WorldWideScience

Sample records for somatosensory painful stimuli

  1. Diffuse optical tomography activation in the somatosensory cortex: specific activation by painful vs. non-painful thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Lino Becerra

    2009-11-01

    Full Text Available Pain is difficult to assess due to the subjective nature of self-reporting. The lack of objective measures of pain has hampered the development of new treatments as well as the evaluation of current ones. Functional MRI studies of pain have begun to delineate potential brain response signatures that could be used as objective read-outs of pain. Using Diffuse Optical Tomography (DOT, we have shown in the past a distinct DOT signal over the somatosensory cortex to a noxious heat stimulus that could be distinguished from the signal elicited by innocuous mechanical stimuli. Here we further our findings by studying the response to thermal innocuous and noxious stimuli.Innocuous and noxious thermal stimuli were applied to the skin of the face of the first division (ophthalmic of the trigeminal nerve in healthy volunteers (N = 6. Stimuli temperatures were adjusted for each subject to evoke warm (equivalent to a 3/10 and painful hot (7/10 sensations in a verbal rating scale (0/10 = no/max pain. A set of 26 stimuli (5 sec each was applied for each temperature with inter-stimulus intervals varied between 8 and 15 sec using a Peltier thermode. A DOT system was used to capture cortical responses on both sides of the head over the primary somatosensory cortical region (S1. For the innocuous stimuli, group results indicated mainly activation on the contralateral side with a weak ipsilateral response. For the noxious stimuli, bilateral activation was observed with comparable amplitudes on both sides. Furthermore, noxious stimuli produced a temporal biphasic response while innocuous stimuli produced a monophasic response.These results are in accordance with fMRI and our other DOT studies of innocuous mechanical and noxious heat stimuli. The data indicate the differentiation of DOT cortical responses for pain vs. innocuous stimuli that may be useful in assessing objectively acute pain.

  2. The influence of pain-related expectations on intensity perception of non-painful somatosensory stimuli.

    Science.gov (United States)

    Zaman, Jonas; Wiech, Katja; Claes, Nathalie; Van Oudenhove, Lukas; Van Diest, Ilse; Vlaeyen, Johan W S

    2018-04-03

    The extent to which pain-related expectations, known to affect pain perception, also affect perception of non-painful sensations remains unclear, as well as the potential role of unpredictability in this context. In a proprioceptive fear conditioning paradigm, various arm extension movements were associated with predictable and unpredictable electrocutaneous pain or its absence. During a subsequent test phase non-painful electrocutaneous stimuli with a high or low intensity were presented during movement execution. We used hierarchical drift diffusion modeling to examine the influence of expecting pain on the perceptual decision-making process underlying intensity perception of non-painful sensations. In the first experiment (n=36), the pain stimulus was never presented during the test phase after conditioning. In the second experiment (n=39), partial reinforcement was adopted to prevent extinction of pain expectations. In both experiments, movements that were associated with (un)predictable pain led to higher pain-expectancy, self-reported fear, unpleasantness and arousal, as compared to movements that were never paired with pain (effect sizes ηp ranging from .119 - .557; all p-values threat of the pain US remained present - we found that the expectation of pain affected decision-making. Compared to the no pain condition, an a priori decision-making bias towards the high intensity decision threshold was found with the strongest bias during unpredictable pain (effect sizes ηp ranging from .469 - .504; all p-values affects inferential processes for subsequent painful but also for non-painful bodily stimuli, with unpredictability moderating these effects, and only when the threat of pain remains present due to partial reinforcement.

  3. The influence of pain-related expectations on intensity perception of non-painful somatosensory stimuli

    NARCIS (Netherlands)

    Zaman, Jonas; Wiech, Katja; Claes, Nathalie; Van Oudenhove, Lukas; Van Diest, Ilse; Vlaeyen, Johan W. S.

    2018-01-01

    OBJECTIVE: The extent to which pain-related expectations, known to affect pain perception, also affect perception of non-painful sensations remains unclear, as well as the potential role of unpredictability in this context. METHODS: In a proprioceptive fear conditioning paradigm, various arm

  4. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    Science.gov (United States)

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p beats/min) to SURG2 (76 +/- 12 beats/min). Increases of amplitudes of midlatency SEP amplitudes indicate increased nociceptive signal transmission which is not blunted by isoflurane-nitrous oxide anaesthesia. In contrast, unchanged AEPs indicate adequate levels of the hypnotic components of anaesthesia.

  5. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat

    NARCIS (Netherlands)

    Schaap, M.W.H.; van Oostrom, H.; Doornenbal, A.; Baars, A.M.; Arndt, S.S.; Hellebrekers, L.J.

    2013-01-01

    Abstract Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the

  6. BOLD responses in somatosensory cortices better reflect heat sensation than pain.

    Science.gov (United States)

    Moulton, Eric A; Pendse, Gautam; Becerra, Lino R; Borsook, David

    2012-04-25

    The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.

  7. Influence of body position on cortical pain-related somatosensory processing: an ERP study.

    Directory of Open Access Journals (Sweden)

    Chiara Spironelli

    Full Text Available BACKGROUND: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30% above pain threshold, 30% below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40-50 ms in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls' N1 (80-90 ms had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190-220 ms was larger in left-central locations of Controls compared with BR group. CONCLUSIONS/SIGNIFICANCE: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pain network also outside the primary somatosensory cortex. Results have implications not only for astronauts' health and spaceflight risks, but also for the clinical aspects of pain detection in bedridden patients at risk of fatal undetected complications.

  8. Do patients with chronic unilateral orofacial pain due to a temporomandibular disorder show increased attending to somatosensory input at the painful side of the jaw?

    Directory of Open Access Journals (Sweden)

    Stefaan Van Damme

    2018-01-01

    Full Text Available Background Patients with chronic orofacial pain due to temporomandibular disorders (TMD display alterations in somatosensory processing at the jaw, such as amplified perception of tactile stimuli, but the underlying mechanisms remain unclear. This study investigated one possible explanation, namely hypervigilance, and tested if TMD patients with unilateral pain showed increased attending to somatosensory input at the painful side of the jaw. Methods TMD patients with chronic unilateral orofacial pain (n = 20 and matched healthy volunteers (n = 20 performed a temporal order judgment (TOJ task indicated which one of two tactile stimuli, presented on each side of the jaw, they had perceived first. TOJ methodology allows examining spatial bias in somatosensory processing speed. Furthermore, after each block of trials, the participants rated the perceived intensity of tactile stimuli separately for both sides of the jaw. Finally, questionnaires assessing pain catastrophizing, fear-avoidance beliefs, and pain vigilance, were completed. Results TMD patients tended to perceive tactile stimuli at the painful jaw side as occurring earlier in time than stimuli at the non-painful side but this effect did not reach conventional levels of significance (p = .07. In the control group, tactile stimuli were perceived as occurring simultaneously. Secondary analyses indicated that the magnitude of spatial bias in the TMD group is positively associated with the extent of fear-avoidance beliefs. Overall, intensity ratings of tactile stimuli were significantly higher in the TMD group than in the control group, but there was no significant difference between the painful and non-painful jaw side in the TMD patients. Discussion The hypothesis that TMD patients with chronic unilateral orofacial pain preferentially attend to somatosensory information at the painful side of the jaw was not statistically supported, although lack of power could not be ruled out as a

  9. Do patients with chronic unilateral orofacial pain due to a temporomandibular disorder show increased attending to somatosensory input at the painful side of the jaw?

    Science.gov (United States)

    Van Damme, Stefaan; Vanden Bulcke, Charlotte; Van Den Berghe, Linda; Poppe, Louise; Crombez, Geert

    2018-01-01

    Patients with chronic orofacial pain due to temporomandibular disorders (TMD) display alterations in somatosensory processing at the jaw, such as amplified perception of tactile stimuli, but the underlying mechanisms remain unclear. This study investigated one possible explanation, namely hypervigilance, and tested if TMD patients with unilateral pain showed increased attending to somatosensory input at the painful side of the jaw. TMD patients with chronic unilateral orofacial pain ( n  = 20) and matched healthy volunteers ( n  = 20) performed a temporal order judgment (TOJ) task indicated which one of two tactile stimuli, presented on each side of the jaw, they had perceived first. TOJ methodology allows examining spatial bias in somatosensory processing speed. Furthermore, after each block of trials, the participants rated the perceived intensity of tactile stimuli separately for both sides of the jaw. Finally, questionnaires assessing pain catastrophizing, fear-avoidance beliefs, and pain vigilance, were completed. TMD patients tended to perceive tactile stimuli at the painful jaw side as occurring earlier in time than stimuli at the non-painful side but this effect did not reach conventional levels of significance ( p  = .07). In the control group, tactile stimuli were perceived as occurring simultaneously. Secondary analyses indicated that the magnitude of spatial bias in the TMD group is positively associated with the extent of fear-avoidance beliefs. Overall, intensity ratings of tactile stimuli were significantly higher in the TMD group than in the control group, but there was no significant difference between the painful and non-painful jaw side in the TMD patients. The hypothesis that TMD patients with chronic unilateral orofacial pain preferentially attend to somatosensory information at the painful side of the jaw was not statistically supported, although lack of power could not be ruled out as a reason for this. The findings are discussed within

  10. Attentional Modulation of Somatosensory Processing During the Anticipation of Movements Accompanying Pain: An Event-Related Potential Study.

    Science.gov (United States)

    Clauwaert, Amanda; Torta, Diana M; Danneels, Lieven; Van Damme, Stefaan

    2018-02-01

    Attending to pain-relevant information is crucial to protect us from physical harm. Behavioral studies have already suggested that during anticipation of pain somatosensory input at the body location under threat is prioritized. However, research using daily life cues for pain, especially movements, is lacking. Furthermore, to our knowledge, no studies have investigated cortical processing associated with somatosensory processing during threatened movements. The current study aims to investigate whether movements accompanying pain automatically steer attention toward somatosensory input at the threatened location, affecting somatosensory evoked potentials (SEPs). Healthy volunteers were cued to perform movements with the left or the right hand, and one of these movements could be accompanied by pain on the moving hand. During movement anticipation, a task-irrelevant tactile stimulus was presented to the threatened or pain-free hand to evoke SEPs. During anticipation of movements accompanying pain, the N120 component was increased for tactile stimuli at the threatened relative to the hand without pain. Moreover, the P200 SEP was enhanced during anticipation of movements accompanying pain relative to movements without pain, irrespective of which hand was stimulated. These findings show that the anticipation of pain-accompanying movements may affect the processing of somatosensory input, and that this is likely to be driven by attentional processes. This study shows that the anticipation of pain-related movements automatically biases attention toward stimuli at a pain-related location, measured according to SEPs. The present study provides important new insights in the interplay between pain and attention, and its consequences at the cortical level. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Pain from Dental Implant Placement, Inflammatory Pulpitis Pain, and Neuropathic Pain Present Different Somatosensory Profiles.

    Science.gov (United States)

    Porporatti, André Luís; Bonjardim, Leonardo Rigoldi; Stuginski-Barbosa, Juliana; Bonfante, Estevam Augusto; Costa, Yuri Martins; Rodrigues Conti, Paulo César

    2017-01-01

    To address the two following questions: (1) What kind of somatosensory abnormalities may be characterized in patients receiving dental implants (IMP), in ongoing inflammatory dental pulpitis (IP) patients, and in neuropathic pain (atypical odontalgia [AO]) patients? and (2) What sort of sensory and neural changes may result from dental implant placement surgery and pulpectomy? A total of 60 subjects were divided into three groups: the IMP (n = 20), IP (n = 20), and AO groups (n = 20). Quantitative sensory testing (QST) was performed preoperatively (baseline) for all three groups and postoperatively at 1 month and 3 months after dental implant placement or pulpectomy (in the IMP group and IP group, respectively). Statistical analyses were completed with one-way and two-way analysis of variance and z score transformations (α = 5%). The main findings of this study indicated that: (1) Elevations in mechanical detection threshold (MDT) and in current perception threshold (CPT) related to C-fiber activation, indicating a loss of function, were found at baseline in IP patients; (2) Somatosensory abnormalities such as allodynia, reduced MDT and mechanical pain threshold (MPT), and impaired pain modulation were found in AO patients; (3) No somatosensory alterations after implant placement were found in the IMP group; and (4) Somatosensory alterations in the form of reduction in the CPT related to C-fiber activation were reported 3 months after pulpectomy in the IP group. This study showed that somatosensory abnormalities were evident in AO and IP patients, and somatosensory alterations were seen in IP patients even 3 months after pulpectomy. However, no somatosensory alterations were seen after implant placement.

  12. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy.

    Science.gov (United States)

    Maitre, Nathalie L; Barnett, Zachary P; Key, Alexandra P F

    2012-10-01

    The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.

  13. Do Tonic Itch and Pain Stimuli Draw Attention towards Their Location?

    Directory of Open Access Journals (Sweden)

    Antoinette I. M. van Laarhoven

    2017-01-01

    Full Text Available Background. Although itch and pain are distinct experiences, both are unpleasant, may demand attention, and interfere with daily activities. Research investigating the role of attention in tonic itch and pain stimuli, particularly whether attention is drawn to the stimulus location, is scarce. Methods. In the somatosensory attention task, fifty-three healthy participants were exposed to 35-second electrical itch or pain stimuli on either the left or right wrist. Participants responded as quickly as possible to visual targets appearing at the stimulated location (ipsilateral trials or the arm without stimulation (contralateral trials. During control blocks, participants performed the visual task without stimulation. Attention allocation at the itch and pain location is inferred when responses are faster ipsilaterally than contralaterally. Results. Results did not indicate that attention was directed towards or away from the itch and pain location. Notwithstanding, participants were slower during itch and pain than during control blocks. Conclusions. In contrast with our hypotheses, no indications were found for spatial attention allocation towards the somatosensory stimuli. This may relate to dynamic shifts in attention over the time course of the tonic sensations. Our secondary finding that itch and pain interfere with task performance is in-line with attention theories of bodily perception.

  14. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K was associated with the presence of paradoxical heat sensation (p = 0.03, and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V with cold hypoalgesia (p = 0.0035. Two main subgroups characterized by preserved (1 and impaired (2 sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and pG (rs222747, M315I to cold hypaesthesia (p = 0.002, but there was absence of associations in subgroup 2. In this study we found no evidence that genetic

  15. Hypersensitivity to mechanical and intra-articular electrical stimuli in persons with painful temporomandibular joints

    DEFF Research Database (Denmark)

    Ayesh, Emad; Jensen, Troels Staehelin; Svensson, P

    2007-01-01

    This study tested whether persons with TMJ arthralgia have a modality-specific and site-specific hypersensitivity to somatosensory stimuli assessed by quantitative sensory tests (QST). Forty-three healthy persons and 20 with TMJ arthralgia participated. The QST consisted of: sensory and pain dete...... of sensitization of the TMJs as well as central nociceptive pathways. QST may facilitate a mechanism-based classification of temporomandibular disorders. Udgivelsesdato: 2007-Dec...

  16. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Inmaculada eRiquelme

    2013-06-01

    Full Text Available Objective. Pain and deficits in somatosensory processing seem to play a relevant role in cerebral palsy (CP. Rehabilitation techniques based on neuroplasticity mechanisms may induce powerful changes in the organization of the primary somatosensory cortex and have been proved to reduce levels of pain and discomfort in neurological pathologies. However, little is known about the efficacy of such interventions for pain sensitivity in CP individuals. Methods. Adults with cerebral palsy participated in the study and were randomly assigned to the intervention (n=17 or the control group (n=20. The intervention group received a somatosensory therapy including 4 types of exercises (touch, proprioception, vibration, and stereognosis. All participants were asked to continue their standardized motor therapy during the study period. Several somatosensory (pain and touch thresholds, stereognosis, propioception, texture recognition and motor parameters (fine motor skills were assessed before, immediately after and three months after the therapy (follow-up. Results. Participants of the intervention group showed a significant reduction on pain sensitivity after treatment and at follow-up after three months, whereas participants in the control group displayed increasing pain sensitivity over time. No improvements were found on touch sensitivity, proprioception, texture recognition or fine motor skills. Conclusions. Data suggest the possibility that somatosensory therapy was effective in eliciting changes in central somatosensory processing. This hypothesis may have implications for future neuromodulatory treatment of pain complaints in children and adults with cerebral palsy.

  17. Somatosensory sensitivity in patients with persistent idiopathic orofacial pain is associated with pain relief from hypnosis and relaxation.

    Science.gov (United States)

    Baad-Hansen, Lene; Abrahamsen, Randi; Zachariae, Robert; List, Thomas; Svensson, Peter

    2013-06-01

    In a recent study hypnosis has been found to relieve persistent idiopathic orofacial pain. Quantitative sensory testing (QST) is widely used to evaluate somatosensory sensitivity, which has been suggested as a possible predictor of management outcome. The objectives of this study were to examine: (1) possible associations between clinical pain relief and baseline somatosensory sensitivity and (2) the effect of hypnosis management on QST parameters. Forty-one patients with persistent idiopathic orofacial pain completed this randomized controlled study in 1 of 2 groups: hypnosis (hypnotic analgesia suggestions) or control (relaxation). QST at 2 intraoral (pain region and contralateral mirror image region) and 3 extraoral (hand and both cheeks) sites was performed at baseline and after the hypnosis/control management, together with pressure pain thresholds and pressure pain tolerance thresholds determined bilaterally at the masseter and temporalis muscles, the temporomandibular joints, and the third finger. Degree of pain relief was negatively correlated with a summary statistic of baseline somatosensory sensitivity (summed z-score), that is, high baseline somatosensory sensitivity was associated with low pain relief (r=-0.372, P=0.020). Hypnosis had no major effect on any QST measure compared with relaxation (P>0.063). High pain sensitivity at baseline may predict poor pain management outcome. In addition, despite clear clinical pain relief, hypnosis did not significantly or specifically influence somatosensory sensitivity. Future studies should further explore QST measures as possible predictors of different management response in orofacial pain conditions.

  18. Heightened sensitivity to somatosensory stimuli in anorexia nervosa: an exploratory study with the SASTCA scale.

    Science.gov (United States)

    Calvo Sagardoy, Rosa; Gallego Morales, Luis T; Kassem García, Soledad; Codesal Julián, Rosana; Blanco Fernández, Ascensión; Solórzano Ostolaza, Gloria; Morales Martínez, Carmen

    2014-11-04

    To analyse the presence of heightened sensory sensitivity in patients with anorexia nervosa, which seems similar but not identical to that described in patients with unexplained somatic symptoms or body dysmorphic disorder. We developed a sensory sensitivity scale in eating disorders (SASTCA), which measures the intensity of the response to specific somatosensory stimuli. The scale was completed by 48 patients with anorexia and a control group of 31 participants matched in age, sex and social and educational level. The results were compared with those obtained with the Barsky Somatosensory Amplification Scale (SSAS). The reliability (Cronbach's/alpha, 0.946; Guttman/ split-half, 0.936) and validity (ROC, 0.933) of the SASTCA scale are indicative of its high sensitivity and specificity. The anorexia group had a significantly higher mean score on the SASTCA scale than the control group (pscales correlated positively (r=.634). These preliminary results suggest the presence in Anorexia of heightened sensory sensitivity which differs from the sensitivity of the control group. This sensitivity has a significant relationship with that described in patients with somatic complaints about health (SSD) or appearance (BDD). Could this heightened sensory sensitivity help us to explain the process of forming the distorted body self-concept (I'm fat, sick, ugly) in all these patients? Once its presence has been confirmed in other patients with anorexia, their relatives and other patients with somatic disorders this heightened sensitivity could constitute the somatic endophenotype of anorexia? Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention.

    Science.gov (United States)

    Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno

    2017-07-19

    Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically

  20. Central poststroke pain: somatosensory abnormalities and the presence of associated myofascial pain syndrome

    Directory of Open Access Journals (Sweden)

    de Oliveira Rogério Adas

    2012-09-01

    Full Text Available Abstract Background Central post-stroke pain (CPSP is a neuropathic pain syndrome associated with somatosensory abnormalities due to central nervous system lesion following a cerebrovascular insult. Post-stroke pain (PSP refers to a broader range of clinical conditions leading to pain after stroke, but not restricted to CPSP, including other types of pain such as myofascial pain syndrome (MPS, painful shoulder, lumbar and dorsal pain, complex regional pain syndrome, and spasticity-related pain. Despite its recognition as part of the general PSP diagnostic possibilities, the prevalence of MPS has never been characterized in patients with CPSP patients. We performed a cross-sectional standardized clinical and radiological evaluation of patients with definite CPSP in order to assess the presence of other non-neuropathic pain syndromes, and in particular, the role of myofascial pain syndrome in these patients. Methods CPSP patients underwent a standardized sensory and motor neurological evaluation, and were classified according to stroke mechanism, neurological deficits, presence and profile of MPS. The Visual Analogic Scale (VAS, McGill Pain Questionnaire (MPQ, and Beck Depression Scale (BDS were filled out by all participants. Results Forty CPSP patients were included. Thirty-six (90.0% had one single ischemic stroke. Pain presented during the first three months after stroke in 75.0%. Median pain intensity was 10 (5 to 10. There was no difference in pain intensity among the different lesion site groups. Neuropathic pain was continuous-ongoing in 34 (85.0% patients and intermittent in the remainder. Burning was the most common descriptor (70%. Main aggravating factors were contact to cold (62.5%. Thermo-sensory abnormalities were universal. MPS was diagnosed in 27 (67.5% patients and was more common in the supratentorial extra-thalamic group (P Conclusions The presence of MPS is not an exception after stroke and may present in association with CPSP

  1. Abnormalities of somatosensory perception in patients with painful osteoarthritis normalize following successful treatment.

    Science.gov (United States)

    Kosek, E; Ordeberg, G

    2000-01-01

    To investigate the effect of chronic nociceptive pain on somatosensory perception, quantitative sensibility testing was performed in the most painful area and the homologous contralateral side in 14 patients with painful osteoarthritis of the hip. Twelve patients were reassessed in a painfree state 6-14 months following surgery. Von Frey filaments were used to test low-threshold mechanoreceptive function. Pressure pain sensitivity was assessed with a pressure algometer and thermal sensitivity with a Thermotest. Sex- and age-matched controls were examined in the corresponding areas at similar time intervals. There was no statistically significant difference between groups in the sensitivity to light touch and innocuous cold in either session. Compared to controls, patients had increased sensitivity to pressure pain in the most painful area (p pain (ppain (p = 0.054) before surgery. In the painful area, patients' sensitivity to pressure pain decreased (p pain. Copyright 2000 European Federation of Chapters of the International Association for the Study of Pain.

  2. The influence of visual perspective on the somatosensory steady-state response during pain observation

    Directory of Open Access Journals (Sweden)

    Dora Linsey Canizales

    2013-12-01

    Full Text Available The observation and evaluation of other's pain activate part of the neuronal network involved in the actual experience of pain, including those regions subserving the sensori-discriminative dimension of pain. This was largely interpreted as evidence showing that part of the painful experience can be shared vicariously. Here, we investigated the effect of the visual perspective from which other people’s pain is seen on the cortical response to continuous 25 Hz non-painful somatosensory stimulation (somatosensory steady-state response: SSSR. Based on the shared representation framework, we expected first-person visual perspective (1PP to yield more changes in cortical activity than third-person visual perspective (3PP during pain observation. Twenty healthy adults were instructed to rate a series of pseudo-dynamic pictures depicting hands in either painful or non-painful scenarios, presented either in 1PP (0°-45° angle or 3PP (180° angle, while changes in brain activity was measured with a 128-electode EEG system. The ratings demonstrated that the same scenarios were rated on average as more painful when observed from the 1PP than from the 3PP. As expected from previous works, the SSSR response was decreased after stimulus onset over the left caudal part of the parieto-central cortex, contralateral to the stimulation side. Moreover, the difference between the SSSR was of greater amplitude when the painful situations were presented from the 1PP compared to the 3PP. Together, these results suggest that a visuospatial congruence between the viewer and the observed scenarios is associated with both a higher subjective evaluation of pain and an increased modulation in the somatosensory representation of observed pain. These findings are discussed with regards to the potential role of visual perspective in pain communication and empathy.

  3. Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.

    Science.gov (United States)

    Zheng, Gen; Hong, Shuangsong; Hayes, John M; Wiley, John W

    2015-11-01

    Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Multimodal and widespread somatosensory abnormalities in persistent shoulder pain in the first 6 months after stroke: an exploratory study

    NARCIS (Netherlands)

    Roosink, M.; van Dongen, R.T.; Buitenweg, J.R.; Renzenbrink, G.J.; Geurts, A.C.H.; IJzerman, M.J.

    2012-01-01

    Roosink M, Van Dongen RT, Buitenweg JR, Renzenbrink GJ, Geurts AC, IJzerman MJ. Multimodal and widespread somatosensory abnormalities in persistent shoulder pain in the first 6 months after stroke: an exploratory study. OBJECTIVE: To explore the role of multimodal and widespread somatosensory

  5. Co-occurrence of Pain Symptoms and Somatosensory Sensitivity in Burning Mouth Syndrome: A Systematic Review

    Science.gov (United States)

    Moisset, Xavier; Calbacho, Valentina; Torres, Pilar; Gremeau-Richard, Christelle; Dallel, Radhouane

    2016-01-01

    Background Burning mouth syndrome (BMS) is a chronic and spontaneous oral pain with burning quality in the tongue or other oral mucosa without any identifiable oral lesion or laboratory finding. Pathogenesis and etiology of BMS are still unknown. However, BMS has been associated with other chronic pain syndromes including other idiopathic orofacial pain, the dynias group and the family of central sensitivity syndromes. This would imply that BMS shares common mechanisms with other cephalic and/or extracephalic chronic pains. The primary aim of this systematic review was to determine whether BMS is actually associated with other pain syndromes, and to analyze cephalic and extracephalic somatosensory sensitivity in these patients. Methods This report followed the PRISMA Statement. An electronic search was performed until January 2015 in PubMed, Cochrane library, Wiley and ScienceDirect. Searched terms included “burning mouth syndrome OR stomatodynia OR glossodynia OR burning tongue OR oral burning”. Studies were selected according to predefined inclusion criteria (report of an association between BMS and other pain(s) symptoms or of cutaneous cephalic and/or extracephalic quantitative sensory testing in BMS patients), and a descriptive analysis conducted. Results The search retrieved 1512 reports. Out of these, twelve articles met criteria for co-occurring pain symptoms and nine studies for quantitative sensory testing (QST) in BMS patients. The analysis reveals that in BMS patients co-occurring pain symptoms are rare, assessed by only 0.8% (12 of 1512) of the retrieved studies. BMS was associated with headaches, TMD, atypical facial pain, trigeminal neuralgia, post-herpetic facial pain, back pain, fibromyalgia, joint pain, abdominal pain, rectal pain or vulvodynia. However, the prevalence of pain symptoms in BMS patients is not different from that in the age-matched general population. QST studies reveal no or inconsistent evidence of abnormal cutaneous cephalic

  6. Co-occurrence of Pain Symptoms and Somatosensory Sensitivity in Burning Mouth Syndrome: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Xavier Moisset

    Full Text Available Burning mouth syndrome (BMS is a chronic and spontaneous oral pain with burning quality in the tongue or other oral mucosa without any identifiable oral lesion or laboratory finding. Pathogenesis and etiology of BMS are still unknown. However, BMS has been associated with other chronic pain syndromes including other idiopathic orofacial pain, the dynias group and the family of central sensitivity syndromes. This would imply that BMS shares common mechanisms with other cephalic and/or extracephalic chronic pains. The primary aim of this systematic review was to determine whether BMS is actually associated with other pain syndromes, and to analyze cephalic and extracephalic somatosensory sensitivity in these patients.This report followed the PRISMA Statement. An electronic search was performed until January 2015 in PubMed, Cochrane library, Wiley and ScienceDirect. Searched terms included "burning mouth syndrome OR stomatodynia OR glossodynia OR burning tongue OR oral burning". Studies were selected according to predefined inclusion criteria (report of an association between BMS and other pain(s symptoms or of cutaneous cephalic and/or extracephalic quantitative sensory testing in BMS patients, and a descriptive analysis conducted.The search retrieved 1512 reports. Out of these, twelve articles met criteria for co-occurring pain symptoms and nine studies for quantitative sensory testing (QST in BMS patients. The analysis reveals that in BMS patients co-occurring pain symptoms are rare, assessed by only 0.8% (12 of 1512 of the retrieved studies. BMS was associated with headaches, TMD, atypical facial pain, trigeminal neuralgia, post-herpetic facial pain, back pain, fibromyalgia, joint pain, abdominal pain, rectal pain or vulvodynia. However, the prevalence of pain symptoms in BMS patients is not different from that in the age-matched general population. QST studies reveal no or inconsistent evidence of abnormal cutaneous cephalic and extracephalic

  7. Psychotherapy With Somatosensory Stimulation for Endometriosis-Associated Pain: A Randomized Controlled Trial.

    Science.gov (United States)

    Meissner, Karin; Schweizer-Arau, Annemarie; Limmer, Anna; Preibisch, Christine; Popovici, Roxana M; Lange, Isabel; de Oriol, Barbara; Beissner, Florian

    2016-11-01

    To evaluate whether psychotherapy with somatosensory stimulation is effective for the treatment of pain and quality of life in patients with endometriosis-related pain. Patients with a history of endometriosis and chronic pelvic pain were randomized to either psychotherapy with somatosensory stimulation (ie, different techniques of acupuncture point stimulation) or wait-list control for 3 months, after which all patients were treated. The primary outcome was brain connectivity assessed by functional magnetic resonance imaging. Prespecified secondary outcomes included pain on 11-point numeric rating scales (maximal and average global pain, pelvic pain, dyschezia, and dyspareunia) and physical and mental quality of life. A sample size of 30 per group was planned to compare outcomes in the treatment group and the wait-list control group. From March 2010 through March 2012, 67 women (mean age 35.6 years) were randomly allocated to intervention (n=35) or wait-list control (n=32). In comparison with wait-list controls, treated patients showed improvements after 3 months in maximal global pain (mean group difference -2.1, 95% confidence interval [CI] -3.4 to -0.8; P=.002), average global pain (-2.5, 95% CI -3.5 to -1.4; P<.001), pelvic pain (-1.4, 95% CI -2.7 to -0.1; P=.036), dyschezia (-3.5, 95% CI -5.8 to -1.3; P=.003), physical quality of life (3.8, 95% CI 0.5-7.1, P=.026), and mental quality of life (5.9, 95% CI 0.6-11.3; P=.031); dyspareunia improved nonsignificantly (-1.8, 95% CI -4.4 to 0.7; P=.150). Improvements in the intervention group remained stable at 6 and 24 months, and control patients showed comparable symptom relief after delayed intervention. Psychotherapy with somatosensory stimulation reduced global pain, pelvic pain, and dyschezia and improved quality of life in patients with endometriosis. After 6 and 24 months, when all patients were treated, both groups showed stable improvements. ClinicalTrials.gov, https://clinicaltrials.gov, NCT01321840.

  8. Exposure to Virtual Social Stimuli Modulates Subjective Pain Reports

    Directory of Open Access Journals (Sweden)

    Jacob M Vigil

    2014-01-01

    Full Text Available BACKGROUND: Contextual factors, including the gender of researchers, influence experimental and patient pain reports. It is currently not known how social stimuli influence pain percepts, nor which types of sensory modalities of communication, such as auditory, visual or olfactory cues associated with person perception and gender processing, produce these effects.

  9. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  10. Age-related loss in attention-based modulation of tactile stimuli at early stages of somatosensory processing.

    Science.gov (United States)

    Bolton, David A E; Staines, W Richard

    2012-06-01

    Normal aging has been linked to impairments in gating of irrelevant sensory information and neural markers of diminished cognitive processing. Whilst much of the research in this area has focussed on visual and auditory modalities it is unclear to what degree these findings apply to somatosensation. Therefore we investigated how age impacts early event-related potentials (ERPs) arising from relevant or irrelevant vibrotactile stimuli to the fingertips. Specifically, we hypothesised that older adults would demonstrate reduced attention-based modulation of tactile ERPs generated at early stages of cortical somatosensory processing. In accord with previous research we also expected to observe diminished P300 responses to attended targets and behavioural deficits. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only (as instructed) with comparisons between two age groups: (1) Young adults (age range 20-39) and (2) Older adults (age range 62-89). ERP amplitudes for the P50, N70, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at several electrodes (C4, CP4, CP3 and FC4). The P300 in response to attended target stimuli was measured at CPZ. There was no effect of attention on the P50 and N70 however the P100, N140 and LLP were modulated with attention. In both age groups the P100 and LLP were more positive during trials where the stimuli were attended to, whilst the N140 was enhanced for non-attended stimuli. Comparisons between groups revealed a reduction in P100 attention-based modulation for the older adults versus the young adults. This effect was due to a loss of suppression of the non-attended stimuli in older subjects. Moreover, the P300 was both slower and reduced in peak amplitude for older subjects in response to attended targets. Finally, older adults demonstrated impaired performance in terms of both reduced target detection

  11. Primary somatosensory cortex in chronic low back pain – a 1H-MRS study

    Directory of Open Access Journals (Sweden)

    Sharma KN

    2011-05-01

    Full Text Available Neena K Sharma1, Kenneth McCarson2, Linda Van Dillen5, Angela Lentz1, Talal Khan3, Carmen M Cirstea1,41Department of Physical Therapy and Rehabilitation Science, 2Department of Pharmacology, Toxicology and Therapeutics, 3Department of Anesthesiology, 4Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA; 5Program in Physical Therapy and Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USAAbstract: The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC, are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP. Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA, choline (Cho, myo-inositol (mI, and glutamine/glutamate (Glx were measured with proton magnetic resonance spectroscopy (1H-MRS in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001 and decreased Cho (P = 0.04 along with lower correlations between all metabolites in right SSC (P = 0.007 in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls and between left mI and right Cho (P = 0.048 vs P = 0.6. Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively while right Glx was positively correlated with pain severity (P = 0.04. Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration

  12. Multimodal and widespread somatosensory abnormalities in persistent shoulder pain in the first 6 months efter stroke: An exploratory study

    NARCIS (Netherlands)

    Roosink, M.; van Dongen, Robert T.; Buitenweg, Jan R.; Renzenbrink, Gerbert J.; Geurts, Alexander C.; IJzerman, Maarten Joost

    2012-01-01

    Objective: To explore the role of multimodal and widespread somatosensory abnormalities in the development of persistent poststroke shoulder pain (pPSSP) in the first 6 months after stroke. Design: Prospective inception cohort study. Setting: Stroke units of 2 teaching hospitals. Participants: The

  13. Physical activity, pain responses to heat stimuli, and conditioned pain modulation in postmenopausal women.

    Science.gov (United States)

    Adrian, Amanda L; O'Connor, Patrick J; Ward-Ritacco, Christie L; Evans, Ellen M

    2015-08-01

    Postmenopausal women (PMW) are at high risk for disabling pain and physical inactivity. This study sought to enhance the understanding of relationships between physical activity (PA) and pain among PMW using heat pain sensitivity test and conditioned pain modulation test. We hypothesized that, compared with active women, (i) inactive women would report higher pain intensity and pain unpleasantness ratings; (ii) inactive women in disabling pain would report higher pain intensity and pain unpleasantness at high, but not low, stimulus intensities; and (iii) inactive women would have less modulation. Sixty-eight PMW rated the pain intensity and pain unpleasantness of hot stimuli presented to the thenar eminence of the hand. A subset of 31 women rated the pain intensity of a test stimulus (noxious heat) and a conditioning stimulus (cold water) as part of the conditioned pain modulation task. PA was assessed objectively with accelerometry. Mixed-model analysis of variance (2 × 4 × 2; PA × Temperature × Pain Status) showed that inactive women in disabling pain rated pain unpleasantness higher than active women in disabling pain (F3,192 = 3.526, ∂η = 0.052, P = 0.016). Significantly lower pain unpleasantness ratings were found at the highest stimulus intensity (49°C) only for active women in disabling pain compared with inactive women in disabling pain (t11 = 2.523, P = 0.028). The other hypotheses were not supported. PA is associated with a reduced sensitivity to the unpleasantness of painful high-intensity heat stimuli among women in disabling pain.

  14. Effect of expectation on pain assessment of lower- and higher-intensity stimuli.

    Science.gov (United States)

    Ružić, Valentina; Ivanec, Dragutin; Modić Stanke, Koraljka

    2017-01-01

    Pain modulation via expectation is a well-documented phenomenon. So far it has been shown that expectations about effectiveness of a certain treatment enhance the effectiveness of different analgesics and of drug-free pain treatments. Also, studies demonstrate that people assess same-intensity stimuli differently, depending on the experimentally induced expectations regarding the characteristics of the stimuli. Prolonged effect of expectation on pain perception and possible symmetry in conditions of lower- and higher-intensity stimuli is yet to be studied. Aim of this study is to determine the effect of expectation on the perception of pain experimentally induced by the series of higher- and lower-intensity stimuli. 192 healthy participants were assigned to four experimental groups differing by expectations regarding the intensity of painful stimuli series. Expectations of two groups were congruent with actual stimuli; one group expected and received lower-intensity stimuli and the other expected and received higher-intensity stimuli. Expectations of the remaining two groups were not congruent with actual stimuli; one group expected higher-intensity stimuli, but actually received lower-intensity stimuli while the other group expected lower-intensity stimuli, but in fact received higher-intensity ones. Each group received a series of 24 varied-intensity electrical stimuli rated by the participants on a 30° intensity scale. Expectation manipulation had statistically significant effect on pain intensity assessment. When expecting lower-intensity stimuli, the participants underestimated pain intensity and when expecting higher-intensity stimuli, they overestimated pain intensity. The effect size of expectations upon pain intensity assessment was equal for both lower- and higher-intensity stimuli. The obtained results imply that expectation manipulation can achieve the desired effect of decreasing or increasing both slight and more severe pain for a longer period of

  15. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.

    Science.gov (United States)

    Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V

    2018-01-01

    There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.

  16. Common brain activations for painful and non-painful aversive stimuli

    Directory of Open Access Journals (Sweden)

    Hayes Dave J

    2012-06-01

    Full Text Available Abstract Background Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis and rodents (i.e. systematic review of functional neuroanatomy. Results Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex or non-pain-related (e.g. amygdala aversive processing. Conclusions This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.

  17. Are there abnormalities in peripheral and central components of somatosensory evoked potentials in non - specific chronic low back pain ?

    Directory of Open Access Journals (Sweden)

    Christian Puta

    2016-10-01

    Full Text Available Chronic low back pain (CLBP was shown to be associated with longer reflex response latencies of trunk muscles during external upper limb perturbations. One theoretical, but rarely investigated possibility for longer reflex latencies might be related to modulated somatosensory information processing. Therefore, the present study investigated somatosensory evoked potentials (SEPs to median nerve stimulation in CLBP patients and healthy controls (HC. Latencies of the peripheral N9 SEP component were used as primary outcome. In addition, latencies and amplitudes of the central N20 SEP component, sensory thresholds, motor thresholds, and nerve conduction velocity were also analyzed in CLBP patients and HC. There is a trend for the CLBP patients to exhibited longer N9 latencies at the ipsilateral Erb’s point compared to HC. This trend is substantiated by significantly longer N9 latencies in CLBP patients compared to normative data. None of the other parameters showed any significant difference between CLBP patients and HC. Overall, our data indicate small differences of the peripheral N9 SEP component; however, these differences cannot explain the reflex delay observed in CLBP patients. While it was important to rule out the contribution of early somatosensory processing and to elucidate its contribution to the delayed reflex responses in CLBP patients, further research is needed to find the primary source(s of time-delayed reflexes in CLBP.

  18. From acute to persistent low back pain: a longitudinal investigation of somatosensory changes using quantitative sensory testing—an exploratory study

    Directory of Open Access Journals (Sweden)

    Anna Marcuzzi

    2018-04-01

    Conclusion:. Changes in mechanical pain sensitivity occurring in the subacute stage warrant further longitudinal evaluation to better understand the role of somatosensory changes in the development of persistent LBP. Pain-related cognitions at baseline distinguished persistent from the recovered LBP groups, emphasizing the importance of concurrent evaluation of psychological contributors in acute LBP.

  19. Pupil responses and pain ratings to heat stimuli: Reliability and effects of expectations and a conditioning pain stimulus.

    Science.gov (United States)

    Eisenach, James C; Curry, Regina; Aschenbrenner, Carol A; Coghill, Robert C; Houle, Timothy T

    2017-03-01

    The locus coeruleus (LC) signals salience to sensory stimuli and these responses can modulate the experience of pain stimuli. The pupil dilation response (PDR) to noxious stimuli is thought to be a surrogate for LC responses, but PDR response to Peltier-controlled noxious heat stimuli, the most commonly used method in experimental pain research, has not been described. Healthy volunteers were presented with randomly presented heat stimuli of 5 sec duration and provided pain intensity ratings to each stimulus. Pupillometry was performed and a method developed to quantify the PDR relevant to these stimuli. The stimulus response, reliability, and effect of commonly used manipulations on pain experience were explored. A method of artifact removal and adjusting for lag from stimulus initiation to PDR response was developed, resulting in a close correlation between pain intensity rating and PDR across a large range of heat stimuli. A reliable assessment of PDR within an individual was achieved with fewer presentations as heat stimulus intensity increased. The correlation between pain rating and PDR was disrupted when cognitive load is increased by manipulating expectations or presenting a second pain stimulus. The PDR began later after skin heating than electrical stimuli and this is the first examination of the PDR using standard nociceptive testing and manipulations of expectations and competing noxious stimulation. A method is described applying PDR to standard heat nociceptive testing, demonstrating stimulus response, reliability, and disruption by cognitive manipulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reorganization in Secondary Somatosensory Cortex in Chronic Low Back Pain Patients.

    Science.gov (United States)

    Hotz-Boendermaker, Sabina; Marcar, Valentine L; Meier, Michael L; Boendermaker, Bart; Humphreys, Barry K

    2016-06-01

    A cross-sectional comparative study between chronic low back pain (CLBP) patients and healthy control subjects. The aim of this study was to investigate reorganization in the sensory cortex by comparing cortical activity due to mechanosensory stimulation of the lumbar spine in CLBP patients versus a control group by using functional magnetic resonance imaging (fMRI). LBP is now the number 1 condition across the world in terms of years living with a disability. There is growing evidence that maladaptive changes in the processing of sensory input by the central nervous system are central to understanding chronic (back) pain. Nonpainful, posterior-anterior (PA) movement pressure was applied manually to lumbar vertebrae at L1, L3, and L5 in 13 healthy subjects and 13 CLBP patients. The manual pressure (30 N) was monitored and controlled using sensors. A randomized stimulation protocol was used consisting of 51 pressure stimuli of 5 seconds duration. fMRI data analysis was performed for the group activation within the primary and secondary sensory cortices (S1 and S2, respectively) and the representation of the individual vertebrae was extracted and statistically analyzed. Nonpainful PA pressure revealed no cortical reorganization in S1. In contrast, the extent of S2 activation in the CLBP group was significantly reduced in both hemispheres. In the control group, a somatotopy was identified for the lumbar vertebrae between L1 and L3, respectively, and L5 in S2 of the right hemisphere. Most importantly, a blurring of the somatotopic representation of the lumbar spine in S2 was observed in the patient group. Together, these maladaptive changes suggest a reorganization of higher-order processing for sensory information in CLBP patients that might have implications for a decreased sensory acuity, also related to body perception and subsequent altered functioning of the lumbar spine. 2.

  1. Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome.

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Kim, Jieun; Kim, Hyungjun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Libby, Alexandra; Mezzacappa, Pia; Mawla, Ishtiaq; Morse, Leslie R; Audette, Joseph; Napadow, Vitaly

    2016-05-01

    Paresthesia-dominant and pain-dominant subgroups have been noted in carpal tunnel syndrome (CTS), a peripheral neuropathic disorder characterized by altered primary somatosensory/motor (S1/M1) physiology. We aimed to investigate whether brain morphometry dissociates these subgroups. Subjects with CTS were evaluated with nerve conduction studies, whereas symptom severity ratings were used to allocate subjects into paresthesia-dominant (CTS-paresthesia), pain-dominant (CTS-pain), and pain/paresthesia nondominant (not included in further analysis) subgroups. Structural brain magnetic resonance imaging data were acquired at 3T using a multiecho MPRAGE T1-weighted pulse sequence, and gray matter cortical thickness was calculated across the entire brain using validated, automated methods. CTS-paresthesia subjects demonstrated reduced median sensory nerve conduction velocity (P = 0.05) compared with CTS-pain subjects. In addition, cortical thickness in precentral and postcentral gyri (S1/M1 hand area) contralateral to the more affected hand was significantly reduced in CTS-paresthesia subgroup compared with CTS-pain subgroup. Moreover, in CTS-paresthesia subjects, precentral cortical thickness was negatively correlated with paresthesia severity (r(34) = -0.40, P = 0.016) and positively correlated with median nerve sensory velocity (r(36) = 0.51, P = 0.001), but not with pain severity. Conversely, in CTS-pain subjects, contralesional S1 (r(9) = 0.62, P = 0.042) and M1 (r(9) = 0.61, P = 0.046) cortical thickness were correlated with pain severity, but not median nerve velocity or paresthesia severity. This double dissociation in somatotopically specific S1/M1 areas suggests a neuroanatomical substrate for symptom-based CTS subgroups. Such fine-grained subgrouping of CTS may lead to improved personalized therapeutic approaches, based on superior characterization of the linkage between peripheral and central neuroplasticity.

  2. Pain and somatosensory findings in patients 3 years after total hip arthroplasty

    DEFF Research Database (Denmark)

    Nikolajsen, Lone; Kristensen, Anders D; Thillemann, Theis M

    2009-01-01

    in patients and controls. Patients with chronic hip pain had higher scores on the mental vulnerability scale (Poperated side, which was more prominent in patients...... with chronic hip pain and 18 controls without chronic hip pain were recruited from a previous questionnaire study about hip pain after total hip arthroplasty. All participants answered questions about pain and mental vulnerability and underwent clinical examination followed by quantitative sensory testing...... with pain. Pain referred from the back or deeper structures in the hip seems to play a role for the pain in subgroups of patients. In addition, chronic hip pain was associated with mental vulnerability....

  3. From acute to persistent low back pain: a longitudinal investigation of somatosensory changes using quantitative sensory testing—an exploratory study

    Science.gov (United States)

    Marcuzzi, Anna; Wrigley, Paul J.; Dean, Catherine M.; Graham, Petra L.; Hush, Julia M.

