel on the Mississippi Fan and the deposits associated with it (Fig. 41.1). This area is one of several deep-sea fan systems that had not previously been imaged by high-resolution sidescan systems. The mosaic highlights the complexity of the spatial relationships of channels and deposits at ends of channels on this large, modern, passive-margin deep-sea fan (Figs 41.2 and 41.3).

  14. Genetic divergence correlates with morphological and ecological subdivision in the deep-water elk kelp, Pelagophycus porra (phaeophyceae)

    NARCIS (Netherlands)

    Miller, KA; Olsen, JL; Stam, WT

    2000-01-01

    Pelagophycus porra (Leman) Setchell has a narrow distribution confined to deep water from the Channel Islands off the southern California coast to central Baja California, Mexico. Distinct morphotypes are consistently correlated with distinctive habitats, that is, windward exposures characterized by

  15. Ophirapstanol trisulfate, a new biologically active steroid sulfate from the deep water marine sponge Topsentia ophiraphidites.

    Science.gov (United States)

    Gunasekera, S P; Sennett, S H; Kelly-Borges, M; Bryant, R W

    1994-12-01

    Ophirapstanol trisulfate [1], a new steroid trisulfate related to sokotrasterol trisulfate was isolated from a deep water marine sponge Topsentia ophiraphidites. Compound 1 exhibited significant inhibition in the guanosine diphosphate/G-protein RAS exchange assay. The structure elucidation of 1 and ophirapstanol [2] by nmr spectroscopy is described.

  16. Burial and exhumation of temperate bedrock reefs as elucidated by repetitive high-resolution sea floor sonar surveys: Spatial patterns and impacts to species' richness and diversity

    Science.gov (United States)

    Storlazzi, Curt D.; Fregoso, Theresa A.; Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Finlayson, David P.

    2013-01-01

    To understand how chronic sediment burial and scour contribute to variation in the structure of algal and invertebrate communities on temperate bedrock reefs, the dynamics of the substrate and communities were monitored at locations that experience sand inundation and adjacent areas that do not. Co-located benthic scuba-transect surveys and high-resolution swath-sonar surveys were completed on bedrock reefs on the inner shelf of northern Monterey Bay, CA, in early winter 2009, spring 2010, and summer 2010. Analysis of the sonar surveys demonstrates that during the 8 months over which the surveys were conducted, 19.6% of the study area was buried by sand while erosion resulted in the exposure of bedrock over 13.8% of the study area; the remainder underwent no change between the surveys. Substrate classifications from the benthic transect surveys correlated with classifications generated from the sonar surveys, demonstrating the capacity of high-resolution sonar surveys to detect burial of bedrock reefs by sediment. On bedrock habitat that underwent burial and exhumation, species' diversity and richness of rock-associated sessile and mobile organisms were 50–66% lower as compared to adjacent stable bedrock habitat. While intermediate levels of disturbance can increase the diversity and richness of communities, these findings demonstrate that burial and exhumation of bedrock habitat are sources of severe disturbance. We suggest that substrate dynamics must be considered when developing predictions of benthic community distributions based on sea floor imagery. These results highlight the need for predictive models of substrate dynamics and for a better understanding of how burial and exhumation shape benthic communities.

  17. Radioisotope mobility across the sediment/water interface in the deep sea

    International Nuclear Information System (INIS)

    ten Brink, M.R.B.

    1987-01-01

    The removal of radiotracers from water to sediments and their partitioning between phases were used to study the rates and mechanisms of transfer for trace elements across the sediment/water interface in the deep sea. The in situ mobility of 22 Na, 134 Cs, 133 Ba, 65 Zn, 125 Sb, 7 Be, 203 Hg, 54 Mn, 60 Co, 59 Fe, 113 Gd, and 141 Ce was measured using MANOP Lander benthic chambers in the N. equatorial Pacific and in San Clemente Basin. The contributions to mobility of diffusion, bioturbation, advection of pore waters, and transport across the diffusive boundary layer was assessed. The penetration of particle reactive tracers in the upper cm suggested a mixing rate of ≤10 -7 cm 2 /s at Sites C and S and ≤10 -5 cm 2 /s at Sites M and H. Greater penetration could be correlated with worm tubes but no evidence of irrigation was found. The presence of nodules did not prevent transport of soluble tracers to the underlying sediment or concentrate tracers. Diffusion was the predominant mode of transport for radiotracers in the short-term in situ experiments

  18. The acquisition of aquatic skills in preschool children: deep versus shallow water swimming lessons

    Directory of Open Access Journals (Sweden)

    Helena A Rocha

    2018-05-01

    Full Text Available One of the key factors in the swimming teaching-learning process seems to be the variation of water’s depth.However, there are almost no studies about this topic and the existing ones usually follow a basic approach and with no control of the educational program used. It was our purpose to determine the effect of deep versus shallow water differences on developing pre-schoolers’ aquatic skills after 6 months of practice. Twenty-one Portuguese school-aged children of both genders (4.70 ± 0.51 yrs., inexperienced in aquatic programs, participated in this study. The children were divided into two groups performing a similar aquatic program but in a different water depth: shallow water (n=10 and deep water (n=11. Each participant was evaluated twice for their aquatic readiness using an observation check list of 17 aquatic motor skills: during the first session (T0 and after six months of practice (two sessions per week with a total of 48 sessions (T1. The aquatic proficiency on each skill was compared between the groups and a stepwise discriminant analysis was conducted to predict the conditions with higher or lower aquatic competence. Results suggested that swimming practice contributed positively to improvements on several basic aquatic skills, in both groups. The results showed that shallow water group managed to acquire a higher degree of aquatic competence particularly in five basic aquatic skills (p< .05: breath control combined with face immersion and eye opening; horizontal buoyancy; body position at ventral gliding; body position at dorsal gliding; leg kick with breath control at ventral body position, without any flutter device. The discriminant function revealed a significant association between both groups and four included factors (aquatic skills (p< .001, accounting for 88% between group variability. The body position at ventral gliding was the main relevant predictor (r=0.535. Shallow water swimming lessons generated greater

  19. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    Science.gov (United States)

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  20. Temporal behavior of 222Radon, 226Radium and 238Uranium in deep water wells which provide Valle de Toluca with drinking water

    International Nuclear Information System (INIS)

    Pena, P.; Tamez, E.; Iturbe, J.L.; Acosta, A.; Segovia, N.; Carrillo, J.; Armienta, M.

