WorldWideScience

Sample records for somatosensory barrel cortex

  1. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation.

    Science.gov (United States)

    Barrera, Kyrstle; Chu, Philip; Abramowitz, Jason; Steger, Robert; Ramos, Raddy L; Brumberg, Joshua C

    2013-04-01

    In rodents, the barrel cortex is a specialized area within the somatosensory cortex that processes signals from the mystacial whiskers. We investigated the normal development of myelination in the barrel cortex of mice, as well as the effects of sensory deprivation on this pattern. Deprivation was achieved by trimming the whiskers on one side of the face every other day from birth. In control mice, myelin was not present until postnatal day 14 and did not show prominence until postnatal day 30; adult levels of myelination were reached by the end of the second postnatal month. Unbiased stereology was used to estimate axon density in the interbarrel septal region and barrel walls as well as the barrel centers. Myelin was significantly more concentrated in the interbarrel septa/barrel walls than in the barrel centers in both control and sensory-deprived conditions. Sensory deprivation did not impact the onset of myelination but resulted in a significant decrease in myelinated axons in the barrel region and decreased the amount of myelin ensheathing each axon. Visualization of the oligodendrocyte nuclear marker Olig2 revealed a similar pattern of myelin as seen using histochemistry, but with no significant changes in Olig2+ nuclei following sensory deprivation. Consistent with the anatomical results showing less myelination, local field potentials revealed slower rise times following trimming. Our results suggest that myelination develops relatively late and can be influenced by sensory experience. Copyright © 2012 Wiley Periodicals, Inc.

  2. Neurofibromin is required for barrel formation in the mouse somatosensory cortex.

    Science.gov (United States)

    Lush, Mark E; Li, Yun; Kwon, Chang-Hyuk; Chen, Jian; Parada, Luis F

    2008-02-13

    The rodent barrel cortex is a useful system to study the role of genes and neuronal activity in the patterning of the nervous system. Several genes encoding either intracellular signaling molecules or neurotransmitter receptors are required for barrel formation. Neurofibromin is a tumor suppressor protein that has Ras GTPase activity, thus attenuating the MAPK (mitogen-activated protein kinase) and and PI-3 kinase (phosphatidylinositol 3-kinase) pathways, and is mutated in humans with the condition neurofibromatosis type 1 (NF1). Neurofibromin is widely expressed in the developing and adult nervous system, and a common feature of NF1 is deficits in intellectual development. In addition, NF1 is an uncommonly high disorder among individuals with autism. Thus, NF1 may have important roles in normal CNS development and function. To explore roles for neurofibromin in the development of the CNS, we took advantage of a mouse conditional allele. We show that mice that lack neurofibromin in the majority of cortical neurons and astrocytes fail to form cortical barrels in the somatosensory cortex, whereas segregation of thalamic axons within the somatosensory cortex appears unaffected.

  3. Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex.

    Science.gov (United States)

    Kinnischtzke, Amanda K; Simons, Daniel J; Fanselow, Erika E

    2014-08-01

    Anatomical studies have shown that primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected. The M1 to S1 projection is thought to represent a modulatory signal that conveys motor-related information to S1. Here, we investigated M1 synaptic inputs to S1 by injecting an AAV virus containing channelrhodopsin-2 and a fluorescent tag into M1. Consistent with previous results, we found labeling of M1 axons within S1 that was most robust in the deep layers and in L1. Labeling was sparse in L4 and was concentrated in the interbarrel septa, largely avoiding barrel centers. In S1, we recorded in vitro from regular-spiking excitatory neurons and fast-spiking and somatostatin-expressing inhibitory interneurons. All 3 cell types had a high probability of receiving direct excitatory M1 input. Both excitatory and inhibitory cells within L4 were the least likely to receive such input from M1. Disynaptic inhibition was observed frequently, indicating that M1 recruits substantial inhibition within S1. Additionally, a subpopulation of L6 regular-spiking excitatory neurons received exceptionally strong M1 input. Overall, our results suggest that activation of M1 evokes within S1 a bombardment of excitatory and inhibitory synaptic activity that could contribute in a layer-specific manner to state-dependent changes in S1. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.

    Directory of Open Access Journals (Sweden)

    Ingrid Fetter-Pruneda

    Full Text Available Birth-enucleated rodents display enlarged representations of whiskers (i.e., barrels of the posteromedial subfield in the primary somatosensory cortex. Although the historical view maintains that barrel expansion is due to incremental increases in neuronal activity along the trigeminal pathway during postnatal development, recent evidence obtained in experimental models of intramodal plasticity challenges this view. Here, we re-evaluate the role of experience-dependent neuronal activity on barrel expansion in birth-enucleated rats by combining various anatomical methods and sensory deprivation paradigms. We show that barrels in birth-enucleated rats were already enlarged by the end of the first week of life and had levels of metabolic activity comparable to those in control rats at different ages. Dewhiskering after the postnatal period of barrel formation did not prevent barrel expansion in adult, birth-enucleated rats. Further, dark rearing and enucleation after barrel formation did not lead to expanded barrels in adult brains. Because incremental increases of somatosensory experience did not promote barrel expansion in birth-enucleated rats, we explored whether shifts of the developmental timing could better explain barrel expansion during the first week of life. Accordingly, birth-enucleated rats show earlier formation of barrels, accelerated growth of somatosensory thalamocortical afferents, and an earlier H4 deacetylation. Interestingly, when H4 deacetylation was prevented with a histone deacetylases inhibitor (valproic acid, barrel specification timing returned to normal and barrel expansion did not occur. Thus, we provide evidence supporting that shifts in developmental timing modulated through epigenetic mechanisms, and not increased levels of experience dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.

  5. Neither peripheral nerve input nor cortical NMDA receptor activity are necessary for recovery of a disrupted barrel pattern in rat somatosensory cortex.

    Science.gov (United States)

    Boylan, C B; Kesterson, K L; Bennett-Clarke, C A; Chiaia, N L; Rhoades, R W

    2001-07-23

    Elevating cortical serotonin (5-HT) in rats from postnatal day (P-) 0 to P-6 by administering the monoamine oxidase (MAO(A)) inhibitor, clorgyline, produces a dose-dependent spectrum of effects on rat somatosensory organization, ranging from enlarged with indistinct septa to a complete lack of vibrissae-related patterns. However, if clorgyline treatment is stopped on P-6, a qualitatively and quantitatively normal vibrissae-related pattern of thalamocortical afferents appears in somatosensory cortex (S-I) on P-10. We employed high performance liquid chromatography (HPLC), infraorbital nerve (ION) transection, N-methyl-D-aspartate (NMDA) receptor blockade, 1,1'-dioctadecyl-3,3,3"3'-tetramethylindocarbocyanine perchlorate (DiI) labeling of thalamic afferents, and CO histochemistry to determine whether peripheral nerve input and/or cortical NMDA receptor activity were required for the recovery of vibrissae-related patterns in clorgyline-treated animals. Clorgyline administration from P-0 to P-6 produced a 1589.4+/-53.3% increase in cortical 5-HT over control animals on P-6 and a 268.8+/-6.3% elevation over controls at P-10. Postnatal day 6 pups had significantly altered vibrissae-related patterns in S-I following 6 days of clorgyline treatment but by P-10, the characteristic vibrissae-related patterns were restored. Neither transection of the ION nor application of the NMDA antagonist, DL-2-amino-5-phosphonovaleric acid (APV), to the cortices of P-6 pups that were treated with clorgyline from birth had any significant effect on the recovery of the vibrissae-related patterns by P-10. These results indicate that neither peripheral nerve input nor cortical NMDA receptor activity are necessary for the restoration of cortical vibrissae-related patterns in rats that have sustained transient elevations of 5-HT.

  6. Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities.

    Directory of Open Access Journals (Sweden)

    Bard Ermentrout

    2009-10-01

    Full Text Available Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains.

  7. Metabolic alterations in rat somatosensory cortex following unilateral vibrissal removal.

    Science.gov (United States)

    Dietrich, W D; Ginsberg, M D; Busto, R; Smith, D W

    1985-04-01

    Local cerebral metabolic rates for glucose were studied by [14C]-2-deoxyglucose autoradiography in adult rats following acute and chronic unilateral deafferentation, with particular attention to the barrel field regions of the primary somatosensory cortex. Deafferentation was produced by permanently removing all of the large whiskers (vibrissae) on one side of the face. Data from experimental animals were then compared to data from sham-operated controls at 1, 5, 10, 15, 30, and 60 days after deafferentation. The rate of glucose utilization was maximally depressed at day 1 in the deafferented barrel field. After that, there was a progressive recovery of glucose utilization toward control levels at each subsequent time point. In contrast, glucose utilization in the barrel field associated with the intact set of whiskers increased by day 5 and remained elevated throughout the duration of the experiment. Similar patterns of altered cerebral metabolism were observed following unilateral infraorbital nerve transection. These results demonstrate that interference with normal somatosensory input causes a transient decrease in glucose metabolism of the contralateral cortical barrel-field and, in addition, causes long-term increments in glucose metabolism in the ipsilateral cortical barrel field--a structure not normally influenced by acute manipulation.

  8. Layer-Dependent Short-Term Synaptic Plasticity Between Excitatory Neurons in the C2 Barrel Column of Mouse Primary Somatosensory Cortex.

    Science.gov (United States)

    Lefort, Sandrine; Petersen, Carl C H

    2017-07-01

    Neurons process information through spatiotemporal integration of synaptic input. Synaptic transmission between any given pair of neurons is typically a dynamic process with presynaptic action potentials (APs) evoking depressing or facilitating postsynaptic potentials when presynaptic APs occur within hundreds of milliseconds of each other. In order to understand neocortical function, it is therefore important to investigate such short-term synaptic plasticity at synapses between different types of neocortical neurons. Here, we examine short-term synaptic dynamics between excitatory neurons in different layers of the mouse C2 barrel column through in vitro whole-cell recordings. We find layer-dependent short-term plasticity, with depression being dominant at many synaptic connections. Interestingly, however, presynaptic layer 2 neurons predominantly give rise to facilitating excitatory synaptic output at short interspike intervals of 10 and 30 ms. Previous studies have found prominent burst firing of excitatory neurons in supragranular layers of awake mice. The facilitation we observed in the synaptic output of layer 2 may, therefore, be functionally relevant, possibly serving to enhance the postsynaptic impact of burst firing. © The Author 2017. Published by Oxford University Press.

  9. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    2010-06-01

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  10. The Body Model Theory of Somatosensory Cortex.

    Science.gov (United States)

    Brecht, Michael

    2017-06-07

    I outline a microcircuit theory of somatosensory cortex as a body model serving both for body representation and "body simulation." A modular model of innervated and non-innervated body parts resides in somatosensory cortical layer 4. This body model is continuously updated and compares to an avatar (an animatable puppet) rather than a mere sensory map. Superficial layers provide context and store sensory memories, whereas layer 5 provides motor output and stores motor memories. I predict that layer-6-to-layer-4 inputs initiate body simulations allowing rehearsal and risk assessment of difficult actions, such as jumps. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  12. The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex.

    Science.gov (United States)

    Akhmetshina, Dinara; Nasretdinov, Azat; Zakharov, Andrei; Valeeva, Guzel; Khazipov, Roustem

    2016-09-21

    Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. This early sensory input may involve: (1) stimulation arising from passive interactions with the mother and littermates and (2) sensory feedback arising from spontaneous infant movements. The relative contributions of these mechanisms under natural conditions remain largely unknown, however. Here, we show that, in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity. Both tactile signals arising from the littermate's movements under conditions simulating the littermates' position in the litter, and spontaneous whisker movements efficiently triggered bursts of activity in barrel cortex. Yet, whisker movements with touch were more efficient than free movements. Comparison of the various experimental conditions mimicking the natural environment showed that tactile signals arising from the whisker movements with touch and stimulation by the littermates, support: (1) a twofold higher level of cortical activity than in the isolated animal, and (2) a threefold higher level of activity than in the deafferented animal after the infraorbital nerve cut. Together, these results indicate that endogenous (self-generated movements) and exogenous (stimulation by the littermates) mechanisms cooperate in driving cortical activity in newborn rats and point to the importance of the environment in shaping cortical activity during the neonatal period. Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. However, the origins of sensory input to the neonatal somatosensory cortex in the natural environment remain largely unknown. Here, we show that in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate

  13. Reorganization of the Human Somatosensory Cortex in Hand Dystonia

    Directory of Open Access Journals (Sweden)

    Maria Jose Catalan

    2012-05-01

    Full Text Available Background and Purpose: Abnormalities of finger representations in the somatosensory cortex have been identified in patients with focal hand dystonia. Measuring blood flow with positron emission tomography (PET can be use to demonstrate functional localization of receptive fields. Methods: A vibratory stimulus was applied to the right thumb and little finger of six healthy volunteers and six patients with focal hand dystonia to map their receptive fields using H215O PET. Results: The cortical finger representations in the primary somatosensory cortex were closer to each other in patients than in normal subjects. No abnormalities were found in secondary somatosensory cortex, but the somatotopy there is less well distinguished. Conclusions: These data confirm prior electrophysiological and functional neuroimaging observations showing abnormalities of finger representations in somatosensory cortex of patients with focal hand dystonia.

  14. High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons.

    Directory of Open Access Journals (Sweden)

    Vicente Reyes-Puerta

    2015-06-01

    Full Text Available The manner in which populations of inhibitory (INH and excitatory (EXC neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels the activity of cell ensembles (of up to 74 neurons distributed along all layers of 3-4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency we show that individual INH neurons--classified as such according to their distinct extracellular spike waveforms--discriminate better between restricted sets of stimuli (≤6 stimulus classes than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy - a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity.

  15. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    Science.gov (United States)

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  16. Connectivity in the somatosensory cortex of the adolescent rat: an in vitro biocytin study.

    Science.gov (United States)

    Staiger, J F; Kötter, R; Zilles, K; Luhmann, H J

    1999-04-01

    A promising way to elucidate neuronal information processing is to establish detailed structure-function relationships of identified single neurons or populations of nerve cells, especially their synaptic connectivity. This has been greatly improved by the development of acute brain slice preparations. The cellular physiology of the rodent primary somatosensory (barrel) cortex has been extensively studied. However, for a meaningful interpretation of physiological experiments the degree and pattern of connectivity has to be known for the particular preparation. Since such studies are not available for rat (P15-25) barrel cortex in vitro, we have traced the cortico-cortical and thalamo-cortical connections in 400-microm-thick slices with biocytin. In coronal slices, a wealth of axonal connections in retrograde and anterograde directions were heavily labeled, resembling the full pattern of cortico-cortical projections described in vivo. The most striking connections were vertical and horizontal connections within the primary somatosensory cortex, as well as a columnar projection to the secondary somatosensory cortex and beyond (mainly the parietal ventral area). Electron microscopic extensions of the study indicated that the full possible set of synaptic contacts with an adult-like appearance was already established in these connections. In thalamo-cortical slices, strong reciprocal connections with the ventrobasal (and to a much lesser extent also the posterior) thalamic nucleus were always observed, together with an intensive ramification of fibers in the reticular nucleus. A striatal terminal field was also consistently found. We conclude that all major intracortical and thalamo-cortical connection are richly preserved in the in vitro slice preparations of rats. Thus, these preparations are suitable for elucidation of the functional interaction of the most crucial brain structures involved in somatosensory information processing combining an in vivo-like anatomical

  17. Adult deafness induces somatosensory conversion of ferret auditory cortex

    OpenAIRE

    Allman, Brian L.; Keniston, Leslie P.; Meredith, M. Alex

    2009-01-01

    In response to early or developmental lesions, responsiveness of sensory cortex can be converted from the deprived modality to that of the remaining sensory systems. However, little is known about capacity of the adult cortex for cross-modal reorganization. The present study examined the auditory cortices of animals deafened as adults, and observed an extensive somatosensory conversion within as little as 16 days after deafening. These results demonstrate that cortical cross-modal reorganizat...

  18. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  19. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Geertsen, Svend Sparre

    2007-01-01

    Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex. This act......Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex...

  20. Postictal inhibition of the somatosensory cortex

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Jovanovic, Marina; Atkins, Mary Doreen

    2011-01-01

    Transient suppression of the motor cortex and of the speech areas cause well-described postictal phenomena following seizures involving the respective cortical areas. Pain is a rare symptom in epileptic seizures. We present a patient with painful tonic seizures in the left leg. The amplitude...

  1. Experience-dependent regulation of tissue-type plasminogen activator in the mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Chu, Philip; Brumberg, Joshua C

    2015-07-10

    It has been suggested that tissue-type plasminogen activator (tPA), a serine protease, plays a key role in regulating the extracellular matrix core proteins, thereby impacting the structural plasticity in the cerebral cortex. Much is known about its role in regulating plasticity in the visual cortex. However, its permissive role has not been demonstrated to generalize to other cerebral cortical areas. By utilizing a combination of immunofluorescent histochemistry and confocal microscopy, we demonstrate that endogenous tPA is indeed present in the somatosensory cortex, and its expression is experience-dependent. Chronic sensory deprivation induced by whisker trimming from birth for one month leads to increased tPA immunoreactivity in all layers of the barrel cortex. Furthermore, tPA immunoreactivity remains high even after sensation has been restored to the mystacial pad (by allowing whiskers to grow back to full length for one month). Our results suggest that tPA levels in the cerebral cortex are regulated by sensory experience, and play a key role in regulating structural remodeling in the cerebral cortex. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex

    OpenAIRE

    Holly Elizabeth Rossiter; Worthen, Sian F.; Caroline eWitton; Hall, Stephen D.; Furlong, Paul L

    2013-01-01

    Gamma oscillations have previously been linked to pain perception and it has been hypothesised that they may have a potential role in encoding pain intensity. Stimulus response experiments have reported an increase in activity in the primary somatosensory cortex (SI) with increasing stimulus intensity, but the specific role of oscillatory dynamics in this change in activation remains unclear. In this study, Magnetoencephalography (MEG) was used to investigate the changes in cortical oscillati...

  3. Adult deafness induces somatosensory conversion of ferret auditory cortex.

    Science.gov (United States)

    Allman, Brian L; Keniston, Leslie P; Meredith, M Alex

    2009-04-07

    In response to early or developmental lesions, responsiveness of sensory cortex can be converted from the deprived modality to that of the remaining sensory systems. However, little is known about capacity of the adult cortex for cross-modal reorganization. The present study examined the auditory cortices of animals deafened as adults, and observed an extensive somatosensory conversion within as little as 16 days after deafening. These results demonstrate that cortical cross-modal reorganization can occur after the period of sensory system maturation.

  4. Anesthesia effect on single local field potentials variability in rat barrel cortex: Preliminary results.

    Science.gov (United States)

    Cecchetto, Claudia; Mahmud, Mufti; Vassanelli, Stefano

    2015-01-01

    The rat barrel cortex is a widely used model of information processing in the somatosensory area, thanks to its precise and easily recognizable organization. However, evoked Local Field Potentials (LFPs) generated in the barrel cortex by repetitive deflections of rat whiskers show large variability in shapes and timings. Moreover, anesthetics can deeply affect the profile of evoked responses. This paper presents preliminary report on the variability and the effect of commonly used anesthetics on these signals. We studied representative signal shape characteristics (e.g., latency and amplitude of events) extracted from evoked responses acquired by means of standard Ag/AgCl electrodes from different cortical layers. As an early result, we found significant difference in the latency of the first principal peak of the responses. Under Tiletamine-Xylazine anesthetic, the responses or events of the evoked LFPs occurred later than the ones recorded while urethane was administered. Furthermore, the distributions of the peak latencies in all cortical layers were narrower in case of Urethane. This behavior should be attributed to the different effects of these two anesthetics on specific synaptic receptors and thus on the processing of neural information and the encoding of sensory input along the cortical pathway.

  5. Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Holly Elizabeth Rossiter

    2013-07-01

    Full Text Available Gamma oscillations have previously been linked to pain perception and it has been hypothesised that they may have a potential role in encoding pain intensity. Stimulus response experiments have reported an increase in activity in the primary somatosensory cortex (SI with increasing stimulus intensity, but the specific role of oscillatory dynamics in this change in activation remains unclear. In this study, Magnetoencephalography (MEG was used to investigate the changes in cortical oscillations during 4 different intensities of a train of electrical stimuli to the right index finger, ranging from low sensation to strong pain. In those participants showing changes in evoked oscillatory gamma in SI during stimulation, the strength of the gamma power was found to increase with increasing stimulus intensity at both pain and sub-pain thresholds. These results suggest that evoked gamma oscillations in SI are not specific to pain but may have a role in encoding somatosensory stimulus intensity.

  6. Layer- and column-specific knockout of NMDA receptors in pyramidal neurons of the mouse barrel cortex.

    Directory of Open Access Journals (Sweden)

    Rachel Aronoff

    2007-11-01

    Full Text Available Viral vectors injected into the mouse brain offer the possibility for localized genetic modifications in a highly controlled manner. Lentivector injection into mouse neocortex transduces cells within a diameter of approximately 200µm, which closely matches the lateral scale of a column in barrel cortex. The depth and volume of the injection determines which cortical layer is transduced. Furthermore, transduced gene expression from the lentivector can be limited to predominantly pyramidal neurons by using a 1.3kb fragment of the αCaMKII promoter. This technique therefore allows genetic manipulation of a specific cell type in defined columns and layers of the neocortex. By expressing Cre recombinase from such a lentivector in gene-targeted mice carrying a floxed gene, highly specific genetic lesions can be induced. Here, we demonstrate the utility of this approach by specifically knocking out NMDA receptors (NMDARs in pyramidal neurons in the somatosensory barrel cortex of gene-targeted mice carrying floxed NMDAR 1 genes. Neurons transduced with lentivector encoding GFP and Cre recombinase exhibit not only reductions in NMDAR 1 mRNA levels, but reduced NMDAR-dependent currents and pairing-induced synaptic potentiation. This technique for knockout of NMDARs in a cell type, column- and layer-specific manner in the mouse somatosensory cortex may help further our understanding of the functional roles of NMDARs in vivo during sensory perception and learning.

  7. Classification of somatosensory cortex activities using fNIRS.

    Science.gov (United States)

    Hong, Keum-Shik; Bhutta, M Raheel; Liu, Xiaolong; Shin, Yong-Il

    2017-08-30

    The ability of the somatosensory cortex in differentiating various tactile sensations is very important for a person to perceive the surrounding environment. In this study, we utilize a lab-made multi-channel functional near-infrared spectroscopy (fNIRS) to discriminate the hemodynamic responses (HRs) of four different tactile stimulations (handshake, ball grasp, poking, and cold temperature) applied to the right hand of eight healthy male subjects. The activated brain areas per stimulation are identified with the t-values between the measured data and the desired hemodynamic response function. Linear discriminant analysis is utilized to classify the acquired data into four classes based on three features (mean, peak value, and skewness) of the associated oxy-hemoglobin (HbO) signals. The HRs evoked by the handshake and poking stimulations showed higher peak values in HbO than the ball grasp and cold temperature stimulations. For comparison purposes, additional two-class classifications of poking vs. temperature and handshake vs. ball grasp were performed. The attained classification accuracies were higher than the corresponding chance levels. Our results indicate that fNIRS can be used as an objective measure discriminating different tactile stimulations from the somatosensory cortex of human brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Distribution and morphology of nitrergic neurons across functional domains of the rat primary somatosensory cortex

    Science.gov (United States)

    Nogueira-Campos, Anaelli A.; Finamore, Deborah M.; Imbiriba, Luis A.; Houzel, Jean C.; Franca, João G.

    2012-01-01

    The rat primary somatosensory cortex (S1) is remarkable for its conspicuous vertical compartmentalization in barrels and septal columns, which are additionally stratified in horizontal layers. Whereas excitatory neurons from each of these compartments perform different types of processing, the role of interneurons is much less clear. Among the numerous types of GABAergic interneurons, those producing nitric oxide (NO) are especially puzzling, since this gaseous messenger can modulate neural activity, synaptic plasticity, and neurovascular coupling. We used a quantitative morphological approach to investigate whether nitrergic interneurons, which might therefore be considered both as NO volume diffusers and as elements of local circuitry, display features that could relate to barrel cortex architecture. In fixed brain sections, nitrergic interneurons can be revealed by histochemical processing for NADPH-diaphorase (NADPHd). Here, the dendritic arbors of nitrergic neurons from different compartments of area S1 were 3D reconstructed from serial 200 μm thick sections, using 100x objective and the Neurolucida system. Standard morphological parameters were extracted for all individual arbors and compared across columns and layers. Wedge analysis was used to compute dendritic orientation indices. Supragranular (SG) layers displayed the highest density of nitrergic neurons, whereas layer IV contained nitrergic neurons with largest soma area. The highest nitrergic neuronal density was found in septa, where dendrites were previously characterized as more extense and ramified than in barrels. Dendritic arbors were not confined to the boundaries of the column nor layer of their respective soma, being mostly double-tufted and vertically oriented, except in SG layers. These data strongly suggest that nitrergic interneurons adapt their morphology to the dynamics of processing performed by cortical compartments. PMID:23133407

  9. Modeling the emergence of whisker direction maps in rat barrel cortex.

    Directory of Open Access Journals (Sweden)

    Stuart P Wilson

    Full Text Available Based on measuring responses to rat whiskers as they are mechanically stimulated, one recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex (S1 contain a pinwheel map of whisker motion directions. Because this map is reminiscent of topographic organization for visual direction in primary visual cortex (V1 of higher mammals, we asked whether the S1 pinwheels could be explained by an input-driven developmental process as is often suggested for V1. We developed a computational model to capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical interactions using an established self-organizing algorithm. Inputs to the model each represent the deflection of a subset of 25 whiskers as they are contacted by a moving stimulus object. The subset of deflected whiskers corresponds with the shape of the stimulus, and the deflection direction corresponds with the movement direction of the stimulus. If these two features of the inputs are correlated during the training of the model, a somatotopically aligned map of direction emerges for each whisker in S1. Predictions of the model that are immediately testable include (1 that somatotopic pinwheel maps of whisker direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat's face, even peripheral whiskers; and (2 in the adult, neurons with similar directional tuning are interconnected by a network of horizontal connections, spanning distances of many whisker representations. We also propose specific experiments for testing the predictions of the model by manipulating patterns of whisker inputs experienced during early development. The results suggest that similar intracortical mechanisms guide the development of primate V1 and rat S1.

  10. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  11. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning.

    Directory of Open Access Journals (Sweden)

    Ewa Siucinska

    Full Text Available Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS with a tail shock (unconditioned stimulus, UCS expands the representation of "trained" vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1 increases GABAergic markers in the hollows of "trained" barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS led to increase expression of neuronal and astroglial GAT-1 puncta in the "trained" row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.

  12. Functional diversity of supragranular GABAergic neurons in the barrel cortex

    Directory of Open Access Journals (Sweden)

    Luc J Gentet

    2012-08-01

    Full Text Available Although the neocortex forms a distributed system comprised of several functional areas, its vertical columnar organization is largely conserved across areas and species, suggesting the existence of a canonical neocortical microcircuit. In order to elucidate the principles governing the organization of such a cortical diagram, a detailed understanding of the dynamics binding different types of cortical neurons into a coherent algorithm is essential. Within this complex circuitry, GABAergic interneurons, while forming approximately only 15-20% of all cortical neurons, appear critical in maintaining a dynamic balance between excitation and inhibition. Despite their importance, cortical GABAergic neurons have not been extensively studied in vivo and their precise role in shaping the local microcircuit sensory response still remains to be determined. Their paucity, combined with their molecular, anatomical and physiological diversity, has made it difficult to even establish a consensual nomenclature.However, recent technological advances in microscopy and mouse genetics have fostered a renewed interest in neocortical interneurons by putting them within visible reach of experimenters. The anatomically well-defined whisker-to-barrel pathway of the rodent is particularly amenable to studies attempting to link cortical circuit dynamics to behavior. To each whisker corresponds a discrete cortical unit equivalent to a single column, specialized in the encoding and processing of the sensory information it receives. In this review, we will focus on the functional role that each subtype of supragranular GABAergic neuron embedded within such a single neocortical unit may play in shaping the dynamics of the local circuit during somatosensory integration.

  13. Morphological heterogeneity of layer VI neurons in mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Abrams, Svetlana; Pinhas, Alex; Brumberg, Joshua C

    2009-02-20

    Understanding the basic neuronal building blocks of the neocortex is a necessary first step toward comprehending the composition of cortical circuits. Neocortical layer VI is the most morphologically diverse layer and plays a pivotal role in gating information to the cortex via its feedback connection to the thalamus and other ipsilateral and callosal corticocortical connections. The heterogeneity of function within this layer is presumably linked to its varied morphological composition. However, so far, very few studies have attempted to define cell classes in this layer using unbiased quantitative methodologies. Utilizing the Golgi staining technique along with the Neurolucida software, we recontructed 222 cortical neurons from layer VI of mouse barrel cortex. Morphological analyses were performed by quantifying somatic and dendritic parameters, and, by using principal component and cluster analyses, we quantitatively categorized neurons into six distinct morphological groups. Additional systematic replication on a separate population of neurons yielded similar results, demonstrating the consistency and reliability of our categorization methodology. Subsequent post hoc analyses of dendritic parameters supported our neuronal classification scheme. Characterizing neuronal elements with unbiased quantitative techniques provides a framework for better understanding structure-function relationships within neocortical circuits in general.

  14. Encoding of Whisker Vibration by Rat Barrel Cortex Neurons: Implications for Texture Discrimination

    National Research Council Canada - National Science Library

    Arabzadeh, Ehsan; Petersen, Rasmus S; Diamond, Mathew E

    2003-01-01

    .... What is the representation of texture in rat somatosensory cortex? We hypothesize that as rats "whisk" over a surface, the spatial frequency of a grooved or pebbled texture is converted to a temporal frequency of whisker vibration...

  15. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    Science.gov (United States)

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  16. Detection psychophysics of intracortical microstimulation in rat primary somatosensory cortex.

    Science.gov (United States)

    Butovas, Sergejus; Schwarz, Cornelius

    2007-04-01

    A problem of purposeful intracortical microstimulation is the long duration of neuronal integration time and the associated complex temporal interactions of effects to individual pulses in trains. Here we investigated the effects of repetitive stimuli on perception. We trained head-restraint rats to indicate the detection of cortical microstimulation in infragranular layers of barrel cortex. Three stimulus parameters: stimulus intensity, number of pulses and frequency were varied, and psychometric detection curves were assessed using the method of constant stimuli. The average psychophysical threshold of single pulses was 2.0 nC--a measure very close to what has been found earlier for the evocation of short-latency action potentials in neurons near the stimulation electrode. Detection of single-pulse stimulation always saturated at probabilities of about 0.8. In contrast, repetitive stimuli gave rise to lower thresholds (by a factor of two at 15 pulses, 320 Hz), and to saturation at probabilities close to 1. Interestingly, a large fraction of these perceptual benefits was observed already with double pulses. Moreover, the perceptual efficacy of individual pulses was higher using double pulses compared with longer sequences, i.e. double pulses were detected better than expected from the assumption of independence of single-pulse effects, while trains of 15 pulses fell well short of this expectation. The present results thus point to double-pulse stimulation as an optimal choice when trading economic stimulation against optimizing of the percept.

  17. Neural computation via neural geometry: a place code for inter-whisker timing in the barrel cortex?

    Directory of Open Access Journals (Sweden)

    Stuart P Wilson

    2011-10-01

    Full Text Available The place theory proposed by Jeffress (1948 is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or 'vibrissae'. We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3 somatosensory 'barrel' cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4 that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli.

  18. Presynaptic development at L4 to l2/3 excitatory synapses follows different time courses in visual and somatosensory cortex.

    Science.gov (United States)

    Cheetham, Claire E J; Fox, Kevin

    2010-09-22

    Visual and somatosensory cortices exhibit profound experience-dependent plasticity during development and adulthood and are common model systems for probing the synaptic and molecular mechanisms of plasticity. However, comparisons between the two areas may be confounded by a lack of accurate information on their relative rates of development. In this study, we used whole-cell recording in acute brain slices to study synaptic development in mouse barrel and visual cortex. We found that short-term plasticity (STP) switched from strong depression at postnatal day (P)12 to weaker depression and facilitation in mature cortex. However, presynaptic maturation was delayed by ∼2 weeks at layer (L)4 to L2/3 excitatory synapses in visual cortex relative to barrel cortex. This developmental delay was pathway-specific; maturation of L2/3 to L2/3 synapses occurred over similar timescales in barrel and visual cortex. The developmental increase in the paired-pulse ratio to values greater than unity was mirrored by a developmental decrease in presynaptic release probability. Therefore, L4 to L2/3 excitatory synapses had lower release probabilities and showed greater short-term facilitation in barrel cortex than in visual cortex at P28. Postsynaptic mechanisms could not account for the delayed maturation of STP in visual cortex. These findings indicate that synaptic development is delayed in the L4 to L2/3 pathway in visual cortex, and emphasize the need to take into account the changes in synaptic properties that occur during development when comparing plasticity mechanisms in different cortical areas.

  19. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  20. Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes

    Directory of Open Access Journals (Sweden)

    Sungshin eKim

    2015-04-01

    Full Text Available Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one versus multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups.

  1. Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans.

    Science.gov (United States)

    Caselli, R J

    1993-04-01

    Five somatosensory cortices have distinctive somatotopic representations, cytoarchitecture, and connectivity: primary somatosensory cortex (SI), ventrolateral association cortices (SII, SIII, and SIV), and dorsomedial association cortex (supplementary sensory area). Patients with focal lesions of ventrolateral (n = 5) and dorsomedial (n = 6) somatosensory association cortices (SACs) and hemiparetic (n = 8) and neurologically normal control patients (n = 14) underwent detailed somesthetic testing that encompassed basic, intermediate, and complex (tactile object recognition) somesthetic functions. Dorsomedial lesions acutely caused severe disruption of somesthetic processing and severe apraxia when the area of damage was extensive and involved anterior and posterior cortices. In contrast, ventrolateral lesions caused tactile agnosia. Chronically, sensorimotor function following dorsomedial damage improved considerably. Tactile agnosia following ventrolateral damage, however, was readily detectable for years following onset. Functional differences between ventrolateral and dorsomedial SACs may reflect parallel processing in dual somatosensory systems.

  2. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  3. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  4. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain.

    Science.gov (United States)

    Karl, A; Birbaumer, N; Lutzenberger, W; Cohen, L G; Flor, H

    2001-05-15

    Phantom limb pain (PLP) in amputees is associated with reorganizational changes in the somatosensory system. To investigate the relationship between somatosensory and motor reorganization and phantom limb pain, we used focal transcranial magnetic stimulation (TMS) of the motor cortex and neuroelectric source imaging of the somatosensory cortex (SI) in patients with and without phantom limb pain. For transcranial magnetic stimulation, recordings were made bilaterally from the biceps brachii, zygomaticus, and depressor labii inferioris muscles. Neuroelectric source imaging of the EEG was obtained after somatosensory stimulation of the skin overlying face and hand. Patients with phantom limb pain had larger motor-evoked potentials from the biceps brachii, and the map of outputs was larger for muscles on the amputated side compared with the intact side. The optimal scalp positions for stimulation of the zygomaticus and depressor labii inferioris muscles were displaced significantly more medially (toward the missing hand representation) in patients with phantom limb pain only. Neuroelectric source imaging revealed a similar medial displacement of the dipole center for face stimulation in patients with phantom limb pain. There was a high correlation between the magnitude of the shift of the cortical representation of the mouth into the hand area in motor and somatosensory cortex and phantom limb pain. These results show enhanced plasticity in both the motor and somatosensory domains in amputees with phantom limb pain.

  5. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Zeinab eFazlali

    2016-03-01

    Full Text Available Cortical state modulates the background activity of cortical neurons, and their evoked response to sensory stimulation. Multiple mechanisms are involved in switching between cortical states including various neuromodulatory systems. Locus Coeruleus (LC is one of the major neuromodulatory nuclei in the brainstem with widespread projections throughout the brain and modulates the activity of cells and networks. Here, we quantified the link between the LC spontaneous activity, cortical state and sensory processing in the rat vibrissal somatosensory barrel cortex (BC. We simultaneously recorded unit activity from LC and BC along with prefrontal EEG while presenting brief whisker deflections under urethane anesthesia. The ratio of low to high frequency components of EEG (referred to as the L/H ratio was employed to identify cortical state. We found that the spontaneous activity of LC units exhibited a negative correlation with the L/H ratio. Cross-correlation analysis revealed that changes in LC firing preceded changes in the cortical state: the correlation of the LC firing profile with the L/H ratio was maximal at an average lag of -1.2 s. We further quantified BC neuronal responses to whisker stimulation during the synchronized and desynchronized states. In the desynchronized state, BC neurons showed lower stimulus detection threshold, higher response fidelity, and shorter response latency. The most prominent change was observed in the late phase of BC evoked activity (100-400 ms post stimulus onset: almost every BC unit exhibited a greater late response during the desynchronized state. Categorization of the BC evoked responses based on LC activity (into high and low LC discharge rates resulted in highly similar response profiles compared to categorization based on the cortical state (low and high L/H ratios. These findings provide evidence for the involvement of the LC neuromodulatory system in desynchronization of cortical state and the consequent

  6. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test.

    Science.gov (United States)

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong; Choi, Jee Hyun

    2017-04-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.

  7. Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?

    Science.gov (United States)

    Wilson, Stuart P.; Bednar, James A.; Prescott, Tony J.; Mitchinson, Ben

    2011-01-01

    The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli. PMID:22022245

  8. Human perception of electrical stimulation on the surface of somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    Full Text Available Recent advancement in electrocorticography (ECoG-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.

  9. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    Directory of Open Access Journals (Sweden)

    Anna Posluszny

    Full Text Available Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS. We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA, an inhibitor of glutamic acid decarboxylase (GAD, into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  10. Multimodal interactions between proprioceptive and cutaneous signals in primary somatosensory cortex

    Science.gov (United States)

    Kim, Sung Soo; Gomez-Ramirez, Manuel; Thakur, Pramodsingh H.; Hsiao, Steven S.

    2015-01-01

    The classical view of somatosensory processing holds that proprioceptive and cutaneous inputs are conveyed to cortex through segregated channels, initially synapsing in modality-specific areas 3a (proprioception) and 3b (cutaneous) of primary somatosensory cortex (SI). These areas relay their signals to areas 1 and 2 where multimodal convergence first emerges. However, proprioceptive and cutaneous maps have traditionally been characterized using unreliable stimulation tools. Here, we employed a mechanical stimulator that reliably positioned animals' hands in different postures and presented tactile stimuli with superb precision. Single-unit recordings in SI revealed that most neurons responded to cutaneous and proprioceptive stimuli, including cells in areas 3a and 3b. Multimodal responses were characterized by linear and nonlinear effects that emerged during early (∼20ms) and latter (>100ms) stages of stimulus processing, respectively. These data are incompatible with the modality specificity model in SI, and provide evidence for distinct mechanisms of multimodal processing in the somatosensory system. PMID:25864632

  11. Dorsal penile nerve stimulation elicits left-hemisphere dominant activation in the second somatosensory cortex.

    Science.gov (United States)

    Mäkelä, J P; Illman, M; Jousmäki, V; Numminen, J; Lehecka, M; Salenius, S; Forss, N; Hari, R

    2003-02-01

    Activation of peripheral mixed and cutaneous nerves activates a distributed cortical network including the second somatosensory cortex (SII) in the parietal operculum. SII activation has not been previously reported in the stimulation of the dorsal penile nerve (DPN). We recorded somatosensory evoked fields (SEFs) to DPN stimulation from 7 healthy adults with a 122-channel whole-scalp neuromagnetometer. Electrical pulses were applied once every 0.5 or 1.5 sec to the left and right DPN. For comparison, left and right median and tibial nerves were stimulated alternatingly at 1.5-sec intervals. DPN stimuli elicited weak, early responses in the vicinity of responses to tibial nerve stimulation in the primary somatosensory cortex. Strong later responses, peaking at 107-126 msec were evoked in the SII cortices of both hemispheres, with left-hemisphere dominance. In addition to tactile processing, SII could also contribute to mediating emotional effects of DPN stimuli. Copyright 2002 Wiley-Liss, Inc.