    2018-01-01

    Abstract Introduction: Chronic low back pain (LBP) is commonly associated with generalised pain hypersensitivity. It is suggested that such somatosensory alterations are important determinants for the transition to persistent pain from an acute episode of LBP. Although cross-sectional research investigating somatosensory function in the acute stage is developing, no longitudinal studies designed to evaluate temporal changes have been published. Objectives: This exploratory study aimed to investigate the temporal development of somatosensory changes from the acute stage of LBP to up to 4 months from onset. Methods: Twenty-five people with acute LBP (pain-free controls were prospectively assessed at baseline using quantitative sensory testing with the assessor blinded to group allocation, and again at 2 and 4 months. Psychological variables were concurrently assessed. People with acute LBP were classified based on their average pain severity over the previous week at 4 months as recovered (≤1/10 numeric rating scale) or persistent (≥2/10 numeric rating scale) LBP. Results: In the persistent LBP group, (1) there was a significant decrease in pressure pain threshold between 2 and 4 months (P pain threshold was significantly different from the recovered LBP group (P pain-free control reference value. Pain-related psychological variables were significantly higher in those with persistent LBP compared with the recovered LBP group at all time points (P pain sensitivity occurring in the subacute stage warrant further longitudinal evaluation to better understand the role of somatosensory changes in the development of persistent LBP. Pain-related cognitions at baseline distinguished persistent from the recovered LBP groups, emphasizing the importance of concurrent evaluation of psychological contributors in acute LBP. PMID:29756087

  4. Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).

    Science.gov (United States)

    Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L

    2017-12-29

    Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.

  5. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  6. Altered Brain Activation in Early Drug-Naive Parkinson’s Disease during Heat Pain Stimuli: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2015-01-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disease characterized by motor and nonmotor signs and symptoms. To date, many studies of PD have focused on its cardinal motor symptoms. To study the nonmotor signs of early PD, we investigated the reactions solicited by heat pain stimuli in early untreated PD patients without pain using fMRI. The activation patterns of contact heat stimuli (51°C were assessed in 14 patients and 17 age- and sex-matched healthy controls. Patients with PD showed significant decreases in activation of the superior temporal gyrus (STG and insula compared with controls. In addition, a significant relationship between activation of the insula and STG and the pain scores was observed in healthy controls but not in PD. This study provided further support that the insula and STG are important parts of the somatosensory circuitry recruited during the period of pain. The hypoactivity of the STG and insula in PD implied that functions including affective, cognitive, and sensory-discriminative processes, which are associated with the insula and STG, were disturbed. This finding supports the view that leaving early PD untreated could be tied directly to central nervous system dysfunction.

  7. Sex Differences in How Erotic and Painful Stimuli Impair Inhibitory Control

    Science.gov (United States)

    Yu, Jiaxin; Hung, Daisy L.; Tseng, Philip; Tzeng, Ovid J. L.; Muggleton, Neil G.; Juan, Chi-Hung

    2012-01-01

    Witnessing emotional events such as arousal or pain may impair ongoing cognitive processes such as inhibitory control. We found that this may be true only half of the time. Erotic images and painful video clips were shown to men and women shortly before a stop signal task, which measures cognitive inhibitory control. These stimuli impaired…

  8. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis.

    Science.gov (United States)

    Rabey, Martin; Slater, Helen; OʼSullivan, Peter; Beales, Darren; Smith, Anne

    2015-10-01

    The objectives of this study were to explore the existence of subgroups in a cohort with chronic low back pain (n = 294) based on the results of multimodal sensory testing and profile subgroups on demographic, psychological, lifestyle, and general health factors. Bedside (2-point discrimination, brush, vibration and pinprick perception, temporal summation on repeated monofilament stimulation) and laboratory (mechanical detection threshold, pressure, heat and cold pain thresholds, conditioned pain modulation) sensory testing were examined at wrist and lumbar sites. Data were entered into principal component analysis, and 5 component scores were entered into latent class analysis. Three clusters, with different sensory characteristics, were derived. Cluster 1 (31.9%) was characterised by average to high temperature and pressure pain sensitivity. Cluster 2 (52.0%) was characterised by average to high pressure pain sensitivity. Cluster 3 (16.0%) was characterised by low temperature and pressure pain sensitivity. Temporal summation occurred significantly more frequently in cluster 1. Subgroups were profiled on pain intensity, disability, depression, anxiety, stress, life events, fear avoidance, catastrophizing, perception of the low back region, comorbidities, body mass index, multiple pain sites, sleep, and activity levels. Clusters 1 and 2 had a significantly greater proportion of female participants and higher depression and sleep disturbance scores than cluster 3. The proportion of participants undertaking Low back pain, therefore, does not appear to be homogeneous. Pain mechanisms relating to presentations of each subgroup were postulated. Future research may investigate prognoses and interventions tailored towards these subgroups.

  9. From acute to persistent low back pain: a longitudinal investigation of somatosensory changes using quantitative sensory testing-an exploratory study.

    Science.gov (United States)

    Marcuzzi, Anna; Wrigley, Paul J; Dean, Catherine M; Graham, Petra L; Hush, Julia M

    2018-03-01

    Chronic low back pain (LBP) is commonly associated with generalised pain hypersensitivity. It is suggested that such somatosensory alterations are important determinants for the transition to persistent pain from an acute episode of LBP. Although cross-sectional research investigating somatosensory function in the acute stage is developing, no longitudinal studies designed to evaluate temporal changes have been published. This exploratory study aimed to investigate the temporal development of somatosensory changes from the acute stage of LBP to up to 4 months from onset. Twenty-five people with acute LBP (testing with the assessor blinded to group allocation, and again at 2 and 4 months. Psychological variables were concurrently assessed. People with acute LBP were classified based on their average pain severity over the previous week at 4 months as recovered (≤1/10 numeric rating scale) or persistent (≥2/10 numeric rating scale) LBP. In the persistent LBP group, (1) there was a significant decrease in pressure pain threshold between 2 and 4 months ( P psychological variables were significantly higher in those with persistent LBP compared with the recovered LBP group at all time points ( P importance of concurrent evaluation of psychological contributors in acute LBP.

  10. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Directory of Open Access Journals (Sweden)

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  11. Increased sensitivity to supra-threshold painful stimuli in patients with multiple functional somatic symptoms (MFS)

    DEFF Research Database (Denmark)

    Kuzminskyte, Ruta; Kupers, Ronny Clement Florent; Videbech, Poul

    2010-01-01

    threshold and pain tolerance levels in patients with MFS. Twenty-two patients with MFS and 27 age- and sex-matched healthy control subjects volunteered for this study. The subjects received innocuous and noxious thermal stimuli to the volar forearm by means of a Peltier contact heat probe. We assessed pain...... threshold and pain tolerance with an ascending staircase method. Anxiety levels and hemodynamic (blood pressure, pulse rate) and endocrine (cortisol and prolactin release) responses were measured before and after pain testing. We found no group differences for any of the physiological or self...

  12. Quantitative sensory testing somatosensory profiles in patients with cervical radiculopathy are distinct from those in patients with nonspecific neck-arm pain.

    Science.gov (United States)

    Tampin, Brigitte; Slater, Helen; Hall, Toby; Lee, Gabriel; Briffa, Noelle Kathryn

    2012-12-01

    The aim of this study was to establish the somatosensory profiles of patients with cervical radiculopathy and patients with nonspecific neck-arm pain associated with heightened nerve mechanosensitivity (NSNAP). Sensory profiles were compared to healthy control (HC) subjects and a positive control group comprising patients with fibromyalgia (FM). Quantitative sensory testing (QST) of thermal and mechanical detection and pain thresholds, pain sensitivity and responsiveness to repetitive noxious mechanical stimulation was performed in the maximal pain area, the corresponding dermatome and foot of 23 patients with painful C6 or C7 cervical radiculopathy, 8 patients with NSNAP in a C6/7 dermatomal pain distribution, 31 HC and 22 patients with FM. For both neck-arm pain groups, all QST parameters were within the 95% confidence interval of HC data. Patients with cervical radiculopathy were characterised by localised loss of function (thermal, mechanical, vibration detection Ppain area and dermatome (thermal detection, vibration detection, pressure pain sensitivity Ppain groups demonstrated increased cold sensitivity in their maximal pain area (Ppain groups differed from patients with FM, the latter characterised by a widespread gain of function in most nociceptive parameters (thermal, pressure, mechanical pain sensitivity Ppain characteristics between the 2 neck-arm pain groups, distinct sensory profiles were demonstrated for each group. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Enhanced pain and autonomic responses to ambiguous visual stimuli in chronic Complex Regional Pain Syndrome (CRPS) type I.

    Science.gov (United States)

    Cohen, H E; Hall, J; Harris, N; McCabe, C S; Blake, D R; Jänig, W

    2012-02-01

    Cortical reorganisation of sensory, motor and autonomic systems can lead to dysfunctional central integrative control. This may contribute to signs and symptoms of Complex Regional Pain Syndrome (CRPS), including pain. It has been hypothesised that central neuroplastic changes may cause afferent sensory feedback conflicts and produce pain. We investigated autonomic responses produced by ambiguous visual stimuli (AVS) in CRPS, and their relationship to pain. Thirty CRPS patients with upper limb involvement and 30 age and sex matched healthy controls had sympathetic autonomic function assessed using laser Doppler flowmetry of the finger pulp at baseline and while viewing a control figure or AVS. Compared to controls, there were diminished vasoconstrictor responses and a significant difference in the ratio of response between affected and unaffected limbs (symmetry ratio) to a deep breath and viewing AVS. While viewing visual stimuli, 33.5% of patients had asymmetric vasomotor responses and all healthy controls had a homologous symmetric pattern of response. Nineteen (61%) CRPS patients had enhanced pain within seconds of viewing the AVS. All the asymmetric vasomotor responses were in this group, and were not predictable from baseline autonomic function. Ten patients had accompanying dystonic reactions in their affected limb: 50% were in the asymmetric sub-group. In conclusion, there is a group of CRPS patients that demonstrate abnormal pain networks interacting with central somatomotor and autonomic integrational pathways. © 2011 European Federation of International Association for the Study of Pain Chapters.

  14. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    Science.gov (United States)

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  15. Somatosensory abnormalities in knee OA.

    Science.gov (United States)

    Wylde, Vikki; Palmer, Shea; Learmonth, Ian D; Dieppe, Paul

    2012-03-01

    The aim of this study was to use quantitative sensory testing (QST) to explore the range and prevalence of somatosensory abnormalities demonstrated by patients with advanced knee OA. One hundred and seven knee OA patients and 50 age- and sex-matched healthy participants attended a 1-h QST session. Testing was performed on the medial side of the knee and the pain-free forearm. Light-touch thresholds were assessed using von Frey filaments, pressure pain thresholds using a digital pressure algometer, and thermal sensation and pain thresholds using a Thermotest MSA. Significant differences in median threshold values from knee OA patients and healthy participants were identified using Mann-Whitney U-tests. The z-score transformations were used to determine the prevalence of the different somatosensory abnormalities in knee OA patients. Testing identified 70% of knee OA patients as having at least one somatosensory abnormality. Comparison of median threshold values between knee OA patients and healthy participants revealed that patients had localized thermal and tactile hypoaesthesia and pressure hyperalgesia at the osteoarthritic knee. Tactile hypoaesthesia and pressure hyperalgesia were also present at the pain-free forearm. The most prevalent somatosensory abnormalities were tactile hypoaesthesia and pressure hyperalgesia, evident in between 20 and 34% of patients. This study found that OA patients demonstrate an array of somatosensory abnormalities, of which the most prevalent were tactile hypoaesthesia and pressure hyperalgesia. Further research is now needed to establish the clinical implications of these somatosensory abnormalities.

  16. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yu Shi

    2015-01-01

    Full Text Available Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP model and functional magnetic resonance imaging (fMRI to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP and once during tactile stimulation (SHAM pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo values in the pain matrix, limbic system, and default mode network (DMN and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP.

  17. Right secondary somatosensory cortex-a promising novel target for the treatment of drug-resistant neuropathic orofacial pain with repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Lindholm, Pauliina; Lamusuo, Salla; Taiminen, Tero; Pesonen, Ullamari; Lahti, Ari; Virtanen, Arja; Forssell, Heli; Hietala, Jarmo; Hagelberg, Nora; Pertovaara, Antti; Parkkola, Riitta; Jääskeläinen, Satu

    2015-07-01

    High-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex has analgesic effect; however, the efficacy of other cortical targets and the mode of action remain unclear. We examined the effects of rTMS in neuropathic orofacial pain, and compared 2 cortical targets against placebo. Furthermore, as dopaminergic mechanisms modulate pain responses, we assessed the influence of the functional DRD2 gene polymorphism (957C>T) and the catechol-O-methyltransferase (COMT) Val158Met polymorphism on the analgesic effect of rTMS. Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized, placebo-controlled, crossover study. Navigated high-frequency rTMS was given to the sensorimotor (S1/M1) and the right secondary somatosensory (S2) cortices. All subjects were genotyped for the DRD2 957C>T and COMT Val158Met polymorphisms. Pain, mood, and quality of life were monitored throughout the study. The numerical rating scale pain scores were significantly lower after the S2 stimulation than after the S1/M1 (P = 0.0071) or the sham (P = 0.0187) stimulations. The Brief Pain Inventory scores were also lower 3 to 5 days after the S2 stimulation than those at pretreatment baseline (P = 0.0127 for the intensity of pain and P = 0.0074 for the interference of pain) or after the S1/M1 (P = 0.001 and P = 0.0001) and sham (P = 0.0491 and P = 0.0359) stimulations. No correlations were found between the genetic polymorphisms and the analgesic effect in the present small clinical sample. The right S2 cortex is a promising new target for the treatment of neuropathic orofacial pain with high-frequency rTMS.

  18. Comparison of burrowing and stimuli-evoked pain behaviors as end-points in rat models of inflammatory pain and peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Arjun eMuralidharan

    2016-05-01

    Full Text Available Establishment and validation of ethologically-relevant, non-evoked behavioral end-points as surrogate measures of spontaneous pain in rodent pain models has been proposed as a means to improve preclinical to clinical research translation in the pain field. Here, we compared the utility of burrowing behavior with hypersensitivity to applied mechanical stimuli for pain assessment in rat models of chronic inflammatory and peripheral neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the burrowing environment and trained over a 5-day period. Rats that burrowed ≤450g of gravel on any two days of the individual training phase were excluded from the study. The remaining rats received either a unilateral intraplantar injection of Freund’s complete adjuvant (FCA or saline, or underwent unilateral chronic constriction injury (CCI of the sciatic nerve- or sham-surgery. Baseline burrowing behavior and evoked pain behaviors were assessed prior to model induction, and twice-weekly until study completion on day 14. For FCA- and CCI-rats, but not the corresponding groups of sham-rats, evoked mechanical hypersensitivity developed in a temporal manner in the ipsilateral hindpaws. Although burrowing behavior also decreased in a temporal manner for both FCA- and CCI-rats, there was considerable inter-animal variability. By contrast, mechanical hyperalgesia and mechanical allodynia in the ipsilateral hindpaws of FCA- and CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show that burrowing behavior is altered in rodent models of chronic inflammatory pain and peripheral neuropathic pain. However, large group sizes are needed to ensure studies are adequately powered due to considerable inter-animal variability.

  19. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli.

    Science.gov (United States)

    Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko

    2018-02-14

    Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates on the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different inter-stimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves; 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus; and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two solely induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs.

  20. Neural Habituation to Painful Stimuli Is Modulated by Dopamine: Evidence from a Pharmacological fMRI Study

    Directory of Open Access Journals (Sweden)

    Eva M. Bauch

    2017-12-01

    Full Text Available In constantly changing environments, it is crucial to adaptively respond to threatening events. In particular, painful stimuli are not only processed in terms of their absolute intensity, but also with respect to their context. While contextual pain processing can simply entail the repeated processing of information (i.e., habituation, it can, in a more complex form, be expressed through predictions of magnitude before the delivery of nociceptive information (i.e., adaptive coding. Here, we investigated the brain regions involved in the adaptation to nociceptive electrical stimulation as well as their link to dopaminergic neurotransmission (placebo/haloperidol. The main finding is that haloperidol changed the habituation to the absolute pain intensity over time. More precisely, in the placebo condition, activity in left postcentral gyrus and midcingulate cortex increased linearly with pain intensity only in the beginning of the experiment and subsequently habituated. In contrast, when the dopaminergic system was blocked by haloperidol, a linear increase with pain intensity was present throughout the entire experiment. Finally, there were no adaptive coding effects in any brain regions. Together, our findings provide novel insights into the nature of pain processing by suggesting that dopaminergic neurotransmission plays a specific role for the habituation to painful stimuli over time.

  1. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    Science.gov (United States)

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  2. Patellar and Achilles tendinopathies are predominantly peripheral pain states : a blinded case control study of somatosensory and psychological profiles

    NARCIS (Netherlands)

    Plinsinga, Melanie L; van Wilgen, Cornelis P; Brink, Michel S; Vuvan, Viana; Stephenson, Aoife; Heales, Luke J; Mellor, Rebecca; Coombes, Brooke K; Vicenzino, Bill T

    Study design Case-control design. Background Tendinopathy is characterised by pain on tendon loading. In persistent cases of upper limb tendinopathy, it is frequently associated with central nervous system sensitisation, whereas less commonly linked in the case of persistent lower limb

  3. Acupuncture-Evoked Response in Somatosensory and Prefrontal Cortices Predicts Immediate Pain Reduction in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Yumi Maeda

    2013-01-01

    Full Text Available The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS. Brain response to electroacupuncture (EA was evaluated with functional MRI. Subjects were randomized to 3 groups: (1 EA applied at local acupoints on the affected wrist (PC-7 to TW-5, (2 EA at distal acupoints (contralateral ankle, SP-6 to LV-4, and (3 sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.

  4. Subliminal stimulation and somatosensory signal detection.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Sahani, Maneesh; Haggard, Patrick

    2016-10-01

    Only a small fraction of sensory signals is consciously perceived. The brain's perceptual systems may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus reserving cortical capacity and conscious awareness for significant stimuli. Here we provide a new view of these mechanisms based on signal detection theory, and gain control. We demonstrated that subliminal somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, largely due to increased false alarm rates. By delivering the subliminal somatosensory stimulus and the to-be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads across the sensory surface. In addition, subliminal somatosensory stimulation tended to produce an increased probability of responding "yes", whether the somatosensory stimulus was present or not. Our results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further small inputs. This gain control may be automatic, and may precede discriminative classification of inputs into signals or noise. Crucially, we found that subliminal inputs influenced false alarm rates only on blocks where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent. Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the current context, with the presence of supraliminal stimuli having an important role in the criterion-setting process. These findings clarify the cognitive mechanisms that reserve conscious perception for salient and important signals. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies.

    Science.gov (United States)

    Truini, Andrea; Cruccu, Giorgio

    2016-02-01

    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  6. Assessment of Responsiveness to Everyday Non-Noxious Stimuli in Pain-Free Migraineurs With Versus Without Aura.

    Science.gov (United States)

    Granovsky, Yelena; Shor, Merav; Shifrin, Alla; Sprecher, Elliot; Yarnitsky, David; Bar-Shalita, Tami

    2018-03-27

    Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Pain and other symptoms of CRPS can be increased by ambiguous visual stimuli--an exploratory study.

    Science.gov (United States)

    Hall, Jane; Harrison, Simon; Cohen, Helen; McCabe, Candida S; Harris, N; Blake, David R

    2011-01-01

    Visual disturbance, visuo-spatial difficulties, and exacerbations of pain associated with these, have been reported by some patients with Complex Regional Pain Syndrome (CRPS). We investigated the hypothesis that some visual stimuli (i.e. those which produce ambiguous perceptions) can induce pain and other somatic sensations in people with CRPS. Thirty patients with CRPS, 33 with rheumatology conditions and 45 healthy controls viewed two images: a bistable spatial image and a control image. For each image participants recorded the frequency of percept change in 1 min and reported any changes in somatosensation. 73% of patients with CRPS reported increases in pain and/or sensory disturbances including changes in perception of the affected limb, temperature and weight changes and feelings of disorientation after viewing the bistable image. Additionally, 13% of the CRPS group responded with striking worsening of their symptoms which necessitated task cessation. Subjects in the control groups did not report pain increases or somatic sensations. It is possible to worsen the pain suffered in CRPS, and to produce other somatic sensations, by means of a visual stimulus alone. This is a newly described finding. As a clinical and research tool, the experimental method provides a means to generate and exacerbate somaesthetic disturbances, including pain, without moving the affected limb and causing nociceptive interference. This may be particularly useful for brain imaging studies. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  8. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    Science.gov (United States)

    Xie, Rou-Gang; Chu, Wen-Guang; Hu, San-Jue; Luo, Ceng

    2018-01-01

    Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics. PMID:29303989

  9. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    2018-01-01

    Full Text Available Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.

  10. Abnormal brain processing of pain in migraine without aura

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, Line Lindhardt; Jensen, R.

    2010-01-01

    and somatosensory-evoked potentials were recorded with 128-channel EEG with and without concurrent induced tonic neck/shoulder muscle pain. At baseline, the calculated P300 dipole for single stimuli was localized in the cingulate cortex. In patients, but not in controls, the dipole changed position from baseline...

  11. Decreased pain perception by unconscious emotional pictures

    Directory of Open Access Journals (Sweden)

    Irene Peláez

    2016-10-01

    Full Text Available Pain perception arises from a complex interaction between a nociceptive stimulus and different emotional and cognitive factors, which appear to be mediated by both automatic and controlled systems. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, emotional influences on pain under unaware conditions are much less known. The aim of the present study was to investigate the modulation of pain perception by unconscious emotional pictures through an emotional masking paradigm. Two kinds of both somatosensory (painful and non-painful and emotional stimulation (negative and neutral pictures were employed. Fifty pain-free participants were asked to rate the perception of pain they were feeling in response to laser-induced somatosensory stimuli as faster as they can. Data from pain intensity and reaction times were measured. Statistical analyses revealed a significant effect for the interaction between pain and emotional stimulation, but surprisingly this relationship was opposite to expected. In particular, lower pain intensity scores and longer reaction times were found in response to negative images being strengthened this effect for painful stimulation. Present findings suggest a clear pain perception modulation by unconscious emotional contexts. Attentional capture mechanisms triggered by unaware negative stimulation could explain this phenomenon leading to a withdrawal of processing resources from pain.

  12. High pain sensitivity is distinct from high susceptibility to non-painful sensory input at threshold level.

    Science.gov (United States)

    Hummel, Thomas; Springborn, Maria; Croy, Ilona; Kaiser, Jochen; Lötsch, Jörn

    2011-04-01

    Individuals may differ considerably in their sensitivity towards various painful stimuli supporting the notion of a person as stoical or complaining about pain. Molecular and functional imaging research provides support that this may extend also to other sensory qualities. Whether a person can be characterized as possessing a generally high or low sensory acuity is unknown. This was therefore assessed with thresholds to painful and non-painful stimuli, with a focus on chemical stimuli that besides pain may evoke clearly non-painful sensations such as taste or smell. In 36 healthy men and 78 women (ages 18 to 52 years), pain thresholds to chemo-somatosensory (intranasal gaseous CO(2)) and electrical stimuli (cutaneous stimulation) were significantly correlated (ρ(2)=0.2268, psensory qualities, i.e., for the rose-like odor phenyl ethyl alcohol and gustatory thresholds for sour (citric acid) and salty (NaCl). Similarly, pain clusters showed no differences in thresholds to other stimuli. Moreover, no clustering was obtained for thresholds to both painful and non-painful stimuli together. Thus, individuals could not be characterized as highly sensitive (or insensitive) to all chemical stimuli no matter of evoking pain. This suggests that pain is primarily a singular sensory perception distinct from others such as olfaction or taste. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The effect of age and gender on pressure pain thresholds and suprathreshold stimuli

    DEFF Research Database (Denmark)

    Petrini, Laura; Tomczak Matthiesen, Susan; Arendt-Nielsen, Lars

    2015-01-01

    The study investigates the impact of age and gender on (1) experimental pressure pain detection thresholds (PPDT) and pressure pain tolerance thresholds (PPTolT) and (2) participants’self-reports of pain intensity and unpleasantness at suprathreshold and subthreshold levels. Methods: twenty young...... (20–34, mean age = 24.6 ± 3.5 years, ten female) and twenty elderly (65–88, mean age = 73.7 ± 6.6 years, ten female) healthy volunteers were compared. Mini-Mental State Examination (MMSE 28–30) assessed intact cognitive functioning. Pain thresholds were assessed together with the sensory intensity...... ratings to 1.3 × PPDT (pain) and 0.2 × PPDT (no pain). Results: PPDT and PPTolT significantly decreased with age and were lower in young females as compared with young males. No gender differences were observed in the elderly group. PPDT decreased significantly with age in males but not in females...

  14. Feedforward somatosensory inhibition is normal in cervical dystonia.

    Science.gov (United States)

    Ferrè, Elisa R; Ganos, Christos; Bhatia, Kailash P; Haggard, Patrick

    2015-03-01

    Insufficient cortical inhibition is a key pathophysiological finding in dystonia. Subliminal sensory stimuli were reported to transiently inhibit somatosensory processing. Here we investigated whether such subliminal feedforward inhibition is reduced in patients with cervical dystonia. Sixteen cervical dystonia patients and 16 matched healthy controls performed a somatosensory detection task. We measured the drop in sensitivity to detect a threshold-level digital nerve shock when it was preceded by a subliminal conditioning shock, compared to when it was not. Subliminal conditioning shocks reduced sensitivity to threshold stimuli to a similar extent in both patients and controls, suggesting that somatosensory subliminal feedforward inhibition is normal in cervical dystonia. Somatosensory feedforward inhibition was normal in this group of cervical dystonia patients. Our results qualify previous concepts of a general dystonic deficit in sensorimotor inhibitory processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Emotional modulation of pain: is it the sensation or what we recall?

    Science.gov (United States)

    Godinho, Fabio; Magnin, Michel; Frot, Maud; Perchet, Caroline; Garcia-Larrea, Luis

    2006-11-01

    Emotions modulate pain perception, although the mechanisms underlying this phenomenon remain unclear. In this study, we show that intensity reports significantly increased when painful stimuli were concomitant to images showing human pain, whereas pictures with identical emotional values but without somatic content failed to modulate pain. Early somatosensory responses (emotions. Conversely, late responses showed a significant enhancement associated with increased pain ratings, localized to the right prefrontal, right temporo-occipital junction, and right temporal pole. In contrast to selective attention, which enhances pain ratings by increasing sensory gain, emotions triggered by seeing other people's pain did not alter processing in SI-SII (primary and second somatosensory areas), but may have biased the transfer to, and the representation of pain in short-term memory buffers (prefrontal), as well as the affective assignment to this representation (temporal pole). Memory encoding and recall, rather than sensory processing, appear to be modulated by empathy with others' physical suffering.

  16. Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix.

    Science.gov (United States)

    Reimann, Henning Matthias; Todiras, Mihail; Hodge, Russ; Huelnhagen, Till; Millward, Jason Michael; Turner, Robert; Seeliger, Erdmann; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2018-05-15

    The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Influence of dopaminergically mediated reward on somatosensory decision-making.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    2009-07-01

    Full Text Available Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI while participants judged electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline, a dopamine agonist (levodopa, or an antagonist (haloperidol.higher anticipated reward improved tactile decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and sensory decision-making.

  18. Alteration of basal ganglia and right frontoparietal network in early drug-naïve Parkinson’s disease during heat pain stimuli and resting state

    Directory of Open Access Journals (Sweden)

    Ying eTan

    2015-08-01

    Full Text Available Background: The symptoms and pathogenesis of Parkinson’s disease (PD are complicated and accurate diagnosis is difficult, particularly in early-stage. Functional magnetic resonance imaging is noninvasive and characterized by the integration of different brain areas at functional connectivity (FC. Considering pain process in PD, we hypothesized that pain is one of the earliest symptoms and investigated whether FC of the pain network was disrupted in PD without pain.Methods: Fourteen early drug-naïve PD without pain and 17 age- and sex-matched healthy controls (HC participated in our test. We investigate abnormalities in FC and in functional network connectivity in PD compared with HC during the task (51 °C heat pain stimuli and at rest.Results: Compared with HC, PD showed decreased FC in basal ganglia network (BGN, salience network (SN and sensorimotor network in two states respectively. FNC between the BGN and the SN are reduced during both states in PD compared with HC. In addition, the FNC associated with right frontoparietal network (RFPN was also significantly disturbed during the task.Conclusion: These findings suggest that BGN plays a role in the pathological mechanisms of pain underlying PD, and RFPN likely contributes greatly to harmonization between intrinsic brain activity and external stimuli.

  19. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation.

    Directory of Open Access Journals (Sweden)

    Justin E Brown

    Full Text Available Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-report. Because the inability to verbally communicate can prevent effective pain management, research efforts have focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain. Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI and support vector machine (SVM learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli (p<0.0000001. Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%, albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex, secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any communication from the person being tested. We outline tasks that should be

  1. Impact of the number of painful stimuli on life satisfaction among Korean industrial accident workers completing convalescence: dual mediating effects of self-esteem and sleeping time

    Science.gov (United States)

    CHOI, Wan-Suk; KIM, Bo-Kyung; KIM, Ki-Do; MOON, Ok-Kon; YEUM, Dong-Moon

    2016-01-01

    This study examined the impact of the number of painful stimuli on life satisfaction among workers who experienced an industrial accident and investigated how self-esteem and sleeping time affected life satisfaction. The Korea Workers’ Compensation & Welfare Service conducted the first nationwide panel survey on occupational health and safety insurance in 2013–2014 through a stratified systematic sampling on 2,000 industrial accident workers who completed convalescence. Based on the dataset, our study analyzed 1,832 workers experiencing an industrial accident after excluding 168 disease patients. For the research model analysis, a four-stage hierarchical regression analysis technique was applied using the SPSS regression analysis Macro program of PROCESS Procedure. To test mediated indirect effects of the self-esteem and sleeping time, the bootstrapping technique was applied. Life satisfaction, self-esteem and sleeping time decreased as the number of painful stimuli increased. Life satisfaction decreased as self-esteem and sleeping time decreased. On balance, the partial mediation model confirmed that self-esteem and sleeping time both mediate the impact of the number of painful stimuli on life satisfaction. PMID:27021061

  2. Impact of the number of painful stimuli on life satisfaction among Korean industrial accident workers completing convalescence: dual mediating effects of self-esteem and sleeping time.

    Science.gov (United States)

    Choi, Wan-Suk; Kim, Bo-Kyung; Kim, Ki-Do; Moon, Ok-Kon; Yeum, Dong-Moon

    2016-10-08

    This study examined the impact of the number of painful stimuli on life satisfaction among workers who experienced an industrial accident and investigated how self-esteem and sleeping time affected life satisfaction. The Korea Workers' Compensation & Welfare Service conducted the first nationwide panel survey on occupational health and safety insurance in 2013-2014 through a stratified systematic sampling on 2,000 industrial accident workers who completed convalescence. Based on the dataset, our study analyzed 1,832 workers experiencing an industrial accident after excluding 168 disease patients. For the research model analysis, a four-stage hierarchical regression analysis technique was applied using the SPSS regression analysis Macro program of PROCESS Procedure. To test mediated indirect effects of the self-esteem and sleeping time, the bootstrapping technique was applied. Life satisfaction, self-esteem and sleeping time decreased as the number of painful stimuli increased. Life satisfaction decreased as self-esteem and sleeping time decreased. On balance, the partial mediation model confirmed that self-esteem and sleeping time both mediate the impact of the number of painful stimuli on life satisfaction.

  3. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  4. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Directory of Open Access Journals (Sweden)

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  5. Beta oscillations define discrete perceptual cycles in the somatosensory domain.

    Science.gov (United States)

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2015-09-29

    Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain.

  6. MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

    Directory of Open Access Journals (Sweden)

    Wang Frank

    2008-02-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. Methods We used event-related magnetoencephalography (MEG to examine patterns of cortical rhythms in the primary (SI and secondary (SII somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. Results Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8–12 Hz and beta (15–30 Hz bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII in the ADHD group did not differ from that of controls. Conclusion Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability and facilitating our

  7. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Cynthia Kay Overstreet

    2016-12-01

    Full Text Available The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g. encoding contact events and pressure on multiple digits.In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  8. Vibration and muscle contraction affect somatosensory evoked potentials

    OpenAIRE

    Cohen, LG; Starr, A

    1985-01-01

    We recorded potentials evoked by specific somatosensory stimuli over peripheral nerve, spinal cord, and cerebral cortex. Vibration attenuated spinal and cerebral potentials evoked by mixed nerve and muscle spindle stimulation; in one subject that was tested, there was no effect on cutaneous input. Presynaptic inhibition of Ia input in the spinal cord and muscle spindle receptor occupancy are probably the responsible mechanisms. In contrast, muscle contraction attenuated cerebral potentials to...

  9. [Vibration-assisted music therapy reduces pain and promotes relaxation of para- and tetraplegic patients. A pilot study of psychiatric and physical effects of simultaneous acoustic and somatosensory music stimulation as pain management].

    Science.gov (United States)

    Mariauzouls, C; Michel, D; Schiftan, Y

    1999-11-01

    Pain is a well known phenomenon in posttraumatic spinal cord injuries. Nearly 10% of the patients develop most severe, invalidizing, as a rule neurogenic pain conditions that are hardly accessible to conventional therapies. A pilot study was therefore conducted with 10 paraplegics and tetraplegics suffering chronic pain, investigating how vibration supported music therapy with the Musica Medica method affected pain experience, tension/relaxation and well-being. In addition to subjective experience, we measured physiological parameters (finger tip skin temperature, electrodermal activity, heart rate, respiration frequency) during the therapy sessions. All patients had a high acceptance of the method which throughout the group had brought about an increase in relaxation and well-being as well as a decrease of pain experience. The autonomic nervous system variables correlated with relaxation and in addition pointed to an activating impact of the therapy chosen.

  10. Early event related fields during visually evoked pain anticipation.

    Science.gov (United States)

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. CORTICAL RESPONSES TO SALIENT NOCICEPTIVE AND NOT NOCICEPTIVE STIMULI IN VEGETATIVE AND MINIMAL CONSCIOUS STATE

    Directory of Open Access Journals (Sweden)

    MARINA eDE TOMMASO

    2015-01-01

    Full Text Available Aims Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient multimodal visual, acoustic, somatosensory electric non nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation.Methods: Five Vegetative State (VS, 4 Minimally Conscious State (MCS patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 sec. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2 vertex complex in the 500 msec post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R and Coma Recovery Scale (CRS-R for clinical evaluation of pain perception and consciousness impairment.Results: The laser evoked potentials (LEPs were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the

  12. Differential effects of painful and non-painful stimulation on tactile processing in fibromyalgia syndrome and subjects with masochistic behaviour.

    Directory of Open Access Journals (Sweden)

    Bettina Pollok

    Full Text Available BACKGROUND: In healthy subjects repeated tactile stimulation in a conditioning test stimulation paradigm yields attenuation of primary (S1 and secondary (S2 somatosensory cortical activation, whereas a preceding painful stimulus results in facilitation. METHODOLOGY/PRINCIPAL FINDINGS: Since previous data suggest that cognitive processes might affect somatosensory processing in S1, the present study aims at investigating to what extent cortical reactivity is altered by the subjective estimation of pain. To this end, the effect of painful and tactile stimulation on processing of subsequently applied tactile stimuli was investigated in patients with fibromyalgia syndrome (FMS and in subjects with masochistic behaviour (MB by means of a 122-channel whole-head magnetoencephalography (MEG system. Ten patients fulfilling the criteria for the diagnosis of FMS, 10 subjects with MB and 20 control subjects matched with respect to age, gender and handedness participated in the present study. Tactile or brief painful cutaneous laser stimuli were applied as conditioning stimulus (CS followed by a tactile test stimulus (TS 500 ms later. While in FMS patients significant attenuation following conditioning tactile stimulation was evident, no facilitation following painful stimulation was found. By contrast, in subjects with MB no attenuation but significant facilitation occurred. Attenuation as well as facilitation applied to cortical responses occurring at about 70 ms but not to early S1 or S2 responses. Additionally, in FMS patients the amount of attenuation was inversely correlated with catastrophizing tendency. CONCLUSION: The present results imply altered cortical reactivity of the primary somatosensory cortex in FMS patients and MB possibly reflecting differences of individual pain experience.

  13. Brain imaging signatures of the relationship between epidermal nerve fibers and heat pain perception.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Chiang, Ming-Chang; Chao, Chi-Chao; Tseng, Wen-Yih I; Hsieh, Sung-Tsang

    2015-11-15

    Although the small-diameter primary afferent fibers in the skin promptly respond to nociceptive stimuli and convey sensory inputs to the central nervous system, the neural signatures that underpin the relationship between cutaneous afferent fibers and pain perception remain elusive. We combined skin biopsy at the lateral aspect of the distal leg, which is used to quantify cutaneous afferent fibers, with fMRI, which is used to assess brain responses and functional connectivity, to investigate the relationship between cutaneous sensory nerves and the corresponding pain perception in the brain after applying heat pain stimulation to the dorsum of the right foot in healthy subjects. During painful stimulation, the degree of cutaneous innervation, as measured by epidermal nerve fiber density, was correlated with individual blood oxygen level-dependent (BOLD) signals of the posterior insular cortex and of the thalamus, periaqueductal gray, and rostral ventromedial medulla. Pain perception was associated with the activation of the anterior insular cortex and with the functional connectivity from the anterior insular cortex to the primary somatosensory cortex during painful stimulation. Most importantly, both epidermal nerve fiber density and activity in the posterior insular cortex showed a positive correlation with the strength of coupling under pain between the anterior insular cortex and the primary somatosensory cortex. Thus, our findings support the notion that the neural circuitry subserving pain perception interacts with the cerebral correlates of peripheral nociceptive fibers, which implicates an indirect role for skin nerves in human pain perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Assessment of pain sensitivity in patients with deep bite and sex- and age-matched controls

    DEFF Research Database (Denmark)

    Sonnesen, Ane Liselotte; Svensson, Peter

    2011-01-01

    AIMS: To compare pain sensitivity between deep bite patients and a sex- and age-matched control group with normal occlusion. METHODS: Pain sensitivity was assessed by injections of the excitatory amino acid glutamate into the masseter and brachioradialis muscles. Intensity of glutamate-evoked pai...... of gender-related differences in somatosensory sensitivity and for the first time indicate that subjects with deep bite may be more sensitive to glutamate-evoked pain and thermal stimuli.......AIMS: To compare pain sensitivity between deep bite patients and a sex- and age-matched control group with normal occlusion. METHODS: Pain sensitivity was assessed by injections of the excitatory amino acid glutamate into the masseter and brachioradialis muscles. Intensity of glutamate-evoked pain...

  15. Pain when love is near

    Science.gov (United States)

    Tamam, S.; Ahmad, A. H.; Aziz, M. E.; Kamil, W. A.

    2017-05-01

    The aim of the study is to investigate brain responses to acute laser pain when a loved one is nearby. Laser pain stimuli at individual pain threshold were delivered using Th:YAG laser to 17 female participants. The participants were categorised into two groups, Love Hurts or Love Heals, according to their responses to pain stimulation during the presence of their loved ones. fMRI brain activation was obtained using 3 T Philips Achieva MRI scanner utilising blocked design paradigm comprising 15 blocks of stimulation phase and 15 blocks of no stimulation. fMRI images were analysed using statistical parametric mapping (SPM) focusing on random effects (RFX) analysis. We found that both groups activated pain-related areas such as the thalamus, secondary somatosensory cortex, insula and cingulate cortex. However, Love Hurts showed more activity in thalamus, parahippocampal gyrus and hippocampus; while Love Heals showed more activity in the entire part of cingulate cortex during the presence of their loved ones. In conclusion, there may be specific brain regions responsible for modulation of pain due to the presence of a loved one thus manifesting as Love Hurts or Love Heals.

  16. Pain when love is near

    International Nuclear Information System (INIS)

    Tamam, S; Aziz, M E; Kamil, W A; Ahmad, A H

    2017-01-01

    The aim of the study is to investigate brain responses to acute laser pain when a loved one is nearby. Laser pain stimuli at individual pain threshold were delivered using Th:YAG laser to 17 female participants. The participants were categorised into two groups, Love Hurts or Love Heals , according to their responses to pain stimulation during the presence of their loved ones. fMRI brain activation was obtained using 3 T Philips Achieva MRI scanner utilising blocked design paradigm comprising 15 blocks of stimulation phase and 15 blocks of no stimulation. fMRI images were analysed using statistical parametric mapping (SPM) focusing on random effects (RFX) analysis. We found that both groups activated pain-related areas such as the thalamus, secondary somatosensory cortex, insula and cingulate cortex. However, Love Hurts showed more activity in thalamus, parahippocampal gyrus and hippocampus; while Love Heals showed more activity in the entire part of cingulate cortex during the presence of their loved ones. In conclusion, there may be specific brain regions responsible for modulation of pain due to the presence of a loved one thus manifesting as Love Hurts or Love Heals . (paper)

  17. Four-dimensional maps of the human somatosensory system.

    Science.gov (United States)

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  18. Pathophysiology of somatosensory abnormalities in Parkinson disease.

    Science.gov (United States)

    Conte, Antonella; Khan, Nashaba; Defazio, Giovanni; Rothwell, John C; Berardelli, Alfredo

    2013-12-01

    Changes in sensory function that have been described in patients with Parkinson disease (PD) can be either 'pure' disorders of conscious perception such as elevations in sensory threshold, or disorders of sensorimotor integration, in which the interaction between sensory input and motor output is altered. In this article, we review the extensive evidence for disrupted tactile, nociceptive, thermal and proprioceptive sensations in PD, as well as the influences exerted on these sensations by dopaminergic therapy and deep brain stimulation. We argue that abnormal spatial and temporal processing of sensory information produces incorrect signals for the preparation and execution of voluntary movement. Sensory deficits are likely to be a consequence of the dopaminergic denervation of the basal ganglia that is the hallmark of PD. A possible mechanism to account for somatosensory deficits is one in which disease-related dopaminergic denervation leads to a loss of response specificity, resulting in transmission of noisier and less-differentiated information to cortical regions. Changes in pain perception might have a different explanation, possibly involving disease-related effects outside the basal ganglia, including involvement of peripheral pain receptors, as well as structures such as the periaqueductal grey matter and non-dopaminergic neurotransmitter systems.

  19. A Review of Neuropathic Pain: From Diagnostic Tests to Mechanisms

    OpenAIRE

    Truini, Andrea

    2017-01-01

    Neuropathic pain develops when the somatosensory nervous system is affected by a lesion or disease. Diagnostic tests aimed at assessing somatosensory afferent pathway damage are therefore useful for diagnosing neuropathic pain. Neuropathic pain manifests with a range of different symptoms such as ongoing burning pain, squeezing or pressure pain, paroxysmal electric shock-like sensations, stabbing pain, or mechanical dynamic allodynia. The various types of neuropathic pain are associated with ...

  20. Critical Factors for Inducing Curved Somatosensory Saccades

    Directory of Open Access Journals (Sweden)

    Tamami Nakano

    2011-10-01

    Full Text Available We are able to make a saccade toward a tactile stimuli to one hand, but trajectories of many saccades curved markedly when the arms were crossed (Groh & Sparks, 2006. However, it remains unknown why some curved and others did not. We therefore examined critical factors for inducing the curved somatosensory saccades. Participants made a saccade as soon as possible from a central fixation point toward a tactile stimulus delivered to one of the two hands, and switched between arms-crossed and arms-uncrossed postures every 6 trials. Trajectories were generally straight when the arms were uncrossed, but all participants made curved saccades when the arms were crossed (12–64%. We found that the probability of curved saccades depended critically on the onset latency: the probability was less than 5% when the latency was larger than 250 ms, but the probability increased up to 70–80% when the onset latency was 160 ms. This relationship was shared across participants. The results suggest that a touch in the arms-crossed posture was always mapped to the wrong hand in the initial phase up to 160 ms, and then remapped to the correct hand during the next 100 ms by some fundamental neural mechanisms shared across participants.

  1. Thoughts of death modulate psychophysical and cortical responses to threatening stimuli.

    Directory of Open Access Journals (Sweden)

    Elia Valentini

    Full Text Available Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS. Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations.

  2. Functional brain imaging: what has it brought to our understanding of neuropathic pain? A special focus on allodynic pain mechanisms.

    Science.gov (United States)

    Peyron, Roland

    2016-02-01

    Brain responses to nociception are well identified. The same is not true for allodynic pain, a strong painful sensation in response to touch or innocuous cold stimuli that may be experienced by patients with neuropathic pain. Brain (or spinal cord) reorganization that may explain this paradoxical perception still remains largely unknown. Allodynic pain is associated with abnormally increased activity in SII and in the anterior insular cortex, contralateral and/or ipsilateral to allodynia. Because a bilateral increase in activity has been repeatedly reported in these areas in nociceptive conditions, the observed activation during allodynia can explain that a physiologically nonpainful stimulus could be perceived by the damaged nervous system as a painful one. Both secondary somatosensory and insular cortices receive input from the thalamus, which is a major relay of sensory and spinothalamic pathways, the involvement of which is known to be crucial for the development of neuropathic pain. Both thalamic function and structure have been reported to be abnormal or impaired in neuropathic pain conditions including in the basal state, possibly explaining the spontaneous component of neuropathic pain. A further indication as to how the brain can create neuropathic pain response in SII and insular cortices stems from examples of diseases, including single-case reports in whom a focal brain lesion leads to central pain disappearance. Additional studies are required to certify the contribution of these areas to the disease processes, to disentangle abnormalities respectively related to pain and to deafferentation, and, in the future, to guide targeting of stimulation studies.

  3. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans.

    Directory of Open Access Journals (Sweden)

    Antonella Conte

    Full Text Available BACKGROUND: The somatosensory temporal discrimination threshold (STDT measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS on the right primary somatosensory area (S1, pre-supplementary motor area (pre-SMA, right dorsolateral prefrontal cortex (DLPFC and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. CONCLUSIONS/SIGNIFICANCE: Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease.

  4. Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans

    Science.gov (United States)

    Conte, Antonella; Rocchi, Lorenzo; Nardella, Andrea; Dispenza, Sabrina; Scontrini, Alessandra; Khan, Nashaba; Berardelli, Alfredo

    2012-01-01

    Background The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. Methodology/Principal Findings To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. Conclusions/Significance Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease. PMID:22412964

  5. Reproducibility of somatosensory spatial perceptual maps.

    Science.gov (United States)

    Steenbergen, Peter; Buitenweg, Jan R; Trojan, Jörg; Veltink, Peter H

    2013-02-01

    Various studies have shown subjects to mislocalize cutaneous stimuli in an idiosyncratic manner. Spatial properties of individual localization behavior can be represented in the form of perceptual maps. Individual differences in these maps may reflect properties of internal body representations, and perceptual maps may therefore be a useful method for studying these representations. For this to be the case, individual perceptual maps need to be reproducible, which has not yet been demonstrated. We assessed the reproducibility of localizations measured twice on subsequent days. Ten subjects participated in the experiments. Non-painful electrocutaneous stimuli were applied at seven sites on the lower arm. Subjects localized the stimuli on a photograph of their own arm, which was presented on a tablet screen overlaying the real arm. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) for the mean localizations of each electrode site and the slope and offset of regression models of the localizations, which represent scaling and displacement of perceptual maps relative to the stimulated sites. The ICCs of the mean localizations ranged from 0.68 to 0.93; the ICCs of the regression parameters were 0.88 for the intercept and 0.92 for the slope. These results indicate a high degree of reproducibility. We conclude that localization patterns of non-painful electrocutaneous stimuli on the arm are reproducible on subsequent days. Reproducibility is a necessary property of perceptual maps for these to reflect properties of a subject's internal body representations. Perceptual maps are therefore a promising method for studying body representations.