    1994-01-01

    The presence of radionuclides in underground waters may be an indication of its origin and also the sign of the hydraulic properties of the aquifers layers where circulate. Additionally, the ingestion by human beings of water with radioactive elements (Radon 222, Radium 226, Uranium 238) can give as a result the accumulation of such elements in several organs of the body producing then health damages. In this work, the concentrations of Radon 222, Radium 226 and Uranium 238, in waters coming from deep wells which provide with drinking water the Toluca Valley, were determined. For this purpose, during a year (june 1991 to August 1992) ten wells were sampled with a tracking of the radionuclides concentration as well as the physical-chemical components of water; it was established the relationship presented by the analyzed waters with the local geology and the local and regional systems. (Author)

  1. Immunosuppressive compounds from a deep water marine sponge, Agelas flabelliformis.

    Science.gov (United States)

    Gunasekera, S P; Cranick, S; Longley, R E

    1989-01-01

    Two immunosuppressive compounds, 4 alpha-methyl-5 alpha-cholest-8-en-3 beta-ol and 4,5-dibromo-2-pyrrolic acid were isolated from a deep water marine sponge, Agelas flabelliformis. Their structures were determined by comparison of their spectral data with those of samples isolated from other organisms. Both compounds were highly active in suppression of the response of murine splenocytes in the two-way mixed lymphocyte reaction (MLR) with little to no demonstrable cytotoxicity at lower doses. In addition, 4,5-dibromo-2-pyrrolic acid suppressed the proliferative response of splenocytes to suboptimal concentrations of the mitogen, concanavalin A (Con A). These results describe for the first time compounds isolated from the marine sponge A. flabelliformis that possess potent in vitro immunosuppressive activity.

  2. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  3. Acoustic Imaging of Selected Areas of Gdansk Bay with the Aid of Parametric Echosounder and Side-Scan Sonar

    Directory of Open Access Journals (Sweden)

    Grelowska Grażyna

    2017-12-01

    Full Text Available The article presents and analyses the data recorded during sounding of the Gdansk Bay seabed with the aid of a parametric echosounder and a side-scan sonar. The accuracy of seabed structure examination, as a condition for obtaining valuable results, requires correct configuration of echolocation devices and proper calibration of peripheral devices, such as the survey unit geographical position sensor - GPS, the navigation unit, the MRU-Z sensor of pitch, roll and heave, and the sound velocity meter, which deliver the data to the bathymetric measurement system. Parametric seabed profilers deliver two types of data: the envelope, and the detailed echo signal without processing. The envelope is used for data visualisation in the form of online echograms, while the echo signal is stored for further analyses, to be performed using dedicated software or, after relevant conversion, in arbitrary programming environment1. The presented data analysis is illustrated by selected sample images recorded by the parametric echosounder and the side-scan sonar during Gdansk Bay sounding.

  4. Millennial-scale variations of late Pleistocene radiolarian assemblages in the Bering Sea related to environments in shallow and deep waters

    Science.gov (United States)

    Itaki, Takuya; Kim, Sunghan; Rella, Stephan F.; Uchida, Masao; Tada, Ryuji; Khim, Boo-Keun

    2012-02-01

    A high-resolution record of the radiolarian assemblage from 60 to 10 ka was investigated using a piston core (PC-23A) obtained from the northern slope of the Bering Sea. Faunal changes based on the 29 major radiolarian taxa demonstrated that the surface and deep water conditions in the Bering Sea were related to the orbital and millennial-scale climatic variations known as glacial-interglacial and Dansgaard-Oeschger (D-O) cycles, respectively. During interstadial periods of the D-O cycles, the assemblage was characterized by increases in the high-latitude coastal species Rhizoplegma boreale and the upper-intermediate water species Cycladophora davisiana, while the sea-ice related species Actinomma boreale and A. leptodermum and many deep-water species such as Dictyophimus crisiae and D. hirundo tended to be reduced. This trend was more apparent in two laminated intervals at 15-13.5 and 11.5-11 ka, which were correlated with well-known ice-sheet collapse events that occurred during the last deglaciation: melt-water pulse (MWP)-1A and MWP-1B, respectively. The radiolarian faunal composition in these periods suggests that oceanic conditions were different from today: (1) surface water was affected by increased melt-water discharge from continental ice-sheet, occurring at the same time as an abrupt increase in atmospheric temperature, (2) upper-intermediate water (ca. 200-500 m) was well-ventilated and organic-rich, and (3) lower-intermediate water (ca. 500-1000 m) was oxygen-poor. Conversely, the sea-ice season might have been longer during stadial periods of the D-O cycles and the last glacial maximum (LGM) compared to the interstadial periods and the earliest Holocene. In these colder periods, deep-water species were very abundant, and this corresponded to increases in the oxygen isotope value of benthic foraminifera. Our findings suggest that the oxygen-rich water was present in the lower-intermediate layer resulting from intensified ventilation.

  5. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  6. Theonellapeptolide IIIe, a new cyclic peptolide from the New Zealand deep water sponge, Lamellomorpha strongylata.

    Science.gov (United States)

    Li, S; Dumdei, E J; Blunt, J W; Munro, M H; Robinson, W T; Pannell, L K

    1998-06-26

    The structure, stereochemistry, and conformation of theonellapeptolide IIIe (1), a new 36-membered ring cyclic peptolide from the New Zealand deep-water sponge Lamellomorpha strongylata, is described. The sequence of the cytotoxic peptolide was determined through a combination of NMR and MS-MS techniques and confirmed by X-ray crystal structure analysis, which, with chiral HPLC, established the absolute stereochemistry.