  12. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits.

    NARCIS (Netherlands)

    Schubert, D.; Kotter, R.; Staiger, J.F.

    2007-01-01

    Synaptic circuits bind together functional modules of the neocortex. We aim to clarify in a rodent model how intra- and transcolumnar microcircuits in the barrel cortex are laid out to segregate and also integrate sensory information. The primary somatosensory (barrel) cortex of rodents is the ideal

  13. Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex

    Science.gov (United States)

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…

  14. Functional connectivity for somatosensory and motor cortex in spastic diplegia.

    Science.gov (United States)

    Burton, Harold; Dixit, Sachin; Litkowski, Patricia; Wingert, Jason R

    2009-12-01

    Functional connectivity (fcMRI) was analyzed in individuals with spastic diplegia and age-matched controls. Pearson correlations (r-values) were computed between resting state spontaneous activity in selected seed regions (sROI) and each voxel throughout the brain. Seed ROI were centered on foci activated by tactile stimulation of the second fingertip in somatosensory and parietal dorsal attention regions. The group with diplegia showed significantly expanded networks for the somatomotor but not dorsal attention areas. These expanded networks overran nearly all topological representations in somatosensory and motor areas despite a sROI in a fingertip focus. A possible underlying cause for altered fcMRI in the group with dipegia, and generally sensorimotor deficits in spastic diplegia, is that prenatal third trimester white-matter injury leads to localized damage to subplate neurons. We hypothesize that intracortical connections become dominant in spastic diplegia through successful competition with diminished or absent thalamocortical inputs. Similar to the effects of subplate ablations on ocular dominance columns (Kanold and Shatz, Neuron 2006;51:627-638), a spike timing-dependent plasticity model is proposed to explain a shift towards intracortical inputs.

  15. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex.

    Science.gov (United States)

    Kufner, Marco; Brückner, Sabrina; Kammer, Thomas

    Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    Science.gov (United States)

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  17. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    DEFF Research Database (Denmark)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe

    2013-01-01

    magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified...... reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann...... of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first...

  18. Npas4 Expression in Two Experimental Models of the Barrel Cortex Plasticity

    Directory of Open Access Journals (Sweden)

    Aleksandra Kaliszewska

    2015-01-01

    Full Text Available Npas4 has recently been identified as an important factor in brain plasticity, particularly in mechanisms of inhibitory control. Little is known about Npas4 expression in terms of cortical plasticity. In the present study expressions of Npas4 and the archetypal immediate early gene (IEG c-Fos were investigated in the barrel cortex of mice after sensory deprivation (sparing one row of whiskers for 7 days or sensory conditioning (pairing stimulation of one row of whiskers with aversive stimulus. Laser microdissection of individual barrel rows allowed for analysis of IEGs expression precisely in deprived and nondeprived barrels (in deprivation study or stimulated and nonstimulated barrels (in conditioning study. Cortex activation by sensory conditioning was found to upregulate the expression of both Npas4 and c-Fos. Reorganization of cortical circuits triggered by removal of selected rows of whiskers strongly affected c-Fos but not Npas4 expression. We hypothesize that increased inhibitory synaptogenesis observed previously after conditioning may be mediated by Npas4 expression.

  19. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  20. Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex.

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Holden, Jameson; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Im, Jaehyun; Libby, Alexandra; Mezzacappa, Pia; Morse, Leslie R; Park, Kyungmo; Audette, Joseph; Tommerdahl, Mark; Napadow, Vitaly

    2014-06-01

    Carpal tunnel syndrome, a median nerve entrapment neuropathy, is characterized by sensorimotor deficits. Recent reports have shown that this syndrome is also characterized by functional and structural neuroplasticity in the primary somatosensory cortex of the brain. However, the linkage between this neuroplasticity and the functional deficits in carpal tunnel syndrome is unknown. Sixty-three subjects with carpal tunnel syndrome aged 20-60 years and 28 age- and sex-matched healthy control subjects were evaluated with event-related functional magnetic resonance imaging at 3 T while vibrotactile stimulation was delivered to median nerve innervated (second and third) and ulnar nerve innervated (fifth) digits. For each subject, the interdigit cortical separation distance for each digit's contralateral primary somatosensory cortex representation was assessed. We also evaluated fine motor skill performance using a previously validated psychomotor performance test (maximum voluntary contraction and visuomotor pinch/release testing) and tactile discrimination capacity using a four-finger forced choice response test. These biobehavioural and clinical metrics were evaluated and correlated with the second/third interdigit cortical separation distance. Compared with healthy control subjects, subjects with carpal tunnel syndrome demonstrated reduced second/third interdigit cortical separation distance (P < 0.05) in contralateral primary somatosensory cortex, corroborating our previous preliminary multi-modal neuroimaging findings. For psychomotor performance testing, subjects with carpal tunnel syndrome demonstrated reduced maximum voluntary contraction pinch strength (P < 0.01) and a reduced number of pinch/release cycles per second (P < 0.05). Additionally, for four-finger forced-choice testing, subjects with carpal tunnel syndrome demonstrated greater response time (P < 0.05), and reduced sensory discrimination accuracy (P < 0.001) for median nerve, but not ulnar nerve

  1. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Annabella Pignataro

    2015-01-01

    Full Text Available Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice. We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi, the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.

  2. Cell type specificity of tissue plasminogen activator in the mouse barrel cortex

    Directory of Open Access Journals (Sweden)

    Philip Chu

    2015-09-01

    Full Text Available We provide data in this article related to (C.C. Chen et al.,. Neurosci. Lett., 599 (2015 152–157. [1] where the expression of tissue plasminogen activator (tPA is expressed by the whisker representation in the somatosensory cortex. Here, we provide immunocytochemistry data indicating that tPA is expressed by putative excitatory neurons as well as parvalbumin+ interneurons but not by somatostatin+ inhibitory interneurons. We also provide data showing that microglia do not normally express high levels of tPA, but upregulate their levels following cortical penetration with a recording electrode.

  3. Cell type specificity of tissue plasminogen activator in the mouse barrel cortex.

    Science.gov (United States)

    Chu, Philip; Chen, Eric; Bajnath, Adesh; Brumberg, Joshua C

    2015-09-01

    We provide data in this article related to (C.C. Chen et al.,. Neurosci. Lett., 599 (2015) 152-157.) [1] where the expression of tissue plasminogen activator (tPA) is expressed by the whisker representation in the somatosensory cortex. Here, we provide immunocytochemistry data indicating that tPA is expressed by putative excitatory neurons as well as parvalbumin+ interneurons but not by somatostatin+ inhibitory interneurons. We also provide data showing that microglia do not normally express high levels of tPA, but upregulate their levels following cortical penetration with a recording electrode.

  4. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex.

    Science.gov (United States)

    Fardo, Francesca; Auksztulewicz, Ryszard; Allen, Micah; Dietz, Martin J; Roepstorff, Andreas; Friston, Karl J

    2017-06-01

    The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling for magnetoencephalography in human subjects, to investigate how expectation violation and attention to pain modulate intrinsic (within-source) and extrinsic (between-source) connectivity in the somatosensory hierarchy. This enabled us to establish whether both expectancy and attentional processes are mediated by a similar precision-encoding mechanism within a network of somatosensory, frontal and parietal sources. We found that both unexpected and attended pain modulated the gain of superficial pyramidal cells in primary and secondary somatosensory cortex. This modulation occurred in the context of increased lateralized recurrent connectivity between somatosensory and fronto-parietal sources, driven by unexpected painful occurrences. Finally, the strength of effective connectivity parameters in S1, S2 and IFG predicted individual differences in subjective pain modulation ratings. Our findings suggest that neuromodulatory gain control in the somatosensory hierarchy underlies the influence of both expectation violation and attention on cortical processing and pain perception. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography.

    Science.gov (United States)

    Weiler, Nicholas C; Collman, Forrest; Vogelstein, Joshua T; Burns, Randal; Smith, Stephen J

    2014-01-01

    A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.

  6. Single-unit Analysis of Somatosensory Processing in Core Auditory Cortex of Hearing Ferrets

    Science.gov (United States)

    Meredith, M. Alex; Allman, Brian L.

    2014-01-01

    The recent findings in several species that primary auditory cortex processes non-auditory information have largely overlooked the possibility for somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior – AAF, and primary auditory-- A1, fields) for tactile responsivity. Multiple single-unit recordings from anesthetized ferret cortex yielded histologically verified neurons (n=311) tested with electronically controlled auditory, visual and tactile stimuli and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. PMID:25728185

  7. Early and late activity in somatosensory cortex reflects changes in bodily self-consciousness: an evoked potential study.

    Science.gov (United States)

    Aspell, J E; Palluel, E; Blanke, O

    2012-08-02

    How can we investigate the brain mechanisms underlying self-consciousness? Recent behavioural studies on multisensory bodily perception have shown that multisensory conflicts can alter bodily self-consciousness such as in the "full body illusion" (FBI) in which changes in self-identification with a virtual body and tactile perception are induced. Here we investigated whether experimental changes in self-identification during the FBI are accompanied by activity changes in somatosensory cortex by recording somatosensory-evoked potentials (SEPs). To modulate self-identification, participants were filmed by a video camera from behind while their backs were stroked, either synchronously (illusion condition) or asynchronously (control condition) with respect to the stroking seen on their virtual body. Tibial nerve SEPs were recorded during the FBI and analysed using evoked potential (EP) mapping. Tactile mislocalisation was measured using the crossmodal congruency task. SEP mapping revealed five sequential periods of brain activation during the FBI, of which two differed between the illusion condition and the control condition. Activation at 30-50 ms (corresponding to the P40 component) in primary somatosensory cortex was stronger in the illusion condition. A later activation at ∼110-200 ms, likely originating in higher-tier somatosensory regions in parietal cortex, was stronger and lasted longer in the control condition. These data show that changes in bodily self-consciousness modulate activity in primary and higher-tier somatosensory cortex at two distinct processing steps. We argue that early modulations of primary somatosensory cortex may be a consequence of (1) multisensory integration of synchronous vs. asynchronous visuo-tactile stimuli and/or (2) differences in spatial attention (to near or far space) between the conditions. The later activation in higher-tier parietal cortex (and potentially other regions in temporo-parietal and frontal cortex) likely

  8. Orofacial Neuropathic Pain Leads to a Hyporesponsive Barrel Cortex with Enhanced Structural Synaptic Plasticity.

    Science.gov (United States)

    Thibault, Karine; Rivière, Sébastien; Lenkei, Zsolt; Férézou, Isabelle; Pezet, Sophie

    2016-01-01

    Chronic pain is a long-lasting debilitating condition that is particularly difficult to treat due to the lack of identified underlying mechanisms. Although several key contributing processes have been described at the level of the spinal cord, very few studies have investigated the supraspinal mechanisms underlying chronic pain. Using a combination of approaches (cortical intrinsic imaging, immunohistochemical and behavioural analysis), our study aimed to decipher the nature of functional and structural changes in a mouse model of orofacial neuropathic pain, focusing on cortical areas involved in various pain components. Our results show that chronic neuropathic orofacial pain is associated with decreased haemodynamic responsiveness to whisker stimulation in the barrel field cortex. This reduced functional activation is likely due to the increased basal neuronal activity (measured indirectly using cFos and phospho-ERK immunoreactivity) observed in several cortical areas, including the contralateral barrel field, motor and cingulate cortices. In the same animals, immunohistochemical analysis of markers for active pre- or postsynaptic elements (Piccolo and phospho-Cofilin, respectively) revealed an increased immunofluorescence in deep cortical layers of the contralateral barrel field, motor and cingulate cortices. These results suggest that long-lasting orofacial neuropathic pain is associated with exacerbated neuronal activity and synaptic plasticity at the cortical level.

  9. Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts.

    Science.gov (United States)

    Papadelis, Christos; Butler, Erin E; Rubenstein, Madelyn; Sun, Limin; Zollei, Lilla; Nimec, Donna; Snyder, Brian; Grant, Patricia Ellen

    2018-01-01

    Functional neuroimaging studies argue that sensory deficits in hemiplegic cerebral palsy (HCP) are related to deviant somatosensory processing in the ipsilesional primary somatosensory cortex (S1). A separate body of structural neuroimaging literature argues that these deficits are due to structural damage of the ascending sensory tracts (AST). The relationship between the functional and structural integrity of the somatosensory system and the sensory performance is largely unknown in HCP. To address this relationship, we combined findings from magnetoencephalography (MEG) and probabilistic diffusion tractography (PDT) in 10 children with HCP and 13 typically developing (TD) children. With MEG, we mapped the functionally active regions in the contralateral S1 during tactile stimulation of the thumb, middle, and little fingers of both hands. Using these MEG-defined functional active regions as regions of interest for PDT, we estimated the diffusion parameters of the AST. Somatosensory function was assessed via two-point discrimination tests. Our MEG data showed: (i) an abnormal somatotopic organization in all children with HCP in either one or both of their hemispheres; (ii) longer Euclidean distances between the digit maps in the S1 of children with HCP compared to TD children; (iii) suppressed gamma responses at early latencies for both hemispheres of children with HCP; and (iv) a positive correlation between the Euclidean distances and the sensory tests for the more affected hemisphere of children with HCP. Our MEG-guided PDT data showed: (i) higher mean and radian diffusivity of the AST in children with HCP; (ii) a positive correlation between the axial diffusivity of the AST with the sensory tests for the more affected hemisphere; and (iii) a negative correlation between the gamma power change and the AD of the AST for the MA hemisphere. Our findings associate for the first time bilateral cortical functional reorganization in the S1 of HCP children with

  10. Barrels XXIX: Barrels go Hollywood.

    Science.gov (United States)

    Evans, Mathew H; Brumberg, Joshua C

    2017-03-01

    Barrels XXIX brought together researchers focusing on the rodent barrel cortex and associated systems. The meeting revolved around three themes: thalamocortical interactions in motor control, touch in rodent, monkey, and humans, and the nature of the multisensory computations the brain makes. Over two days these topics were covered as well as many more presentations that focused on the physiology, behavior, and development of the rodent whisker-to-barrel cortex system.

  11. Functional Reorganization of the Primary Somatosensory Cortex of a Phantom Limb Pain Patient.

    Science.gov (United States)

    Zhao, Jia; Guo, Xiaoli; Xia, Xiaolei; Peng, Weiwei; Wang, Wuchao; Li, Shulin; Zhang, Ya; Hu, Li

    2016-07-01

    Functional reorganization of the somatosensory system was widely observed in phantom limb pain patients. Whereas some studies demonstrated that the primary somatosensory cortex (S1) of the amputated limb was engaged with the regions around it, others showed that phantom limb pain was associated with preserved structure and functional organization in the former brain region. However, according to the law of use and disuse, the sensitivity of S1 of the amputated limb to pain-related context should be enhanced due to the adaptation to the long-lasting phantom limb pain experience. Here, we collected neurophysiological data from a patient with 21-year phantom limb pain using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) techniques. EEG data showed that both laser-evoked potentials (LEPs) and tactile-evoked potentials (TEPs) were clearly presented only when radiant-heat laser pulses and electrical pulses were delivered to the shoulder of the healthy limb, but not of the amputated limb. This observation suggested the functional deficit of somatosensory pathways at the amputated side. FMRI data showed that significant larger brain activations by painful rather than non-painful stimuli in video clips were observed not only at visual-related brain areas and anterior/mid-cingulate cortex, but also at S1 contralateral to the amputated limb. This observation suggested the increased sensitivity of S1 of the amputated limb to the pain-related context. In addition, such increase of sensitivity was significantly larger if the context was associated with the amputated limb of the patient. In summary, our findings provided novel evidence for a possible neuroplasticity of S1 of the amputated limb: in an amputee with long-lasting phantom limb pain, the sensitivity of S1 to pain-related and amputated-limb-related context was greatly enhanced.

  12. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    Directory of Open Access Journals (Sweden)

    Hui-Xin eQi

    2014-05-01

    Full Text Available In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b. However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord

  13. Reduced Inhibition within Layer IV of Sert Knockout Rat Barrel Cortex is Associated with Faster Sensory Integration

    NARCIS (Netherlands)

    Miceli, S.M.; Nadif Kasri, N.; Joosten, J.; Huang, C.; Kepser, L.; Proville, R.D.R.; Selten, M.M.; Eijs, F. van; Azarfar, A.; Homberg, J.R.; Celikel, T.; Schubert, D.

    2017-01-01

    Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT

  14. Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex.

    Directory of Open Access Journals (Sweden)

    Nathan S Jacobs

    2015-07-01

    Full Text Available Invariant sensory coding is the robust coding of some sensory information (e.g. stimulus type despite major changes in other sensory parameters (e.g. stimulus strength. The contribution of large populations of neurons (ensembles to invariant sensory coding is not well understood, but could offer distinct advantages over invariance in single cell receptive fields. To test invariant sensory coding in neuronal ensembles evoked by single whisker stimulation as early as primary sensory cortex, we recorded detailed spatiotemporal movies of evoked ensemble activity through the depth of rat barrel cortex using microelectrode arrays. We found that an emergent property of whisker evoked ensemble activity, its spatiotemporal profile, was notably invariant across major changes in stimulus amplitude (up to >200 fold. Such ensemble-based invariance was found for single whisker stimulation as well as for the integrated profile of activity evoked by the more naturalistic stimulation of the entire whisker array. Further, the integrated profile of whisker array evoked ensemble activity and its invariance to stimulus amplitude shares striking similarities to 'funneled' tactile perception in humans. We therefore suggest that ensemble-based invariance could provide a robust neurobiological substrate for invariant sensory coding and integration at an early stage of cortical sensory processing already in primary sensory cortex.

  15. Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex

    Science.gov (United States)

    Jacobs, Nathan S.; Chen-Bee, Cynthia H.; Frostig, Ron D.

    2015-01-01

    Invariant sensory coding is the robust coding of some sensory information (e.g., stimulus type) despite major changes in other sensory parameters (e.g., stimulus strength). The contribution of large populations of neurons (ensembles) to invariant sensory coding is not well understood, but could offer distinct advantages over invariance in single cell receptive fields. To test invariant sensory coding in neuronal ensembles evoked by single whisker stimulation as early as primary sensory cortex, we recorded detailed spatiotemporal movies of evoked ensemble activity through the depth of rat barrel cortex using microelectrode arrays. We found that an emergent property of whisker evoked ensemble activity, its spatiotemporal profile, was notably invariant across major changes in stimulus amplitude (up to >200-fold). Such ensemble-based invariance was found for single whisker stimulation as well as for the integrated profile of activity evoked by the more naturalistic stimulation of the entire whisker array. Further, the integrated profile of whisker array evoked ensemble activity and its invariance to stimulus amplitude shares striking similarities to “funneled” tactile perception in humans. We therefore suggest that ensemble-based invariance could provide a robust neurobiological substrate for invariant sensory coding and integration at an early stage of cortical sensory processing already in primary sensory cortex. PMID:26217194

  16. Interconnected Cortical Networks Between Primary Somatosensory Cortex Septal Columns and Posterior Parietal Cortex in Rat

    NARCIS (Netherlands)

    Lee, Taehee; Alloway, Kevin D.; Kim, Uhnoh

    2011-01-01

    Visual and somesthetic cues are used for spatial processing in the posterior parietal cortex (PPC) of the mammalian brain. In rats, somatic information collected by the mystacial whiskers is critically involved in constructing a neural representation of the external space. Here, we delineated the

  17. Precision mapping of the vibrissa representation within murine primary somatosensory cortex

    Science.gov (United States)

    Knutsen, Per M.; Mateo, Celine

    2016-01-01

    The ability to form an accurate map of sensory input to the brain is an essential aspect of interpreting functional brain signals. Here, we consider the somatotopic map of vibrissa-based touch in the primary somatosensory (vS1) cortex of mice. The vibrissae are represented by a Manhattan-like grid of columnar structures that are separated by inter-digitating septa. The development, dynamics and plasticity of this organization is widely used as a model system. Yet, the exact anatomical position of this organization within the vS1 cortex varies between individual mice. Targeting of a particular column in vivo therefore requires prior mapping of the activated cortical region, for instance by imaging the evoked intrinsic optical signal (eIOS) during vibrissa stimulation. Here, we describe a procedure for constructing a complete somatotopic map of the vibrissa representation in the vS1 cortex using eIOS. This enables precise targeting of individual cortical columns. We found, using C57BL/6 mice, that although the precise location of the columnar field varies between animals, the relative spatial arrangement of the columns is highly preserved. This finding enables us to construct a canonical somatotopic map of the vibrissae in the vS1 cortex. In particular, the position of any column, in absolute anatomical coordinates, can be established with near certainty when the functional representations in the vS1 cortex for as few as two vibrissae have been mapped with eIOS. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574305

  18. Endocannabinoid-Dependent Long-Term Potentiation of Synaptic Transmission at Rat Barrel Cortex.

    Science.gov (United States)

    Maglio, Laura Eva; Noriega-Prieto, José Antonio; Maraver, Maria Jesús; Fernández de Sevilla, David

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in modulating plasticity in sensory cortices. Indeed, a BDNF-dependent long-term potentiation (LTP) at distal basal excitatory synapses of Layer 5 pyramidal neurons (L5PNs) has been demonstrated in disinhibited rat barrel cortex slices. Although it is well established that this LTP requires the pairing of excitatory postsynaptic potentials (PSPs) with Ca2+ spikes, its induction when synaptic inhibition is working remains unexplored. Here we show that low-frequency stimulation at basal dendrites of L5PNs is able to trigger a PSP followed by an action potential (AP) and a slow depolarization (termed PSP-Ca2+ response) in thalamocortical slices without blocking synaptic inhibition. We demonstrate that AP barrage-mediated release of endocannabinoids (eCBs) from the recorded L5PNs induces PSP-Ca2+ response facilitation and BDNF-dependent LTP. Indeed, this LTP requires the type 1 cannabinoid receptors activation, is prevented by postsynaptic intracellular 1,2-bis(2-aminophenoxy) ethane-N,N,N,N'-tetraacetic acid (BAPTA) or the anandamide membrane transporter inhibitor AM404, and only occurs in L5PNs neurons showing depolarization-induced suppression of inhibition. Additionally, electrical stimulation at the posteromedial thalamic nucleus induced similar response and LTP. These results reveal a novel form of eCB-dependent LTP at L5PNs that could be relevant in the processing of sensory information in the barrel cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Developmental switch in neurovascular coupling in the immature rodent barrel cortex.

    Directory of Open Access Journals (Sweden)

    Christoph M Zehendner

    Full Text Available Neurovascular coupling (NVC in the adult central nervous system (CNS is a mechanism that provides regions of the brain with more oxygen and glucose upon increased levels of neural activation. Hemodynamic changes that go along with neural activation evoke a blood oxygen level-dependent (BOLD signal in functional magnetic resonance imaging (fMRI that can be used to study brain activity non-invasively. A correct correlation of the BOLD signal to neural activity is pivotal to understand this signal in neuronal development, health and disease. However, the function of NVC during development is largely unknown. The rodent whisker-to-barrel cortex is an experimentally well established model to study neurovascular interdependences. Using extracellular multi-electrode recordings and laser-Doppler-flowmetry (LDF we show in the murine barrel cortex of postnatal day 7 (P7 and P30 mice in vivo that NVC undergoes a physiological shift during the first month of life. In the mature CNS it is well accepted that cortical sensory processing results in a rise in regional cerebral blood flow (rCBF. We show in P7 animals that rCBF decreases during prolonged multi-whisker stimulation and goes along with multi unit activity (MUA fatigue. In contrast at P30, MUA remains stable during repetitive stimulation and is associated with an increase in rCBF. Further we characterize in both age groups the responses in NVC to single sensory stimuli. We suggest that the observed shift in NVC is an important process in cortical development that may be of high relevance for the correct interpretation of brain activity e.g. in fMRI studies of the immature central nervous system (CNS.

  20. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    Science.gov (United States)

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  1. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception

    Science.gov (United States)

    Jones, Christina B.; Lulic, Tea; Bailey, Aaron Z.; Mackenzie, Tanner N.; Mi, Yi Qun; Tommerdahl, Mark

    2016-01-01

    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively. PMID:26984422

  2. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Luca eLavagnino

    2014-08-01

    Full Text Available BackgroundAlterations in the resting state functional connectivity (rs-FC of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN. The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with BN (age=23±5 years and 18 matched controls (age=23±3 years underwent a functional magnetic resonance resting state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. ResultsBN patients showed a decreased resting state functional connectivity both within the somatosensory network (t=9.0, df=1, P=0.005 and with posterior cingulate cortex (PCC and two visual areas (the right middle occipital gyrus and the right cuneus(P=0.05 corrected for multiple comparison. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area, or EBA. The rs-FC of the left paracentral lobule with the EBA correlated with psychopathology measures like bulimia (r=-0.4; P=0.02 and interoceptive awareness (r=-0.4; P=0.01. Analyses were conducted using age, BMI (body mass index and depressive symptoms as covariates. ConclusionsOur findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  3. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    Directory of Open Access Journals (Sweden)

    Travis May

    Full Text Available Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

  4. Developmental alterations in noxious-evoked EEG activity recorded from rat primary somatosensory cortex.

    Science.gov (United States)

    Devonshire, I M; Greenspon, C M; Hathway, G J

    2015-10-01

    Primary somatosensory cortex (S1) contains a nociceptive map that localizes potential tissue damage on the body and encodes stimulus intensity. An objective and specific biomarker of pain however is currently lacking and is urgently required for use in non-verbal clinical populations as well as in the validation of pre-clinical pain models. Here we describe studies to see if the responses of the S1 in juvenile rats are different to those in the adult. We recorded electroencephalogram (EEG) responses from S1 of lightly-anesthetized Sprague-Dawley rats at either postnatal day 21 or postnatal day 40 during the presentation of noxious (55 °C) or innocuous (30 °C) thermal stimuli applied to the plantar surface of the left hindpaw. The total EEG power across the recording period was the same in both ages after stimulation but the frequency distribution was significantly affected by age. Noxious heat evoked a significant increase in theta band (4-8 Hz) activity in adults only (PEEG responses to innocuous thermal stimuli. These data show that there are significant alterations in the processing of nociceptive inputs within the maturing cortex and that cortical theta activity is involved only in the adult cortical response to noxious stimulation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Multi-electrode stimulation in somatosensory cortex increases probability of detection

    Science.gov (United States)

    Zaaimi, Boubker; Ruiz-Torres, Ricardo; Solla, Sara A.; Miller, Lee E.

    2013-10-01

    Objective. Brain machine interfaces (BMIs) that decode control signals from motor cortex have developed tremendously in the past decade, but virtually all rely exclusively on vision to provide feedback. There is now increasing interest in developing an afferent interface to replace natural somatosensation, much as the cochlear implant has done for the sense of hearing. Preliminary experiments toward a somatosensory neuroprosthesis have mostly addressed the sense of touch, but proprioception, the sense of limb position and movement, is also critical for the control of movement. However, proprioceptive areas of cortex lack the precise somatotopy of tactile areas. We showed previously that there is only a weak tendency for neighboring neurons in area 2 to signal similar directions of hand movement. Consequently, stimulation with the relatively large currents used in many studies is likely to activate a rather heterogeneous set of neurons. Approach. Here, we have compared the effect of single-electrode stimulation at subthreshold levels to the effect of stimulating as many as seven electrodes in combination. Main results. We found a mean enhancement in the sensitivity to the stimulus (d‧) of 0.17 for pairs compared to individual electrodes (an increase of roughly 30%), and an increase of 2.5 for groups of seven electrodes (260%). Significance. We propose that a proprioceptive interface made up of several hundred electrodes may yield safer, more effective sensation than a BMI using fewer electrodes and larger currents.

  6. The interaction of emotion and pain in the insula and secondary somatosensory cortex.

    Science.gov (United States)

    Orenius, Tage I; Raij, Tuukka T; Nuortimo, Antti; Näätänen, Petri; Lipsanen, Jari; Karlsson, Hasse

    2017-05-04

    Pain is processed in a large neural network that partially overlaps structures involved in emotion processing. Despite the fact that pain and emotion are known to share neural regions and interact in numerous clinical conditions, relatively little is known about the interaction of pain and emotion at the neural level. This study on healthy adults aimed to investigate the interaction between negative and positive emotional stimuli and experimental pain in an essential pain processing network. Sixteen healthy young adult subjects were exposed to pictures from the International Affective Picture System (IAPS) with negative, neutral or positive valence, along with laser pain stimuli. The stimuli were pseudo-randomly arranged in three 15-min experiment series comprising 49 stimuli each (picture, laser or simultaneous picture and laser stimuli). The whole-brain blood-oxygen-level-dependent (BOLD) signal was acquired using 3T functional magnetic resonance imaging (fMRI). As expected, the pain stimulus elicited activation in the secondary somatosensory cortex (SII), insula and anterior cingulate cortex (ACC) when compared to the baseline. The interaction of negative emotion and laser stimuli related to the activation of the left SII. The interaction of positive emotion and pain stimuli led to bilateral activation of the SII and left insula. These findings reveal interaction in parts of the pain processing network during simultaneous emotion and physical pain. We demonstrated a valence-independent interaction of emotion and pain in SII. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Quantitative analysis of somatosensory cortex development in eutherians, with a comparison with metatherians and monotremes.

    Science.gov (United States)

    Ashwell, Ken W S

    2015-01-01

    Extant eutherians exhibit a wide range of adult brain sizes and degree of cortical gyrification. Quantitative analysis of parietal isocortical sections held in museum collections was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness among diverse eutherian embryos, foetuses, and neonates. Analysis indicated that, for most eutherians, cortical plate aggregation begins at about 6-18 mm greatest length or about 120-320 µm pallial thickness. Expansion of the proliferative compartment occurs at a similar pace in most eutherians, but exceptionally rapidly in hominoids. Involution of the pallial proliferative zones occurs over a wide range of body sizes (42 mm to over 500 mm greatest length) or when the cerebral cortex reaches a thickness of 1.2-9.8 mm depending on the eutherian group. Many of these values overlap with those for metatherians. The findings suggest that there is less evolutionary flexibility in the timing of cortical plate aggregation than in the rate of expansion of the pallial proliferative compartment and the duration of proliferative zone activity.

  8. Loss of Ensemble Segregation in Dentate Gyrus, but Not in Somatosensory Cortex, during Contextual Fear Memory Generalization

    Directory of Open Access Journals (Sweden)

    Marie Yokoyama

    2016-11-01

    Full Text Available The details of contextual or episodic memories are lost and generalized with the passage of time. Proper generalization may underlie the formation and assimilation of semantic memories and enable animals to adapt to ever-changing environments, whereas overgeneralization of fear memory evokes maladaptive fear responses to harmless stimuli, which is a symptom of anxiety disorders such as post-traumatic stress disorder (PTSD. To understand the neural basis of fear memory generalization, we investigated the patterns of neuronal ensemble reactivation during memory retrieval when contextual fear memory expression is generalized using transgenic mice that allowed us to visualize specific neuronal ensembles activated during memory encoding and retrieval. We found preferential reactivations of neuronal ensembles in the primary somatosensory cortex, when mice were returned to the conditioned context to retrieve their memory 1 day after conditioning. In the hippocampal dentate gyrus (DG, exclusively separated ensemble reactivation was observed when mice were exposed to a novel context. These results suggest that the DG as well as the somatosensory cortex were likely to distinguish the two different contexts at the ensemble activity level when memory is not generalized at the behavioral level. However, 9 days after conditioning when animals exhibited generalized fear, the unique reactivation pattern in the DG, but not in the somatosensory cortex, was lost. Our results suggest that the alternations in the ensemble representation within the DG, or in upstream structures that link the sensory cortex to the hippocampus, may underlie generalized contextual fear memory expression.

  9. Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex.

    Science.gov (United States)

    Yang, Guang; Gan, Wen-Biao

    2012-11-01

    Sleep is maximal during early postnatal life when rapid and extensive synapse remodeling occurs. It remains unknown whether and how sleep affects synapse development and plasticity. Using transcranial two-photon microscopy, we examined the formation and elimination of fluorescently labeled dendritic spines and filopodia of Layer 5 pyramidal neurons in the barrel cortex of 3-week-old mice during wakefulness and sleep. We observed high turnover of dendritic protrusions over 2 h in both wake and sleep states. The formation rate of dendritic spines or filopodia over 2 h was comparable between the two states. The elimination rate of dendritic spines or filopodia was lower during 2-h wakefulness than during 2-h sleep. Similar results were observed on dendritic protrusion dynamics over 12-h light/dark cycle when mice spent more time asleep or awake. The substantial remodeling of dendritic protrusions during the sleep state supports the notion that sleep plays an important role in the development and plasticity of synaptic connections in the mouse cortex. Copyright © 2011 Wiley Periodicals, Inc.

  10. Pain affect in the absence of pain sensation: evidence of asomaesthesia after somatosensory cortex lesions in the rat.

    Science.gov (United States)

    Uhelski, Megan L; Davis, Matthew A; Fuchs, Perry N

    2012-04-01

    Multidimensional models of pain processing distinguish the sensory, motivational, and affective components of the pain experience. Efforts to understand underlying mechanisms have focused on isolating the roles of specific brain structures, including both limbic and non-limbic cortical areas, in the processing of nociceptive stimuli. The purpose of this study was to examine the role of the somatosensory cortex in both sensory and affective aspects of pain processing. It was hypothesized that animals with lesions of the hind limb area of the somatosensory cortex would demonstrate altered sensory processing (asomaesthesia, a deficit in the ability to detect and identify somatic sensation) in the presence of an inflammatory state when compared to animals with sham lesions. The level of pain affect produced by an inflammatory pain condition was not expected to change, as this region has not demonstrated a role in processing the affective component of pain. Seventy-nine adult female Sprague-Dawley rats were randomly assigned to receive bilateral lesions or a sham procedure. The results showed that somatosensory lesions to the hindlimb region altered responses to mechanical stimulation in the presence of experimentally-induced inflammation, but did not attenuate the inflammation-induced paw volume changes or the level of pain affect, as demonstrated by escape/avoidance behavior in response to mechanical stimulation. Overall, these results support previous evidence suggesting that the somatosensory cortex is primarily involved in the processing the sensory/discriminative aspect of pain, and the current study is the first to demonstrate the presence of pain affect in the absence of somatosensory processing. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    Directory of Open Access Journals (Sweden)

    Hiroki eNakata

    2014-12-01

    Full Text Available Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI, and neurophysiological methods, such as magnetoencephalography (MEG and electroencephalography (EEG, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation’. In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation.

  12. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  13. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Bajnath, Adesh; Brumberg, Joshua C

    2015-06-01

    Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner. Following 1 month of whisker trimming after birth, the density of dendritic protrusions increased in layer IV, but decreased in layer VI. Whisker regrowth for 1 month returned protrusion densities to comparable level of age-matched controls in layer VI, but not in layer IV. In adults, chronic sensory deprivation led to an increase in protrusion densities in layer IV, but not in layer VI. In addition, chronic pharmacological blockade of N-methyl-d-aspartate receptors (NMDARs) increased protrusion density in both layers IV and VI, which returned to the control level after 1 month of drug withdrawal. Our data reveal that different cortical layers respond to chronic sensory deprivation in different ways, with more pronounced effects during developmental critical periods than adulthood. We also show that chronically blocking NMDARs activity during developmental critical period also influences the protrusion density and morphology in the cerebral cortex. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Informational basis of sensory adaptation: entropy and single-spike efficiency in rat barrel cortex.

    Science.gov (United States)

    Adibi, Mehdi; Clifford, Colin W G; Arabzadeh, Ehsan

    2013-09-11

    We showed recently that exposure to whisker vibrations enhances coding efficiency in rat barrel cortex despite increasing correlations in variability (Adibi et al., 2013). Here, to understand how adaptation achieves this improvement in sensory representation, we decomposed the stimulus information carried in neuronal population activity into its fundamental components in the framework of information theory. In the context of sensory coding, these components are the entropy of the responses across the entire stimulus set (response entropy) and the entropy of the responses conditional on the stimulus (conditional response entropy). We found that adaptation decreased response entropy and conditional response entropy at both the level of single neurons and the pooled activity of neuronal populations. However, the net effect of adaptation was to increase the mutual information because the drop in the conditional entropy outweighed the drop in the response entropy. The information transmitted by a single spike also increased under adaptation. As population size increased, the information content of individual spikes declined but the relative improvement attributable to adaptation was maintained.

  15. Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Michael A Harvey

    Full Text Available Our ability to perceive and discriminate textures relies on the transduction and processing of complex, high-frequency vibrations elicited in the fingertip as it is scanned across a surface. How naturalistic vibrations, and by extension texture, are encoded in the responses of neurons in primary somatosensory cortex (S1 is unknown. Combining single unit recordings in awake macaques and perceptual judgments obtained from human subjects, we show that vibratory amplitude is encoded in the strength of the response evoked in S1 neurons. In contrast, the frequency composition of the vibrations, up to 800 Hz, is not encoded in neuronal firing rates, but rather in the phase-locked responses of a subpopulation of neurons. Moreover, analysis of perceptual judgments suggests that spike timing not only conveys stimulus information but also shapes tactile perception. We conclude that information about the amplitude and frequency of natural vibrations is multiplexed at different time scales in S1, and encoded in the rate and temporal patterning of the response, respectively.

  16. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  17. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  18. High-resolution optical functional mapping of the human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Stefan P Koch

    2010-06-01

    Full Text Available Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI. Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007 and extend them to the homuncular organization of SI. After performing a motor task, 8 subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and 2 discrete foci for vibrotactile stimulation of the 1st and 5th finger respectively. The results were co-registered to the individual anatomical brain anatomy (MRI which confirmed the localization in the expected cortical gyri in 4 subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation.

  19. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex

    Science.gov (United States)

    de Kock, C P J; Bruno, R M; Spors, H; Sakmann, B

    2007-01-01

    Sensory stimuli are encoded differently across cortical layers and it is unknown how response characteristics relate to the morphological identity of responding cells. We therefore juxtasomally recorded action potential (AP) patterns from excitatory cells in layer (L) 2/3, L4, L5 and L6 of rat barrel cortex in response to a standard stimulus (e.g. repeated deflection of single whiskers in the caudal direction). Subsequent single-cell filling with biocytin allowed for post hoc identification of recorded cells. We report three major conclusions. First, sensory-evoked responses were layer- and cell-type-specific but always < 1 AP per stimulus, indicating low AP rates for the entire cortical column. Second, response latencies from L4, L5B and L6 were comparable and thus a whisker deflection is initially represented simultaneously in these layers. Finally, L5 thick-tufted cells dominated the cortical AP output following sensory stimulation, suggesting that these cells could direct sensory guided behaviours. PMID:17317752

  20. Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Amianto, Federico; D'Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg

    2014-01-01

    Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  1. Simultaneous Top-down Modulation of the Primary Somatosensory Cortex and Thalamic Nuclei during Active Tactile Discrimination

    Science.gov (United States)

    Pais-Vieira, Miguel; Lebedev, Mikhail A.; Wiest, Michael C.; Nicolelis, Miguel A.L.

    2013-01-01

    The rat somatosensory system contains multiple thalamocortical loops (TCL) that altogether process, in fundamentally different ways, tactile stimuli delivered passively or actively sampled. To elucidate potential top-down mechanisms that govern TCL processing in awake, behaving animals, we simultaneously recorded neuronal ensemble activity across multiple cortical and thalamic areas while rats performed an active aperture discrimination task. Single neurons located in the primary somatosensory cortex (S1), the ventroposterior medial (VPM) and the posterior medial (POM) thalamic nuclei of the trigeminal somatosensory pathways exhibited prominent anticipatory firing modulations prior to the whiskers touching the aperture edges. This cortical and thalamic anticipatory firing could not be explained by whisker movements or whisker stimulation, because neither trigeminal ganglion sensory-evoked responses nor EMG activity were detected during the same period. Both thalamic and S1 anticipatory activity were predictive of the animal’s discrimination accuracy. Inactivation of the primary motor cortex (M1) with muscimol affected anticipatory patterns in S1 and the thalamus, and impaired the ability to predict the animal’s performance accuracy based on thalamocortical anticipatory activity. These findings suggest that neural processing in TCLs is launched in anticipation of whisker contact with objects, depends on top-down effects generated in part by M1 activity, and cannot be explained by the classical feedforward model of the rat trigeminal system. PMID:23447616

  2. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.