  6. Valence and Arousal Value of Visual Stimuli and Their Role in the Mitigation of Chronic Pain: What Is the Power of Pictures?

    Science.gov (United States)

    Shaygan, Maryam; Böger, Andreas; Kröner-Herwig, Birgit

    2017-02-01

    The present study investigated the pain-reducing effects of various pictures in a sample of 88 patients receiving inpatient treatment for chronic pain. We investigated whether the pain-attenuating effects of the pictures were mediated by picture valence, arousal, or change in subjective social support. The study was carried out over 4 consecutive days. Patients were presented with photographs of loved ones, strangers, landscapes, or optical illusions via digital albums and were asked to rate their pain intensity and their sensory and affective experience of pain immediately before and after viewing the pictures. They also evaluated the valence of the pictures and the extent to which they were arousing. Before and after participation in the study, patients provided information on their subjective social support. The valence attributed to the pictures varied; photographs of loved ones elicited the greatest pleasure. Pictures of varying emotional content and arousal value all reduced affective and sensory perceptions of pain. Viewing photographs of loved ones reduced pain intensity more than viewing other picture types. The association between picture type and decrease in pain intensity was mediated by picture valence. These findings suggest an easy to implement supplementary intervention that could be used in multidisciplinary pain treatment. To our knowledge, this is the first demonstration that pictures mitigate pain in chronic pain patients receiving treatment in a multidisciplinary pain center. The procedure could be used routinely to treat pain, particularly severe pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of various somatosensory stimulations for functional MRI

    International Nuclear Information System (INIS)

    Hara, Kazushi; Nakasato, Nobukazu; Mizoi, Kazuo; Yoshimoto, Takashi; Shimizu, Hiroaki.

    1997-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to test detectability of activated area using various somatosensory stimulations. The following stimulations were performed in normal volunteers: regular or irregular electrical median nerve stimulation (n=5, each), tactile stimulation to the palm and fingers (n=8), pain stimulation to the index finger (n=5) or to the palm and fingers (n=5). fMRI was acquired with a spoiled gradient echo sequence at 1.5 T. Detectability of activated area was the highest when the pain stimulation was applied to the palm and fingers (80%). A successful rate for the tactile stimulation was 25%, and the other stimulations failed to demonstrate any activation. When successful, the highest signal activation on fMRI was seen on a sulcus, which presumably arose from a vein. The sulcus was defined as the central sulcus by somatosensory evoked field using a median nerve stimulation. Our study indicates that the pain stimulation to the palm and fingers may be a choice for the sensory fMRI. (author)

  8. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state

    Science.gov (United States)

    de Tommaso, Marina; Navarro, Jorge; Lanzillotti, Crocifissa; Ricci, Katia; Buonocunto, Francesca; Livrea, Paolo; Lancioni, Giulio E.

    2015-01-01

    Aims: Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient visual, acoustic, somatosensory electric non-nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation. Methods: Five Vegetative State (VS), 4 Minimally Conscious State (MCS) patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 s. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2) vertex complex in the 500 ms post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R) and Coma Recovery Scale (CRS-R) for clinical evaluation of pain perception and consciousness impairment. Results: The laser evoked potentials (LEPs) were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the degree of cognitive and motor

  9. Mimicking the brain: evaluation of St Jude Medical's Prodigy Chronic Pain System with Burst Technology.

    Science.gov (United States)

    De Ridder, Dirk; Vanneste, Sven; Plazier, Mark; Vancamp, Tim

    2015-03-01

    The Prodigy is a new type of internal pulse generator that controls the delivery of electrical stimuli to nervous tissue. It is capable of delivering burst stimulation, which is a novel waveform that consists of closely spaced high-frequency electrical impulses delivered in packets riding on a plateau, and followed by a quiescent period. Its inception was based on mimicking burst firing in the nervous system and usually delivered by unmyelinated fibers that uniformly have a motivational affective homeostatic function. It thereby targets a multimodal salience network, even though the stimuli are delivered at the level of the spinal cord. As such, it is specifically capable of influencing the affective/attentional components of pain. Burst stimulation was initially safely applied off-label to the auditory cortex for tinnitus, and later also to the spinal cord, the somatosensory cortex for neuropathic pain, subcutaneously for failed back surgery syndrome, and cingulate cortex for addiction and tinnitus.

  10. Decreased Somatosensory Activity to Non-threatening Touch in Combat Veterans with Posttraumatic Stress Disorder

    OpenAIRE

    Badura-Brack, Amy S.; Becker, Katherine M.; McDermott, Timothy J.; Ryan, Tara J.; Becker, Madelyn M.; Hearley, Allison R.; Heinrichs-Graham, Elizabeth; Wilson, Tony W.

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were i...

  11. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study.

    Science.gov (United States)

    Klingner, Carsten M; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W

    2016-01-01

    The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.

  12. The Processing of Somatosensory Information shifts from an early parallel into a serial processing mode: a combined fMRI/MEG study.

    Directory of Open Access Journals (Sweden)

    Carsten Michael Klingner

    2016-12-01

    Full Text Available The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG data collected during sustained (260 ms tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII receives information regarding a new stimulus in parallel with the primary somatosensory area (SI, whereas later processing in the SII is dominated by the preprocessed input from the SI.

  13. Enhanced pain expectation in migraine: EEG-based evidence for impaired prefrontal function.

    Science.gov (United States)

    Lev, Rina; Granovsky, Yelena; Yarnitsky, David

    2013-01-01

    Dysexcitability characterizes the interictal migraineous brain. The main central expressions of this dysexcitability are decreased habituation and enhanced anticipation and attention to pain and other external sensory stimuli. This study evaluates the effects of anticipation on pain modulation and their neural correlates in migraine. In 39 migraineurs (20 migraine with aura [MWA] and 19 migraine without aura [MOA]) and 22 healthy controls, cortical responses to 2 successive trains of noxious contact-heat stimuli, presented in either predicted or unpredicted manner, were analyzed using standardized low-resolution electromagnetic tomography key. A lack of habituation to repeated predicted pain was associated with significantly increased pain-evoked potential amplitudes in MWAs (increase of 3.9 μV) and unchanged ones in MOAs (1.1 μV) but not in controls (decrease of 5 μV). Repeated unpredicted pain resulted in enhanced pain-evoked potential amplitudes in both MWA and MOA groups (increase of 5.5 μV and 4.4 μV, respectively) compared with controls (decrease of 0.2 μV). Source localization revealed reduced activations in the anterior-medial prefrontal cortices and subsequent increased somatosensory activity in migraineurs (P < .05). The prefrontal-somatosensory dysfunction positively correlated with lifetime headache duration (P < .05) and concern of upcoming migraine attacks (P < .05) in MWAs, and with frequency of migraine attacks in MOAs (P < .05). Our findings of impaired modulation of anticipated pain in migraine suggest a heightened state of anticipatory readiness combined with ineffective recruitment of prefrontal inhibitory pathways during experience of pain; the latter might account for the former, at least partially. In line, less efficient inhibitory capability is a plausible mechanistic explanation for patients' high concern about their upcoming migraine attacks. © 2012 American Headache Society.

  14. Assessing Somatosensory Utilization during Unipedal Postural Control

    OpenAIRE

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orie...

  15. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    Science.gov (United States)

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of Somatosensory Impairments on Balance Control

    Directory of Open Access Journals (Sweden)

    Alireza Hassanpour

    2012-10-01

    Full Text Available Background and Aim: The somatosensory system is one of the most effective systems in balance control. It consists of peripheral and central components. Knowing the role of these components in balance control assists the developing of effective rehabilitation protocols. In some diseases peripheral components and in others central components are impaired. This paper reviews the effect of impairment of peripheral and central components of the somatosensory system on balance control.Methods: In this study publication about somatosensory impairments from 1983 through 2011 in PubMed, Scopus, ProQuest, Google Scholar, Iran Medex, Iran Doc and Magiran were reviewed. Medical subject headings terms and keywords related to balance, somatosensory, somatosensory loss, and sensory integration/processing were used to perform the searches.Conclusion: Somatosensory impairments either with peripheral or central origin, can cause problems in balance control. However, these problems are not considered in some patients. In these impairments, balance training is recommended to be used alongside other routine treatments in the patients' rehabilitation programs.

  17. Differences in cortical response to acupressure and electroacupuncture stimuli

    Directory of Open Access Journals (Sweden)

    Vangel Mark G

    2011-07-01

    Full Text Available Abstract Background FMRI studies focus on sub-cortical effects of acupuncture stimuli. The purpose of this study was to assess changes in primary somatosensory (S1 activity over the course of different types of acupuncture stimulation. We used whole head magnetoencephalography (MEG to map S1 brain response during 15 minutes of electroacupuncture (EA and acupressure (AP. We further assessed how brain response changed during the course of stimulation. Results Evoked brain response to EA differed from AP in its temporal dynamics by showing clear contralateral M20/M30 peaks while the latter demonstrated temporal dispersion. Both EA and AP demonstrated significantly decreased response amplitudes following five minutes of stimulation. However, the latency of these decreases were earlier in EA (~30 ms post-stimulus than AP (> 100 ms. Time-frequency responses demonstrated early onset, event related synchronization (ERS, within the gamma band at ~70-130 ms and the theta band at ~50-200 ms post-stimulus. A prolonged event related desynchronization (ERD of alpha and beta power occurred at ~100-300 ms post-stimulus. There was decreased beta ERD at ~100-300 ms over the course of EA, but not AP. Conclusion Both EA and AP demonstrated conditioning of SI response. In conjunction with their subcortical effects on endogenous pain regulation, these therapies show potential for affecting S1 processing and possibly altering maladaptive neuroplasticity. Thus, further investigation in neuropathic populations is needed.

  18. Atypical central pain processing in sensory modulation disorder: absence of temporal summation and higher after-sensation.

    Science.gov (United States)

    Bar-Shalita, T; Vatine, J-J; Yarnitsky, D; Parush, S; Weissman-Fogel, I

    2014-02-01

    Sensory over-responsivity (SOR), a subtype of the proposed sensory modulation disorder (SMD), is characterized by over-responsiveness to stimuli in several sensory modalities. SMD individuals demonstrate abnormal responses to naturally occurring stimuli in a manner that interferes with daily life participation. Previous psychophysical testing of the somatosensory system revealed that SOR individuals rated pain sensations higher than controls, demonstrating hyperalgesia that can be centrally mediated. Temporal summation (TS) of second pain and after-sensation are manifestations of central sensitization; therefore, this study explored these measures for better characterization of central pain processing in SOR. Twelve SOR adults and 12 healthy controls participated. TS was produced by a train of fifteen repetitive heat pulses, 0.7 s duration each, and 2 s of inter-stimulus interval, applied to the thenar-eminence, while four pain ratings were obtained. An after-sensation was then measured for 5 min, obtaining six pain ratings. No TS of pain was indicated in the SOR group (SOR: p = 0.36; control: p sensation, individuals with SOR continued to report pain for the duration of the 5 min measured (p = 0.002). These results demonstrate an atypical response pattern, suggesting alteration in pain processing and/or modulation at a central level in individuals with SOR. These possible neural changes may manifest themselves as interference with daily functioning as well as shed light on some of the between-subject variability seen in psychophysical testing in non-painful subjects.

  19. Dynamics of circadian thalamocortical flow of information during a peripheral neuropathic pain condition

    Directory of Open Access Journals (Sweden)

    Helder eCardoso-Cruz

    2011-08-01

    Full Text Available It is known that the thalamocortical loop plays a crucial role in the encoding of sensory-discriminative features of painful stimuli. However, only a few studies have addressed the changes in thalamocortical dynamics that may occur after the onset of chronic pain. Our goal was to evaluate how the induction of chronic neuropathic pain affected the flow of information within the thalamocortical loop throughout the brain states of the sleep-wake cycle. To address this issue we recorded local field potentials – LFPs – both before and after the establishment of neuropathic pain in awake freely moving adult rats chronically implanted with arrays of multielectrodes in the lateral thalamus and primary somatosensory cortex. Our results show that the neuropathic injury induced changes in the number of wake and slow-wave-sleep state episodes, and especially in the total number of transitions between brain states. Moreover, partial directed coherence – PDC – analysis revealed that the amount of information flow between cortex and thalamus in neuropathic animals decreased significantly, indicating that the overall thalamic activity had less weight over the cortical activity. However, thalamocortical LFPs displayed higher phase-locking during awake and slow-wave-sleep episodes after the nerve lesion, suggesting faster transmission of relevant information along the thalamocortical loop. The observed changes are in agreement with the hypothesis of thalamic dysfunction after the onset of chronic pain, and may result from diminished inhibitory effect of the primary somatosensory cortex over the lateral thalamus.

  20. Neuropathic pain: is quantitative sensory testing helpful?

    Science.gov (United States)

    Krumova, Elena K; Geber, Christian; Westermann, Andrea; Maier, Christoph

    2012-08-01

    Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system and is characterised by a combination of positive and negative sensory symptoms. Quantitative sensory testing (QST) examines the sensory perception after application of different mechanical and thermal stimuli of controlled intensity and the function of both large (A-beta) and small (A-delta and C) nerve fibres, including the corresponding central pathways. QST can be used to determine detection, pain thresholds and stimulus-response curves and can thus detect both negative and positive sensory signs, the second ones not being assessed by other methods. Similarly to all other psychophysical tests QST requires standardised examination, instructions and data evaluation to receive valid and reliable results. Since normative data are available, QST can contribute also to the individual diagnosis of neuropathy, especially in the case of isolated small-fibre neuropathy, in contrast to the conventional electrophysiology which assesses only large myelinated fibres. For example, detection of early stages of subclinical neuropathy in symptomatic or asymptomatic patients with diabetes mellitus can be helpful to optimise treatment and identify diabetic foot at risk of ulceration. QST assessed the individual's sensory profile and thus can be valuable to evaluate the underlying pain mechanisms which occur in different frequencies even in the same neuropathic pain syndromes. Furthermore, assessing the exact sensory phenotype by QST might be useful in the future to identify responders to certain treatments in accordance to the underlying pain mechanisms.

  1. The signaling lipid sphingosine 1-phosphate regulates mechanical pain

    Science.gov (United States)

    Hill, Rose Z; Hoffman, Benjamin U; Morita, Takeshi; Campos, Stephanie M; Lumpkin, Ellen A; Brem, Rachel B

    2018-01-01

    Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds. PMID:29561262

  2. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Painful Intercourse Is Significantly Associated with Evoked Pain Perception and Cognitive Aspects of Pain in Women with Pelvic Pain

    Directory of Open Access Journals (Sweden)

    Meryl J. Alappattu, DPT, PhD

    2015-03-01

    Conclusions: Differences in local pain ratings suggest that women with pelvic pain perceive stimuli in this region as more painful than pain-free women although the magnitude of stimuli does not differ. Alappattu MJ, George SZ, Robinson ME, Fillingim RB, Moawad N, LeBrun EW, and Bishop MD. Painful intercourse is significantly associated with evoked pain perception and cognitive aspects of pain in women with pelvic pain. Sex Med 2015;3:14–23.

  4. Intersession reliability of fMRI activation for heat pain and motor tasks.

    Science.gov (United States)

    Quiton, Raimi L; Keaser, Michael L; Zhuo, Jiachen; Gullapalli, Rao P; Greenspan, Joel D

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test-retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  5. A human experimental model of episodic pain

    DEFF Research Database (Denmark)

    Petrini, Laura; Hennings, Kristian; Li, Xi

    2014-01-01

    (VRS). Physiological (blood flow and axon flare reflex), psychophysical (perception threshold and verbal pain ratings) and electrophysiological (128 channels recorded somatosensory evoked potential (SEP)) measurements were recorded. The stimulation evoked a visible axon flare reflex and caused...

  6. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex.

    Science.gov (United States)

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-10-01

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the

  7. Neurophysiology of the cortical pain network: revisiting the role of S1 in subjective pain perception via standardized low-resolution brain electromagnetic tomography (sLORETA).

    Science.gov (United States)

    Nir, Rony-Reuven; Lev, Rina; Moont, Ruth; Granovsky, Yelena; Sprecher, Elliot; Yarnitsky, David

    2008-11-01

    Multiple studies have supported the usefulness of standardized low-resolution brain electromagnetic tomography (sLORETA) in localizing generators of scalp-recorded potentials. The current study implemented sLORETA on pain event-related potentials, primarily aiming at validating this technique for pain research by identifying well-known pain-related regions. Subsequently, we pointed at investigating the still-debated and ambiguous topic of pain intensity coding at these regions, focusing on their relative impact on subjective pain perception. sLORETA revealed significant activations of the bilateral primary somatosensory (SI) and anterior cingulate cortices and of the contralateral operculoinsular and dorsolateral prefrontal (DLPFC) cortices (P < .05 for each). Activity of these regions, excluding DLPFC, correlated with subjective numerical pain scores (P < .05 for each). However, a multivariate regression analysis (R = .80; P = .024) distinguished the contralateral SI as the only region whose activation magnitude significantly predicted the subjective perception of noxious stimuli (P = .020), further substantiated by a reduced regression model (R = .75, P = .008). Based on (1) correspondence of the pain-activated regions identified by sLORETA with the acknowledged imaging-based pain-network and (2) the contralateral SI proving to be the most contributing region in pain intensity coding, we found sLORETA to be an appropriate tool for relevant pain research and further substantiated the role of SI in pain perception. Because the literature of pain intensity coding offers inconsistent findings, the current article used a novel tool for revisiting this controversial issue. Results suggest that it is the activation magnitude of SI, which solely establishes the significant correlation with subjective pain ratings, in accordance with the classical clinical thinking, relating SI lesions to diminished perception of pain. Although this study cannot support a causal relation

  8. Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders

    Science.gov (United States)

    Andrade, G N; Butler, J S; Peters, G A; Molholm, S; Foxe, J J

    2016-01-01

    Neurophysiological investigations in patients with schizophrenia consistently show early sensory processing deficits in the visual system. Importantly, comparable sensory deficits have also been established in healthy first-degree biological relatives of patients with schizophrenia and in first-episode drug-naive patients. The clear implication is that these measures are endophenotypic, related to the underlying genetic liability for schizophrenia. However, there is significant overlap between patient response distributions and those of healthy individuals without affected first-degree relatives. Here we sought to develop more sensitive measures of sensory dysfunction in this population, with an eye to establishing endophenotypic markers with better predictive capabilities. We used a sensory adaptation paradigm in which electrophysiological responses to basic visual and somatosensory stimuli presented at different rates (ranging from 250 to 2550 ms interstimulus intervals, in blocked presentations) were compared. Our main hypothesis was that adaptation would be substantially diminished in schizophrenia, and that this would be especially prevalent in the visual system. High-density event-related potential recordings showed amplitude reductions in sensory adaptation in patients with schizophrenia (N=15 Experiment 1, N=12 Experiment 2) compared with age-matched healthy controls (N=15 Experiment 1, N=12 Experiment 2), and this was seen for both sensory modalities. At the individual participant level, reduced adaptation was more robust for visual compared with somatosensory stimulation. These results point to significant impairments in short-term sensory plasticity across sensory modalities in schizophrenia. These simple-to-execute measures may prove valuable as candidate endophenotypes and will bear follow-up in future work. PMID:27163205

  9. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus.

    Science.gov (United States)

    Nakagawa, Kei; Inui, Koji; Yuge, Louis; Kakigi, Ryusuke

    2014-11-01

    We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Social context and perceived agency affects empathy for pain: an event-related fMRI investigation.

    Science.gov (United States)

    Akitsuki, Yuko; Decety, Jean

    2009-08-15

    Studying of the impact of social context on the perception of pain in others is important for understanding the role of intentionality in interpersonal sensitivity, empathy, and implicit moral reasoning. Here we used an event-related fMRI with pain and social context (i.e., the number of individuals in the stimuli) as the two factors to investigate how different social contexts and resulting perceived agency modulate the neural response to the perception of pain in others. Twenty-six healthy participants were scanned while presented with short dynamic visual stimuli depicting painful situations accidentally caused by or intentionally caused by another individual. The main effect of perception of pain was associated with signal increase in the aMCC, insula, somatosensory cortex, SMA and PAG. Importantly, perceiving the presence of another individual led to specific hemodynamic increase in regions involved in representing social interaction and emotion regulation including the temporoparietal junction, medial prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex. Furthermore, the functional connectivity pattern between the left amygdala and other brain areas was modulated by the perceived agency. Our study demonstrates that the social context in which pain occurs modulate the brain response to other's pain. This modulation may reflect successful adaptation to potential danger present in a social interaction. Our results contribute to a better understanding of the neural mechanisms underpinning implicit moral reasoning that concern actions that can harm other people.

  11. Alexithymia and Somatosensory Amplification Link Perceived Psychosocial Stress and Somatic Symptoms in Outpatients with Psychosomatic Illness

    Directory of Open Access Journals (Sweden)

    Mutsuhiro Nakao

    2018-05-01

    Full Text Available Background: Psychosomatic patients often complain of a variety of somatic symptoms. We sought to clarify the role of clinical predictors of complaints of somatic symptoms. Methods: We enrolled 604 patients visiting a psychosomatic outpatient clinic. The outcome was the total number of somatic symptoms, and the candidate clinical predictors were perceived psychosocial stress, alexithymia, somatosensory amplification, adaptation, anxiety, and depression. All participants completed questionnaires assessing the outcome and the predictors. Results: The average number of reported somatic symptoms was 4.8; the most frequent was fatigue (75.3%, followed by insomnia (56.1%, low-back pain (49.5%, headache (44.7%, and palpitations (43.1%. Multiple regression analysis showed that the total number of somatic symptoms was significantly associated with the degree of perceived psychosocial stress, alexithymia, somatosensory amplification, and depression. Also, structural equation models indicated links between excessive adaptation (via perceived psychosocial stress, alexithymia, and somatosensory amplification and the total number of somatic symptoms. Conclusion: The results suggested that the association between psychosocial stress and reported somatic symptoms is mediated by alexithymia and somatosensory amplification in psychosomatic patients.

  12. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.

    2008-01-01

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity...... in response to muscle pain in 19 patients with chronic tension-type headache (CTTH) and 19 healthy, age- and sex-matched controls. Intramuscular electrical stimuli (single and train of five pulses delivered at 2 Hz) were applied to the trapezius muscle and somatosensory evoked potentials were recorded...... with 128-channel EEG both in- and outside a condition with induced tonic neck/shoulder muscle pain (glutamate injection into the trapezius muscle). Significant reduction in magnitude during and after induced tonic muscle pain was found in controls at the P200 dipole in response to both the first (baseline...

  13. Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws.

    Directory of Open Access Journals (Sweden)

    M L Morales-Botello

    Full Text Available We employed voltage-sensitive dye (VSD imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1 Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2 While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3 Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4 Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.

  14. Pheromones enhance somatosensory processing in newt brains through a vasotocin-dependent mechanism.

    Science.gov (United States)

    Thompson, R R; Dickinson, P S; Rose, J D; Dakin, K A; Civiello, G M; Segerdahl, A; Bartlett, R

    2008-07-22

    We tested whether the sex pheromones that stimulate courtship clasping in male roughskin newts do so, at least in part, by amplifying the somatosensory signals that directly trigger the motor pattern associated with clasping and, if so, whether that amplification is dependent on endogenous vasotocin (VT). Female olfactory stimuli increased the number of action potentials recorded in the medulla of males in response to tactile stimulation of the cloaca, which triggers the clasp motor reflex, as well as to tactile stimulation of the snout and hindlimb. That enhancement was blocked by exposing the medulla to a V1a receptor antagonist before pheromone exposure. However, the antagonist did not affect medullary responses to tactile stimuli in the absence of pheromone exposure, suggesting that pheromones amplify somatosensory signals by inducing endogenous VT release. The ability of VT to couple sensory systems together in response to social stimulation could allow this peptide to induce variable behavioural outcomes, depending on the immediate context of the social interaction and thus on the nature of the associated stimuli that are amplified. If widespread in vertebrates, this mechanism could account for some of the behavioural variability associated with this and related peptides both within and across species.

  15. Corticofugal projections induce long-lasting effects on somatosensory responses in the trigeminal complex of the rat

    Directory of Open Access Journals (Sweden)

    Angel eNunez

    2014-05-01

    Full Text Available The sensory information flow at subcortical relay stations is controlled by the action of topographic connections from the neocortex. To determinate the functional properties of the somatosensory corticofugal projections to the principal (Pr5 and caudal spinal (Sp5C trigeminal nuclei, we performed unitary recordings in anesthetized rats. To examine the effect of these cortical projections we used tactile stimulation of the whisker and electrical stimulation of somatosensory cortices. Corticofugal anatomical projections to Pr5 and Sp5C nuclei were detected by using retrograde fluorescent tracers. Neurons projecting exclusively to Pr5 were located in the cingulate cortex while neurons projecting to both Sp5C and Pr5 nuclei were located in the somatosensory and insular cortices (>75% of neurons. Physiological results indicated that primary somatosensory cortex produced a short-lasting facilitating or inhibiting effects (< 5 minutes of tactile responses in Pr5 nucleus through activation of NMDA glutamatergic or GABAA receptors since effects were blocked by iontophoretically application of APV and bicuculline, respectively. In contrast, stimulation of secondary somatosensory cortex did not affect most of the Pr5 neurons; however both cortices inhibited the nociceptive responses in the Sp5C nucleus through activation of glycinergic or GABAA receptors because effects were blocked by iontophoretically application of strychnine and bicuculline, respectively. These and anatomical results demonstrated that the somatosensory cortices projects to Pr5 nucleus to modulate tactile responses by excitatory and inhibitory actions, while projections to the Sp5C nucleus control nociceptive sensory transmission by only inhibitory effects. Thus, somatosensory cortices may modulate innocuous and noxious inputs simultaneously, contributing to the perception of specifically tactile or painful sensations.

  16. Perceptual and cerebro-spinal responses to graded innocuous and noxious stimuli following aerobic exercise.

    Science.gov (United States)

    Micalos, P S; Harris, J; Drinkwater, E J; Cannon, J; Marino, F E

    2015-11-01

    The aim of this study was to evaluate the effect of aerobic exercise on perceptual and cerebro-spinal responses to graded electrocutaneous stimuli. The design comprised 2 x 30 min of cycling exercise at 30% and 70% of peak oxygen consumption (VO2 peak) on separate occasions in a counter-balanced order in 10 healthy participants. Assessment of nociceptive withdrawal reflex threshold (NWR-T), pain threshold (PT), and somatosensory evoked potentials (SEPs) to graded electrocutaneous stimuli were performed before and after exercise. Perceptual magnitude ratings and SEPs were compared at 30%PT, 60%PT, 100%PT before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic exercise. There was no difference in the NWR-T and the PT following exercise at 30% and 70% of VO2 peak. ANOVA for the perceptual response within pooled electrocutaneous stimuli show a significant main effect for time (F2,18=5.41, P=0.01) but no difference for exercise intensity (F1,9=0.02, P=0.88). Within-subject contrasts reveal trend differences between 30%PT and 100%PT for Pre-Post1 (P=0.09) and Pre-Post2 (P=0.02). ANOVA for the SEPs peak-to-peak signal amplitude (N1-P1) show significant main effect for time (F2,18=4.04, P=0.04) but no difference for exercise intensity (F1,9=1.83, P=0.21). Pairwise comparisons for time reveal differences between Pre-Post1 (P=0.06) and Pre-Post2 (P=0.01). There was a significant interaction for SEPs N1-P1 between exercise intensity and stimulus intensity (F2,18=3.56, P=0.05). These results indicate that aerobic exercise did not increase the electrocutaneous threshold for pain and the NWR-T. Aerobic exercise attenuated perceptual responses to innocuous stimuli and SEPs N1-P1 response to noxious stimuli.

  17. Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain

    Directory of Open Access Journals (Sweden)

    Cui Guang-bin

    2012-02-01

    Full Text Available Abstract Background Interleukin-8 (IL-8 is known for its roles in inflammation and plays critical roles in the development of pain. Its expression increases in the brain after peripheral inflammation. Prefrontal cortex, including the anterior cingulate cortex (ACC, is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission, however, little is known about the expression of IL-8 and its role in the enhanced ACC synaptic transmission in animals with persistent inflammatory pain. Findings In the present study, we examined IL-8 expression in the ACC, somatosensory cortex (SSC, and the dorsal horn of lumbar spinal cord following hind-paw administration of complete Freund's adjuvant (CFA in mice and its effects on the ACC synaptic transmission. Quantification of IL-8 at protein level (by ELISA revealed enhanced expression in the ACC and spinal cord during the chronic phases of CFA-induced peripheral inflammation. In vitro whole-cell patch-clamp recordings revealed that IL-8 significantly enhanced synaptic transmission through increased probability of neurotransmitter release in the ACC slice. ACC local infusion of repertaxin, a non-competitive allosteric blocker of IL-8 receptors, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in mice. Conclusions Our findings suggest that up-regulation of IL-8 in the ACC partly attributable to the enhanced prefrontal synaptic transmission in the mice with persistent inflammatory pain.

  18. Different SEP recovery cycle in adolescent migraineurs with exploding or imploding pain.

    Science.gov (United States)

    Iacovelli, Elisa; Tarantino, Samuela; Capuano, Alessandro; De Luca, Massimiliano; De Ranieri, Cristiana; Vigevano, Federico; Arendt-Nielsen, Lars; Valeriani, Massimiliano

    2013-01-01

    Our aim was to investigate whether migraine adolescents with pain directed inside (imploding pain--IP) and outside (exploding pain--EP) the head may have different levels of cortical excitability underlying their migraineous syndrome. Ten migraine children referring prevalent EP (mean age 14.5 ± 1.4 years, 3 girls, 7 boys), 10 patients with IP (mean age 14.1 ± 2.2 years, 4 girls, 6 boys), and 13 control subjects (mean age 13 ± 1.8 years, 6 males, 7 females) participated to the study. The recovery cycle of the somatosensory evoked potentials to electrical median nerve stimuli at interstimulus intervals of 5, 20, and 40 ms was measured. Anger expression, anxiety, and somatic concerns were investigated in migraine patients. Overall, SEP recovery cycle was shorter in migraineurs than in healthy controls. The recovery cycle of the frontal N30 SEP component was significantly shorter in IP than in EP patients. While among the EP patients those with faster N30 recovery cycle had higher Trait-Anger score, the opposite was found among the IP patients. Our results suggest that the inhibitory mechanisms within the somatosensory cortex are more impaired in IP than in EP migraine adolescents. The pathophysiological difference between IP and EP migraineurs was strengthened also by the opposite correlations between the brain excitability and the anger expression. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Pain

    OpenAIRE

    H.W. Snyman

    1980-01-01

    The medical profession has always been under pressure to supply public explanations of the diseases with which it deals. On the other hand, it is an old characteristic of the profession to devise comprehensive and unifying theories on all sorts of medical problems. Both these statements apply to pain - one of the most important and clinically striking phenomena and expressions of man since his origin in the mists of time.

  20. Pain

    Directory of Open Access Journals (Sweden)

    H.W. Snyman

    1980-09-01

    Full Text Available The medical profession has always been under pressure to supply public explanations of the diseases with which it deals. On the other hand, it is an old characteristic of the profession to devise comprehensive and unifying theories on all sorts of medical problems. Both these statements apply to pain - one of the most important and clinically striking phenomena and expressions of man since his origin in the mists of time.

  1. The role of circulating sex hormones in menstrual cycle dependent modulation of pain-related brain activation

    Science.gov (United States)

    Veldhuijzen, Dieuwke S.; Keaser, Michael L.; Traub, Deborah S.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2013-01-01

    Sex differences in pain sensitivity have been consistently found but the basis for these differences is incompletely understood. The present study assessed how pain-related neural processing varies across the menstrual cycle in normally cycling, healthy females, and whether menstrual cycle effects are based on fluctuating sex hormone levels. Fifteen subjects participated in four test sessions during their menstrual, mid-follicular, ovulatory, and midluteal phases. Brain activity was measured while nonpainful and painful stimuli were applied with a pressure algometer. Serum hormone levels confirmed that scans were performed at appropriate cycle phases in 14 subjects. No significant cycle phase differences were found for pain intensity or unpleasantness ratings of stimuli applied during fMRI scans. However, lower pressure pain thresholds were found for follicular compared to other phases. Pain-specific brain activation was found in several regions traditionally associated with pain processing, including the medial thalamus, anterior and mid-insula, mid-cingulate, primary and secondary somatosensory cortices, cerebellum, and frontal regions. The inferior parietal lobule, occipital gyrus, cerebellum and several frontal regions demonstrated interaction effects between stimulus level and cycle phase, indicating differential processing of pain-related responses across menstrual cycle phases. Correlational analyses indicated that cycle-related changes in pain sensitivity measures and brain activation were only partly explained by varying sex hormone levels. These results show that pain-related cerebral activation varies significantly across the menstrual cycle, even when perceived pain intensity and unpleasantness remain constant. The involved brain regions suggest that cognitive pain or more general bodily awareness systems are most susceptible to menstrual cycle effects. PMID:23528204

  2. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  3. Disorders of Consciousness: Painless or Painful Conditions?—Evidence from Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Francesca Pistoia

    2016-10-01

    Full Text Available The experience of pain in disorders of consciousness is still debated. Neuroimaging studies, using functional Magnetic Resonance Imaging (fMRI, Positron Emission Tomography (PET, multichannel electroencephalography (EEG and laser-evoked potentials, suggest that the perception of pain increases with the level of consciousness. Brain activation in response to noxious stimuli has been observed in patients with unresponsive wakefulness syndrome (UWS, which is also referred to as a vegetative state (VS, as well as those in a minimally conscious state (MCS. However, all of these techniques suggest that pain-related brain activation patterns of patients in MCS more closely resemble those of healthy subjects. This is further supported by fMRI findings showing a much greater functional connectivity within the structures of the so-called pain matrix in MCS as compared to UWS/VS patients. Nonetheless, when interpreting the results, a distinction is necessary between autonomic responses to potentially harmful stimuli and conscious experience of the unpleasantness of pain. Even more so if we consider that the degree of residual functioning and cortical connectivity necessary for the somatosensory, affective and cognitive-evaluative components of pain processing are not yet clear. Although procedurally challenging, the particular value of the aforementioned techniques in the assessment of pain in disorders of consciousness has been clearly demonstrated. The study of pain-related brain activation and functioning can contribute to a better understanding of the networks underlying pain perception while addressing clinical and ethical questions concerning patient care. Further development of technology and methods should aim to increase the availability of neuroimaging, objective assessment of functional connectivity and analysis at the level of individual cases as well as group comparisons. This will enable neuroimaging to truly become a clinical tool to

  4. Assessing Somatosensory Utilization during Unipedal Postural Control.

    Science.gov (United States)

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  5. [Maturation of cerebral somatosensory evoked potentials].

    Science.gov (United States)

    Cadilhac, J; Zhu, Y; Georgesco, M; Echenne, B; Rodiere, M

    1985-07-01

    Cerebral somatosensory evoked potentials (SEPs) were elicited by stimulation of the median nerve and/or posterior tibial nerve in 117 children of 1 day to 16 years old. A major negative wave (N) was consistently recorded from the parietal region of the scalp when the arm was stimulated. The peak latency, the onset latency, the rising time and the duration of H wave are closely correlated with age and body length. The latencies are shortest in the subjects of 1-3 years old. SEPs to lower extremity stimulation were inconstant in the infants before the age of one. The major positive wave (P) has a variable topographic distribution along the middle line, over the scalp. The latencies are also very variable in the different subjects of the same age as well as in the same subject with different locations of active electrode. Among the parameters studied as for N wave, only the rising time of P wave is significantly correlated with age. The latencies of P wave have the shortest value in the subjects of 1-3 years old. The comparison of SEPs to upper and to lower limb stimulations shows that there is no relationship between them in respect to their morphology and amplitude. The minimum value of the latencies of N and P waves was observed at the same age but the difference between the peak latencies of P and N waves in the same subject increases considerably after 2 years of age and reaches the adult value after 5 years of age. These resultats indicate that the maturation of the peripheral somatosensory pathways proceeds at a higher rate than that of the central somatosensory pathways, that the maturation of the somatosensory pathways of the upper limb precedes that of the lower limb, and that the rising time of N or P waves is a good index of cortical maturation. The clinical utility of these SEPs in pediatrics is discussed.

  6. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  7. Somatosensory tinnitus: Current evidence and future perspectives

    Science.gov (United States)

    Greco, Antonio; Turchetta, Rosaria; Altissimi, Giancarlo; de Vincentiis, Marco; Cianfrone, Giancarlo

    2017-01-01

    In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach. PMID:28553764

  8. Somatosensory tinnitus: Current evidence and future perspectives.

    Science.gov (United States)

    Ralli, Massimo; Greco, Antonio; Turchetta, Rosaria; Altissimi, Giancarlo; de Vincentiis, Marco; Cianfrone, Giancarlo

    2017-06-01

    In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach.

  9. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain.

    Science.gov (United States)

    Lichtner, Gregor; Auksztulewicz, Ryszard; Kirilina, Evgeniya; Velten, Helena; Mavrodis, Dionysios; Scheel, Michael; Blankenburg, Felix; von Dincklage, Falk

    2018-05-15

    Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2007-08-01

    Full Text Available Our previous studies on scalp-recorded event-related potentials (ERPs showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA to the ERP data, we found independent components (ICs located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC and the primary somatosensory cortex (SI. The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex that are involved in sensation and perception of various stimuli.

  11. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  12. The effect of water immersion on short-latency somatosensory evoked potentials in human

    Directory of Open Access Journals (Sweden)

    Sato Daisuke

    2012-01-01

    Full Text Available Abstract Background Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold. Results Water immersion significantly reduced the amplitudes of the short-latency SEP components P25 and P45 measured from electrodes over the parietal region and the P45 measured by central region. Conclusions Water immersion reduced short-latency SEP components known to originate in several cortical areas. Attenuation of short-latency SEPs suggests that water immersion influences the cortical processing of somatosensory inputs. Modulation of cortical processing may contribute to the beneficial effects of aquatic therapy. Trial Registration UMIN-CTR (UMIN000006492

  13. Keeping in Touch With the Visual System: Spatial Alignment and Multisensory Integration of Visual-Somatosensory Inputs

    Directory of Open Access Journals (Sweden)

    Jeannette Rose Mahoney

    2015-08-01

    Full Text Available Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration at very early sensory processing levels. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing visual-somatosensory (VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V+S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55ms. In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to visual-somatosensory pairings.

  14. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Luca eLavagnino

    2014-08-01

    Full Text Available BackgroundAlterations in the resting state functional connectivity (rs-FC of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN. The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with BN (age=23±5 years and 18 matched controls (age=23±3 years underwent a functional magnetic resonance resting state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. ResultsBN patients showed a decreased resting state functional connectivity both within the somatosensory network (t=9.0, df=1, P=0.005 and with posterior cingulate cortex (PCC and two visual areas (the right middle occipital gyrus and the right cuneus(P=0.05 corrected for multiple comparison. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area, or EBA. The rs-FC of the left paracentral lobule with the EBA correlated with psychopathology measures like bulimia (r=-0.4; P=0.02 and interoceptive awareness (r=-0.4; P=0.01. Analyses were conducted using age, BMI (body mass index and depressive symptoms as covariates. ConclusionsOur findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  15. Temporal summation of heat pain in humans: Evidence supporting thalamocortical modulation.

    Science.gov (United States)

    Tran, Tuan D; Wang, Heng; Tandon, Animesh; Hernandez-Garcia, Luis; Casey, Kenneth L

    2010-07-01

    Noxious cutaneous contact heat stimuli (48 degrees C) are perceived as increasingly painful when the stimulus duration is extended from 5 to 10s, reflecting the temporal summation of central neuronal activity mediating heat pain. However, the sensation of increasing heat pain disappears, reaching a plateau as stimulus duration increases from 10 to 20s. We used functional magnetic resonance imaging (fMRI) in 10 healthy subjects to determine if active central mechanisms could contribute to this psychophysical plateau. During heat pain durations ranging from 5 to 20s, activation intensities in the bilateral orbitofrontal cortices and the activation volume in the left primary (S1) somatosensory cortex correlated only with perceived stimulus intensity and not with stimulus duration. Activation volumes increased with both stimulus duration and perceived intensity in the left lateral thalamus, posterior insula, inferior parietal cortex, and hippocampus. In contrast, during the psychophysical plateau, both the intensity and volume of thalamic and cortical activations in the right medial thalamus, right posterior insula, and left secondary (S2) somatosensory cortex continued to increase with stimulus duration but not with perceived stimulus intensity. Activation volumes in the left medial and right lateral thalamus, and the bilateral mid-anterior cingulate, left orbitofrontal, and right S2 cortices also increased only with stimulus duration. The increased activity of specific thalamic and cortical structures as stimulus duration, but not perceived intensity, increases is consistent with the recruitment of a thalamocortical mechanism that participates in the modulation of pain-related cortical responses and the temporal summation of heat pain. Published by Elsevier B.V.

  16. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Yoshino, Atsuo; Okamoto, Yasumasa; Doi, Mitsuru; Okada, Go; Takamura, Masahiro; Ichikawa, Naho; Yamawaki, Shigeto

    2017-01-01

    Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS). However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder. PMID:29163243

  17. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Atsuo Yoshino

    2017-11-01

    Full Text Available Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS. However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder.

  18. Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

    Directory of Open Access Journals (Sweden)

    Yinghua Yu

    2018-01-01

    Full Text Available In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII receives projections from the unilateral primary somatosensory cortex (SI, and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI and a delayed match-to-sample (DMS task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left SII activity was greater than ipsilateral (right SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC. Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.

  19. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study.

    Science.gov (United States)

    Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David

    2011-07-01

    For most healthy subjects, both subjective pain ratings and pain-evoked potentials are attenuated under conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls, or DNIC). Although essentially spinal-bulbar, this inhibition is under cortical control. This is the first study to observe temporal as well as spatial changes in cortical activations under CPM. Specifically, we aimed to investigate the interplay of areas involved in the perception and processing of pain and those involved in controlling descending inhibition. We examined brief consecutive poststimulus time windows of 50 ms using a method of source-localization from pain evoked potentials, sLORETA. This enabled determination of dynamic changes in localized cortical generators evoked by phasic noxious heat stimuli to the left volar forearm in healthy young males, with and without conditioning hot-water pain to the right hand. We found a CPM effect characterized by an initial increased activation in the orbitofrontal cortex (OFC) and amygdala at 250-300 ms poststimulus, which was correlated with the extent of psychophysical pain reduction. This was followed by reduced activations in the primary and secondary somatosensory cortices, supplementary motor area, posterior insula, and anterior cingulate cortex from 400 ms poststimulus. Our findings show that the prefrontal pain-controlling areas of OFC and amygdala increase their activity in parallel with subjective pain reduction under CPM, and that this increased activity occurs prior to reductions in activations of the pain sensory areas. In conclusion, achieving pain inhibition by the CPM process seems to be under control of the OFC and the amygdala. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. An improved model of heat-induced hyperalgesia--repetitive phasic heat pain causing primary hyperalgesia to heat and secondary hyperalgesia to pinprick and light touch.

    Science.gov (United States)

    Jürgens, Tim P; Sawatzki, Alexander; Henrich, Florian; Magerl, Walter; May, Arne

    2014-01-01

    This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (-31%) and in particular of secondary hyperalgesia (-59%) as well as the magnitude of hyperalgesia (-59%) were significantly reduced (all pheat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input.

  1. Shared "core" areas between the pain and other task-related networks.

    Directory of Open Access Journals (Sweden)

    Franco Cauda

    Full Text Available The idea of a 'pain matrix' specifically devoted to the processing of nociceptive inputs has been challenged. Alternative views now propose that the activity of the primary and secondary somatosensory cortices (SI, SII, the insula and cingulate cortex may be related to a basic defensive system through which significant potentially dangerous events for the body's integrity are detected. By reviewing the role of the SI, SII, the cingulate and the insular cortices in the perception of nociceptive and tactile stimuli, in attentional, emotional and reward tasks, and in interoception and memory, we found that all these task-related networks overlap in the dorsal anterior cingulate cortex, the anterior insula and the dorsal medial thalamus. A thorough analysis revealed that the 'pain-related' network shares important functional similarities with both somatomotor-somatosensory networks and emotional-interoceptive ones. We suggest that these shared areas constitute the central part of an adaptive control system involved in the processing and integration of salient information coming both from external and internal sources. These areas are activated in almost all fMRI tasks and have been indicated to play a pivotal role in switching between externally directed and internally directed brain networks.

  2. Expectation requires treatment to boost pain relief: an fMRI study.

    Science.gov (United States)

    Schenk, Lieven A; Sprenger, Christian; Geuter, Stephan; Büchel, Christian

    2014-01-01

    We investigated the effect of a possible interaction between topical analgesic treatment and treatment expectation on pain at the behavioral and neuronal level by combining topical lidocaine/prilocaine treatment with an expectancy manipulation in a 2 by 2 within-subject design (open treatment, hidden treatment, placebo, control). Thirty-two healthy subjects received heat pain stimuli on capsaicin-pretreated skin and rated their experienced pain during functional magnetic resonance imaging. This allowed us to separate drug- and expectancy-related effects at the behavioral and neuronal levels and to test whether they interact during the processing of painful stimuli. Pain ratings were reduced during active treatment and were associated with reduced activity in the anterior insular cortex. Pain ratings were lower in open treatment compared with hidden treatment and were related to reduced activity in the anterior insular cortex, the anterior cingulate cortex, the secondary somatosensory cortex, and the thalamus. Testing for an interaction revealed that the expectation effect was significantly larger in the active treatment conditions compared with the no-treatment conditions and was associated with signal changes in the anterior insular cortex, the anterior cingulate cortex, and the ventral striatum. In conclusion, this study shows that even in the case of a topical analgesic, expectation interacts with treatment at the level of pain ratings and neuronal responses in placebo-related brain regions. Our results are highly relevant in the clinical context as they show (i) that expectation can boost treatment and (ii) that expectation and treatment are not necessarily additive as assumed in placebo-controlled clinical trials. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  4. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  5. fMRI of pain studies using laser-induced heat on skin with and without the loved one near the subject - a pilot study on 'love hurts'

    Science.gov (United States)

    Sofina, T.; Kamil, W. A.; Ahmad, A. H.