  7. Water use, root activity and deep drainage within a perennial legume-grass pasture: A case study in southern inland Queensland, Australia

    Directory of Open Access Journals (Sweden)

    A. Nahuel A. Pachas

    2016-09-01

    Full Text Available Water use and depth of water extraction of leucaena (Leucaena leucocephala and Rhodes grass (Chloris gayana pasture, irrigated with desalinated coal seam water (a by-product of the coal seam gas industry, were monitored to provide background information on root activity, spatial and temporal water use and deep drainage over a 757-day period from August 2011 to August 2013. Methodology comprised measurement of soil water from surface to 4 m depth using 8 EnviroSCAN probes connected to dataloggers positioned within leucaena twin rows and within the Rhodes grass inter-row. Just over 581,000 individual moisture measurements were collated and are reported here. Water extraction (and by inference root activity of leucaena and Rhodes grass showed marked seasonal fluctuation with deepest and highest water extraction occurring during the first growing season; water extraction was greatly diminished during the following drier and cooler seasons due to the negative influences of lower soil moisture contents, lower temperatures and increased defoliation on pasture growth. The highest values of deep drainage below 4 m depth occurred when high rainfall events corresponded with high soil water storage in the entire profile (0–4 m depth. Given that water usage by both leucaena and Rhodes grass was greatest in the upper layers of soil (<1.5 m, future research should focus on how the level of competitive interaction might be managed by choice of row spacing and frequency of irrigation. Further studies are needed, including: (a physical sampling to determine the depth of active roots; (b how defoliation affects rooting behaviours and water use of leucaena; and (c modelling of the water and salt balances of leucaena and grass inter-row systems using data from this study, with various levels of irrigation, to investigate the risks of deep drainage over an extended climate sequence.Keywords: Active rooting depth, agroforestry, Chloris gayana, Leucaena leucocephala

  8. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  9. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-10-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  10. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  11. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  12. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water

    International Nuclear Information System (INIS)

    Li Jun; Li Zheng-Lin; Ren Yun; Li Wen; Zhang Ren-He

    2015-01-01

    The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experimental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coefficients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results. (paper)

  13. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  14. Pre-screening tectonic heat flows for basin modelling - Some implications for deep water exploration in the mediterranean

    NARCIS (Netherlands)

    Wees, J.D. van; Bertotti, G.; David, P.; Bergen, F. van; Cloetingh, S.

    2007-01-01

    Basin modelling results can be very sensitive to (paleo-)temperature uncertainties. For frontier basins, in particular for deep water settings, the thermal signature of the basin is poorly constrained, as data from wells are lacking. This may lead to wrong heat flow assumptions if these are

  15. Deep groundwater flow at Palmottu

    International Nuclear Information System (INIS)

    Niini, H.; Vesterinen, M.; Tuokko, T.

    1993-01-01

    Further observations, measurements, and calculations aimed at determining the groundwater flow regimes and periodical variations in flow at deeper levels were carried out in the Lake Palmottu (a natural analogue study site for radioactive waste disposal in southwestern Finland) drainage basin. These water movements affect the migration of radionuclides from the Palmottu U-Th deposit. The deep water flow is essentially restricted to the bedrock fractures which developed under, and are still affected by, the stress state of the bedrock. Determination of the detailed variations was based on fracture-tectonic modelling of the 12 most significant underground water-flow channels that cross the surficial water of the Palmottu area. According to the direction of the hydraulic gradient the deep water flow is mostly outwards from the Palmottu catchment but in the westernmost section it is partly towards the centre. Estimation of the water flow through the U-Th deposit by the water-balance method is still only approximate and needs continued observation series and improved field measurements

  16. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-05-04

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  17. Field development. Concept selection in deep water environment offshore Angola

    Energy Technology Data Exchange (ETDEWEB)

    Guenot, A.; Berger, J.C.; Limet, N. [TotalFinaElf, la Defense 6, Rosa-Lirio Project Group, 92 - Courbevoie (France)

    2002-10-01

    The significant oil discoveries made at the end of the 90's in the deep water environment offshore the coast of Angola, has led to a considerable amount of development activities. The first field in production was the turnkey development of the Kuito field on the Block 14 operated by Chevron. More recently the Girassol field has been put successfully in production on the Block 17, operated by TotalFinaElf. Both developments are making use of sub-sea wells connected to a moored dedicated FPSO. On the western side of the Girassol field, several discoveries have been made. They are known as the Rosa Lirio pole, from the names of two of the main channels. Values for water depth are in the same range than on Girassol (1300- 1400 m). A project group has been established in 1999 to evaluate the development of these discoveries. The purpose of this paper is to present the conceptual work which as been carried out, and in particular to show that even if many different concepts have been evaluated, the final choice has been also to make use of sub-sea trees. (authors)

  18. Polychaete Annelid (segmented worms) Species Composition in the Deep Gulf of Mexico following the Deep Water Horizon (DWH) Oil Spill

    Science.gov (United States)

    QU, F.; Rowe, G.

    2012-12-01

    Sediments 5 to 9 km from the Deep Water Horizon (DWH) Oil Spill site were sampled using a 0.2 m2 box corer 5 months after the event to assess the effects of the oil spill on polychaete annelid (segmented worms) community structure. Numbers of species, abundance, and biodiversity indices were all significantly lower than pre-spill values from similar depths in the eastern Gulf of Mexico (GoM). All of the five dominant species were different. Non-selective deposit feeders and selective deposit feeders were still the most frequent feeding guilds, but their abundances decreased significantly after the event. A large number of carnivorous Sigalionidae may be a response to an accumulation of PAHs on the sediment. Multivariate analyses (CLUSTER and multidimensional scaling (MDS)) illustrate the differences between assemblages near the DWH and those from prior studies in similar deep GoM habitats. In sum, the polychaete populations appeared to be at an early stage of succession in the recovery from the spill or they could be a resident assemblage that is the natural characteristic infauna in or adjacent to natural seeps of fossil hydrocarbons.

  19. A Study to Interpret the Biological Significance of Behavior Associated with 3S Experimental Sonar Exposures

    Science.gov (United States)

    2015-09-30

    species; 2.) quantitative comparison of behavior, and behavioral changes, during sonar presentation and playback of killer whale sounds across the 3S... foraging dives were pre-classified from the remaining dives first by determining a break-point depth in the depth versus duration relationship, and then...AIC point to divide dive depth versus duration relationships (Fig. 2). 50.8% of dives greater than 15m in depth were classified as foraging dives

  20. Microbial ecology of deep-water mid-Atlantic canyons

    Science.gov (United States)

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  1. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-11-20

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  2. Cathodic protection of mild steel and copper in deep waters of the Arabian Sea and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Performance of cathodic protection system to mild steel and copper in deep (> 1000 m) oceanic waters of the Arabian Sea and Bay of Bengal has been assessed using aluminium and mild steel sacrificial anodes. The corrosion rates of unprotected metals...