    Science.gov (United States)

    Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.

  3. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Laura Anton-Sanchez

    Full Text Available Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%. We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.

  4. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal Mohammad; Larsson, Henrik B W; Rostrup, Egill; Ashina, Messoud

    2017-05-01

    The neurological disturbances of migraine aura are caused by transient cortical dysfunction due to waves of spreading depolarization that disrupt neuronal signaling. The effects of these cortical events on intrinsic brain connectivity during attacks of migraine aura have not previously been investigated. Studies of spontaneous migraine attacks are notoriously challenging due to their unpredictable nature and patient discomfort. We investigated 16 migraine patients with visual aura during attacks and in the attack-free state using resting state fMRI. We applied a hypothesis-driven seed-based approach focusing on cortical visual areas and areas involved in migraine pain, and a data-driven independent component analysis approach to detect changes in intrinsic brain signaling during attacks. In addition, we performed the analyses after mirroring the MRI data according to the side of perceived aura symptoms. We found a marked increase in connectivity during attacks between the left pons and the left primary somatosensory cortex including the head and face somatotopic areas (peak voxel: P = 0.0096, (x, y, z) = (-54, -32, 32), corresponding well with the majority of patients reporting right-sided pain. For aura-side normalized data, we found increased connectivity during attacks between visual area V5 and the lower middle frontal gyrus in the symptomatic hemisphere (peak voxel: P = 0.0194, (x, y, z) = (40, 40, 12). The present study provides evidence of altered intrinsic brain connectivity during attacks of migraine with aura, which may reflect consequences of cortical spreading depression, suggesting a link between aura and headache mechanisms. Hum Brain Mapp 38:2635-2642, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Effects of the α2-adrenergic receptor agonist dexmedetomidine on neurovascular responses in somatosensory cortex

    Science.gov (United States)

    Fukuda, Mitsuhiro; Vazquez, Alberto L.; Zong, Xiaopeng; Kim, Seong-Gi

    2012-01-01

    This paper describes the effects of dexmedetomidine (DEX) 5 the active ingredient of medetomidine which is the latest popular sedative for functional magnetic resonance imaging (fMRI) in rodents 5 on multiple unit activity, local field potential (LFP), cerebral blood flow (CBF), pial vessel diameter (indicative of cerebral blood volume; CBV), and blood-oxygenation-level-dependent (BOLD) fMRI. These measurements were obtained from the rat somatosensory cortex during 10-s forepaw stimulation. We found that the continuous intravascular systemic infusion of DEX (50μg/kg/h, doses typically used in fMRI studies) caused epileptic activities and that supplemental isoflurane administration of ~0.3% helped suppress the development of epileptic activities and maintained robust neuronal and hemodynamic responses up to 3 hours. Supplemental administration of nitrous oxide (N2O) in addition to DEX nearly abolished hemodynamic responses even if neuronal activity remained. Under DEX-ISO anesthesia, spike firing rate and the delta power of LFP increased, while beta and gamma power decreased compared to ISO-only anesthesia. DEX administration caused pial arteries and veins to constrict nearly equally, resulting in decreases in baseline CBF and CBV. Evoked LFP and CBF responses to forepaw stimulation were largest at a frequency of 8–10 Hz, and a non-linear relationship was observed. Similarly, BOLD fMRI responses measured at 9.4 Tesla were largest at a frequency of 10 Hz. Both pial arteries and veins dilated rapidly (artery, 32.2%; vein, 5.8%), while venous diameter changes returned to baseline slower than arteries. These results will be useful for designing, conducting and interpreting fMRI experiments under DEX sedation. PMID:23106361

  6. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex

    Science.gov (United States)

    Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100

  7. Postnatal maturation of somatostatin-expressing inhibitory cells in the somatosensory cortex of GIN mice

    Directory of Open Access Journals (Sweden)

    Amanda K. Kinnischtzke

    2012-05-01

    Full Text Available Postnatal inhibitory neuron development affects mammalian brain function, and failure of this maturation process may underlie pathological conditions such as epilepsy, schizophrenia and depression. Furthermore, understanding how physiological properties of inhibitory neurons change throughout development is critical to understanding the role(s these cells play in cortical processing. One subset of inhibitory neurons that may be affected during postnatal development is somatostatin-expressing cells. A subset of these cells is labeled with green-fluorescent protein (GFP in a line of mice known as the GIN line. Here, we studied how intrinsic electrophysiological properties of these cells changed in the somatosensory cortex of GIN mice between postnatal ages P11 to P32+. GIN cells were targeted for whole-cell current clamp recordings and ranges of positive and negative current steps were presented to each cell. The results showed that as the neocortical circuitry matured during this critical time period, multiple intrinsic and firing properties of GIN inhibitory neurons, as well as those of excitatory (regular-spiking [RS] cells, were altered. Furthermore, these changes were such that the output of GIN cells, but not RS cells, increased over this developmental period. We quantified changes in excitability by examining the input-output relationship of both GIN and RS cells. We found that the firing frequency of GIN cells increased with age, while the rheobase current remained constant across development. This created a multiplicative increase in the input-output relationship in the GIN cells, leading to increases in gain with age. The input-output relationship of the RS cells, on the other hand, showed primarily an additive shift with age, but no substantial change in gain. These results suggest that as the neocortex matures, inhibition coming from GIN cells may become more influential in the circuit and play a greater role in the modulation of

  8. Postnatal maturation of somatostatin-expressing inhibitory cells in the somatosensory cortex of GIN mice.

    Science.gov (United States)

    Kinnischtzke, Amanda K; Sewall, Anna M; Berkepile, Jon M; Fanselow, Erika E

    2012-01-01

    Postnatal inhibitory neuron development affects mammalian brain function, and failure of this maturation process may underlie pathological conditions such as epilepsy, schizophrenia, and depression. Furthermore, understanding how physiological properties of inhibitory neurons change throughout development is critical to understanding the role(s) these cells play in cortical processing. One subset of inhibitory neurons that may be affected during postnatal development is somatostatin-expressing (SOM) cells. A subset of these cells is labeled with green-fluorescent protein (GFP) in a line of mice known as the GFP-positive inhibitory neurons (GIN) line. Here, we studied how intrinsic electrophysiological properties of these cells changed in the somatosensory cortex of GIN mice between postnatal ages P11 and P32+. GIN cells were targeted for whole-cell current-clamp recordings and ranges of positive and negative current steps were presented to each cell. The results showed that as the neocortical circuitry matured during this critical time period multiple intrinsic and firing properties of GIN inhibitory neurons, as well as those of excitatory (regular-spiking [RS]) cells, were altered. Furthermore, these changes were such that the output of GIN cells, but not RS cells, increased over this developmental period. We quantified changes in excitability by examining the input-output relationship of both GIN and RS cells. We found that the firing frequency of GIN cells increased with age, while the rheobase current remained constant across development. This created a multiplicative increase in the input-output relationship of the GIN cells, leading to increases in gain with age. The input-output relationship of the RS cells, on the other hand, showed primarily a subtractive shift with age, but no substantial change in gain. These results suggest that as the neocortex matures, inhibition coming from GIN cells may become more influential in the circuit and play a greater role

  9. Morphological development of thick-tufted layer V pyramidal cells in the rat somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Sandrine eRomand

    2011-02-01

    Full Text Available The thick-tufted layer V pyramidal (TTL5 neuron is a key neuron providing output from the neocortex. Although it has been extensively studied, principles governing its dendritic and axonal arborization during development are still not fully quantified. Using 3D model neurons reconstructed from biocytin-labeled cells in the rat somatosensory cortex, this study provides a detailed morphological analysis of TTL5 cells at postnatal day (P 7, 14, 21, 36 and 60. Three developmental periods were revealed, which were characterized by distinct growing rates and properties of alterations in different compartments. From P7 to P14, almost all compartments grew fast, and filopodia-like segments along apical dendrite disappeared; From P14 to P21, the growth was localized on specified segments of each compartment, and the densities of spines and boutons were significantly increased; From P21 to P60, the number of basal dendritic segments was significantly increased at specified branch orders, and some basal and oblique dendritic segments were lengthened or thickened. Development changes were therefore seen in two modes: the fast overall growth during the first period and the slow localized growth (thickening mainly on intermediates or lengthening mainly on terminals at the subsequent stages. The lengthening may be accompanied by the retraction on different segments. These results reveal a differential regulation in the arborization of neuronal compartments during development, supporting the notion of functional compartmental development. This quantification provides new insight into the potential value of the TTL5 morphology for information processing, and for other purposes as well.

  10. Synaptic and Cellular Organization of Layer 1 of the Developing Rat Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Shruti eMuralidhar

    2014-01-01

    Full Text Available We have performed a systematic and quantitative study of the neuronal and synaptic organisation of neocortical layer 1 in the somatosensory cortex in juvenile rats (P13 – P16 using multi-neuron patch-clamp and 3D morphology reconstructions. We used both subjective expert based and objective classification to establish distinct morphological groups. According to expert based subjective classification, the neurons were classified into six morphological types: (1 the dense axon neurogliaform cell (NGC-DA and (2 a sparse axon neurogliaform cell (NGC-SA, (3 the horizontal axon cell (HAC and (4 those with descending axonal colaterals (DAC, (5 the large axon cell (LAC and (6 the small axon cell (SAC. We also used objective supervised and unsupervised analyses that confirmed 4 out of the 6 expert proposed groups, namely, DAC, HAC, LAC and a combined NGC. The cells were also classified into 5 electrophysiological types based on the Petilla convention; classical non-adapting (cNAC, burst non-adapting (bNAC, classical adapting (cAC, classical stuttering (cSTUT and classical irregular spiking (cIR. The most common electrophysiological type was the cNAC type (40% and the most commonly encountered morpho-electrical type of neuron was the NGC-DA - cNAC. Layer 1 cells are connected by GABAergic inhibitory synaptic connections with a 7.9% connection probability, as well gap junctions with 5.2% connection probability. Most synaptic connections were mediated by both GABAA and GABAB receptors (62.6%, as observed from the response characteristics to single pulse and train stimulations. A smaller fraction of synaptic connections were mediated exclusively by GABAA (15.4% or GABAB (21.8% receptors. Based on the morphological reconstructions, we found multi-synapse connections with an average of 9 putative synapses per connection. These putative touches were widely distributed with 39% on somata and 61% on dendrites.

  11. Activity in the rabbit somatosensory cortex reflects the active procedural memory trace of a classically conditioned eyeblink response.

    Science.gov (United States)

    Wikgren, Jan; Ruusuvirta, Timo; Korhonen, Tapani

    2003-05-01

    Behavioral responses and neural responses in the somatosensory cortex were recorded in nine rabbits during the unpaired and paired treatments of classical eyeblink conditioning with a tone conditioned stimulus (CS) and an airpuff unconditioned stimulus. During the unpaired treatment, neither the behavioral nor neural responses to the CS were observed. During the paired treatment, behavioral conditioned response (CR), accompanied by neural activity, was developed. In well-trained animals occasional failures to elicit the CR were accompanied by an absence of neural responses. Nevertheless, the CS modified the behavioral unconditioned response in paired trials, implying that the CR-failures could not reflect the inability of the CS to modulate the pathways triggering the behavior constituting the CR. Thus, a close link between CR elicitation and somatosensory cortical neural response was established. Our finding suggests that this neural activity to a tone CS during classical eyeblink conditioning reflects an efferent copy of the procedural memory trace.

  12. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    Full Text Available Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.

  13. Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex.

    Science.gov (United States)

    Tada, Hirobumi; Miyazaki, Tomoyuki; Takemoto, Kiwamu; Jitsuki, Susumu; Nakajima, Waki; Koide, Mayu; Yamamoto, Naoko; Taguchi, Akiko; Kawai, Honami; Komiya, Kasane; Suyama, Kumiko; Abe, Hiroki; Sano, Akane; Takahashi, Takuya

    2017-08-16

    Exposure to a stressful environment early in life can cause psychiatric disorders by disrupting circuit formation. Actin plays central roles in regulating neuronal structure and protein trafficking. We have recently reported that neonatal isolation inactivated ADF/cofilin, the actin depolymerizing factor, resulted in a reduced actin dynamics at spines and an attenuation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor delivery in the juvenile rat medial prefrontal cortex (mPFC), leading to altered social behaviours. Here, we investigated the impact of neonatal social isolation in the developing rat barrel cortex. Similar to the mPFC study, we detected an increase in stable actin fraction in spines and this resulted in a decreased synaptic AMPA receptor delivery. Thus, we conclude that early life social isolation affects multiple cortical areas with common molecular changes.

  14. Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex

    OpenAIRE

    Maeda, Yumi; Kettner, Norman; Holden, Jameson; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Im, Jaehyun; Libby, Alexandra; Mezzacappa, Pia; Morse, Leslie R.; Park, Kyungmo; Audette, Joseph

    2014-01-01

    The functional significance of brain plasticity seen in carpal tunnel syndrome is unclear. Using functional MRI and bio-behavioural testing, Maeda et al. link blurred primary somatosensory cortical representations of median nerve innervated fingers with symptomatology and impaired psychomotor performance and discrimination accuracy. Neuroplasticity in these patients is thus indeed maladaptive.

  15. Polarity-specific cortical effects of transcranial direct current stimulation in primary somatosensory cortex of healthy humans

    Directory of Open Access Journals (Sweden)

    Robert eRehmann

    2016-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1. We measured paired-pulse suppression (PPS of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by paired-pulse suppression. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.

  16. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe

    2013-01-01

    Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevat...... brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.......Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2......+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified...

  17. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Höffken, Oliver; Aach, Mirko; Cruciger, Oliver; Grasmücke, Dennis; Meindl, Renate; Schildhauer, Thomas A; Schwenkreis, Peter; Tegenthoff, Martin

    2015-08-20

    Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function. To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury. Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score. PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters. The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.

  18. Decoding hand gestures from primary somatosensory cortex using high-density ECoG

    NARCIS (Netherlands)

    Branco, Mariana P|info:eu-repo/dai/nl/413968731; Freudenburg, Zachary V.; Aarnoutse, Erik J.|info:eu-repo/dai/nl/340372362; Bleichner, Martin G.; Vansteensel, Mariska J.; Ramsey, Nick F.|info:eu-repo/dai/nl/07313774X

    2017-01-01

    Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex

  19. Multiple tooth-losses during development suppress age-dependent emergence of oscillatory neural activities in the oral somatosensory cortex.

    Science.gov (United States)

    Yoshimura, Hiroshi; Honjo, Makoto; Mashiyama, Yuichi; Kaneyama, Keiseki; Segami, Natsuki; Sato, Jun; Sugai, Tokio; Kato, Nobuo; Onoda, Norihiko

    2008-08-11

    Tooth and tooth-related organs play important roles in not only mastication, but also sensory perception in the oral region. In general, sensory neural inputs during the developmental period are required for the maturation of functions in the sensory cortex. However, whether maturations of oral somatosensory cortex (OSC) require certain levels of sensory input from oral regions has been unclear. The present study investigated the influence of multiple tooth-losses during the developmental period on age-dependent emergence of rhythmic activities of population neurons in the OSC. Low-frequency electrical stimulation was delivered to layer IV and field potentials were recorded from layer II/III in the OSC of rat brain slices. In control rats, N-methyl-d-aspartate (NMDA) receptor-dependent oscillation at 8-10 Hz appeared during postnatal weeks 2-3. In rats with extraction of multiple teeth at 17-18 days old, oscillation did not appear even at maturity, whereas in rats with multiple teeth extracted at 37-38 days old, oscillation appearances were maintained in maturity. Thus, emergence of oscillation in the OSC was suppressed by multiple tooth-losses during postnatal 2-3 weeks. These results suggest that sufficient neural inputs from the teeth and tooth-related organs during developmental periods are essential for maturation of neural functions in the OSC.

  20. Haptic fMRI: accurately estimating neural responses in motor, pre-motor, and somatosensory cortex during complex motor tasks.

    Science.gov (United States)

    Menon, Samir; Yu, Michelle; Kay, Kendrick; Khatib, Oussama

    2014-01-01

    Haptics combined with functional magnetic resonance imaging (Haptic fMRI) can non-invasively study how the human brain coordinates movement during complex manipulation tasks, yet avoiding associated fMRI artifacts remains a challenge. Here, we demonstrate confound-free neural activation measurements using Haptic fMRI for an unconstrained three degree-of-freedom motor task that involves planning, reaching, and visually guided trajectory tracking. Our haptic interface tracked subjects' hand motions, velocities, and accelerations (sample-rate, 350Hz), and provided continuous realtime visual feedback. During fMRI acquisition, we achieved uniform response latencies (reaching, 0.7-1.1s; tracking, 0.4-0.65s); minimized hand jitter (neural activation across cortex; unreliable motions and response latencies, which reduce statistical power; and task-correlated head motion, which causes spurious fMRI activation. Haptic fMRI can thus reliably elicit and localize heterogeneous neural activation for different tasks in motor (movement), pre-motor (planning), and somatosensory (limb displacement) cortex, demonstrating that it is feasible to use the technique to study how the brain achieves three dimensional motor control.

  1. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans : a 7T fMRI study

    NARCIS (Netherlands)

    Akselrod, Michel; Martuzzi, Roberto; Serino, Andrea; Van der Zwaag, W.; Gassert, Roger; Blanke, Olaf

    2017-01-01

    Primary somatosensory cortex (S1) processes somatosensory information and is composed of multiple subregions. In particular, tactile information from the skin is encoded in three subregions, namely Brodmann areas (BAs) 3b, 1 and 2, with each area representing a complete map of the contralateral

  2. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex

    Science.gov (United States)

    Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-10-01

    Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  3. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex

    OpenAIRE

    Anton-Sanchez, Laura; Bielza, Concha; Larra?aga, Pedro; Defelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer...

  4. A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex.

    Science.gov (United States)

    Staiger, Jochen F; Bojak, Ingo; Miceli, Stéphanie; Schubert, Dirk

    2015-01-01

    Recent experimental evidence suggests a finer genetic, structural and functional subdivision of the layers which form a cortical column. The classical layer II/III (LII/III) of rodent neocortex integrates ascending sensory information with contextual cortical information for behavioral read-out. We systematically investigated to which extent regular-spiking supragranular pyramidal neurons, located at different depths within the cortex, show different input-output connectivity patterns. Combining glutamate uncaging with whole-cell recordings and biocytin filling, we revealed a novel cellular organization of LII/III: (1) "Lower LII/III" pyramidal cells receive a very strong excitatory input from lemniscal LIV and much fewer inputs from paralemniscal LVa. They project to all layers of the home column, including a feedback projection to LIV, whereas transcolumnar projections are relatively sparse. (2) "Upper LII/III" pyramidal cells also receive their strongest input from LIV, but in addition, a very strong and dense excitatory input from LVa. They project extensively to LII/III as well as LVa and Vb of their home and neighboring columns. (3) "Middle LII/III" pyramidal cell shows an intermediate connectivity phenotype that stands in many ways in between the features described for lower versus upper LII/III. "Lower LII/III" intracolumnarly segregates and transcolumnarly integrates lemniscal information, whereas "upper LII/III" seems to integrate lemniscal with paralemniscal information. This suggests a fine-grained functional subdivision of the supragranular compartment containing multiple circuits without any obvious cytoarchitectonic, other structural or functional correlate of a laminar border in rodent barrel cortex.

  5. Subcellular Targeting of VIP Boutons in Mouse Barrel Cortex is Layer-Dependent and not Restricted to Interneurons.

    Science.gov (United States)

    Zhou, Xiaojuan; Rickmann, Michael; Hafner, Georg; Staiger, Jochen F

    2017-11-01

    Neocortical vasoactive intestinal polypeptide (VIP) expressing cells are a diverse subpopulation of GABAergic interneurons issuing distinct axonal projections. They are known to inhibit other types of interneurons as well as excitatory principal neurons and possess a disinhibitory net effect in cortical circuits. In order to elucidate their targeting specificity, the output connectivity of VIP interneurons was studied at the subcellular level in barrel cortex of interneuron-specific Cre-driver mice, using pre- and postembedding electron microscopy. Systematically sampling VIP boutons across all layers, we found a substantial proportion of the innervated subcellular structures were dendrites (80%), with somata (13%), and spines (7%) being much less targeted. In layer VI, a high proportion of axosomatic synapses was found (39%). GABA-immunopositive ratio was quantified among the targets using statistically validated thresholds: only 37% of the dendrites, 7% of the spines, and 26% of the somata showed above-threshold immunogold labeling. For the main target structure "dendrite", a higher proportion of GABAergic subcellular profiles existed in deep than in superficial layers. In conclusion, VIP interneurons innervate non-GABAergic excitatory neurons and interneurons at their subcellular domains with layer-dependent specificity. This suggests a diverse output of VIP interneurons, which predicts multiple functionality in cortical circuitry beyond disinhibition. © The Author 2017. Published by Oxford University Press.

  6. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    Science.gov (United States)

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  7. Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain

    Directory of Open Access Journals (Sweden)

    Kim Sun

    2011-11-01

    Full Text Available Abstract Background Postsynaptic dendritic spines in the cortex are highly dynamic, showing rapid morphological changes including elongation/retraction and formation/elimination in response to altered sensory input or neuronal activity, which achieves experience/activity-dependent cortical circuit rewiring. Our previous long-term in vivo two-photon imaging study revealed that spine turnover in the mouse primary somatosensory (S1 cortex markedly increased in an early development phase of neuropathic pain, but was restored in a late maintenance phase of neuropathic pain. However, it remains unknown how spine morphology is altered preceding turnover change and whether gain and loss of presynaptic boutons are changed during neuropathic pain. Findings Here we used short-term (2-hour and long-term (2-week time-lapse in vivo two-photon imaging of individual spines and boutons in the S1 cortical layer 1 of the transgenic mice expressing GFP in pyramidal neurons following partial sciatic nerve ligation (PSL. We found in the short-term imaging that spine motility (Δ length per 30 min significantly increased in the development phase of neuropathic pain, but returned to the baseline in the maintenance phase. Moreover, the proportion of immature (thin and mature (mushroom spines increased and decreased, respectively, only in the development phase. Long-term imaging data showed that formation and elimination of boutons moderately increased and decreased, respectively, during the first 3 days following PSL and was subsequently restored. Conclusions Our results indicate that the S1 synaptic structures are rapidly destabilized and rearranged following PSL and subsequently stabilized in the maintenance phase of neuropathic pain, suggesting a novel therapeutic target in intractable chronic pain.

  8. Usage of the middle finger shapes reorganization of the primary somatosensory cortex in patients with index finger amputation.

    Science.gov (United States)

    Oelschläger, M; Pfannmöller, J; Langner, I; Lotze, M

    2014-01-01

    The primary somatosensory cortex (S1) is somatotopically reorganized after limb amputation. The duration of the amputation, the intensity of phantom limb pain but also a multifactoral model of altered cerebral input have been discussed to be associated with cortical changes. Patients with finger amputation rarely show phantom limb pain, the deafferented cortical area is small but other fingers might well overtake function. We selected a group of index finger amputated patients and performed a high resolution (in plane: 1.5 mm2) S1-mapping during tactile stimulation of finger tips. We found an interhemispheric imbalance of the distance between the thumb and middle finger only for the patient-group. When patients used their middle finger more they showed less interhemispheric imbalance, increased spatial tactile discrimination and increased fMRI-activation in response to stimulation. Phantom limb pain was not associated with somatotopic representation parameters in S1. Overall, our fMRI-data point to a usage dependent plasticity of Brodmann's area 3b in man.

  9. Synapses of horizontal connections in adult rat somatosensory cortex have different properties depending on the source of their axons.

    Science.gov (United States)

    Hickmott, Peter W

    2010-03-01

    In somatosensory cortex (S1) tactile stimulation activates specific regions. The borders between representations of different body parts constrain the spread of excitation and inhibition: connections that cross from one representation to another (cross-border, CB) are weaker than those remaining within the representation (noncross border, NCB). Thus, physiological properties of CB and NCB synapses onto layer 2/3 pyramidal neurons were compared using whole-cell recordings in layer 2/3 neurons close to the border between the forepaw and lower jaw representations. Electrical stimulation of CB and NCB connections was used to activate synaptic potentials. Properties of excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials (PSP) were determined using 3 methods: 1) minimal stimulation to elicit single-fiber responses; 2) stimulation in the presence of extracellular Sr(2+) to elicit asynchronous quantal responses; 3) short trains of stimulation at various frequencies to examine postsynaptic potential (PSP) dynamics. Both minimal and asynchronous quantal EPSPs were smaller when evoked by CB than NCB stimulation. However, the dynamics of EPSP and IPSP trains were not different between CB and NCB stimulation. These data suggest that individual excitatory synapses from connections that cross a border (CB) have smaller amplitudes than those that come from within a representation (NCB), and suggest a postsynaptic locus for the difference.

  10. Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis.

    Science.gov (United States)

    Hartmann, Konstantin; Thomson, Eric E; Zea, Ivan; Yun, Richy; Mullen, Peter; Canarick, Jay; Huh, Albert; Nicolelis, Miguel A L

    2016-02-24

    Can the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d. Animals in which IR information was delivered in spatial register with whisker topography learned the task more quickly. Further, in animals that had learned to use the prosthesis, altering the topographic mapping from IR sensor to stimulating electrode had immediate deleterious effects on discrimination performance. Multielectrode recordings revealed that S1 neurons had multimodal (tactile/IR) receptive fields, with clear preferences for those stimuli most likely to be delivered during the task. Neuronal populations predicted, with high accuracy, which stimulation pattern was present in small (75 ms) time windows. Surprisingly, when identical microstimulation patterns were delivered during an unrelated task, cortical activity in S1 was strongly suppressed. Overall, these results show that the adult mammalian neocortex can readily absorb completely new information sources into its representational repertoire, and use this information in the production of adaptive behaviors. Copyright © 2016 the authors 0270-6474/16/362407-19$15.00/0.

  11. Treadmill exercise suppressed stress-induced dendritic spine elimination in mouse barrel cortex and improved working memory via BDNF/TrkB pathway.

    Science.gov (United States)

    Chen, K; Zhang, L; Tan, M; Lai, C S W; Li, A; Ren, C; So, K-F

    2017-03-21

    Stress-related memory deficit is correlated with dendritic spine loss. Physical exercise improves memory function and promotes spinogenesis. However, no studies have been performed to directly observe exercise-related effects on spine dynamics, in association with memory function. This study utilized transcranial two-photon in vivo microscopy to investigate dendritic spine formation and elimination in barrel cortex of mice under physical constrain or naive conditions, followed by memory performance in a whisker-dependent novel texture discrimination task. We found that stressed mice had elevated spine elimination rate in mouse barrel cortex plus deficits in memory retrieval, both of which can be rescued by chronic exercise on treadmill. Exercise also elevated brain-derived neurotrophic factor (BDNF) expression in barrel cortex. The above-mentioned rescuing effects for both spinognesis and memory function were abolished after inhibiting BDNF/tyrosine kinase B (TrkB) pathway. In summary, this study demonstrated the improvement of stress-associated memory function by exercise via facilitating spine retention in a BDNF/TrkB-dependent manner.

  12. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  13. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals

    Directory of Open Access Journals (Sweden)

    Dangui eWang

    2015-08-01

    Full Text Available Associative learning and memory are essential to logical thinking and cognition. How the neurons are recruited as associative memory cells to encode multiple input signals for their associated storage and distinguishable retrieval remains unclear. We studied this issue in the barrel cortex by in vivo two-photon calcium imaging, electrophysiology and neural tracing in our mouse model that the simultaneous whisker and olfaction stimulations led to odorant-induced whisker motion. After this cross-modal reflex arose, the barrel and piriform cortices connected. More than 40% of barrel cortical neurons became to encode odor signal alongside whisker signal. Some of these neurons expressed distinct activity patterns in response to acquired odor signal and innate whisker signal, and others encoded similar pattern in response to these signals. In the meantime, certain barrel cortical astrocytes encoded odorant and whisker signals. After associative learning, the neurons and astrocytes in the sensory cortices are able to store the newly learnt signal (cross-modal memory besides the innate signal (native-modal memory. Such associative memory cells distinguish the differences of these signals by programming different codes and signify the historical associations of these signals by similar codes in information retrievals.

  14. Temporal correlation mechanisms and their role in feature selection: a single-unit study in primate somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Manuel Gomez-Ramirez

    2014-11-01

    Full Text Available Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (r(sc are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1 whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2 the interplay between spike-synchrony and rsc during feature selection, and (3 whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased r(sc when attention was directed towards the visual modality (i.e., away from touch. These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the

  15. Effective connectivity maps in the swine somatosensory cortex estimated from electrocorticography and validated with intracortical local field potential measurements.

    Science.gov (United States)

    Tanosaki, Masato; Ishibashi, Hideaki; Zhang, Tongsheng; Okada, Yoshio

    2014-03-01

    Macroscopic techniques are increasingly being used to estimate functional connectivity in the brain, which provides valuable information about brain networks. In any such endeavors it is important to understand capabilities and limitations of each technique through direct validation, which is often lacking. This study evaluated a multiple dipole source analysis technique based on electrocorticography (ECOG) data in estimating effective connectivity maps and validated the technique with intracortical local field potential (LFP) recordings. The study was carried out in an animal model (swine) with a large brain to avoid complications caused by spreading of the volume current. The evaluation was carried out for the cortical projections from the trigeminal nerve and corticocortical connectivity from the first rostrum area (R1) in the primary somatosensory cortex. Stimulation of the snout and layer IV of the R1 did not activate all projection areas in each animal, although whenever an area was activated in a given animal, its location was consistent with the intracortical LFP. The two types of connectivity maps based on ECOG analysis were consistent with each other and also with those estimated from the intracortical LFP, although there were small discrepancies. The discrepancies in mean latency based on ECOG and LFP were all very small and nonsignificant: snout stimulation, -1.1-2.0 msec (contralateral hemisphere) and 3.9-8.5 msec (ipsilateral hemisphere); R1 stimulation, -1.4-2.2 msec for the ipsilateral and 0.6-1.4 msec for the contralateral hemisphere. Dipole source analysis based on ECOG appears to be quite useful for estimating effective connectivity maps in the brain.

  16. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C

    2012-04-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.

  17. Characterisation of type I and type II nNOS-expressing interneurons in the barrel cortex of mouse

    Directory of Open Access Journals (Sweden)

    Quentin ePerrenoud

    2012-06-01

    Full Text Available In the neocortex, neuronal Nitric Oxide-Synthase (nNOS is essentially expressed in two sets of GABAergic neurons: type I neurons displaying a high expression and type II neurons displaying a weaker expression. Using immunocytochemistry on mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67 promoter we studied the distribution of type I and type II neurons in the barrel cortex and their expression of parvalbumin (PV, somatostatin (SOM and vasoactive intestinal peptide (VIP. We found that type I neurons accumulated in deeper layers and expressed SOM (91.5% while type II neurons concentrated in layer II/III and VI and expressed PV (17.7%, SOM (18.7% and VIP (10.2%. We then characterised 42 nNOS transcribing neurons ex vivo, using whole-cell recordings coupled to singe-cell RT-PCR and biocytin labelling. Unsupervised cluster analysis of this sample disclosed four classes. One cluster (n=7 corresponded to large, deep layer neurons, displaying a high expression of SOM (85.7% and were thus very likely to correspond to type I neurons. The three other clusters were neurogliaform-like interneurons (n=19, deep layer neurons transcribing PV or SOM (n=9 and neurons transcribing VIP (n=7, matching the features of type II cells. Finally, we performed nNOS immunohistochemistry on two mouse lines in which GFP/YFP labelling revealed the expression of two specific developmental genes (Lhx6 and 5-HT3A. We found that type I neurons expressed Lhx6 but never 5-HT3A, indicating that they originate in the medial ganglionic eminence (MGE. Type II neurons expressed Lhx6 (63% and 5-HT3A (34.4% supporting that they derive either from the MGE or from the caudal ganglionic eminence (CGE and the entopeduncular preoptic area (AEP/PO. Together, our results support the view that type I neurons form a particular class of SOM-expressing neurons while type II neurons are heterogeneous and comprise at least three classes.

  18. An automated method for detection of layer activation order in information processing pathway of rat barrel cortex under mechanical whisker stimulation.

    Science.gov (United States)

    Mahmud, Mufti; Pasqualotto, Elisabetta; Bertoldo, Alessandra; Girardi, Stefano; Maschietto, Marta; Vassanelli, Stefano

    2011-03-15

    Rodents perform object localization, texture and shape discrimination very precisely through whisking. During whisking, microcircuits in corresponding barrel columns get activated to segregate and integrate tactile information through the information processing pathway. Sensory signals are projected through the brainstem and thalamus to the corresponding 'barrel columns' where different cortical layers are activated during signal projection. Therefore, having precise information about the layer activation order is desirable to better understand this signal processing pathway. This work proposes an automated, computationally efficient and easy to implement method to determine the cortical layer activation from intracortically recorded local field potentials (LFPs) and derived current source density (CSD) profiles: 1. Barrel cortex LFPs are represented by a template of four subsequent events: small positive/negative (E1) → large negative (E2) → slow positive (E3)→ slow long negative (E4). The method exploits the layer specific characteristics of LFPs to obtain latencies of the individual events (E1–E4), then taking the latency of E2 for calculating the layer activation order. 2. The corresponding CSD profile is calculated from the LFPs and the first sink’s peak is considered as a reference point to calculate latencies and evaluate the layer activation order. Other reference points require manual calculation. Similar results of layer activation sequence are found using LFPs and CSDs. Extensive tests on LFPs recorded using standard borosilicate micropipettes demonstrated the method's workability. An interpretation of layer activation order and CSD profiles on the basis of a simplified interacortical barrel column architecture is also provided. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex.

    Science.gov (United States)

    Orner, David A; Chen, Chia-Chien; Orner, Daniella E; Brumberg, Joshua C

    2014-09-01

    Dendritic spines are small protrusions that serve as the principal recipients of excitatory inputs onto cortical pyramidal cells. Alterations in spine and filopodia density and morphology correlate with both developmental maturity and changes in synaptic strength. In order to better understand the developmental profile of dendritic protrusion (dendritic spines + filopodia) morphology and density over the animal's first postnatal year, we used the Golgi staining technique to label neurons and their dendritic protrusions in mice. We focused on quantifying the density per length of dendrite and categorizing the morphology of dendritic protrusions of layer VI pyramidal neurons residing in barrel cortex using the computer assisted reconstruction program Neurolucida. We classified dendritic protrusion densities at seven developmental time points: postnatal day (PND) 15, 30, 60, 90, 180, 270, and 360. Our findings suggest that the dendritic protrusions in layer VI barrel cortex pyramidal neurons are not static, and their density as well as relative morphological distribution change over time. We observed a significant increase in mushroom spines and a decrease in filopodia as the animals matured. Further analyses show that as the animal mature there was a reduction in pyramidal cell dendritic lengths overall, as well as a decrease in overall protrusion densities. The ratio of apical to basilar density decreased as well. Characterizing the profile of cortical layer VI dendritic protrusions within the first postnatal year will enable us to better understand the relationship between the overall developmental maturation profile and dendritic spine functioning.

  20. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer.

    Science.gov (United States)

    Bourassa, J; Pinault, D; Deschênes, M

    1995-01-01

    This study investigated the pattern of axonal projections of single corticothalamic neurons from the cortical barrel field representing the vibrissae in the rat. Microiontophoretic injections of biocytin were performed in cortical layers V and VI to label small pools of corticothalamic cells and their intrathalamic axonal projections. After a survival period of 48 h, the animals were perfused and the tissue was processed for biocytin histochemistry. On the basis of the intrathalamic distribution of axonal fields and of the types of terminations found in the thalamus, four types of corticothalamic projections were identified. (i) Cells of the upper part of layer VI projected exclusively to the ventral posteromedial (VPm) nucleus, where they arborized in long rostrocaudally oriented bands or 'rods'. (ii) All cells of the lower part of layer VI projected to the medial part of the thalamic posterior group (Pom) but the vast majority of them also collateralized in VPm where they participated in the formation of rods. (iii) A minority of corticothalamic cells in the lower portion of layer VI, possibly located under the interbarrel spaces (septae), arborized exclusively in Pom. (iv) The corticothalamic projection of layer V cells originated from collaterals of corticofugal cells whose main axons ran caudally towards the brainstem. These collaterals arborized exclusively in Pom or in the central lateral nucleus. All corticothalamic cells from layer VI displayed the same type of axonal network, made of long branches decorated by terminal buttons emitted en passant at the tip of fine stalks. Corticothalamic fibres arising from layer V pyramids, however, remained smooth as they ran across the lateral thalamus and they generated in Pom one or two clusters of large boutons. All corticothalamic axons derived from layer VI cells, but not those derived from layer V cells, gave off collaterals as they traversed the thalamic reticular complex. These observations are discussed in the

  1. Reconstruction of intracortical whisker-evoked local field potential from electrocorticogram using a model trained for spontaneous activity in the rat barrel cortex.

    Science.gov (United States)

    Watanabe, Hidenori; Sakatani, Tomoya; Suzuki, Takafumi; Sato, Masa-Aki; Nishimura, Yukio; Nambu, Atsushi; Kawato, Mitsuo; Isa, Tadashi

    2014-10-01

    Electrocorticogram (ECoG) has provided neural information from the cortical surfaces, is widely used in clinical applications, and expected to be useful for brain-machine interfaces. Recent studies have defined the relationship between neural activity in deep layers of the cerebral cortex and ECoG. However, it is still unclear whether this relationship is shared across different brain states. In this study, spontaneous activity and whisker-evoked responses in the barrel cortex of anesthetized rats were recorded with a 32-channel ECoG electrode array and 32-channel linear silicon probe electrodes, respectively. Spontaneous local field potentials (LFPs) at various depths could be reconstructed with high accuracy (R>0.9) by a linear weighted summation of spontaneous ECoG. Current source density analysis revealed that the reconstructed LFPs correctly represented laminar profiles of current sinks and sources as well as the raw LFP. Moreover, when we applied the spontaneous activity model to reconstruction of LFP from the whisker-related ECoG, high accuracy of reconstruction could be obtained (R>0.9). Our results suggest that the ECoG carried rich information about synaptic currents in the deep layers of the cortex, and the same reconstruction model can be applied to estimate both spontaneous activity and whisker-evoked responses. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. Coordinated Plasticity among Glutamatergic and GABAergic Neurons and Synapses in the Barrel Cortex Is Correlated to Learning Efficiency

    Science.gov (United States)

    Zhao, Xin; Huang, Li; Guo, Rui; Liu, Yulong; Zhao, Shidi; Guan, Sudong; Ge, Rongjing; Cui, Shan; Wang, Shirlene; Wang, Jin-Hui

    2017-01-01

    Functional plasticity at cortical synapses and neurons is presumably associated with learning and memory. Additionally, coordinated refinement between glutamatergic and GABAergic neurons occurs in associative memory. If these assumptions are present, neuronal plasticity strength and learning efficiency should be correlated. We have examined whether neuronal plasticity strength and learning efficiency are quantitatively correlated in a mouse model of associative learning. Paired whisker and odor stimulations in mice induce odorant-induced whisker motions. The fully establishment of this associative memory appears fast and slow, which are termed as high learning efficiency and low learning efficiency, respectively. In the study of cellular mechanisms underlying this differential learning efficiency, we have compared the strength of neuronal plasticity in the barrel cortices that store associative signals from the mice with high vs. low learning efficiencies. Our results indicate that the levels of learning efficiency are linearly correlated with the upregulated strengths of excitatory synaptic transmission on glutamatergic neurons and their excitability, as well as the downregulated strengths of GABAergic neurons' excitability, their excitatory synaptic inputs and inhibitory synaptic outputs in layers II~III of barrel cortices. The correlations between learning efficiency in associative memory formation and coordinated plasticity at cortical glutamatergic and GABAergic neurons support the notion that the plasticity of associative memory cells is a basis for memory strength. PMID:28798668

  3. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG.