    2014-11-01

    The aims of this study are to image and investigate the areas of brain response to laser-induced heat pain, to analyse for any difference in the brain response when a subject is alone and when her loved one is present next to the MRI gantry. Pain stimuli was delivered using Th-YAG laser to four female subjects. Blood-Oxygenation-Level-Dependent (BOLD) fMRI experiment was performed using blocked design paradigm with five blocks of painful (P) stimuli and five blocks of non-painful (NP) stimuli arranged in pseudorandom order with an 18 seconds rest (R) between each stimulation phase. Brain images were obtained from 3T Philips Achieva MRI scanner using 32-channel SENSE head coil. A T1-weighted image (TR/TE/slice/FOV = 9ms/4ms/4mm slices/240×240mm) was obtained for verification of brain anatomical structures. An echo-planar-imaging sequence were used for the functional scans (TR/TE/slice/flip/FOV=2000ms/35ms/4mm slices/90°/220×220mm). fMRI data sets were analysed using SPM 8.0 involving preprocessing steps followed by t-contrast analysis for individuals and FFX analysis. In both with and without-loved-one conditions, neuronal responses were seen in the somatosensory gyrus, supramarginal gyrus, thalamus and insula regions, consistent with pain-related areas. FFX analysis showed that the presence of loved one produced more activation in the frontal and supramarginal gyrus during painful and non-painful stimulations compared to absence of a loved one. Brain response to pain is modulated by the presence of a loved one, causing more activation in the cognitive/emotional area i.e. 'love hurts'.

  6. Somatosensory discrimination deficits following pediatric cerebral malaria.

    Science.gov (United States)

    Dugbartey, A T; Spellacy, F J; Dugbartey, M T

    1998-09-01

    Pathologic studies of central nervous system damage in human falciparum malaria indicate primary localization in the cerebral white matter. We report a sensory-perceptual investigation of 20 Ghanaian children with a recent history of cerebral malaria who were age-, gender-, and education-matched with 20 healthy control subjects. Somatosensory examinations failed to show any evidence of hemianesthesia, pseudohemianesthesia, or extinction to double simultaneous tactile stimulation. While unilateral upper limb testing revealed intact unimanual tactile roughness discrimination, bimanual tactile discrimination, however, was significantly impaired in the cerebral malaria group. A strong negative correlation (r = -0.72) between coma duration and the bimanual tactile roughness discrimination test was also found. An inefficiency in the integrity of callosal fibers appear to account for our findings, although alternative subcortical mechanisms known to be involved in information transfer across the cerebral hemispheres may be compromised as well.

  7. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials.

    Science.gov (United States)

    Nakata, Hiroki; Aoki, Mai; Sakamoto, Kiwako

    2017-04-01

    The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  8. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses.

    Science.gov (United States)

    Burton, H; Sinclair, R J

    2000-11-01

    Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.

  9. Clinical application of somatosensory amplification in psychosomatic medicine

    Directory of Open Access Journals (Sweden)

    Nakao Mutsuhiro

    2007-10-01

    Full Text Available Abstract Many patients with somatoform disorders are frequently encountered in psychosomatic clinics as well as in primary care clinics. To assess such patients objectively, the concept of somatosensory amplification may be useful. Somatosensory amplification refers to the tendency to experience a somatic sensation as intense, noxious, and disturbing. It may have a role in a variety of medical conditions characterized by somatic symptoms that are disproportionate to demonstrable organ pathology. It may also explain some of the variability in somatic symptomatology found among different patients with the same serious medical disorder. It has been assessed with a self-report questionnaire, the Somatosensory Amplification Scale. This instrument was developed in a clinical setting in the U.S., and the reliability and validity of the Japanese and Turkish versions have been confirmed as well. Many studies have attempted to clarify the specific role of somatosensory amplification as a pathogenic mechanism in somatization. It has been reported that somatosensory amplification does not correlate with heightened sensitivity to bodily sensations and that emotional reactivity exerts its influence on somatization via a negatively biased reporting style. According to our recent electroencephalographic study, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interoceptive sensitivity. The concept of somatosensory amplification can be useful as an indicator of somatization in the therapy of a broad range of disorders, from impaired self-awareness to various psychiatric disorders. It also provides useful information for choosing appropriate pharmacological or psychological therapy. While somatosensory amplification has a role in the presentation of somatic symptoms, it is closely associated with other factors, namely, anxiety, depression, and alexithymia that may also influence the same

  10. An investigation of somatosensory profiles in work related upper limb disorders: a case-control observational study protocol.

    LENUS (Irish Health Repository)

    Moloney, Niamh

    2010-01-01

    BACKGROUND: Work related upper limb disorders constitute 45% of all occupational diseases and are a significant public health problem. A subgroup, non specific arm pain (NSAP), remains elusive in terms of understanding its pathophysiological mechanisms with its diagnosis based on the absence of specific clinical findings. One commonly proposed theory is that a neural tissue disorder is the primary dysfunction in NSAP and findings from previous studies lend some support to this theory. However, it is not clear if changes identified are simply a consequence of ongoing pain rather than due to specific neural changes. The presence of neuropathic pain has been investigated in several other musculoskeletal conditions but currently, there is no specific diagnostic tool or gold standard which permits an unequivocal diagnosis of neuropathic pain. The purpose of this study is to further describe the somatosensory profiles in patients with NSAP and to compare these profiles to a group of patients with MRI confirmed cervical radiculopathy who have been previously classified as having neuropathic pain. METHODS\\/DESIGN: Three groups of participants will be investigated: Groups 1 and 2 will be office workers with either NSAP or cervical radiculopathy and Group 3 will be a control group of non office workers without upper limb pain. Participants will undergo a clinical assessment, pain questionnaires (LANSS, Short Form McGill, DASH and TSK) and quantitative sensory testing comprising thermal detection and pain thresholds, vibration thresholds and pressure pain thresholds. DISCUSSION: The spectrum of clinically suspected neuropathic pain ranges from more obvious conditions such as trigeminal neuralgia to those with vague signs of nerve disorder such as NSAP. A thorough description of the somatosensory profiles of NSAP patients and a comparison with a more defined group of patients with evidence of neuropathic pain will help in the understanding of underlying neurophysiology in

  11. An investigation of somatosensory profiles in work related upper limb disorders: a case-control observational study protocol

    Directory of Open Access Journals (Sweden)

    Hall Toby

    2010-01-01

    Full Text Available Abstract Background Work related upper limb disorders constitute 45% of all occupational diseases and are a significant public health problem. A subgroup, non specific arm pain (NSAP, remains elusive in terms of understanding its pathophysiological mechanisms with its diagnosis based on the absence of specific clinical findings. One commonly proposed theory is that a neural tissue disorder is the primary dysfunction in NSAP and findings from previous studies lend some support to this theory. However, it is not clear if changes identified are simply a consequence of ongoing pain rather than due to specific neural changes. The presence of neuropathic pain has been investigated in several other musculoskeletal conditions but currently, there is no specific diagnostic tool or gold standard which permits an unequivocal diagnosis of neuropathic pain. The purpose of this study is to further describe the somatosensory profiles in patients with NSAP and to compare these profiles to a group of patients with MRI confirmed cervical radiculopathy who have been previously classified as having neuropathic pain. Methods/Design Three groups of participants will be investigated: Groups 1 and 2 will be office workers with either NSAP or cervical radiculopathy and Group 3 will be a control group of non office workers without upper limb pain. Participants will undergo a clinical assessment, pain questionnaires (LANSS, Short Form McGill, DASH and TSK and quantitative sensory testing comprising thermal detection and pain thresholds, vibration thresholds and pressure pain thresholds. Discussion The spectrum of clinically suspected neuropathic pain ranges from more obvious conditions such as trigeminal neuralgia to those with vague signs of nerve disorder such as NSAP. A thorough description of the somatosensory profiles of NSAP patients and a comparison with a more defined group of patients with evidence of neuropathic pain will help in the understanding of underlying

  12. Making sense out of spinal cord somatosensory development

    Science.gov (United States)

    Seal, Rebecca P.

    2016-01-01

    The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits. PMID:27702783

  13. Acute Appendicitis, Somatosensory Disturbances ("Head Zones"), and the Differential Diagnosis of Anterior Cutaneous Nerve Entrapment Syndrome (ACNES).

    Science.gov (United States)

    Roumen, Rudi M H; Vening, Wouter; Wouda, Rosanne; Scheltinga, Marc M

    2017-06-01

    Anterior cutaneous nerve entrapment syndrome (ACNES) is a neuropathic abdominal wall pain syndrome typically characterized by locally altered skin sensations. On the other hand, visceral disease may also be associated with similar painful and altered skin sensations ("Head zones"). Aim of the study was to determine if patients with acute appendicitis demonstrated somatosensory disturbances in the corresponding right lower quadrant Head zone. The presence of somatosensory disturbances such as hyperalgesia, hypoesthesia, altered cool perception, or positive pinch test was determined in 100 patients before and after an appendectomy. Potential associations between altered skin sensations and various items including age, sex, history, body temperature, C-reactive protein (CRP), leukocyte count, and type of appendicopathy (normal, inflamed, necrotic, or perforated) were assessed. A total of 39 patients demonstrated at least one right lower abdominal quadrant skin somatosensory disturbance before the laparoscopic appendectomy. However, locoregional skin sensation normalized in all but 2 patients 2 weeks postoperatively. No differences were found concerning patient characteristics or type of appendicopathy between populations with or without altered lower abdominal skin sensations. A substantial portion of patients with acute appendicitis demonstrate right lower abdominal somatosensory disturbances that are similar as observed in acute ACNES. Both may be different sides of the same coin and are possibly expressions of segmental phenomena as described by Head. McBurney's point, a landmark area of maximum pain in acute appendicitis, is possibly a trigger point within a Head zone. Differentiating acute appendicitis from acute ACNES is extremely difficult, but imaging and observation may aid in the diagnostic process.

  14. Neuropathic pain and dry eye.

    Science.gov (United States)

    Galor, Anat; Moein, Hamid-Reza; Lee, Charity; Rodriguez, Adriana; Felix, Elizabeth R; Sarantopoulos, Konstantinos D; Levitt, Roy C

    2018-01-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. Its epidemiology and clinical presentation have many similarities with neuropathic pain outside the eye. This review highlights the similarities between dry eye and neuropathic pain, focusing on clinical features, somatosensory function, and underlying pathophysiology. Implications of these similarities on the diagnosis and treatment of dry eye are discussed. Published by Elsevier Inc.

  15. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    2014-04-01

    Full Text Available The word somatosensation comes from joining the Greek word for body (soma with a word for perception (sensation. Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia and at the base of the skull (the trigeminal ganglia. While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor the model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.

  16. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study

    Directory of Open Access Journals (Sweden)

    CHRISTOS ePAPADELIS

    2014-09-01

    Full Text Available Although cerebral palsy (CP is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities (magnetoencephalography (MEG, diffusion tension imaging (DTI, and resting state fMRI whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP, three with hemiplegic CP (HCP, and three typically-developing (TD children. Somatosensory evoked fields (SEFs were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the precentral and postcentral gyri in both hemispheres. The sensorimotor resting state networks (RSNs were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary somatosensory cortex (S1. In five CP children, abnormal somatotopic organization was observed in the affected (or more affected hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Rs-fMRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal somatosensory processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.

  17. Orbitofrontal disinhibition of pain in migraine with aura: an interictal EEG-mapping study.

    Science.gov (United States)

    Lev, Rina; Granovsky, Yelena; Yarnitsky, David

    2010-08-01

    This study aimed to identify the cortical mechanisms underlying the processes of interictal dishabituation to experimental pain in subjects suffering from migraine with aura (MWA). In 21 subjects with MWA and 22 healthy controls, cortical responses to two successive trials of noxious contact-heat stimuli were analyzed using EEG-tomography software. When compared with controls, MWA patients showed significantly increased pain-evoked potential amplitudes accompanied by reduced activity in the orbitofrontal cortex (OFC) and increased activity in the pain matrix regions, including the primary somatosensory cortex (SI) (p < .05). Similarly to controls, MWA subjects displayed an inverse correlation between the OFC and SI activities, and positive interrelations between other pain-specific regions. The activity changes in the OFC negatively correlated with lifetime headache duration and longevity (p < .05). Reduced inhibitory functioning of the prefrontal cortex is a possible cause for disinhibition of the pain-related sensory cortices in migraine. The finding of OFC hypofunction over the disease course is in keeping with current concepts of migraine as a progressive brain disorder.

  18. Postictal inhibition of the somatosensory cortex

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Jovanovic, Marina; Atkins, Mary Doreen

    2011-01-01

    Transient suppression of the motor cortex and of the speech areas cause well-described postictal phenomena following seizures involving the respective cortical areas. Pain is a rare symptom in epileptic seizures. We present a patient with painful tonic seizures in the left leg. The amplitude...

  19. Reorganization of the Human Somatosensory Cortex in Hand Dystonia

    Directory of Open Access Journals (Sweden)

    Maria Jose Catalan

    2012-05-01

    Full Text Available Background and Purpose: Abnormalities of finger representations in the somatosensory cortex have been identified in patients with focal hand dystonia. Measuring blood flow with positron emission tomography (PET can be use to demonstrate functional localization of receptive fields. Methods: A vibratory stimulus was applied to the right thumb and little finger of six healthy volunteers and six patients with focal hand dystonia to map their receptive fields using H215O PET. Results: The cortical finger representations in the primary somatosensory cortex were closer to each other in patients than in normal subjects. No abnormalities were found in secondary somatosensory cortex, but the somatotopy there is less well distinguished. Conclusions: These data confirm prior electrophysiological and functional neuroimaging observations showing abnormalities of finger representations in somatosensory cortex of patients with focal hand dystonia.

  20. Genetic influence demonstrated for MEG-recorded somatosensory evoked responses

    NARCIS (Netherlands)

    van 't Ent, D.; van Soelen, I.L.C.; Stam, K.J.; de Geus, E.J.C.; Boomsma, D.I.

    2010-01-01

    We tested for a genetic influence on magnetoencephalogram (MEG)-recorded somatosensory evoked fields (SEFs) in 20 monozygotic (MZ) and 14 dizygotic (DZ) twin pairs. Previous electroencephalogram (EEG) studies that demonstrated a genetic contribution to evoked responses generally focused on

  1. Somatosensory evoked potentials in children with autism | Azouz ...

    African Journals Online (AJOL)

    SSEPs) changesamong children with autism, and their relation to somatosensory manifestations and severity of autism. Subjects: Thirty children with autism aged 2–12 years were included in the study, all of them fulfilling criteria of the Diagnostic ...

  2. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  3. Neurophysiological changes in the afferent somatosensory system indices in the case of vertebrogenic spine pathology in miners

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2013-04-01

    Full Text Available Objectives: The aim of the paper was to prove that job conditions impact the state of the afferent part of the somatosensory system in miners. Materials and Methods: Data analysis of the electrophysiological examination of the syndrome in 148 patients, aged from 28 to 55 years, with a mild, moderate and severe degree of the pain syndrome was performed. The control group included 28 people without any pain symptoms. The method used was that of somatosensory stimulated potential (SSP with the potentials amplitude and latency main components taken into consideration. Results: It was proven that the true decrease of the somatosensory stimulated potential SSP N22 (p < 0.05 component amplitudes by 41%; N30 component amplitude tend to decrease by 26%. This proves that the true N22 (p < 0.01 component latency increase by 63.8% corresponds to afferent excitation wave conductibility under the pain syndrome of vertebral pathology through sensitivity pathways mainly in the posterior spinal cord columns and then, through the parts of the brain stem, involving the cerebral cortex, which is confirmed by the fact that the P38 and P46 components amplitudes tend to decrease. In addition to this, the proven N10–N13 (p < 0.05, N13–N20 (p < 0.05, N10–N20 (p < 0.05 intervals increases by 43.5–41.8–38.7%, respectively, correspond to the nervous impulse conductibility through the peripheral nervous system structures and allow to reveal the subclinical slowdown of impulse conductibility, which indicates that the conducting system is changed even under a mild pain syndrome. Conclusions: It was found that the data obtained allow for the better understanding of how the neuropathological pain syndrome under vertebral spine pathology is formed.

  4. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  5. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  6. Loss of Ensemble Segregation in Dentate Gyrus, but Not in Somatosensory Cortex, during Contextual Fear Memory Generalization

    Directory of Open Access Journals (Sweden)

    Marie Yokoyama

    2016-11-01

    Full Text Available The details of contextual or episodic memories are lost and generalized with the passage of time. Proper generalization may underlie the formation and assimilation of semantic memories and enable animals to adapt to ever-changing environments, whereas overgeneralization of fear memory evokes maladaptive fear responses to harmless stimuli, which is a symptom of anxiety disorders such as post-traumatic stress disorder (PTSD. To understand the neural basis of fear memory generalization, we investigated the patterns of neuronal ensemble reactivation during memory retrieval when contextual fear memory expression is generalized using transgenic mice that allowed us to visualize specific neuronal ensembles activated during memory encoding and retrieval. We found preferential reactivations of neuronal ensembles in the primary somatosensory cortex, when mice were returned to the conditioned context to retrieve their memory 1 day after conditioning. In the hippocampal dentate gyrus (DG, exclusively separated ensemble reactivation was observed when mice were exposed to a novel context. These results suggest that the DG as well as the somatosensory cortex were likely to distinguish the two different contexts at the ensemble activity level when memory is not generalized at the behavioral level. However, 9 days after conditioning when animals exhibited generalized fear, the unique reactivation pattern in the DG, but not in the somatosensory cortex, was lost. Our results suggest that the alternations in the ensemble representation within the DG, or in upstream structures that link the sensory cortex to the hippocampus, may underlie generalized contextual fear memory expression.

  7. fMRI of pain studies using laser-induced heat on skin with and without the loved one near the subject – a pilot study on 'love hurts'

    International Nuclear Information System (INIS)

    Sofina, T; Kamil, W A; Ahmad, A H

    2014-01-01

    The aims of this study are to image and investigate the areas of brain response to laser-induced heat pain, to analyse for any difference in the brain response when a subject is alone and when her loved one is present next to the MRI gantry. Pain stimuli was delivered using Th-YAG laser to four female subjects. Blood-Oxygenation-Level-Dependent (BOLD) fMRI experiment was performed using blocked design paradigm with five blocks of painful (P) stimuli and five blocks of non-painful (NP) stimuli arranged in pseudorandom order with an 18 seconds rest (R) between each stimulation phase. Brain images were obtained from 3T Philips Achieva MRI scanner using 32-channel SENSE head coil. A T1-weighted image (TR/TE/slice/FOV = 9ms/4ms/4mm slices/240×240mm) was obtained for verification of brain anatomical structures. An echo-planar-imaging sequence were used for the functional scans (TR/TE/slice/flip/FOV=2000ms/35ms/4mm slices/90°/220×220mm). fMRI data sets were analysed using SPM 8.0 involving preprocessing steps followed by t-contrast analysis for individuals and FFX analysis. In both with and without-loved-one conditions, neuronal responses were seen in the somatosensory gyrus, supramarginal gyrus, thalamus and insula regions, consistent with pain-related areas. FFX analysis showed that the presence of loved one produced more activation in the frontal and supramarginal gyrus during painful and non-painful stimulations compared to absence of a loved one. Brain response to pain is modulated by the presence of a loved one, causing more activation in the cognitive/emotional area i.e. 'love hurts'

  8. Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Amianto, Federico; D'Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg

    2014-01-01

    Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  9. Intersession reliability of fMRI activation for heat pain and motor tasks

    Science.gov (United States)

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  10. Pudendal somatosensory evoked potentials in normal women

    Directory of Open Access Journals (Sweden)

    Geraldo A. Cavalcanti

    2007-12-01

    Full Text Available OBJECTIVE: Somatosensory evoked potential (SSEP is an electrophysiological test used to evaluate sensory innervations in peripheral and central neuropathies. Pudendal SSEP has been studied in dysfunctions related to the lower urinary tract and pelvic floor. Although some authors have already described technical details pertaining to the method, the standardization and the influence of physiological variables in normative values have not yet been established, especially for women. The aim of the study was to describe normal values of the pudendal SSEP and to compare technical details with those described by other authors. MATERIALS AND METHODS: The clitoral sensory threshold and pudendal SSEP latency was accomplished in 38 normal volunteers. The results obtained from stimulation performed on each side of the clitoris were compared to ages, body mass index (BMI and number of pregnancies. RESULTS: The values of clitoral sensory threshold and P1 latency with clitoral left stimulation were respectively, 3.64 ± 1.01 mA and 37.68 ± 2.60 ms. Results obtained with clitoral right stimulation were 3.84 ± 1.53 mA and 37.42 ± 3.12 ms, respectively. There were no correlations between clitoral sensory threshold and P1 latency with age, BMI or height of the volunteers. A significant difference was found in P1 latency between nulliparous women and volunteers who had been previously submitted to cesarean section. CONCLUSIONS: The SSEP latency represents an accessible and reproducible method to investigate the afferent pathways from the genitourinary tract. These results could be used as normative values in studies involving genitourinary neuropathies in order to better clarify voiding and sexual dysfunctions in females.

  11. Chronic Pain and Neuropathy Following Adjuvant Chemotherapy

    DEFF Research Database (Denmark)

    Ventzel, Lise; Madsen, Caspar S; Karlsson, Páll

    2017-01-01

    Objective: To determine symptoms and characteristics of chronic sensory neuropathy in patients treated with oxaliplatin and docetaxel, including patterns of somatosensory abnormalities, pain descriptors, and psychological functioning. Design: A retrospective cross-sectional study. Setting: A chro...... mechanisms useful for future studies in the tailored treatment of prevention of chemotherapy-induced peripheral neuropathy and pain.......Objective: To determine symptoms and characteristics of chronic sensory neuropathy in patients treated with oxaliplatin and docetaxel, including patterns of somatosensory abnormalities, pain descriptors, and psychological functioning. Design: A retrospective cross-sectional study. Setting......: A chronic pain research center. Subjects: Thirty-eight patients with chronic peripheral pain and/or dysesthesia following chemotherapy. Methods:  Sensory profiles, psychological functioning, and quality of life were assessed using standardized questionnaires. In addition, standardized quantitative sensory...

  12. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin

    Directory of Open Access Journals (Sweden)

    Nasu Masanori

    2010-05-01

    Full Text Available Abstract Background Although it has been widely accepted that the primary somatosensory (SI cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. Results In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV. Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22% and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11% and nociceptive-specific neurons (18/27, 67%. In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. Conclusions The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.

  13. Stimuli-Adaptable Materials

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl

    The work presented in this Thesis deals with the development of a stimuli-adaptable polymer material based on the UV-induced dimerisation of cinnamic acid and its derivatives. It is in the nature of an adhesive to adhere very well to its substrate and therefore problems can arise upon removal...

  14. On the presence of high-order interactions among somatosensory neurons and their effect on information transmission

    International Nuclear Information System (INIS)

    Ince, Robin A A; Montani, Fernando; Panzeri, Stefano; Arabzadeh, Ehsan; Diamond, Mathew E

    2009-01-01

    In order to understand how populations of neurons encode information about external correlates, it is important to develop minimal models of the probability of neural population responses which capture all the salient changes of neural responses with stimuli. In this context, it is particularly useful to determine whether interactions among neurons responding to stimuli can be described by a pairwise interaction model, or whether a higher order interaction model is needed. To address this question, we compared real neural population activity obtained from the rat somatosensory cortex to maximum-entropy models which take into account only interaction of up any given order. By performing these comparisons, we found that interactions of order two were sufficient to explain a large amount of observed stimulus-response distributions, but not all of them. Triple-wise interactions were necessary to fully explain the data. We then used Shannon information to compute the impact of high order correlations on the amount of somatosensory information transmitted by the neural population. We found that correlations of order two gave a good approximation of information carried by the neural population, within 4% of the true value. Third order correlations gave an even better approximation, within 2% of the true value. Taken together, these results suggest that higher order interactions exist and shape the dynamics of cortical networks, but play a quantitatively minor role in determining the information capacity of neural populations.

  15. On the presence of high-order interactions among somatosensory neurons and their effect on information transmission

    Energy Technology Data Exchange (ETDEWEB)

    Ince, Robin A A [Faculty of Life Science, University of Manchester, 3.431 Stopford Building, Oxford Road, Manchester M13 9PL (United Kingdom); Montani, Fernando; Panzeri, Stefano [Robotics, Brain, and Cognitive Sciences Department, Italian Institute of Technology, Via Morego 30, 16163 Genova (Italy); Arabzadeh, Ehsan [School of Psychology, University of New South Wales, Sydney, New South Wales (Australia); Diamond, Mathew E, E-mail: stefano.panzeri@iit.i [Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste (Italy) and the SISSA Unit, Italian Institute of Technology, Trieste (Italy)

    2009-12-01

    In order to understand how populations of neurons encode information about external correlates, it is important to develop minimal models of the probability of neural population responses which capture all the salient changes of neural responses with stimuli. In this context, it is particularly useful to determine whether interactions among neurons responding to stimuli can be described by a pairwise interaction model, or whether a higher order interaction model is needed. To address this question, we compared real neural population activity obtained from the rat somatosensory cortex to maximum-entropy models which take into account only interaction of up any given order. By performing these comparisons, we found that interactions of order two were sufficient to explain a large amount of observed stimulus-response distributions, but not all of them. Triple-wise interactions were necessary to fully explain the data. We then used Shannon information to compute the impact of high order correlations on the amount of somatosensory information transmitted by the neural population. We found that correlations of order two gave a good approximation of information carried by the neural population, within 4% of the true value. Third order correlations gave an even better approximation, within 2% of the true value. Taken together, these results suggest that higher order interactions exist and shape the dynamics of cortical networks, but play a quantitatively minor role in determining the information capacity of neural populations.

  16. Tibial nerve somatosensory evoked potentials in dogs with degenerative lumbosacral stenosis.

    Science.gov (United States)

    Meij, Björn P; Suwankong, Niyada; van den Brom, Walter E; Venker-van Haagen, Anjop J; Hazewinkel, Herman A W

    2006-02-01

    To determine somatosensory evoked potentials (SEPs) in dogs with degenerative lumbosacral stenosis (DLS) and in healthy dogs. Clinical and experimental study. Dogs with DLS (n = 21) and 11 clinically normal dogs, age, and weight matched. Under anesthesia, the tibial nerve was stimulated at the caudolateral aspect of the stifle, and lumbar SEP (LSEP) were recorded percutaneously from S1 to T13 at each interspinous space. Cortical SEP (CSEP) were recorded from the scalp. LSEP were identified as the N1-P1 (latency 3-6 ms) and N2-P2 (latency 7-13 ms) wave complexes in the recordings of dogs with DLS and control dogs. Latency of N1-P1 increased and that of N2-P2 decreased as the active recording electrode was moved cranially from S1 to T13. Compared with controls, latencies were significantly delayed in DLS dogs: .8 ms for N1-P1 and 1.7 ms for the N2-P2 complex. CSEP were not different between groups. Surface needle recording of tibial nerve SEP can be used to monitor somatosensory nerve function of pelvic limbs in dogs. In dogs with DLS, the latency of LSEP, but not of CSEP, is prolonged compared with normal dogs. In dogs with lumbosacral pain from DLS, the cauda equina compression is sufficient to affect LSEP at the lumbar level.

  17. Psychophysical examination in patients with post-mastectomy pain

    DEFF Research Database (Denmark)

    Gottrup, Hanne; Andersen, Jørn; Arendt-Nielsen, Lars

    2000-01-01

    and contralateral sides in 15 women with spontaneous pain and sensory abnormalities and 11 pain-free women. Testing included the VAS score of spontaneous pain, detection and pain threshold to thermal and mechanical stimuli, temporal summation to repetitive heat and pinprick stimuli, and assessment of skin blood...... to side difference was seen in pressure pain threshold in the pain-free group. Evoked pain intensity to repetitive stimuli at 0.2 and 2.0 Hz was significantly higher on the operated side in pain patients compared to the control area while no such difference was seen in pain-free patients. Cutaneous blood...

  18. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  19. AAPT Diagnostic Criteria for Central Neuropathic Pain

    DEFF Research Database (Denmark)

    Widerstrom-Noga, Eva; Loeser, John D.; Jensen, Troels Staehelin

    2017-01-01

    Central neuropathic pain, which is pain caused by a lesion or disease of the central somatosensory nervous system, is a serious consequence of spinal cord injury, stroke, multiple sclerosis, and other conditions affecting the central nervous system. A collaborative effort between the Analgesic....... This article focuses on central neuropathic pain associated with spinal cord injury, stroke, and multiple sclerosis, but the AAPT framework can be extended to central pain due to other causes such as traumatic brain injury. The classification of central neuropathic pain is organized according to the AAPT...

  20. Elucidation of pathophysiology and treatment of neuropathic pain

    NARCIS (Netherlands)

    Vranken, Jan H.

    2012-01-01

    Neuropathic pain, pain arising as a direct consequence of a lesion or disease affecting the somatosensory system, is relatively common, occurring in about 1% of the population. Studies in animal models describe a number of peripheral and central pathophysiological processes after nerve injury that

  1. Impaired somatosensory discrimination of shape in Parkinson's disease : Association with caudate nucleus dopaminergic function

    NARCIS (Netherlands)

    Weder, BJ; Leenders, KL; Vontobel, P; Nienhusmeier, M; Keel, A; Zaunbauer, W; Vonesch, T; Ludin, HP

    1999-01-01

    Tactile discrimination of macrogeometric objects in a two-alternative forced-choice procedure represents a demanding task involving somatosensory pathways and higher cognitive processing. The objects for somatosensory discrimination, i.e., rectangular parallelepipeds differing only in oblongness,

  2. Neuromagnetic beta and gamma oscillations in the somatosensory cortex after music training in healthy older adults and a chronic stroke patient.

    Science.gov (United States)

    Jamali, Shahab; Fujioka, Takako; Ross, Bernhard

    2014-06-01

    Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training. We applied 20-Hz vibrotactile stimuli to the index finger and the ring finger, recorded somatosensory steady-state responses with magnetoencephalography, and analyzed the cortical sources displaying oscillations synchronized with the external stimuli in two groups of healthy older adults before and after musical training or without training. In addition, we applied the same analysis for an anecdotic report of a single chronic stroke patient with hemiparetic arm and hand problems, who received music-supported therapy (MST). Healthy older adults showed significant finger separation within the primary somatotopic map. Beta dipole sources were more anterior located compared to gamma sources. An anterior shift of sources and increases in synchrony between the stimuli and beta and gamma oscillations were observed selectively after music training. In the stroke patient a normalization of somatotopic organization was observed after MST, with digit separation recovered after training and stimulus induced gamma synchrony increased. The proposed stimulation paradigm captures the integrity of primary somatosensory hand representation. Source position and synchronization between the stimuli and gamma activity are indices, sensitive to music-supported training. Responsiveness was also observed in a chronic stroke patient, encouraging for the music-supported therapy. Notably, changes in somatosensory responses were observed, even though the therapy did not involve specific sensory discrimination training. The proposed protocol can be used for monitoring changes in neuronal organization during training and will improve

  3. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Experimental orofacial pain and sensory deprivation lead to perceptual distortion of the face in healthy volunteers.

    Science.gov (United States)

    Dagsdóttir, Lilja Kristín; Skyt, Ina; Vase, Lene; Baad-Hansen, Lene; Castrillon, Eduardo; Svensson, Peter

    2015-09-01

    Patients suffering from persistent orofacial pain may sporadically report that the painful area feels "swollen" or "differently," a phenomenon that may be conceptualized as a perceptual distortion because there are no clinical signs of swelling present. Our aim was to investigate whether standardized experimental pain and sensory deprivation of specific orofacial test sites would lead to changes in the size perception of these face areas. Twenty-four healthy participants received either 0.2 mL hypertonic saline (HS) or local anesthetics (LA) into six regions (buccal, mental, lingual, masseter muscle, infraorbital and auriculotemporal nerve regions). Participants estimated the perceived size changes in percentage (0 % = no change, -100 % = half the size or +100 % = double the size), and somatosensory function was checked with tactile stimuli. The pain intensity was rated on a 0-10 Verbal Numerical Rating Scale (VNRS), and sets of psychological questionnaires were completed. HS and LA were associated with significant self-reported perceptual distortions as indicated by consistent increases in perceived size of the adjacent face areas (P ≤ 0.050). Perceptual distortion was most pronounced in the buccal region, and the smallest increase was observed in the auriculotemporal region. HS was associated with moderate levels of pain VNRS = 7.3 ± 0.6. Weak correlations were found between HS-evoked perceptual distortion and level of dissociation in two regions (P pain and transient sensory deprivation evoked perceptual distortions in all face regions and overall demonstrated the importance of afferent inputs for the perception of the face. We propose that perceptual distortion may be an important phenomenon to consider in persistent orofacial pain conditions.

  5. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  6. Spinal N13 versus cortical N20 and dermatomal somatosensory ...

    African Journals Online (AJOL)

    Mohamed Imam

    2013-04-06

    Apr 6, 2013 ... Spinal N13 versus cortical N20 and dermatomal somatosensory .... recording point for the right upper limb stimulation and the. C40 for the left upper limb stimulation. The reference ..... Brain 1992;115:1209–34. 298. M. Imam ...

  7. Excessive body fat linked to blunted somatosensory cortex response to general reward in adolescents.

    Science.gov (United States)

    Navas, J F; Barrós-Loscertales, A; Costumero-Ramos, V; Verdejo-Román, J; Vilar-López, R; Verdejo-García, A

    2018-01-01

    The brain reward system is key to understanding adolescent obesity in the current obesogenic environment, rich in highly appetising stimuli, to which adolescents are particularly sensitive. We aimed to examine the association between body fat levels and brain reward system responsivity to general (monetary) rewards in male and female adolescents. Sixty-eight adolescents (34 females; mean age (s.d.)= 16.56 (1.35)) were measured for body fat levels with bioelectric impedance, and underwent a functional magnetic resonance imaging (fMRI) scan during the Monetary Incentive Delay (MID) task. The MID task reliably elicits brain activations associated with two fundamental aspects of reward processing: anticipation and feedback. We conducted regression analyses to examine the association between body fat and brain reward system responsivity during reward anticipation and feedback, while controlling for sex, age and socioeconomic status. We also analysed the moderating impact of sex on the relationship between fat levels and brain responsivity measures. Brain imaging analyses were corrected for multiple comparisons, with a cluster-defining threshold of Preward feedback after controlling for key sociodemographic variables. Although we did not find significant associations between body fat and brain activations during reward anticipation, S1/supramarginal gyrus activation during feedback was linked to increased negative prediction error, that is, less reward than expected, in illustrative post hoc analyses. Sex did not significantly moderate the association between body fat and brain activation in the MID task. In adolescents, higher adiposity is linked to hypo-responsivity of somatosensory regions during general (monetary) reward feedback. Findings suggest that adolescents with excess weight have blunted activation in somatosensory regions involved in reward feedback learning.

  8. Neonatal pain

    Science.gov (United States)

    Walker, Suellen M

    2014-01-01

    Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback. PMID:24330444

  9. An Improved Model of Heat-Induced Hyperalgesia—Repetitive Phasic Heat Pain Causing Primary Hyperalgesia to Heat and Secondary Hyperalgesia to Pinprick and Light Touch

    Science.gov (United States)

    Henrich, Florian; Magerl, Walter; May, Arne

    2014-01-01

    This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (−31%) and in particular of secondary hyperalgesia (−59%) as well as the magnitude of hyperalgesia (−59%) were significantly reduced (all pheat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input. PMID:24911787

  10. Spatial and temporal assessment of orofacial somatosensory sensitivity: a methodological study

    DEFF Research Database (Denmark)

    Thygesen, Torben; Nørholt, Sven Erik; Jensen, John

    2007-01-01

    participated in 2 identical experimental sessions separated by 2 weeks. The subjects rated the perceived intensity of standardized nonpainful tactile, painful pinprick, warm, and cold stimuli applied to 25 points in 5 x 5 matrices in the infraorbital region of each side. The reproducibility of single points...... was tested, and a mean difference of 1.4 +/- 0.5 was found. A 0-50-100 numerical rating scale (NRS) with 50 denoting "just barely painful" was used. A modified ice hockey mask with adjustable settings was developed as a template to allow stimulation of the same points in the 2 sessions. Assessment...

  11. Neuronal responses to tactile stimuli and tactile sensations evoked by microstimulation in the human thalamic principal somatic sensory nucleus (ventral caudal).

    Science.gov (United States)

    Schmid, Anne-Christine; Chien, Jui-Hong; Greenspan, Joel D; Garonzik, Ira; Weiss, Nirit; Ohara, Shinji; Lenz, Frederick Arthur

    2016-06-01

    The normal organization and plasticity of the cutaneous core of the thalamic principal somatosensory nucleus (ventral caudal, Vc) have been studied by single-neuron recordings and microstimulation in patients undergoing awake stereotactic operations for essential tremor (ET) without apparent somatic sensory abnormality and in patients with dystonia or chronic pain secondary to major nervous system injury. In patients with ET, most Vc neurons responded to one of the four stimuli, each of which optimally activates one mechanoreceptor type. Sensations evoked by microstimulation were similar to those evoked by the optimal stimulus only among rapidly adapting neurons. In patients with ET, Vc was highly segmented somatotopically, and vibration, movement, pressure, and sharp sensations were usually evoked by microstimulation at separate sites in Vc. In patients with conditions including spinal cord transection, amputation, or dystonia, RFs were mismatched with projected fields more commonly than in patients with ET. The representation of the border of the anesthetic area (e.g., stump) or of the dystonic limb was much larger than that of the same part of the body in patients with ET. This review describes the organization and reorganization of human Vc neuronal activity in nervous system injury and dystonia and then proposes basic mechanisms. Copyright © 2016 the American Physiological Society.

  12. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    Science.gov (United States)

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  13. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG.

    Science.gov (United States)

    Bradley, Claire; Joyce, Niamh; Garcia-Larrea, Luis

    2016-01-01

    Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1-2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.

  14. Tramadol for neuropathic pain in adults.

    Science.gov (United States)

    Duehmke, Rudolf Martin; Derry, Sheena; Wiffen, Philip J; Bell, Rae F; Aldington, Dominic; Moore, R Andrew

    2017-06-15

    This review is an update of a review of tramadol for neuropathic pain, published in 2006; updating was to bring the review in line with current standards. Neuropathic pain, which is caused by a lesion or disease affecting the somatosensory system, may be central or peripheral in origin. Peripheral neuropathic pain often includes symptoms such as burning or shooting sensations, abnormal sensitivity to normally painless stimuli, or an increased sensitivity to normally painful stimuli. Neuropathic pain is a common symptom in many diseases of the peripheral nervous system. To assess the analgesic efficacy of tramadol compared with placebo or other active interventions for chronic neuropathic pain in adults, and the adverse events associated with its use in clinical trials. We searched CENTRAL, MEDLINE, and Embase for randomised controlled trials from inception to January 2017. We also searched the reference lists of retrieved studies and reviews, and online clinical trial registries. We included randomised, double-blind trials of two weeks' duration or longer, comparing tramadol (any route of administration) with placebo or another active treatment for neuropathic pain, with subjective pain assessment by the participant. Two review authors independently extracted data and assessed trial quality and potential bias. Primary outcomes were participants with substantial pain relief (at least 50% pain relief over baseline or very much improved on Patient Global Impression of Change scale (PGIC)), or moderate pain relief (at least 30% pain relief over baseline or much or very much improved on PGIC). Where pooled analysis was possible, we used dichotomous data to calculate risk ratio (RR) and number needed to treat for an additional beneficial outcome (NNT) or harmful outcome (NNH), using standard methods. We assessed the quality of the evidence using GRADE and created 'Summary of findings' tables. We identified six randomised, double-blind studies involving 438 participants

  15. A new psychometric questionnaire for reporting of somatosensory percepts

    Science.gov (United States)

    Kim, L. H.; McLeod, R. S.; Kiss, Z. H. T.

    2018-02-01

    Objective. There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With an increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. Approach. We compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. Results. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman’s correlation coefficients ranging 0.716  ⩽  ρ  ⩽  1.000, p  ⩽  0.005) in 13 subjects receiving stimulation through neural implants in both the CNS and PNS. Furthermore, the new questionnaire captured more descriptors (M  =  2.65, SD  =  0.91) that would have been missed by being categorized as ‘other sensations’, using a previous questionnaire (M  =  1.40, SD  =  0.77, t(12)  =  -10.24, p  psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses.

  16. Risk factors affecting somatosensory function after sagittal split osteotomy

    DEFF Research Database (Denmark)

    Thygesen, Torben Henrik; Jensen, Allan Bardow; Helleberg, M

    2008-01-01

    Purpose The aim of this study was to evaluate potential individual and intraoperative risk factors associated with bilateral sagittal split osteotomy (BSSO) and to correlate the findings with postoperative changes in somatosensory function. Patients and Methods A total of 18 men and 29 women (mean...... and free dissection of the inferior alveolar nerve during BSSO increased self-reported changes in lower lip sensation and lower lip tactile threshold after BSSO (P discrimination (P

  17. Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex

    Science.gov (United States)

    Laubacher, Claire M.; Olausson, Håkan; Wang, Binquan; Spagnolo, Primavera A.; Bushnell, M. Catherine

    2016-01-01

    Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. SIGNIFICANCE STATEMENT Growing interest in affective touch has identified a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, cast doubt on the separation of touch discrimination and affect. We used functional magnetic resonance imaging and repetitive transcranial magnetic stimulation to demonstrate the representation of touch discrimination and intensity in S1, but the representation of pleasantness in the anterior cingulate cortex, not S1. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. Our study contributes to growing delineation of the affective touch system, a crucial step in understanding its dysregulation in numerous clinical conditions such as autism, eating disorders, depression, and chronic pain. PMID:27225773

  18. Hypersensitivity to pain in congenital blindness

    DEFF Research Database (Denmark)

    Slimani, Hocine; Danti, Sabrina; Ricciardi, Emiliano

    2013-01-01

    Vision is important for avoiding encounters with objects in the environment that may imperil physical integrity. We tested whether, in the absence of vision, a lower pain threshold would arise from an adaptive shift to other sensory channels. We therefore measured heat and cold pain thresholds an...... that blind subjects are more attentive to signals of external threats. These findings indicate that the absence of vision from birth induces a hypersensitivity to painful stimuli, lending new support to a model of sensory integration of vision and pain processing......., congenitally blind subjects have lower heat pain thresholds, rate suprathreshold heat pain stimuli as more painful, and have increased sensitivity for cold pain stimuli. Thresholds for nonpainful thermal stimulation did not differ between groups. The results of the pain questionnaires further indicated...

  19. Airway somatosensory deficits and dysphagia in Parkinson's disease.

    Science.gov (United States)

    Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M

    2013-01-01

    Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.

  20. Somatosensory mismatch response in young and elderly adults

    Directory of Open Access Journals (Sweden)

    Juho M. Strömmer

    2014-10-01

    Full Text Available Aging is associated with cognitive decline and alterations in early perceptual processes. Studies in the auditory and visual modalities have shown that the mismatch negativity (or the mismatch response, MMR, an event-related potential (ERP elicited by a deviant stimulus in a background of homogenous events, diminishes with aging and cognitive decline. However, the effects of aging on the somatosensory MMR are not known. In the current study, we recorded ERPs to electrical pulses to different fingers of the left hand in a passive oddball experiment in young (22–36 years and elderly (66–95 years adults engaged in a visual task. The MMR was found to deviants as compared to standards at two latency ranges: 180–220 ms and 250–290 ms post-stimulus onset. At 180–220 ms, within the young, the MMR was found at medial electrode sites, whereas aged did not show any amplitude difference between the stimulus types at the same latency range. At 250–290 ms, the MMR was evident with attenuated amplitude and narrowed scalp distribution among aged (Fz compared to young (fronto-centrally and lateral parietal sites. Hence, the results reveal that the somatosensory change detection mechanism is altered in aging. The somatosensory MMR can be used as a reliable measure of age-related changes in sensory-cognitive functions.

  1. Why Social Pain Can Live on: Different Neural Mechanisms Are Associated with Reliving Social and Physical Pain.

    Science.gov (United States)

    Meyer, Meghan L; Williams, Kipling D; Eisenberger, Naomi I

    2015-01-01

    Although social and physical pain recruit overlapping neural activity in regions associated with the affective component of pain, the two pains can diverge in their phenomenology. Most notably, feelings of social pain can be re-experienced or "relived," even when the painful episode has long passed, whereas feelings of physical pain cannot be easily relived once the painful episode subsides. Here, we observed that reliving social (vs. physical) pain led to greater self-reported re-experienced pain and greater activity in affective pain regions (dorsal anterior cingulate cortex and anterior insula). Moreover, the degree of relived pain correlated positively with affective pain system activity. In contrast, reliving physical (vs. social) pain led to greater activity in the sensory-discriminative pain system (primary and secondary somatosensory cortex and posterior insula), which did not correlate with relived pain. Preferential engagement of these different pain mechanisms may reflect the use of different top-down neurocognitive pathways to elicit the pain. Social pain reliving recruited dorsomedial prefrontal cortex, often associated with mental state processing, which functionally correlated with affective pain system responses. In contrast, physical pain reliving recruited inferior frontal gyrus, known to be involved in body state processing, which functionally correlated with activation in the sensory pain system. These results update the physical-social pain overlap hypothesis: while overlapping mechanisms support live social and physical pain, distinct mechanisms guide internally-generated pain.

  2. Tinnitus in Temporomandibular Joint Disorders: Is it a Specific Somatosensory Tinnitus Subtype?

    Science.gov (United States)

    Algieri, Giuseppe Maria Antonio; Leonardi, Alessandra; Arangio, Paolo; Vellone, Valentino; Paolo, Carlo Di; Cascone, Piero

    2017-04-19

    The most significant otologic symptoms, consisting of ear pain, tinnitus, dizziness, hearing loss and auricolar "fullness", generally arise within the auditory system, often are associated with extra auricolar disorders, particularly disorder of the temporo-mandibular joint. In our study we examined a sample of 200 consecutive patients who had experienced severe disabling symptom. The patiens came to maxillofacial specialist assessment for temporomandibular disorder. Each patient was assessed by a detailed anamnestic and clinical temporomandibular joint examination and they are divided into five main groups according classification criteria established by Wilkes; tinnitus and subjective indicators of pain are evaluated. The results of this study provide a close correlation between the joint pathology and otologic symptoms, particularly regarding tinnitus and balance disorders, and that this relationship is greater the more advanced is the stage of joint pathology. Moreover, this study shows that TMD-related tinnitus principally affects a younger population (average fifth decade of life) and mainly women (more than 2/3 of the cases). Such evidence suggests the existence of a specific tinnitus subtype that may be defined as "TMD-related somatosensory tinnitus".