  3. Dalia integrated production bundle (IPB): an innovative riser solution for deep water fields

    Energy Technology Data Exchange (ETDEWEB)

    Reals, Th Boscals de; Gloaguen, M.; Roche, F. [Total E and P (Angola); Marion, A.; Poincheval, A. [Technip, Paris (France)

    2008-07-01

    The Dalia field is located 210 km north west of Luanda (Angola), about 140 km from shore in 1400 meter water-depth. It was the second major discovery out of 15 made in the block 17 operated by Total. The Dalia Umbilical, Flow lines and Risers EPCI Contract was awarded in 2003. The sea-line network to connect and control the 71 wells and 9 manifolds consist of the following: 40 km of insulated pipe in pipe (12 inches into 17 inches) production flow lines; 45 km of 12 inches water and gas injection lines; 6 off 1.7 km flexible water and gas injection risers; 8 off 1.65 km flexible Integrated Production Bundle (IPB) risers; 75 km of control umbilicals. The flow assurance and associated insulation requirement of the production transport system was one of the main challenges of the project. With a crude temperature of 45 deg C at the wellhead and the required minimum temperature of 35 deg C on arrival at the FPSO, this problem was complex. Understanding that, due to the Joule Thompson effect of the riser gas lift, a 'built in' loss of about 5 deg C is induced and together with further losses through the sub sea pipelines, some up to 6 km long, the agreed solution was 'pipe in pipe' for the production flow lines. The innovative flexible IPB riser, incorporating gas lift and heating to keep the fluid temperature above hydrate formation zone, was the selected riser solution. The IPB is new technology for deep water, developed by Technip for Dalia, and consists of a 12 inches nominal central flexible, surrounded by layers of heat tracing cables, small bore gas lift lines, optical fibres and many insulation layers with an Overall Heat Transfer Coefficient of approximately 3,4 W/m{sup 2}K. After an earlier research and development programme, a further extensive qualification programme was conducted during the course of the project, culminating with the deep water testing phase offshore Brazil. The IPB was then approved for fabrication and installation

  4. [Spatiotemporal succession of algae functional groups and the influence of environment change in a deep-water reservoir].

    Science.gov (United States)

    Lu, Jin-Suo; Hu, Ya-Pan

    2013-07-01

    Algae functional group has become an important theory and method of algae research in recent years. In order to explore the spatiotemporal succession of algae functional groups and the influence of environment change, water samples were collected in August, 2011 from a deep-water reservoir in Northwest China. The research combined the methods of on-line monitoring and laboratory analysis. The results showed that there were 10 functional groups of algae in the reservoir. They were designated as B, D, P, X1, X3, F, G, J, L(M) and MP. Wherein, the groups B, P, F, X1, MP, D and J were comparatively common functional groups, and the groups X3, G and L(M) were less common. The populations of groups B, D, P, X1 and X3 were larger than those of the others. Besides, the analysis of changes in the environment factors suggested that temperature was the most important factor influencing the spatiotemporal succession of algae functional groups. The strategy of algal growth followed the law: R/CR in spring --> CR/C in late spring and early summer C/CR/R/CS/S in late summer and early autumn --> CR/R in late autumn and winter. The purpose of this article is to provide theoretical support for water withdrawal safety in deep-water reservoirs.

  5. Hamacanthins A and B, new antifungal bis indole alkaloids from the deep-water marine sponge, Hamacantha sp.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Kelly-Borges, M

    1994-10-01

    Hamacanthin A [1] and hamacanthin B [2] are two bioactive dihydropyrazinonediylbis(indole) alkaloids isolated from a new species of deep-water marine sponge, Hamacantha sp. The hamacanthins are growth inhibitors of Candida albicans and Cryptococcus neoformans. Isolation and structure elucidation of 1 and 2 by nmr spectroscopy are described.

  6. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  7. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.

  8. Effect of selective withdrawal on the annual thermal regime of a deep water body

    International Nuclear Information System (INIS)

    Bocharov, O.B.; Zinov'ev, A.T.

    1993-01-01

    The construction of any large hydraulic structure leads to the occurrence of new ecosystems in the upper and lower pools of the hydro development. A study of scenarios of the development of these ecosystems and an investigation of the possibilities of minimizing the negative ecological consequences of waterpower engineering by means of mathematical modeling in many respects determine the quality of developing the scientific and technical project. For high-head hydroelectric stations, an effective tool for controlling the water quality in the upper and lower pools is the withdrawal of water form different horizons of the upper pool reservoir. Temperature stratification of a deep sluggish water body is modeled in a one-dimensional vertical approximation with the use of an improved method of describing fluid outflow. The effect of selective withdrawal on the annual thermal regime and temperature of the outflowing water was studied. The results obtained permit estimating the effect of selective withdrawal on the thermal regime of the upper pool of the planned hydro development and temperature of the water being discharged into the lower pool on the possibility, in principle, of the water temperature in the lower pool approaching the natural both in winter and summer

  9. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  10. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    Science.gov (United States)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  11. A Deep Hydrographic Section Across the Tasman Sea.

    Science.gov (United States)

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  12. Climatological Implications of Deep-Rooting in Water-Limited Ecosystems

    Science.gov (United States)

    Amenu, G. G.; Kumar, P.

    2005-12-01

    In vegetated ecosystems, plants are the primary channels that connect the soil with the atmosphere (through water, energy, carbon, and nutrient cycles), with plant roots controlling the below-ground dynamics. Recently, several observational evidences are emerging which suggests the existence of plant roots much deeper in the soil/rock profile than the depth usually perceived in existing hydroclimatological and hydroecological models. In this study, using land surface model, we assess the effects of vegetation deep-rooting on (a) moisture and temperature redistribution in the soil profile, (b) energy flux partitioning at the land surface, and (c) net primary productivity of vegetated ecosystems. Three sites characterized by different vegetation, soil, and climate (all located in arid to sub-humid regions of the United States) were studied. The sites include the Mogollon Rim in Arizona, the Edwards Plateau in Texas, and the Southern Piedmont in Georgia. Soil depths of up to 10 m are investigated. Results of this modeling effort and its implications for climatological modeling will be presented.