    Science.gov (United States)

    Bradley, Claire; Joyce, Niamh; Garcia-Larrea, Luis

    2016-01-01

    Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1-2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.

  4. Factors Affecting Volume Changes of the Somatosensory Cortex in Patients with Spinal Cord Injury: To Be Considered for Future Neuroprosthetic Design

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    2017-12-01

    Full Text Available Spinal cord injury (SCI leads to severe chronic disability, but also to secondary adaptive changes upstream to the injury in the brain which are most likely induced due to the lack of afferent information. These neuroplastic changes are a potential target for innovative therapies such as neuroprostheses, e.g., by stimulation in order to evoke sensation or in order to suppress phantom limb pain. Diverging results on gray matter atrophy have been reported in patients with SCI. Detectability of atrophy seems to depend on the selection of the regions of interest, while whole-brain approaches are not sensitive enough. In this study, we discussed previous research approaches and analyzed differential atrophic changes in incomplete SCI using manual segmentation of the somatosensory cortex. Patients with incomplete SCI (ASIA C-D, with cervical (N = 5 and thoracic (N = 6 injury were included. Time since injury was ≤12 months in 7 patients, and 144, 152, 216, and 312 months in the other patients. Age at the injury was ≤26 years in 4 patients and ≥50 years in 7 patients. A sample of 12 healthy controls was included in the study. In contrast to all previous studies that used voxel-based morphometry, we performed manual segmentation of the somatosensory cortex in the postcentral gyrus from structural magnetic resonance images and normalized the calculated volumes against the sum of volumes of an automated whole-head segmentation. Volumes were smaller in patients than in controls (p = 0.011, and as a tendency, female patients had smaller volumes than male patients (p = 0.017, uncorrected. No effects of duration (subacute vs. chronic, level of lesion (cervical vs. thoracic, region (left vs. right S1, and age at onset (≤26 vs. ≥50 years was found. Our results demonstrate volume loss of S1 in incomplete SCI and encourage further research with larger sample sizes on volumetric changes in the acute and chronic stage of SCI, in

  5. Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII).

    Science.gov (United States)

    Garcha, H S; Ettlinger, G

    1980-10-01

    The tactile impairment in monkeys with unilateral removals of area SII is seen as possibly analogous to the rare condition of tactile agnosia. The lesions in a new series of animals with SII removals are described. The performance of 3 groups of monkeys is compared: no group differences were obtained on visual tasks (except retrieval of a moving target); minimal if any differences were obtained on inter-manual transfer of tactile learning; significant differences were found between animals with unilateral or bilateral removals of SII relative to unoperated animals at re-learning tactile discrimination tasks, irrespective of the hand being used. These findings suggest that area SII projects to a further neural system involved in somatosensory performance; and that a unilateral removal has its effect through the functional disruption of the intact SII.

  6. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli

    Directory of Open Access Journals (Sweden)

    Ji-Wei He

    2015-09-01

    Full Text Available Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO and deoxy-hemoglobin concentrations, oxygen saturation rates (SO2, and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities as well as a long-lasting noxious stimulus (formalin injection were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO2 were more reliably attributed to brief stimuli, whereas a sustained decrease in SO2 was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple

  7. Tactile representation in somatosensory thalamus (VPL) and cortex (S1) of awake primate and the plasticity induced by VPL neuroprosthetic stimulation.

    Science.gov (United States)

    Song, Weiguo; Semework, Mulugeta

    2015-11-02

    To further understand how tactile information is carried in somatosensory cortex (S1) and the thalamus (VPL), and how neuronal plasticity after neuroprosthetic stimulation affects sensory encoding, we chronically implanted microelectrode arrays across hand areas in both S1 and VPL, where neuronal activities were simultaneously recorded during tactile stimulation on the finger pad of awake monkeys. Tactile information encoded in the firing rate of individual units (rate coding) or in the synchrony of unit pairs (synchrony coding) was quantitatively assessed within the information theoretic-framework. We found that tactile information encoded in VPL was higher than that encoded in S1 for both rate coding and synchrony coding; rate coding carried greater information than synchrony coding for the same recording area. With the aim for neuroprosthetic stimulation, plasticity of the circuit was tested after 30 min of VPL electrical stimulation, where stimuli were delivered either randomly or contingent on the spiking of an S1 unit. We showed that neural encoding in VPL was more stable than in S1, which depends not only on the thalamic input but also on recurrent feedback. The percent change of mutual-information after stimulation was increased with closed-loop stimulation, but decreased with random stimulation. The underlying mechanisms during closed-loop stimulation might be spike-timing-dependent plasticity, while frequency-dependent synaptic plasticity might play a role in random stimulation. Our results suggest that VPL could be a promising target region for somatosensory stimulation with closed-loop brain-machine-interface applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    LENUS (Irish Health Repository)

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  9. The Role of Basal Forebrain in Rat Somatosensory Cortex: Impact on Cholinergic Innervation, Sensory Information Processing, and Tactile Discrimination

    Science.gov (United States)

    1993-05-28

    cortex on striking a single vibrissa. Journal of Neurophysiology, 68, 1345-1358. Bartus, Bayer, R. T., Dean, R. L., Beer, B. , & Lippa , A. S. (1982...cognitive deficits in lesioned rats, but exacerbate response to cholinergic drugs. In S. B. Dunnett & S. J. Richards (Eds . ), Progress in Brain Research

  10. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had lower resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.

  11. Right secondary somatosensory cortex-a promising novel target for the treatment of drug-resistant neuropathic orofacial pain with repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Lindholm, Pauliina; Lamusuo, Salla; Taiminen, Tero; Pesonen, Ullamari; Lahti, Ari; Virtanen, Arja; Forssell, Heli; Hietala, Jarmo; Hagelberg, Nora; Pertovaara, Antti; Parkkola, Riitta; Jääskeläinen, Satu

    2015-07-01

    High-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex has analgesic effect; however, the efficacy of other cortical targets and the mode of action remain unclear. We examined the effects of rTMS in neuropathic orofacial pain, and compared 2 cortical targets against placebo. Furthermore, as dopaminergic mechanisms modulate pain responses, we assessed the influence of the functional DRD2 gene polymorphism (957C>T) and the catechol-O-methyltransferase (COMT) Val158Met polymorphism on the analgesic effect of rTMS. Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized, placebo-controlled, crossover study. Navigated high-frequency rTMS was given to the sensorimotor (S1/M1) and the right secondary somatosensory (S2) cortices. All subjects were genotyped for the DRD2 957C>T and COMT Val158Met polymorphisms. Pain, mood, and quality of life were monitored throughout the study. The numerical rating scale pain scores were significantly lower after the S2 stimulation than after the S1/M1 (P = 0.0071) or the sham (P = 0.0187) stimulations. The Brief Pain Inventory scores were also lower 3 to 5 days after the S2 stimulation than those at pretreatment baseline (P = 0.0127 for the intensity of pain and P = 0.0074 for the interference of pain) or after the S1/M1 (P = 0.001 and P = 0.0001) and sham (P = 0.0491 and P = 0.0359) stimulations. No correlations were found between the genetic polymorphisms and the analgesic effect in the present small clinical sample. The right S2 cortex is a promising new target for the treatment of neuropathic orofacial pain with high-frequency rTMS.

  12. Functional signature of recovering cortex: dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys.

    Science.gov (United States)

    Wang, Zheng; Qi, Hui-Xin; Kaas, Jon H; Roe, Anna W; Chen, Li Min

    2013-11-01

    After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (

  13. An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse.

    Science.gov (United States)

    Bopp, Rita; Holler-Rickauer, Simone; Martin, Kevan A C; Schuhknecht, Gregor F P

    2017-03-01

    The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs. We discovered that the thalamus contributed proportionately only half as many synapses to the local circuitry of L4 in M1 compared with S1. Furthermore, thalamic boutons in M1 targeted spiny dendrites exclusively, whereas ∼9% of synapses were formed with dendrites of smooth neurons in S1. VGluT2 + boutons in M1 were smaller and formed fewer synapses per bouton on average (1.3 vs 2.1) than those in S1, but VGluT2 + synapses in M1 were larger than in S1 (median postsynaptic density areas of 0.064 μm 2 vs 0.042 μm 2 ). In M1 and S1, thalamic synapses formed only a small fraction (12.1% and 17.2%, respectively) of all of the asymmetric synapses in L4. The functional role of the thalamic input to L4 in M1 has largely been neglected, but our data suggest that, as in S1, the thalamic input is amplified by the recurrent excitatory connections of the L4 circuits. The lack of direct thalamic input to inhibitory neurons in M1 may indicate temporal differences in the inhibitory gating in L4 of M1 versus S1. SIGNIFICANCE STATEMENT Classical interpretations of the function of primary motor cortex (M1) emphasize its lack of the granular layer 4 (L4) typical of sensory cortices. However, we show here that, like sensory cortex (S1), mouse M1 also has the canonical circuit motif of a core thalamic input to the middle cortical layer and that thalamocortical synapses form a small fraction (M1: 12%; S1: 17%) of all asymmetric synapses in L4 of both areas

  14. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury

    Directory of Open Access Journals (Sweden)

    Ziebell Jenna M

    2012-10-01

    Full Text Available Abstract Background Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen, which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical ‘synaptic stripping’ but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI. Methods Rats were subjected to a moderate midline fluid percussion injury (mFPI, which resulted in transient suppression of their righting reflex (6 to 10 min. Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells. Results We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF. Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent

  15. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Directory of Open Access Journals (Sweden)

    Zilong Gao

    2016-12-01

    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  16. Dirty deeds and dirty bodies: Embodiment of the Macbeth effect is mapped topographically onto the somatosensory cortex.

    Science.gov (United States)

    Schaefer, Michael; Rotte, Michael; Heinze, Hans-Jochen; Denke, Claudia

    2015-12-21

    The theory of embodied cognition claims that knowledge is represented in modal systems derived from perception. Recent behavioral studies found evidence for this hypothesis, for example, by linking moral purity with physical cleansing (the Macbeth effect). Neurophysiological approaches provided further support by showing an involvement of sensorimotor cortices for embodied metaphors. However, the exact role of this brain region for embodied cognitions remains to be cleared. Here we demonstrate that the involvement of the sensorimotor cortex for the embodied metaphor of moral-purity is somatotopically organized. Participants enacted in scenarios where they had to perform immoral or moral acts either with their mouths or their hands. Results showed that mouthwash products were particularly desirable after lying in a voice mail and hand wash products were particularly desirable after writing a lie, thus demonstrating that the moral-purity metaphor is specific to the sensorimotor modality involved in earlier immoral behavior. FMRI results of this interaction showed activation in sensorimotor cortices during the evaluation phase that was somatotopically organized with respect to preceding lying in a voice mail (mouth-area) or in a written note (hand-area). Thus, the results provide evidence for a central role of the sensorimotor cortices for embodied metaphors.

  17. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1

    Science.gov (United States)

    Vinck, Martin; Bos, Jeroen J.; Van Mourik-Donga, Laura A.; Oplaat, Krista T.; Klein, Gerbrand A.; Jackson, Jadin C.; Gentet, Luc J.; Pennartz, Cyriel M. A.

    2016-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1–LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  18. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    Full Text Available Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT, and with subsequent housing in either standard (STD or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13-22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25-30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new

  19. Cortical effect of oxaliplatin associated with sustained neuropathic pain: exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex.

    Science.gov (United States)

    Thibault, Karine; Calvino, Bernard; Dubacq, Sophie; Roualle-de-Rouville, Marie; Sordoillet, Vallier; Rivals, Isabelle; Pezet, Sophie

    2012-08-01

    Oxaliplatin is a third-generation platinum-based chemotherapy drug that has gained importance in the treatment of advanced metastatic colorectal cancer. Its dose-limiting side effect is the production of chronic peripheral neuropathy. Using a modified model of oxaliplatin-induced sensory neuropathy, we investigated plastic changes at the cortical level as possible mechanisms underlying the chronicity of pain sensation in this model. Changes in gene expression were studied using DNA microarray which revealed that when oxaliplatin-treated animals displayed clinical neuropathic pain symptoms, including mechanical and thermal hypersensitivity, approximately 900 were down-regulated in the somatosensory cortex. Because of the known role of potassium channels in neuronal excitability, the study further focussed on the down-regulation of these channels as the possible molecular origin of cortical hyperexcitability. Quantification of the magnitude of neuronal extracellular signal-regulated kinase (ERK) phosphorylation in cortical neurons as a marker of neuronal activity revealed a 10-fold increase induced by oxaliplatin treatment, suggesting that neurons of cortical areas involved in transmission of painful stimuli undergo a chronic cortical excitability. We further demonstrated, using cortical injection of lentiviral vector shRNA against Kv2.2, that down-regulation of this potassium channel in naive animals induced a sustained thermal and mechanical hypersensitivity. In conclusion, although the detailed mechanisms leading to this cortical excitability are still unknown, our study demonstrated that a cortical down regulation of potassium channels could underlie pain chronicity in this model of chemotherapy-induced neuropathic pain. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  1. Barrels come of age: Barrels XXI meeting report.

    Science.gov (United States)

    Chen, Chia-Chien; Steger, Robert; Brumberg, Joshua C

    2009-03-01

    The twenty-first annual Barrels meeting, sponsored by NINDS, was held on 12-14 November 2008 on the campus of Johns Hopkins University, near the site of the original discovery of barrels almost 40 years ago. The longest running satellite meeting to the Society for Neuroscience Annual Meeting focuses on the development, physiology, and behavior of the rodent whisker-to-barrel sensorimotor system. This year's event focused on what aspects of the sensory world are encoded by neurons within the system and how specifically the posterior medial nucleus can play a role in information processing. Other highlighted topics included the possible role(s) the cerebellum may have and the cues governing the patterning and development of thalamocortical inputs into the barrel cortex.

  2. Effects of conditioning stimulation of the central amygdaloid nucleus on tooth pulp-driven neurons in the cat somatosensory cortex (SI).

    Science.gov (United States)

    Kawarada, K; Kamata, K i; Matsumoto, N

    1999-12-01

    To study the limbic control of nociception, we examined the effect of conditioning stimulation of the central amygdaloid nucleus (ACE) on tooth pulp-driven (TPD) neurons in the first somatosensory cortex (SI). Cats were anesthetized with N(2)O-O(2) (2:1) and 0.5% halothane, and immobilized with tubocurarine chloride. The tooth pulp test stimulus was applied by a single rectangular pulse (0.5 ms in duration and 3-5 times the threshold intensity for the jaw-opening reflex). Conditioning stimuli to the ACE consisted of trains of 33 pulses (300 microA) delivered at 330 Hz at intervals of 8-10 s. In 35 out of 61 of the slow (S)-type TPD neurons with latencies of more than 20 ms, conditioning stimulation in the ACE, especially in the medial division, markedly reduced the firing response to the pulpal stimulation. The inhibition of the firing rate in the S-type neurons was 74% of the control. In these S-type neurons, the neurons that were inhibited had significantly longer latencies compared to the non-inhibited neurons (45.0 +/- 17.6 ms, n = 32 vs. 34.8 +/- 10.5 ms, n = 26). In contrast, the ACE conditioning stimulation affected only one out of 18 fast-type TPD neurons with latencies of less than 20 ms. In addition, ACE stimulation had no effect on the spontaneous discharges of either S-type or F-type neurons. The ACE inhibitory effect on S-type neurons was not diminished by naloxone administration (1 mg/kg, I.V. ), while the blockade of histamine H(1)-receptor by diphenhydramine hydrochloride (0.5 mg/kg, I.V.) partially reversed the inhibitory effect. These results suggest that the ACE inhibits ascending nociceptive information to the SI and that this inhibition is mediated in part by histamine (H(1)) receptors. It seems likely that the antinociceptive effect is a neurophysiological basis for stress-induced analgesia (SIA).

  3. Functional reorganization in the patient with progressing glioma of the pure primary motor cortex: a case report with special reference to the topographic central sulcus defined by somatosensory-evoked potential.

    Science.gov (United States)

    Hayashi, Yutaka; Nakada, Mitsutoshi; Kinoshita, Masashi; Hamada, Jun-ichiro

    2014-01-01

    The concept of human brain reorganization due to slow-growing lesions, including low-grade glioma, has been gradually and generally accepted. However, few cases have been reported in which the reorganization, especially in the topographic pure primary motor cortex, was observed during brain surgery. We report a case of slow-growing oligodendroglioma located in the pure primary motor cortex, as detected by magnetic resonance imaging that could be resected in part thanks to the brain plasticity. In addition, we describe a pitfall of topographic guidance using somatosensory-evoked potential (SEP) monitoring. A 36-year-old right-handed patient underwent resection of a gradually growing oligodendroglioma located in the right primary motor cortex, with no other adjacent lesions, 8 years after the initial biopsy. The central sulcus was defined with intraoperative SEP monitoring in both operations. Based on the findings of the intraoperative direct electrical stimulation under awake craniotomy, we suspect that motor function shifted posteriorly and reorganized beyond the central sulcus. Pure primary motor cortex could be reorganized by its own lesion. In reorganized brain, topographic central sulcus defined based on SEP findings may be an inappropriate guidance to estimate true functional area. In such a condition, intraoperative direct electrical stimulation under awake craniotomy makes it feasible to resect pure primary motor cortex invaded by tumors. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Optogenetic conditioning of paradigm and pattern discrimination in the rat somatosensory system.

    Directory of Open Access Journals (Sweden)

    Kenta Abe

    Full Text Available The rodent whisker-barrel cortical system is a model for studying somatosensory discrimination at high spatiotemporal precision. Here, we applied optogenetics to produce somatosensory inputs in the whisker area using one of transgenic rat lines, W-TChR2V4, which expresses channelrhodopsin-2 (ChR2 in the mechanoreceptive nerve endings around whisker follicles. An awake W-TChR2V4 rat was head-fixed and irradiated by blue LED light on the whisker area with a paradigm conditioned with a reward. The Go task was designed so the rat is allowed to receive a reward, when it licked the nozzle within 5 s after photostimulation. The No-go task was designed so as the rat has to withhold licking for at least 5 s to obtain a reward after photostimulation. The Go-task conditioning was established within 1 hr of training with a reduction in the reaction time and increase of the success rate. To investigate the relationship between the spatiotemporal pattern of sensory inputs and the behavioral output, we designed a multi-optical fiber system that irradiates the whisker area at 9 spots in a 3×3 matrix. Although the Go-task conditioning was established using synchronous irradiation of 9 spots, the success rate was decreased with an increase of the reaction time for the asynchronous irradiation. After conditioning to the Go task, the rat responded to the blue LED flash irradiated on the barrel cortex, where many neurons also express ChR2, or photostimulation of the contralateral whisker area with a similar reaction time and success rate. Synchronous activation of the peripheral mechanoreceptive nerves is suggested to drive a neural circuit in the somatosensory cortex that efficiently couples with the decision. Our optogenetic system would enable the precise evaluation of the psychophysical values, such as the reaction time and success rate, to gain some insight into the brain mechanisms underlying conditioned behaviors.

  5. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    Science.gov (United States)

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  6. Somatosensory processing of the tongue in humans

    Directory of Open Access Journals (Sweden)

    Kiwako Sakamoto

    2010-11-01

    Full Text Available We review research on somatosensory (tactile processing of the tongue based on data obtained using non-invasive neurophysiological and neuroimaging methods. Technical difficulties in stimulating the tongue, due to the noise elicited by the stimulator, the fixation of the stimulator, and the vomiting reflex, have necessitated the development of specialized devices. In this article, we show the brain activity relating to somatosensory processing of the tongue evoked by such devices. More recently, the postero-lateral part of the tongue has been stimulated, and the brain response compared with that on stimulation of the antero-lateral part of the tongue. It is likely that a difference existed in somatosensory processing of the tongue, particularly around primary somatosensory cortex (SI, Brodmann area 40 (BA 40, and the anterior cingulate cortex (ACC.

  7. mGluR5 in cortical excitatory neurons exerts both cell autonomous and nonautonomous influences on cortical somatosensory circuit formation

    OpenAIRE

    Ballester-Rosado, Carlos J.; Albright, Michael J.; Wu, Chia-Shan; Liao, Chun-Chieh; Zhu, Jie; Xu, Jian; Lee, Li-Jen; Lu, Hui-Chen

    2010-01-01

    Glutamatergic neurotransmission plays important roles in sensory map formation. The absence of the group I metabotropic glutamate receptor 5 (mGluR5) leads to abnormal sensory map formation throughout the mouse somatosensory pathway. To examine the role of cortical mGluR5 expression on barrel map formation, we generated cortex-specific mGluR5 KO mice. Eliminating mGluR5 function solely in cortical excitatory neurons, not only affects the whisker-related organization of cortical neurons (barre...

  8. Barrels XXIII: Barrels by the shore.

    Science.gov (United States)

    Zhang, Wanying; Brumberg, Joshua C

    2011-01-01

    The 23rd annual Barrels meeting was held on the University of California, San Diego campus and highlighted the latest advances in the whisker-to-barrel pathway and beyond. The annual meeting brought together investigators from a dozen countries to present their data in posters and short talks. The meeting focused on several themes, first the barrel system was used as a model to study the consequences that result from alterations in the normal pattern(s) of development. A second session focused on what happens to whisker information once it leaves the layer IV barrel. A third session addressed issues of coding within the barrel system and a final session highlighted the latest advances in the engineering of transgenic mouse lines. The meeting highlighted the utility of the barrel system to study cortical circuitry in the normal and pathological state.

  9. Serial processing in primary and secondary somatosensory cortex: A DCM analysis of human fMRI data in response to innocuous and noxious electrical stimulation.

    Science.gov (United States)

    Khoshnejad, Mina; Piché, Mathieu; Saleh, Soha; Duncan, Gary; Rainville, Pierre

    2014-08-08

    The anatomy of the somatosensory system allows both serial and parallel information flow but the conditions involving each mode of processing is a matter of debate. In this functional magnetic resonance imaging (fMRI) study, cutaneous electrical stimulation was applied to human volunteers at three intensities (low-innocuous, moderate-noxious and high-noxious) to investigate interactions between contralateral primary and secondary somatosensory cortices (S1c and S2c), and between contralateral and ipsilateral S2 (S2c and S2i), using dynamic causal modeling (DCM). Our results are consistent with serial processing with a key role of the direct input to S1c for all three intensity levels. The more intense stimulus also induced significantly more interactions between S2i and S2c, consistent with an increase in inter-hemispheric integration associated with the additional recruitment of nociceptive inputs. However, stronger pain reports were also associated with reduced information flow from S1c to S2c at both the moderate (r=-0.81, p=0.004) and the high stimulation level (r=-0.63, p=0.037). These findings suggest that the connectivity pattern driven by innocuous inputs is modified by the additional activation of nociceptive afferents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Spinal N13 versus cortical N20 and dermatomal somatosensory ...

    African Journals Online (AJOL)

    Introduction: Most studies on somatosensory evoked potentials (SEPs) in cases of cervical radiculopathy routinely analyze scalp (cortical) responses (mixed or dermatomal SEPs), depending mainly on evaluation of N20 whose origin is the primary somatosensory cortex. It was suggested that selective study of the N13 ...

  11. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  12. Somatosensory Event-related Potentials from Orofacial Skin Stretch Stimulation.

    Science.gov (United States)

    Ito, Takayuki; Ostry, David J; Gracco, Vincent L

    2015-12-18

    Cortical processing associated with orofacial somatosensory function in speech has received limited experimental attention due to the difficulty of providing precise and controlled stimulation. This article introduces a technique for recording somatosensory event-related potentials (ERP) that uses a novel mechanical stimulation method involving skin deformation using a robotic device. Controlled deformation of the facial skin is used to modulate kinesthetic inputs through excitation of cutaneous mechanoreceptors. By combining somatosensory stimulation with electroencephalographic recording, somatosensory evoked responses can be successfully measured at the level of the cortex. Somatosensory stimulation can be combined with the stimulation of other sensory modalities to assess multisensory interactions. For speech, orofacial stimulation is combined with speech sound stimulation to assess the contribution of multi-sensory processing including the effects of timing differences. The ability to precisely control orofacial somatosensory stimulation during speech perception and speech production with ERP recording is an important tool that provides new insight into the neural organization and neural representations for speech.

  13. Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition

    National Research Council Canada - National Science Library

    Gabernet, Laetitia; Jadhav, Shantanu P; Feldman, Daniel E; Carandini, Matteo; Scanziani, Massimo

    2005-01-01

    .... Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms...

  14. Somatosensory evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available One technique used for short-latency somatosensory evoked response (SER is described. SER following nerve stimulation is a unique non-invasive, clinical test used to evaluate the somatosensory pathways. It tests the physiological function of the median nerve, the brachial plexus, the C6-7 cervical roots, cervical spinal cord, the cuneate nuclei, the medial lemniscus, the thalamus, and the contralateral sensory cortex. It has been shown to be a reliable and useful clinical test partiicularly in multiple sclerosis and comatose patients. The promising technique of SER following peroneal nerve stimulation is mentioned.

  15. Scaling of topologically similar functional modules defines mouse primary auditory and somatosensory microcircuitry.

    Science.gov (United States)

    Sadovsky, Alexander J; MacLean, Jason N

    2013-08-28

    Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field (S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable principles of neocortical circuit design.

  16. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Directory of Open Access Journals (Sweden)

    Stéphanie eMiceli

    2013-06-01

    Full Text Available Homeostatic regulation of serotonin (5-HT concentration is critical for normal topographical organization and development of thalamocortical (TC afferent circuits. Down-regulation of the serotonin transporter (SERT and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1. Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT-/- rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i the thalamocortical projections of the ventroposteromedial thalamic nucleus towards S1, (ii the general barrel-field pattern and (iii the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 (spiny stellate and pyramidal cells. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections towards the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT-/- rats. In layer IV, both excitatory spiny stellate and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV spiny stellate cells gave rise to a prominent projection towards the infragranular layer Vb. Our findings point to a structural and functional reorganization, of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel

  17. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  18. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.

    Science.gov (United States)

    Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V

    2018-01-01

    There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.

  19. Transfer of learning across the somatosensory cortex

    Indian Academy of Sciences (India)

    Barosi G 1994 Inadequate erythropoietin response to anemia: definition and clinical relevance; Ann. Hematol. 68 215–223. Bocci V 1981 Determinants of erythrocyte aging: A reappraisal; Br. J. Haematol. 48 515–522. Connor J, Pak C C and Schroit A J 1994 Exposure of phosphotidyl-serine in the outer leaflet of human red.

  20. Barrels by the sea: Barrels XX meeting report.

    Science.gov (United States)

    Ramos, Raddy L; Brumberg, Joshua C

    2008-03-01

    The 20th annual Barrels meeting brought together researchers who utilize behavioral, physiological, anatomical, and molecular techniques to understand the structure and function of the barrel system. Barrels XX featured talks on the role inhibition has in shaping cortical responses within the barrel system, the molecular cues that influence the development of the whisker-to-barrel system, and the synaptic plasticity that can shape responses within the system. The meeting highlighted why the whisker-to-barrel system is an ideal model to investigate the development of cortical circuitry and how its functioning can influence behavioral responses.

  1. TRT Barrel milestones passed

    CERN Multimedia

    Ogren, H

    2004-01-01

    The barrel TRT detector passed three significant milestones this spring. The Barrel Support Structure (BSS) was completed and moved to the SR-1 building on February 24th. On March 12th the first module passed the quality assurance testing in Building 154 and was transported to the assembly site in the SR-1 building for barrel assembly. Then on April 21st the final production module that had been scanned at Hampton University was shipped to CERN. TRT Barrel Module Production The production of the full complement of barrel modules (96 plus 9 total spares) is now complete. This has been a five-year effort by Duke University, Hampton University, and Indiana University. Actual construction of the modules in the United States was completed in the first part of 2004. The production crews at each of the sites in the United States have now completed their missions. They are shown in the following pictures. Duke University: Production crew with the final completed module. Indiana University: Module producti...

  2. Oral somatosensory awareness.

    Science.gov (United States)

    Haggard, Patrick; de Boer, Lieke

    2014-11-01

    Oral somatosensory awareness refers to the somatic sensations arising within the mouth, and to the information these sensations provide about the state and structure of the mouth itself, and objects in the mouth. Because the oral tissues have a strong somatosensory innervation, they are the locus of some of our most intense and vivid bodily experiences. The salient pain of toothache, or the habit of running one's tongue over one's teeth when someone mentions "dentist", provide two very different indications of the power of oral somatosensory awareness in human experience and behaviour. This paper aims to review the origins and structure of oral somatosensory awareness, focussing on quantitative, mechanistic studies in humans. We first extend a model of levels of bodily awareness to the specific case of the mouth. We then briefly summarise the sensory innervation of oral tissues, and their projections in the brain. We next describe how these peripheral inputs give rise to perceptions of objects in the mouth, such as foods, liquids and oral devices, and also of the mouth tissues themselves. Finally, we consider the concept of a conscious mouth image, and the somatosensory basis of "mouth feel". The theoretical framework outlined in this paper is intended to facilitate scientific studies of this important site of human experience. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Barrelled locally convex spaces

    CERN Document Server

    Pérez Carreras, P

    1987-01-01

    This book is a systematic treatment of barrelled spaces, and of structures in which barrelledness conditions are significant. It is a fairly self-contained study of the structural theory of those spaces, concentrating on the basic phenomena in the theory, and presenting a variety of functional-analytic techniques.Beginning with some basic and important results in different branches of Analysis, the volume deals with Baire spaces, presents a variety of techniques, and gives the necessary definitions, exploring conditions on discs to ensure that they are absorbed by the barrels of the sp

  4. The MDT Barrel Organ

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    Have you ever looked for an interesting use for the spare detector parts once the construction phase was finished? Henk Tiecke, with the help of Oscar van Petten and Marco Kraan, all from NIKHEF, came up with a great idea for leftover MDT tubes. They simply built a pipe organ! See the MDT Barrel Organ in action, as recorded during a party thrown on the occasion of the first shipment of MDT chambers from NIKHEF to CERN. Want to know more about the organ? Please contact Henk Tiecke. Henk Tiecke playing the MDT Barrel Organ.

  5. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  6. Subjective somatosensory experiences disclosed by focused attention: cortical-hippocampal-insular and amygdala contributions.

    Directory of Open Access Journals (Sweden)

    Clemens C C Bauer

    Full Text Available In order to explore the neurobiological foundations of qualitative subjective experiences, the present study was designed to correlate objective third-person brain fMRI measures with subjective first-person identification and scaling of local, subtle, and specific somatosensory sensations, obtained directly after the imaging procedure. Thus, thirty-four volunteers were instructed to focus and sustain their attention to either provoked or spontaneous sensations of each thumb during the fMRI procedure. By means of a Likert scale applied immediately afterwards, the participants recalled and evaluated the intensity of their attention and identified specific somatosensory sensations (e.g. pulsation, vibration, heat. Using the subject's subjective scores as covariates to model both attention intensity and general somatosensory experiences regressors, the whole-brain random effect analyses revealed activations in the frontopolar prefrontal cortex (BA10, primary somatosensory cortex (BA1, premotor cortex (BA 6, precuneus (BA 7, temporopolar cortex (BA 38, inferior parietal lobe (BA 39, hippocampus, insula and amygdala. Furthermore, BA10 showed differential activity, with ventral BA10 correlating exclusively with attention (r(32 = 0.54, p = 0.0013 and dorsal BA10 correlating exclusively with somatosensory sensation (r(32 = 0.46, p = 0.007. All other reported brain areas showed significant positive correlations solely with subjective somatosensory experiences reports. These results provide evidence that the frontopolar prefrontal cortex has dissociable functions depending on specific cognitive demands; i.e. the dorsal portion of the frontopolar prefrontal cortex in conjunction with primary somatosensory cortex, temporopolar cortex, inferior parietal lobe, hippocampus, insula and amygdala are involved in the processing of spontaneous general subjective somatosensory experiences disclosed by focused and sustained attention.

  7. Subjective somatosensory experiences disclosed by focused attention: cortical-hippocampal-insular and amygdala contributions.

    Science.gov (United States)

    Bauer, Clemens C C; Barrios, Fernando A; Díaz, José-Luis

    2014-01-01

    In order to explore the neurobiological foundations of qualitative subjective experiences, the present study was designed to correlate objective third-person brain fMRI measures with subjective first-person identification and scaling of local, subtle, and specific somatosensory sensations, obtained directly after the imaging procedure. Thus, thirty-four volunteers were instructed to focus and sustain their attention to either provoked or spontaneous sensations of each thumb during the fMRI procedure. By means of a Likert scale applied immediately afterwards, the participants recalled and evaluated the intensity of their attention and identified specific somatosensory sensations (e.g. pulsation, vibration, heat). Using the subject's subjective scores as covariates to model both attention intensity and general somatosensory experiences regressors, the whole-brain random effect analyses revealed activations in the frontopolar prefrontal cortex (BA10), primary somatosensory cortex (BA1), premotor cortex (BA 6), precuneus (BA 7), temporopolar cortex (BA 38), inferior parietal lobe (BA 39), hippocampus, insula and amygdala. Furthermore, BA10 showed differential activity, with ventral BA10 correlating exclusively with attention (r(32) = 0.54, p = 0.0013) and dorsal BA10 correlating exclusively with somatosensory sensation (r(32) = 0.46, p = 0.007). All other reported brain areas showed significant positive correlations solely with subjective somatosensory experiences reports. These results provide evidence that the frontopolar prefrontal cortex has dissociable functions depending on specific cognitive demands; i.e. the dorsal portion of the frontopolar prefrontal cortex in conjunction with primary somatosensory cortex, temporopolar cortex, inferior parietal lobe, hippocampus, insula and amygdala are involved in the processing of spontaneous general subjective somatosensory experiences disclosed by focused and sustained attention.

  8. ATLAS TRT barrel

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    On 3 February 2005, members of the US-TRT team proceeded to the installation of the last TRT barrel module for the Transition Radiation Tracker, which will be used for tracking in the Atlas detector. The TRT barrel is made of 96 modules containing around 52 000 4-mm straws, each of them equipped with a 20 microns sense wire. The modules were first designed at CERN, then built in the USA between 1996 and 2003. Duke, Hampton and Indiana Universities, tested in details at CERN between 2003 and 2005 by members of the US-TRT group, and mounted on the support structure in the SR-1 building where this video was taken. During assembly of the last module, one can see Kirill Egorov (PNPI, Gatchina, Russia), Chuck Mahlong (Hampton) as well as John Callahan and Pauline Gagnon (Indiana). (Written by Pauline Gagnon)

  9. LEAR Crystal Barrel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Braune, K.; Keh, S.; Montanet, L.; Zoll, J.; Beckmann, R.; Friedrich, J.; Heinsius, H.; Kiel, T.; Lewendel, B.; Pegel, C.; and others

    1988-11-20

    The features of the Crystal Barrel Detector which is in preparation for LEAR at CERN, are discussed. The physics aims include q-barq- and exotics-spectroscopy and a detailed investigation of yet unknown p-barp-anihilation channels. An eventual later use on the PSI-B-Meson-Factory is discussed. The paper finishes with a description of the present status of the project.

  10. Interhemispheric interactions between the human primary somatosensory cortices.

    Directory of Open Access Journals (Sweden)

    Patrick Ragert

    Full Text Available In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2 has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1 might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN stimulation of the left MN (CS resulted in a significant reduction of the N20 response in the target (left S1 relative to a test stimulus (TS to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20-25 ms after median nerve stimulation.

  11. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  12. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy

    OpenAIRE

    Inmaculada eRiquelme; Anna eZamorano; Pedro eMontoya

    2013-01-01

    Objective. Pain and deficits in somatosensory processing seem to play a relevant role in cerebral palsy (CP). Rehabilitation techniques based on neuroplasticity mechanisms may induce powerful changes in the organization of the primary somatosensory cortex and have been proved to reduce levels of pain and discomfort in neurological pathologies. However, little is known about the efficacy of such interventions for pain sensitivity in CP individuals. Methods. Adults with cerebral palsy participa...

  13. The PANDA Barrel DIRC

    Science.gov (United States)

    Dzhygadlo, R.; Schwarz, C.; Belias, A.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2016-05-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. Experiments concerning charmonium spectroscopy, the search for hybrids and glueballs and the interaction of hidden and open charm particles with nucleons and nuclei will be performed with antiproton beams impinging on hydrogen or nuclear targets. Cooled beams allow the precision scan of resonances in formation experiments. The momentum range of the antiproton beam between 1.5 GeV/c and 15 GeV/c tests predictions by perturbation theory and will reveal deviations originating from strong QCD . An excellent hadronic particle identification will be accomplished by DIRC (Detection of Internally Reflected Cherenkov light) counters. The design for the barrel region is based on the successful BaBar DIRC with several key improvements, such as fast photon timing and a compact imaging region. DIRC designs based on different radiator geometries with several focusing options were studied in simulation. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN.

  14. Behavioral demonstration of a somatosensory neuroprosthesis.

    Science.gov (United States)

    Berg, J A; Dammann, J F; Tenore, F V; Tabot, G A; Boback, J L; Manfredi, L R; Peterson, M L; Katyal, K D; Johannes, M S; Makhlin, A; Wilcox, R; Franklin, R K; Vogelstein, R J; Hatsopoulos, N G; Bensmaia, S J

    2013-05-01

    Tactile sensation is critical for effective object manipulation, but current prosthetic upper limbs make no provision for delivering somesthetic feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. In light of this, we describe the implementation of a somatosensory prosthesis with which we elicit, through intracortical microstimulation (ICMS), percepts whose magnitude is graded according to the force exerted on the prosthetic finger. Specifically, the prosthesis consists of a sensorized finger, the force output of which is converted into a regime of ICMS delivered to primary somatosensory cortex through chronically implanted multi-electrode arrays. We show that the performance of animals (Rhesus macaques) on a tactile task is equivalent whether stimuli are delivered to the native finger or to the prosthetic finger.

  15. The Functioning of a Cortex without Layers

    Directory of Open Access Journals (Sweden)

    Julien Guy

    2017-07-01

    Full Text Available A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, “molecular lesion”-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward

  16. Accumulation of SNAP25 in mouse gustatory and somatosensory cortices in response to food and chemical stimulation.

    Science.gov (United States)

    Kawakami, S; Ohmoto, M; Itoh, S; Yuasa, R; Inagaki, H; Nishimura, E; Ito, T; Misaka, T

    2012-08-30

    Food intake stimuli, including taste, somatosensory, and tactile stimuli, are received by receptors in the oral cavity, and this information is then transferred to the cerebral cortex. Signals from recently ingested food during the weaning period can affect synaptic transmission, resulting in biochemical changes in the cerebral cortex that modify gustatory and somatosensory nervous system plasticity. In this study, we investigated the expression patterns of molecular markers in mouse gustatory and somatosensory cortices during the weaning period. The expression of synaptosomal-associated protein 25 (SNAP25), a component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, was increased in the insular and somatosensory cortices at postnatal week 3 compared to postnatal week 2. Additionally, SNAP25 protein in the cerebral cortex accumulated in weaning mice fed solid food but not in mice fed only mother's milk at the weaning stage. Chemical stimulation by saccharin or capsaicin at the weaning stage also increased SNAP25 immunoreactivity in the insular or somatosensory cortical area, respectively. These results suggest that recently ingested chemical signals in the oral cavity during weaning increase the accumulation of SNAP25 in the gustatory and somatosensory cortices and promote neural plasticity during the development of the gustatory and somatosensory nervous systems. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Barrels XXVII meeting report: Barrels in the monument city.