  3. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  4. Differences in cortical coding of heat evoked pain beyond the perceived intensity: an fMRI and EEG study.

    Science.gov (United States)

    Haefeli, Jenny; Freund, Patrick; Kramer, John L K; Blum, Julia; Luechinger, Roger; Curt, Armin

    2014-04-01

    Imaging studies have identified a wide network of brain areas activated by nociceptive stimuli and revealed differences in somatotopic representation of highly distinct stimulation sites (foot vs. hand) in the primary (S1) and secondary (S2) somatosensory cortices. Somatotopic organization between adjacent dermatomes and differences in cortical coding of similarly perceived nociceptive stimulation are less well studied. Here, cortical processing following contact heat nociceptive stimulation of cervical (C4, C6, and C8) and trunk (T10) dermatomes were recorded in 20 healthy subjects using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Stimulation of T10 compared with the C6 and C8 revealed significant higher response intensity in the left S1 (contralateral) and the right S2 (ipsilateral) even when the perceived pain was equal between stimulation sites. Accordingly, contact heat evoked potentials following stimulation of T10 showed significantly higher N2P2 amplitudes compared to C6 and C8. Adjacent dermatomes did not reveal a distinct somatotopical representation. Within the assessed cervical and trunk dermatomes, nociceptive cortical processing to heat differs significantly in magnitude even when controlling for pain perception. This study provides evidence that controlling for pain perception is not sufficient to compare directly the magnitude of cortical processing [blood oxygen level dependence (BOLD) response and amplitude of evoked potentials] between body sites. Copyright © 2013 Wiley Periodicals, Inc.

  5. Vibrotactile masking experiments reveal accelerated somatosensory processing in congenitally blind braille readers.

    Science.gov (United States)

    Bhattacharjee, Arindam; Ye, Amanda J; Lisak, Joy A; Vargas, Maria G; Goldreich, Daniel

    2010-10-27

    Braille reading is a demanding task that requires the identification of rapidly varying tactile patterns. During proficient reading, neighboring characters impact the fingertip at ∼100 ms intervals, and adjacent raised dots within a character at 50 ms intervals. Because the brain requires time to interpret afferent sensorineural activity, among other reasons, tactile stimuli separated by such short temporal intervals pose a challenge to perception. How, then, do proficient Braille readers successfully interpret inputs arising from their fingertips at such rapid rates? We hypothesized that somatosensory perceptual consolidation occurs more rapidly in proficient Braille readers. If so, Braille readers should outperform sighted participants on masking tasks, which demand rapid perceptual processing, but would not necessarily outperform the sighted on tests of simple vibrotactile sensitivity. To investigate, we conducted two-interval forced-choice vibrotactile detection, amplitude discrimination, and masking tasks on the index fingertips of 89 sighted and 57 profoundly blind humans. Sighted and blind participants had similar unmasked detection (25 ms target tap) and amplitude discrimination (compared with 100 μm reference tap) thresholds, but congenitally blind Braille readers, the fastest readers among the blind participants, exhibited significantly less masking than the sighted (masker, 50 Hz, 50 μm; target-masker delays, ±50 and ±100 ms). Indeed, Braille reading speed correlated significantly and specifically with masking task performance, and in particular with the backward masking decay time constant. We conclude that vibrotactile sensitivity is unchanged but that perceptual processing is accelerated in congenitally blind Braille readers.

  6. Seeing touch in the somatosensory cortex: a TMS study of the visual perception of touch.

    Science.gov (United States)

    Bolognini, Nadia; Rossetti, Angela; Maravita, Angelo; Miniussi, Carlo

    2011-12-01

    Recent studies suggest the existence of a visuo-tactile mirror system, comprising the primary (SI) and secondary (SII) somatosensory cortices, which matches observed touch with felt touch. Here, repetitive transcranial magnetic stimulation (rTMS) was used to determine whether SI or SII play a functional role in the visual processing of tactile events. Healthy participants performed a visual discrimination task with tactile stimuli (a finger touching a hand) and a control task (a finger moving without touching). During both tasks, rTMS was applied over either SI or SII, and to the occipital cortex. rTMS over SI selectively reduced subject performance for interpreting whether a contralateral visual tactile stimulus contains a tactile event, whereas SII stimulation impaired visual processing regardless of the tactile component. These findings provide evidence for a multimodal sensory-motor system with mirror properties, where somatic and visual properties of action converge. SI, a cortical area traditionally viewed as modality-specific, is selectively implicated in the visual processing of touch. These results are in line with the existence of a sensory mirror system mediating the embodied simulation concept. Copyright © 2010 Wiley Periodicals, Inc.

  7. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder.

    Science.gov (United States)

    Badura-Brack, Amy S; Becker, Katherine M; McDermott, Timothy J; Ryan, Tara J; Becker, Madelyn M; Hearley, Allison R; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-30

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were imaged using a beamforming approach. Participants also completed clinical assessments of PTSD, combat exposure, and depression. We found that veterans with PTSD exhibited significantly reduced activity during early (0-125 ms) tactile processing compared with combat controls. Specifically, veterans with PTSD had weaker activity in the left postcentral gyrus, left superior parietal area, and right prefrontal cortex in response to nonthreatening tactile stimulation relative to veterans without PTSD. The magnitude of activity in these brain regions was inversely correlated with symptom severity, indicating that those with the most severe PTSD had the most abnormal neural responses. Our findings are consistent with a resource allocation view of perceptual processing in PTSD, which directs attention away from nonthreatening sensory information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. [Pain information pathways from the periphery to the cerebral cortex].

    Science.gov (United States)

    Kuroda, Ryotaro; Kawabata, Atsufumi

    2003-07-01

    A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.

  9. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits.

    Science.gov (United States)

    Meyer, Sarah; Kessner, Simon S; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2016-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  10. Altered Pain Sensitivity in Elderly Women with Chronic Neck Pain

    Science.gov (United States)

    Uthaikhup, Sureeporn; Prasert, Romchat; Paungmali, Aatit; Boontha, Kritsana

    2015-01-01

    Background Age-related changes occur in both the peripheral and central nervous system, yet little is known about the influence of chronic pain on pain sensitivity in older persons. The aim of this study was to investigate pain sensitivity in elders with chronic neck pain compared to healthy elders. Methods Thirty elderly women with chronic neck pain and 30 controls were recruited. Measures of pain sensitivity included pressure pain thresholds, heat/cold pain thresholds and suprathreshold heat pain responses. The pain measures were assessed over the cervical spine and at a remote site, the tibialis anterior muscle. Results Elders with chronic neck pain had lower pressure pain threshold over the articular pillar of C5-C6 and decreased cold pain thresholds over the cervical spine and tibialis anterior muscle when compared with controls (p pain thresholds and suprathreshold heat pain responses (p > 0.05). Conclusion The presence of pain hypersensitivity in elderly women with chronic neck pain appears to be dependent on types of painful stimuli. This may reflect changes in the peripheral and central nervous system with age. PMID:26039149

  11. Optokinetic stimulation increases limb pain and forehead hyperalgesia in complex regional pain syndrome

    DEFF Research Database (Denmark)

    Knudsen, Lone F.; Drummond, Peter D.

    2015-01-01

    BACKGROUND: Ambiguous visual stimuli increase limb pain in patients with complex regional pain syndrome (CRPS), possibly due to afferent sensory feedback conflicts. Conflicting sensory stimuli can also generate unpleasant sensations in healthy people such as during motion sickness. We wanted to i...

  12. Disruption of visuospatial and somatosensory functional connectivity in anorexia nervosa.

    Science.gov (United States)

    Favaro, Angela; Santonastaso, Paolo; Manara, Renzo; Bosello, Romina; Bommarito, Giulia; Tenconi, Elena; Di Salle, Francesco

    2012-11-15

    Although body image disturbance is considered one of the core characteristics of anorexia nervosa (AN), the exact nature of this complex feature is poorly understood. Task-related functional magnetic resonance imaging studies can only partially explore the multimodal complexity of body consciousness, which is a complex cognition underpinned by aspects of visual perception, proprioception, and touch. The aim of the present study was to explore the functional connectivity of networks involved in visuospatial and somatosensory processing in AN. Twenty-nine subjects with AN, 16 women who had recovered from it, and 26 healthy women underwent a resting-state functional magnetic resonance imaging scan and neuropsychological assessment of their visuospatial abilities using the Rey-Osterrieth Complex Figure Test. Both AN groups showed areas of decreased connectivity in the ventral visual network, a network involved in the "what?" pathway of visual perception. Even more interestingly, the AN group, but not the recovered AN group, displayed increased coactivation in the left parietal cortex, encompassing the somatosensory cortex, in an area implicated in long-term multimodal spatial memory and representation, even in the absence of visual information. A neuropsychological assessment of visuospatial abilities revealed that aspects of detail processing and global integration (central coherence) showed correlations with connectivity of this brain area in the AN group. Our findings show that AN is associated with double disruption of brain connectivity, which shows a specific association with visuospatial difficulties and may explain the failure of the integration process between visual and somatosensory perceptual information that might sustain body image disturbance. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. An evaluation of the somatosensory profile of hemiparetic individuals

    Directory of Open Access Journals (Sweden)

    R.S. Mota

    2010-01-01

    Full Text Available The purpose of this study was to evaluate the somatosensory profile of 18 hemiparetic spastic victims of stroke with and without blocking vision. Maximal isometric contraction test was used for flexor and extensor muscles of the hip and knee, and flexor plantar muscles. The number of cycles per minute on stationary bike was also measured with eyes opened and closed. Significant differences were found suggesting the existence of miscommunication between sensory-motor neural mechanisms responsible for voluntary motor actions in these individuals.

  14. Multi-frequency phase locking in human somatosensory cortex

    NARCIS (Netherlands)

    Langdon, A.J.; Boonstra, T.W.; Breakspear, M.

    2011-01-01

    Cortical population responses to sensory input arise from the interaction between external stimuli and the intrinsic dynamics of the densely interconnected neuronal population. Although there is a large body of knowledge regarding single neuron responses to periodic stimuli, responses at the scale

  15. Pain adaptability in individuals with chronic musculoskeletal pain is not associated with conditioned pain modulation

    DEFF Research Database (Denmark)

    Wan, Dawn Wong Lit; Arendt-Nielsen, Lars; Wang, Kelun

    2018-01-01

    (MSK). CPTs at 2°C and 7°C were used to assess the status of pain adaptability in participants with either chronic non-specific low back pain or knee osteoarthritis. The participants' potency of conditioned pain modulation (CPM) and local inhibition were measured. The strengths of pain adaptability...... at both CPTs were highly correlated. PA and PNA did not differ in their demographics, pain thresholds from thermal and pressure stimuli, or potency of local inhibition or CPM. PA reached their maximum pain faster than PNA (t41=-2.76, p... days whereas PNA did not (F (6,246) = 3.01, p = 0.01). The dichotomy of pain adaptability exists in MSK patients. Consistent with the healthy human study, the strength of pain adaptability and potency of CPM are not related. Pain adaptability could be another form of endogenous pain inhibition which...

  16. Managing neuropathic pain in dogs

    Directory of Open Access Journals (Sweden)

    Sarah A Moore

    2016-02-01

    Full Text Available Disorders of the somatosensory system such as neuropathic pain are common in people with chronic neurologic and musculoskeletal diseases, yet these conditions remain an underappreciated morbidity in our veterinary patients. This is likely because assessment of neuropathic pain in people relies heavily on self-reporting, something our veterinary patients are not able to do. The development of neuropathic pain is a complex phenomenon, and concepts related to it are frequently not addressed in the standard veterinary medical curriculum such that veterinarians may not recognize this as a potential problem in patients. The goals of this review are to discuss basic concepts in the pathophysiology of neuropathic pain, provide definitions for common clinical terms used in association with the condition, and discuss available medical treatment options for dogs with neuropathic pain. The development of neuropathic pain involves key mechanisms such as ectopic afferent nerve activity, peripheral sensitization, central sensitization, impaired inhibitory modulation, and activation of microglia. Treatments aimed at reducing neuropathic pain are targeted at one or more of these mechanisms. Several drugs are commonly used in the veterinary clinical setting to treat neuropathic pain. These include gabapentin, pregabalin, amantadine, and amitriptyline. Proposed mechanisms of action for each drug, and known pharmacokinetic profiles in dogs are discussed. Strong evidence exists in the human literature for the utility of most of these treatments, but clinical veterinary-specific literature is currently limited. Future studies should focus on objective methods to document neuropathic pain and monitor response to therapy in our veterinary patients.

  17. Orofacial pain conditions

    DEFF Research Database (Denmark)

    Pedersen, Anne Marie Lynge; Forssell, Heli; Grinde, Bjørn

    2016-01-01

    Pain of the oral mucosa is a common accompanying symptom of various oral mucosal lesions caused by local and systemic diseases. Pain of the oral mucosa is usually associated with a known cause of tissue damage, e.g. mucosal ulcer or erosion, and it generally responds to adequate treatment...... and dissolves after healing. Chronic pain, on the other hand, persists months and years after apparent tissue healing, and attempts to alleviate pain are challenging. Neuropathic pain occurs due to damage neurogenic structures in the peripheral and/or the central nervous system. It may occur in the absence...... of any obvious noxious stimuli, and in the oral mucosal, the pain is often described as tingling and burning. In the oral cavity, burning mouth syndrome (BMS) is presently considered to have neuropathic background. It is important for dental practitioners to have a clear understanding of the various...

  18. Neonatal pain management

    Directory of Open Access Journals (Sweden)

    Tarun Bhalla

    2014-01-01

    Full Text Available The past 2-3 decades have seen dramatic changes in the approach to pain management in the neonate. These practices started with refuting previously held misconceptions regarding nociception in preterm infants. Although neonates were initially thought to have limited response to painful stimuli, it was demonstrated that the developmental immaturity of the central nervous system makes the neonate more likely to feel pain. It was further demonstrated that untreated pain can have long-lasting physiologic and neurodevelopmental consequences. These concerns have resulted in a significant emphasis on improving and optimizing the techniques of analgesia for neonates and infants. The following article will review techniques for pain assessment, prevention, and treatment in this population with a specific focus on acute pain related to medical and surgical conditions.

  19. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  1. Somatosensory evoked potentials and dynamic postural assessment in adolescent idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Dalia Mohamed Ezz El Mikkawy

    2016-01-01

    Conclusion The study demonstrates abnormal somatosensory and postural function in patients with AIS, and a significant inter-relationship between the scoliotic angle, the somatosensory system, and posture. Thus, optimum assessment and treatment of neurological pathway and balance are important in these patients.

  2. The physiology of bone pain. How much do we really know?

    Directory of Open Access Journals (Sweden)

    Sara eNencini

    2016-04-01

    Full Text Available Pain is associated with most bony pathologies. Clinical and experimental observations suggest that bone pain can be derived from noxious stimulation of the periosteum or bone marrow. Sensory neurons are known to innervate the periosteum and marrow cavity, and most of these have a morphology and molecular phenotype consistent with a role in nociception. However, little is known about the physiology of these neurons, and therefore information about mechanisms that generate and maintain bone pain is lacking. The periosteum has received greater attention relative to the bone marrow, reflecting the easier access of the periosteum for experimental assessment. With the electrophysiological preparations used, investigators have been able to record from single periosteal units in isolation, and there is a lot of information available about how they respond to different stimuli, including those that are noxious. In contrast, preparations used to study sensory neurons that innervate the bone marrow have been limited to recording multi-unit activity in whole nerves, and whilst they clearly report responses to noxious stimulation, it is not possible to define responses for single sensory neurons that innervate the bone marrow. There is only limited evidence that peripheral sensory neurons that innervate bone can be sensitized or that they can be activated by multiple stimulus types, and at present this only exists in part for periosteal units. In the central nervous system, it is clear that spinal dorsal horn neurons can be activated by noxious stimuli applied to bone. Some can be sensitized under pathological conditions and may contribute in part to secondary or refered pain associated with bony pathology. Activity related to stimulation of sensory nerves that innervate bone has also been reported in neurons of the spinoparabrachial pathway and the somatosensory cortices, both known for roles in coding information about pain. Whilst these provide some clues

  3. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    Science.gov (United States)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  4. Laterodorsal nucleus of the thalamus: A processor of somatosensory inputs.

    Science.gov (United States)

    Bezdudnaya, Tatiana; Keller, Asaf

    2008-04-20

    The laterodorsal (LD) nucleus of the thalamus has been considered a "higher order" nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. (c) 2008 Wiley-Liss, Inc.

  5. Conditioned pain modulation in patients with nonspecific chronic back pain with chronic local pain, chronic widespread pain, and fibromyalgia.

    Science.gov (United States)

    Gerhardt, Andreas; Eich, Wolfgang; Treede, Rolf-Detlef; Tesarz, Jonas

    2017-03-01

    Findings considering conditioned pain modulation (CPM) in chronic back pain (CBP) are contradictory. This might be because many patients with CBP report pain in further areas of the body, and altered CPM might influence spatial extent of pain rather than CBP per se. Therefore, we compared CPM in patients with CBP with different pain extent. Patients with fibromyalgia syndrome (FMS), for whom CPM impairment is reported most consistently, were measured for comparison. Based on clinical evaluation and pain drawings, patients were categorized into chronic local back pain (CLP; n = 53), chronic widespread back pain (CWP; n = 32), and FMS (n = 92). Conditioned pain modulation was measured by the difference in pressure pain threshold (test stimuli) at the lower back before and after tonic heat pain (conditioning stimulus). We also measured psychosocial variables. Pressure pain threshold was significantly increased in CLP patients after tonic heat pain (P pain modulation in CLP was significantly higher than that in CWP and FMS (P painful areas (0-10) were associated with lower CPM (r = 0.346, P = 0.001) in CBP but not in FMS (r = -0.013, P = 0.903). Anxiety and depression were more pronounced in FMS than in CLP or CWP (P values pain inhibition seem to be more indicated the higher the pain extent.

  6. Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems

    Directory of Open Access Journals (Sweden)

    Woodward Donald J

    2011-08-01

    Full Text Available Abstract Background The ability to encode noxious stimulus intensity is essential for the neural processing of pain perception. It is well accepted that the intensity information is transmitted within both sensory and affective pathways. However, it remains unclear what the encoding patterns are in the thalamocortical brain regions, and whether the dual pain systems share similar responsibility in intensity coding. Results Multichannel single-unit recordings were used to investigate the activity of individual neurons and neuronal ensembles in the rat brain following the application of noxious laser stimuli of increasing intensity to the hindpaw. Four brain regions were monitored, including two within the lateral sensory pain pathway, namely, the ventral posterior lateral thalamic nuclei and the primary somatosensory cortex, and two in the medial pathway, namely, the medial dorsal thalamic nuclei and the anterior cingulate cortex. Neuron number, firing rate, and ensemble spike count codings were examined in this study. Our results showed that the noxious laser stimulation evoked double-peak responses in all recorded brain regions. Significant correlations were found between the laser intensity and the number of responsive neurons, the firing rates, as well as the mass spike counts (MSCs. MSC coding was generally more efficient than the other two methods. Moreover, the coding capacities of neurons in the two pathways were comparable. Conclusion This study demonstrated the collective contribution of medial and lateral pathway neurons to the noxious intensity coding. Additionally, we provide evidence that ensemble spike count may be the most reliable method for coding pain intensity in the brain.

  7. Emotional stimuli and motor conversion disorder

    NARCIS (Netherlands)

    Voon, V.; Brezing, C.; Gallea, C.; Ameli, R.; Roelofs, K.; LaFrance, W.C.; Hallett, M.

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli,

  8. Pain in Down's Syndrome

    Directory of Open Access Journals (Sweden)

    Federica Mafrica

    2006-01-01

    Full Text Available Pain is a homeostatic mechanism that intervenes to protect the organism from harmful stimuli that could damage its integrity. It is made up of two components: the sensory-discriminative component, which identifies the provenance and characteristics of the type of pain; and the affective-motivational component, on which emotional reflexes, following the painful sensation, depend.There is a system for pain control at an encephalic and spinal level, principally made up of the periaqueductal grey matter, the periventricular area, the nucleus raphe magnus, and the pain-inhibition complex situated in the posterior horns of the spinal cord. Through the activation of these pain-control systems, the nervous system suppresses the afference of pain signals. Endogenous opioids represent another analgesic system.In the course of various studies on pain transmission in Down patients, the reduced tolerance of pain and the incapacity to give a qualitative and quantitative description emerged in a powerful way. All of these aspects cause difficulty in evaluating pain. This is linked to several learning difficulties. However, it cannot be excluded that in these anomalies of pain perception, both the anatomical and the neurotransmitter alteration, typical of this syndrome, may hold a certain importance.This fact may have important clinical repercussions that could affect the choice of therapeutic and rehabilitative schemes for treatment of pathologies in which pain is the dominant symptom, such as postoperative pain. It could influence research on analgesics that are more suitable for these patients, the evaluation of the depth of analgesia during surgical operation, and ultimately, absence of obvious pain manifestations. In conclusion, alterations of the central nervous system, neurotransmitters, pain transmission, and all related problems should be considered in the management of pain in patients with Down's syndrome, especially by algologists and

  9. c-Kit expression in somatosensory nuclei of lower medulla oblongata.

    Science.gov (United States)

    Pop, Elena; Mărdărescu, Mariana; Lazăr, M; Rusu, M C; Ion, Daniela Adriana

    2013-01-01

    Protein kinase signal-transduction pathways play critical roles in regulating nociception. The c-kit receptor contributes to pain regulation in the spinal cord and is present on both peripheral and central terminals. Expression of c-kit was demonstrated in human trigeminal and spinal ganglia. However, the brainstem expression of c-kit was overlooked. We aimed to evaluate it by immunohistochemistry, on eight samples of human lower medulla oblongata. We used two clones of CD117/c-kit antibodies, from different manufacturers, and neurofilament antibodies. Positive expression of CD117/c-kit was found within the spinal trigeminal nucleus, the gracilis, cuneate, and lateral cuneate nuclei, and within the olivary complex. CD117/c-kit positive interstitial networks of these nuclei were positively labeled with neurofilaments. CD117/c-kit labeled the olivary neurons, but not the magnocellular neurons of the trigeminal, gracilis and cuneate nuclei. c-kit interstitial systems of brainstem could play so an important role for the functional status along the somatosensory neural circuits.

  10. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex

    Directory of Open Access Journals (Sweden)

    Anna Maria Haarmann

    2014-11-01

    Full Text Available Introduction: Spreading depression (SD is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. Methods: The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP in the neocortex was also evaluated. Results: The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. Discussion: These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.

  11. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  12. Aspects of dentinal and pulpal pain. Pain of dentinal and pulpal origin--a review for the clinician.

    Science.gov (United States)

    Figdor, D

    1994-04-01

    Recent advances in understanding the mechanisms of pain arising from the dental pulp serve to benefit patients by improving the clinician's ability to diagnose and treat pain. There are two types of pain arising from the pulp which are mediated by entirely different nerve fibres, each with their own individual characteristics. One is a short, sharp fast pain which is induced by stimuli which cause a rapid fluid flow within the dentinal tubules. Such stimuli include cold, heat, air, drilling, and osmotic stimuli. Once the affected teeth are identified, they can often be treated by sealing the open, exposed dentine. The second type of pain is experienced as a slow, dull, aching, poorly localized pain which is mediated by pain fibres activated by stimuli which are noxious to the pulp, such as prolonged damaging heat and inflammatory mediators. Pain of this character can be difficult to diagnose and often indicates serious pulp damage necessitating removal of the offending pulp by endodontic therapy.

  13. Secondary hyperalgesia to heat stimuli after burn injury in man

    DEFF Research Database (Denmark)

    Pedersen, J L; Kehlet, H

    1998-01-01

    The aim of the study was to examine the presence of hyperalgesia to heat stimuli within the zone of secondary hyperalgesia to punctate mechanical stimuli. A burn was produced on the medial part of the non-dominant crus in 15 healthy volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min......), and assessments were made 70 min and 40 min before, and 0, 1, and 2 h after the burn injury. Hyperalgesia to mechanical and heat stimuli were examined by von Frey hairs and contact thermodes (3.75 and 12.5 cm2), and pain responses were rated with a visual analog scale (0-100). The area of secondary hyperalgesia...... to punctate stimuli was assessed with a rigid von Frey hair (462 mN). The heat pain responses to 45 degrees C in 5 s (3.75 cm2) were tested in the area just outside the burn, where the subjects developed secondary hyperalgesia, and on the lateral crus where no subject developed secondary hyperalgesia (control...

  14. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.

    Science.gov (United States)

    Friedrich, Julia; Mückschel, Moritz; Beste, Christian

    2018-03-01

    Sensorimotor integration is essential for successful motor control and the somatosensory modality has been shown to have strong effects on the execution of motor plans. The primary (SI) and the secondary somatosensory (SII) cortices are known to differ in their neuroanatomical connections to prefrontal areas, as well as in their involvement to encode cognitive aspects of tactile processing. Here, we ask whether the area-specific processing architecture or the structural neuroanatomical connections with prefrontal areas determine the efficacy of sensorimotor integration processes for motor control. In a system neurophysiological study including EEG signal decomposition (i.e., residue iteration decomposition, RIDE) and source localization, we investigated this question using vibrotactile stimuli optimized for SI or SII processing. The behavioral data show that when being triggered via the SI area, inhibitory control of motor processes is stronger as when being triggered via the SII area. On a neurophysiological level, these effects were reflected in the C-cluster as a result of a temporal decomposition of EEG data, indicating that the sensory processes affecting motor inhibition modulate the response selection level. These modulations were associated with a stronger activation of the right inferior frontal gyrus extending to the right middle frontal gyrus as parts of a network known to be involved in inhibitory motor control when response inhibition is triggered over SI. In addition, areas important for sensorimotor integration like the postcentral gyrus and superior parietal cortex showed activation differences. The data suggest that connection patterns are more important for sensorimotor integration and control than the more restricted area-specific processing architecture.

  15. The differences of brain cortical activation between superficial pain and deep pain

    International Nuclear Information System (INIS)

    Ikemoto, Tatsunori; Ushida, Takahiro; Taniguchi, Shinichirou; Tani, Toshikazu; Morio, Kazuo; Sasaki, Toshikazu; Tanaka, Shigeki

    2006-01-01

    Using functional magnetic resonance imaging (FMRI) technology, we investigated the difference of pain related brain cortical activation derived from noxious stimulation to the skin and muscular tissue. Ten healthy volunteers who have no history of brain vascular disease were enrolled in this study. A cutaneous pain was provoked by isotonic (0.9%) saline injection into intra-dermal space on right lower leg through 24G plastic catheter, and a muscle pain was provoked by hypertonic (3%) saline injection into right tibialis anterior muscle. We used event-related FMRI to measure brain activity during each injection. Visual analogue scale (VAS) was used to quantify pain intensity and unpleasantness, and pain quality was assessed with several verbal descriptions. Pain unpleasantness rating was higher in the muscle pain compared to the cutaneous pain, despite the same pain intensity rating. The cutaneous pain had more acute pain onset than the muscle pain. Pain duration after stimulation was short in the cutaneous pain, but long in the muscle pain. The extent of the painful region tended to be larger with the muscle pain, but there was no statistical significance. Evoked FMRI response from the cutaneous pain showed distinct brain activation in the inferior and superior parietal cortex (BA: Brodmann area 5/7/40), primary and secondary somatosensory cortex (S1 and S2), insula, supplementary motor area (SMA, BA6), posterior cingulate cortex and cerebellum. On the other hand, FMRI response from muscle pain showed distinct brain activation mainly in the contralateral insula. These results suggest that the parietal lobe including the S1 is the essential area for cognition of sharp and well-localized pain conditions such as cutaneous pain, and may not be essential for cognition of diffuse pain derived from muscular tissue. (author)

  16. Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography.

    Science.gov (United States)

    Karageorgiou, Elissaios; Koutlas, Ioannis G; Alonso, Aurelio A; Leuthold, Arthur C; Lewis, Scott M; Georgopoulos, Apostolos P

    2008-08-01

    We used magnetoencephalography (MEG) in 10 healthy human subjects to study cortical responses to tactile stimuli applied to the fingertips of digits 2-5 of the right hand. Each stimulus lasted 50 ms and was produced by air-driven elastic membranes. Four-hundred stimuli were delivered on each finger in three temporal patterns (conditions). In the "Discrete" condition, stimuli were applied to each finger repetitively with an interstimulus interval (ISI) of 1-2 s. In the "Continuous" condition, stimuli were applied to the fingers sequentially as four-stimulus trains with zero ISI and 1-2 s intervening between trains. Finally, in the "Gap" condition, stimuli were applied as in the Continuous condition but with an ISI of 50 ms. A sensation of tactile motion across fingers (digit 2 --> digit 5) was reported by all subjects in the Continuous and Gap conditions. Cortical responses were extracted as single equivalent current dipoles over a period of 1 s following stimulus onset. In all three conditions, initial responses in left primary somatosensory cortex (SI) were observed ~20 to 50 ms after stimulus onset and were followed by additional left SI responses and bilateral responses in the secondary somatosensory cortex (SII). In addition, in the Continuous and Gap conditions, there was an activation of the precentral gyrus, the temporal aspects of which depended on the temporal relation of the administered stimuli, as follows. An ISI of 0 ms led to activation of the precentral gyrus shortly after the second stimulation, whereas an ISI of 50 ms led to activation of the precentral gyrus after the third stimulation. The current findings support results from previous studies on temporal activity patterns in SI and SII, verify the participation of the precentral gyrus during tactile motion perception and, in addition, reveal aspects of integration of sequential sensory stimulations over nonadjacent areas as well as temporal activity patterns in the postcentral and precentral

  17. Quantitative sensory testing of neuropathic pain patients: potential mechanistic and therapeutic implications.

    Science.gov (United States)

    Pfau, Doreen B; Geber, Christian; Birklein, Frank; Treede, Rolf-Detlef

    2012-06-01

    Quantitative sensory testing (QST) is a widely accepted tool to investigate somatosensory changes in pain patients. Many different protocols have been developed in clinical pain research within recent years. In this review, we provide an overview of QST and tested neuroanatomical pathways, including peripheral and central structures. Based on research studies using animal and human surrogate models of neuropathic pain, possible underlying mechanisms of chronic pain are discussed. Clinically, QST may be useful for 1) the identification of subgroups of patients with different underlying pain mechanisms; 2) prediction of therapeutic outcomes; and 3) quantification of therapeutic interventions in pain therapy. Combined with sensory mapping, QST may provide useful information on the site of neural damage and on mechanisms of positive and negative somatosensory abnormalities. The use of QST in individual patients for diagnostic purposes leading to individualized therapy is an interesting concept, but needs further validation.

  18. Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex

    Science.gov (United States)

    Storchi, Riccardo; Zippo, Antonio G.; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E. M.

    2012-01-01

    Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role. PMID:22586452

  19. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound.

    Science.gov (United States)

    Lee, Wonhye; Chung, Yong An; Jung, Yujin; Song, In-Uk; Yoo, Seung-Schik

    2016-10-26

    Transcranial focused ultrasound (FUS) is gaining momentum as a novel non-invasive brain stimulation method, with promising potential for superior spatial resolution and depth penetration compared to transcranial magnetic stimulation or transcranial direct current stimulation. We examined the presence of tactile sensations elicited by FUS stimulation of two separate brain regions in humans-the primary (SI) and secondary (SII) somatosensory areas of the hand, as guided by individual-specific functional magnetic resonance imaging data. Under image-guidance, acoustic stimulations were delivered to the SI and SII areas either separately or simultaneously. The SII areas were divided into sub-regions that are activated by four types of external tactile sensations to the palmar side of the right hand-vibrotactile, pressure, warmth, and coolness. Across the stimulation conditions (SI only, SII only, SI and SII simultaneously), participants reported various types of tactile sensations that arose from the hand contralateral to the stimulation, such as the palm/back of the hand or as single/neighboring fingers. The type of tactile sensations did not match the sensations that are associated with specific sub-regions in the SII. The neuro-stimulatory effects of FUS were transient and reversible, and the procedure did not cause any adverse changes or discomforts in the subject's mental/physical status. The use of multiple FUS transducers allowed for simultaneous stimulation of the SI/SII in the same hemisphere and elicited various tactile sensations in the absence of any external sensory stimuli. Stimulation of the SII area alone could also induce perception of tactile sensations. The ability to stimulate multiple brain areas in a spatially restricted fashion can be used to study causal relationships between regional brain activities and their cognitive/behavioral outcomes.

  20. Electrodiagnostic applications of somatosensory evoked high-frequency EEG oscillations: Technical considerations.

    Science.gov (United States)

    Simpson, A J; Cunningham, M O; Baker, M R

    2018-03-01

    High frequency oscillations (HFOs) embedded within the somatosensory evoked potential (SEP) are not routinely recorded/measured as part of standard clinical SEPs. However, HFOs could provide important additional diagnostic/prognostic information in various patient groups in whom SEPs are tested routinely. One area is the management of patients with hypoxic ischaemic encephalopathy (HIE) in the intensive care unit (ICU). However, the sensitivity of standard clinical SEP recording techniques for detecting HFOs is unknown. SEPs were recorded using routine clinical methods in 17 healthy subjects (median nerve stimulation; 0.5 ms pulse width; 5 Hz; maximum 4000 stimuli) in an unshielded laboratory. Bipolar EEG recordings were acquired (gain 50 k; bandpass 3Hz-2 kHz; sampling rate 5 kHz; non-inverting electrode 2 cm anterior to C3/C4; inverting electrode 2 cm posterior to C3/C4). Data analysis was performed in MATLAB. SEP-HFOs were detected in 65% of controls using standard clinical recording techniques. In 3 controls without significant HFOs, experiments were repeated using a linear electrode array with higher spatial sampling frequency. SEP-HFOs were observed in all 3 subjects. Currently standard clinical methods of recording SEPs are not sufficiently sensitive to permit the inclusion of SEP-HFOs in routine clinical diagnostic/prognostic assessments. Whilst an increase in the number/density of EEG electrodes should improve the sensitivity for detecting SEP-HFOs, this requires confirmation. By improving and standardising clinical SEP recording protocols to permit the acquisition/analysis of SEP-HFOs, it should be possible to gain important insights into the pathophysiology of neurological disorders and refine the management of conditions such as HIE. Copyright © 2018. Published by Elsevier Inc.

  1. Orofacial pain

    Directory of Open Access Journals (Sweden)

    Marjolijn Oomens

    2016-06-01

    Full Text Available In the primary care sector, diagnosis and initial management of orofacial pain are often performed by familydoctors and dentists. Knowledge of the different types of orofacial pain and headache disorders is therefor of great importance. The International Classification of Headache Disorders (ICHD-3 provides an overview of the different types of orofacial pain and will be discussed in this lecture. The main focus will be on trigeminal neuralgia and cluster headache and the current research in this field. Trigeminal Neuralgia (TN is defined as a disorder characterized by recurrent, unilateral, brief, electricshock-like pains, abrupt in onset and termination, limited to the distribution of one or more divisions of thetrigeminal nerve and triggered by innocuous stimuli. Unfortunately, most TN is idiopathic, and the aetiology isnot clear. The guidelines on pharmaceutical TN management published by the American Academy of Neurology (AAN and the European Federation of Neurological Societies (EFNS recommend carbamazepine (CBZ; 200–1200 mg/day or oxcarbazepine (OXC; 600–1800 mg/day as first-line therapy. Both are antiepileptics with well known interactions with other drugs and safety problems. An overview of the currently available literature on the pharmaceutical management of TN patients is discussed. Cluster headache (CH is one of the most painful primary headache disorders. It is characterized by daily or almost daily attacks of unilateral excruciating periorbital pain associated with ipsilateral cranial autonomic symptoms, typically lasting between 15 and 180 minutes if untreated. Cluster headache is caused by the relaesement of neurotransmitters and vasodilators from the sphenopalatine ganglion (SPH. The SPG is a large extracranial parasympathetic ganglion located in the pterygopalatine fossa (PPF. The current treatments for CH attacks are injectable sumatriptan and oxygen inhalation. Both treatments have well known side effects and

  2. Heightened eating drive and visual food stimuli attenuate central nociceptive processing

    OpenAIRE

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B.; Giesbrecht, Timo; Thomas, Anna; Harrold, Joanne A.; Halford, Jason C. G.; Stancak, Andrej

    2014-01-01

    Hunger and pain are basic drives that compete for a behavioral response when experienced together. To investigate the cortical processes underlying hunger-pain interactions, we manipulated participants' hunger and presented photographs of appetizing food or inedible objects in combination with painful laser stimuli. Fourteen healthy participants completed two EEG sessions: one after an overnight fast, the other following a large breakfast. Spatio-temporal patterns of cortical activation under...

  3. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  4. Decoding stimulus features in primate somatosensory cortex during perceptual categorization

    Science.gov (United States)

    Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo

    2015-01-01

    Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711

  5. Motor and somatosensory conversion disorder: a functional unawareness syndrome?

    Science.gov (United States)

    Perez, David L; Barsky, Arthur J; Daffner, Kirk; Silbersweig, David A

    2012-01-01

    Although conversion disorder is closely connected to the origins of neurology and psychiatry, it remains poorly understood. In this article, the authors discuss neural and clinical parallels between lesional unawareness disorders and unilateral motor and somatosensory conversion disorder, emphasizing functional neuroimaging/disease correlates. Authors suggest that a functional-unawareness neurobiological framework, mediated by right hemisphere-lateralized, large-scale brain network dysfunction, may play a significant role in the neurobiology of conversion disorder. The perigenual anterior cingulate and the posterior parietal cortices are detailed as important in disease pathophysiology. Further investigations will refine the functional-unawareness concept, clarify the role of affective circuits, and delineate the process through which functional neurologic symptoms emerge.

  6. Pain and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Sabine Sator-Katzenschlager, MD.

    2014-07-01

    However, the cerebral processing of hyperalgesia and allodynia is still controversially discussed. In recent years, neuroimaging methods (functional magnetic resonance imaging, fMRI; magnetoencephalography, MEG; positron emission tomography, PET have provided new insightsinto the aberrant cerebral processing of neuropathic pain. Thepresent paper reviews different cerebral mechanisms contributing to chronicity processes in neuropathic pain syndromes. These mechanisms include reorganisation of cortical somatotopic maps in sensory or motor areas (highly relevant for phantom limb pain and CRPS, increased activity in primary nociceptive areas, recruitment of new cortical areas usually not activated by nociceptive stimuli and aberrant activity in brain areas normally involved in descending inhibitory pain networks. Moreover, there is evidence from PET studies for changes of excitatory and inhibitory transmitter systems. Finally, advanced methods of structural brain imaging (voxel-based morphometry, VBM show significant structural changes suggesting that chronic pain syndromes may be associated with neurodegeneration.

  7. Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain

    DEFF Research Database (Denmark)

    Abrahamsen, Randi; Dietz, Martin; Lodahl, Sanne

    2010-01-01

    hyperalgesia. Direct contrasts between control and hypnotic hypoalgesia conditions demonstrated significant decreases in right posterior insula and BA21, as well as left BA40 during hypoalgesia. These findings are the first to describe hypnotic modulation of brain activity associated with nociceptive......Hypnosis modulates pain perception but the associated brain mechanisms in chronic pain conditions are poorly understood. Brain activity evoked by painful repetitive pin-prick stimulation of the left mental nerve region was investigated with use of fMRI in 19 patients with painful temporomandibular...... condition and significantly higher in the hypnotic hyperalgesia condition. In the control condition, painful stimulation caused significant activation of right posterior insula, primary somatosensory cortex (SI), BA21, and BA6, and left BA40 and BA4. Painful stimulation during hypnotic hyperalgesia...

  8. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    Directory of Open Access Journals (Sweden)

    Sarah Meyer

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  9. Uncertainty about the intensity of impending pain increases ensuing pain responses in congenital blindness

    DEFF Research Database (Denmark)

    Holten-Rossing, S.; Slimani, H.; Ptito, M.

    2018-01-01

    about the intensity of a pending painful stimulus affects pain differently in congenitally blind and sighted control subjects. We measured pain and anxiety in a group of 11 congenitally blind and 11 age- and sex-matched normal sighted control participants. Painful stimuli were delivered under two...... psychological conditions, whereby participants were either certain or uncertain about the intensity of a pending noxious stimuli. Although both blind and sighted participants had increased anxiety ratings in the uncertain condition, pain ratings increased only in the congenitally blind participants. Our data...

  10. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Ali Asad

    Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate

  11. Effects of gabapentin on experimental somatic pain and temporal summation

    DEFF Research Database (Denmark)

    Arendt-Nielsen, Lars; Frøkjaer, Jens Brøndum; Staahl, Camilla

    2007-01-01

    at 2 Hz); (2) stimulus-response function relating pain intensity scores (visual analog scale, VAS) to increasing current intensities for electrical skin and muscle stimuli (single and repeated, determined at baseline); and (3) the pain intensity (VAS) and pain areas after intramuscular injection......, was to examine the effect of a single dose of 1200 mg gabapentin on multi-modal experimental cutaneous and muscle pain models. METHODS: The following pain models were applied: (1) pain thresholds to single and repeated cutaneous and intramuscular electrical stimulation (temporal summation to 5 stimuli delivered...... reduced the area under the pain intensity curve to hypertonic saline injections in the muscle (P = .02); and (3) significantly reduced the area of pain evoked by hypertonic saline (P = .03). CONCLUSIONS: Gabapentin reduces temporal summation of skin stimuli at pain threshold intensities; this may have...

  12. A novel device for the study of somatosensory information processing

    Science.gov (United States)

    Holden, Jameson K.; Nguyen, Richard H.; Francisco, Eric M.; Zhang, Zheng; Dennis, Robert G.; Tommerdahl, Mark

    2012-01-01

    Current methods for applying multi-site vibratory stimuli to the skin typically involve the use of multiple, individual vibrotactile stimulators. Limitations of such an arrangement include difficulty with both positioning the stimuli as well as ensuring that stimuli are delivered in a synchronized and deliberate manner. Previously, we reported a two-site tactile stimulator that was developed in order to solve these problems (Tannan et al., 2007a). Due to both the success of that novel stimulator and the limitations that were inherent in that device, we designed and fabricated a four-site stimulator that provides a number of advantages over the previous version. First, the device can stimulate four independent skin sites and is primarily designed for stimulating the digit tips. Second, the positioning of the probe tips has been re-designed to provide better ergonomic hand placement. Third, the device is much more portable than the previously-reported stimulator. Fourth, the stimulator head has a much smaller footprint on the table or surface where it resides. To demonstrate the capacity of the device for delivering tactile stimulation at four independent sites, a finger agnosia protocol, in the presence and absence of conditioning stimuli, was conducted on seventeen healthy control subjects. The study demonstrated that with increasing amplitudes of vibrotactile conditioning stimuli concurrent with the agnosia test, inaccuracies of digit identification increased, particularly at digits D3 and D4. The results are consistent with prior studies that implicated synchronization of adjacent and near-adjacent cortical ensembles with conditioning stimuli in impacting TOJ performance (Tommerdahl et al., 2007). PMID:22155443

  13. Recovery After Stroke: Dealing with Pain

    Science.gov (United States)

    ... to the brain in response to touch, warmth, cold and other stimuli. But, the brain does not understand these signals correctly. Instead, it registers even slight sensations in the skin as painful. Stroke survivors with ...

  14. Somatosensory cortices are required for the acquisition of morphine-induced conditioned place preference.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Meng

    Full Text Available BACKGROUND: Sensory system information is thought to play an important role in drug addiction related responses. However, how somatic sensory information participates in the drug related behaviors is still unclear. Many studies demonstrated that drug addiction represents a pathological usurpation of neural mechanisms of learning and memory that normally relate to the pursuit of rewards. Thus, elucidate the role of somatic sensory in drug related learning and memory is of particular importance to understand the neurobiological mechanisms of drug addiction. PRINCIPAL FINDINGS: In the present study, we investigated the role of somatosensory system in reward-related associative learning using the conditioned place preference model. Lesions were made in somatosensory cortices either before or after conditioning training. We found that lesion of somatosensory cortices before, rather than after morphine conditioning impaired the acquisition of place preference. CONCLUSION: These results demonstrate that somatosensory cortices are necessary for the acquisition but not retention of morphine induced place preference.

  15. Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience.

    Science.gov (United States)

    Kragel, Philip A; LaBar, Kevin S

    2016-01-01

    Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them.

  16. Somatosensory amplification mediates sex differences in psychological distress among cardioverter-defibrillator patients

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Baumert, Jens; Kolb, Christof

    2010-01-01

    The present study examined whether female patients with an implantable cardioverter defibrillator (ICD) report more psychological distress than male patients, and whether somatosensory amplification mediates this relationship. Design: Consecutive ICD patients (N = 241; 33% women) participating in...

  17. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient

    NARCIS (Netherlands)

    van de Wassenberg, Wilma J. G.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in

  18. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans

    NARCIS (Netherlands)

    Veldman, M. P.; Maffiuletti, N. A.; Hallett, M.; Zijdewind, I.; Hortobagyi, T.

    2014-01-01

    This analytic review reports how prolonged periods of somatosensory electric stimulation (SES) with repetitive transcutaneous nerve stimulation can have 'direct' and 'crossed' effects on brain activation, corticospinal excitability, and motor performance. A review of 26 studies involving 315 healthy

  19. Prediction of postoperative pain by preoperative pain response to heat stimulation in total knee arthroplasty

    DEFF Research Database (Denmark)

    Lunn, Troels H; Gaarn-Larsen, Lissi; Kehlet, Henrik

    2013-01-01

    It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. We aimed to explore if 2 heat test paradigms could predict postopera......It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. We aimed to explore if 2 heat test paradigms could predict...... and logistic regressions analyses were carried out including 8 potential preoperative explanatory variables (among these anxiety, depression, preoperative pain and pain catastrophizing) to assess pain response to preoperative heat pain stimulation as independent predictor for postoperative pain. 100 patients...... by the linear and logistic regression analyses, where only anxiety, preoperative pain and pain catastrophizing were significant explanatory variables (but with low R-Squares;0.05-0.08). Pain responses to 2 types of preoperative heat stimuli were not independent clinical relevant predictors for postoperative...

  20. [Neurophysiological investigations of information processing in the somato-sensory system].

    Science.gov (United States)

    Kunesch, E

    2009-08-01

    The ability of the human hand to perform complex sensorimotor tasks such as tactile exploration and grasping is based on 1. exact encoding of somatosensory information by cutaneous mechanoreceptors, 2. elaborated processing of afferent signals in somatosensory relay stations and cortex fields, 3. rapid and effective interaction of sensory feedback with motor programs, and 4. different modes of sensory control, which can be switched over. (c) Georg Thieme Verlag KG Stuttgart-New York.