  13. New species and new records of deep-water Pectinoidea (Bivalvia: Propeamussiidae, Entoliidae and Pectinidae) from the South Pacific

    NARCIS (Netherlands)

    Dijkstra, H.H.; Maestrati, P.

    2008-01-01

    Fifty-two deep-water species of Pectinoidea (37 Propeamussiidae, 1 Entoliidae, 14 Pectinidae) are listed from Norfolk Ridge (11 species), Loyalty Islands (4 species), Fiji Islands (30 species), Tonga (26 species), Solomon Islands (26 species) and the Marquesas archipelago (8 species). All species

  14. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  15. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  16. Short-crested waves in deep water: a numerical investigation of recent laboratory experiments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2006-01-01

    A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...

  17. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    Science.gov (United States)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  18. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.

    Science.gov (United States)

    Wang, Yifei; Narayanan, S R; Wu, Wei

    2017-08-22

    Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.

  19. Deep-water gamma-spectrometer based on HP(Ge) detector

    International Nuclear Information System (INIS)

    Sokolov, A.; Danengirsh, S.; Popov, S.; Pchelincev, A; Gostilo, V.; Kravchenko, S.; Shapovalov, V.; Druzhinin, A.

    1995-01-01

    Full text: For radionuclide monitoring of the sea bottom near underwater storage of high active waste of nuclear industries and near places of accidents with nuclear submarines the spectrometers of gamma-radiation, which allow to carry out the measurements on the great depth, are needed. Usually, these problems are solved with devices, which are cast down into the water, using the rope, and transmit the signals on the surface by the cable. However, the depth of immersion is limited by this construction and often the conditions of measurement are complicated. The deep water gamma-spectrometer based on HP(Ge) detector for the measurement on the depth up to 3000 m is developed. The spectrometer is completely autonomic and is put up in the selected place, using the manipulator of a deep-water apparatus. The spectrometer is created in two cylindrical cases with 170 mm diameter and 1100 mm length, bearing the high hydrostatic pressure. The part of the case around the detector is created from titanium and has especial construction with a thin wall for increasing the efficiency of registration in the region of low-energy gamma-radiation. The cooling of the semiconductor detector is provided by a coolant which supports the working temperature of the detector during more than 24 hours. The electronic system of the spectrometer includes high voltage supply f or the detector, preamplifier, analog processor, analog-digital converter and a device for collecting and storing information in flash memory. The power supply of the spectrometer is provided by a battery of accumulators, which can be recharged on the surface. The programming of the processor is carried out before immersion by connecting the spectrometer to personal computer using standard interface RS-232. During 24 hours the spectrometer provides registration of 16 spectrums each in 4096 channels. The reading of the information by the computer is carried out after lifting up the spectrometer on the surface in the same

  20. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  1. Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data

    Science.gov (United States)

    Mimi, L.

    2014-12-01

    Located in central Taiwan, the Sun Moon Lake is an U-shaped basin with the waters capacity for 138.68 × 106m³. The water is input through two underground tunnels from the Wu-Jie dam in the upstream of the Zhuo-shui river. Although the Wu-Jie dam has been trying to keep the tunnels transporting clean water into the lake, the water is still mixed with muds. The silty water brings the deposits accumulating outwards from positions of the tunnel outlets resulting in a deposit fan formed in the lake. To monitor how the fan is accumulated is then very important in terms of environmental issue, tourism and electric power resources. Institute of Oceanography, National Taiwan University therefore conducted projects to use the multi-beam echo sounders to collect bathymetric data, and used the Chirp sub-bottom profiler to explore silted pattern inside the deposit fan. With these data, underwater topographic maps were plotted to observe the shape and internal structure of the fan. Moreover, two sets of data obtained in 2006 and 2012 were used to estimate the siltation magnitude and pattern in the six years period.The multi-beam sounder is Resons Seabat 9001s model; it collects 60 values in each of the swaths positioned by the DGPS method.The sub-bottom profiler is the EdgeTech 3100P Chirp Sonar, its acoustic wave frequency is in 2 ~ 16kHz. The data give the siltation amount in the Sun Moon Lake was around 3× 106 m³, which gives annual siltation rate at 5× 105 m³. The leading edge of the deposit fan has been expanded westwards 2 km from the water outlet since the tunnel was built 70 years ago; however, outside the deposit fan, the siltation shows insignificant amount on the water bottom.In the past few years the siltation mainly occurs outside in the east side of lake, more closer to the water outlets, the terrain had been increased from 744 m to 746 m (748.5 meters is stranded level of the lake).Observing sub-bottom profiler data, we can clearly see the location of the

  2. Directionality of sperm whale sonar clicks and its relation to piston radiation theory

    DEFF Research Database (Denmark)

    Beedholm, K.; Møhl, Bertel

    2006-01-01

    This paper investigates the applicability to sperm whales of the theory of sound radiating from a piston. The theory is applied to a physical model and to a series of sperm whale clicks. Results show that wave forms of off-axis signals can be reproduced by convolving an on-axis signal...... with the spatial impulse response of a piston. The angle of a recorded click can be estimated as the angle producing the spatial impulse response that gives the best match with the observation when convolved with the on-axis wave form. It is concluded that piston theory applies to sperm whale sonar click emission....