    Science.gov (United States)

    Bajnath, Adesh; Chu, Philip; Steger, Robert; Brumberg, Joshua C

    2015-01-01

    The 27th annual Barrels meeting highlighted the latest advances in this rapidly growing field. The Barrels meeting annually focuses on the role of the posterior medial thalamus in somatosensation, dendritic processing, and the cortical dynamics involved during touch perception. Speakers utilized diverse molecular, physiological, computational techniques to understand the development, sensory processing, and motor commands that are involved with the rodent mystacial vibrissae. The meeting was held Thursday, 13 November through Friday, 14 November 2014 on the Homewood campus of Johns Hopkins University, Baltimore, MD.

  18. An ocean full of BARRELS: Barrels XXVI meeting report.

    Science.gov (United States)

    Chu, Philip; Chen, Chia-Chien; Brumberg, Joshua C

    2014-06-01

    The 26th annual Barrels meeting was convened on the campus of the University of California San Diego, not far from the shores of the Pacific Ocean. The meeting focused on three main themes: the structure and function of the thalamic reticular nucleus, the neurovasculature system and its role in brain metabolism, and the origins and functions of cortical GABAergic interneurons. In addition to the major themes, there were short talks, a data blitz, and a poster session which highlighted the diversity and quality of the research ongoing in the rodent whisker-to-barrel system.

  19. Neural correlates of somatosensory processing in patients with neglect.

    Science.gov (United States)

    Hassa, Thomas; Schoenfeld, Mircea Ariel; Dettmers, Christian; Stoppel, Christian Michael; Weiller, Cornelius; Lange, Rüdiger

    2011-01-01

    Recent evidence from neuroimaging studies using visual tasks suggests that the right superior parietal cortex plays a pivotal role for the recovery of neglect. Importantly, neglect-related deficits are not limited to the visual system and have a rather multimodal nature. We employed somatosensory stimulation in patients with neglect in order to analyze activity changes in networks that are presumably associated with this condition. Eleven chronic neglect patients with right hemispherical stroke were investigated with a fMRI paradigm in which the affected and unaffected hand were passively moved. Brain activation was correlated with the performance in clinical neglect tests. Significant positive correlations with brain activation were found for the lesion duration, the performance in bells and letter cancellation tests and the line bisection test. These activated areas formed a distributed pattern in the right superior parietal cortex. The results suggest a shared representation of visual and somatosensory networks in the right superior parietal cortex in patients with right hemispherical strokes and neglect. The spatial pattern of activity in the superior parietal cortex points out to a different representation of changes related to lesion duration and neglect.

  20. The CMS tracker outer barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Final preparations are made to the CMS tracker outer barrel (TOB), ready for insertion in the tracker support tube. The TOB consists of 688 rods containing a total of 5208 silicon detector modules. The silicon tracker will measure the paths of particles produced in the proton-proton collisions at the CMS detector as they travel in the detector's magnetic field.

  1. ID Barrel installed in cryostat

    CERN Multimedia

    Apsimon, R.; Romaniouk, A.

    Wednesday 23rd August was a memorable day for the Inner Detector community as they witnessed the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the outer two detectors (TRT and SCT) of the ID barrel were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Accelerometers were fitted to the barrel to provide real-time monitoring and no values greater than 0.1 g were recorded, fully satisfying the transport specification for this extremely precise and fragile detector. Muriel, despite her fear of heights, bravely volunteered to keep a close eye on the detector. Swapping cranes to cross the entire parking lot, while Mur...

  2. Functional architecture of the somatosensory homunculus detected by electrostimulation.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Djidjeli, Imène; Durand, Jean-Baptiste

    2017-12-29

    We performed a prospective electrostimulation study, based on 50 operated intact patients, to acquire accurate MNI coordinates of the functional areas of the somatosensory homunculus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral, little-finger-to-thumb, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with rather different intensity thresholds needed to elicit sensations in different body parts. We found some similarities but also substantial differences with the previous, seminal works of Penfield and his colleagues. We propose a new drawing of the human somatosensory homunculus according to MNI space. In this prospective electrostimulation study, based on 50 operated patients with no sensory deficit and no brain lesion in the postcentral gyrus, we acquired coordinates in the standard MNI space of the functional areas of the somatosensory homunculus. The 3D brain volume of each patient was normalized to that space to obtain the MNI coordinates of the stimulation site locations. For 647 sites stimulated on Brodmann Area 1 (and 1025 in gyri nearby), 258 positive points for somatosensory response (40%) were found in the postcentral gyrus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral and little-finger-to-thumb somatotopy, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. We detected a medial-to-lateral, tip-to-base tongue organization but no rostral-to-caudal functional organization. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with intact somatosensory cortex. Positive stimulations were

  3. Completion of the TRT Barrel

    CERN Multimedia

    Gagnon, P

    On February 3, the US-TRT team proudly completed the installation of the 96th barrel TRT module on its support structure in the SR building at CERN. This happy event came after many years of R&D initiated in the nineties by the TA1 team at CERN, followed by the construction of the modules in three American institutes (Duke, Hampton and Indiana Universities) from 1996 to 2003. In total, the 96 barrel modules contain 52544 kapton straws, each 4 mm in diameter and strung with a 30 micron gold-plated tungsten wire. Each wire was manually inserted, a feat in itself! The inner layer modules contain 329 straws, the middle layer modules have 520 straws and the outer layer, 793 straws. Thirty- two modules of each type form a full layer. Their special geometry was designed such as to leave no dead region. On average, a particle will cross 36 straws. Kirill Egorov, Chuck Mahlon and John Callahan inserted the last module in the Barrel Support Structure. After completion in the US, all modules were transferred...

  4. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Inmaculada eRiquelme

    2013-06-01

    Full Text Available Objective. Pain and deficits in somatosensory processing seem to play a relevant role in cerebral palsy (CP. Rehabilitation techniques based on neuroplasticity mechanisms may induce powerful changes in the organization of the primary somatosensory cortex and have been proved to reduce levels of pain and discomfort in neurological pathologies. However, little is known about the efficacy of such interventions for pain sensitivity in CP individuals. Methods. Adults with cerebral palsy participated in the study and were randomly assigned to the intervention (n=17 or the control group (n=20. The intervention group received a somatosensory therapy including 4 types of exercises (touch, proprioception, vibration, and stereognosis. All participants were asked to continue their standardized motor therapy during the study period. Several somatosensory (pain and touch thresholds, stereognosis, propioception, texture recognition and motor parameters (fine motor skills were assessed before, immediately after and three months after the therapy (follow-up. Results. Participants of the intervention group showed a significant reduction on pain sensitivity after treatment and at follow-up after three months, whereas participants in the control group displayed increasing pain sensitivity over time. No improvements were found on touch sensitivity, proprioception, texture recognition or fine motor skills. Conclusions. Data suggest the possibility that somatosensory therapy was effective in eliciting changes in central somatosensory processing. This hypothesis may have implications for future neuromodulatory treatment of pain complaints in children and adults with cerebral palsy.

  5. Cross-modal refinement of visual performance after brief somatosensory deprivation in adult mice.

    Science.gov (United States)

    Teichert, Manuel; Isstas, Marcel; Wenig, Steven; Setz, Christoph; Lehmann, Konrad; Bolz, Jürgen

    2018-01-01

    It is well established that the congenital lack of one sensory modality enhances functionality in the spared senses. However, whether a late onset deprivation of one sense leads to such alterations is largely unknown. Here, we investigated whether a somatosensory deprivation induced by bilateral whisker removal affects visual acuity and contrast sensitivity in fully adult mice. Using the visual cortex-dependent visual water task, we found that a brief somatosensory deprivation markedly improved behavioral visual acuity and contrast sensitivity by about 40%. Determining these attributes of vision using periodic optical imaging of intrinsic signals in the same mice revealed that visual cortex responses elicited by weak visual stimuli were massively increased after somatosensory deprivation. Strikingly, comparison of visual acuity and contrast sensitivity values determined by the visual water task and intrinsic signal imaging revealed that these measurements were almost identical, even at the level of individual animals. In summary, our results suggest that a brief manipulation of somatosensory experience profoundly boosts visual cortex-dependent vision in adults. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Observing motor learning produces somatosensory change

    OpenAIRE

    Bernardi, Nicolò F.; Darainy, Mohammad; Bricolo, Emanuela; Ostry, David J.

    2013-01-01

    Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first o...

  7. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  8. Localization of somatosensory evoked potentials in primary somatosensory cortex: a comparison between PCA and MUSIC.

    Science.gov (United States)

    Mühlnickel, W; Lutzenberger, W; Flor, H

    1999-01-01

    The aim of this study was to test source modeling strategies for EEG-data from a clinical group of amputees. The experimental conditions (measuring time, age and condition of the patients) resulted in low quality EEG-data. Noise reduction was achieved by a principal component analysis (PCA) and a multiple signal classification (MUSIC). A comparison of the results of these two methods with traditional signal handling yielded superior results for the MUSIC algorithm.

  9. TRT and SCT barrels merge

    CERN Multimedia

    Wells, P S

    2006-01-01

    The SCT barrel was inserted in the TRT on 17 February, just missing Valentine's day. This was a change of emphasis for the two detectors. In the preceeding months there had been a lot of focus on testing their performance. The TRT had been observing cosmic rays through several sectors of the barrel, and all the modules on each of the four layers of the SCT had been characterised prior to integration. In parallel, the engineering teams, lead by Marco Olcese, Andrea Catinaccio, Eric Perrin, Neil Dixon, Iourii Gusakov, Gerard Barbier and Takashi Kohriki, had been preparing for this critical operation. Figure 1: Neil Dixon and Marco Olcese verifying the final alignment The two detectors had to be painstakingly aligned to be concentric to within a millimetre. The SCT was held on a temporary cantilever stand, and the TRT in the ID trolley had to inch over it. Finally the weight of the SCT was transferred to the rails on the inside of the TRT itself. The SCT services actually protruded a little outside the oute...

  10. Phosphoinositide signaling in somatosensory neurons

    Science.gov (United States)

    Rohacs, Tibor

    2015-01-01

    Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in these neurons, with special focus on effects on sensory and other ion channels. PMID:26724974

  11. More than Skin Deep: Body Representation beyond Primary Somatosensory Cortex

    Science.gov (United States)

    Longo, Matthew R.; Azanon, Elena; Haggard, Patrick

    2010-01-01

    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond Somatosensation.…

  12. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  13. Prototyping the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, C., E-mail: C.Schwarz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  14. Plasticity-Inducing TMS Protocols to Investigate Somatosensory Control of Hand Function

    Directory of Open Access Journals (Sweden)

    M. Jacobs

    2012-01-01

    Full Text Available Hand function depends on sensory feedback to direct an appropriate motor response. There is clear evidence that somatosensory cortices modulate motor behaviour and physiology within primary motor cortex. However, this information is mainly from research in animals and the bridge to human hand control is needed. Emerging evidence in humans supports the notion that somatosensory cortices modulate motor behaviour, physiology and sensory perception. Transcranial magnetic stimulation (TMS allows for the investigation of primary and higher-order somatosensory cortices and their role in control of hand movement in humans. This review provides a summary of several TMS protocols in the investigation of hand control via the somatosensory cortices. TMS plasticity inducing protocols reviewed include paired associative stimulation, repetitive TMS, theta-burst stimulation as well as other techniques that aim to modulate cortical excitability in sensorimotor cortices. Although the discussed techniques may modulate cortical excitability, careful consideration of experimental design is needed to isolate factors that may interfere with desired results of the plasticity-inducing protocol, specifically events that may lead to metaplasticity within the targeted cortex.

  15. Observing motor learning produces somatosensory change.

    Science.gov (United States)

    Bernardi, Nicolò F; Darainy, Mohammad; Bricolo, Emanuela; Ostry, David J

    2013-10-01

    Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations.

  16. CALIFA Barrel prototype detector characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Pietras, B., E-mail: benjamin.pietras@usc.es [Universidade de Santiago de Compostela, E-15782 (Spain); Gascón, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. Berkeley, CA 94701 (United States); Álvarez-Pol, H. [Universidade de Santiago de Compostela, E-15782 (Spain); Bendel, M. [Technische Universität München, 80333 (Germany); Bloch, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Casarejos, E. [Universidade de Vigo, E-36310 (Spain); Cortina-Gil, D.; Durán, I. [Universidade de Santiago de Compostela, E-15782 (Spain); Fiori, E. [Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Gernhäuser, R. [Technische Universität München, 80333 (Germany); González, D. [Universidade de Santiago de Compostela, E-15782 (Spain); Kröll, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Le Bleis, T. [Technische Universität München, 80333 (Germany); Montes, N. [Universidade de Santiago de Compostela, E-15782 (Spain); Nácher, E. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Robles, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Perea, A. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Vilán, J.A. [Universidade de Vigo, E-36310 (Spain); Winkel, M. [Technische Universität München, 80333 (Germany)

    2013-11-21

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R{sup 3}B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator – photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma–ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations. -- Highlights: •Prototypes corresponding to different sections of the forthcoming CALIFA Barrel calorimeter were tested. •The response to both high energy gamma rays and high energy protons was observed. •This response was reproduced by use of R3BROOT simulations, the geometry extrapolated to predict performance of the complete calorimeter. •Effects such as energy straggling of wrapping

  17. Microstimulation: Principles, Techniques, and Approaches to Somatosensory Neuroprosthesis.

    Science.gov (United States)

    Semework, Mulugeta

    2015-01-01

    The power of movement of electrically charged particles has been used to alleviate an array of illnesses and help control some human body parts. Microstimulation, the electrical current-driven excitation of neural elements, is now being aimed at brain-machine interfaces (BMIs), brain-controlled external devices that improve quality of life for people such as those who have lost the ability to use their limbs. This effort is motivated by behavioral experiments that indicate a direct link between microstimulation-induced sensory experience and behavior, pointing to the possibility of optimizing and controlling the outputs of BMIs. Several laboratories have focused on using electrical stimulation to return somatosensory feedback from prosthetic limbs directly to the user's central nervous system. However, the difficulty of the problem has led to limited success thus far, and there is a need for a better understanding of the basic principles of neural microstimulation. This article provides a review of the available literature and some recent work at Downstate Medical Center and Columbia University on microstimulation of the primate and rodent somatosensory (S1) cortex and the ventral posterolateral thalamus. It is aimed at contributing to the existing knowledge base to generate good behavioral responses and effective, BMI-appropriate somatosensory feedback. In general, the threshold for the particular brain tissue in response to current-amplitude has to be determined by rigorous experimentation. For consistently reproducible results, hardware and thresholds for microstimulation have to be specified. In addition, effects on motor functions, including unwanted side effects in response to the microstimulation of brain tissue, must be examined to take the field from bench to bedside.

  18. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  19. Celebrating the Barrel Toroid commissioning

    CERN Multimedia

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  20. Vibrissaeless mutant rats with a modular representation of innervated sinus hair follicles in the cerebral cortex.

    Science.gov (United States)

    Kuljis, R O

    1992-01-01

    Specialized areas in the cerebral cortex are essential to mediate the various sensory modalities and are crucial to their recovery in disease. We recently observed that prenatal photoreceptor cues are not indispensable for the development of the elaborate modular organization of the primate primary visual (striate) cortex (Kuljis, R. O. and P. Rakic. 1990. Proc. Natl. Acad. Sci. USA 87: 5303-5306). By contrast, the elegant experiments of Woolsey, Van der Loos, and collaborators (Van der Loos, H., and T. A. Woolsey. 1973. Science 179: 395-398; Van der Loos, H. and J. Dörfl. 1978. Neurosci Lett. 7: 23-30; Woolsey, T. A. 1967. John Hopkins Med. J. 121: 91-112; Woolsey, T. A. and H. Van der Loos. 1970. Brain Res. 17: 205-242) indicate that postnatal vibrissal receptor input is necessary for the development of modular organization in the posteromedial barrel subfield (PMBSF) of the rodent somatosensory cortex. The present report is part of a series of studies designed to address the variables that result in seemingly different results in these two models. Here, I address the role of pre- and postnatal tactile experience in the development of the rat homologue of the mouse PMBSF using mutants that lack vibrissae. Mutants exhibit cytoarchitectonic units in layer IV similar to those in controls, as revealed by NissI stains and histochemistry for succinate dehydrogenase and cytochrome oxidase. Sections from flat mounts of the vibrissal pad reveal that all mutants contain vibrissal follicles with stumps of sinus hairs in a geometric array and number similar to that in controls, and that the follicles are innervated heavily by fascicles of fibers from the infraorbital nerve.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Visual and somatosensory phenomena following cerebral venous infarction.

    Science.gov (United States)

    Loster-Niewińska, Aleksandra; Dziadkowiak, Edyta; Chojdak-Łukasiewicz, Justyna; Zimny, Anna; Paradowski, Bogusław

    2017-07-14

    The most frequent clinical presentation of occipital or visual tract lesion is hemianopsia or quadrantanopsia. However, damage to the primary or secondary visual cortex can also manifest as visual hallucinations (photopsiae or complex phenomena). We report visual and somatosensory phenomena following cerebral venous infarction based on a study of a patient with a history of recent head injury. We report a 61-year-old man with a history of recent head injury presented with a headache of two weeks duration. He was complaining of transient visual abnormalities, which he described as impaired ability to recognize faces, dark spots moving in the visual field and distorted contours of an objects. Clinical examination showed a balance disorder with no evidence of visual deficit. During further observation the patient started to experience more complex visual and sensory phenomena of: waving of the ceiling, clouds that he could form and feel, he had an impression of incorrect sizes of given objects, he could see a nonexistent pack of cigarettes and the character from the arcade game Pac-Man "eating" an existing drip stand. The patient mentioned above possessing simple and complex visual and somatosensory hallucinations and illusions in the course of venous stroke. A possible mechanism involves irritation of cortical centers responsible for visual processing. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. High frequency somatosensory stimulation increases sensori-motor inhibition and leads to perceptual improvement in healthy subjects.

    Science.gov (United States)

    Rocchi, Lorenzo; Erro, Roberto; Antelmi, Elena; Berardelli, Alfredo; Tinazzi, Michele; Liguori, Rocco; Bhatia, Kailash; Rothwell, John

    2017-06-01

    High frequency repetitive somatosensory stimulation (HF-RSS), which is a patterned electric stimulation applied to the skin through surface electrodes, improves two-point discrimination, somatosensory temporal discrimination threshold (STDT) and motor performance in humans. However, the mechanisms which underlie these changes are still unknown. In particular, we hypothesize that refinement of inhibition might be responsible for the improvement in spatial and temporal perception. Fifteen healthy subjects underwent 45min of HF-RSS. Before and after the intervention several measures of inhibition in the primary somatosensory area (S1), such as paired-pulse somatosensory evoked potentials (pp-SEP), high-frequency oscillations (HFO), and STDT were tested, as well as tactile spatial acuity and short intracortical inhibition (SICI). HF-RSS increased inhibition in S1 tested by pp-SEP and HFO; these changes were correlated with improvement in STDT. HF-RSS also enhanced bumps detection, while there was no change in grating orientation test. Finally there was an increase in SICI, suggesting widespread changes in cortical sensorimotor interactions. These findings suggest that HF-RSS can improve spatial and temporal tactile abilities by increasing the effectiveness of inhibitory interactions in the somatosensory system. Moreover, HF-RSS induces changes in cortical sensorimotor interaction. HF-RSS is a repetitive electric stimulation technique able to modify the effectiveness of inhibitory circuitry in the somatosensory system and primary motor cortex. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  3. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  4. Effect of Somatosensory Impairments on Balance Control

    Directory of Open Access Journals (Sweden)

    Alireza Hassanpour

    2012-10-01

    Full Text Available Background and Aim: The somatosensory system is one of the most effective systems in balance control. It consists of peripheral and central components. Knowing the role of these components in balance control assists the developing of effective rehabilitation protocols. In some diseases peripheral components and in others central components are impaired. This paper reviews the effect of impairment of peripheral and central components of the somatosensory system on balance control.Methods: In this study publication about somatosensory impairments from 1983 through 2011 in PubMed, Scopus, ProQuest, Google Scholar, Iran Medex, Iran Doc and Magiran were reviewed. Medical subject headings terms and keywords related to balance, somatosensory, somatosensory loss, and sensory integration/processing were used to perform the searches.Conclusion: Somatosensory impairments either with peripheral or central origin, can cause problems in balance control. However, these problems are not considered in some patients. In these impairments, balance training is recommended to be used alongside other routine treatments in the patients' rehabilitation programs.

  5. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  6. Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study.

    Science.gov (United States)

    Babiloni, Claudio; Brancucci, Alfredo; Vecchio, Fabrizio; Arendt-Nielsen, Lars; Chen, Andrew C N; Rossini, Paolo M

    2006-05-01

    Does functional coupling of centro-parietal EEG rhythms selectively increase during the anticipation of sensorimotor events composed by somatosensory stimulation and visuomotor task? EEG data were recorded in (1) 'simultaneous' condition in which the subjects waited for somatosensory stimulation at left hand concomitant with a Go (or NoGo) visual stimulus triggering (50%) right hand movements and in (2) 'sequential' condition where the somatosensory stimulation was followed (+1.5 s) by a visuomotor Go/NoGo task. Centro-parietal functional coupling was modeled by spectral coherence. Spectral coherence was computed from Laplacian-transformed EEG data at delta-theta (2-7 Hz), alpha (8-14 Hz), beta 1 (15-21 Hz), beta 2 (22-33 Hz), and gamma (34-45 Hz) rhythms. Before 'simultaneous' sensorimotor events, centro-parietal coherence regions increased in both hemispheres and at all rhythms. In the 'sequential' condition, right centro-parietal coherence increased before somatosensory event (left hand), whereas left centro-parietal coherence increased before subsequent Go/NoGo event (right hand). Anticipation of somatosensory and visuomotor events enhances contralateral centro-parietal coupling of slow and fast EEG rhythms. Predictable somatosensory and visuomotor events are anticipated not only by synchronization of cortical pyramidal neurons generating EEG power in parietal and primary sensorimotor cortical areas (Babiloni C, Brancucci A, Capotosto P, Arendt-Nielsen L, Chen ACN, Rossini PM. Expectancy of pain is influenced by motor preparation: a high-resolution EEG study of cortical alpha rhythms. Behav. Neurosci. 2005a;119(2):503-511; Babiloni C, Brancucci A, Pizzella V, Romani G.L, Tecchio F, Torquati K, Zappasodi F, Arendt-Nielsen L, Chen ACN, Rossini PM. Contingent negative variation in the parasylvian cortex increases during expectancy of painful sensorimotor events: a magnetoencephalographic study. Behav. Neurosci. 2005b;119(2):491-502) but also by functional

  7. First SCT Barrel arrives at CERN

    CERN Multimedia

    Apsimon, R

    Mid-January saw the arrival at CERN of Barrel #3, the first of four SCT barrels. The barrels are formed as low-mass cylinders of carbon fibre skins on a honeycomb carbon core. They are manufactured in industry and then have all the final precision supports added and the final geometric metrology carried out at Geneva University. Barrel #3, complete with its 384 silicon detector modules, arrived by road from Oxford University in England where the modules were mounted using a purpose-built robot. The modules had been selected from the output of all four barrel module building clusters (in Japan, Scandinavia, USA and the UK). Since Barrel #3 will be exposed to high radiation levels within the tracker volume, these modules, representing over half a million readout channels, have been extensively tested at their operational temperature of around -25 degrees Celcius and at voltages of up to 500V. The dangers of shipping such a fragile component of ATLAS were apparent to all and considerable attention was focused...

  8. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  9. [Tactile agnosia and dysfunction of the primary somatosensory area. Data of the study by somatosensory evoked potentials in patients with deficits of tactile object recognition].

    Science.gov (United States)

    Mauguière, F; Isnard, J

    1995-01-01

    The question as to whether a failure of recognition unrelated to impaired sensory processing or to disorder of naming can occur in the somato-sensory modality has been eagerly debated in the french neurology. Taking as an argument the fact that he had never observed a tactile agnosia in the absence of subtle sensory deficits Dejerine denied the localizing value of tactile agnosia (or asterognosis). Conversely Delay, 20 years later, identified tactile performances such as discrimination of texture and shapes, which he considered as a specific neocortical function, that were lost in parietal syndromes with astereognosis and preserved elementary sensations. He also coined the term "tactile asymbolia" to qualify the patients with astereognosis in whom these performances are preserved. When referring to the definition of agnosias only "tactile asymbolia" should be considered as a "true" tactile agnosia. The recording of early somatosensory evoked potentials (SEPs) now offers the possibility of assessing non invasively the function of the primary somatosensory cortex (in particular area 3b). We have recorded SEPs to median nerve or finger stimulation in 309 subjects with a focal hemispheric lesion presenting with a somatosensory deficit of any type. We could confirm that asterognosis referable to impaired discrimination of textures and/or shapes in the absence of impaired elementary sensation is quite rare since it was observed in only 12 of our patients (3.9%). Moreover early cortical SEPs reflecting the activity of the primary somatosensory area (N20 or/and P27) were clearly abnormal in all of them. A single patient of this group of 12 could be considered as a case of tactile asymbolia but his early cortical SEPs were abnormal. The only condition combining a failure of tactile recognition of objects with normal early SEPs is represented by the "tactile anomia" observed in callosal dysconnexions. Thus, in our patients unable to identify objects by palpation in spite of

  10. The eloquence of silent cortex: analysis of afferent input to deafferented cortex in arm amputees.

    Science.gov (United States)

    Mackert, Bruno-Marcel; Sappok, Tanja; Grüsser, Sabine; Flor, Herta; Curio, Gabriel

    2003-03-03

    Cortical reorganisation after limb amputation includes topographic displacements of body representation areas and changes of areal extent. Remarkably, truncated nerves, which had innervated amputated limb parts and remained in the residual limbs, can retain access to the deafferented somatosensory cortex. Using somatosensory evoked potentials (SEP) we characterized afferences from electrically stimulated truncated nerves to the brachial plexus and cortex in 12 arm amputees. While peripheral responses were highly variable, thalamocortical input to S-1, as reflected by the primary cortical SEP component, was present in 11 of 12 patients. Despite long-term deafferentation, macroscopic phenomena of inhibition/refractoriness, as assessed by stimulus rate variations, appeared to be changed only marginally. Thus, deafferented cortex remains responsive when given artificial phantom input and could provide a neuronal substrate for spontaneous phantom limb sensations, including phantom pain.

  11. Dermatomal Organization of SI Leg Representation in Humans: Revising the Somatosensory Homunculus.

    Science.gov (United States)

    Dietrich, Caroline; Blume, Kathrin R; Franz, Marcel; Huonker, Ralph; Carl, Maria; Preißler, Sandra; Hofmann, Gunther O; Miltner, Wolfgang H R; Weiss, Thomas

    2017-09-01

    Penfield and Rasmussen's homunculus is the valid map of the neural body representation of nearly each textbook of biology, physiology, and neuroscience. The somatosensory homunculus places the foot representation on the mesial surface of the postcentral gyrus followed by the representations of the lower leg and the thigh in superio-lateral direction. However, this strong homuncular organization contradicts the "dermatomal" organization of spinal nerves. We used somatosensory-evoked magnetic fields and source analysis to study the leg's neural representation in the primary somatosensory cortex (SI). We show that the representation of the back of the thigh is located inferior to the foot's representation in SI whereas the front of the thigh is located laterally to the foot's representation. This observation indicates that the localization of the leg in SI rather follows the dermatomal organization of spinal nerves than the typical map of neighboring body parts as depicted in Penfield and Rasmussen's illustration of the somatosensory homunculus. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs

    Directory of Open Access Journals (Sweden)

    Seungsoo Chung

    2017-06-01

    Full Text Available Recent work has shown that thalamocortical (TC inputs can be plastic after the developmental critical period has closed, but the mechanism that enables re-establishment of plasticity is unclear. Here, we find that long-term potentiation (LTP at TC inputs is transiently restored in spared barrel cortex following either a unilateral infra-orbital nerve (ION lesion, unilateral whisker trimming, or unilateral ablation of the rodent barrel cortex. Restoration of LTP is associated with increased potency at TC input and reactivates anatomical map plasticity induced by whisker follicle ablation. The reactivation of TC LTP is accompanied by reappearance of silent synapses. Both LTP and silent synapse formation are preceded by transient re-expression of synaptic GluN2B-containing N-methyl-D-aspartate (NMDA receptors, which are required for the reappearance of TC plasticity. These results clearly demonstrate that peripheral sensory deprivation reactivates synaptic plasticity in the mature layer 4 barrel cortex with features similar to the developmental critical period.

  14. The cutaneous rabbit illusion affects human primary sensory cortex somatotopically.

    Directory of Open Access Journals (Sweden)

    Felix Blankenburg

    2006-03-01

    Full Text Available We used functional magnetic resonance imaging (fMRI to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion, illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept.

  15. MOBIUS-STRIP-LIKE COLUMNAR FUNCTIONAL CONNECTIONS ARE REVEALED IN SOMATO-SENSORY RECEPTIVE FIELD CENTROIDS.

    Directory of Open Access Journals (Sweden)

    James Joseph Wright

    2014-10-01

    Full Text Available Receptive fields of neurons in the forelimb region of areas 3b and 1 of primary somatosensory cortex, in cats and monkeys, were mapped using extracellular recordings obtained sequentially from nearly radial penetrations. Locations of the field centroids indicated the presence of a functional system, in which cortical homotypic representations of the limb surfaces are entwined in three-dimensional Mobius-strip-like patterns of synaptic connections. Boundaries of somatosensory receptive field in nested groups irregularly overlie the centroid order, and are interpreted as arising from the superposition of learned connections upon the embryonic order. Since the theory of embryonic synaptic self-organisation used to model these results was devised and earlier used to explain findings in primary visual cortex, the present findings suggest the theory may be of general application throughout cortex, and may reveal a modular functional synaptic system, which, only in some parts of the cortex, and in some species, is manifest as anatomical ordering into columns.

  16. Neurodynamics of somatosensory cortices studied by magnetoencephelography.

    Science.gov (United States)

    Kishida, Kuniharu

    2013-09-01

    From the viewpoint of statistical inverse problems, identification of transfer functions in feedback models is applied for neurodynamics of somatosensory cortices, and brain communication among active regions can be expressed in terms of transfer functions. However, brain activities have been investigated mainly by averaged waveforms in the conventional magnetoencephalography analysis, and thus brain communication among active regions has not yet been identified. It is shown that brain communication among two more than three brain regions is determined, when fluctuations related to concatenate averaged waveforms can be obtained by using a suitable blind source separation method. In blind identification of feedback model, some transfer functions or their impulse responses between output variables of current dipoles corresponding to active regions are identified from reconstructed time series data of fluctuations by the method of inverse problem. Neurodynamics of somatosensory cortices in 5 Hz median nerve stimuli can be shown by cerebral communication among active regions of somatosensory cortices in terms of impulse responses of feedback model.

  17. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  18. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices.

    Science.gov (United States)

    Fujiwara, Katsuo; Kunita, Kenji; Kiyota, Naoe; Mammadova, Aida; Irei, Mariko

    2012-12-03

    A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10-20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.

  19. Significant genetic differentiation among meroplanktonic barrel ...

    African Journals Online (AJOL)

    ... in the barrel jellyfish investigated could be attributed to either intrinsic and/or extrinsic barriers to genetic exchange between different populations that may have adapted to different environmental conditions. Keywords: haplotype variation, mtDNA COI gene, northern Adriatic, phylogeography, true jellyfish, Tunisian waters, ...

  20. DELPHI Barrel Ring Imaging Cherenkov Detector

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. This is a piece of the Barrel Ring Imaging Cherenkov detector which was used to identify particles in DELPHI.It measured the Cherenkov light emitted when particles travelled faster than the speed of light through the material of the detector. The photo shows the complete Cherenkov detector.

  1. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  2. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  3. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  4. Adapting to Pork-Barrel Science.

    Science.gov (United States)

    Walsh, John

    1987-01-01

    Discusses the increasing trend toward the pork-barrel funding of science projects, particularly for grants to academic institutions. Addresses the new strategies being employed by opponents of such funding. Describes some of the possible ramifications of the various strategies and the perceived link between science funding and economic growth. (TW)

  5. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  6. Intrainsular connectivity and somatosensory responsiveness in young children with ASD.

    Science.gov (United States)

    Failla, Michelle D; Peters, Brittany R; Karbasforoushan, Haleh; Foss-Feig, Jennifer H; Schauder, Kimberly B; Heflin, Brynna H; Cascio, Carissa J

    2017-01-01

    The human somatosensory system comprises dissociable paths for discriminative and affective touch, reflected in separate peripheral afferent populations and distinct cortical targets. Differences in behavioral and neural responses to affective touch may have an important developmental role in early social experiences, which are relevant for autism spectrum disorder (ASD). Using probabilistic tractography, we compared the structural integrity of white matter pathways for discriminative and affective touch in young children with ASD and their typically developing (TD) peers. We examined two tracts: (1) a tract linking the thalamus with the primary somatosensory cortex, which carries discriminative tactile information, and (2) a tract linking the posterior insula-the cortical projection target of unmyelinated tactile afferents mediating affective touch-with the anterior insula, which integrates sensory and visceral inputs to interpret emotional salience of sensory stimuli. We investigated associations between tract integrity and performance on a standardized observational assessment measuring tactile discrimination and affective responses to touch. Both the thalamocortical and intrainsular tracts showed reduced integrity (higher mean diffusivity) in the ASD group compared to those in the TD group. Consistent with the previous findings, the ASD group exhibited impaired tactile discriminative ability, more tactile defensiveness, and more sensory seeking (e.g., enthusiastic play or repetitive engagement with a specific tactile stimulus). There was a significant relation between intrainsular tract integrity and tactile seeking. The direction of this relation differed between groups: higher intrainsular mean diffusivity (MD) (reflecting decreased tract integrity) was associated with increased tactile seeking in the TD group but with decreased tactile seeking in the ASD group. In the TD group, decreased tactile defensiveness was also associated with higher intrainsular MD

  7. Somatosensory evoked potentials in children with autism

    Directory of Open Access Journals (Sweden)

    Hanan Galal Azouz

    2014-06-01

    Conclusions: Children with autism have abnormal SSEP changes and were significantly related to the presence of sensory abnormalities, indicating central cortical dysfunction of somatosensory area. On the other hand, these abnormal SSEP changes were not related to the severity of autism.

  8. Somatosensory Neurotoxicity: Agents and Assessment Methodology

    Science.gov (United States)

    The somatosensory system is comprised of a variety of sensory receptors located in the skin, muscle tendons, and visceral organs that are innervated by myelinated and nonmyelinated axons of the peripheral nervous system. These peripheral sensory nerve fibers in turn communicate s...

  9. Somatosensory Neurotoxicity: Agents and Assessment Methodology**

    Science.gov (United States)

    The somatosensory system is comprised of a variety of sensory receptors located in the skin, muscle tendons, and visceral organs that are innervated by myelinated and nonmyelinated axons of the peripheral nervous system. These peripheral sensory nerve fibers in tum communicate so...

  10. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  11. Development of rat female genital cortex and control of female puberty by sexual touch.

    Directory of Open Access Journals (Sweden)

    Constanze Lenschow

    2017-09-01

    Full Text Available Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  12. Development of rat female genital cortex and control of female puberty by sexual touch

    Science.gov (United States)

    Lenschow, Constanze; Sigl-Glöckner, Johanna

    2017-01-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch. PMID:28934203

  13. Development of rat female genital cortex and control of female puberty by sexual touch.

    Science.gov (United States)

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  14. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system.

    Science.gov (United States)

    Lee, Li-Jen; Chen, Wan-Jung; Chuang, Ya-Wen; Wang, Yu-Chun

    2009-10-01

    The significance of very early experience in the maturation of whisker-to-barrel system comes primarily from neonatal whisker or infraorbital nerve lesion studies conducted prior to the formation of cortical barrels. However, the surgical procedures damage the sensory pathway; it is difficult to examine the consequence after the recovery of sensory deprivation. To address this issue, we performed a neonatal whisker-cut (WC) paradigm and examined their behavioral performance during P30 to P35. With fully regrown whiskers, the rats that had whisker cut from the date of birth (P0) to postnatal day (P) 3 (WC 0-3) exhibited shorter crossable distance in the gap-crossing test. However, the rats had whisker cut at P3 only (WC 3) behaved normally in this test, suggesting the critical period for the development of whisker-specific tactile function is P0-P3, agreed with previous findings demonstrated by lesion methods. In the WC 0-3 rats, the cortical areas in the layer IV somatosensory region in relation to the trimmed whiskers were enlarged and the spiny stellate neurons within had larger dendritic span and greater spine density. Furthermore, more long and multiple-head spines were found in these rats. With abnormal structure and function in the somatosensory system, the WC 0-3 rats showed higher explorative activity and more frequent social interactions. Our results have demonstrated that the early tactile deprivation, similar to early visual deprivation, perturbed the developmental program of the brain and affected later behaviors in various aspects.

  15. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  16. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination.

    Science.gov (United States)

    Bohlhalter, Stephan; Abela, Eugenio; Weniger, Dorothea; Weder, Bruno

    2009-12-15

    To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD) with deficient haptic perception. Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  17. Adaptive coding of orofacial and speech actions in motor and somatosensory spaces with and without overt motor behavior.

    Science.gov (United States)

    Sato, Marc; Vilain, Coriandre; Lamalle, Laurent; Grabski, Krystyna

    2015-02-01

    Studies of speech motor control suggest that articulatory and phonemic goals are defined in multidimensional motor, somatosensory, and auditory spaces. To test whether motor simulation might rely on sensory-motor coding common with those for motor execution, we used a repetition suppression (RS) paradigm while measuring neural activity with sparse sampling fMRI during repeated overt and covert orofacial and speech actions. RS refers to the phenomenon that repeated stimuli or motor acts lead to decreased activity in specific neural populations and are associated with enhanced adaptive learning related to the repeated stimulus attributes. Common suppressed neural responses were observed in motor and posterior parietal regions in the achievement of both repeated overt and covert orofacial and speech actions, including the left premotor cortex and inferior frontal gyrus, the superior parietal cortex and adjacent intraprietal sulcus, and the left IC and the SMA. Interestingly, reduced activity of the auditory cortex was observed during overt but not covert speech production, a finding likely reflecting a motor rather an auditory imagery strategy by the participants. By providing evidence for adaptive changes in premotor and associative somatosensory brain areas, the observed RS suggests online state coding of both orofacial and speech actions in somatosensory and motor spaces with and without motor behavior and sensory feedback.

  18. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  19. First half of CMS inner tracker barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first half of the CMS inner tracker barrel is seen in this image consisting of three layers of silicon modules which will be placed at the centre of the CMS experiment at the LHC in CERN. Laying close to the interaction point of the 14 TeV proton-proton collisions, the silicon used here must be able to survive high doses of radiation and a 4 T magnetic field without damage.

  20. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  1. A Somatosensory Interaction System based on Kinect

    Directory of Open Access Journals (Sweden)

    Liang Xiu Bo

    2016-01-01

    Full Text Available The somatosensory interaction technique is one form of the perceptual user interface which is used in video game and virtual reality more and more widly. In this paper, a somatosensory interaction system based on Kinect is presented. Firstly, the user performances his action in front of a kinect, the sensing data from kinect is preprocessed and the main features of the action are extracted. Secondly, the performaced action is recognized by the matching algorithm based on Dynamic Time Warping Hidden Markov Model. Finally, the recognized motion is employed to interact with the virtual human and virtual environment. A series of experiments have been done to test the availablity of our system. Results show that the recognition rate is high enough to be used in virtual reality applications.