  1. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    Science.gov (United States)

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (pinformation carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Pain Adaptability in Individuals With Chronic Musculoskeletal Pain Is Not Associated With Conditioned Pain Modulation.

    Science.gov (United States)

    Wan, Dawn Wong Lit; Arendt-Nielsen, Lars; Wang, Kelun; Xue, Charlie Changli; Wang, Yanyi; Zheng, Zhen

    2018-03-27

    Healthy humans can be divided into the pain adaptive (PA) and the pain nonadaptive (PNA) groups; PA showed a greater decrease in pain rating to a cold pressor test (CPT) than PNA. This study examined if the dichotomy of pain adaptability existed in individuals with chronic musculoskeletal pain. CPTs at 2°C and 7°C were used to assess the status of pain adaptability in participants with either chronic nonspecific low back pain or knee osteoarthritis. The participants' potency of conditioned pain modulation (CPM) and local inhibition were measured. The strengths of pain adaptability at both CPTs were highly correlated. PA and PNA did not differ in their demographic characteristics, pain thresholds from thermal and pressure stimuli, or potency of local inhibition or CPM. PA reached their maximum pain faster than PNA (t 41 = -2.76, P adaptability exists in musculoskeletal pain patients. Consistent with the healthy human study, the strength of pain adaptability and potency of CPM are not related. Pain adaptability could be another form of endogenous pain inhibition of which clinical implication is yet to be understood. The dichotomy of pain adaptability was identified in healthy humans. The current study confirms that this dichotomy also exists in individuals with chronic musculoskeletal pain, and could be reliably assessed with CPTs at 2°C and 7°C. Similar to the healthy human study, pain adaptability is not associated with CPM, and may reflect the temporal aspect of pain inhibition. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Bell, Andrew M; Marin, Alina; Taylor, Rebecca; Boyle, Kieran A; Furuta, Takahiro; Watanabe, Masahiko; Polgár, Erika; Todd, Andrew J

    2017-03-01

    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.

  4. Sex differences in the neural representation of pain unpleasantness.

    Science.gov (United States)

    Girard-Tremblay, Lydia; Auclair, Vincent; Daigle, Kathya; Léonard, Guillaume; Whittingstall, Kevin; Goffaux, Philippe

    2014-08-01

    Sex differences in pain perception are still poorly understood, but they may be related to the way the brains of men and women respond to the affective dimensions of pain. Using a matched pain intensity paradigm, where pain intensity was kept constant across participants but pain unpleasantness was left free to vary among participants, we studied the relationship between pain unpleasantness and pain-evoked brain activity in healthy men and women separately. Experimental pain was provoked using transcutaneous electrical stimulation of the sural nerve while pain-related brain activity was measured using somatosensory-evoked brain potentials with source localization. Cardiac responses to pain were also measured using electrocardiac recordings. Results revealed that subjective pain unpleasantness was strongly associated with increased perigenual anterior cingulate cortex activity in women, whereas it was strongly associated with decreased ventromedial prefrontal cortex activity in men. Only ventromedial prefrontal cortex deactivations in men were additionally associated with increased autonomic cardiac arousal. These results suggest that in order to deal with pain's objectionable properties, men preferentially deactivate prefrontal suppression regions, leading to the mobilization of threat-control circuits, whereas women recruit well-known emotion-processing areas of the brain. This article presents neuroimaging findings demonstrating that subjective pain unpleasantness ratings are associated with different pain-evoked brain responses in men and women, which has potentially important implications regarding sex differences in the risk of developing chronic pain. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Exploration of somatosensory P50 gating in schizophrenia spectrum patients

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Chen, Andrew C N

    2004-01-01

    , male, schizophrenia spectrum patients (seven schizophrenic and five schizotypal personality disorder patients) and 14 age-matched healthy men participated in recordings of pair-wise presented auditory and median nerve stimuli. The patients had smaller amplitudes of the SEP P50 at the first stimulus...

  6. Human perception of electrical stimulation on the surface of somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    Full Text Available Recent advancement in electrocorticography (ECoG-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.

  7. Effect of somatosensory and neurofeedback training on balance in older healthy adults: a preliminary investigation.

    Science.gov (United States)

    Azarpaikan, Atefeh; Taheri Torbati, Hamidreza

    2017-10-23

    The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.

  8. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  9. Statistical modeling of the response characteristics of mechanosensitive stimuli in the human esophagus

    DEFF Research Database (Denmark)

    Drewes, A.M.; Reddy, H.; Staahl, C.

    2005-01-01

    by using a statistical model based on correlation analysis. The esophagus was distended with a bag in 32 healthy subjects by using an inflation rate of 25 mL/min. The luminal cross-sectional areas and sensory ratings were determined during the distentions. The stimuli were repeated after relaxation...... of mechanical gut stimuli in human beings. This might increase our understanding of visceral pain in health and disease and guide the statistical analysis of experimental data obtained in the gastrointestinal tract....

  10. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.

  11. Differential effect of ketamine and lidocaine on spontaneous and mechanical evoked pain in patients with nerve injury pain

    DEFF Research Database (Denmark)

    Gottrup, Hanne; Bach, Flemming Winther; Juhl, Gitte Irene

    2006-01-01

    ketamine, an N-methyl-D-aspartate receptor antagonist and lidocaine, a sodium channel blocker, on spontaneous pain, brush-evoked pain, and pinprick-evoked pain in patients with nerve injury pain. METHODS: Twenty patients participated in two randomized, double-blinded, placebo-controlled, crossover...... experiments in which they, on four different days, received a 30-minute intravenous infusion of ketamine (0.24 mg/kg), lidocaine (5 mg/kg), or saline. Ongoing pain, pain evoked by brush and repetitive pinprick stimuli, and acetone was measured before, during, and after infusion. RESULTS: Ketamine...... significantly reduced ongoing pain and evoked pain to brush and pinprick, whereas lidocaine only reduced evoked pain to repetitive pinprick stimuli. In individual patients, there was no correlation between the pain-relieving effect of lidocaine and ketamine on ongoing or mechanically evoked pains. CONCLUSIONS...

  12. More than skin deep: body representation beyond primary somatosensory cortex.

    Science.gov (United States)

    Longo, Matthew R; Azañón, Elena; Haggard, Patrick

    2010-02-01

    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond somatosensation. Somatoperception refers to the process of perceiving the body itself, and particularly of ensuring somatic perceptual constancy. We review three key elements of somatoperception: (a) remapping information from the body surface into an egocentric reference frame, (b) exteroceptive perception of objects in the external world through their contact with the body, and (c) interoceptive percepts about the nature and state of the body itself. Somatorepresentation, in contrast, refers to the essentially cognitive process of constructing semantic knowledge and attitudes about the body, including: (d) lexical-semantic knowledge about bodies generally and one's own body specifically, (e) configural knowledge about the structure of bodies, (f) emotions and attitudes directed towards one's own body, and (g) the link between physical body and psychological self. We review a wide range of neuropsychological, neuroimaging and neurophysiological data to explore the dissociation between these different aspects of higher somatosensory function. 2009 Elsevier Ltd. All rights reserved.

  13. Posterior insular cortex - a site of vestibular-somatosensory interaction?

    Science.gov (United States)

    Baier, Bernhard; Zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne

    2013-09-01

    Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact.

  14. Sensory adaptation to electrical stimulation of the somatosensory nerves.

    Science.gov (United States)

    Graczyk, Emily Lauren; Delhaye, Benoit; Schiefer, Matthew A; Bensmaia, Sliman J; Tyler, Dustin J

    2018-03-19

    Sensory systems adapt their sensitivity to ambient stimulation levels to improve their responsiveness to changes in stimulation. The sense of touch is also subject to adaptation, as evidenced by the desensitization produced by prolonged vibratory stimulation of the skin. Electrical stimulation of nerves elicits tactile sensations that can convey feedback for bionic limbs. In this study, we investigate whether artificial touch is also subject to adaptation, despite the fact that the peripheral mechanotransducers are bypassed. Approach: Using well-established psychophysical paradigms, we characterize the time course and magnitude of sensory adaptation caused by extended electrical stimulation of the residual somatosensory nerves in three human amputees implanted with cuff electrodes. Main results: We find that electrical stimulation of the nerve also induces perceptual adaptation that recovers after cessation of the stimulus. The time course and magnitude of electrically-induced adaptation are equivalent to their mechanically-induced counterparts. Significance: We conclude that, in natural touch, the process of mechanotransduction is not required for adaptation, and artificial touch naturally experiences adaptation-induced adjustments of the dynamic range of sensations. Further, as it does for native hands, adaptation confers to bionic hands enhanced sensitivity to changes in stimulation and thus a more natural sensory experience. . Creative Commons Attribution license.

  15. [Normative aspects of somatosensory evoked P300 components].

    Science.gov (United States)

    Louzã Neto, M R; Maurer, K; Neuhauser, B

    1989-06-01

    Using a somatosensory version of the oddball-paradigma the influence of age and gender on the P300-component and the comparison of the potential after stimulation of the right and left median nerve was studied in 30 healthy right handed volunteers (age: 20-35 years). Latency, amplitude, area and duration of the P300-potential were analysed. No relationship between age, gender and the P300-parameters were observed. The amplitude and the area of the potential obtained from the F3 electrode were greater after stimulation of the right median nerve compared to the potential after stimulation of the left median nerve. All other results were not significantly different. Strong positive correlations between the results after stimulation of the right and left median nerve were observed. These results showed that by a young group of volunteers age and gender did not influence the P300-component. Although the P300-Parameters had a between-subject variability, their mean remained constant over the study, their correlation coefficients were strong positive and the side of stimulation did not influence them (except for the electrode F3).

  16. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex

    DEFF Research Database (Denmark)

    Fardo, Francesca; Auksztulewicz, Ryszard; Allen, Micah

    2017-01-01

    be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling (DCM) for magnetoencephalography in human subjects, to investigate how...

  17. Perceiving, imaging, and preferring physiognomic stimuli.

    Science.gov (United States)

    Lindauer, M S

    1986-01-01

    Physiognomic color responses in perception, imagery, and affect were investigated. Maluma and taketa, nonsense stimuli defined by many investigators as physiognomic, were utilized as prototypical physiognomic stimuli, along with eight other stimuli of various sorts. In Experiment 1, 22 subjects matched the colors of the stimuli; in Experiment 2, 27 subjects reported their imagery to the stimuli; and in Experiment 3, 16 subjects gave their color preferences for the stimuli. The Munsell sets of colors were employed throughout. Significant differences between the physiognomic and other stimuli were found on the brightness and saturation of color matches, images, and preferences. Other differences (e.g., the latency of color images) were also present. Distinctions were also noted between the two physiognomic stimuli. These results support the priority of innate and perceptual processes in physiognomy over those of learning and memory, although some ambiguities still remain.

  18. Pain in chemotherapy-induced neuropathy--more than neuropathic?

    Science.gov (United States)

    Geber, Christian; Breimhorst, Markus; Burbach, Berenike; Egenolf, Christina; Baier, Bernhard; Fechir, Marcel; Koerber, Juergen; Treede, Rolf-Detlef; Vogt, Thomas; Birklein, Frank

    2013-12-01

    Chemotherapy-induced neuropathy (CIN) is an adverse effect of chemotherapy. Pain in CIN might comprise neuropathic and nonneuropathic (ie, musculoskeletal) pain components, which might be characterized by pain patterns, electrophysiology, and somatosensory profiling. Included were 146 patients (100 female, 46 male; aged 56 ± 0.8 years) with CIN arising from different chemotherapy regimens. Patients were characterized clinically through nerve conduction studies (NCS) and quantitative sensory testing (QST). Questionnaires for pain (McGill) and anxiety/depression (Hospital Anxiety and Depression Scale) were supplied. Patients were followed-up after 17 days. Large- (61%) and mixed- (35%) fibre neuropathies were more frequent than small-fibre neuropathy (1.4%). The 5 major chemotherapeutic regimens impacted differently on large- but not on small-fibre function and did not predict painfulness. Chronic pain associated with CIN was reported in 41.7%. Painless and painful CIN did not differ in QST profiles or electrophysiological findings, but different somatosensory patterns were found in CIN subgroups (pain at rest [RestP], n = 25; movement-associated pain [MovP], n = 15; both pain characteristics [MovP+RestP], n = 21; or no pain [NonP], n = 85): small-fibre function (cold-detection threshold, CDT: z score: -1.46 ± 0.21, P < 0.01) was most impaired in RestP; mechanical hyperalgesia was exclusively found in MovP (z score: +0.81 ± 0.30, P < 0.05). "Anxiety" discriminated between painful and painless CIN; "CDT" and "anxiety" discriminated between patients with ongoing (RestP) and movement-associated pain (MovP) or pain components (MovP+RestP). The detrimental effect of chemotherapy on large fibres failed to differentiate painful from painless CIN. Patients stratified for musculoskeletal or neuropathic pain, however, differed in psychological and somatosensory parameters. This stratification might allow for the application of a more specific therapy. Copyright © 2013

  19. Slow brushing reduces heat pain in humans.

    Science.gov (United States)

    Liljencrantz, J; Strigo, I; Ellingsen, D M; Krämer, H H; Lundblad, L C; Nagi, S S; Leknes, S; Olausson, H

    2017-08-01

    C-tactile (CT) afferents are unmyelinated low-threshold mechanoreceptors optimized for signalling affective, gentle touch. In three separate psychophysical experiments, we examined the contribution of CT afferents to pain modulation. In total, 44 healthy volunteers experienced heat pain and CT optimal (slow brushing) and CT sub-optimal (fast brushing or vibration) stimuli. Three different experimental paradigms were used: Concurrent application of heat pain and tactile (slow brushing or vibration) stimulation; Slow brushing, applied for variable duration and intervals, preceding heat pain; Slow versus fast brushing preceding heat pain. Slow brushing was effective in reducing pain, whereas fast brushing or vibration was not. The reduction in pain was significant not only when the CT optimal touch was applied simultaneously with the painful stimulus but also when the two stimuli were separated in time. For subsequent stimulation, the pain reduction was more pronounced for a shorter time interval between brushing and pain. Likewise, the effect was more robust when pain was preceded by a longer duration of brush stimulation. Strong CT-related pain reduction was associated with low anxiety and high calmness scores obtained by a state anxiety questionnaire. Slow brushing - optimal for CT activation - is effective in reducing pain from cutaneous heating. The precise mechanisms for the pain relief are as yet unknown but possible mechanisms include inhibition of nociceptive projection neurons at the level of the dorsal horn as well as analgesia through cortical mechanisms. Slow brushing stimuli - optimal for activation of C-tactile fibres - can reduce pain from cutaneous heating. No such effect was seen with fast brushing or vibration. These observations indicate the role of C-tactile fibres in pain modulation. © 2017 European Pain Federation - EFIC®.

  20. Inflammatory pain in experimental burns in man

    DEFF Research Database (Denmark)

    Pedersen, J L

    2000-01-01

    stimuli may be more reproducible. A methodological study also demonstrated that habituation to experimental pain developed as the study proceeded. Habituation is common in experimental pain models, and dividing analgesics and placebo evenly between the study days is one way of eliminating the effects......Human experimental pain models are important tools in pain research. The primary aims of pain research in normal man is 1) to provide insight in pain mechanisms, 2) to provide a rational basis for clinical trials of pain relieving interventions, and 3) to confirm the anti-nociceptive effects...... demonstrated in animal models. Most often clinical pain is due to tissue damage leading to acute inflammation and hyperalgesia, but only few human pain models have examined pain responses in injured tissues. Therefore, models with controlled and reversible tissue trauma are needed. The human burn model...

  1. Emotional Stimuli and Motor Conversion Disorder

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Ameli, Rezvan; Roelofs, Karin; LaFrance, W. Curt, Jr.; Hallett, Mark

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli, and greater activity to negative relative to…

  2. Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain.

    Science.gov (United States)

    Lim, Eun Yeong; Kim, Yun Tai

    2016-01-01

    Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.

  3. Long non-coding RNA CCAT1 modulates neuropathic pain progression through sponging miR-155

    OpenAIRE

    Dou, Lidong; Lin, Hongqi; Wang, Kaiwei; Zhu, Guosong; Zou, Xuli; Chang, Enqiang; Zhu, Yongfeng

    2017-01-01

    Neuropathic pain is caused by dysfunction or primary injury of the somatosensory nervous system. Long noncoding RNAs (lncRNAs) play important roles in the development of neuropathic pain. However, the effects of lncRNA colon cancer associated transcript-1 (CCAT1) in neuropathic pain have not been reported. The model of bilateral sciatic nerve chronic constriction injuries (bCCI) is regarded as long-lasting mechanical hypersensitivity and cold allodynia, which is the representative symptom in ...

  4. Prediction of postoperative pain by preoperative pain response to heat stimulation in total knee arthroplasty.

    Science.gov (United States)

    Lunn, Troels H; Gaarn-Larsen, Lissi; Kehlet, Henrik

    2013-09-01

    It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. This study aimed to explore whether 2 heat test paradigms could predict postoperative pain after total knee arthroplasty (TKA). Patients scheduled for elective, unilateral, primary TKA under spinal anesthesia were consecutively included in this prospective, observational study. Perioperative analgesia was standardized for all patients. Outcomes were postoperative pain during walk: from 6 to 24 hours (primary), from postoperative day (POD) 1 to 7 (secondary), and from POD 14 to 30 (tertiary). Two preoperative tonic heat stimuli with 47°C were used; short (5 seconds) and long (7 minutes) stimulation upon which patients rated their pain response on an electronic visual analog scale. Multivariate stepwise linear and logistic regressions analyses were carried out, including 8 potential preoperative explanatory variables (among these anxiety, depression, preoperative pain, and pain catastrophizing) to assess pain response to preoperative heat pain stimulation as an independent predictor for postoperative pain. A total of 100 patients were included, and 3 were later excluded. A weak correlation [rho (95% confidence interval); P value] was observed between pain from POD 1 to 7 and pain response to short [rho=0.25(0.04 to 0.44); P=.02] and to long [rho=0.27 (0.07 to 0.46); P=.01] heat pain stimulation. However, these positive correlations were not supported by the linear and logistic regression analyses, in which only anxiety, preoperative pain, and pain catastrophizing were significant explanatory variables (but with low R-squares; 0.05 to 0.08). Pain responses to 2 types of preoperative heat stimuli were not independent clinically relevant predictors for postoperative pain after TKA. Copyright © 2013 International Association for the Study of

  5. Neuropathic orofacial pain: Facts and fiction.

    Science.gov (United States)

    Baad-Hansen, Lene; Benoliel, Rafael

    2017-06-01

    Definition and taxonomy This review deals with neuropathic pain of traumatic origin affecting the trigeminal nerve, i.e. painful post-traumatic trigeminal neuropathy (PTTN). Symptomatology The clinical characteristics of PTTN vary considerably, partly due to the type and extent of injury. Symptoms involve combinations of spontaneous and evoked pain and of positive and negative somatosensory signs. These patients are at risk of going through unnecessary dental/surgical procedures in the attempt to eradicate the cause of the pain, due to the fact that most dentists only rarely encounter PTTN. Epidemiology Overall, approximately 3% of patients with trigeminal nerve injuries develop PTTN. Patients are most often female above the age of 45 years, and both physical and psychological comorbidities are common. Pathophysiology PTTN shares many pathophysiological mechanisms with other peripheral neuropathic pain conditions. Diagnostic considerations PTTN may be confused with one of the regional neuralgias or other orofacial pain conditions. For intraoral PTTN, early stages are often misdiagnosed as odontogenic pain. Pain management Management of PTTN generally follows recommendations for peripheral neuropathic pain. Expert opinion International consensus on classification and taxonomy is urgently needed in order to advance the field related to this condition.

  6. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  7. Using constellation pharmacology to define comprehensively a somatosensory neuronal subclass

    Science.gov (United States)

    Teichert, Russell W.; Memon, Tosifa; Aman, Joseph W.; Olivera, Baldomero M.

    2014-01-01

    Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging. PMID:24469798

  8. Sensory disturbance, CT, and somatosensory evoked potentials in thalamic hemorrhages

    International Nuclear Information System (INIS)

    Koga, Hisanobu; Miyazaki, Takayoshi; Miyazaki, Hisaya

    1985-01-01

    Thalamic hemorrhages often lead to sensory disturbances. However, no effective method for the evaluation of their prognoses has yet been clinically utilized. The somatosensory evoked potential (SEP) has been reported as an effective method, but it remains controversial. A CT scan is eminently suitable for determining the size and position of the hemorrhage. However, the correlation between the localization of the hematoma on the CT scan and the sensory distrubance has not been investigated fully. The authors selected 20 cases with the chronic stage of a thalamic hemorrhage. Each one was clinically evaluated as to sensory disturbance; they were then classified into the following five groups: Group 1: no sensory deficit (3 cases); Group 2: complete recovery from initial deficit (2 cases); Group 3: mild hypesthesia (5 cases); Group 4: severe hypesthesia (5 cases), and Group 5: paresthesia or dysesthesia (5 cases). Also, the CT scan was investigated with regard to the localization of the hematoma and the SEP. We could thus find a characteristic pattern in each group. The results may be summarized as follows. 1. The correlation between the degree of the sensory disturbance and the size and expansion of the hematoma was clearly detected. Especially, the most severe sensory disturbance was found in the hematoma extending to the lateral nuclear and ventral nuclear regions. 2. In Group 1 and 2, each SEP component (N 1 N 2 N 3 ) was shown to be normal. In Group 3, SEP components could be detected, but not completely. In Group 4, no components at all could be found. 3. In Group 5, all cases were small hematoma localized in the lateral nuclear region of the thalamus, while the N 3 components were prolonged on the SEP findings. The authors demonstrate the results and discuss the correlation between the sensory disturbance and the CT or SEP findings. (author)

  9. Chronic Pain

    Science.gov (United States)

    ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. × ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. ...

  10. The influence of music and music therapy on pain-induced neuronal oscillations measured by magnetencephalography.

    Science.gov (United States)

    Hauck, Michael; Metzner, Susanne; Rohlffs, Fiona; Lorenz, Jürgen; Engel, Andreas K

    2013-04-01

    Modern forms of music therapy are clinically established for various therapeutic or rehabilitative goals, especially in the treatment of chronic pain. However, little is known about the neuronal mechanisms that underlie pain modulation by music. Therefore, we attempted to characterize the effects of music therapy on pain perception by comparing the effects of 2 different therapeutic concepts, referred to as receptive and entrainment methods, on cortical activity recorded by magnetencephalography in combination with laser heat pain. Listening to preferred music within the receptive method yielded a significant reduction of pain ratings associated with a significant power reduction of delta-band activity in the cingulate gyrus, which suggests that participants displaced their focus of attention away from the pain stimulus. On the other hand, listening to self-composed "pain music" and "healing music" within the entrainment method exerted major effects on gamma-band activity in primary and secondary somatosensory cortices. Pain music, in contrast to healing music, increased pain ratings in parallel with an increase in gamma-band activity in somatosensory brain structures. In conclusion, our data suggest that the 2 music therapy approaches operationalized in this study seem to modulate pain perception through at least 2 different mechanisms, involving changes of activity in the delta and gamma bands at different stages of the pain processing system. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Chronic Widespread Back Pain is Distinct From Chronic Local Back Pain: Evidence From Quantitative Sensory Testing, Pain Drawings, and Psychometrics.

    Science.gov (United States)

    Gerhardt, Andreas; Eich, Wolfgang; Janke, Susanne; Leisner, Sabine; Treede, Rolf-Detlef; Tesarz, Jonas

    2016-07-01

    Whether chronic localized pain (CLP) and chronic widespread pain (CWP) have different mechanisms or to what extent they overlap in their pathophysiology is controversial. The study compared quantitative sensory testing profiles of nonspecific chronic back pain patients with CLP (n=48) and CWP (n=29) with and fibromyalgia syndrome (FMS) patients (n=90) and pain-free controls (n = 40). The quantitative sensory testing protocol of the "German-Research-Network-on-Neuropathic-Pain" was used to measure evoked pain on the painful area in the lower back and the pain-free hand (thermal and mechanical detection and pain thresholds, vibration threshold, pain sensitivity to sharp and blunt mechanical stimuli). Ongoing pain and psychometrics were captured with pain drawings and questionnaires. CLP patients did not differ from pain-free controls, except for lower pressure pain threshold (PPT) on the back. CWP and FMS patients showed lower heat pain threshold and higher wind-up ratio on the back and lower heat pain threshold and cold pain threshold on the hand. FMS showed lower PPT on back and hand, and higher comorbidity of anxiety and depression and more functional impairment than all other groups. Even after long duration CLP presents with a local hypersensitivity for PPT, suggesting a somatotopically specific sensitization of nociceptive processing. However, CWP patients show widespread ongoing pain and hyperalgesia for different stimuli that is generalized in space, suggesting the involvement of descending control systems, as also suggested for FMS patients. Because mechanisms in nonspecific chronic back pain with CLP and CWP differ, these patients should be distinguished in future research and allocated to different treatments.

  12. Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling.

    Science.gov (United States)

    Geha, Paul; Yang, Yang; Estacion, Mark; Schulman, Betsy R; Tokuno, Hajime; Apkarian, A Vania; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2016-06-01

    . Patient 1 reported a reduction of mean episode duration, from 615 minutes while taking placebo to 274.1 minutes while taking carbamazepine, while patient 2 reported a reduction of the mean episode duration from 91.5 minutes while taking placebo to 45.3 minutes while taking carbamazepine. Patient 1, who had a history of night awakenings from pain, reported 101 awakenings owing to pain while taking placebo during the maintenance period and 32 awakenings while taking carbamazepine. Attenuation of pain was paralleled by a shift in brain activity from valuation and pain areas to primary and secondary somatosensory, motor, and parietal attention areas. Firing of DRG neurons expressing the S241T NaV1.7 mutant channel in response to physiologically relevant thermal stimuli was reduced by carbamazepine. Our results demonstrate that pharmacotherapy guided by genomic analysis, molecular modeling, and functional profiling can attenuate neuropathic pain in patients carrying the S241T mutation.

  13. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    Science.gov (United States)

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  14. Mindfulness starts with the body: Somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation

    Directory of Open Access Journals (Sweden)

    Catherine E Kerr

    2013-02-01

    Full Text Available Mindfulness Based Stress Reduction (MBSR and Mindfulness Based Cognitive Therapy (MBCT use a common set of exercises to reduce distress in chronic pain and decrease risk of depression relapse. These standardized mindfulness (ST-Mindfulness practices predominantly require attending to breath and body sensations. Here, we offer a novel view of ST-Mindfulness’s somatic focus as a form of training for optimizing attentional modulation of 7-14 Hz alpha rhythms that play a key role in filtering inputs to primary sensory neocortex and organizing the flow of sensory information. In support of the framework, we describe our previous finding (Kerr et al, 2011 that ST-Mindfulness enhanced attentional regulation of alpha in primary somatosensory cortex (SI. The framework allows us to make several predictions. In chronic pain, we predict somatic attention in ST-Mindfulness de-biases alpha in SI, freeing up pain-focused attentional resources. In depression relapse, we predict ST-Mindfulness’s somatic attention competes with internally focused rumination, as internally focused cognitive processes (e.g., working and short term memory rely on alpha filtering of sensory input. Our computational model (Jones et al, 2009 predicts ST-Mindfulness enhances top-down modulation of alpha by facilitating precise alterations in timing and efficacy of SI thalamocortical inputs. We conclude by considering how the proposed framework aligns with Buddhist teachings that mindfulness starts with mindfulness of the body. Translating this theory into neurophysiology, we hypothesize that with its somatic focus, mindfulness’ top-down alpha rhythm modulation in SI enhances gain control which, in turn, sensitizes practitioners to better detect and regulate when the mind wanders from its somatic focus. This enhanced regulation of somatic mind-wandering may be an early stage of mindfulness training, leading to cognitive regulation and metacognition.

  15. Prediction of postoperative pain after percutaneous nephrolithotomy

    DEFF Research Database (Denmark)

    Pedersen, Katja Venborg; Olesen, Anne Estrup; Osther, Palle Jørn Sloth

    2013-01-01

    Postoperative pain remains a significant problem and the individual variance in postoperative pain is not fully understood. In recent years, there has been focus on identifying risk factors predicting patients with high postoperative pain intensity or consumption of analgesics, which may facilitate...... thresholds were measured using electrical (single and 5 repeated) and pressure pain stimulation over the flank bilaterally (stone-side = operation side and control-side = non-operation side). Postoperative pain scores were recorded on a numerical rating scale and analgesic consumption was registered....... The responses to repeated electrical stimuli (temporal summation) were preoperatively increased on the stone-side compared to the control-side (P = 0.016). Preoperative electrical pain thresholds from the control-side correlated inversely with postoperative opioid consumption (single stimuli: ρ = -0.43, P

  16. Somatosensory-evoked potentials as an add-on diagnostic ...

    African Journals Online (AJOL)

    Introduction: Lumbo-sacral spinal stenosis (LSS) is a frequent cause for chronic low back pain. The diagnosis is primarily radiological. Neural insult is not frequent in every case. Although the degree and type of LSS can exactly be described with the current imaging studies, the extent of neural impairment cannot be ...

  17. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Directory of Open Access Journals (Sweden)

    Prasad Shirvalkar

    2018-03-01

    Full Text Available Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1 identifying biomarkers of the subjective pain experience and (2 integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment.

  18. Prediction of postoperative pain: a systematic review of predictive experimental pain studies

    DEFF Research Database (Denmark)

    Werner, Mads Utke; Mjöbo, Helena N; Nielsen, Per R

    2010-01-01

    Quantitative testing of a patient's basal pain perception before surgery has the potential to be of clinical value if it can accurately predict the magnitude of pain and requirement of analgesics after surgery. This review includes 14 studies that have investigated the correlation between...... preoperative responses to experimental pain stimuli and clinical postoperative pain and demonstrates that the preoperative pain tests may predict 4-54% of the variance in postoperative pain experience depending on the stimulation methods and the test paradigm used. The predictive strength is much higher than...

  19. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    International Nuclear Information System (INIS)

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B.

    1990-01-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array

  20. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    Science.gov (United States)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  1. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  2. Heightened eating drive and visual food stimuli attenuate central nociceptive processing.

    Science.gov (United States)

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Giesbrecht, Timo; Thomas, Anna; Harrold, Joanne A; Halford, Jason C G; Stancak, Andrej

    2015-03-01

    Hunger and pain are basic drives that compete for a behavioral response when experienced together. To investigate the cortical processes underlying hunger-pain interactions, we manipulated participants' hunger and presented photographs of appetizing food or inedible objects in combination with painful laser stimuli. Fourteen healthy participants completed two EEG sessions: one after an overnight fast, the other following a large breakfast. Spatio-temporal patterns of cortical activation underlying the hunger-pain competition were explored with 128-channel EEG recordings and source dipole analysis of laser-evoked potentials (LEPs). We found that initial pain ratings were temporarily reduced when participants were hungry compared with fed. Source activity in parahippocampal gyrus was weaker when participants were hungry, and activations of operculo-insular cortex, anterior cingulate cortex, parahippocampal gyrus, and cerebellum were smaller in the context of appetitive food photographs than in that of inedible object photographs. Cortical processing of noxious stimuli in pain-related brain structures is reduced and pain temporarily attenuated when people are hungry or passively viewing food photographs, suggesting a possible interaction between the opposing motivational forces of the eating drive and pain. Copyright © 2015 the American Physiological Society.

  3. Modulation of Somatosensory Alpha Rhythm by Transcranial Alternating Current Stimulation at Mu-Frequency

    Directory of Open Access Journals (Sweden)

    Christopher Gundlach

    2017-08-01

    Full Text Available Introduction: Transcranial alternating current stimulation (tACS is emerging as an interventional tool to modulate different functions of the brain, potentially by interacting with intrinsic ongoing neuronal oscillations. Functionally different intrinsic alpha oscillations are found throughout the cortex. Yet it remains unclear whether tACS is capable of specifically modulating the somatosensory mu-rhythm in amplitude.Objectives: We used tACS to modulate mu-alpha oscillations in amplitude. When compared to sham stimulation we expected a modulation of mu-alpha oscillations but not visual alpha oscillations by tACS.Methods: Individual mu-alpha frequencies were determined in 25 participants. Subsequently, blocks of tACS with individual mu-alpha frequency and sham stimulation were applied over primary somatosensory cortex (SI. Electroencephalogram (EEG was recorded before and after either stimulation or sham. Modulations of mu-alpha and, for control, visual alpha amplitudes were then compared between tACS and sham.Results: Somatosensory mu-alpha oscillations decreased in amplitude after tACS was applied at participants’ individual mu-alpha frequency. No changes in amplitude were observed for sham stimulation. Furthermore, visual alpha oscillations were not affected by tACS or sham, respectively.Conclusion: Our results demonstrate the capability of tACS to specifically modulate the targeted somatosensory mu-rhythm when the tACS frequency is tuned to the individual endogenous rhythm and applied over somatosensory areas. Our results are in contrast to previously reported amplitude increases of visual alpha oscillations induced by tACS applied over visual cortex. Our results may point to a specific interaction between our stimulation protocol and the functional architecture of the somatosensory system.

  4. ASYMMETRY OF SOMATOSENSORY CORTICAL PLASTICITY IN PATIENT WITH BILATERAL CARPAL TUNNEL SYNDROME

    Directory of Open Access Journals (Sweden)

    Hikmat Hadoush

    2017-09-01

    Full Text Available Background: Following peripheral nerve lesion, the adult somatosensory system showedcortical reorganizational abilities.Previous studies identified the digits' somatotopy map changes and somatosensory cortical plasticity in response to the Carpal Tunnel Syndrome (CTS that affected the dominant hand only. Objective: Answering the remained question is that what the extent of the cortical plasticity would be in left and right somatosensory cortices in response to CTS affecting the right and left hands simultaneously. Methods: Cortical representations activated by tactile stimulation of median nerve (index and ulnar nerve (little of both dominant and non-dominant hands were evaluated by Magnetoencephalography (MEG systemfor healthy participants and patient with bilateral moderate CTS. index – little fingers'somatotopy map and inter-digit cortical distance was then mapped and calculated for each participant on the real MRI data and the 3D brain surface image. Results: in healthy participants, index – little inter-digit somatosensory cortical distance of right hand (dominant was significantly larger than the index – little inter-digitsomatosensory cortical distance of left hand (11.2±2.1mm vs.7.0±2.9mm, P = 0.006. However, in patient with bilateral CTS, the index – little inter-digit somatosensory cortical distance of righthand (dominant was significantly smaller than the index – little inter-digit somatosensory cortical distance of left hand (5.8mm vs. 7.4mm. Conclusion: our data could be interpreted as the hand use – dependency served more median nerve – cortical territory from the ulnar nerve invasion in the right somatotopy map (left hand than the left somatotopy map of the right hand.

  5. The Effect of the Type and Colour of Placebo Stimuli on Placebo Effects Induced by Observational Learning

    Science.gov (United States)

    Świder, Karolina; Bąbel, Przemysław

    2016-01-01

    Research shows that placebo analgesia and nocebo hyperalgesia can be induced through observational learning. Our aim was to replicate and extend these results by studying the influence of the type and colour of stimuli used as placebos on the placebo effects induced by observational learning. Three experimental and two control groups were tested. All participants received pain stimuli of the same intensity preceded by colour lights (green and red) or geometric shapes (circles and squares). Before receiving pain stimuli, participants in the experimental groups, but not in the control groups, observed a model who rated pain stimuli that were preceded by either green lights (green placebo group), red lights (red placebo group), or circles (circle placebo group) as being less painful than those preceded by either red lights (green placebo group), green lights (red placebo group), or squares (circle placebo group). As a result participants in the experimental groups rated pain stimuli preceded by either green lights (green placebo group), red lights (red placebo group), or circles (circle placebo group) as being less painful than the participants in the control groups did, indicating that placebo effect was induced. No statistically significant differences were found in the magnitudes of the placebo effects between the three experimental groups (green placebo, red placebo, and circle placebo groups), indicating that neither the type nor the colour of placebo stimuli affected the placebo effects induced by observational learning. The placebo effects induced by observational learning were found to be unrelated to the individual differences in pain anxiety, fear of pain, and empathy. PMID:27362552

  6. The Influence of Eye Closure on Somatosensory Discrimination: A Trade-off Between Simple Perception and Discrimination.

    Science.gov (United States)

    Götz, Theresa; Hanke, David; Huonker, Ralph; Weiss, Thomas; Klingner, Carsten; Brodoehl, Stefan; Baumbach, Philipp; Witte, Otto W

    2017-06-01

    We often close our eyes to improve perception. Recent results have shown a decrease of perception thresholds accompanied by an increase in somatosensory activity after eye closure. However, does somatosensory spatial discrimination also benefit from eye closure? We previously showed that spatial discrimination is accompanied by a reduction of somatosensory activity. Using magnetoencephalography, we analyzed the magnitude of primary somatosensory (somatosensory P50m) and primary auditory activity (auditory P50m) during a one-back discrimination task in 21 healthy volunteers. In complete darkness, participants were requested to pay attention to either the somatosensory or auditory stimulation and asked to open or close their eyes every 6.5 min. Somatosensory P50m was reduced during a task requiring the distinguishing of stimulus location changes at the distal phalanges of different fingers. The somatosensory P50m was further reduced and detection performance was higher during eyes open. A similar reduction was found for the auditory P50m during a task requiring the distinguishing of changing tones. The function of eye closure is more than controlling visual input. It might be advantageous for perception because it is an effective way to reduce interference from other modalities, but disadvantageous for spatial discrimination because it requires at least one top-down processing stage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations.

    Science.gov (United States)

    Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro

    2017-07-01

    Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.

  8. Virtual reality stimuli for force platform posturography.

    Science.gov (United States)

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  9. Pain hypersensitivity in congenital blindness is associated with faster central processing of C-fibre input

    DEFF Research Database (Denmark)

    Slimani, H.; Plaghki, L.; Ptito, M.

    2016-01-01

    Background We have recently shown that visual deprivation from birth exacerbates responses to painful thermal stimuli. However, the mechanisms underlying pain hypersensitivity in congenital blindness are unclear. Methods To study the contribution of Aδ- and C-fibres in pain perception, we measure...... The increased sensitivity to painful thermal stimulation in congenital blindness may be due to more efficient central processing of C-fibre–mediated input, which may help to avoid impending dangerous encounters with stimuli that threaten the bodily integrity....

  10. Cardiorespiratory interactions to external stimuli.

    Science.gov (United States)

    Bernardi, L; Porta, C; Spicuzza, L; Sleight, P

    2005-09-01

    Respiration is a powerful modulator of heart rate variability, and of baro- or chemo-reflex sensitivity. This occurs via a mechanical effect of breathing that synchronizes all cardiovascular variables at the respiratory rhythm, particularly when this occurs at a particular slow rate coincident with the Mayer waves in arterial pressure (approximately 6 cycles/min). Recitation of the rosary prayer (or of most mantras), induces a marked enhancement of these slow rhythms, whereas random verbalization or random breathing does not. This phenomenon in turn increases baroreflex sensitivity and reduces chemoreflex sensitivity, leading to increases in parasympathetic and reductions in sympathetic activity. The opposite can be seen during either verbalization or mental stress tests. Qualitatively similar effects can be obtained even by passive listening to more or less rhythmic auditory stimuli, such as music, and the speed of the rhythm (rather than the style) appears to be one of the main determinants of the cardiovascular and respiratory responses. These findings have clinical relevance. Appropriate modulation of breathing, can improve/restore autonomic control of cardiovascular and respiratory systems in relevant diseases such as hypertension and heart failure, and might therefore help improving exercise tolerance, quality of life, and ultimately, survival.

  11. Vicarious pain experiences while observing another in pain: an experimental approach

    Directory of Open Access Journals (Sweden)

    Sophie eVandenbroucke

    2013-06-01

    Full Text Available Objective: This study aimed at developing an experimental paradigm to assess vicarious pain experiences. We further explored the putative moderating role of observer’s characteristics such as hypervigilance for pain and dispositional empathy. Methods: Two experiments are reported using a similar procedure. Undergraduate students were selected based upon whether they reported vicarious pain in daily life, and categorized into a pain responder group or a comparison group. Participants were presented a series of videos showing hands being pricked whilst receiving occasionally pricking (electrocutaneous stimuli themselves. In congruent trials, pricking and visual stimuli were applied to the same spatial location. In incongruent trials, pricking and visual stimuli were in the opposite spatial location. Participants were required to report on which location they felt a pricking sensation. Of primary interest was the effect of viewing another in pain upon vicarious pain errors, i.e., the number of trials in which an illusionary sensation was reported. Furthermore, we explored the effect of individual differences in hypervigilance to pain, dispositional empathy and the rubber hand illusion (RHI upon vicarious pain errors. Results: Results of both experiments indicated that the number of vicarious pain errors was overall low. In line with expectations, the number of vicarious pain errors was higher in the pain responder group than in the comparison group. Self-reported hypervigilance for pain lowered the probability of reporting vicarious pain errors in the pain responder group, but dispositional empathy and the RHI did not. Conclusion: Our paradigm allows measuring vicarious pain experiences in students. However, the prevalence of vicarious experiences of pain is low, and only a small percentage of participants display the phenomenon. It remains however unknown which variables affect its occurrence.

  12. Modulation of Itch by Conditioning Itch and Pain Stimulation in Healthy Humans.

    Science.gov (United States)

    Andersen, Hjalte H; van Laarhoven, Antoinette I M; Elberling, Jesper; Arendt-Nielsen, Lars

    2017-12-01

    Little is known about endogenous descending control of itch. In chronic pain, descending pain inhibition is reduced as signified by lowered conditioned pain modulation. There are indications that patients with chronic itch may also exhibit reduced endogenous descending inhibition of itch and pain. This study aimed to investigate whether and the extent to which itch can be modulated by conditioning itch and pain stimuli. Twenty-six healthy volunteers participated. The study consisted of 5 conditions designed to systematically assess endogenous modulation of itch or pain: 1) itch-induced modulation of contralateral itch, 2) pain-induced modulation of contralateral itch, 3) pain-induced modulation of ipsilateral itch, 4) pain-induced modulation of contralateral pain, and 5) itch-induced modulation of contralateral pain. Conditioning stimuli were cold pressor-induced pain and histamine-evoked itch, whereas the test stimuli were electrical stimulation paradigms designed to evoke itch or pain. Pain was significantly reduced (conditioned pain modulation-effect) by the conditioning pain stimulus (P modulation-effect) by contra- as well as ipsilateral applied conditioning pain (both P modulation of itch as well as pain in humans. Future studies addressing potential aberrations in pain-evoked descending modulation of itch in chronic itch patients are warranted. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Alexithymic trait, painful heat stimulation and everyday pain experience

    Directory of Open Access Journals (Sweden)

    Olga ePollatos

    2015-10-01

    Full Text Available Background: Alexithymia was found to be associated with a variety of somatic complaints including somatoform pain symptoms. This study addressed the question of whether the different facets of alexithymia are related to responses in heat pain stimulation and its interrelations with levels of everyday pain as assessed by self report. Methods: In the study, sensitivity to heat pain was assessed in fifty healthy female participants. Alexithymia facets were assessed by the Toronto Alexithymia Scale. Pain threshold and tolerance were determined using a testing the limits procedure. Participants furthermore rated subjective intensities and unpleasantness of tonic heat stimuli (45.5 C to 47.5 C on visual analogue scales and on a questionnaire. Possible confounding with temperature sensitivity and mood was controlled. Everyday pain was assessed by self-report addressing everyday pain frequency, intensity and impairment experienced over the last two months. Results: Main results were that the facets of alexithymia were differentially associated with pain perception. The affective scale difficulties in describing feelings was associated with hyposensitivity to pain as indicated by higher pain tolerance scores. Furthermore, everyday pain frequency was related to increased alexithymia values on the affective scale difficulties in identifying feelings, whereas higher values on the cognitive alexithymia scale externally oriented thinking were related to lower pain impairment and intensity. Conclusions: We conclude that the different facets of alexithymia are related to alternations in pain processing. Further research on clinical samples is necessary to elucidate whether different aspects of alexithymia act as vulnerability factor for the development of pain symptoms.

  14. Empathy, Pain and Attention: Cues that Predict Pain Stimulation to the Partner and the Self Capture Visual Attention

    Directory of Open Access Journals (Sweden)

    Lingdan Wu

    2017-09-01

    Full Text Available Empathy motivates helping and cooperative behaviors and plays an important role in social interactions and personal communication. The present research examined the hypothesis that a state of empathy guides attention towards stimuli significant to others in a similar way as to stimuli relevant to the self. Sixteen couples in romantic partnerships were examined in a pain-related empathy paradigm including an anticipation phase and a stimulation phase. Abstract visual symbols (i.e., arrows and flashes signaled the delivery of a Pain or Nopain stimulus to the partner or the self while dense sensor event-related potentials (ERPs were simultaneously recorded from both persons. During the anticipation phase, stimuli predicting Pain compared to Nopain stimuli to the partner elicited a larger early posterior negativity (EPN and late positive potential (LPP, which were similar in topography and latency to the EPN and LPP modulations elicited by stimuli signaling pain for the self. Noteworthy, using abstract cue symbols to cue Pain and Nopain stimuli suggests that these effects are not driven by perceptual features. The findings demonstrate that symbolic stimuli relevant for the partner capture attention, which implies a state of empathy to the pain of the partner. From a broader perspective, states of empathy appear to regulate attention processing according to the perceived needs and goals of the partner.

  15. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  16. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  17. Instructed fear stimuli bias visual attention

    NARCIS (Netherlands)

    Deltomme, Berre; Mertens, G.; Tibboel, Helen; Braem, Senne

    We investigated whether stimuli merely instructed to be fear-relevant can bias visual attention, even when the fear relation was never experienced before. Participants performed a dot-probe task with pictures of naturally fear-relevant (snake or spider) or -irrelevant (bird or butterfly) stimuli.

  18. Postoperative pain

    DEFF Research Database (Denmark)

    Kehlet, H; Dahl, J B

    1993-01-01

    also modify various aspects of the surgical stress response, and nociceptive blockade by regional anesthetic techniques has been demonstrated to improve various parameters of postoperative outcome. It is therefore stressed that effective control of postoperative pain, combined with a high degree......Treatment of postoperative pain has not received sufficient attention by the surgical profession. Recent developments concerned with acute pain physiology and improved techniques for postoperative pain relief should result in more satisfactory treatment of postoperative pain. Such pain relief may...