  3. Development of HMPE fiber for deep water permanent mooring applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasblom, Martin; Fronzaglia, Bill; Boesten, Jorn [DSM Dyneema, Urmond (Netherlands); Leite, Sergio [Lankhorst Ropes, Sneek (Netherlands); Davies, Peter [Institut Francais de Recherche pour L' Exploration de la Mer (IFREMER) (France)

    2012-07-01

    For a number of years, the creep performance of standard High Modulus Polyethylene (HMPE) fiber types has limited their use in synthetic offshore mooring systems. In 2003, a low creep HMPE fiber was introduced and qualified for semi-permanent MODU moorings. This paper reports on a new High Modulus Polyethylene fiber type with significantly improved creep properties compared to any other HMPE fiber type, which, for the first time, allows its use in permanent offshore mooring systems, for example for deep water FPSO moorings. Results on fiber and rope creep experiments and stiffness measurements are reported. Laboratory testing shows that ropes made with the new fiber type retain the properties characteristic of HMPE such as high static strength, high fatigue resistance and stiffness, and illustrate that stiffness properties determined on HMPE fiber or rope are dependent on the applied load and temperature. (author)

  4. Discorhabdin P, a new enzyme inhibitor from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Longley, R E; Pomponi, S A; Wright, A E; Lobkovsky, E; Clardy, J

    1999-01-01

    Discorhabdin P (1), a new discorhabdin analogue, has been isolated from a deep-water marine sponge of the genus Batzella. Discorhabdin P (1) inhibited the phosphatase activity of calcineurin and the peptidase activity of CPP32. It also showed in vitro cytotoxicity against P-388 and A-549 cell lines. The isolation and structure elucidation of discorhabdin P (1) are described.

  5. Influence of the hydrodynamic conditions on the accessibility of the demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    Science.gov (United States)

    Amores, A.; Rueda, L.; Monserrat, S.; Guijarro, B.; Pasqual, C.; Massutí, E.

    2013-12-01

    Ocean mean surface vorticity from gridded multi-mission satellite altimetry data was explored in the Western Mediterranean basin for the period 2000-2010, with the aim of comparing its variability with several species of the deep water fishery in the area. Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed off northern Mallorca Island displayed a good correlation with surface vorticity. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspensions, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity by moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accesibility to fishing exploitation. This relationship between vorticity and catches also holds for other species , considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticy episodes is significant enough to affect the dynamics of the demersal species. The way the surface vorticity observed can affect the bottom sediments is also investigated using a year-long moored near-bottom currentmeter and a sediment trap sited in the fishing grounds.

  6. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers.

    Science.gov (United States)

    Yankova, Yana; Neuenschwander, Stefan; Köster, Oliver; Posch, Thomas

    2017-10-23

    After strong fertilization in the 20 th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.

  7. THE OPTIMAL RATIO OF NILE TILAPIA (Oreochromis niloticus AND COMMON CARP (Cyprinus carpio FOR IMPROVING PRODUCTIVITY ON DEEP WATER POND

    Directory of Open Access Journals (Sweden)

    Imam Taufik

    2013-06-01

    Full Text Available Pond productivity can be increased by applied polyculture system in the deep pond. The purpose of this experiment is to examine the optimal ratio between nile tilapia and common carp, in order to increase the productivity. Nine concrete tanks (15 m2 with water depth of 2.2 m and were completed by water inlet, water outlet, and aeration. Both of nile tilapia and common carp with size ranging of 5-8 cm in total length were used. Stock density was 150 ind./m2. The difference ratio of both fish tilapia and carp of fish stocked as a treatment. The fish ratio this experiment were as followed: A 100%; B 80%:20%; C 60%:40%. Fish fed by pellet until at ad libitum. The duration of experiment was 100 days. Parameters such as survival, growth, and productivity were observed every ten days during the experiment period. Water quality parameters were also periodically observed. The results showed that survival of nile tilapia among the treatments were not significantly different (P>0.05 where survival of common carp at B treatment was better than C treatment (P<0.05. The highest of growth of absolute weight (94.86±2.85 g and total length (14.71±1 cm of nile tilapia at B treatment was found (P<0.05 where the best of growth of absolute weight (106.52±10.47 g and total length (11.57±1.78 cm of common carp was also found at B treatment (P<0.05. Biomass productivity at B treatment was the highest compared with A treatment (P<0.05. Combination between polyculture and the deep water pond technology could increase productivity. The polyculture system and the deep water pond technology would be able to keep constant water quality within in the threshold accordance with the regulation for fish culture.

  8. Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters

    Directory of Open Access Journals (Sweden)

    Sophie A. L. Paul

    2018-04-01

    Full Text Available Increasing interest in deep-sea mineral resources, such as polymetallic nodules, calls for environmental research about possible impacts of mineral exploitation on the deep-sea ecosystem. So far, little geochemical comparisons of deep-sea sediments before and after mining induced disturbances have been made, and thus long-term environmental effects of deep-sea mining are unknown. Here we present geochemical data from sediment cores from an experimental disturbance area at 4,100 m water depth in the Peru Basin. The site was revisited in 2015, 26 years after a disturbance experiment mimicking nodule mining was carried out and compared to sites outside the experimental zone which served as a pre-disturbance reference. We investigated if signs of the disturbance are still visible in the solid phase and the pore water after 26 years or if pre-disturbance conditions have been re-established. Additionally, a new disturbance was created during the cruise and sampled 5 weeks later to compare short- and longer-term impacts. The particulate fraction and pore water were analyzed for major and trace elements to study element distribution and processes in the surface sediment. Pore water and bottom water samples were also analyzed for oxygen, nitrate, dissolved organic carbon, and dissolved amino acids, to examine organic matter degradation processes. The study area of about 11 km2 was found to be naturally more heterogeneous than expected, requiring an analysis of spatial variability before the disturbed and undisturbed sites can be compared. The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the

  9. The Sinking and Spreading of The Antarctic Deep Ice Shelf Water In The Ross Sea Studied By In Situ Observaions and Numerical Modeling

    Science.gov (United States)

    Rubino, A.; Budillon, G.; Pierini, S.; Spezie, G.

    The sinking and spreading of the Deep Ice Shelf Water (DISW) in the Ross Sea are analyzed using in situ observations and the results of a nonlinear, reduced-gravity, frontal layered numerical "plume" model which is able to simulate the motion of a bottom-arrested current over realistic topography. The model is forced by prescribing the thickness of the DISW vein as well as its density structure at the southern model boundary. The ambient temperature and salinity are imposed using hydrographic data acquired by the Italian PNRA-CLIMA project. In the model water of the quiescent ambient ocean is allowed to entrain in the active deep layer due to a simple param- eterization of turbulent mixing. The importance of forcing the model with a realistic ambient density is demonstrated by carrying out a numerical simulation in which the bottom active layer is forced using an idealized ambient density. In a more realis- tic simulation the path and the density structure of the DISW vein flowing over the Challenger Basin are obtained and are found to be in good agreement with data. The evolution of the deep current beyond the continental shelf is also simulated. It provides useful information on the water flow and mixing in a region of the Ross Sea where the paucity of experimental data does not allow for a detailed description of the deep ocean dynamics.