  2. Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2014-07-15

    The N30 component of the somatosensory evoked potential is known to be modulated by sensory interference, motor action, movement ideation and observation. We introduce a new paradigm in which the observation task of another person's hand movement triggers the somatosensory stimulus, inducing the N30 response in participants. In order to identify the possible contribution of the mirror neuron network (MNN) to this early sensorimotor processing, we analyzed the N30 topography, the event-related spectral perturbation and the inter-trial coherence on single electroencephalogram (EEG) trials, and we applied swLORETA to localize the N30 sources implicated in the time-frequency domain at rest and during observation, as well as the generators differentiating these two contextual brain states. We found that N30 amplitude increase correlated with increased contralateral precentral alpha, frontal beta, and contralateral frontal gamma power spectrum, and with central and precentral alpha and parietal beta phase-locking of ongoing EEG signals. We demonstrate specific activation of the contralateral post-central and parietal cortex where the angular gyrus (BA39), an important MNN node, is implicated in this enhancement during observation. We conclude that this part of the MNN, involved in proprioceptive processing and more complex body-action representations, is already active prior to somatosensory input and may enhance N30. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Changes in Somatosensory Responsiveness in Behaving Primates

    Science.gov (United States)

    1988-08-01

    ORGANIZATION REPORT NUMBER(S) Dept. Anatomy and Neurobiology University of Tennessee, Memphis AF(O R.-1 - 6 8 - V 6 9 1 6a. NAME OF PERFORMING ORGANIZATION... compared with the monkey data. We have determined that 1) The premovement activity that occurs in primary somatosensory cortical neurons differs in timing...vibratory as compared with visual go cues. Our main goal was to better understand the performance limitations imposed by the nervous system on

  4. Somatosensory and acoustic brain stem reflex myoclonus.

    OpenAIRE

    Shibasaki, H; Kakigi, R; Oda, K; Masukawa, S

    1988-01-01

    A patient with brain stem reflex myoclonus due to a massive midbrain infarct was studied electrophysiologically. Myoclonic jerks were elicited at variable latencies by tapping anywhere on the body or by acoustic stimuli, and mainly involved flexor muscles of upper extremities. The existence of convergence of somatosensory and acoustic inputs in the brain stem was suggested. This myoclonus seemed to be mediated by a mechanism similar to the spino-bulbo-spinal reflex.

  5. Keeping in Touch With the Visual System: Spatial Alignment and Multisensory Integration of Visual-Somatosensory Inputs

    Directory of Open Access Journals (Sweden)

    Jeannette Rose Mahoney

    2015-08-01

    Full Text Available Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration at very early sensory processing levels. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing visual-somatosensory (VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V+S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55ms. In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to visual-somatosensory pairings.

  6. Key considerations in designing a somatosensory neuroprosthesis.

    Science.gov (United States)

    Delhaye, Benoit P; Saal, Hannes P; Bensmaia, Sliman J

    2016-11-01

    In recent years, a consensus has emerged that somatosensory feedback needs to be provided for upper limb neuroprostheses to be useful. An increasingly promising approach to sensory restoration is to electrically stimulate neurons along the somatosensory neuraxis to convey information about the state of the prosthetic limb and about contact with objects. To date, efforts toward artificial sensory feedback have consisted mainly of demonstrating that some sensory information could be conveyed using a small number of stimulation patterns, generally delivered through single electrodes. However impressive these achievements are, results from different studies are hard to compare, as each research team implements different stimulation patterns and tests the elicited sensations differently. A critical question is whether different stimulation strategies will generalize from contrived laboratory settings to activities of daily living. Here, we lay out some key specifications that an artificial somatosensory channel should meet, discuss how different approaches should be evaluated, and caution about looming challenges that the field of sensory restoration will face. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: a case study of three patients

    Directory of Open Access Journals (Sweden)

    Zanatta Paolo

    2012-03-01

    Full Text Available Abstract This case series investigates whether painful electrical stimulation increases the early prognostic value of both somatosensory-evoked potentials and functional magnetic resonance imaging in comatose patients after cardiac arrest. Three single cases with hypoxic-ischemic encephalopathy were considered. A neurophysiological evaluation with an electroencephalogram and somatosensory-evoked potentials during increased electrical stimulation in both median nerves was performed within five days of cardiac arrest. Each patient also underwent a functional magnetic resonance imaging evaluation with the same neurophysiological protocol one month after cardiac arrest. One patient, who completely recovered, showed a middle latency component at a high intensity of stimulation and the activation of all brain areas involved in cerebral pain processing. One patient in a minimally conscious state only showed the cortical somatosensory response and the activation of the primary somatosensory cortex. The last patient, who was in a vegetative state, did not show primary somatosensory evoked potentials; only the activation of subcortical brain areas occurred. These preliminary findings suggest that the pain-related somatosensory evoked potentials performed to increase the prognosis of comatose patients after cardiac arrest are associated with regional brain activity showed by functional magnetic resonance imaging during median nerves electrical stimulation. More importantly, this cases report also suggests that somatosensory evoked potentials and functional magnetic resonance imaging during painful electrical stimulation may be sensitive and complementary methods to predict the neurological outcome in the acute phase of coma. Thus, pain-related somatosensory-evoked potentials may be a reliable and a cost-effective tool for planning the early diagnostic evaluation of comatose patients.

  8. Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: a case study of three patients.

    Science.gov (United States)

    Zanatta, Paolo; Messerotti Benvenuti, Simone; Baldanzi, Fabrizio; Bendini, Matteo; Saccavini, Marsilio; Tamari, Wadih; Palomba, Daniela; Bosco, Enrico

    2012-03-31

    This case series investigates whether painful electrical stimulation increases the early prognostic value of both somatosensory-evoked potentials and functional magnetic resonance imaging in comatose patients after cardiac arrest. Three single cases with hypoxic-ischemic encephalopathy were considered. A neurophysiological evaluation with an electroencephalogram and somatosensory-evoked potentials during increased electrical stimulation in both median nerves was performed within five days of cardiac arrest. Each patient also underwent a functional magnetic resonance imaging evaluation with the same neurophysiological protocol one month after cardiac arrest. One patient, who completely recovered, showed a middle latency component at a high intensity of stimulation and the activation of all brain areas involved in cerebral pain processing. One patient in a minimally conscious state only showed the cortical somatosensory response and the activation of the primary somatosensory cortex. The last patient, who was in a vegetative state, did not show primary somatosensory evoked potentials; only the activation of subcortical brain areas occurred. These preliminary findings suggest that the pain-related somatosensory evoked potentials performed to increase the prognosis of comatose patients after cardiac arrest are associated with regional brain activity showed by functional magnetic resonance imaging during median nerves electrical stimulation. More importantly, this cases report also suggests that somatosensory evoked potentials and functional magnetic resonance imaging during painful electrical stimulation may be sensitive and complementary methods to predict the neurological outcome in the acute phase of coma. Thus, pain-related somatosensory-evoked potentials may be a reliable and a cost-effective tool for planning the early diagnostic evaluation of comatose patients.

  9. Comparison between the contribution of ellagitannins of new oak barrels and one-year-used barrels

    Directory of Open Access Journals (Sweden)

    Navarro María

    2016-01-01

    Full Text Available The influence of the botanical origin (French oak: Quercus petraea and American oak: Quercus alba, toasting level and if the barrel were new of previously used during one year have been studied. Results indicate that French oak released significant higher amounts of ellagitannins than American oak. Toasting level also exert a great influence. The higher the toasting level the lower the ellagitannin concentration in wines. Finally, the use during one year of the barrels drastically decreases the ellagitannin concentration in wines. Consequently, it can be concluded that the origin of oak, the toasting level and especially the previous use of the barrels have a very significant influence on the final ellagitannin concentration in wine, and probably on its sensory impact.

  10. Distributed task-specific processing of somatosensory feedback for voluntary motor control.

    Science.gov (United States)

    Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H

    2016-04-14

    Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey's arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors.

  11. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field.

    Science.gov (United States)

    Guo, Congdi; Peng, Jie; Zhang, Yalun; Li, Anan; Li, Yuxin; Yuan, Jing; Xu, Xiaofeng; Ren, Miao; Gong, Hui; Chen, Shangbin

    2017-06-06

    Corticofugal projection neurons are key components in connecting the neocortex and the subcortical regions. In the barrel field, these neurons have various projection targets and play crucial roles in the rodent whisker sensorimotor system. However, the projection features of corticofugal projection neurons at the single-axon level are far from comprehensive elucidation. Based on a brain-wide positioning system with high-resolution imaging for Thy1-GFP M-line mice brains, we reconstructed and analyzed more than one hundred corticofugal projection neurons in both layer V and VI of barrel cortex. The dual-color imaging made it possible to locate the neurons' somata, trace their corresponding dendrites and axons and then distinguish the neurons as L5 type I/II or L6 type. The corticofugal projection pattern showed significant diversity across individual neurons. Usually, the L5 type I neurons have greater multi-region projection potential. The thalamus and the midbrain are the most frequent projection targets among the investigated multidirectional projection neurons, and the hypothalamus is particularly unique in that it only appears in multidirectional projection situations. Statistically, the average branch length of apical dendrites in multi-region projection groups is larger than that of single-region projection groups. This study demonstrated a single-axon-level analysis for barrel corticofugal projection neurons, which could provide a micro-anatomical basis for interpreting whisker sensorimotor circuit function.

  12. Movement-Related Sensorimotor High-Gamma Activity Mainly Represents Somatosensory Feedback

    Directory of Open Access Journals (Sweden)

    Seokyun Ryun

    2017-07-01

    Full Text Available Somatosensation plays pivotal roles in the everyday motor control of humans. During active movement, there exists a prominent high-gamma (HG >50 Hz power increase in the primary somatosensory cortex (S1, and this provides an important feature in relation to the decoding of movement in a brain-machine interface (BMI. However, one concern of BMI researchers is the inflation of the decoding performance due to the activation of somatosensory feedback, which is not elicited in patients who have lost their sensorimotor function. In fact, it is unclear as to how much the HG component activated in S1 contributes to the overall sensorimotor HG power during voluntary movement. With regard to other functional roles of HG in S1, recent findings have reported that these HG power levels increase before the onset of actual movement, which implies neural activation for top-down movement preparation or sensorimotor interaction, i.e., an efference copy. These results are promising for BMI applications but remain inconclusive. Here, we found using electrocorticography (ECoG from eight patients that HG activation in S1 is stronger and more informative than it is in the primary motor cortex (M1 regardless of the type of movement. We also demonstrate by means of electromyography (EMG that the onset timing of the HG power in S1 is later (49 ms than that of the actual movement. Interestingly, we show that the HG power fluctuations in S1 are closely related to subtle muscle contractions, even during the pre-movement period. These results suggest the following: (1 movement-related HG activity in S1 strongly affects the overall sensorimotor HG power, and (2 HG activity in S1 during voluntary movement mainly represents cortical neural processing for somatosensory feedback.

  13. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning.NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  14. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  15. Assessment of reorganization in the sensorimotor cortex after upper limb amputation.

    Science.gov (United States)

    Schwenkreis, P; Witscher, K; Janssen, F; Pleger, B; Dertwinkel, R; Zenz, M; Malin, J P; Tegenthoff, M

    2001-04-01

    We wanted to investigate plastic changes occurring in the motor and somatosensory cortex after upper limb amputation, and their possible relationship to phantom pain. To assess these plastic changes, we used transcranial magnetic stimulation (TMS) and source localization of somatosensory evoked potentials (SEP). Eleven patients with upper limb amputation were investigated. The phantom pain intensity was assessed by visual analogue scaling (VAS). Using TMS mapping, we found a significant lateralization of the amplitude-weighted centre of gravity (Pphantom pain intensity. We conclude that after limb amputation, the relationship between plastic changes occurring in the sensorimotor cortex and phantom pain seems to be more complex than previously believed.

  16. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  17. Progress of the EM Barrel Presampler Assembly

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a separate detector which will be placed in front of the electromagnetic barrel calorimeter, in the same cryostat. It is made of 32×2 sectors, each of them being 3.1 m long, about 28 cm large and a few cm thick. Three countries are involved in its construction: France (ISN-Grenoble), Sweden (KTH-Stockholm) and Morocco (Universities: Hassan II Ain Chock-Casablanca and Mohamed V-Rabat, and CNESTEN-Rabat). The design of the presampler started ten years ago and the series production began at the end of the year 2000. Today two-thirds of the sectors are produced and validated. In November 2002, half the detector (i.e. 32 sectors), was inserted on the internal face of the first EM calorimeter wheel (see pictures). Despite the fact that only 0.4 mm was available between sectors, it was possible to insert them all without meeting major difficulties. This operation was led by a team of four people, the sectors being systematically tested after insertion in the wheel. The inserti...

  18. Cosmic Ray Data in TRT Barrel

    CERN Multimedia

    M. Hance

    "I had a great day in August when I went into SR1," said Daniel Froidevaux, former project leader of the ATLAS Transition Radiation Tracker, "not only had all SCT barrels arrived at CERN, but there were cosmic ray tracks seen in the TRT!" Daniel's excitement was mirrored by the rest of the TRT collaboration when, on July 29, the first cosmic ray tracks were seen in the barrel. Along with many others in the community, Daniel was quick to point out that this is the cumulative result of years of R&D, test beam work, and an intense installation and integration schedule. Indeed, the cosmic ray readout is only possible through the coordination of many efforts, from detector mechanics to module assembly, power and high voltage control, cooling, gas systems, electronics and cabling, data acquisition, and monitoring. "Many people have worked very hard on the the TRT, some of them for more than 10 years," said Brig Williams, the leader of the UPenn group responsible for much of the TRT front end electronics. He ...

  19. ATLAS TRT Barrel in Test Beam

    CERN Multimedia

    Luehring, F

    In July, the TRT group made a highly successful test of 6 Barrel TRT modules in the ATLAS H8 testbeam. Over 3000 TRT straw tubes (4 mm diameter gas drift tubes) were instrumented and found to operate well. The prototype represents 1/16 of the ATLAS TRT barrel and was assembled from TRT modules produced as spares. This was the largest scale test of the TRT to this date and the measured detector performance was as good as or better than what was expected in all cases. The 2004 TRT testbeam setup before final cabling was attached. The readout chain and central DAQ system used in the TRT testbeam is a final prototype for the ATLAS experiment. The TRT electronics used to read out the data were: The Amplifier/Shaper/Discriminator with Baseline Restoration (ASDBLR) chip is the front-end analog chip that shapes and discriminates the electronic pulses generated by the TRT straws. The Digital Time Measurement Read Out Chip (DTMROC) measures the time of the pulse relative to the beam crossing time. The TRT-ROD ...

  20. 27 CFR 25.141 - Barrels and kegs.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.141 Barrels and kegs. (a) General requirements. The brewer's name or trade name and the place of production (city and, if necessary for identification, State) shall be permanently marked on each barrel or keg. If the place of production is clearly...

  1. Analysis of gun barrel rifling twist

    Science.gov (United States)

    Sun, Jia; Chen, Guangsong; Qian, Linfang; Liu, Taisu

    2017-05-01

    Aiming at the problem of gun barrel rifling twist, the constraint relation between rifling and projectile is investigated. The constraint model of rifling and projectile is established and the geometric relation between the twist and the motion of projectile is analyzed. Based on the constraint model, according to the rotating band that is fired, the stress and the motion law of the rotating band in bore are analyzed. The effects to rotating band (double rotating band or wide driving band) caused by different rifling (rib rifling, increasing rifling and combined rifling) are also investigated. The model is demonstrated by several examples. The results of numerical examples and the constraint mode show that the uncertainty factors will be brought in the increasing rifling and combined rifling during the projectile move in the bore. According to the amplitude and the strength of the twist acting on rotating band, the steady property of rotational motion of the projectile, the rib rifling is a better choose.

  2. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Directory of Open Access Journals (Sweden)

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  3. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    Science.gov (United States)

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  4. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials.

    Science.gov (United States)

    Nakata, Hiroki; Aoki, Mai; Sakamoto, Kiwako

    2017-04-01

    The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  5. Somatosensory Substrates of Flight Control in Bats

    Directory of Open Access Journals (Sweden)

    Kara L. Marshall

    2015-05-01

    Full Text Available Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  6. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Directory of Open Access Journals (Sweden)

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  7. Somatosensory abnormalities in Chinese patients with painful temporomandibular disorders.

    Science.gov (United States)

    Yang, Guangju; Baad-Hansen, Lene; Wang, Kelun; Fu, Kaiyuan; Xie, Qiu-Fei; Svensson, Peter

    2016-01-01

    The somatosensory phenotype of Chinese temporomandibular disorders (TMD) patients is not sufficiently studied with the use of contemporary techniques and guidelines. A standardized quantitative sensory testing (QST) battery consisting of 13 parameters with a stringent statistical protocol developed by the German Research Network on Neuropathic Pain was performed over the most painful and corresponding contralateral sites as well as the right hand of 40 Chinese patients with TMD and pain classified according to the Diagnostic Criteria for TMD (DC/TMD). The same QST protocol was performed bilaterally over the infraorbital, mental, and hand regions of 70 age- and gender-stratified healthy Chinese controls. Z-scores and loss/gain scores were computed for each TMD patient. For patients, 82.5 % had somatosensory abnormalities in the painful facial region, while 60.0 % had abnormalities confined to the right hand. The most frequent abnormalities were somatosensory gain to pinprick (35.0 %) and pressure (35.0 %) stimuli, somatosensory loss to pinprick (25.0 %), cold (22.5 %), and heat (15.0 %) nociceptive stimuli. The most frequent loss/gain score was L0G2 (no somatosensory loss combined with a gain of mechanical somatosensory function) for both the facial (40.0 %) and hand (27.5 %) regions. Involving side-to-side differences in the evaluation increased the diagnostic sensitivity by 2.5-25.0 % across different parameters. Somatosensory abnormalities were commonly detected in Chinese TMD pain patients both within and outside the primary painful region, strongly indicating disturbances in the central processing of somatosensory stimuli. The individual variations in somatosensory abnormalities indicate a possible need for development of individualized TMD pain management.

  8. Clinical application of somatosensory amplification in psychosomatic medicine

    Directory of Open Access Journals (Sweden)

    Nakao Mutsuhiro

    2007-10-01

    Full Text Available Abstract Many patients with somatoform disorders are frequently encountered in psychosomatic clinics as well as in primary care clinics. To assess such patients objectively, the concept of somatosensory amplification may be useful. Somatosensory amplification refers to the tendency to experience a somatic sensation as intense, noxious, and disturbing. It may have a role in a variety of medical conditions characterized by somatic symptoms that are disproportionate to demonstrable organ pathology. It may also explain some of the variability in somatic symptomatology found among different patients with the same serious medical disorder. It has been assessed with a self-report questionnaire, the Somatosensory Amplification Scale. This instrument was developed in a clinical setting in the U.S., and the reliability and validity of the Japanese and Turkish versions have been confirmed as well. Many studies have attempted to clarify the specific role of somatosensory amplification as a pathogenic mechanism in somatization. It has been reported that somatosensory amplification does not correlate with heightened sensitivity to bodily sensations and that emotional reactivity exerts its influence on somatization via a negatively biased reporting style. According to our recent electroencephalographic study, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interoceptive sensitivity. The concept of somatosensory amplification can be useful as an indicator of somatization in the therapy of a broad range of disorders, from impaired self-awareness to various psychiatric disorders. It also provides useful information for choosing appropriate pharmacological or psychological therapy. While somatosensory amplification has a role in the presentation of somatic symptoms, it is closely associated with other factors, namely, anxiety, depression, and alexithymia that may also influence the same

  9. A Cognitive Neuropsychological and Psychophysiological Investigation of a Patient Who Exhibited an Acute Exacerbated Behavioural Response during Innocuous Somatosensory Stimulation and Movement

    Directory of Open Access Journals (Sweden)

    N. M. J. Edelstyn

    2004-01-01

    Full Text Available We report findings from a cognitive neuropsychological and psychophysiological investigation of a patient who displayed an exacerbated acute emotional expression during movement, innocuous, and aversive somatosensory stimulation. The condition developed in the context of non-specific white matter ischaemia along with abnormalities in the cortical white matter of the left anterior parietal lobe, and subcortical white matter of the left Sylvian cortex.

  10. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  11. MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

    Directory of Open Access Journals (Sweden)

    Wang Frank

    2008-02-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. Methods We used event-related magnetoencephalography (MEG to examine patterns of cortical rhythms in the primary (SI and secondary (SII somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. Results Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8–12 Hz and beta (15–30 Hz bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII in the ADHD group did not differ from that of controls. Conclusion Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability and facilitating our

  12. The influence of visual perspective on the somatosensory steady-state response during pain observation.

    Science.gov (United States)

    Canizales, Dora L; Voisin, Julien I A; Michon, Pierre-Emmanuel; Roy, Marc-André; Jackson, Philip L

    2013-01-01

    The observation and evaluation of other's pain activate part of the neuronal network involved in the actual experience of pain, including those regions subserving the sensori-discriminative dimension of pain. This was largely interpreted as evidence showing that part of the painful experience can be shared vicariously. Here, we investigated the effect of the visual perspective from which other people's pain is seen on the cortical response to continuous 25 Hz non-painful somatosensory stimulation (somatosensory steady-state response: SSSR). Based on the shared representation framework, we expected first-person visual perspective (1PP) to yield more changes in cortical activity than third-person visual perspective (3PP) during pain observation. Twenty healthy adults were instructed to rate a series of pseudo-dynamic pictures depicting hands in either painful or non-painful scenarios, presented either in 1PP (0-45° angle) or 3PP (180° angle), while changes in brain activity was measured with a 128-electode EEG system. The ratings demonstrated that the same scenarios were rated on average as more painful when observed from the 1PP than from the 3PP. As expected from previous works, the SSSR response was decreased after stimulus onset over the left caudal part of the parieto-central cortex, contralateral to the stimulation side. Moreover, the difference between the SSSR was of greater amplitude when the painful situations were presented from the 1PP compared to the 3PP. Together, these results suggest that a visuospatial congruence between the viewer and the observed scenarios is associated with both a higher subjective evaluation of pain and an increased modulation in the somatosensory representation of observed pain. These findings are discussed with regards to the potential role of visual perspective in pain communication and empathy.

  13. The influence of visual perspective on the somatosensory steady-state response during pain observation

    Directory of Open Access Journals (Sweden)

    Dora Linsey Canizales

    2013-12-01

    Full Text Available The observation and evaluation of other's pain activate part of the neuronal network involved in the actual experience of pain, including those regions subserving the sensori-discriminative dimension of pain. This was largely interpreted as evidence showing that part of the painful experience can be shared vicariously. Here, we investigated the effect of the visual perspective from which other people’s pain is seen on the cortical response to continuous 25 Hz non-painful somatosensory stimulation (somatosensory steady-state response: SSSR. Based on the shared representation framework, we expected first-person visual perspective (1PP to yield more changes in cortical activity than third-person visual perspective (3PP during pain observation. Twenty healthy adults were instructed to rate a series of pseudo-dynamic pictures depicting hands in either painful or non-painful scenarios, presented either in 1PP (0°-45° angle or 3PP (180° angle, while changes in brain activity was measured with a 128-electode EEG system. The ratings demonstrated that the same scenarios were rated on average as more painful when observed from the 1PP than from the 3PP. As expected from previous works, the SSSR response was decreased after stimulus onset over the left caudal part of the parieto-central cortex, contralateral to the stimulation side. Moreover, the difference between the SSSR was of greater amplitude when the painful situations were presented from the 1PP compared to the 3PP. Together, these results suggest that a visuospatial congruence between the viewer and the observed scenarios is associated with both a higher subjective evaluation of pain and an increased modulation in the somatosensory representation of observed pain. These findings are discussed with regards to the potential role of visual perspective in pain communication and empathy.

  14. Within, but not between hands interactions in vibrotactile detection thresholds reflect somatosensory receptive field organization

    Directory of Open Access Journals (Sweden)

    Luigi eTamè

    2014-02-01

    Full Text Available Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the between-hand level is not known. In four experiments, we addressed this issue by combining a Bayesian adaptive staircase procedure (QUEST with a two-interval forced choice (2IFC design in order to establish threshold for detecting 200ms, 100Hz sinusoidal vibrations applied to the index or little fingertip of either hand (targets. We systematically varied the masker finger (index, middle, ring, or little finger of either hand, while controlling the spatial location of the target and masker stimuli. Detection thresholds varied consistently as a function of the masker finger when the latter was on the same hand (Experiments 1 and 2, but not when on different hands (Experiments 3 and 4. Within the hand, detection thresholds increased for masker fingers closest to the target finger (i.e., middle>ring when the target was index. Between the hands, detection thresholds were higher only when the masker was present on any finger as compared to when the target was presented in isolation. The within hand effect of masker finger is consistent with the segregation of different fingers at the early stages of somatosensory processing, from the periphery to the primary somatosensory cortex (SI. We propose that detection is finger-specific and reflects the organisation of somatosensory receptive fields in SI within, but not between the hands.

  15. Software development for the P¯ANDA barrel DIRC

    Science.gov (United States)

    Dutta, Dipanwita; P¯ANDA Cherenkov Group

    2011-05-01

    The charged particle identification in the barrel region of the P¯ANDA detector in the future FAIR facility at GSI is planned with a very thin Cherenkov detector using the DIRC principle. Due to a very compact design of the barrel DIRC with focusing optics, the reconstruction of the Cherenkov angle is quite challenging. In this contribution, the possible reconstruction algorithm of the barrel DIRC will be discussed, with emphasis on the possibility to include the DIRC in the trigger decision and the correction of the chromatic dispersion with fast timing information.

  16. Qualification Procedures of the CMS Pixel Barrel Modules

    CERN Document Server

    Starodumov, A; Horisberger, R.; Kastli, H.Chr.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Trueb, P.

    2006-01-01

    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.

  17. The Significance of Somatosensory Stimulation to the Hand: Implications for Occupational Therapy Practice

    Directory of Open Access Journals (Sweden)

    Guy L. McCormack PhD,OTR/L

    2014-10-01

    Full Text Available The hands contain numerous nerve endings that are intimately connected to the brain. Mounting evidence supports the concept that willful manipulation of objects contributes to expansion or reorganization of the somatosensory cortex and can produce therapeutic outcomes. In the past decade, research has demonstrated that cortical plasticity can continue throughout adulthood. Brain plasticity is a core principle that demonstrates the ability of the central nervous system to respond to stimuli and modify its structural organization and function as an adaptive response. Occupation-based interventions, which engage the use of the hands, are conceived in this article as a “mindbody” experience because of the vast potential for perceptual learning and neurologic reorganization. Many types of neuroplasticity have been identified, but “activity- dependent neuroplasticity” is an essential concept for occupational therapy practice. In addition, the concept of “cross-modal plasticity” will also be delineated with regard to implications to clinical practice. Guidelines for tactile or somatosensory stimulation will be derived from a systematic review of the neuroscience literature.

  18. Alexithymia and the labeling of facial emotions: response slowing and increased motor and somatosensory processing.

    Science.gov (United States)

    Ihme, Klas; Sacher, Julia; Lichev, Vladimir; Rosenberg, Nicole; Kugel, Harald; Rufer, Michael; Grabe, Hans-Jörgen; Pampel, André; Lepsien, Jöran; Kersting, Anette; Villringer, Arno; Suslow, Thomas

    2014-03-14

    Alexithymia is a personality trait that is characterized by difficulties in identifying and describing feelings. Previous studies have shown that alexithymia is related to problems in recognizing others' emotional facial expressions when these are presented with temporal constraints. These problems can be less severe when the expressions are visible for a relatively long time. Because the neural correlates of these recognition deficits are still relatively unexplored, we investigated the labeling of facial emotions and brain responses to facial emotions as a function of alexithymia. Forty-eight healthy participants had to label the emotional expression (angry, fearful, happy, or neutral) of faces presented for 1 or 3 seconds in a forced-choice format while undergoing functional magnetic resonance imaging. The participants' level of alexithymia was assessed using self-report and interview. In light of the previous findings, we focused our analysis on the alexithymia component of difficulties in describing feelings. Difficulties describing feelings, as assessed by the interview, were associated with increased reaction times for negative (i.e., angry and fearful) faces, but not with labeling accuracy. Moreover, individuals with higher alexithymia showed increased brain activation in the somatosensory cortex and supplementary motor area (SMA) in response to angry and fearful faces. These cortical areas are known to be involved in the simulation of the bodily (motor and somatosensory) components of facial emotions. The present data indicate that alexithymic individuals may use information related to bodily actions rather than affective states to understand the facial expressions of other persons.

  19. Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations.

    Science.gov (United States)

    Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua

    2017-05-15

    Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cortical stimulation mapping of phantom limb rolandic cortex. Case report.

    Science.gov (United States)

    Ojemann, J G; Silbergeld, D L

    1995-04-01

    Findings of intraoperative rolandic cortex mapping during awake craniotomy for a tumor in a patient with a contralateral upper-extremity amputation are presented. This patient sustained a traumatic amputation at the mid-humerus 24 years previously. Initially he had experienced rare painless phantom limb sensations but none in the past 10 years. Functional mapping during an awake craniotomy was performed to maximize safe tumor resection. Typical temporal and frontal speech areas were identified; motor representation of face and jaw extended more superiorly than sensory representation. Shoulder movements were evoked more laterally than usual at the superior aspect of the craniotomy. A small region of precentral gyrus, between the jaw and shoulder representations, elicited no detectable effect when stimulated. Somatosensory mapping showed a similar topographical distribution of face and mouth cortex; however, posterior and inferior to the shoulder motor cortex, right arm and hand (phantom) sensations were evoked. Evidence suggests that significant motor reorganization occurs following an amputation, with expansion of neighboring homuncular representations without loss of somatosensory representation, despite a long period of time without any sensation referable to the amputated limb. Contrary to models of sensory cortex plasticity, the plasticity of the adult cortex may be system specific, with reorganization present in motor, but not in sensory, cortical systems.

  1. Common barrel and forward CA tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mykhailo, Pugach [Goethe-Universitaet, Frankfurt (Germany); Frankfurt Institute for Advanced Studies, Frankfurt (Germany); KINR, Kyiv (Ukraine); Gorbunov, Sergey; Kisel, Ivan [Goethe-Universitaet, Frankfurt (Germany); Frankfurt Institute for Advanced Studies, Frankfurt (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    There are complex detector setups which consist of barrel (cylindrical) and forward parts, and such systems require a special approach in the registered charged particles track finding procedure. Currently the tracking procedure might be performed in both parts of such detector independently from each other, but the final goal on this direction is a creation of a combined tracking, which will work in both parts of the detector simultaneously. The basic algorithm is based on Kalman Filter (KF) and Cellular Automata (CA). And the tracking procedure in such a complex system is rather extraordinary as far as it requires 2 different models to describe the state vector of segments of the reconstructed track in the mathematical apparatus of the KF-algorithm. To overcome this specifics a mathematical apparatus of transition matrices must be developed and implemented, so that one can transfer from one track model to another. Afterwards the work of the CA is performed, which reduces to segments sorting, their union into track-candidates and selection of the best candidates by the chi-square criteria after fitting of the track-candidate by the KF. In this report the algorithm, status and perspectives of such combined tracking are described.

  2. Somatosensory Event-related Potentials from Orofacial Skin Stretch Stimulation

    OpenAIRE

    Ito, Takayuki; Ostry, David J; Gracco, Vincent

    2015-01-01

    International audience; Cortical processing associated with orofacial somatosensory function in speech has received limited experimental attention due to the difficulty of providing precise and controlled stimulation. This article introduces a technique for recording somatosensory event-related potentials (ERP) that uses a novel mechanical stimulation method involving skin deformation using a robotic device. Controlled deformation of the facial skin is used to modulate kinesthetic inputs thro...

  3. Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2011-01-15

    The N30 component of somatosensory evoked potentials has been recognized as a crucial index of brain sensorimotor processing and has been increasingly used clinically. Previously, we have shown that the N30 is accompanied by both an increase of the power spectrum of the ongoing beta-gamma EEG (event related synchronization, ERS) and by a reorganization (phase-locking) of the spontaneous phase of this rhythm (inter-trials coherency, ITC). In order to localize its sources taking into account both the phasic and oscillatory aspects of the phenomenon, we here apply swLORETA methods on averaged signals of the event-related potential (ERP) from a 128 scalp-electrodes array in time domain and also on raw EEG signals in frequency domain at the N30 peak latency. We demonstrate that the two different mechanisms that generate the N30 component power increase (ERS) and phase locking (ITC) across EEG trials are spatially localized in overlapping areas in the precentral cortex, namely the motor cortex (BA4) and the premotor cortex (BA6). From this common region, the generator of the N30 event-related potential expands toward the posterior part of BA4, the anterior part of BA6 and the prefrontal cortex (BA9). These latter areas also present significant ITC sources in the beta-gamma frequency range, but without significant power increase of this rhythm. This demonstrates that N30 results from network activity that depends on distinct oscillating and phasic generators localized in the frontal cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Tri-Service Green Gun Barrel (PP 1074)

    National Research Council Canada - National Science Library

    Rusch, Lawrence F

    2003-01-01

    ...) PP 1074 Tri-Service Green Gun Barrel. The program's goal was to develop an environmentally friendly process for depositing wear and erosion resistant materials onto gun bores replacing the current hazardous aqueous electro-deposition...

  5. EXTERNAL BARREL TEMPERATURE OF A SMALL BORE OLYMPIC RIFLE

    Directory of Open Access Journals (Sweden)

    Bozena Gladyszewska

    2013-01-01

    Full Text Available Investigations on changes in a rifle’s barrel temperature during shooting in a rhythm typical for practitioners of Olympic shooting sports are presented. Walther KK300 (cal. 5.6 mm, a typical rifle often used in Olympic competitions, R50 RWS ammunition and a high speed thermographic camera were used in the study. Altair version 5 software was used to process thermal images and a stationary wavelet transform was applied to denoise signals for all the studied points. It was found that the temperature of the rifle barrel does not exceed 0.3°C after one shot whereas the total temperature increase does not exceed 5°C after taking 40 shots and does not affect the position of the hitting point on a target. In fact, contrary to popular belief, the so-called “warming shots” are not done for barrel heating but for cleaning of remnants in the barrel.

  6. Processing of Niobium-Lined M240 Machine Gun Barrels

    Science.gov (United States)

    2014-11-01

    metals. In particular, cobalt - chromium alloys offer a great deal of potential as liner materials.12,19 Nevertheless, the current results represents...12. Montgomery JS, Garner J, Keppinger R, Eichhorst C, de Rosset WS. Tests of M249 barrels made with a cobalt - chromium alloy . Aberdeen Proving...Pittsburgh, PA. 19. Leto VE, Klimm BD, Hespos MR, Garron RF. Flowformed cobalt alloy barrel testing on the M240 machine gun. Picatinny Arsenal (NJ

  7. [Hemicorporectomy with double barreled wet colostomy: an extremely rare procedure].

    Science.gov (United States)

    Ricci, Marco Antonio; Duarte, Enio Lucio Coelho; Souza, Renato Costa Amaral; Albuquerque-Peres, Carlos Michel; Guimaraes, Gustavo Cardoso; Lopes, Ademar

    2009-12-01

    The Hemicorporectomy associated to Double-barreled wet colostomy is a high complex and heroic procedure and is to be used only exceptionally, when it is the last resource for treating locally advanced pelvic diseases in the absence of evidences of distant metastasis. We retrospectively analyzed the surgical technical details and the results from a hemicorporectomy with double-barreled wet colostomy in a single surgical time in a case of epidermoide carcinoma from a coetaneous pressure ulcer.

  8. Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.

    Science.gov (United States)

    Abraham, A; Gotkine, M; Drory, V E; Blumen, S C

    2013-11-15

    Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in

  9. Youth at risk for obesity show greater activation of striatal and somatosensory regions to food.

    Science.gov (United States)

    Stice, Eric; Yokum, Sonja; Burger, Kyle S; Epstein, Leonard H; Small, Dana M

    2011-03-23

    Obese humans, compared with normal-weight humans, have less striatal D2 receptors and striatal response to food intake; weaker striatal response to food predicts weight gain for individuals at genetic risk for reduced dopamine (DA) signaling, consistent with the reward-deficit theory of obesity. Yet these may not be initial vulnerability factors, as overeating reduces D2 receptor density, D2 sensitivity, reward sensitivity, and striatal response to food. Obese humans also show greater striatal, amygdalar, orbitofrontal cortex, and somatosensory region response to food images than normal-weight humans do, which predicts weight gain for those not at genetic risk for compromised dopamine signaling, consonant with the reward-surfeit theory of obesity. However, after pairings of palatable food intake and predictive cues, DA signaling increases in response to the cues, implying that eating palatable food contributes to increased responsivity. Using fMRI, we tested whether normal-weight adolescents at high- versus low-risk for obesity showed aberrant activation of reward circuitry in response to receipt and anticipated receipt of palatable food and monetary reward. High-risk youth showed greater activation in the caudate, parietal operculum, and frontal operculum in response to food intake and in the caudate, putamen, insula, thalamus, and orbitofrontal cortex in response to monetary reward. No differences emerged in response to anticipated food or monetary reward. Data indicate that youth at risk for obesity show elevated reward circuitry responsivity in general, coupled with elevated somatosensory region responsivity to food, which may lead to overeating that produces blunted dopamine signaling and elevated responsivity to food cues.

  10. Critical Factors for Inducing Curved Somatosensory Saccades

    Directory of Open Access Journals (Sweden)

    Tamami Nakano

    2011-10-01

    Full Text Available We are able to make a saccade toward a tactile stimuli to one hand, but trajectories of many saccades curved markedly when the arms were crossed (Groh & Sparks, 2006. However, it remains unknown why some curved and others did not. We therefore examined critical factors for inducing the curved somatosensory saccades. Participants made a saccade as soon as possible from a central fixation point toward a tactile stimulus delivered to one of the two hands, and switched between arms-crossed and arms-uncrossed postures every 6 trials. Trajectories were generally straight when the arms were uncrossed, but all participants made curved saccades when the arms were crossed (12–64%. We found that the probability of curved saccades depended critically on the onset latency: the probability was less than 5% when the latency was larger than 250 ms, but the probability increased up to 70–80% when the onset latency was 160 ms. This relationship was shared across participants. The results suggest that a touch in the arms-crossed posture was always mapped to the wrong hand in the initial phase up to 160 ms, and then remapped to the correct hand during the next 100 ms by some fundamental neural mechanisms shared across participants.

  11. Pathophysiology of somatosensory abnormalities in Parkinson disease.

    Science.gov (United States)

    Conte, Antonella; Khan, Nashaba; Defazio, Giovanni; Rothwell, John C; Berardelli, Alfredo

    2013-12-01

    Changes in sensory function that have been described in patients with Parkinson disease (PD) can be either 'pure' disorders of conscious perception such as elevations in sensory threshold, or disorders of sensorimotor integration, in which the interaction between sensory input and motor output is altered. In this article, we review the extensive evidence for disrupted tactile, nociceptive, thermal and proprioceptive sensations in PD, as well as the influences exerted on these sensations by dopaminergic therapy and deep brain stimulation. We argue that abnormal spatial and temporal processing of sensory information produces incorrect signals for the preparation and execution of voluntary movement. Sensory deficits are likely to be a consequence of the dopaminergic denervation of the basal ganglia that is the hallmark of PD. A possible mechanism to account for somatosensory deficits is one in which disease-related dopaminergic denervation leads to a loss of response specificity, resulting in transmission of noisier and less-differentiated information to cortical regions. Changes in pain perception might have a different explanation, possibly involving disease-related effects outside the basal ganglia, including involvement of peripheral pain receptors, as well as structures such as the periaqueductal grey matter and non-dopaminergic neurotransmitter systems.

  12. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    CERN Audiovisual Unit

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system.