  19. Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke

    DEFF Research Database (Denmark)

    Ghaziani, Emma; Couppé, Christian; Henkel, Cecilie

    2017-01-01

    functioning is most pronounced during the first 4 weeks post stroke, there are few studies investigating the effect of rehabilitation during this critical time window. The purpose of this trial is to determine the effect of electrical somatosensory stimulation (ESS) initiated in the acute stroke phase...

  20. The Role of Attention in Somatosensory Processing: A Multi-Trait, Multi-Method Analysis

    Science.gov (United States)

    Wodka, Ericka L.; Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.

    2016-01-01

    Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different…

  1. Volumetric localization of somatosensory cortex in children using synthetic aperture magnetometry

    International Nuclear Information System (INIS)

    Xiang, Jing; Holowka, Stephanie; Chuang, Sylvester; Sharma, Rohit; Hunjan, Amrita; Otsubo, Hiroshi

    2003-01-01

    Magnetic signal from the human brain can be measured noninvasively by using magnetoencephalography (MEG). This study was designed to localize and reconstruct the neuromagnetic activity in the somatosensory cortex in children Twenty children were studied using a 151-channel MEG system with electrical stimulation applied to median nerves. Data were analyzed using synthetic aperture magnetometry (SAM). A clear deflection (M1) was clearly identified in 18 children (90%, 18/20). Two frequency bands, 30-60 Hz and 60-120 Hz, were found to be related to somatosensory cortex. Magnetic activity was localized in the posterior bank of the central sulcus in 16 children. The extent of the reconstructed neuromagnetic activity of the left hemisphere was significantly larger than that of the right hemisphere (P<0.01). Somatosensory cortex was accurately localized by using SAM. The extent of the reconstructed neuromagnetic activity suggested that the left hemisphere was the dominant side in the somatosensory system in children. We postulate that the volumetric characteristics of the reconstructed neuromagnetic activity are able to indicate the functionality of the brain. (orig.)

  2. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...

  3. Reduced somatosensory impairment by piezosurgery during orthognathic surgery of the mandible.

    Science.gov (United States)

    Brockmeyer, Phillipp; Hahn, Wolfram; Fenge, Stefan; Moser, Norman; Schliephake, Henning; Gruber, Rudolf Matthias

    2015-09-01

    This clinical trial aimed to test the hypothesis that piezosurgery causes reduced nerval irritations and, thus, reduced somatosensory impairment when used in orthognathic surgery of the mandible. To this end, 37 consecutive patients with Angle Class II and III malocclusion were treated using bilateral sagittal split osteotomies (BSSO) of the mandible. In a split mouth design, randomized one side of the mandible was operated using a conventional saw, while a piezosurgery device was used on the contralateral side. In order to test the individual qualities of somatosensory function, quantitative sensory testings (QSTs) were performed 1 month, 6 months and 1 year after surgery. A comparison of the data using a two-way analysis of variance (ANOVA) revealed a significant reduction in postoperative impairment in warm detection threshold (WDT) (P = 0.046), a decreased dynamic mechanical allodynia (ALL) (P = 0.002) and a decreased vibration detection threshold (VDT) (P = 0.030) on the piezosurgery side of the mandible as opposed to the conventionally operated control side. In the remaining QSTs, minor deviations from the preoperative baseline conditions and a more rapid regression could be observed. Piezosurgery caused reduced somatosensory impairment and a faster recovery of somatosensory functions in the present investigation.

  4. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  5. Somatosensory impairment and its association with balance limitation in people with multiple sclerosis.

    Science.gov (United States)

    Jamali, Akram; Sadeghi-Demneh, Ebrahim; Fereshtenajad, Niloufar; Hillier, Susan

    2017-09-01

    Somatosensory impairments are common in multiple sclerosis. However, little data are available to characterize the nature and frequency of these problems in people with multiple sclerosis. To investigate the frequency of somatosensory impairments and identify any association with balance limitations in people with multiple sclerosis. The design was a prospective cross-sectional study, involving 82 people with multiple sclerosis and 30 healthy controls. Tactile and proprioceptive sensory acuity were measured using the Rivermead Assessment of Somatosensory Performance. Vibration duration was assessed using a tuning fork. Duration for the Timed Up and Go Test and reaching distance of the Functional Reach Test were measured to assess balance limitations. The normative range of sensory modalities was defined using cut-off points in the healthy participants. The multivariate linear regression was used to identify the significant predictors of balance in people with multiple sclerosis. Proprioceptive impairments (66.7%) were more common than tactile (60.8%) and vibration impairments (44.9%). Somatosensory impairments were more frequent in the lower limb (78.2%) than the upper limb (64.1%). All sensory modalities were significantly associated with the Timed Up and Go and Functional Reach tests (plimitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lateralized delay period activity marks the focus of spatial attention in working memory: evidence from somatosensory event-related brain potentials.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2015-04-29

    The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDA's polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM. Copyright © 2015 the authors 0270-6474/15/356689-07$15.00/0.

  7. Pain and Coping in The Religious Mind

    DEFF Research Database (Denmark)

    Jegindø, Else-Marie Elmholdt; Geertz, Armin W.; Roepstorff, Andreas

    institutions, i.e. the Religion, Cognition and Culture (RCC) research area at The Faculty of Theology, Centre of Functionally Integrative Neuroscience (CFIN) and The Danish Pain Research Centre (DPRC) at the University of Aarhus and Aarhus University Hospital. The team will design fMRI (functional magnetic...... hypothesize that the target group will have a higher pain threshold and pain tolerance during religious practice compared to a non-religious control group, and the fMRI experiments are expected to show reduced neural activity (BOLD) in areas of the brain correlating with pain experience during personal prayer...... and religious stimuli (target) and increased neural activity in reward systems during personal prayer and religious stimuli (target). To complement the clinical experiments, field work in Mauritius during the Hindu Thaipusam Festival 2010 will explore how pain in an online ritual setting is experienced...

  8. Fish welfare: Fish capacity to experience pain

    Directory of Open Access Journals (Sweden)

    Vučinić Marijana

    2009-01-01

    Full Text Available Teleost fish possess similar nociceptive processing systems to those found in terrestrial vertebrates. It means that they react to potential painful stimuli in a similar manner as mammals and birds. However, the welfare of fish has been the focus of less research than that of higher vertebrates. Humans may affect the welfare of fish through fisheries, aquaculture and a number of other activities. There is scientific evidence to support the assumption that fish have the capacity to experience pain because they possess functional nociceptors, endogenous opioids and opioid receptors, brain structures involved in pain processing and pathways leading from nociceptors to higher brain structures. Also, it is well documented that some anaesthetics and analgesics may reduce nociceptive responses in fish. Behavioural indicators in fish such as lip-rubbing and rocking behaviours are the best proof that fish react to potential painful stimuli. This paper is an overview of some scientific evidence on fish capacity to experience pain.

  9. Pain and consciousness.

    Science.gov (United States)

    Garcia-Larrea, Luis; Bastuji, Hélène

    2017-10-12

    The aversive experience we call "pain" results from the coordinated activation of multiple brain areas, commonly described as a "pain matrix". This is not a fixed arrangement of structures but rather a fluid system composed of several interacting networks: A 'nociceptive matrix' includes regions receiving input from ascending nociceptive systems, and ensures the bodily characteristics of physical pain. A further set of structures receiving secondary input supports the 'salience' attributes of noxious stimuli, triggers top-down cognitive controls, and -most importantly- ensures the passage from pre-conscious nociception to conscious pain. Expectations and beliefs can still modulate the conscious experience via activity in supramodal regions with widespread cortical projections such as the ventral tegmental area. Intracortical EEG responses in humans show that nociceptive cortical processing is initiated in parallel in sensory, motor and limbic areas; it progresses rapidly to the recruitment of anterior insular and fronto-parietal networks, and finally to the activation of perigenual, posterior cingulate and hippocampal structures. Functional connectivity between sensory and high-level networks increases during the first second post-stimulus, which may be determinant for access to consciousness. A model is described, progressing from unconscious sensori-motor and limbic processing of spinothalamic and spino-parabrachial input, to an immediate sense of awareness supported by coordinated activity in sensorimotor and fronto-parieto-insular networks, and leading to full declarative consciousness through integration with autobiographical memories and self-awareness, involving posterior cingulate and medial temporal areas. This complete sequence is only present during full vigilance states. We contend, however, that even in unconscious subjects, repeated limbic and vegetative activation by painful stimuli via spino-amygdalar pathways can generate implicit memory traces and

  10. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    Science.gov (United States)

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals.

    Science.gov (United States)

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Wyrwicz, Alice M

    2016-11-01

    The adaptation of neuronal responses to stimulation, in which a peak transient response is followed by a sustained plateau, has been well-studied. The blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal has also been shown to exhibit adaptation on a longer time scale. However, some regions such as the visual and auditory cortices exhibit significant BOLD adaptation, whereas other such as the whisker barrel cortex may not adapt. In the sensory cortex a combination of thalamic inputs and intracortical activity drives hemodynamic changes, although the relative contributions of these components are not entirely understood. The aim of this study is to assess the role of thalamic inputs vs. intracortical processing in shaping BOLD adaptation during stimulation in the somatosensory cortex. Using simultaneous fMRI and electrophysiology in awake rabbits, we measured BOLD, local field potentials (LFPs), single- and multi-unit activity in the cortex during whisker and optogenetic stimulation. This design allowed us to compare BOLD and haemodynamic responses during activation of the normal thalamocortical sensory pathway (i.e., both inputs and intracortical activity) vs. the direct optical activation of intracortical circuitry alone. Our findings show that whereas LFP and multi-unit (MUA) responses adapted, neither optogenetic nor sensory stimulation produced significant BOLD adaptation. We observed for both paradigms a variety of excitatory and inhibitory single unit responses. We conclude that sensory feed-forward thalamic inputs are not primarily responsible for shaping BOLD adaptation to stimuli; but the single-unit results point to a role in this behaviour for specific excitatory and inhibitory neuronal sub-populations, which may not correlate with aggregate neuronal activity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Somatosensory pleasure circuit: from skin to brain and back.

    Science.gov (United States)

    Lloyd, Donna M; McGlone, Francis P; Yosipovitch, Gil

    2015-05-01

    The skin senses serve a discriminative function, allowing us to manipulate objects and detect touch and temperature, and an affective/emotional function, manifested as itch or pain when the skin is damaged. Two different classes of nerve fibre mediate these dissociable aspects of cutaneous somatosensation: (i) myelinated A-beta and A-delta afferents that provide rapid information about the location and physical characteristics of skin contact; and (ii) unmyelinated, slow-conducting C-fibre afferents that are typically associated with coding the emotional properties of pain and itch. However, recent research has identified a third class of C-fibre afferents that code for the pleasurable properties of touch - c-tactile afferents or CTs. Clinical application of treatments that target pleasant, CT-mediated touch (such as massage therapy) could, in the future, provide a complementary, non-pharmacological means of treating both the physical and psychological aspects of chronic skin conditions such as itch and eczema. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Deep brain stimulation for phantom limb pain.

    Science.gov (United States)

    Bittar, Richard G; Otero, Sofia; Carter, Helen; Aziz, Tipu Z

    2005-05-01

    Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.

  14. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  15. Inhibitory rTMS applied on somatosensory cortex in Wilson's disease patients with hand dystonia.

    Science.gov (United States)

    Lozeron, Pierre; Poujois, Aurélia; Meppiel, Elodie; Masmoudi, Sana; Magnan, Thierry Peron; Vicaut, Eric; Houdart, Emmanuel; Guichard, Jean-Pierre; Trocello, Jean-Marc; Woimant, France; Kubis, Nathalie

    2017-10-01

    Hand dystonia is a common complication of Wilson's disease (WD), responsible for handwriting difficulties and disability. Alteration of sensorimotor integration and overactivity of the somatosensory cortex have been demonstrated in dystonia. This study investigated the immediate after effect of an inhibitory repetitive transcranial magnetic stimulation (rTMS) applied over the somatosensory cortex on the writing function in WD patients with hand dystonia. We performed a pilot prospective randomized double-blind sham-controlled crossover rTMS study. A 20-min 1-Hz rTMS session, stereotaxically guided, was applied over the left somatosensory cortex in 13 WD patients with right dystonic writer's cramp. After 3 days, each patient was crossed-over to the alternative treatment. Patients were clinically evaluated before and immediately after each rTMS session with the Unified Wilson's Disease rating scale (UWDRS), the Writers' Cramp Rating Scale (WCRS), a specifically designed scale for handwriting difficulties in Wilson's disease patients (FAR, flow, accuracy, and rhythmicity evaluation), and a visual analog scale (VAS) for handwriting discomfort. No significant change in UWDRS, WCRS, VAS, or FAR scores was observed in patients treated with somatosensory inhibitory rTMS compared to the sham protocol. The FAR negatively correlated with UWDRS (r = -0.6; P = 0.02), but not with the WCRS score, disease duration, MRI diffusion lesions, or with atrophy scores. In our experimental conditions, a single inhibitory rTMS session applied over somatosensory cortex did not improve dystonic writer cramp in WD patients.

  16. Pain-related anxiety influences pain perception differently in men and women: a quantitative sensory test across thermal pain modalities.

    Science.gov (United States)

    Thibodeau, Michel A; Welch, Patrick G; Katz, Joel; Asmundson, Gordon J G

    2013-03-01

    The sexes differ with respect to perception of experimental pain. Anxiety influences pain perception more in men than in women; however, there lacks research exploring which anxiety constructs influence pain perception differentially between men and women. Furthermore, research examining whether depression is associated with pain perception differently between the sexes remains scant. The present investigation was designed to examine how trait anxiety, pain-related anxiety constructs (ie, fear of pain, pain-related anxiety, anxiety sensitivity), and depression are associated with pain perception between the sexes. A total of 95 nonclinical participants (55% women) completed measures assessing the constructs of interest and participated in quantitative sensory testing using heat and cold stimuli administered by a Medoc Pathway Pain and Sensory Evaluation System. The findings suggest that pain-related anxiety constructs, but not trait anxiety, are associated with pain perception. Furthermore, these constructs are associated with pain intensity ratings in men and pain tolerance levels in women. This contrasts with previous research suggesting that anxiety influences pain perception mostly or uniquely in men. Depression was not systematically associated with pain perception in either sex. Systematic relationships were not identified that allow conclusions regarding how fear of pain, pain-related anxiety, and anxiety sensitivity may contribute to pain perception differentially in men and women; however, anxiety sensitivity was associated with increased pain tolerance, a novel finding needing further examination. The results provide directions for future research and clinical endeavors and support that fear and anxiety are important features associated with hyperalgesia in both men and women. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  17. Modulation of itch by conditioning itch and pain stimulation in healthy humans

    DEFF Research Database (Denmark)

    Andersen, Hjalte Holm; van Laarhoven, Antoinette I. M.; Elberling, Jesper

    2017-01-01

    Little is known about endogenous descending control of itch. In chronic pain, descending pain inhibition is reduced as signified by lowered conditioned pain modulation (CPM). There are indications that patients with chronic itch may also exhibit reduced endogenous descending inhibition of itch......-evoked itch, while the test stimuli were electrical stimulation paradigms designed to evoke itch or pain. Pain was significantly reduced (CPM-effect) by the conditioning pain stimulus (p

  18. Nutrient-dependent increased dendritic arborization of somatosensory neurons.

    Science.gov (United States)

    Watanabe, Kaori; Furumizo, Yuki; Usui, Tadao; Hattori, Yukako; Uemura, Tadashi

    2017-01-01

    Suboptimal nutrition imposes developmental constraints on infant animals, which marshal adaptive responses to eventually become mature adults. Such responses are mounted at multiple levels from systemic to cellular. At the cellular level, the underlying mechanisms of cell proliferation control have been intensively studied. However, less is known about how growth of postmitotic and morphologically complex cells, such as neurons, is controlled by nutritional status. We address this question using Class I and Class IV dendritic arborization neurons in Drosophila larvae. Class IV neurons have been shown to sense nociceptive thermal, mechanical and light stimuli, whereas Class I neurons are proprioceptors. We reared larvae on diets with different protein and carbohydrate content throughout larval stages and examined how morphologies of Class I or Class IV neurons were affected. Dendritic arbors of Class IV neurons became more complex when larvae were reared on a low-yeast diet, which contains lower amounts of amino acids and other ingredients, compared to a high-yeast diet. In contrast, such low-yeast-dependent hyperarborization was not seen in Class I neurons. The physiological and metabolic implications of the hyperarborization phenotype are discussed in relation to a recent hypothesis that Class IV neurons sense protein-deficient stress and to our characterization of how the dietary yeast contents impacted larval metabolism. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  19. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    2010-01-01

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  20. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  1. Neural Activation during Anticipation of Near Pain-Threshold Stimulation Among the Pain-Fearful

    Directory of Open Access Journals (Sweden)

    Zhou Yang

    2016-07-01

    Full Text Available Fear of pain (FOP can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men and less (7 women, 6 men pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain regions (e.g., bilateral insula, midcingulate cortex (MCC, thalamus, superior frontal gyrus and visual areas linked to decoding stimulus valences (inferior orbital cortex during anticipation of painful stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole, though group differences were not apparent in most so-called pain matrix regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation.

  2. Neural Activation during Anticipation of Near Pain-Threshold Stimulation among the Pain-Fearful.

    Science.gov (United States)

    Yang, Zhou; Jackson, Todd; Huang, Chengzhi

    2016-01-01

    Fear of pain (FOP) can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men) and less (7 women, 6 men) pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI) during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain perception regions (e.g., bilateral insula, midcingulate cortex (MCC), thalamus, superior frontal gyrus) and visual areas linked to decoding stimulus valences (inferior orbital cortex) during anticipation of "painful" stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole), though group differences were not apparent in most so-called "pain matrix" regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation.

  3. Pain sensitivity is inversely related to regional grey matter density in the brain.

    Science.gov (United States)

    Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C

    2014-03-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli.

    Directory of Open Access Journals (Sweden)

    Michael Schütz

    Full Text Available BACKGROUND: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. METHODS: Olfactory function and nociception was compared between carriers (n = 38 and non-carriers (n = 43 of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2. RESULTS: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2 were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049. Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006, which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. CONCLUSIONS: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.

  5. The Rare Painful Phenomena - Chronic Paroxysmal Hemicrania-tic Syndrome as a Clinically Isolated Syndrome of the Central Nervous System.

    Science.gov (United States)

    Ljubisavljevic, Srdjan; Prazic, Ana; Lazarevic, Miodrag; Stojanov, Dragan; Savic, Dejan; Vojinovic, Slobadan

    2017-02-01

    The association of paroxysmal hemicrania with trigeminal neuralgia (TN) has been described and called paroxysmal hemicrania-tic syndrome (PH-tic). We report the case of a patient diagnosed as having chronic PH-tic (CPH-tic) syndrome as a clinically isolated syndrome of the central nervous system (CNS) (CIS).A forty year old woman was admitted to our hospital suffering from right facial pain for the last 2 years. The attacks were paroxysmal, neuralgiform, consisting of throb-like sensations, which developed spontaneously or were triggered by different stimuli in right facial (maxilar and mandibular) areas. Parallel with those, she felt a throbbing orbital and frontal pain with homolateral autonomic symptoms such as conjunctival injection, lacrimation, and the feeling that the ear on the same side was full. This pain lasted most often between 15 and 20 minutes. Beyond hemifacial hypoesthesia in the region of right maxilar and mandibular nerve, the other neurological finding was normal. Magnetic resonance imaging (MRI) study showed a T2-weighted multiple hyperintense paraventricular lesion and hyperintense lesion in the right trigeminal main sensory nucleus and root inlet, all of them being hypointense on T1-weighted image. All of these lesions were hypointense in gadolinium-enhanced T1-weighted images. Neurophysiological studies of trigeminal nerve (somatosensory evoked potentials and blink reflex) correlated with MRI described lesions. The patient's pain bouts were improved immediately after treatment with indomethacin, and were completely relieved with lamotrigine for a longer period. According to the actual McDonald's criteria, clinical state was defined as CIS which was clinically presented by CPH-tic syndrome.Even though it is a clinical rarity and its etiology is usually idiopathic, CPH-tic syndrome can also be symptomatic. When dealing with symptomatic cases, like the one described here, when causal therapy is not possible due to the nature of the primary

  6. Social redistribution of pain and money.

    Science.gov (United States)

    Story, Giles W; Vlaev, Ivo; Metcalfe, Robert D; Crockett, Molly J; Kurth-Nelson, Zeb; Darzi, Ara; Dolan, Raymond J

    2015-10-30

    People show empathic responses to others' pain, yet how they choose to apportion pain between themselves and others is not well understood. To address this question, we observed choices to reapportion social allocations of painful stimuli and, for comparison, also elicited equivalent choices with money. On average people sought to equalize allocations of both pain and money, in a manner which indicated that inequality carried an increasing marginal cost. Preferences for pain were more altruistic than for money, with several participants assigning more than half the pain to themselves. Our data indicate that, given concern for others, the fundamental principle of diminishing marginal utility motivates spreading costs across individuals. A model incorporating this assumption outperformed existing models of social utility in explaining the data. By implementing selected allocations for real, we also found that while inequality per se did not influence pain perception, altruistic behavior had an intrinsic analgesic effect for the recipient.

  7. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emma G. Dupuy

    2017-06-01

    Full Text Available Elhers-Danlos syndrome (EDS is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i to assess the impact of somatosensory deficit on subjective visual vertical (SVV and postural stability; and (ii to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side evaluation and a postural control evaluation on a force platform (Synapsys, with or without visual information (eyes open (EO/eyes closed (EC. These two latter conditions performed either without orthoses, or with compression garments (CG, or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis. In addition, patients showed greater postural instability (sway area than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly

  8. Multi-Functional Stimuli-Responsive Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Supramolecular polymers based on non-covalent interactions can display a wide array of stimuli-responsive attributes. They can be tailored to change shape, actuate...

  9. Newborns' Discrimination of Chromatic from Achromatic Stimuli.

    Science.gov (United States)

    Adams, Russell J.; And Others

    1986-01-01

    Two experiments assessed the extent of newborns' ability to discriminate color. Results imply that newborns have some, albeit limited, capacity to discriminate chromatic from achromatic stimuli, and hence, are at least dichromats. (Author/DR)

  10. Generalized Habituation of Concept Stimuli in Toddlers

    Science.gov (United States)

    Faulkender, Patricia J.; And Others

    1974-01-01

    An evaluation of selective generalization of habituation on the basis of meaningful categories of stimuli. Also explored are the sex differences in conceptual generalization of habituation. Subjects were 36 toddlers with a mean age of 40 months. (SDH)

  11. Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.

    Science.gov (United States)

    Rahman, Wahida; Dickenson, Anthony H

    2015-06-01

    Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.

  12. Thermal and pressure pain sensitivity in patients with unilateral shoulder pain: comparison of involved and uninvolved sides.

    Science.gov (United States)

    Coronado, Rogelio A; Kindler, Lindsay L; Valencia, Carolina; George, Steven Z

    2011-03-01

    Cross-sectional. In the examination of patients with unilateral shoulder pain, pain provocation testing to compare the involved and uninvolved sides has been considered useful. However, side-to-side comparisons of experimental pain sensitivity in patients with unilateral shoulder pain are not widely reported in the literature. To compare experimental pain sensitivity between the involved and uninvolved sides in patients with unilateral shoulder pain. In consecutive patients seeking operative treatment for shoulder pain, sensitivity measures of bilateral pressure pain threshold at the shoulder and forearm, and thermal pain threshold, tolerance, and temporal summation at the forearm, were examined. Pressure sensitivity was tested with a Fischer pressure algometer, and thermal sensitivity with a computer-controlled Medoc neurosensory analyzer. The involved and uninvolved sides were compared with an analysis of variance. Influence of sex and location of testing were considered as covariates in the analysis. Fifty-nine consecutively recruited participants completed experimental pain sensitivity testing. Participants reported significantly lower pressure pain thresholds in the involved side compared to the uninvolved side (F1,56 = 4.96, P = .030). In addition, female compared to male participants demonstrated lower pressure pain thresholds in the bilateral shoulder regions (F1,56 = 10.84, P = .002). There was no difference in thermal pain sensitivity between sides. Average clinical pain intensity was negatively correlated with pressure pain threshold at the involved local site (r = -0.284, P = .029), indicating an influence of clinical pain intensity on local pressure pain. The results of this study provide evidence for higher experimental pressure pain sensitivity in the involved side of patients with unilateral shoulder pain and no difference between sides for thermal pain sensitivity. Females demonstrated higher pain sensitivity than males to pressure stimuli at the

  13. The mere exposure effect with scene stimuli

    OpenAIRE

    八木 , 善彦

    2016-01-01

     The mere exposure effect refers to the phenomenon where previous exposures to stimuli increasesubsequent affective preference for those stimuli. It has been indicated that with specific stimulus-category(i.e., paintings, matrices, and photographs of scene), repeated exposure has little or oppositeeffect on affective ratings. In this study, two experiments were conducted in order to explore theeffect of stimulus-category on the mere exposure effects. Photographs of young woman’s(Experiment1)a...

  14. Personalized pain medicine: the clinical value of psychophysical assessment of pain modulation profile.

    Science.gov (United States)

    Granovsky, Yelena; Yarnitsky, David

    2013-01-01

    Experimental pain stimuli can be used to simulate patients' pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests-conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine.

  15. Personalized Pain Medicine: The Clinical Value of Psychophysical Assessment of Pain Modulation Profile

    Directory of Open Access Journals (Sweden)

    Yelena Granovsky

    2013-10-01

    Full Text Available Experimental pain stimuli can be used to simulate patients’ pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests—conditioned pain modulation (CPM and temporal summation (TS. Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine.

  16. Effects of Spinal Cord Stimulation on Pain Thresholds and Sensory Perceptions in Chronic Pain Patients.

    Science.gov (United States)

    Ahmed, Shihab U; Zhang, Yi; Chen, Lucy; St Hillary, Kristin; Cohen, Abigail; Vo, Trang; Houghton, Mary; Mao, Jianren

    2015-07-01

    Spinal cord stimulation (SCS) has been in clinical use for nearly four decades. In earliest observations, researchers found a significant increase in pain threshold during SCS therapy without changes associated with touch, position, and vibration sensation. Subsequent studies yielded diverse results regarding how SCS impacts pain and other sensory thresholds. This pilot study uses quantitative sensory testing (QST) to objectively quantify the impact of SCS on warm sensation, heat pain threshold, and heat pain tolerance. Nineteen subjects with an indwelling SCS device for chronic pain were subjected to QST with heat stimuli. QST was performed on an area of pain covered with SCS-induced paresthesia and an area without pain and without paresthesia, while the SCS was turned off and on. The temperature at which the patient detected warm sensation, heat pain, and maximal tolerable heat pain was used to define the thresholds. We found that all three parameters, the detection of warm sensation, heat pain threshold, and heat pain tolerance, were increased during the period when SCS was on compared with when it was off. This increase was observed in both painful and non-painful sites. The observed pain relief during SCS therapy seems to be related to its impact on increased sensory threshold as detected in this study. The increased sensory threshold on areas without pain and without the presence of SCS coverage may indicate a central (spinal and/or supra-spinal) influence from SCS. © 2015 International Neuromodulation Society.

  17. Binocular Combination of Second-Order Stimuli

    Science.gov (United States)

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  18. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome

    Science.gov (United States)

    Jang, Joon Hwan; Lee, Do-Hyeong; Lee, Kyung-Jun; Lee, Won Joon; Moon, Jee Youn; Kim, Yong Chul

    2017-01-01

    Given that the insula plays a contributory role in the perception of chronic pain, we examined the resting-state functional connectivity between the insular cortex and other brain regions to investigate neural underpinnings of persisting perception of background pain in patients with complex regional pain syndrome (CRPS). A total of 25 patients with CRPS and 25 matched healthy controls underwent functional magnetic resonance imaging at rest. With the anterior and posterior insular cortices as seed regions, we compared the strength of the resting-state functional connectivity between the two groups. Functional connectivity between the anterior and posterior insular cortices and the postcentral and inferior frontal gyri, cingulate cortices was reduced in patients with CRPS compared with controls. Additionally, greater reductions in functional connectivity between the anterior insula and right postcentral gyrus were associated with more severe sensory pain in patients with CRPS (short-form McGill Pain Questionnaire sensory subscores, r = -.517, P = .023). The present results imply a possible role of the insula in aberrant processing of pain information in patients with CRPS. The findings suggest that a functional derangement of the connection between one of the somatosensory cortical functions of perception and one of the insular functions of awareness can play a significant role in the persistent experience of regional pain that is not confined to a specific nerve territory. PMID:28692702

  19. Endogenous opioid antagonism in physiological experimental pain models

    DEFF Research Database (Denmark)

    Werner, Mads U; Pereira, Manuel P; Andersen, Lars Peter H

    2015-01-01

    hyperalgesia models (6 studies), 'pain' models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and r...... ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 'pain' model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect......Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double...

  20. Cortical somatosensory-evoked potentials during spine surgery in patients with neuromuscular and idiopathic scoliosis under propofol-remifentanil anaesthesia

    NARCIS (Netherlands)

    Hermanns, H.; Lipfert, P.; Meier, S.; Jetzek-Zader, M.; Krauspe, R.; Stevens, M. F.

    2007-01-01

    BACKGROUND: Intraoperative monitoring of the spinal cord via cortical somatosensory-evoked potentials (SSEP) is a routine during spinal surgery. However, especially in neuromuscular scoliosis, the reliability of cortical SSEP has been questioned. Therefore, we compared the feasibility of cortical

  1. Diagnostic uncertainty and recall bias in chronic low back pain.

    Science.gov (United States)

    Serbic, Danijela; Pincus, Tamar

    2014-08-01

    Patients' beliefs about the origin of their pain and their cognitive processing of pain-related information have both been shown to be associated with poorer prognosis in low back pain (LBP), but the relationship between specific beliefs and specific cognitive processes is not known. The aim of this study was to examine the relationship between diagnostic uncertainty and recall bias in 2 groups of chronic LBP patients, those who were certain about their diagnosis and those who believed that their pain was due to an undiagnosed problem. Patients (N=68) endorsed and subsequently recalled pain, illness, depression, and neutral stimuli. They also provided measures of pain, diagnostic status, mood, and disability. Both groups exhibited a recall bias for pain stimuli, but only the group with diagnostic uncertainty also displayed a recall bias for illness-related stimuli. This bias remained after controlling for depression and disability. Sensitivity analyses using grouping by diagnosis/explanation received supported these findings. Higher levels of depression and disability were found in the group with diagnostic uncertainty, but levels of pain intensity did not differ between the groups. Although the methodology does not provide information on causality, the results provide evidence for a relationship between diagnostic uncertainty and recall bias for negative health-related stimuli in chronic LBP patients. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. High frequency migraine is associated with lower acute pain sensitivity and abnormal insula activity related to migraine pain intensity, attack frequency, and pain catastrophizing

    Directory of Open Access Journals (Sweden)

    Vani A Mathur

    2016-09-01

    Full Text Available Migraine is a pain disorder associated with abnormal brain structure and function, yet the effect of migraine on acute pain processing remains unclear. It also remains unclear whether altered pain-related brain responses and related structural changes are associated with clinical migraine characteristics. Using fMRI and three levels of thermal stimuli (non-painful, mildly painful, and moderately painful, we compared whole-brain activity between 14 migraine patients and 14 matched controls. Although, there were no significant differences in pain thresholds and pre-scan pain ratings to mildly painful thermal stimuli, patients had aberrant suprathreshold nociceptive processing. Compared to controls, patients had reduced activity in pain modulatory regions including left dorsolateral prefrontal, posterior parietal, and middle temporal cortices and, at a lower-threshold, greater activation in the right mid-insula to moderate pain versus mild pain. We also found that pain-related activity in the insula was associated with clinical variables in patients, including associations between: bilateral anterior insula and pain catastrophizing (PCS; bilateral anterior insula and contralateral posterior insula and migraine pain intensity; and bilateral posterior insula and migraine frequency at a lower-threshold. PCS and migraine pain intensity were also negatively associated with activity in midline regions including posterior cingulate and medial prefrontal cortices. Diffusion tensor imaging revealed a negative correlation between fractional anisotropy (a measure of white matter integrity; FA and migraine duration in the right mid-insula and a positive correlation between left mid-insula FA and PCS. In sum, while patients showed lower sensitivity to acute noxious stimuli, the neuroimaging findings suggest enhanced nociceptive processing and significantly disrupted modulatory networks, particularly involving the insula cortex, associated with indices of

  3. Noninvasive transcranial direct current stimulation (tDCS) for the treatment of orofacial pain.

    Science.gov (United States)

    Fricova, Jitka; Englerova, Katerina; Rokyta, Richard

    2016-10-01

    tDCS is a promising method for the treatment of chronic pain. Electrode placement locations must be chosen in accordance with the density and the time course of the current in order to prevent pathological changes in the underlying tissue. In order to reduce current spatial variability, more electrodes of the same polarity are placed in a circle around the second electrode of the opposite polarity. The applied current produced the greatest changes directly beneath the electrodes: the cathode reduces the excitability of cortical neurons, while the anode has the opposite effect. Based on inclusion criteria, 10 patients with chronic orofacial pain, secondary trigeminal neuralgia after oral surgery, were enrolled and underwent both anode and cathode stimulation. Before the first session we measured pain intensity on a numeric pain rating scale and tactile and thermal stimulation were used to assess somatosensory status. tDCS was applied for five consecutive days. At the end of tDCS application, somatosensory status was assessed again. From our results we can conclude that the application of tDCS improves the perception of some types of pain. When we increase our sample size, we would expect confirmation not only on our positive results, but also some additional findings for explaining the pathophysiology of orofacial pain. These pathophysiological findings and explanations are very important for the application of tDCS in the treatment of orofacial pain and also for other types of neuropathic pain.

  4. Impact of emotion on consciousness: positive stimuli enhance conscious reportability.

    Directory of Open Access Journals (Sweden)

    Kristine Rømer Thomsen

    2011-04-01

    Full Text Available Emotion and reward have been proposed to be closely linked to conscious experience, but empirical data are lacking. The anterior cingulate cortex (ACC plays a central role in the hedonic dimension of conscious experience; thus potentially a key region in interactions between emotion and consciousness. Here we tested the impact of emotion on conscious experience, and directly investigated the role of the ACC. We used a masked paradigm that measures conscious reportability in terms of subjective confidence and objective accuracy in identifying the briefly presented stimulus in a forced-choice test. By manipulating the emotional valence (positive, neutral, negative and the presentation time (16 ms, 32 ms, 80 ms we measured the impact of these variables on conscious and subliminal (i.e. below threshold processing. First, we tested normal participants using face and word stimuli. Results showed that participants were more confident and accurate when consciously seeing happy versus sad/neutral faces and words. When stimuli were presented subliminally, we found no effect of emotion. To investigate the neural basis of this impact of emotion, we recorded local field potentials (LFPs directly in the ACC in a chronic pain patient. Behavioural findings were replicated: the patient was more confident and accurate when (consciously seeing happy versus sad faces, while no effect was seen in subliminal trials. Mirroring behavioural findings, we found significant differences in the LFPs after around 500 ms (lasting 30 ms in conscious trials between happy and sad faces, while no effect was found in subliminal trials. We thus demonstrate a striking impact of emotion on conscious experience, with positive emotional stimuli enhancing conscious reportability. In line with previous studies, the data indicate a key role of the ACC, but goes beyond earlier work by providing the first direct evidence of interaction between emotion and conscious experience in the human

  5. Modality-Based Organization of Ascending Somatosensory Axons in the Direct Dorsal Column Pathway

    Science.gov (United States)

    Niu, Jingwen; Ding, Long; Li, Jian J.; Kim, Hyukmin; Liu, Jiakun; Li, Haipeng; Moberly, Andrew; Badea, Tudor C.; Duncan, Ian D.; Son, Young-Jin; Scherer, Steven S.

    2013-01-01

    The long-standing doctrine regarding the functional organization of the direct dorsal column (DDC) pathway is the “somatotopic map” model, which suggests that somatosensory afferents are primarily organized by receptive field instead of modality. Using modality-specific genetic tracing, here we show that ascending mechanosensory and proprioceptive axons, two main types of the DDC afferents, are largely segregated into a medial–lateral pattern in the mouse dorsal column and medulla. In addition, we found that this modality-based organization is likely to be conserved in other mammalian species, including human. Furthermore, we identified key morphological differences between these two types of afferents, which explains how modality segregation is formed and why a rough “somatotopic map” was previously detected. Collectively, our results establish a new functional organization model for the mammalian direct dorsal column pathway and provide insight into how somatotopic and modality-based organization coexist in the central somatosensory pathway. PMID:24198362

  6. Glutamate-Mediated Primary Somatosensory Cortex Excitability Correlated with Circulating Copper and Ceruloplasmin

    Directory of Open Access Journals (Sweden)

    Franca Tecchio

    2011-01-01

    Full Text Available Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20 of the somatosensory magnetic fields (SEFs evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51±22 years were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30, which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness.

  7. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S. [Dept. of Neurology D4, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan); Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. [Dept. of Radiology, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan)

    2003-03-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  8. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    International Nuclear Information System (INIS)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S.; Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N.

    2003-01-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  9. Sexual pain.

    Science.gov (United States)

    Boardman, Lori A; Stockdale, Colleen K

    2009-12-01

    Sexual pain is an underrecognized and poorly treated constellation of disorders that significantly impact affected women and their partners. Recognized as a form of chronic pain, sexual pain disorders are heterogeneous and include dyspareunia (superficial and deep), vaginismus, vulvodynia, vestibulitis, and noncoital sexual pain disorder. Women too often tolerate pain in the belief that this will meet their partners' needs. This article provides a review of the terminology and definition of the condition, theories on the pathophysiology, diagnostic considerations, and recommendations on the management of female sexual pain.

  10. Racial bias in neural empathic responses to pain.

    Directory of Open Access Journals (Sweden)

    Luis Sebastian Contreras-Huerta

    Full Text Available Recent studies have shown that perceiving the pain of others activates brain regions in the observer associated with both somatosensory and affective-motivational aspects of pain, principally involving regions of the anterior cingulate and anterior insula cortex. The degree of these empathic neural responses is modulated by racial bias, such that stronger neural activation is elicited by observing pain in people of the same racial group compared with people of another racial group. The aim of the present study was to examine whether a more general social group category, other than race, could similarly modulate neural empathic responses and perhaps account for the apparent racial bias reported in previous studies. Using a minimal group paradigm, we assigned participants to one of two mixed-race teams. We use the term race to refer to the Chinese or Caucasian appearance of faces and whether the ethnic group represented was the same or different from the appearance of the participant' own face. Using fMRI, we measured neural empathic responses as participants observed members of their own group or other group, and members of their own race or other race, receiving either painful or non-painful touch. Participants showed clear group biases, with no significant effect of race, on behavioral measures of implicit (affective priming and explicit group identification. Neural responses to observed pain in the anterior cingulate cortex, insula cortex, and somatosensory areas showed significantly greater activation when observing pain in own-race compared with other-race individuals, with no significant effect of minimal groups. These results suggest that racial bias in neural empathic responses is not influenced by minimal forms of group categorization, despite the clear association participants showed with in-group more than out-group members. We suggest that race may be an automatic and unconscious mechanism that drives the initial neural responses to

  11. Racial Bias in Neural Empathic Responses to Pain

    Science.gov (United States)

    Contreras-Huerta, Luis Sebastian; Baker, Katharine S.; Reynolds, Katherine J.; Batalha, Luisa; Cunnington, Ross

    2013-01-01

    Recent studies have shown that perceiving the pain of others activates brain regions in the observer associated with both somatosensory and affective-motivational aspects of pain, principally involving regions of the anterior cingulate and anterior insula cortex. The degree of these empathic neural responses is modulated by racial bias, such that stronger neural activation is elicited by observing pain in people of the same racial group compared with people of another racial group. The aim of the present study was to examine whether a more general social group category, other than race, could similarly modulate neural empathic responses and perhaps account for the apparent racial bias reported in previous studies. Using a minimal group paradigm, we assigned participants to one of two mixed-race teams. We use the term race to refer to the Chinese or Caucasian appearance of faces and whether the ethnic group represented was the same or different from the appearance of the participant' own face. Using fMRI, we measured neural empathic responses as participants observed members of their own group or other group, and members of their own race or other race, receiving either painful or non-painful touch. Participants showed clear group biases, with no significant effect of race, on behavioral measures of implicit (affective priming) and explicit group identification. Neural responses to observed pain in the anterior cingulate cortex, insula cortex, and somatosensory areas showed significantly greater activation when observing pain in own-race compared with other-race individuals, with no significant effect of minimal groups. These results suggest that racial bias in neural empathic responses is not influenced by minimal forms of group categorization, despite the clear association participants showed with in-group more than out-group members. We suggest that race may be an automatic and unconscious mechanism that drives the initial neural responses to observed pain in

  12. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Science.gov (United States)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  13. Skill-Specific Changes in Somatosensory Nogo Potentials in Baseball Players.

    Directory of Open Access Journals (Sweden)

    Koya Yamashiro

    Full Text Available Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in somatosensory evoked potentials and event-related potentials. The aim of this study was to clarify whether specific athletic training also affects somatosensory Nogo potentials related to the inhibition of movements. The Nogo potentials were recorded at nine cortical electrode positions (Fz, Cz, Pz, F3, F4, C3, C4, P3 and P4 in 12 baseball players (baseball group and in 12 athletes in sports, such as track and field events and swimming, that do not require response inhibition, such as batting for training or performance (sports group. The Nogo potentials and Go/Nogo reaction times (Go/Nogo RTs were measured under a somatosensory Go/Nogo paradigm in which subjects were instructed to rapidly push a button in response to stimulus presentation. The Nogo potentials were obtained by subtracting the Go trial from the Nogo trial. The peak Nogo-N2 was significantly shorter in the baseball group than that in the sports group. In addition, the amplitude of Nogo-N2 in the frontal area was significantly larger in the baseball group than that in the sports group. There was a significant positive correlation between the latency of Nogo-N2 and Go/Nogo RT. Moreover, there were significant correlations between the Go/Nogo RT and both the amplitude of Nogo-N2 and Nogo-P3 (i.e., amplitude of the Nogo-potentials increases with shorter RT. Specific athletic training regimens may induce neuroplastic alterations in sensorimotor inhibitory processes.

  14. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.

    Science.gov (United States)

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2016-07-01

    Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Generalization of the disruptive effects of alternative stimuli when combined with target stimuli in extinction.

    Science.gov (United States)

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila; Jonas Chan, C K; Bland, Vikki J; Bai, John Y H

    2017-09-01

    Differential-reinforcement treatments reduce target problem behavior in the short term but at the expense of making it more persistent long term. Basic and translational research based on behavioral momentum theory suggests that combining features of stimuli governing an alternative response with the stimuli governing target responding could make target responding less persistent. However, changes to the alternative stimulus context when combining alternative and target stimuli could diminish the effectiveness of the alternative stimulus in reducing target responding. In an animal model with pigeons, the present study reinforced responding in the presence of target and alternative stimuli. When combining the alternative and target stimuli during extinction, we altered the alternative stimulus through changes in line orientation. We found that (1) combining alternative and target stimuli in extinction more effectively decreased target responding than presenting the target stimulus on its own; (2) combining these stimuli was more effective in decreasing target responding trained with lower reinforcement rates; and (3) changing the alternative stimulus reduced its effectiveness when it was combined with the target stimulus. Therefore, changing alternative stimuli (e.g., therapist, clinical setting) during behavioral treatments that combine alternative and target stimuli could reduce the effectiveness of those treatments in disrupting problem behavior. © 2017 Society for the Experimental Analysis of Behavior.

  16. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans.

    Science.gov (United States)

    Marks, Kendra L; Martel, David T; Wu, Calvin; Basura, Gregory J; Roberts, Larry E; Schvartz-Leyzac, Kara C; Shore, Susan E

    2018-01-03

    The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Ziluk Angela

    2010-08-01

    Full Text Available Abstract Background Intermittent theta-burst stimulation (iTBS is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI. The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Results Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. Conclusion We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  18. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system.

    Science.gov (United States)

    Pasluosta, Cristian; Kiele, Patrick; Stieglitz, Thomas

    2018-04-01

    The somatosensory system contributes substantially to the integration of multiple sensor modalities into perception. Tactile sensations, proprioception and even temperature perception are integrated to perceive embodiment of our limbs. Damage of somatosensory networks can severely affect the execution of daily life activities. Peripheral injuries are optimally corrected via direct interfacing of the peripheral nerves. Recent advances in implantable devices, stimulation paradigms, and biomimetic sensors enabled the restoration of natural sensations after amputation of the limb. The refinement of stimulation patterns to deliver natural feedback that can be interpreted intuitively such to prescind from long-learning sessions is crucial to function restoration. For this review, we collected state-of-the-art knowledge on the evolution of stimulation paradigms from single fiber stimulation to the eliciting of multisensory sensations. Data from the literature are structured into six sections: (a) physiology of the somatosensory system; (b) stimulation of single fibers; (c) restoral of multisensory percepts; (d) closure of the control loop in hand prostheses; (e) sensory restoration and the sense of embodiment, and (f) methodologies to assess stimulation outcomes. Full functional recovery demands further research on multisensory integration and brain plasticity, which will bring new paradigms for intuitive sensory feedback in the next generation of limb prostheses. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Differentiated effects of deep brain stimulation and medication on somatosensory processing in Parkinson's disease.

    Science.gov (United States)

    Sridharan, Kousik Sarathy; Højlund, Andreas; Johnsen, Erik Lisbjerg; Sunde, Niels Aagaard; Johansen, Lars Gottfried; Beniczky, Sándor; Østergaard, Karen

    2017-07-01

    Deep brain stimulation (DBS) and dopaminergic medication effectively alleviate the motor symptoms in Parkinson's disease (PD) patients, but their effects on the sensory symptoms of PD are still not well understood. To explore early somatosensory processing in PD, we recorded magnetoencephalography (MEG) from thirteen DBS-treated PD patients and ten healthy controls during median nerve stimulation. PD patients were measured during DBS-treated, untreated and dopaminergic-medicated states. We focused on early cortical somatosensory processing as indexed by N20m, induced gamma augmentation (31-45Hz and 55-100Hz) and induced beta suppression (13-30Hz). PD patients' motor symptoms were assessed by UPDRS-III. Using Bayesian statistics, we found positive evidence for differentiated effects of treatments on the induced gamma augmentation (31-45Hz) with highest gamma in the dopaminergic-medicated state and lowest in the DBS-treated and untreated states. In contrast, UPDRS-III scores showed beneficial effects of both DBS and dopaminergic medication on the patients' motor symptoms. Furthermore, treatments did not affect the amplitude of N20m. Our results suggest differentiated effects of DBS and dopaminergic medication on cortical somatosensory processing in PD patients despite consistent ameliorating effects of both treatments on PD motor symptoms. The differentiated effect suggests differences in the effect mechanisms of the two treatments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  1. Characterizing acupuncture stimuli using brain imaging with FMRI--a systematic review and meta-analysis of the literature.