  10. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  11. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Science.gov (United States)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  12. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  13. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  14. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NARCIS (Netherlands)

    Soetaert, K.; Mohn, C.; Rengstorf, A.; Grehan, A.; Van Oevelen, D.

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces

  15. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi.

    Science.gov (United States)

    Gunasekera, S P; Kelly-Borges, M; Longley, R E

    1996-02-01

    24(R)-Methyl-5 alpha-cholest-7-enyl 3 beta-methoxymethyl ether (1), a new sterol ether, has been isolated from a deep-water marine sponge Scleritoderma sp. cf. paccardi. Compound 1 exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line with an IC50 of 2.3 micrograms/mL. The isolation and structure elucidation of 1 by NMR spectroscopy is described.

  16. Isometachromin, a new cytotoxic sesquiterpenoid from a deep water sponge of the family Spongiidae.

    Science.gov (United States)

    McConnell, O J; Longley, R; Gunasekera, M

    1992-09-15

    Isometachromin (1), a new sesquiterpene-quinone that is related structurally to metachromin C (2), and the known compounds ilimaquinone (3) and 5-epi-ilimaquinone (4), were isolated from a deep water sponge in the family Spongiidae; the structure of isometachromin was elucidated by spectral methods. Isometachromin exhibits in vitro cytotoxicity against the human lung cancer cell line A549 (IC50 = 2.6 micrograms/ml), but not against P388 murine leukemia (IC 50 > or equal to 10 micrograms/ml) and also exhibits antimicrobial activity.

  17. Deep freezers with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-09-02

    Together with space and water heating systems, deep freezers are the biggest energy consumers in households. The article investigates the possibility of using the waste heat for water heating. The design principle of such a system is presented in a wiring diagram.

  18. Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar

    Directory of Open Access Journals (Sweden)

    Matheus dos Santos

    2017-09-01

    Full Text Available The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper.

  19. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea

    Directory of Open Access Journals (Sweden)

    Cecile eCathalot

    2015-06-01

    Full Text Available Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on energy flow and organic carbon utilization are critically lacking. Here we report in situ community respiration rates for cold-water coral and sponge ecosystems obtained by the non-invasive aquatic Eddy Correlation technique. Oxygen uptake rates over coral reefs and adjacent sponge grounds in the Træna Coral Field (Norway were 9-20 times higher than those of the surrounding soft sediments. These high respiration rates indicate strong organic matter consumption, and hence suggest a local focusing onto these ecosystems of the downward flux of organic matter that is exported from the surface ocean. Overall, our results show that coral reefs and adjacent sponge grounds are hotspots of carbon processing in the food-limited deep ocean, and that these deep-sea ecosystems play a more prominent role in marine biogeochemical cycles than previously recognized.

  20. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    Science.gov (United States)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  1. EMG activity of hip and trunk muscles during deep-water running.

    Science.gov (United States)

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  2. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    Science.gov (United States)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  3. Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea.

    Science.gov (United States)

    Caruso, Francesco; Alonge, Giuseppe; Bellia, Giorgio; De Domenico, Emilio; Grammauta, Rosario; Larosa, Giuseppina; Mazzola, Salvatore; Riccobene, Giorgio; Pavan, Gianni; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Sciacca, Virginia; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Buscaino, Giuseppa

    2017-06-28

    Dolphins emit short ultrasonic pulses (clicks) to acquire information about the surrounding environment, prey and habitat features. We investigated Delphinidae activity over multiple temporal scales through the detection of their echolocation clicks, using long-term Passive Acoustic Monitoring (PAM). The Istituto Nazionale di Fisica Nucleare operates multidisciplinary seafloor observatories in a deep area of the Central Mediterranean Sea. The Ocean noise Detection Experiment collected data offshore the Gulf of Catania from January 2005 to November 2006, allowing the study of temporal patterns of dolphin activity in this deep pelagic zone for the first time. Nearly 5,500 five-minute recordings acquired over two years were examined using spectrogram analysis and through development and testing of an automatic detection algorithm. Echolocation activity of dolphins was mostly confined to nighttime and crepuscular hours, in contrast with communicative signals (whistles). Seasonal variation, with a peak number of clicks in August, was also evident, but no effect of lunar cycle was observed. Temporal trends in echolocation corresponded to environmental and trophic variability known in the deep pelagic waters of the Ionian Sea. Long-term PAM and the continued development of automatic analysis techniques are essential to advancing the study of pelagic marine mammal distribution and behaviour patterns.

  4. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    Science.gov (United States)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in

  5. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  6. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  7. Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water.

    Science.gov (United States)

    Wen, Jian; Ren, Chong; Huang, Nan; Liu, Yang; Zeng, Runying

    2015-02-01

    Bacillus aryabhattai GZ03 was isolated from deep sea water of the South China Sea, which can produce glucose and fructose by degrading bagasse at 25 °C. Here we report the draft genome sequence of Bacillus aryabhattai GZ03. The data obtained revealed 37 contigs with genome size of 5,105,129 bp and G+C content of 38.09%. The draft genome of B. aryabhattai GZ03 may provide insights into the mechanism of microbial carbohydrate and lignocellulosic material degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  9. mos114_0402b.tif -- Side scan sonar image from survey effort HMPR-114-2004-02b in the Olympic Coast National Marine Sanctuary.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This side scan sonar image of the sea floor was mosaiced from data collected in August 2004 onboard the NOAA vesselTatoosh. An EG&G 272 side scan system was used...

  10. Chronicles of the deep : ageing deep-sea corals in New Zealand waters

    International Nuclear Information System (INIS)

    Tracey, D.; Neil, H.; Gordon, D.; O'Shea, S.