  13. Pathophysiology, Diagnosis and Treatment of Somatosensory Tinnitus: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Haúla F. Haider

    2017-04-01

    Full Text Available Somatosensory tinnitus is a generally agreed subtype of tinnitus that is associated with activation of the somatosensory, somatomotor, and visual-motor systems. A key characteristic of somatosensory tinnitus is that is modulated by physical contact or movement. Although it seems common, its pathophysiology, assessment and treatment are not well defined. We present a scoping review on the pathophysiology, diagnosis, and treatment of somatosensory tinnitus, and identify priority directions for further research.Methods: Literature searches were conducted in Google Scholar, PubMed, and EMBASE databases. Additional broad hand searches were conducted with the additional terms etiology, diagnose, treatment.Results: Most evidence on the pathophysiology of somatosensory tinnitus suggests that somatic modulations are the result of altered or cross-modal synaptic activity within the dorsal cochlear nucleus or between the auditory nervous system and other sensory subsystems of central nervous system (e.g., visual or tactile. Presentations of somatosensory tinnitus are varied and evidence for the various approaches to treatment promising but limited.Discussion and Conclusions: Despite the apparent prevalence of somatosensory tinnitus its underlying neural processes are still not well understood. Necessary involvement of multidisciplinary teams in its diagnosis and treatment has led to a large heterogeneity of approaches whereby tinnitus improvement is often only a secondary effect. Hence there are no evidence-based clinical guidelines, and patient care is empirical rather than research-evidence-based. Somatic testing should receive further attention considering the breath of evidence on the ability of patients to modulate their tinnitus through manouvers. Specific questions for further research and review are indicated.

  14. Differential cerebral response to somatosensory stimulation of an acupuncture point versus two non-acupuncture points measured with EEG and fMRI

    Directory of Open Access Journals (Sweden)

    Till eNierhaus

    2015-02-01

    Full Text Available Acupuncture can be regarded as a complex somatosensory stimulation. Here, we evaluate whether the point locations chosen for a somatosensory stimulation with acupuncture needles differently change the brain activity in healthy volunteers. We used EEG, event-related fMRI, and resting-state functional connectivity fMRI to assess neural responses to standardized needle stimulation of the acupuncture point ST36 (lower leg and two control point locations (CP1 same dermatome, CP2 different dermatome. Cerebral responses were expected to differ for stimulation in two different dermatomes (CP2 different from ST36 & CP1, or stimulation at the acupuncture point versus the control points. For EEG, mu rhythm power increased for ST36 compared to CP1 or CP2, but not when comparing the two control points. The fMRI analysis found more pronounced insula and S2 (secondary somatosensory cortex activation, as well as precuneus deactivation during ST36 stimulation. The S2 seed-based functional connectivity analysis revealed increased connectivity to right precuneus for both comparisons, ST36 vs. CP1 and ST36 vs. CP2, however in different regions. Our results suggest that stimulation at acupuncture points may modulate somatosensory and saliency processing regions more readily than stimulation at non-acupuncture point locations. Also, our findings suggest potential modulation of pain perception due to acupuncture stimulation.

  15. COMPARISON OF THE HEMOCYANIN BETA-BARREL WITH OTHER GREEK KEY BETA-BARRELS - POSSIBLE IMPORTANCE OF THE BETA-ZIPPER IN PROTEIN-STRUCTURE AND FOLDING

    NARCIS (Netherlands)

    HAZES, B; HOL, WGJ

    The Greek key beta-barrel topology is a folding motif observed in many proteins of widespread evolutionary origin. The arthropodan hemocyanins also have such a Greek key beta-barrel, which forms the core of the third domain of this protein. The hemocyanin beta-barrel was found to be structurally

  16. Somatosensory system hyperexcitability in alternating hemiplegia of childhood.

    Science.gov (United States)

    Vollono, C; Rinalduzzi, S; Miliucci, R; Vigevano, F; Valeriani, M

    2014-12-01

    Alternating hemiplegia of childhood (AHC) is a rare neurological disease characterized by recurrent paroxysmal attacks of hemiplegia. The aim of the study was to assess the recovery cycle of the somatosensory evoked potentials (SEPs) in a group of AHC patients. Seven AHC patients and 10 control age-matched subjects (CS) were recruited. Right and left median nerve SEPs were recorded. The somatosensory system excitability was assessed by calculating the SEP changes after paired electrical stimuli. All patients were studied during the interictal phase, whilst four patients were studied also during the ictal phase. In AHC patients during the interictal phase, the amplitudes of the cervical N13 and of the cortical N20, P24 and N30 responses showed a faster recovery than in CS. In AHC patients during the ictal phase, the cortical N20 recovery cycle was prolonged compared with the interictal phase. A shortened SEP recovery cycle in AHC during the interictal phase suggests multilevel somatosensory system hyperexcitability in AHC. A partial recovery of this phenomenon during the ictal phase possibly reflects a functional reset of the somatosensory system. Overall, there is a disinhibition of the somatosensory system in AHC, a functional change of brain function associated with a possible involvement of the Na(+) /K(+) channels. This abnormality and its partial recovery during the attacks might be linked to the pathophysiological and genetic mechanisms of the disease. © 2014 EAN.

  17. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers

    DEFF Research Database (Denmark)

    Ptito, M; Fumal, A; de Noordhout, A Martens

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic...... stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex...... cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference...

  18. Aroma potential of oak battens prepared from decommissioned oak barrels.

    Science.gov (United States)

    Li, Sijing; Crump, Anna M; Grbin, Paul R; Cozzolino, Daniel; Warren, Peter; Hayasaka, Yoji; Wilkinson, Kerry L

    2015-04-08

    During barrel maturation, volatile compounds are extracted from oak wood and impart aroma and flavor to wine, enhancing its character and complexity. However, barrels contain a finite pool of extractable material, which diminishes with time. As a consequence, most barrels are decommissioned after 5 or 6 years. This study investigated whether or not decommissioned barrels can be "reclaimed" and utilized as a previously untapped source of quality oak for wine maturation. Oak battens were prepared from staves of decommissioned French and American oak barrels, and their composition analyzed before and after toasting. The oak lactone glycoconjugate content of untoasted reclaimed oak was determined by liquid chromatography-tandem mass spectrometry, while the concentrations of cis- and trans-oak lactone, guaiacol, 4-methlyguaiacol, vanillin, eugenol, furfural, and 5-methylfurfural present in toasted reclaimed oak were determined by gas chromatography-mass spectrometry. Aroma potential was then evaluated by comparing the composition of reclaimed oak with that of new oak. Comparable levels of oak lactone glycoconjugates and oak volatiles were observed, demonstrating the aroma potential of reclaimed oak and therefore its suitability as a raw material for alternative oak products, i.e., chips or battens, for the maturation of wine. The temperature profiles achieved during toasting were also measured to evaluate the viability of any yeast or bacteria present in reclaimed oak.

  19. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight, weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.

  20. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  1. Somatosensory discrimination of shape : prediction of success in normal volunteers and Parkinsonian patients

    NARCIS (Netherlands)

    Weder, B; Nienhusmeier, M; Keel, A; Leenders, KL; Ludin, HP

    Tactile discrimination of macrogeometric objects in a two-alternative forced-choice procedure represents a complex task including somatosensory and higher-order cognitive processing. The objects for somatosensory discrimination were rectangular parallelepipeds that differed in oblongness only. They

  2. First two barrel ECAL supermodules inserted in CMS HCAL

    CERN Multimedia

    K.Bell

    2006-01-01

    The first two barrel "supermodules" for the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. The barrel ECAL will consist of 36 supermodules, many of which have already been produced (see CERN Bulletin 17-18, 2006). Team from CMS ECAL, CMS Integration and CEA-DAPNIA were involved in the insertion, with the production/integration of the supermodules themselves involving many technicians, engineers and physicists from many institutes. From left to right: Olivier Teller, Maf Alidra and Lucien Veillet.

  3. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  4. Sex differences in pudendal somatosensory evoked potentials.

    Science.gov (United States)

    Pelliccioni, G; Piloni, V; Sabbatini, D; Fioravanti, P; Scarpino, O

    2014-06-01

    Somatosensory evoked potentials (SEPs) of the pudendal nerve are a well-established diagnostic tool for the evaluation of pelvic floor disorders. However, the possible influence of sex differences on response latencies has not been established yet. The aim of this study was to standardize the procedures and to evaluate possible effects of gender differences on anal and penile/clitoral SEPs. The anal and dorsal penile/clitoral SEPs were recorded in 84 healthy subjects (40 males and 44 females; mean age 47.9 ± 16.6 years, range 16-81 years; mean height 168.3 ± 20.3 cm, range 155-187 cm). Pudendal SEPs were evoked with a bipolar surface electrode stimulating the clitoris or the base of the penis and the anal orifice and recorded using scalp electrodes. The latency of the first positive component (P1) was measured. The effect and possible interaction of (a) stimulation site and (b) gender on the two variables was explored by multivariate analysis of variance (MANOVA). The examination was well tolerated and a reproducible waveform of sufficient quality was obtained in all the subjects examined. In the female subjects, a mean cortical P1 latency of 37.0 ± 2.6 and 36.4 ± 3.2 ms for anal and clitoral stimulation, respectively, was found. In the male subjects, the cortical latencies were 38.0 ± 3.5 ms for the anal stimulation and 40.2 ± 3.7 ms for the penile stimulation. At MANOVA, a statistically significant main effect of stimulation site and gender as well as a significant interaction between the two variables was found. Anal and dorsal penile/clitoral SEPs represent a well-tolerated and reproducible method to assess the functional integrity of the sensory pathways in male and female subjects. Obtaining sex-specific reference data, by individual electrophysiological testing, is highly recommended because of significant latency differences between males and females, at least as far as penile/clitoral responses are concerned.

  5. Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex

    NARCIS (Netherlands)

    Staiger, J.F.; Loucif, A.J.; Schubert, D.; Mock, M.

    2016-01-01

    Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the outcome of cortical columnar signal processing to distant target areas. At the same time they contribute to local tactile information processing by emitting recurrent axonal collaterals into the columnar

  6. Nondermatomal somatosensory deficits in chronic pain are associated with cerebral grey matter changes.

    Science.gov (United States)

    Riederer, Franz; Landmann, Gunther; Gantenbein, Andreas R; Stockinger, Lenka; Egloff, Niklaus; Sprott, Haiko; Schleinzer, Wolfgang; Pirrotta, Roberto; Dumat, Wolfgang; Luechinger, Roger; Baumgartner, Christoph; Kollias, Spyridon; Sándor, Peter S

    2017-04-01

    Widespread sensory deficits occur in 20-40% of chronic pain patients on the side of pain, independent of pain aetiology, and are known as nondermatomal sensory deficits (NDSDs). NDSDs can occur in absence of central or peripheral nervous system lesions. We hypothesised that NDSDs were associated with cerebral grey matter changes in the sensory system and in pain processing regions, detectable with voxel-based morphometry. Twenty-five patients with NDSDs, 23 patients without NDSDs ("pain-only"), and 29 healthy controls were studied with high resolution structural MRI of the brain. A comprehensive clinical and psychiatric evaluation based on Diagnostic and Statistical Manual was performed in all patients. Patients with NDSDs and "pain-only" did not differ concerning demographic data and psychiatric diagnoses, although anxiety scores (HADS-A) were higher in patients with NDSDs. In patients with NDSDs, grey matter increases were found in the right primary sensory cortex, thalamus, and bilaterally in lateral temporal regions and the hippocampus/fusiform gyrus. "Pain-only" patients showed a bilateral grey matter increase in the posterior insula and less pronounced changes in sensorimotor cortex. Dysfunctional sensory processing in patients with NDSDs is associated with complex changes in grey matter volume, involving the somatosensory system and temporal regions.

  7. Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans.

    Science.gov (United States)

    Veldman, M P; Zijdewind, I; Solnik, S; Maffiuletti, N A; Berghuis, K M M; Javet, M; Négyesi, J; Hortobágyi, T

    2015-12-01

    Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes. Participants (18-30 years, n = 31) received MP, SES, MP + SES, or a control intervention. Visuomotor practice included 300 trials for 25 min with the right-dominant wrist and SES consisted of weak electrical stimulation of the radial and median nerves above the elbow. Single- and double-pulse transcranial magnetic stimulation (TMS) metrics were measured in the intervention and non-intervention extensor carpi radialis. There was 27 % motor learning and 9 % (both p Motor practice and SES each can produce motor learning and interlimb transfer and are likely to be mediated by different mechanisms. The results provide insight into the physiological mechanisms underlying the effects of MP and SES on motor learning and cortical plasticity and show that these mechanisms are likely to be different for the trained and stimulated motor cortex and the non-trained and non-stimulated motor cortex.

  8. Somatosensory evoked magnetic fields elicited by dorsal penile, posterior tibial and median nerve stimulation.

    Science.gov (United States)

    Nakagawa, H; Namima, T; Aizawa, M; Uchi, K; Kaiho, Y; Yoshikawa, K; Orikasa, S; Nakasato, N

    1998-01-01

    The aim of this study is to localize the primary sensory cortex of urogenital organs in the human brain. Using a newly developed MRI-linked magnetoencephalography system, we measured somatosensory evoked magnetic fields (SEFs) for unilateral stimuli on the dorsal penile nerve (DPN), posterior tibial nerve (PTN) and median nerve (MN). In five healthy male subjects, SEFs were clearly observed. Peak latency of the first cortical components were 63.8 +/- 9.2 ms for DPN, 39.8 +/- 3.0 ms for PTN and 20.7 +/- 0.7 ms for MN stimuli. Peak amplitude of the first cortical components were 63.1 +/- 10.8 fT for DPN, 160.2 +/- 50.1 fT for PTN and 335.2 +/- 70.3 fT for MN stimuli. Isofield map for the peak latencies indicated a single dipolar pattern for DPN as well as for PTN and MN stimuli. Using a single current dipole model, all SEF sources were localized on the contralateral central sulcus to the stimuli, indicating the primary sensory cortex. The DPN sources were localized on the interhemispheric surfaces, corresponding to previous speculations by direct cerebral stimulation. This non-invasive SEF technique promises further brain functional mapping for the urogenital organs.

  9. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis.

    Science.gov (United States)

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2016-01-01

    During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. This study extends our previous findings by further characterizing how the brain differentially processes physical 'touch' stimulation and 'imagined' stimulation. Eleven healthy women (age range 29-74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions - imagined dildo self-stimulation and imagined speculum stimulation - were included to characterize the effects of erotic versus non-erotic imagery. Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the 'reward system'. In addition, these results suggest a mechanism by which some individuals may

  10. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  11. A Methodology for Characterizing Gun Barrel Flexure due to Vehicle Motion

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available Barrel centerline curvature is known to influence the location of projectile shot impacts. Superimposed on the unique manufactured barrel centerline is the flexed barrel shape that can occur prior to firing while the vehicle is on the move. In order to understand and quantify the effects of barrel flexure on gun accuracy, it is necessary to determine what combination of fundamental mode shapes is most likely to occur. A method to accomplish this task is described in this paper. The method is demonstrated by enumerating the 10 most likely flexed barrel shapes that were found to occur in a tank-mounted gun barrel while it traversed a bump course.

  12. Amputation with median nerve redirection (Targeted Reinnervation) reactivates forepaw barrel subfield in rats

    Science.gov (United States)

    Marasco, Paul D.; Kuiken, Todd A.

    2010-01-01

    Prosthetic limbs are difficult to control and do not provide sensory feedback. Targeted Reinnervation was developed as a neural-machine-interface for amputees to address these issues. In Targeted Reinnervation, amputated nerves are redirected to proximal muscles and skin creating nerve interfaces for prosthesis control and sensory feedback. Touching the reinnervated skin causes sensation to be projected to the missing limb. Here we use electrophysiological brain recording in the Sprague-Dawley rat to investigate the changes to somatosensory cortex (S1) following amputation and nerve redirection with the intent to provide insight into the sensory phenomena observed in human Targeted Reinnervation amputees. Recordings revealed that redirected nerves established an expanded representation in S1 which may help to explain the projected sensations that encompass large areas of the hand in Targeted Reinnervation amputees. These results also provide evidence that the reinnervated target skin could serve as a line of communication from a prosthesis to cortical hand processing regions. S1 border regions were simultaneously responsive to reinnervated input and also vibrissae, lower lip and hind-foot, suggesting competition for deactivated cortical territory. Electrically evoked potential latencies from reinnervated skin to cortex suggest direct connection of the redirected afferents to the forepaw processing region of S1. Latencies also provide evidence that the wide-spread reactivation of S1 cortex may arise from central anatomical interconnectivity. Targeted Reinnervation offers the opportunity to examine the cortical plasticity effects when behaviorally important sensory afferents are redirected from their original location to a new skin surface on a different part of the body. PMID:21106839

  13. barrel temperature emperature emperature effects on the ffects

    African Journals Online (AJOL)

    eobe

    PVC, PP, and HDPE are 6.10N/mm2, 21.67N/mm2, and 12.94N/mm2 at barrel temperature of 2700C, 2700C, 2100C;. Maximum proof stress. Maximum proof stress was 3.44N/mm2, 20.63N/mm2, and 13.65N/mm2 at barrel temperature of 2400C, 2500C and. 1600C; Maximum percentage elongation. Maximum percentage ...

  14. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Somatosensory evoked potential recovery in kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (kii AlS/PDC).

    Science.gov (United States)

    Machii, Katsuyuki; Ugawa, Yoshikazu; Kokubo, Yasumasa; Sasaki, Ryogen; Kuzuhara, Shigeki

    2003-03-01

    To evaluate the recovery function of the sensory cortex in patients with Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) using somatosensory evoked potentials (SEPs) elicited by paired stimuli of the median nerve at the wrist. Five patients with Kii ALS/PDC were compared with 5 patients with classical ALS, 5 with Parkinson's disease (PD), and 7 healthy normal volunteers. SEPs were recorded from the hand sensory area contralateral to the side of stimulation. Recovery functions of N20-P25 and P25-N33 components were evaluated by comparing the second SEPs elicited by paired pulse stimuli at various interstimulus intervals (ISIs, 20-300 ms) with the SEPs elicited by single stimuli. Conventional SEPs to a single stimulus had a normal latency and size in all patients. The recovery function of the N20-P25 and P25-N33 components showed significantly less suppression at short ISIs without any facilitation at long ISIs in Kii ALS/PDC patients than in normal subjects, classical ALS or PD patients. In Kii ALS/PDC, the sensory cortex is disinhibited or hyperexcitable. These abnormalities may reflect cortical pathology in the sensory cortex and may be partly due to a secondary effect on the sensory cortex from the primary parkinsonian pathological changes.

  16. Congenital foot deformation alters the topographic organization in the primate somatosensory system

    Science.gov (United States)

    Liao, Chia-Chi; Qi, Hui-Xin; Reed, Jamie L.; Miller, Daniel J.; Kaas, Jon H.

    2015-01-01

    Limbs may fail to grow properly during fetal development, but the extent to which such growth alters the nervous system has not been extensively explored. Here we describe the organization of the somatosensory system in a 6-year-old monkey (Macaca radiata) born with a deformed left foot in comparison to the results from a normal monkey (Macaca fascicularis). Toes 1, 3, and 5 were missing, but the proximal parts of toes 2 and 4 were present. We used anatomical tracers to characterize the patterns of peripheral input to the spinal cord and brainstem, as well as between thalamus and cortex. We also determined the somatotopic organization of primary somatosensory area 3b of both hemispheres using multiunit electrophysiological recording. Tracers were subcutaneously injected into matching locations of each foot to reveal their representations within the lumbar spinal cord, and the gracile nucleus (GrN) of the brainstem. Tracers injected into the representations of the toes and plantar pads of cortical area 3b labeled neurons in the ventroposterior lateral nucleus (VPL) of the thalamus. Contrary to the orderly arrangement of the foot representation throughout the lemniscal pathway in the normal monkey, the plantar representation of the deformed foot was significantly expanded and intruded into the expected representations of toes in the spinal cord, GrN, VPL, and area 3b. We also observed abnormal representation of the intact foot in the ipsilateral spinal cord and contralateral area 3b. Thus, congenital malformation influences the somatotopic representation of the deformed as well as the intact foot. PMID:25326245

  17. Central Somatosensory Networks Respond to a De Novo Innervated Penis: A Proof of Concept in Three Spina Bifida Patients.

    Science.gov (United States)

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L E; de Jong, Bauke M; Georgiadis, Janniko R

    2015-09-01

    Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally targeting the inguinal area. Most TOMAX-treated SB patients initially experience penile stimulation as inguinal sensation, but eventually, the perception shifts to penis sensation with erotic feelings. The brain mechanisms mediating this perceptual shift, which are completely unknown, could hold relevance for understanding the brain's role in sexual development. The aim of this study was to study how a newly perceived penis would be mapped onto the brain after a lifelong disconnection. Three TOMAX-treated SB patients participated in a functional magnetic resonance imagery experiment while glans penis, inguinal area, and index finger were stimulated with a paint brush. Brush stimulation-induced activation of the primary somatosensory cortex (SI) and functional connectivity between SI and remote cerebral regions. Stimulation of the re-innervated side of the glans penis and the intact contralateral inguinal area activated a very similar location on SI. Yet, connectivity analysis identified distinct SI functional networks. In all three subjects, the middle cingulate cortex (MCC) and the parietal operculum-insular cortex (OIC) were functionally connected to SI activity during glans penis stimulation, but not to SI activity induced by inguinal stimulation. Investigating central somatosensory network activity to a de novo innervated penis in SB patients is feasible and informative. The consistent involvement of MCC and OIC above and beyond the brain network expected on the basis of inguinal stimulation suggests that these areas mediate the novel penis sensation in these patients. The potential role of MCC and OIC in this process is discussed, along with recommendations for further research.

  18. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  19. Spinal N13 versus cortical N20 and dermatomal somatosensory ...

    African Journals Online (AJOL)

    Mohamed Imam

    2013-04-06

    Apr 6, 2013 ... Spinal SEP;. N13;. Cervical Radiculopathy. Abstract Introduction: Most studies on somatosensory evoked potentials (SEPs) in cases of cer- vical radiculopathy routinely analyze scalp (cortical) responses (mixed or dermatomal SEPs), depending mainly on evaluation of N20 whose origin is the primary ...

  20. Neural correlates of human somatosensory integration in tinnitus

    NARCIS (Netherlands)

    Lanting, C. P.; de Kleine, E.; Eppinga, R. N.; van Dijk, P.

    2010-01-01

    Possible neural correlates of somatosensory modulation of tinnitus were assessed. Functional magnetic resonance imaging (fMRI) was used to investigate differences in neural activity between subjects that can modulate their tinnitus by jaw protrusion and normal hearing controls. We measured responses

  1. Nociceptive transmission to rat primary somatosensory cortex--comparison of sedative and analgesic effects.

    Directory of Open Access Journals (Sweden)

    Marcus Granmo

    Full Text Available CO(2-laser C-fibre evoked cortical potentials (LCEPs is a potentially useful animal model for studies of pain mechanisms. A potential confounding factor when assessing analgesic effects of systemically administered drugs using LCEP is sedation. This study aims to clarify: 1 the relation between level of anaesthesia and magnitude of LCEP, 2 the effects of a sedative and an analgesic on LCEP and dominant EEG frequency 3 the effects of a sedative and analgesic on LCEP when dominant EEG frequency is kept stable. LCEP and EEG were recorded in isoflurane/nitrous-oxide anaesthetized rats. Increasing isoflurane level gradually reduced LCEPs and lowered dominant EEG frequencies. Systemic midazolam (10 μmol/kg profoundly reduced LCEP (19% of control and lowered dominant EEG frequency. Similarly, morphine 1 and 3 mg/kg reduced LCEP (39%, 12% of control, respectively and decreased EEG frequency. When keeping the dominant EEG frequency stable, midazolam caused no significant change of LCEP. Under these premises, morphine at 3 mg/kg, but not 1 mg/kg, caused a significant LCEP reduction (26% of control. In conclusion, the present data indicate that the sedative effects should be accounted for when assessing the analgesic effects of drug. Furthermore, it is suggested that LCEP, given that changes in EEG induced by sedation are compensated for, can provide information about the analgesic properties of systemically administrated drugs.

  2. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex

    NARCIS (Netherlands)

    Ede, F.L. van; Lange, F.P. de; Maris, E.G.G.

    2014-01-01

    Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked

  3. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex

    DEFF Research Database (Denmark)

    Fardo, Francesca; Auksztulewicz, Ryszard; Allen, Micah

    2017-01-01

    The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding...... be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling (DCM) for magnetoencephalography in human subjects, to investigate how...

  4. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Larsson, Henrik B W

    2017-01-01

    The neurological disturbances of migraine aura are caused by transient cortical dysfunction due to waves of spreading depolarization that disrupt neuronal signaling. The effects of these cortical events on intrinsic brain connectivity during attacks of migraine aura have not previously been......-based approach focusing on cortical visual areas and areas involved in migraine pain, and a data-driven independent component analysis approach to detect changes in intrinsic brain signaling during attacks. In addition, we performed the analyses after mirroring the MRI data according to the side of perceived......-sided pain. For aura-side normalized data, we found increased connectivity during attacks between visual area V5 and the lower middle frontal gyrus in the symptomatic hemisphere (peak voxel: P = 0.0194, (x, y, z) = (40, 40, 12). The present study provides evidence of altered intrinsic brain connectivity...

  5. Circuit changes in motor cortex during motor skill learning.

    Science.gov (United States)

    Papale, Andrew E; Hooks, Bryan M

    2018-01-01

    Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. New results in meson spectroscopy from the crystal barrel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1994-04-01

    Recent observations by the Crystal Barrel experiment of two scalar resonances, f{sub o}(1365) and a{sub o}(1450) have allowed the authors to clarify the members of the scalar nonet. In addition, a third scalar, f{sub o}(1500), appears to be supernumerary, and is a candidate for the scalar glueball expected near 1500 MeV.

  7. End of the EM Barrel Presampler Construction and Insertion

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a thin detector placed in front of the electromagnetic barrel calorimeter, made up of two half barrels also, but with 32 sectors per half barrel instead of 16. Each of these 64 sectors is 3.1 m long, 28 cm large and 2.9 cm thick. Three countries took part in its construction: France (LPSC-Grenoble), Sweden (KTH-Stockholm) and Morocco (Hassan II Ain Chock-Casablanca and Mohamed V-Rabat universities, and CNESTEN-Rabat). The design of the presampler started 11 years ago and the series production began at the end of 2000. Cabling, mechanical and electronic tests of the anodes were achieved in Morocco. Forty-one sectors were assembled and validated at the LPSC-Grenoble and 25 at the KTH-Stockholm. In November 2002, the first half was inserted on the inner face of the first EM calorimeter wheel. The insertion of the other 32 sectors in the second EM calorimeter wheel was achieved in July 2003 (see pictures). The production of two additional sectors will allow us to study the p...

  8. Background neutron in the endcap and barrel regions of resistive ...

    Indian Academy of Sciences (India)

    The detector response calculations taken as a function of the neutron energy in the range of 0.01 eV–1 GeV have been simulated through RPC set-up. In order to evaluate the response of detector in the LHC background environment, the neutron spectrum expected in the CMS muon endcap and barrel region were taken ...

  9. Increasing the load bearing capacity of barrel vaults

    NARCIS (Netherlands)

    Kamerling, M.W.

    2011-01-01

    Just after World War II many barrel vaults and domes were built with a structural system, known as Fusée Ceramique. This paper analyses the load bearing capacity of these vaults. Schemes, theories, idealizations and assumptions are analysed, validated and discussed. Methods to increase the load

  10. Experimental investigation on shore hardness of barrel-finished ...

    Indian Academy of Sciences (India)

    Barrel finishing (BF) process is widely used to improve the surface finish and dimensional features of metallic and non-metallic parts using different types of media. As a matter of fact the change in shore hardness (SH) features of fused deposition modelling (FDM)-based master pattern is one of the important considerations ...

  11. Barrel Temperature Effects on the Mechanical Properties of Injection ...

    African Journals Online (AJOL)

    An existing mould was used for the production of tension and deflection test specimen. Then a plunger type of injection machine was used to mould test specimens at various barrel temperatures ranging from 1600C to 2800C, keeping all other process variables constant. The tensile and deflection test carried out on the ...

  12. Shear numbers of protein beta-barrels: definition refinements and statistics.

    Science.gov (United States)

    Liu, W M

    1998-01-30

    The original definition of shear number for a beta-barrel is not unique if it contains one or more uneven beta-bulges. We define the shear number of a beta-barrel as the minimal change of residue numbers in the backbone direction for all closed paths on the beta-barrel. We also discuss how to overcome some computational difficulties. It is pointed out that some closed beta-sheets should not be considered as beta-barrels. The pertinent statistics obtained from a representative list of the Protein Data Bank entries are summarized. All beta-barrels have positive shear numbers, i.e. they are right-twisted. The shear numbers of most beta-barrels are even, but exceptions do exist. The sizes of beta-ladders in a beta-barrel vary significantly. Most beta-barrels contain uneven beta-bulges, which may have important biological functions.

  13. Sensorimotor organization in double cortex syndrome.

    Science.gov (United States)

    Jirsch, Jeffrey D; Bernasconi, Neda; Villani, Flavio; Vitali, Paolo; Avanzini, Giuliano; Bernasconi, Andrea

    2006-06-01

    Subcortical band heterotopia is a diffuse malformation of cortical development related to pharmacologically intractable epilepsy. On magnetic resonance imaging (MRI), patients with "double cortex" syndrome (DCS) present with a band of heterotopic gray matter separated from the overlying cortex by a layer of white matter. The function and connectivity of the subcortical heterotopic band in humans is only partially understood. We studied six DCS patients with bilateral subcortical band heterotopias and six healthy controls using functional MRI (fMRI). In controls, simple motor task elicited contralateral activation of the primary motor cortex (M1) and ipsilateral activation of the cerebellum and left supplementary motor area (SMA). All DCS patients showed task-related contralateral activation of both M1 and the underlying heterotopic band. Ipsilateral motor activation was seen in 4/6 DCS patients. Furthermore, there were additional activations of nonprimary normotopic cortical areas. The sensory stimulus resulted in activation of the contralateral primary sensory cortex (SI) and the thalamus in all healthy subjects. The left sensory task also induced a contralateral activation of the insular cortex. Sensory activation of the contralateral SI was seen in all DCS patients and secondary somatosensory areas in 5/6. The heterotopic band beneath SI became activated in 3/6 DCS patients. Activations were also seen in subcortical structures for both paradigms. In DCS, motor and sensory tasks induce an activation of the subcortical heterotopic band. The recruitment of bilateral primary areas and higher-order association normotopic cortices indicates the need for a widespread network to perform simple tasks. Copyright 2005 Wiley-Liss, Inc.

  14. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Somatosensory abnormalities in atypical odontalgia: A case-control study.

    Science.gov (United States)

    List, Thomas; Leijon, Göran; Svensson, Peter

    2008-10-15

    Somatosensory function in patients with persistent idiopathic types of orofacial pain like atypical odontalgia (AO) is not well described. This study tested the hypothesis that AO patients have significantly more somatosensory abnormalities than age- and sex-matched controls. Forty-six AO patients and 35 controls participated. Inclusion criteria for AO were pain in a region where a tooth had been endodontically or surgically treated, persistent pain >6 months, and lack of clinical and radiological findings. The examination included qualitative tests and a battery of intraoral quantitative sensory testing (QST). Most AO patients (85%) had qualitative somatosensory abnormality compared with few controls (14%). The most common qualitative abnormalities in AO patients were found with pin-prick 67.4%, cold 47.8%, and touch 46.5% compared with 11.4%, 8.6%, and 2.9%, respectively, in the control group (P<0.001). Between-group differences were seen for many intraoral QST: mechanical detection threshold, mechanical pain threshold (pinprick), dynamic mechanical allodynia (brush), dynamic mechanical allodynia (vibration), wind-up ratio, and pressure pain threshold (P<0.01). In the trigeminal area, between-group differences in thermal thresholds were nonsignificant while differences in cold detection at the thenar eminence were significant. Individual somatosensory profiles revealed complex patterns with hyper- and hyposensitivity to intraoral QST. Between-group differences in pressure pain thresholds (P<0.02) were observed at the thenar eminence. In conclusion, significant abnormalities in intraoral somatosensory function were observed in AO, which may reflect peripheral and central sensitization of trigeminal pathways. More generalized sensitization of the nociceptive system may also be part of AO pathophysiology.

  16. A new psychometric questionnaire for reporting of somatosensory percepts.

    Science.gov (United States)

    Kim, Linda Hyoungsun; McLeod, Regan Sarah; Kiss, Zelma

    2017-10-27

    There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. To this end, we compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman's correlation coefficients ranging from 0.716 and up to 1.000, p somatosensory psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses. © 2017 IOP Publishing Ltd.

  17. Change in Functional Arm Use Is Associated With Somatosensory Skills After Sensory Retraining Poststroke.

    Science.gov (United States)

    Turville, Megan; Carey, Leeanne M; Matyas, Thomas A; Blennerhassett, Jannette

    We investigated changes in functional arm use after retraining for stroke-related somatosensory loss and identified whether such changes are associated with somatosensory discrimination skills. Data were pooled (N = 80) from two randomized controlled trials of somatosensory retraining. We used the Motor Activity Log to measure perceived amount of arm use in daily activities and the Action Research Arm Test to measure performance capacity. Somatosensory discrimination skills were measured using standardized modality-specific measures. Participants' arm use improved after somatosensory retraining (z = -6.80, p arm use was weakly associated with somatosensation (tactile, β = 0.31, p .05; object recognition, β = 0.13, p arm use was related to a small amount of variance in somatosensory outcomes. Stroke survivors' functional arm use can increase after somatosensory retraining, with change varying among survivors.

  18. The Observation and Execution of Actions Share Motor and Somatosensory Voxels in all Tested Subjects: Single-Subject Analyses of Unsmoothed fMRI Data

    Science.gov (United States)

    Keysers, Christian

    2009-01-01

    Many neuroimaging studies of the mirror neuron system (MNS) examine if certain voxels in the brain are shared between action observation and execution (shared voxels, sVx). Unfortunately, finding sVx in standard group analyses is not a guarantee that sVx exist in individual subjects. Using unsmoothed, single-subject analyses we show sVx can be reliably found in all 16 investigated participants. Beside the ventral premotor (BA6/44) and inferior parietal cortex (area PF) where mirror neurons (MNs) have been found in monkeys, sVx were reliably observed in dorsal premotor, supplementary motor, middle cingulate, somatosensory (BA3, BA2, and OP1), superior parietal, middle temporal cortex and cerebellum. For the premotor, somatosensory and parietal areas, sVx were more numerous in the left hemisphere. The hand representation of the primary motor cortex showed a reduced BOLD during hand action observation, possibly preventing undesired overt imitation. This study provides a more detailed description of the location and reliability of sVx and proposes a model that extends the original idea of the MNS to include forward and inverse internal models and motor and sensory simulation, distinguishing the MNS from a more general concept of sVx. PMID:19020203

  19. Migraine with visual aura associated with thicker visual cortex

    DEFF Research Database (Denmark)

    Gaist, David; Hougaard, Anders; Garde, Ellen

    2018-01-01

    Until recent years it was believed that migraine with aura was a disorder causing intermittent neurological symptoms, with no impact on brain structure. However, recent MRI studies have reported increased cortical thickness of visual and somatosensory areas in patients with migraine with aura...... the regions of interest and active migraine, or number of lifetime aura attacks. Migraine with aura discordant twin pairs (n = 30) only differed in mean thickness of V2 (0.039 mm, 95% CI 0.005 to 0.074). In conclusion, females with migraine with aura have a thicker cortex corresponding to visual areas and our...

  20. Is one motor cortex enough for two hands?

    Science.gov (United States)

    Fiori, Simona; Staudt, Martin; Pannek, Kerstin; Borghetti, Davide; Biagi, Laura; Scelfo, Danilo; Rose, Stephen E; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-10-01

    We report on a patient with mirror movements sustained by a mono-hemispheric fast control of bilateral hand muscles and normal hand function. Transcranial magnetic stimulation of the right motor cortex evoked contractions of muscles in both hands while no responses were observed from the left hemisphere. Somatosensory-evoked potentials, functional magnetic resonance, and diffusion tractography showed evidence of sensorimotor dissociation and asymmetry of corticospinal projections, suggestive of reorganization after early unilateral left brain lesion. This is the first evidence that, in certain rare conditions, good hand function is possible with ipsilateral corticospinal reorganization, supporting the role of unexplored mechanisms of motor recovery. © 2015 Mac Keith Press.

  1. Phonetic detail and lateralization of reading-related inner speech and of auditory and somatosensory feedback processing during overt reading.

    Science.gov (United States)

    Kell, Christian A; Darquea, Maritza; Behrens, Marion; Cordani, Lorenzo; Keller, Christian; Fuchs, Susanne

    2017-01-01

    Phonetic detail and lateralization of inner speech during covert sentence reading as well as overt reading in 32 right-handed healthy participants undergoing 3T fMRI were investigated. The number of voiceless and voiced consonants in the processed sentences was systematically varied. Participants listened to sentences, read them covertly, silently mouthed them while reading, and read them overtly. Condition comparisons allowed for the study of effects of externally versus self-generated auditory input and of somatosensory feedback related to or independent of voicing. In every condition, increased voicing modulated bilateral voice-selective regions in the superior temporal sulcus without any lateralization. The enhanced temporal modulation and/or higher spectral frequencies of sentences rich in voiceless consonants induced left-lateralized activation of phonological regions in the posterior temporal lobe, regardless of condition. These results provide evidence that inner speech during reading codes detail as fine as consonant voicing. Our findings suggest that the fronto-temporal internal loops underlying inner speech target different temporal regions. These regions differ in their sensitivity to inner or overt acoustic speech features. More slowly varying acoustic parameters are represented more anteriorly and bilaterally in the temporal lobe while quickly changing acoustic features are processed in more posterior left temporal cortices. Furthermore, processing of external auditory feedback during overt sentence reading was sensitive to consonant voicing only in the left superior temporal cortex. Voicing did not modulate left-lateralized processing of somatosensory feedback during articulation or bilateral motor processing. This suggests voicing is primarily monitored in the auditory rather than in the somatosensory feedback channel. Hum Brain Mapp 38:493-508, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Neurophysiological changes in the afferent somatosensory system indices in the case of vertebrogenic spine pathology in miners

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2013-04-01

    Full Text Available Objectives: The aim of the paper was to prove that job conditions impact the state of the afferent part of the somatosensory system in miners. Materials and Methods: Data analysis of the electrophysiological examination of the syndrome in 148 patients, aged from 28 to 55 years, with a mild, moderate and severe degree of the pain syndrome was performed. The control group included 28 people without any pain symptoms. The method used was that of somatosensory stimulated potential (SSP with the potentials amplitude and latency main components taken into consideration. Results: It was proven that the true decrease of the somatosensory stimulated potential SSP N22 (p < 0.05 component amplitudes by 41%; N30 component amplitude tend to decrease by 26%. This proves that the true N22 (p < 0.01 component latency increase by 63.8% corresponds to afferent excitation wave conductibility under the pain syndrome of vertebral pathology through sensitivity pathways mainly in the posterior spinal cord columns and then, through the parts of the brain stem, involving the cerebral cortex, which is confirmed by the fact that the P38 and P46 components amplitudes tend to decrease. In addition to this, the proven N10–N13 (p < 0.05, N13–N20 (p < 0.05, N10–N20 (p < 0.05 intervals increases by 43.5–41.8–38.7%, respectively, correspond to the nervous impulse conductibility through the peripheral nervous system structures and allow to reveal the subclinical slowdown of impulse conductibility, which indicates that the conducting system is changed even under a mild pain syndrome. Conclusions: It was found that the data obtained allow for the better understanding of how the neuropathological pain syndrome under vertebral spine pathology is formed.

  3. Neuronal functional connection graphs among multiple areas of the rat somatosensory system during spontaneous and evoked activities.