    Directory of Open Access Journals (Sweden)

    Wenjing Huang

    Full Text Available The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1 differences between verum and sham acupuncture, 2 differences due to various methods of acupuncture manipulation, 3 differences between patients and healthy volunteers, 4 differences between different acupuncture points.We systematically searched English, Chinese, Korean and Japanese databases for literature published from the earliest available up until September 2009, without any language restrictions. We included all studies using fMRI to investigate the effect of acupuncture on the human brain (at least one group that received needle-based acupuncture. 779 papers were identified, 149 met the inclusion criteria for the descriptive analysis, and 34 were eligible for the meta-analyses. From a descriptive perspective, multiple studies reported that acupuncture modulates activity within specific brain areas, including somatosensory cortices, limbic system, basal ganglia, brain stem, and cerebellum. Meta-analyses for verum acupuncture stimuli confirmed brain activity within many of the regions mentioned above. Differences between verum and sham acupuncture were noted in brain response in middle cingulate, while some heterogeneity was noted for other regions depending on how such meta-analyses were performed, such as sensorimotor cortices, limbic regions, and cerebellum.Brain response to acupuncture stimuli encompasses a broad network of regions consistent with not just somatosensory, but also affective and cognitive processing. While the results were heterogeneous, from a descriptive perspective most studies suggest that acupuncture can modulate the activity within specific brain areas, and the

  2. Selective attention towards painful faces among chronic pain patients: evidence from a modified version of the dot-probe.

    Science.gov (United States)

    Khatibi, Ali; Dehghani, Mohsen; Sharpe, Louise; Asmundson, Gordon J G; Pouretemad, Hamidreza

    2009-03-01

    Evidence that patients with chronic pain selectively attend to pain-related stimuli presented in modified Stroop and dot-probe paradigms is mixed. The pain-related stimuli used in these studies have been primarily verbal in nature (i.e., words depicting themes of pain). The purpose of the present study was to determine whether patients with chronic pain, relative to healthy controls, show selective attention for pictures depicting painful faces. To do so, 170 patients with chronic pain and 40 age- and education-matched healthy control participants were tested using a dot-probe task in which painful, happy, and neutral facial expressions were presented. Selective attention was denoted using the mean reaction time and the bias index. Results indicated that, while both groups shifted attention away from happy faces (and towards neutral faces), only the control group shifted attention away from painful faces. Additional analyses were conducted on chronic pain participants after dividing them into groups on the basis of fear of pain/(re)injury. The results of these analyses revealed that while chronic pain patients with high and low levels of fear both shifted attention away from happy faces, those with low fear shifted attention away from painful faces, whereas those with high fear shifted attention towards painful faces. These results suggest that patients with chronic pain selectively attend to facial expressions of pain and, importantly, that the tendency to shift attention towards such stimuli is positively influenced by high fear of pain/(re)injury. Implications of the findings and future research directions are discussed.

  3. Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.

    Science.gov (United States)

    Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S

    2017-12-29

    Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was

  4. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome.

    Science.gov (United States)

    Rosenberger, Christina; Thürling, Markus; Forsting, Michael; Elsenbruch, Sigrid; Timmann, Dagmar; Gizewski, Elke R

    2013-04-01

    There is evidence to support that the cerebellum contributes to the neural processing of both emotions and painful stimuli. This could be particularly relevant in conditions associated with chronic abdominal pain, such as the irritable bowel syndrome (IBS), which are often also characterized by affective disturbances. We aimed to test the hypothesis that in IBS, symptoms of anxiety and depression modulate brain activation during visceral stimulation within the cerebellum. We reanalyzed a previous data set from N = 15 female IBS patients and N = 12 healthy women with a specific focus on the cerebellum using advanced normalization methods. Rectal distension-induced brain activation was measured with functional magnetic resonance imaging using non-painful and painful rectal distensions. Symptoms of anxiety and depression, assessed with the Hospital Anxiety and Depression scale, were correlated with cerebellar activation within IBS patients. Within IBS, depression scores were associated with non-painful distension-induced activation in the right cerebellum primarily in Crus II and lobule VIIIb, and additionally in Crus I. Depression scores were also associated with painful distension-induced activation predominantly in vermal lobule V with some extension to the intermediate cerebellum. Anxiety scores correlated significantly with non-painful induced activation in Crus II. Symptoms of anxiety and depression, which are frequently found in chronic pain conditions like IBS, modulate activation during visceral sensory signals not only in cortical and subcortical brain areas but also in the cerebellum.

  5. Attentional Avoidance is Associated with Increased Pain Sensitivity in Patients with Chronic Posttraumatic Pain and Comorbid Posttraumatic Stress

    DEFF Research Database (Denmark)

    Harvold, Mathea; MacLeod, Colin; Vaegter, Henrik Bjarke

    2018-01-01

    posttraumatic pain patients is unknown. This study investigated AB for linguistic pain- and trauma-related stimuli, and clinical and thermal sensitivity in patients with chronic posttraumatic pain with and without PTSD. METHODS: Thirty-four patients with chronic posttraumatic cervical pain performed the visual......OBJECTIVES: Posttraumatic stress disorder (PTSD) is common in chronic posttraumatic pain. Theoretical models suggest that attentional biases (AB) contribute to the development and maintenance of chronic pain and PTSD, however, the influence of AB on clinical and heat pain sensitivity in chronic...... attentional probe task assessing patterns of selective attentional responding to trauma cues and to pain cues. The task used short (500 ms) and long (1250 ms) stimulus exposure durations to ensure sensitivity to both the orienting and maintenance of attention. Heat pain threshold (HPT) was assessed at the non-painful...

  6. Pelvic Pain

    Science.gov (United States)

    ... OLPP) Office of Science Policy, Reporting, and Program Analysis (OSPRA) Division of Extramural Research (DER) Extramural Scientific ... treat my pain? Can pelvic pain affect my emotional well-being? How can I cope with long- ...

  7. Neck pain

    Science.gov (United States)

    ... cause of neck pain is muscle strain or tension. Most often, everyday activities are to blame. Such ... of a heart attack , such as shortness of breath, sweating, nausea, vomiting, or arm or jaw pain. ...

  8. [Pain and emotional dysregulation: Cellular memory due to pain].

    Science.gov (United States)

    Narita, Minoru; Watanabe, Moe; Hamada, Yusuke; Tamura, Hideki; Ikegami, Daigo; Kuzumaki, Naoko; Igarashi, Katsuhide

    2015-08-01

    Genetic factors are involved in determinants for the risk of psychiatric disorders, and neurological and neurodegenerative diseases. Chronic pain stimuli and intense pain have effects at a cellular and/or gene expression level, and will eventually induce "cellular memory due to pain", which means that tissue damage, even if only transient, can elicit epigenetically abnormal transcription/translation and post-translational modification in related cells depending on the degree or kind of injury or associated conditions. Such cell memory/transformation due to pain can cause an abnormality in a fundamental intracellular response, such as a change in the three-dimensional structure of DNA, transcription, or translation. On the other hand, pain is a multidimensional experience with sensory-discriminative and motivational-affective components. Recent human brain imaging studies have examined differences in activity in the nucleus accumbens between controls and patients with chronic pain, and have revealed that the nucleus accumbens plays a role in predicting the value of a noxious stimulus and its offset, and in the consequent changes in the motivational state. In this review, we provide a very brief overview of a comprehensive understanding of chronic pain associated with emotional dysregulation due to transcriptional regulation, epigenetic modification and miRNA regulation.

  9. Patellofemoral Pain.

    Science.gov (United States)

    Dutton, Rebecca A; Khadavi, Michael J; Fredericson, Michael

    2016-02-01

    Patellofemoral pain is characterized by insidious onset anterior knee pain that is exaggerated under conditions of increased patellofemoral joint stress. A variety of risk factors may contribute to the development of patellofemoral pain. It is critical that the history and physical examination elucidate those risk factors specific to an individual in order to prescribe an appropriate and customized treatment plan. This article aims to review the epidemiology, risk factors, diagnosis, and management of patellofemoral pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Recall and recognition hypermnesia for Socratic stimuli.

    Science.gov (United States)

    Kazén, Miguel; Solís-Macías, Víctor M

    2016-01-01

    In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures.

  11. Chronic Localized Back Pain Due to Posterior Cutaneous Nerve Entrapment Syndrome (POCNES): A New Diagnosis.

    Science.gov (United States)

    Boelens, Oliver B; Maatman, Robert C; Scheltinga, Marc R; van Laarhoven, Kees; Roumen, Rudi M

    2017-03-01

    Most patients with chronic back pain suffer from degenerative thoracolumbovertebral disease. However, the following case illustrates that a localized peripheral nerve entrapment must be considered in the differential diagnosis of chronic back pain. We report the case of a 26-year-old woman with continuous excruciating pain in the lower back area. Previous treatment for nephroptosis was to no avail. On physical examination the pain was present in a 2 x 2 cm area overlying the twelfth rib some 4 cm lateral to the spinal process. Somatosensory testing using swab and alcohol gauze demonstrated the presence of skin hypo- and dysesthesia over the painful area. Local pressure on this painful spot elicited an extreme pain response that did not irradiate towards the periphery. These findings were highly suggestive of a posterior version of the anterior cutaneous nerve entrapment syndrome (ACNES), a condition leading to a severe localized neuropathic pain in anterior portions of the abdominal wall. She demonstrated a beneficial albeit temporary response after lidocaine infiltration as dictated by an established diagnostic and treatment protocol for ACNES. She subsequently underwent a local neurectomy of the involved superficial branch of the intercostal nerve. This limited operation had a favorable outcome resulting in a pain-free return to normal activities up to this very day (follow-up of 24 months).We propose to name this novel syndrome "posterior cutaneous nerve entrapment syndrome" (POCNES). Each patient with chronic localized back pain should undergo simple somatosensory testing to detect the presence of overlying skin hypo- and dysesthesia possibly reflecting an entrapped posterior cutaneous nerve.Key words: Chronic pain, back pain, posterior cutaneous nerve entrapment, peripheral nerve entrapment, surgical treatment for pain, anterior cutaneous nerve entrapment.

  12. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  13. Effects of Sex and Stress on Trigeminal Neuropathic Pain-Like Behavior in Rats.

    Science.gov (United States)

    Korczeniewska, Olga Anna; Khan, Junad; Tao, Yuanxiang; Eliav, Eli; Benoliel, Rafael

    2017-01-01

    To investigate the effects and interactions of sex and stress (provoked by chronic restraint [RS]) on pain-like behavior in a rat model of trigeminal neuropathic pain. The effects of sex and RS (carried out for 14 days as a model for stress) on somatosensory measures (reaction to pinprick, von Frey threshold) in a rat model of trigeminal neuropathic pain were examined. The study design was 2 × 4, with surgery (pain) and sham surgery (no pain) interacting with male restrained (RS) and unrestrained (nRS) rats and female RS and nRS rats. A total of 64 Sprague Dawley rats (32 males and 32 females) were used. Half of the animals in each sex group underwent RS, and the remaining half were left unstressed. Following the RS period, trigeminal neuropathic pain was induced by unilateral infraorbital nerve chronic constriction injury (IOCCI). Half of the animals in the RS group and half in the nRS group (both males and females) were exposed to IOCCI, and the remaining halves to sham surgery. Elevated plus maze (EPM) assessment and plasma interferon gamma (IFN-γ) levels were used to measure the effects of RS. Analysis of variance (ANOVA) was used to assess the effects of stress, sex, and their interactions on plasma IFN-γ levels, changes in body weight, EPM parameters, tactile allodynia, and mechanohyperalgesia. Pairwise comparisons were performed by using Tukey post hoc test corrected for multiple comparisons. Both male and female RS rats showed significantly altered exploratory behavior (as measured by EPM) and had significantly lower plasma IFN-γ levels than nRS rats. Rats exposed to RS gained weight significantly slower than the nRS rats, irrespective of sex. Following RS but before surgery, RS rats showed significant bilateral reductions in von Frey thresholds and significantly increased pinprick response difference scores compared to nRS rats, irrespective of sex. From 17 days postsurgery, RSIOCCI rats showed significantly reduced von Frey thresholds and

  14. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Cipolloni, P B; Stilwell-Morecraft, K S; Gedney, M T; Pandya, D N

    2004-01-26

    The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient

  15. Spinal pain

    International Nuclear Information System (INIS)

    Izzo, R.; Popolizio, T.; D’Aprile, P.; Muto, M.

    2015-01-01

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  16. Spinal pain

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R., E-mail: roberto1766@interfree.it [Neuroradiology Department, A. Cardarelli Hospital, Naples (Italy); Popolizio, T., E-mail: t.popolizio1@gmail.com [Radiology Department, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Fg) (Italy); D’Aprile, P., E-mail: paoladaprile@yahoo.it [Neuroradiology Department, San Paolo Hospital, Bari (Italy); Muto, M., E-mail: mutomar@tiscali.it [Neuroradiology Department, A. Cardarelli Hospital, Napoli (Italy)

    2015-05-15

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  17. Do episodic migraineurs selectively attend to headache-related visual stimuli?

    Science.gov (United States)

    McDermott, Michael J; Peck, Kelly R; Walters, A Brooke; Smitherman, Todd A

    2013-02-01

    To assess pain-related attentional biases among individuals with episodic migraine. Prior studies have examined whether chronic pain patients selectively attend to pain-related stimuli in the environment, but these studies have produced largely mixed findings and focused primarily on patients with chronic musculoskeletal pain. Limited research has implicated attentional biases among chronic headache patients, but no studies have been conducted among episodic migraineurs, who comprise the overwhelming majority of the migraine population. This was a case-control, experimental study. Three hundred and eight participants (mean age = 19.2 years [standard deviation = 3.3]; 69.5% female; 36.4% minority), consisting of 84 episodic migraineurs, diagnosed in accordance with International Classification of Headache Disorders (2(nd) edition) criteria using a structured diagnostic interview, and 224 non-migraine controls completed a computerized dot probe task to assess attentional bias toward headache-related pictorial stimuli. The task consisted of 192 trials and utilized 2 emotional-neutral stimulus pairing conditions (headache-neutral and happy-neutral). No within-group differences for reaction time latencies to headache vs happy conditions were found among those with episodic migraine or among the non-migraine controls. Migraine status was unrelated to attentional bias indices for both headache (F [1,306] = 0.56, P = .45) and happy facial stimuli (F [1,306] = 0.37, P = .54), indicating a lack of between-group differences. Lack of within- and between-group differences was confirmed with repeated measures analysis of variance. In light of the large sample size and prior pilot testing of presented images, results suggest that episodic migraineurs do not differentially attend to headache-related facial stimuli. Given modest evidence of attentional biases among chronic headache samples, these findings suggest potential differences in attentional

  18. The Effect of the Facilitation Physiotherapy on the Clinical Functions and Brain's Microstructure in Multiple Sclerosis: Comparison of Two Ways of the Somatosensory Stimuli Application

    Czech Academy of Sciences Publication Activity Database

    Řasová, K.; Jan, V.; Jandová, D.; Ibrahim, I.; Tintěra, J.; Martinková, Patrícia; Zvára Jr., Karel

    2012-01-01

    Roč. 18, č. 5 (2012), s. 61-61 ISSN 1352-4585. [RIMS 2012. Annual Conference on Rehabilitation in Multiple Sclerosis /17./. 31.05.2012-02.06.2012, Hamburg] Institutional support: RVO:67985807 Subject RIV: BB - Applied Statistics, Operational Research

  19. Napping reverses increased pain sensitivity due to sleep restriction.

    Science.gov (United States)

    Faraut, Brice; Léger, Damien; Medkour, Terkia; Dubois, Alexandre; Bayon, Virginie; Chennaoui, Mounir; Perrot, Serge

    2015-01-01

    To investigate pain sensitivity after sleep restriction and the restorative effect of napping. A strictly controlled randomized crossover study with continuous polysomnography monitoring was performed. Laboratory-based study. 11 healthy male volunteers. Volunteers attended two three-day sessions: "sleep restriction" alone and "sleep restriction and nap". Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the "sleep restriction and nap" session, volunteers took two 30-minute naps, one in the morning and one in the afternoon. Quantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area. Sleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.

  20. Napping reverses increased pain sensitivity due to sleep restriction.

    Directory of Open Access Journals (Sweden)

    Brice Faraut

    Full Text Available To investigate pain sensitivity after sleep restriction and the restorative effect of napping.A strictly controlled randomized crossover study with continuous polysomnography monitoring was performed.Laboratory-based study.11 healthy male volunteers.Volunteers attended two three-day sessions: "sleep restriction" alone and "sleep restriction and nap". Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the "sleep restriction and nap" session, volunteers took two 30-minute naps, one in the morning and one in the afternoon.Quantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area.Sleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.

  1. Lingering representations of stimuli influence recall organization

    Science.gov (United States)

    Chan, Stephanie C.Y.; Applegate, Marissa C.; Morton, Neal W; Polyn, Sean M.; Norman, Kenneth A.

    2017-01-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the “fading embers” of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. PMID:28132858

  2. Lingering representations of stimuli influence recall organization.

    Science.gov (United States)

    Chan, Stephanie C Y; Applegate, Marissa C; Morton, Neal W; Polyn, Sean M; Norman, Kenneth A

    2017-03-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the "fading embers" of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. VEP Responses to Op-Art Stimuli.

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    Full Text Available Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  4. VEP Responses to Op-Art Stimuli.

    Science.gov (United States)

    O'Hare, Louise; Clarke, Alasdair D F; Pollux, Petra M J

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  5. Pain relief by touch: a quantitative approach.

    Science.gov (United States)

    Mancini, Flavia; Nash, Thomas; Iannetti, Gian Domenico; Haggard, Patrick

    2014-03-01

    Pain relief by touch has been studied for decades in pain neuroscience. Human perceptual studies revealed analgesic effects of segmental tactile stimulation, as compared to extrasegmental touch. However, the spatial organisation of touch-pain interactions within a single human dermatome has not been investigated yet. In 2 experiments we tested whether, how, and where within a dermatome touch modulates the perception of laser-evoked pain. We measured pain perception using intensity ratings, qualitative descriptors, and signal detection measures of sensitivity and response bias. Touch concurrent with laser pulses produced a significant analgesia, and reduced the sensitivity in detecting the energy of laser stimulation, implying a functional loss of information within the ascending Aδ pathway. Touch also produced a bias to judge laser stimuli as less painful. This bias decreased linearly when the distance between the laser and tactile stimuli increased. Thus, our study provides evidence for a spatial organisation of intrasegmental touch-pain interactions. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Opposite patterns of change in perception of imagined and physically induced pain over the course of repeated thermal stimulations.

    Science.gov (United States)

    Gács, B; Szolcsányi, T; Csathó, Á

    2017-08-01

    Individuals frequently show habituation to repeated noxious heat. However, given the defensive function of human pain processing, it is reasonable to assume that individuals anticipate that they would become increasingly sensitive to repeated thermal pain stimuli. No previous studies have, however, been addressed to this assumption. Therefore, in the current study, we investigated how healthy human individuals imagine the intensity of repeated thermal pain stimulations, and compared this with the intensity ratings given after physically induced thermal pain trials. Healthy participants (N = 20) gave pain intensity ratings in two conditions: imagined and real thermal pain. In the real pain condition, thermal pain stimuli of two intensities (minimal and moderate pain) were delivered in four consecutive trials. The duration of the peak temperature was 20 s, and stimulation was always delivered to the same location. In each trial, participants rated the pain intensity twice, 5 and 15 s after the onset of the peak temperature. In the imagined pain condition, participants were subjected to a reference pain stimulus and then asked to imagine and rate the same sequence of stimulations as in the induced pain condition. Ratings of imagined pain and physically induced pain followed opposite courses over repeated stimulations: Ratings of imagined pain indicated sensitization, whereas ratings for physically induced pain indicated habituation. The findings were similar for minimal and moderate pain intensities. The findings suggest that, rather than habituating to pain, healthy individuals imagine that they would become increasingly sensitive to repeated thermal pain stimuli. This study identified opposite patterns of change in perception of imagined pain (sensitization) and physically induced pain (habituation). The findings show that individuals anticipate that they would become increasingly sensitive to repeated pain stimuli, which might also have clinical implications.

  7. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  8. Chronic Pain and Selective Attention to Pain Arousing Daily Activity Pictures: Evidence From an Eye Tracking Study

    Directory of Open Access Journals (Sweden)

    Masoumeh Mahmoodi-Aghdam

    2017-11-01

    Conclusion: Although these results did not provide unequivocal support for the vigilance-avoidance hypothesis, they are generally consistent with the results of studies using eye tracking technology. Furthermore, our findings put a question over characterization of attentional biases in patients with chronic pain by simply relating that to difficulty in disengaging from pain-related stimuli.

  9. Spontaneous pain attacks: neuralgic pain

    NARCIS (Netherlands)

    de Bont, L.G.

    2006-01-01

    Paroxysmal orofacial pains can cause diagnostic problems, especially when different clinical pictures occur simultaneously. Pain due to pulpitis, for example, may show the same characteristics as pain due to trigeminal neuralgia would. Moreover, the trigger point of trigeminal neuralgia can either

  10. Childhood Adversity and Pain Sensitization.

    Science.gov (United States)

    You, Dokyoung Sophia; Meagher, Mary W

    Childhood adversity is a vulnerability factor for chronic pain. However, the underlying pain mechanisms influenced by childhood adversity remain unknown. The aim of the current study was to evaluate the impact of childhood adversity on dynamic pain sensitivity in young adults. After screening for childhood adverse events and health status, healthy individuals reporting low (below median; n = 75) or high levels of adversity (the top 5%; n = 51) were invited for pain testing. Both groups underwent heat pain threshold and temporal summation of second pain (TSSP) testing after reporting depressive symptoms. TSSP refers to a progressive increase in pain intensity with repetition of identical noxious stimuli and is attributed to central sensitization. Changes in pain ratings over time (slope) were computed for TSSP sensitization and decay of subsequent aftersensations. The high-adversity group showed greater TSSP sensitization (meanslope, 0.75; SDpositive slope, 1.78), and a trend toward a slower decay (meanslope, -11.9; SD, 3.4), whereas the low-adversity group showed minimal sensitization (meanslope, 0.07; SDnear-zero slope, 1.77), F(1,123) = 5.84, p = .017 and faster decay (meanslope, -13.1; SD, 3.4), F(1,123) = 3.79, p = .054. This group difference remained significant even after adjusting for adult depressive symptoms (p = .033). No group difference was found in heat pain threshold (p = .85). Lastly, the high-adversity group showed blunted cardiac and skin conductance responses. These findings suggest that enhancement of central sensitization may provide a mechanism underlying the pain hypersensitivity and chronicity linked to childhood adversity.

  11. kinesiotaping reduces pain and modulates sensory function in patients with focal dystonia: a randomized crossover pilot study.

    Science.gov (United States)

    Pelosin, Elisa; Avanzino, Laura; Marchese, Roberta; Stramesi, Paola; Bilanci, Martina; Trompetto, Carlo; Abbruzzese, Giovanni

    2013-10-01

    Pain is one of the most common and disabling "nonmotor" symptoms in patients with dystonia. No recent study evaluated the pharmacological or physical therapy approaches to specifically treat dystonic pain symptoms. To evaluate the effectiveness of KinesioTaping in patients with cervical dystonia (CD) and focal hand dystonia (FHD) on self-reported pain (primary objective) and on sensory functions (secondary objective). Twenty-five dystonic patients (14 with CD and 11 FHD) entered a randomized crossover pilot study. The patients were randomized to 14-day treatment with KinesioTaping or ShamTaping over neck (in CD) or forearm muscles (in FHD), and after a 30-day washout period, they received the other treatment. The were 3 visual analog scales (VASs) for usual pain, worst pain, and pain relief. Disease severity changes were evaluated by means of the Toronto Western Spasmodic Torticollis Rating Scale (CD) and the Writer's Cramp Rating Scale (FHD). Furthermore, to investigate possible KinesioTaping-induced effects on sensory functions, we evaluated the somatosensory temporal discrimination threshold. Treatment with KinesioTape induced a decrease in the subjective sensation of pain and a modification in the ability of sensory discrimination, whereas ShamTaping had no effect. A significant, positive correlation was found in both groups of patients between the improvement in the subjective sensation of pain and the reduction of somatosensory temporal discrimination threshold values induced by KinesioTaping. These preliminary results suggest that KinesioTaping may be useful in treating pain in patients with dystonia.

  12. The Effect of Positive Affect on the Memory of Pain.

    Science.gov (United States)

    Bąbel, Przemysław

    2017-06-01

    The aim of the study was to assess the accuracy of the memory of experimentally induced pain and the affect that accompanies experimentally induced pain. Sixty-two healthy female volunteers participated in the study. In the first phase of the study, the participants received three pain stimuli and rated pain intensity, pain unpleasantness, state anxiety, and their positive and negative affect. About a month later, in the second phase of the study, the participants were asked to rate the pain intensity, pain unpleasantness, state anxiety, and the emotions they had felt during the first phase of the study. Both recalled pain intensity and recalled pain unpleasantness were found to be underestimated. Although the positive affect that accompanied pain was remembered accurately, recalled negative affect was overestimated and recalled state anxiety was underestimated. Experienced pain, recalled state anxiety, and recalled positive affect accounted for 44% of the total variance in predicting recalled pain intensity and 61% of the total variance in predicting recalled pain unpleasantness. Together with recent research findings on the memory of other types of pain, the present study supports the idea that pain is accompanied by positive as well as negative emotions, and that positive affect influences the memory of pain. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  13. An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy

    Directory of Open Access Journals (Sweden)

    Jean eDecety

    2013-09-01

    Full Text Available While it is well established that individuals with psychopathy have a marked deficit in affective arousal, emotional empathy, and caring for the well-being of others, the extent to which perspective taking can elicit an emotional response has not yet been studied despite its potential application in rehabilitation. In healthy individuals, affective perspective taking has proven to be an effective means to elicit empathy and concern for others. To examine neural responses in individuals who vary in psychopathy during affective perspective taking, 121 incarcerated males, classified as high (n = 37; Hare Psychopathy Checklist-Revised, PCL-R ≥ 30, intermediate (n = 44; PCL-R between 21-29, and low (n = 40; PCL-R ≤ 20 psychopaths, were scanned while viewing stimuli depicting bodily injuries and adopting an imagine-self and an imagine-other perspective. During the imagine-self perspective, participants with high psychopathy showed a typical response within the network involved in empathy for pain, including the anterior insula, anterior midcingulate cortex, supplementary motor area, inferior frontal gyrus, somatosensory cortex, and right amygdala. Conversely, during the imagine-other perspective, psychopaths exhibited an atypical pattern of brain activation and effective connectivity seeded in the anterior insula and amygdala with the orbitofrontal cortex and ventromedial prefrontal cortex. The response in the amygdala and insula was inversely correlated with PCL-R factor 1 (interpersonal/affective during the imagine-other perspective. In high psychopaths, scores on PCL-R Factor 1 predicted the neural response in ventral striatum when imagining others in pain. These patterns of brain activation and effective connectivity associated with differential perspective-taking provide a better understanding of empathy dysfunction in psychopathy, and have the potential to inform intervention programs for this complex clinical problem.

  14. Increased wind-up to heat pain in women with a childhood history of functional abdominal pain.

    Science.gov (United States)

    Dengler-Crish, Christine M; Bruehl, Stephen; Walker, Lynn S

    2011-04-01

    Idiopathic or functional abdominal pain (FAP) is common in school-age children and typically reflects a functional gastrointestinal disorder (FGID). FGIDs in adults have been distinguished by enhanced responses of the central nervous system to pain stimuli, known as central sensitization. This study investigated whether adolescents and young adults with a history of pediatric FAP (n=144), compared with well control subjects (n=78), showed enhanced central sensitization demonstrated by greater temporal summation (wind-up) to brief, repetitive heat pulses. We also assessed the role of gender and trait anxiety in wind-up to heat pain. Women with a history of FAP showed greater wind-up to heat pain than men with a history of FAP (Ppain was ongoing at follow-up and those whose pain had resolved. Although anxiety was significantly higher in the FAP group compared with control subjects (Ppain associated with enhanced central nervous system responses to pain stimuli. Young women with a childhood history of functional abdominal pain may have a long-term vulnerability to pain that is associated with enhanced responses of the central nervous system to pain stimuli. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Reaction to topical capsaicin in spinal cord injury patients with and without central pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Pedersen, Louise H.; Terkelsen, Astrid J.

    2007-01-01

    of a spinal cord injury which already is hyperexcitable, would cause enhanced responses in patients with central pain at the level of injury compared to patients without neuropathic pain and healthy controls. Touch, punctuate stimuli, cold stimuli and topical capsaicin was applied above, at, and below injury......Central neuropathic pain is a debilitating and frequent complication to spinal cord injury (SCI). Excitatory input from hyperexcitable cells around the injured grey matter zone is suggested to play a role for central neuropathic pain felt below the level of a spinal cord injury. Direct evidence...... at the level of injury. Keywords: Spinal cord injury; Neuropathic pain; Capsaicin; Neuronal hyperexcitability; Hyperalgesia; Blood flow...

  16. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study.

    Directory of Open Access Journals (Sweden)

    Christine Petschow

    Full Text Available Pain is a common non-motor symptom in Parkinson's disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson's disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels.13 right-handed early-stage Parkinson's disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI during laser-induced pain stimulation at lower (E = 440 mJ and higher (E = 640 mJ target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale.No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson's disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson's disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex.Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson's disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson's disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced stages of Parkinson's disease.

  17. Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.

    Science.gov (United States)

    Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora

    2018-03-01

    Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Neuropathic pain and cytokines: current perspectives

    Directory of Open Access Journals (Sweden)

    Clark AK

    2013-11-01

    Full Text Available Anna K Clark, Elizabeth A Old, Marzia Malcangio Wolfson Centre for Age Related Diseases, King's College London, London, UK Abstract: Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention. Keywords: anti-inflammatory cytokines, proinflammatory cytokines, microglia, astrocytes, first pain synapse

  19. Analgesic Microneedle Patch for Neuropathic Pain Therapy.

    Science.gov (United States)

    Xie, Xi; Pascual, Conrado; Lieu, Christopher; Oh, Seajin; Wang, Ji; Zou, Bende; Xie, Julian; Li, Zhaohui; Xie, James; Yeomans, David C; Wu, Mei X; Xie, Xinmin Simon

    2017-01-24

    Neuropathic pain caused by nerve injury is debilitating and difficult to treat. Current systemic pharmacological therapeutics for neuropathic pain produce limited pain relief and have undesirable side effects, while current local anesthetics tend to nonspecifically block both sensory and motor functions. Calcitonin gene related peptide (CGRP), a neuropeptide released from sensory nerve endings, appears to play a significant role in chronic neuropathic pain. In this study, an analgesic microneedle (AMN) patch was developed using dissolvable microneedles to transdermally deliver selective CGRP antagonist peptide in a painless manner for the treatment of localized neuropathic pain. Local analgesic effects were evaluated in rats by testing behavioral pain sensitivity in response to thermal and mechanical stimuli using neuropathic pain models such as spared-nerve injury and diabetic neuropathy pain, as well as neurogenic inflammatory pain model induced by ultraviolet B (UVB) radiation. Unlike several conventional therapies, the AMN patches produced effective analgesia on neuropathic pain without disturbing the normal nociception and motor function of the rat, resulting from the high specificity of the delivered peptide against CGRP receptors. The AMN patches did not cause skin irritation or systemic side effects. These results demonstrate that dissolvable microneedle patches delivering CGRP antagonist peptide provide an effective, safe, and simple approach to mitigate neuropathic pain with significant advantages over current treatments.

  20. Central sensitization as the mechanism underlying pain in joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    Science.gov (United States)

    Di Stefano, G; Celletti, C; Baron, R; Castori, M; Di Franco, M; La Cesa, S; Leone, C; Pepe, A; Cruccu, G; Truini, A; Camerota, F

    2016-09-01

    Patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT) commonly suffer from pain. How this hereditary connective tissue disorder causes pain remains unclear although previous studies suggested it shares similar mechanisms with neuropathic pain and fibromyalgia. In this prospective study seeking information on the mechanisms underlying pain in patients with JHS/EDS-HT, we enrolled 27 consecutive patients with this connective tissue disorder. Patients underwent a detailed clinical examination, including the neuropathic pain questionnaire DN4 and the fibromyalgia rapid screening tool. As quantitative sensory testing methods, we included thermal-pain perceptive thresholds and the wind-up ratio and recorded a standard nerve conduction study to assess non-nociceptive fibres and laser-evoked potentials, assessing nociceptive fibres. Clinical examination and diagnostic tests disclosed no somatosensory nervous system damage. Conversely, most patients suffered from widespread pain, the fibromyalgia rapid screening tool elicited positive findings, and quantitative sensory testing showed lowered cold and heat pain thresholds and an increased wind-up ratio. While the lack of somatosensory nervous system damage is incompatible with neuropathic pain as the mechanism underlying pain in JHS/EDS-HT, the lowered cold and heat pain thresholds and increased wind-up ratio imply that pain in JHS/EDS-HT might arise through central sensitization. Hence, this connective tissue disorder and fibromyalgia share similar pain mechanisms. WHAT DOES THIS STUDY ADD?: In patients with JHS/EDS-HT, the persistent nociceptive input due to joint abnormalities probably triggers central sensitization in the dorsal horn neurons and causes widespread pain. © 2016 European Pain Federation - EFIC®

  1. Stimuli-responsive liquid crystalline materials

    NARCIS (Netherlands)

    Debije, M.G.; Schenning, A.P.H.J.; Hashmi, Saleem

    2016-01-01

    Stimuli-responsive materials which respond to triggers from the environment by changing their properties are one of the focal points in materials science. For precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals

  2. Pain genes.

    Directory of Open Access Journals (Sweden)

    Tom Foulkes

    2008-07-01

    Full Text Available Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors signal the existence of tissue damage to the central nervous system (CNS, where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.

  3. Some Words Hurt More Than Others: Semantic Activation of Pain Concepts in Memory and Subsequent Experiences of Pain.

    Science.gov (United States)

    Swannell, Ellen R; Brown, Christopher A; Jones, Anthony K P; Brown, Richard J

    2016-03-01

    Theory suggests that as activation of pain concepts in memory increases, so too does subsequent pain perception. Previously, researchers have found that activating pain concepts in memory increases pain perception of subsequent painful stimuli, relative to neutral information. However, they have not attempted to quantify the nature of the association between information studied and ensuing pain perception. We subliminally presented words that had either a low or high degree of association to the word 'pain,' although this was only partially successful and some words were consciously perceived. Participants then received randomized laser heat stimuli, delivered at 1 of 3 intensity levels (low, moderate, high), and we measured the effect of this on behavioral and electrophysiological measures of pain. Participants (N = 27) rated moderate- and high-intensity laser stimuli as more painful after viewing high relative to low associates of pain; these effects remained present when we controlled for measures of mood, anxiety, and physical symptom reporting. Similar effects were observed physiologically, with higher stimulus negativity preceding after high relative to low associates and greater amplitudes for the N2 component of the laser-evoked potential after presentation of high associates in the moderate and high laser intensity conditions. These data support activation-based models of the effects of memory on pain perception. Consistent with current theories of memory and pain, we found that high, relative to low activation of pain concepts in memory increased psychological and physiological responses to laser-induced pain. The effect remained regardless of whether participants showed conscious awareness of activation. Theoretical and clinical implications are discussed. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Do pain-associated contexts increase pain sensitivity? An investigation using virtual reality.

    Science.gov (United States)

    Harvie, Daniel S; Sterling, Michele; Smith, Ashley D

    2018-04-30

    Pain is not a linear result of nociception, but is dependent on multisensory inputs, psychological factors, and prior experience. Since nociceptive models appear insufficient to explain chronic pain, understanding non-nociceptive contributors is imperative. Several recent models propose that cues associatively linked to painful events might acquire the capacity to augment, or even cause, pain. This experiment aimed to determine whether contexts associated with pain, could modulate mechanical pain thresholds and pain intensity. Forty-eight healthy participants underwent a contextual conditioning procedure, where three neutral virtual reality contexts were paired with either unpredictable noxious stimulation, unpredictable vibrotactile stimulation, or no stimulation. Following the conditioning procedure, mechanical pain thresholds and pain evoked by a test stimulus were examined in each context. In the test phase, the effect of expectancy was equalised across conditions by informing participants when thresholds and painful stimuli would be presented. Contrary to our hypothesis, scenes that were associated with noxious stimulation did not increase mechanical sensitivity (p=0.08), or increase pain intensity (p=0.46). However, an interaction with sex highlighted the possibility that pain-associated contexts may alter pain sensitivity in females but not males (p=0.03). Overall, our data does not support the idea that pain-associated contexts can alter pain sensitivity in healthy asymptomatic individuals. That an effect was shown in females highlights the possibility that some subgroups may be susceptible to such an effect, although the magnitude of the effect may lack real-world significance. If pain-associated cues prove to have a relevant pain augmenting effect, in some subgroups, procedures aimed at extinguishing pain-related associations may have therapeutic potential.

  5. Genitofemoral neuralgia: adding to the burden of chronic vulvar pain

    Directory of Open Access Journals (Sweden)

    Verstraelen H

    2015-11-01

    Full Text Available Hans Verstraelen,1 Eline De Zutter,1 Martine De Muynck2 1Department of Obstetrics and Gynaecology, Vulvovaginal Disease Clinic, Ghent University Hospital, Ghent, Belgium; 2Department of Physical Medicine and Rehabilitation, Ghent University Hospital, Ghent, Belgium Abstract: The vulva is a particularly common locus of chronic pain with neuropathic characteristics that occurs in women of any age, though most women with neuropathic type chronic vulvar pain will remain undiagnosed even following multiple physician visits. Here, we report on an exemplary case of a middle-aged woman who was referred to the Vulvovaginal Disease Clinic with debilitating vulvar burning and itching over the right labium majus that had been persisting for 2 years and was considered intractable. Careful history taking and clinical examination, followed by electrophysiological assessment through somatosensory evoked potentials was consistent with genitofemoral neuralgia, for which no obvious cause could be identified. Adequate pain relief was obtained with a serotonin–noradrenaline reuptake inhibitor and topical gabapentin cream. We briefly discuss the epidemiology, diagnosis, and treatment of genitofemoral neuralgia and provide a series of clues to guide clinicians in obtaining a presumptive diagnosis of specific neuropathic pain syndromes that may underlie chronic vulvar pain. We further aim to draw attention to the tremendous burden of chronic, unrecognized vulvar pain. Keywords: vulvar pain, genitofemoral nerve, neuropathic pain, vulvodynia, vulvar disease

  6. When sex hurts, anxiety and fear orient attention towards pain.

    Science.gov (United States)

    Payne, Kimberley A; Binik, Yitzchak M; Amsel, Rhonda; Khalifé, Samir

    2005-08-01

    Hypervigilance for pain-relevant stimuli has been associated with anxiety, fear of pain and anxiety sensitivity. This attentional bias has been primarily investigated in heterogeneous pain groups or pain-free controls, but has not been examined in pain conditions where anxiety and fear are likely to play a central role. Due to the intimate and interpersonal nature of genital pain experienced during sexual intercourse, Vulvar Vestibulitis Syndrome (VVS) constitutes an ideal sample in which to investigate the role of cognitive and affective factors in pain perception and maintenance. Seventeen women suffering from VVS and an equal number of age and education matched control women completed an emotional Stroop and memory recall task in addition to a series of questionnaires assessing pain-hypervigilance, state and trait anxiety, fear of pain, and anxiety sensitivity. VVS sufferers reported hypervigilance for coital pain and also exhibited a selective attentional bias towards pain stimuli on the emotional Stroop task as compared with controls. This effect was predicted by state and trait anxiety and fear of pain. According to these data, treament strategies for VVS should target anxiety and fear in addition to sensory systems.

  7. Trigeminal pain and quantitative sensory testing in painful peripheral diabetic neuropathy.

    Science.gov (United States)

    Arap, Astrid; Siqueira, Silvia R D T; Silva, Claudomiro B; Teixeira, Manoel J; Siqueira, José T T

    2010-07-01

    To evaluate patients with Diabetes Mellitus type 2 and painful peripheral neuropathy in order to investigate oral complaints and facial somatosensory findings. Case-control study; 29 patients (12 women, mean age 57.86 yo) with Diabetes Mellitus type 2 and 31 age-gender-matched controls were evaluated with a standardized protocol for general characteristics, orofacial pain, research diagnostic criteria for temporomandibular disorders, visual analogue scale and McGill Pain questionnaire, and a systematic protocol of quantitative sensory testing for bilateral facial sensitivity at the areas innervated by the trigeminal branches, which included the thermal detection by ThermoSensi 2, tactile evaluation with vonFrey filaments, and superficial pain thresholds with a superficial algometer (Micromar). Statistical analysis was performed with Wilcoxon, chi-square, confidence intervals and Spearman (ppain was reported by 55.2% of patients, and the most common descriptor was fatigue (50%); 17.2% had burning mouth. Myofascial temporomandibular disorders were diagnosed in 9 (31%) patients. The study group showed higher sensory thresholds of pain at the right maxillary branch (p=0.017) but sensorial differences were not associated with pain (p=0.608). Glycemia and HbA(1c) were positively correlated with the quantitative sensory testing results of pain (ppain thresholds were correlated with higher glycemia and glycated hemoglobin (p=0.027 and p=0.026). There was a high prevalence of orofacial pain and burning mouth was the most common complaint. The association of loss of pain sensation and higher glycemia and glycated hemoglobin can be of clinical use for the follow-up of DM complications. 2010 Elsevier Ltd. All rights reserved.

  8. Relationship between somatosensory event-related potential N140 aberrations and hemispatial agnosia in patients with stroke: a preliminary study.

    Science.gov (United States)

    Ueno, Tomoyuki; Hada, Yasushi; Shimizu, Yukiyo; Yamada, Thoru

    2018-06-01

    The somatosensory event-related potential N140 is thought to be related to selective attention. This study aimed to compare the somatosensory event-related potential N140 in healthy subjects to that in patients with stroke to determine whether N140 and attentiveness are associated in patients with stroke with or without hemispatial agnosia. Normal somatosensory event-related potential N140 values were determined using data from ten healthy subjects. Fifteen patients with stroke were divided into two groups based on the presence of hemispatial neglect. Somatosensory event-related potential N140 components were compared between the two groups. Stimulation of the affected limb in the hemispatial agnosia group resulted in significantly longer N140 latency at the contralateral vs. the ipsilateral electrode. This was the inverse of the relationship observed in normal subjects, with stimulation of the intact side in patients with hemispatial agnosia, and with stimulation of both the intact and affected sides in patients without agnosia. In the hemispatial agnosia group, the peak latency of N140 following stimulation of the affected side was significantly longer than it was following stimulation of the intact side and when compared to that in patients without agnosia. In addition, abnormal N140 peak latencies were observed at the Cz and ipsilateral electrodes in patients with hemispatial agnosia following stimulation of the intact side. These findings suggest that somatosensory event-related potential N140 is independently generated in each hemisphere and may reflect cognitive attention.

  9. Bone pain

    DEFF Research Database (Denmark)

    Frost, Charlotte Ørsted; Hansen, Rikke Rie; Heegaard, Anne-Marie

    2016-01-01

    Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology...... of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease...... modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities....

  10. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache.

    Science.gov (United States)

    Chen, Bing; He, Yuan; Xia, Lei; Guo, Li-Li; Zheng, Jin-Long

    2016-12-01

    State-related brain structural alterations in patients with episodic tension-type headache (ETTH) are unclear. We aimed to conduct a longitudinal study to explore dynamic gray matter (GM) changes between the pain and pain-free phases in ETTH. We recruited 40 treatment-naïve ETTH patients and 40 healthy controls. All participants underwent brain structural scans on a 3.0-T MRI system. ETTH patients were scanned in and out of pain phases. Voxel-based morphometry analysis was used to determine the differences in regional gray matter density (GMD) between groups. Additional regression analysis was used to identify any associations between regional GMD and clinical symptoms. ETTH patients exhibited reduced GMD in the bilateral primary somatosensory cortex, and increased GMD in the bilateral anterior cingulate cortex (ACC) and anterior insula for the in pain phase compared with the out of pain phase. The out of pain phase of ETTH patients exhibited no regions with higher or lower GMD compared with healthy controls. GMD in the left ACC and left anterior insula was negatively correlated with headache days. GMD in the left ACC was negatively correlated with anxiety and depressive symptoms in ETTH patients. This is the first study to demonstrate dynamic and reversible GMD changes between the pain and pain-free phases in ETTH patients. However, this balance might be disrupted by increased headache days and progressive anxiety and depressive symptoms.

  11. Modern pain neuroscience in clinical practice: applied to post-cancer, paediatric and sports-related pain.

    Science.gov (United States)

    Malfliet, Anneleen; Leysen, Laurence; Pas, Roselien; Kuppens, Kevin; Nijs, Jo; Van Wilgen, Paul; Huysmans, Eva; Goudman, Lisa; Ickmans, Kelly

    In the last decade, evidence regarding chronic pain has developed exponentially. Numerous studies show that many chronic pain populations show specific neuroplastic changes in the peripheral and central nervous system. These changes are reflected in clinical manifestations, like a generalized hypersensitivity of the somatosensory system. Besides a hypersensitivity of bottom-up nociceptive transmission, there is also evidence for top-down facilitation of pain due to malfunctioning of the endogenous descending nociceptive modulatory systems. These and other aspects of modern pain neuroscience are starting to be applied within daily clinical practice. However, currently the application of this knowledge is mostly limited to the general adult population with musculoskeletal problems, while evidence is getting stronger that also in other chronic pain populations these neuroplastic processes may contribute to the occurrence and persistence of the pain problem. Therefore, this masterclass article aims at giving an overview of the current modern pain neuroscience knowledge and its potential application in post-cancer, paediatric and sports-related pain problems. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Measuring empathy for human and robot hand pain using electroencephalography.

    Science.gov (United States)

    Suzuki, Yutaka; Galli, Lisa; Ikeda, Ayaka; Itakura, Shoji; Kitazaki, Michiteru

    2015-11-03

    This study provides the first physiological evidence of humans' ability to empathize with robot pain and highlights the difference in empathy for humans and robots. We performed electroencephalography in 15 healthy adults who observed either human- or robot-hand pictures in painful or non-painful situations such as a finger cut by a knife. We found that the descending phase of the P3 component was larger for the painful stimuli than the non-painful stimuli, regardless of whether the hand belonged to a human or robot. In contrast, the ascending phase of the P3 component at the frontal-central electrodes was increased by