    2003-01-01

    How old is a coral? Finding the answer requires some rather complex steps. We need to understand: the source of carbonate; the effects of climatic events; how to interpret growth zones; the effect of 14 C and biological processes such as feeding and reproduction; and how to overcome the lack of deep-sea environmental data records. We also need to find out where on the coral we should be sampling to get the best estimates of age. At the moment we know little about how deep-sea corals deposit their calcite, but we will be exploring this further so that we can have greater confidence in our age estimates. To confirm and validate age and growth, it will be necessary to use a combination of some of the the possible methods for ageing coral. In addition to ageing the corals, this work should yield a high-resolution record of ocean temperature during the past 100 years by using stable-isotope signatures preserved in the corals' carbonate skeletons. (author). 4 figs

  11. Acoustic water bottom investigation with a remotely operated watercraft survey system

    Science.gov (United States)

    Yamasaki, Shintaro; Tabusa, Tomonori; Iwasaki, Shunsuke; Hiramatsu, Masahiro

    2017-12-01

    This paper describes a remotely operated investigation system developed by combining a modern leisure-use fish finder and an unmanned watercraft to survey water bottom topography and other data related to bottom materials. Current leisure-use fish finders have strong depth sounding capabilities and can provide precise sonar images and bathymetric information. Because these sonar instruments are lightweight and small, they can be used on unmanned small watercraft. With the developed system, an operator can direct the heading of an unmanned watercraft and monitor a PC display showing real-time positioning information through the use of onboard equipment and long-distance communication devices. Here, we explain how the system was developed and demonstrate the use of the system in an area of submerged woods in a lake. The system is low cost, easy to use, and mobile. It should be useful in surveying areas that have heretofore been hard to investigate, including remote, small, and shallow lakes, for example, volcanic and glacial lakes.

  12. Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

    Directory of Open Access Journals (Sweden)

    Sung-Hee Kim

    2012-06-01

    Full Text Available Hull Mounted Sonar (HMS is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.

  13. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    Science.gov (United States)

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  14. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  15. Discorhabdins S, T, and U, new cytotoxic pyrroloiminoquinones from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, Sarath P; Zuleta, Ignacio A; Longley, Ross E; Wright, Amy E; Pomponi, Shirley A

    2003-12-01

    Discorhabdins S, T, and U (1-3), three new discorhabdin analogues, have been isolated from a deep-water marine sponge of the genus Batzella. These discorhabdin analogues showed in vitro cytotoxicity against PANC-1, P-388, and A-549 cell lines. The isolation and structure elucidation of discorhabdins S, T, and U are described.

  16. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    Science.gov (United States)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological

  17. Anti-infective Discorhabdins from a Deep-Water Alaskan Sponge of the Genus Latrunculia†

    Science.gov (United States)

    Na, MinKyun; Ding, Yuanqing; Wang, Bin; Tekwani, Babu L.; Schinazi, Raymond F.; Franzblau, Scott; Kelly, Michelle; Stone, Robert; Li, Xing-Cong; Ferreira, Daneel; Hamann, Mark T.

    2016-01-01

    Bioassay- and LC-MS-guided fractionation of a methanol extract from a new deep-water Alaskan sponge species of the genus Latrunculia resulted in the isolation of two new brominated pyrroloiminoquinones, dihydrodiscorhabdin B (1) and discorhabdin Y (2), along with six known pyrroloiminoquinone alkaloids, discorhabdins A (3), C (4), E (5), and L (6), dihydrodiscorhabdin C (7), and the benzene derivative 8. Compounds 3, 4, and 7 exhibited anti-HCV activity, antimalarial activity, and selective antimicrobial activity. Although compounds 3 and 7 displayed potent and selective in vitro antiprotozoal activity, Plasmodium berghei-infected mice did not respond to these metabolites due to their toxicity in vivo. PMID:20337497

  18. Anti-infective discorhabdins from a deep-water alaskan sponge of the genus Latrunculia.

    Science.gov (United States)

    Na, Minkyun; Ding, Yuanqing; Wang, Bin; Tekwani, Babu L; Schinazi, Raymond F; Franzblau, Scott; Kelly, Michelle; Stone, Robert; Li, Xing-Cong; Ferreira, Daneel; Hamann, Mark T

    2010-03-26

    Bioassay- and LC-MS-guided fractionation of a methanol extract from a new deep-water Alaskan sponge species of the genus Latrunculia resulted in the isolation of two new brominated pyrroloiminoquinones, dihydrodiscorhabdin B and discorhabdin Y (2), along with six known pyrroloiminoquinone alkaloids, discorhabdins A (3), C (4), E (5), and L (6), dihydrodiscorhabdin C (7), and the benzene derivative 8. Compounds 3, 4, and 7 exhibited anti-HCV activity, antimalarial activity, and selective antimicrobial activity. Although compounds 3 and 7 displayed potent and selective in vitro antiprotozoal activity, Plasmodium berghei-infected mice did not respond to these metabolites due to their toxicity in vivo.

  19. Differential changes in production measures for an estuarine-resident sparid in deep and shallow waters following increases in hypoxia

    Science.gov (United States)

    Cottingham, Alan; Hall, Norman G.; Hesp, S. Alex; Potter, Ian C.

    2018-03-01

    This study determined how productivity measures for a fish species in different water depths of an estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for the estuarine-resident Acanthopagrus butcheri in nearshore shallow (compositions imply that the increase in hypoxia was accompanied by the distribution of the majority of the older and larger A. butcheri changing from deep to shallow waters, where the small fish typically reside. Annual densities, biomass and production in shallow waters of fish m-2, 2-4 g m-2 and ∼2 g m-2 y-1 in the earlier period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas the reverse trend occurred in deep waters, with values of 6-9 fish net-1, 2000-3900 g net-1, 900-1700 g net-1 y-1 in the earlier period vs fish net-1, ∼110 g net-1 and 27-45 g net-1 y-1 in the later period. Within the later period, and in contrast to the trends with annual abundance and biomass, the production in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that particularly cool year. The presence of substantial aggregations of both small and large fish in shallow waters accounts for the abundance, biomass and production in those waters increasing between those periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. In marked contrast to the trends with the other three production measures, annual production to biomass ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the poor growth in that year. This emphasises the need

  20. Priapulus from the deep sea (Vermes, Priapulida)

    NARCIS (Netherlands)

    Land, van der J.

    1972-01-01

    INTRODUCTION The species of the genus Priapulus occur in rather cold water. Hence, their shallow-water distribution is restricted to northern and southern waters (fig. 1); there are only a few isolated records from sub-tropical localities. However, in deep water the genus apparently has a world-wide