    Directory of Open Access Journals (Sweden)

    Antonio G Zippo

    Full Text Available Small-World Networks (SWNs represent a fundamental model for the comprehension of many complex man-made and biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats, diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP recordings, we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during spontaneous activity and sensory stimulation. Our main results show that: (i spikes and LFPs show SWN organization during spontaneous activity; (ii after stimulation onset, while substantial functional graph reconfigurations occur both in spike and LFPs, small-worldness is nonetheless preserved; (iii the stimulus triggers a significant increase of inter-area LFP connections without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional substrate that supports the observed phenomena, we found that (iv the fundamental concept of cell assemblies, transient groups of activating neurons, can be described by small

  4. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis

    Directory of Open Access Journals (Sweden)

    Mulugeta eSemework

    2014-09-01

    Full Text Available Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step towards the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP research, which uses microstimulation (MiSt to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL and somatosensory cortex (S1 in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both

  5. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis.

    Science.gov (United States)

    Semework, Mulugeta; DiStasio, Marcello

    2014-01-01

    Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain

  6. Design of symmetric TIM barrel proteins from first principles.

    Science.gov (United States)

    Nagarajan, Deepesh; Deka, Geeta; Rao, Megha

    2015-08-12

    Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (α/β)8 TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a Tm of 44 °C and a Gibbs free energy of unfolding (ΔG°) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a Cm of 1.6 M and a ΔG° of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra

  7. Atrophy and Primary Somatosensory Cortical Reorganization after Unilateral Thoracic Spinal Cord Injury: A Longitudinal Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Rao

    2013-01-01

    Full Text Available The effects of traumatic spinal cord injury (SCI on the changes in the central nervous system (CNS over time may depend on the dynamic interaction between the structural integrity of the spinal cord and the capacity of the brain plasticity. Functional magnetic resonance imaging (fMRI was used in a longitudinal study on five rhesus monkeys to observe cerebral activation during upper limb somatosensory tasks in healthy animals and after unilateral thoracic SCI. The changes in the spinal cord diameters were measured, and the correlations among time after the lesion, structural changes in the spinal cord, and primary somatosensory cortex (S1 reorganization were also determined. After SCI, activation of the upper limb in S1 shifted to the region which generally dominates the lower limb, and the rostral spinal cord transverse diameter adjacent to the lesion exhibited obvious atrophy, which reflects the SCI-induced changes in the CNS. A significant correlation was found among the time after the lesion, the spinal cord atrophy, and the degree of contralateral S1 reorganization. The results indicate the structural changes in the spinal cord and the dynamic reorganization of the cerebral activation following early SCI stage, which may help to further understand the neural plasticity in the CNS.

  8. The barrel DIRC of the P¯ANDA experiment

    Science.gov (United States)

    Schwarz, C.; Bettoni, D.; Branford, D.; Carassiti, V.; Cecchi, A.; Dodokhof, V. Kh.; Düren, M.; Föhl, K.; Hohler, R.; Kaiser, R.; Lehmann, A.; Lehmann, D.; Marton, H.; Peters, K.; Schepers, G.; Schmitt, L.; Schönmeier, P.; Seitz, B.; Sfienti, C.; Teufel, A.; Vodopianov, A. S.

    2008-09-01

    Cooled antiproton beams of unprecedented intensities in the energy range of 1-15 GeV/ c will be used at the P¯ANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The charged particle identification in the barrel region needs a thin detector operating in a strong magnetic field. Both requirements can be met by a Cherenkov detector using the DIRC principle. Combining the time of arrival of the photons with their spatial image determines not only the particles velocity, but also the wavelength of the photons. Therefore, dispersion correction at the lower and upper detection thresholds is possible. Special care has to be taken to couple the photon detector to the barrel radiator bars.

  9. Experiences developing socially acceptable interactions for a robotic trash barrel

    DEFF Research Database (Denmark)

    Yang, Stephen; Mok, Brian Ka Jun; Sirkin, David

    2015-01-01

    Service robots in public places need to both understand environmental cues and move in ways that people can understand and predict. We developed and tested interactions with a trash barrel robot to better understand the implicit protocols for public interaction. In eight lunch-time sessions sprea...... as having intentions and desires; c) mistakes in navigation are indicators of autonomous control, rather than a remote operator; and d) repeated mistakes and struggling behavior polarized responses as either ignoring or endearing....... strategies that seemed to evoke clear engagement and responses, both positive and negative. Observations and interviews show that a) people most welcome the robot's presence when they need its services and it actively advertises its intent through movement; b) people create mental models of the trash barrel...

  10. Design of the LHC US ATLAS Barrel Cryostat

    CERN Document Server

    Rehak, M L; Farah, Y; Grandinetti, R; Müller, T; Norton, S; Sondericker, J

    2002-01-01

    One of the experiments of CERN's Large Hadron Collider (LHC) is the ATLAS Liquid Argon detector. The Liquid Argon Barrel Cryostat is part of the United States contribution to the LHC project and its design is presented here. The device is made up of four concentric cylinders: the smallest and largest of which form a vacuum vessel enclosing a cold vessel cryostat filled with liquid argon. The Cryostat serves as the housing for an electromagnetic barrel calorimeter, supports and provides space in vacuum for a solenoid magnet while the toroidal opening furnishes room for a tracker detector. Design requirements are determined by its use in a collider experiment: the construction has to be compact, the material between the interaction region and the calorimeter has to be minimal and made of aluminum to reduce the amount of absorbing material. The design complies with code regulations while being optimized for its use in a physics environment. (2 refs).

  11. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  12. The bar PANDA Barrel-TOF Detector at FAIR

    Science.gov (United States)

    Zimmermann, S.; Suzuki, K.; Steinschaden, D.; Chirita, M.; Ahmed, G.; Dutta, K.; Kalita, K.; Lehmann, A.; Böhm, M.; Schwarz, K.; Orth, H.; Brinkmann, K.-Th.

    2017-08-01

    The barrel-Time-of-Flight subdetector is one of the outer layers of the multi-layer design of the \\panda target spectrometer. It is designed with a minimal material budget in mind mainly consisting of 90×30×5 mm3 thin plastic scintillator tiles read out on each end by a serial connection of 4 SiPMs. 120 such tiles are placed on 16 2460 × 180 mm2 PCB boards forming a barrel covering an azimuthal angle from 22.5o to 150o. The detector is designed to achieve a time resolution below σ< 100 ps which allows to distinguish events in the constant stream of hits, as well as particle identification below the Cherenkov threshold via the time-of-flight; simultaneously providing the interaction times of events. The current prototype achieved a time resolution of ~54 ps, well below the design goal.

  13. Cervicogenic somatosensory tinnitus: An indication for manual therapy? Part 1: Theoretical concept.

    Science.gov (United States)

    Oostendorp, Rob A B; Bakker, Iem; Elvers, Hans; Mikolajewska, Emilia; Michiels, Sarah; De Hertogh, Willem; Samwel, Han

    2016-06-01

    Tinnitus can be evoked or modulated by input from the somatosensory and somatomotor systems. This means that the loudness or intensity of tinnitus can be changed by sensory or motor stimuli such as muscle contractions, mechanical pressure on myofascial trigger points, transcutaneous electrical stimulation or joint movements. The neural connections and integration of the auditory and somatosensory systems of the upper cervical region and head have been confirmed by many studies. These connections can give rise to a form of tinnitus known as somatosensory tinnitus. To date only a handful of publications have focussed on (cervicogenic) somatosensory tinnitus and manual therapy. Broadening the current understanding of somatosensory tinnitus would represent a first step towards providing therapeutic approaches relevant to manual therapists. Treatment modalities involving the somatosensory systems, and particularly manual therapy, should now be re-assessed in the subgroup of patients with cervicogenic somatosensory tinnitus. The conceptual phase of this study aims to uncover underlying mechanisms linking the auditory and somatosensory systems in relation to subjective tinnitus through (i) review of the literature (part 1) and (ii) through design of a pilot study that will explore characteristics of the study population and identify relevant components and outcomes of manual therapy in patients with cervicogenic somatosensory tinnitus (part 2). This manuscript focusses the theoretical concept of (cervicogenic) somatosensory tinnitus, either with or without secondary central tinnitus or tinnitus sensitization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Exploration of somatosensory P50 gating in schizophrenia spectrum patients

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Chen, Andrew C. N.

    2004-01-01

    Originally, the hypothesis of a sensory gating defect in schizophrenia evolved from studies of somatosensory evoked potentials (SEP), although the idea has primarily been pursued in the auditory modality. Gating is the relative attenuation of amplitude following the second stimulus in a stimulus...... pair. Recently, SEP P50 gating was seen when recording the SEP P50 in a paradigm similar to the one used for auditory P50 gating. Hypothetically, abnormality of somatosensory information processing could be related to anhedonia, which is considered a core feature of schizophrenia. Twelve unmedicated......, male, schizophrenia spectrum patients (seven schizophrenic and five schizotypal personality disorder patients) and 14 age-matched healthy men participated in recordings of pair-wise presented auditory and median nerve stimuli. The patients had smaller amplitudes of the SEP P50 at the first stimulus...

  15. Diagnosis and management of somatosensory tinnitus: review article

    Directory of Open Access Journals (Sweden)

    Tanit Ganz Sanchez

    2011-01-01

    Full Text Available Tinnitus is the perception of sound in the absence of an acoustic external stimulus. It affects 10-17% of the world's population and it a complex symptom with multiple causes, which is influenced by pathways other than the auditory one. Recently, it has been observed that tinnitus may be provoked or modulated by stimulation arising from the somatosensorial system, as well as from the somatomotor and visual-motor systems. This specific subgroup -somatosensory tinnitus - is present in 65% of cases, even though it tends to be underdiagnosed. As a consequence, it is necessary to establish evaluation protocols and specific treatments focusing on both the auditory pathway and the musculoskeletal system.

  16. Barrels XXVIII take the Windy City by storm.

    Science.gov (United States)

    Gour, Anjali; Lyall, Evan H; Naka, Alexander; Brumberg, Joshua C

    2016-03-01

    The 28th annual Barrels meeting was held prior to the Society for Neuroscience meeting in October 2015 at the Northwestern University School of Law in Chicago, Illinois. The meeting brought together researchers focused on the rodent sensorimotor system. The meeting focused on modern techniques to decipher cortical circuits, social interactions among rodents, and decision-making. The meeting allowed investigators to share their work via short talks, poster presentations, and a data blitz.

  17. The role of somatosensory models in vocal autonomous exploration

    OpenAIRE

    Acevedo Valle, Juan Manuel; Angulo Bahón, Cecilio; Moulin-Frier, Clément; Trejo Ramírez, Karla Andrea

    2016-01-01

    The present work focuses on two main objectives. Firstly, it highlights the relevance of studying the early stages of language development using machines as an approach to contribute to the future of speech recognizers and synthesizers, user interfaces, active learning techniques, and to the field of robotics and artificial intelligence in general. Secondly, this work introduces some results on the study of the role of somatosensory models in vocal autonomous exploration. In previous works, t...

  18. Quantitative methods for somatosensory evaluation in atypical odontalgia

    OpenAIRE

    PORPORATTI,André Luís; COSTA,Yuri Martins; STUGINSKI-BARBOSA,Juliana; BONJARDIM,Leonardo Rigoldi; CONTI,Paulo César Rodrigues; SVENSSON,Peter

    2015-01-01

    A systematic review was conducted to identify reliable somatosensory evaluation methods for atypical odontalgia (AO) patients. The computerized search included the main databases (MEDLINE, EMBASE, and Cochrane Library). The studies included used the following quantitative sensory testing (QST) methods: mechanical detection threshold (MDT), mechanical pain threshold (MPT) (pinprick), pressure pain threshold (PPT), dynamic mechanical allodynia with a cotton swab (DMA1) or a brush (DMA2), warm d...

  19. Application of dry-ice blasting for barrels treatment

    Directory of Open Access Journals (Sweden)

    Costantini Antonella

    2015-01-01

    Full Text Available The main aim of this work was to test a dry-ice basting method to regenerate the barriques in order to prolong their life. In addition, this treatment for barrels can also represent an alternative to the use of sulfur dioxide for the barrique sanitization, in line with the guidelines of oenological practices for sustainable development proposed by the OIV (International Organization of Vine and Wine (sustainable development, food security: reduction the content of sulfites in wine. The effect of the blasting with dry ice for the treatment of barrique has been studied from a microbiological and sensory point of view. Microbiological analyses were carried out using wine contaminated with Brettanomyces and Lactobacillus; results showed a reduction of contaminant of 98–100%. Finally, it was evaluated the impact of this treatment on the sensory profile of wine. In this regard the wine aged in a barrique dry-ice blasted was compared with a wine aged in a barrique treated with sulfur dioxide. From the sensory analysis emerged that the dry-ice blasting treatment can regenerate the barriques, this confers to the wine increased notes of vanilla and boisé. The benefits that derive from the use of this method are: a good sanitization of the barrel, a positive impact on the organo- leptic characteristics of the wine and the ability to regenerate and reuse a barrel, with a positive effect on sustainability.

  20. A case of thalamic syndrome: somatosensory influences on visual orientation

    Science.gov (United States)

    Anastasopoulos, D; Bronstein, A

    1999-01-01

    The ability to set a straight line to the perceived gravitational vertical (subjective visual vertical, SVV) was investigated in a 21 year old woman with long standing left hemihypaesthesia due to a posterior thalamic infarct. The putative structures involved were the somatosensory and vestibular thalamus (VPL, VPM) and associative (pulvinar) thalamus. The SVV was normal when seated upright. When lying on her right side, line settings deviated about 17° to the right, which is the normal A-effect. When lying on the hypaesthetic side the mean SVV remained close to true vertical—that is, the A-effect was absent, and there was a large increase in variability of the SVV settings. The findings support the view that the body tilt-induced bias of the SVV (A-effect) is largely mediated by somatosensory afferents. The finding that the A-effect was absent only when lying on the hypaesthetic side suggests that, during body tilt, the somatosensory system participates in visuogravitational orientation.

 PMID:10449566

  1. Somatosensory mismatch response in young and elderly adults

    Directory of Open Access Journals (Sweden)

    Juho M. Strömmer

    2014-10-01

    Full Text Available Aging is associated with cognitive decline and alterations in early perceptual processes. Studies in the auditory and visual modalities have shown that the mismatch negativity (or the mismatch response, MMR, an event-related potential (ERP elicited by a deviant stimulus in a background of homogenous events, diminishes with aging and cognitive decline. However, the effects of aging on the somatosensory MMR are not known. In the current study, we recorded ERPs to electrical pulses to different fingers of the left hand in a passive oddball experiment in young (22–36 years and elderly (66–95 years adults engaged in a visual task. The MMR was found to deviants as compared to standards at two latency ranges: 180–220 ms and 250–290 ms post-stimulus onset. At 180–220 ms, within the young, the MMR was found at medial electrode sites, whereas aged did not show any amplitude difference between the stimulus types at the same latency range. At 250–290 ms, the MMR was evident with attenuated amplitude and narrowed scalp distribution among aged (Fz compared to young (fronto-centrally and lateral parietal sites. Hence, the results reveal that the somatosensory change detection mechanism is altered in aging. The somatosensory MMR can be used as a reliable measure of age-related changes in sensory-cognitive functions.

  2. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  3. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS.

    Directory of Open Access Journals (Sweden)

    Martin Tegenthoff

    2005-11-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is increasingly used to investigate mechanisms of brain functions and plasticity, but also as a promising new therapeutic tool. The effects of rTMS depend on the intensity and frequency of stimulation and consist of changes of cortical excitability, which often persists several minutes after termination of rTMS. While these findings imply that cortical processing can be altered by applying current pulses from outside the brain, little is known about how rTMS persistently affects learning and perception. Here we demonstrate in humans, through a combination of psychophysical assessment of two-point discrimination thresholds and functional magnetic resonance imaging (fMRI, that brief periods of 5 Hz rTMS evoke lasting perceptual and cortical changes. rTMS was applied over the cortical representation of the right index finger of primary somatosensory cortex, resulting in a lowering of discrimination thresholds of the right index finger. fMRI revealed an enlargement of the right index finger representation in primary somatosensory cortex that was linearly correlated with the individual rTMS-induced perceptual improvement indicative of a close link between cortical and perceptual changes. The results demonstrate that repetitive, unattended stimulation from outside the brain, combined with a lack of behavioral information, are effective in driving persistent improvement of the perception of touch. The underlying properties and processes that allow cortical networks, after being modified through TMS pulses, to reach new organized stable states that mediate better performance remain to be clarified.

  4. Somatosensory lateral inhibition processes modulate motor response inhibition - an EEG source localization study.

    Science.gov (United States)

    Friedrich, Julia; Mückschel, Moritz; Beste, Christian

    2017-06-30

    Motor inhibitory control is a central executive function, but only recently the importance of perceptual mechanisms for these processes has been focused. It is elusive whether basic mechanisms governing sensory perception affect motor inhibitory control. We examine whether sensory lateral inhibition (LI) processes modulate motor inhibitory control using a system neurophysiological approach combining EEG signal decomposition with source localization methods in a somatosensory GO/NOGO task. The results show that inter-individual variations in the strength of LI effects predominantly affect processes when information needs to be integrated between cerebral hemispheres. If information needs to be integrated between hemispheres, strong sensory suppression will lead to more impulsive errors. Importantly, the neurophysiological data suggest that not purely perceptual or motor processes are affected. Rather, LI affects the response selection level and modulates processes of stimulus categorization. This is associated with activity modulations in the posterior parietal cortex. The results suggest that when sensory suppression is high and when information needs to be integrated across hemispheres, these processes are less efficient, which likely leads to worse motor inhibitory control. The results show how basis principles modulating perceptual processes affect subsequent motor inhibitory control processes.

  5. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  6. Decreased cortical representation of genital somatosensory field after childhood sexual abuse.

    Science.gov (United States)

    Heim, Christine M; Mayberg, Helen S; Mletzko, Tanja; Nemeroff, Charles B; Pruessner, Jens C

    2013-06-01

    Sexual dysfunction is a common clinical symptom in women who were victims of childhood sexual abuse. The precise mechanism that mediates this association remains poorly understood. The authors evaluated the relationship between the experience of childhood abuse and neuroplastic thinning of cortical fields, depending on the nature of the abusive experience. The authors used MRI-based cortical thickness analysis in 51 medically healthy adult women to test whether different forms of childhood abuse were associated with cortical thinning in areas critical to the perception and processing of specific behavior implicated in the type of abuse. Exposure to childhood sexual abuse was specifically associated with pronounced cortical thinning in the genital representation field of the primary somatosensory cortex. In contrast, emotional abuse was associated with cortical thinning in regions relevant to self-awareness and self-evaluation. Neural plasticity during development appears to result in cortical adaptation that may shield a child from the sensory processing of the specific abusive experience by altering cortical representation fields in a regionally highly specific manner. Such plastic reorganization may be protective for the child living under abusive conditions, but it may underlie the development of behavioral problems, such as sexual dysfunction, later in life.

  7. The embodiment of emotion: language use during the feeling of social emotions predicts cortical somatosensory activity.

    Science.gov (United States)

    Saxbe, Darby E; Yang, Xiao-Fei; Borofsky, Larissa A; Immordino-Yang, Mary Helen

    2013-10-01

    Complex social emotions involve both abstract cognitions and bodily sensations, and individuals may differ on their relative reliance on these. We hypothesized that individuals' descriptions of their feelings during a semi-structured emotion induction interview would reveal two distinct psychological styles-a more abstract, cognitive style and a more body-based, affective style-and that these would be associated with somatosensory neural activity. We examined 28 participants' open-ended verbal responses to admiration- and compassion-provoking narratives in an interview and BOLD activity to the same narratives during subsequent functional magnetic resonance imaging scanning. Consistent with hypotheses, individuals' affective and cognitive word use were stable across emotion conditions, negatively correlated and unrelated to reported emotion strength in the scanner. Greater use of affective relative to cognitive words predicted more activation in SI, SII, middle anterior cingulate cortex and insula during emotion trials. The results suggest that individuals' verbal descriptions of their feelings reflect differential recruitment of neural regions supporting physical body awareness. Although somatosensation has long been recognized as an important component of emotion processing, these results offer 'proof of concept' that individual differences in open-ended speech reflect different processing styles at the neurobiological level. This study also demonstrates SI involvement during social emotional experience.

  8. Somatosensory-Motor Adaptation of Orofacial Actions in Posterior Parietal and Ventral Premotor Cortices

    Science.gov (United States)

    Grabski, Krystyna; Lamalle, Laurent; Sato, Marc

    2012-01-01

    Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions. PMID:23185300

  9. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    Science.gov (United States)

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2017-09-15

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  10. Morphometric analysis of feedforward pathways from the primary somatosensory area (S1 of rats

    Directory of Open Access Journals (Sweden)

    A.L. de Sá

    2016-01-01

    Full Text Available We used biotinylated dextran amine (BDA to anterogradely label individual axons projecting from primary somatosensory cortex (S1 to four different cortical areas in rats. A major goal was to determine whether axon terminals in these target areas shared morphometric similarities based on the shape of individual terminal arbors and the density of two bouton types: en passant (Bp and terminaux (Bt. Evidence from tridimensional reconstructions of isolated axon terminal fragments (n=111 did support a degree of morphological heterogeneity establishing two broad groups of axon terminals. Morphological parameters associated with the complexity of terminal arbors and the proportion of beaded Bp vs stalked Bt were found to differ significantly in these two groups following a discriminant function statistical analysis across axon fragments. Interestingly, both groups occurred in all four target areas, possibly consistent with a commonality of presynaptic processing of tactile information. These findings lay the ground for additional work aiming to investigate synaptic function at the single bouton level and see how this might be associated with emerging properties in postsynaptic targets.

  11. Movement gating of beta/gamma oscillations involved in the N30 somatosensory evoked potential.

    Science.gov (United States)

    Cebolla, Ana Maria; De Saedeleer, Caty; Bengoetxea, Ana; Leurs, Françoise; Balestra, Costantino; d'Alcantara, Pablo; Palmero-Soler, Ernesto; Dan, Bernard; Cheron, Guy

    2009-05-01

    Evoked potential modulation allows the study of dynamic brain processing. The mechanism of movement gating of the frontal N30 component of somatosensory evoked potentials (SEP) produced by the stimulation of the median nerve at wrist remains to be elucidated. At rest, a power enhancement and a significant phase-locking of the electroencephalographic (EEG) oscillation in the beta/gamma range (25-35 Hz) are related to the emergence of the N30. The latter was also perfectly identified in presence of pure phase-locking situation. Here, we investigated the contribution of these rhythmic activities to the specific gating of the N30 component during movement. We demonstrated that concomitant execution of finger movement of the stimulated hand impinges such temporal concentration of the ongoing beta/gamma EEG oscillations and abolishes the N30 component throughout their large topographical extent on the scalp. This also proves that the phase-locking phenomenon is one of the main actors for the N30 generation. These findings could be explained by the involvement of neuronal populations of the sensorimotor cortex and other related areas, which are unable to respond to the phasic sensory activation and to phase-lock their firing discharges to the external sensory input during the movement. This new insight into the contribution of phase-locked oscillation in the emergence of the N30 and in its gating behavior calls for a reappraisal of fundamental and clinical interpretation of the frontal N30 component. (c) 2008 Wiley-Liss, Inc.

  12. Characteristics of synaptic connections between rodent primary somatosensory and motor cortices.

    Science.gov (United States)

    Rocco-Donovan, Mary; Ramos, Raddy L; Giraldo, Sandra; Brumberg, Joshua C

    2011-01-01

    The reciprocal connections between primary motor (M1) and primary somatosensory cortices (S1) are hypothesized to play a crucial role in the ability to update motor plans in response to changes in the sensory periphery. These interactions provide M1 with information about the sensory environment that in turn signals S1 with anticipatory knowledge of ongoing motor plans. In order to examine the synaptic basis of sensorimotor feedforward (S1-M1) and feedback (M1-S1) connections directly, we utilized whole-cell recordings in slices that preserve these reciprocal sensorimotor connections. Our findings indicate that these regions are connected via direct monosynaptic connections in both directions. Larger magnitude responses were observed in the feedforward direction (S1-M1), while the feedback (M1-S1) responses occurred at shorter latencies. The morphology as well as the intrinsic firing properties of the neurons in these pathways indicates that both excitatory and inhibitory neurons are targeted. Differences in synaptic physiology suggest that there exist specializations within the sensorimotor pathway that may allow for the rapid updating of sensory-motor processing within the cortex in response to changes in the sensory periphery.

  13. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Document Server

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  14. Orosensory and Homeostatic Functions of the Insular Taste Cortex

    Science.gov (United States)

    de Araujo, Ivan E.; Geha, Paul

    2014-01-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation. PMID:25485032

  15. Association between stimulus-evoked somatosensory inhibition and movement-related sensorimotor oscillation: A magnetoencephalographic study.

    Science.gov (United States)

    Hsiao, Fu-Jung; Chen, Wei-Ta; Lin, Yung-Yang

    2017-11-08

    The interaction between the somatosensory and motor cortices is understood; however, their functional relationship remains elusive. To elucidate the association between somatosensory and sensorimotor functions, this study investigated the correlation between somatosensory activities in response to paired-pulse stimulation and sensorimotor oscillations during self-paced finger movement in 18 healthy male subjects by using a magnetoencephalographic recording. The main finding was that stimulus-evoked somatosensory gating activities were significantly correlated with movement-related sensorimotor oscillatory responses. Specifically, the gating ratios of somatosensory N20m were related to the power changes of sensorimotor beta event-related desynchronization (ERD) (p=0.003) and event-related synchronization (ERS) (p=0.05). In conclusion, we confirmed that the inhibition of stimulus-evoked somatosensory responses is associated with the oscillatory characteristics of movement-related sensorimotor activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.

    Science.gov (United States)

    Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-09-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. Copyright © 2015 the American Physiological Society.

  17. Spatial and temporal assessment of orofacial somatosensory sensitivity: a methodological study

    DEFF Research Database (Denmark)

    Thygesen, Torben; Nørholt, Sven Erik; Jensen, John

    2007-01-01

    AIMS: To evaluate the sensitivity and reproducibility of a multimodal psychophysical technique for the assessment of both spatial and temporal changes in somatosensory function after an infraorbital nerve block. METHODS: Sixteen healthy volunteers with a mean (+/- SD) age of 22.5 +/- 3.4 years...... matrices allowed a spatial description of somatosensory sensitivity. This method may be valuable for studies on changes in somatosensory sensitivity following trauma or orthognathic surgery on the maxilla....

  18. Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit.

    Directory of Open Access Journals (Sweden)

    Hong Ni

    Full Text Available BACKGROUND: Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented. METHODOLOGY/PRINCIPAL FINDINGS: Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells. CONCLUSION/SIGNIFICANCE: The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeutic approaches to help sensory recovery and substitution.

  19. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  20. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H; Ben-Zvi, Ayal; Kaeser, Pascal S; Xu, Xiaoyin; Costa, Luciano da F; Gu, Chenghua

    2014-09-03

    Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether or not neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals an important feature of neurovascular interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The ATLAS Barrel Level-1 Muon Trigger Processor Performances

    CERN Document Server

    Bocci, V; Ciapetti, G; De Pedis, D; Di Girolamo, A; Di Mattia, A; Gennari, E; Luci, C; Nisati, A; Pasqualucci, E; Pastore, F; Petrolo, E; Spila, F; Vari,, R; Veneziano, S; Zanelli, L; Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Simone, A; Di Stante, L; Salamon, A; Santonico, R; Aloisio, A; Alviggi, M G; Canale, V; Carlino, G; Conventi, F; De Asmundis, R; Della Pietra, M; Delle Volpe, D; Iengo, P; Izzo, V; Migliaccio, A; Patricelli, S; Sekhniaidze, G; Brambilla, Elena; Cataldi, G; Gorini, E; Grancagnolo, F; Perrino, R; Primavera, M; Spagnolo, S; Aprodo, V; Bartos, D; Buda, S; Constantin, S; Dogaru, M; Magureanu, C; Pectu, M; Prodan, L; Rusu, A; Uroseviteanu, C

    2005-01-01

    The ATLAS level-1 muon trigger will select events with high transverse momentum and tag them to the correct machine bunch-crossing number with high efficiency. Three stations of dedicated fast detectors provide a coarse pT measurement, with tracking capability on bending and non-bending pro jections. In the Barrel region, hits from doublets of Resistive Plate Chambers are processed by custom ASIC, the Coincidence Matrices, which performs almost all the functionalities required by the trigger algorithm and the readout. In this paper we present the performance of the level-1 trigger system studied on a cosmic test stand at CERN, concerning studies on expected trigger rates and efficiencies.

  2. Learning Touch Preferences with a Tactile Robot Using Dopamine Modulated STDP in a Model of Insular Cortex

    Directory of Open Access Journals (Sweden)

    Ting-Shuo eChou

    2015-07-01

    Full Text Available Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface and unconditioned stimuli (US; a preferred touch pattern by applying a spiking neural network (SNN with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR’s tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP to our simulated prefrontal cortex, striatum and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, the plasticity (i.e., STDP in primary somatosensory cortex and insular cortex in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR’s preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal’s behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch.

  3. Brain motor functional changes after somatosensory discrimination training.

    Science.gov (United States)

    Sarasso, Elisabetta; Agosta, Federica; Temporiti, Federico; Adamo, Paola; Piccolo, Fabio; Copetti, Massimiliano; Gatti, Roberto; Filippi, Massimo

    2017-08-31

    Somatosensory discrimination training may modulate cognitive processes, such as movement planning and monitoring, which can be useful during active movements. The aim of the study was to assess the effect of somatosensory discrimination training on brain functional activity using functional magnetic resonance imaging (fMRI) during motor and sensory tasks in healthy subjects. Thirty-nine healthy young subjects were randomized into two groups: the experimental group underwent somatosensory discrimination training consisting of shape, surface and two-point distance discrimination; and the control group performed a simple object manipulation. At baseline and after 2 weeks of training, subjects underwent sensorimotor evaluations and fMRI tasks consisting of right-hand tactile stimulation, manipulation of a simple object, and complex right-hand motor sequence execution. Right-hand dexterity improved in both groups, but only the experimental group showed improvements in all manual dexterity tests. After training, the experimental group showed: decreased activation of the ipsilateral sensorimotor areas during the tactile stimulation task; increased activation of the contralateral postcentral gyrus and thalamus bilaterally during the manipulation task; and a reduced recruitment of the ipsilateral pre/postcentral gyri and an increased activation of the basal ganglia and cerebellum contralaterally during the complex right-hand motor task. In healthy subjects, sensory discrimination training was associated with lateralization of brain activity in sensorimotor areas during sensory and motor tasks. Further studies are needed to investigate the usefulness of this training in motor rehabilitation of patients with focal lesions in the central nervous system.

  4. Idiopathic restless legs syndrome: abnormalities in central somatosensory processing.

    Science.gov (United States)

    Schattschneider, Jörn; Bode, Andre; Wasner, Gunnar; Binder, Andreas; Deuschl, Günther; Baron, Ralf

    2004-08-01

    Neurophysiological studies have shown an impairment of temperature perception in secondary and idiopathic restless legs syndrome (RLS). It is unclear whether these deficits are caused by peripheral nerve fibre damage or by central impairment of somatosensory processing. The aim of the present study was (1) to determine the frequency of thermal hypaesthesia in a large population of secondary and idiopathic RLS patients; (2) to differentiate between a peripheral and central disturbance of somatosensory processing and (3) to correlate these findings with the clinical manifestation of the disease. From the results of clinical examination, nerve conduction studies and blood samples the patients were divided into secondary and idiopathic RLS groups. The severity of RLS symptoms was assessed by standardized questionnaires. Quantitative sensory testing (QST) assessing temperature perception was performed in all patients. The peripheral function of small nerve fibres was evaluated by the quantitative nociceptor axon reflex test (QNART). 22 secondary and 20 idiopathic RLS patients participated in the study. Impairment of temperature perception (QST) was found in 72% of the secondary RLS patients and in 55% of idiopathic RLS patients. The peripheral C-fibre function (QNART) was normal in idiopathic RLS patients. In contrast it was significantly impaired in secondary RLS patients compared with idiopathic RLS patients and age matched controls. There was no correlation between the results obtained in QST and clinical scores. Impairment of temperature perception is present in a high percentage of RLS patients. In secondary RLS the sensory deficits are at least in part caused by small fibre neuropathy. In idiopathic RLS a functional impairment of central somatosensory processing is present.

  5. An evaluation of the somatosensory profile of hemiparetic individuals

    Directory of Open Access Journals (Sweden)

    Renata de Sousa Mota

    2010-09-01

    Full Text Available The purpose of this study was to evaluate the somatosensory profile of 18 hemiparetic spastic victims of stroke with and without blocking vision. Maximal isometric contraction test was used for flexor and extensor muscles of the hip and knee, and flexor plantar muscles. The number of cycles per minute on stationary bike was also measured with eyes opened and closed. Significant differences were found suggesting the existence of miscommunication between sensory-motor neural mechanisms responsible for voluntary motor actions in these individuals.

  6. An evaluation of the somatosensory profile of hemiparetic individuals

    Directory of Open Access Journals (Sweden)

    R.S. Mota

    2010-01-01

    Full Text Available The purpose of this study was to evaluate the somatosensory profile of 18 hemiparetic spastic victims of stroke with and without blocking vision. Maximal isometric contraction test was used for flexor and extensor muscles of the hip and knee, and flexor plantar muscles. The number of cycles per minute on stationary bike was also measured with eyes opened and closed. Significant differences were found suggesting the existence of miscommunication between sensory-motor neural mechanisms responsible for voluntary motor actions in these individuals.

  7. Oak wine barrel as an active vessel: A critical review of past and current knowledge.

    Science.gov (United States)

    Del Alamo-Sanza, Maria; Nevares, Ignacio

    2017-05-30

    We review the role of the oak barrel as an active vessel for wine maturation. We present a historical background to highlight that previously established aspects of processes occurring with wine inside the oak barrel are still without confirmation. We argue that recently published new findings on the topic are determining factors in defining the manner in which the oak barrel works with wine. Several studies have been published reviewing how the wine barrel functions as an active vessel that releases chemical compounds into the wine, improving its physical, chemical, and sensory properties. Nevertheless, there are hardly any studies that describe how a wine barrel functions as an active vessel. The present review details the main factors affecting the gas exchange capacity of the barrel, such as the pressure drop generated within the barrel, the formation of a headspace, the effect of wood anatomy, the different oxygen entry routes, the role of wood moisture content and soluble ellagitannins, and the effect of barrel toasting on cooperage. Finally, a hypothesis is proposed regarding the function of the barrel as an active vessel, which determines the manner in which it interacts with the wine that it contains during aging.

  8. Migraine with visual aura associated with thicker visual cortex.

    Science.gov (United States)

    Gaist, David; Hougaard, Anders; Garde, Ellen; Reislev, Nina Linde; Wiwie, Rikke; Iversen, Pernille; Madsen, Camilla Gøbel; Blaabjerg, Morten; Nielsen, Helle Hvilsted; Krøigård, Thomas; Østergaard, Kamilla; Kyvik, Kirsten Ohm; Hjelmborg, Jacob; Madsen, Kristoffer; Siebner, Hartwig Roman; Ashina, Messoud

    2018-01-18

    Until recent years it was believed that migraine with aura was a disorder causing intermittent neurological symptoms, with no impact on brain structure. However, recent MRI studies have reported increased cortical thickness of visual and somatosensory areas in patients with migraine with aura, suggesting that such structural alterations were either due to increased neuronal density in the areas involved, or a result of multiple episodes of cortical spreading depression as part of aura attacks. Subsequent studies have yielded conflicting results, possibly due to methodological reasons, e.g. small number of subjects. In this cross-sectional study, we recruited females aged 30-60 years from the nationwide Danish Twin Registry. Brain MRI of females with migraine with aura (patients), their co-twins, and unrelated migraine-free twins (controls) were performed at a single centre and assessed for cortical thickness in predefined cortical areas (V1, V2, V3A, MT, somatosensory cortex), blinded to headache diagnoses. The difference in cortical thickness between patients and controls adjusted for age, and other potential confounders was assessed. Comparisons of twin pairs discordant for migraine with aura were also performed. Comparisons were based on 166 patients, 30 co-twins, and 137 controls. Compared with controls, patients had a thicker cortex in areas V2 [adjusted mean difference 0.032 mm (95% confidence interval 0.003 to 0.061), V3A [adjusted mean difference 0.037 mm (95% confidence interval 0.008 to 0.067)], while differences in the remaining areas examined were not statistically significant [adjusted mean difference (95% confidence interval): V1 0.022 (-0.007 to 0.052); MT: 0.018 (-0.011 to 0.047); somatosensory cortex: 0.020 (-0.009 to 0.049)]. We found no association between the regions of interest and active migraine, or number of lifetime aura attacks. Migraine with aura discordant twin pairs (n = 30) only differed in mean thickness of V2 (0.039 mm, 95% CI 0

  9. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  10. Measuring intracellular ion concentrations with multi-barrelled microelectrodes.

    Science.gov (United States)

    Miller, Anthony J; Smith, Susan

    2012-01-01

    Ion-selective microelectrodes can be used to measure intracellular ion concentrations. The use of multi-barrelled electrodes enables the identification of the cellular compartment. For example, the inclusion of a pH-selective electrode enables the cytoplasm and vacuole to be distinguished. The ion-selective barrels of microelectrodes are filled with a sensor cocktail containing several different components. An ion-selective molecule, sensor or exchanger. Membrane solvent or plasticizer. Additives, e.g., lipophilic cation/anion. Membrane matrix to solidify the ion-selective membrane; essential for measurements in plant cells with a cell wall and turgor. For many ions, the ready-made membrane cocktail can be purchased, but the individual chemical components can be bought from suppliers and mixing the cocktail oneself is cheaper. For commercially available liquid membrane cocktails, the membrane matrix is not normally included. A matrix is needed if the microelectrodes are to be used in plants because cell turgor will displace a liquid membrane from the electrode tip, thereby changing or eliminating the sensitivity to the measuring ion. The matrix used is usually a high molecular weight poly(vinyl chloride), but can include other polymers, such as nitrocellulose for additional strength.

  11. Performance of a Rain Barrel Sharing Network under Climate Change

    Directory of Open Access Journals (Sweden)

    Seong Jin Noh

    2015-07-01

    Full Text Available Rain barrels can be technically shared through social practices or mutual agreement between individual households. This study proposes the evaluation system for a rain barrel sharing network (RBSN considering three performance criteria of reliability, resiliency, and vulnerability, under plausible climate change scenarios. First, this study shows how the system can be improved in terms of the performance criteria using historical daily rainfall data based on the storage-reliability-yield relationship. This study then examined how the benefits from RBSN are affected by climate change after 100 years. Three climate change scenarios (A1B, A2 and B2 and three global circulation models were used for this purpose. The results showed that the reliability and vulnerability are improved due to sharing and their improvements become larger under climate change conditions. In contrast, the resiliency reduces slightly due to sharing and its reduction is attenuated under climate change conditions. In particular, vulnerability will be reduced significantly under climate change. These results suggest that the sharing of various water resources systems can be an effective climate change adaptation strategy that reduces vulnerability and increases the reliability of the system.

  12. Somatosensory temporal discrimination in essential tremor and isolated head and voice tremors.

    Science.gov (United States)

    Conte, Antonella; Ferrazzano, Gina; Manzo, Nicoletta; Leodori, Giorgio; Fabbrini, Giovanni; Fasano, Alfonso; Tinazzi, Michele; Berardelli, Alfredo

    2015-05-01

    The aim of this study was to investigate the somatosensory temporal discrimination threshold in patients with essential tremor (sporadic and familial) and to evaluate whether somatosensory temporal discrimination threshold values differ depending on the body parts involved by tremor. We also investigated the somatosensory temporal discrimination in patients with isolated voice tremor. We enrolled 61 patients with tremor: 48 patients with essential tremor (31 patients with upper limb tremor alone, nine patients with head tremor alone, and eight patients with upper limb plus head tremor; 22 patients with familial vs. 26 sporadic essential tremor), 13 patients with isolated voice tremor, and 45 healthy subjects. Somatosensory temporal discrimination threshold values were normal in patients with familial essential tremor, whereas they were higher in patients with sporadic essential tremor. When we classified patients according to tremor distribution, somatosensory temporal discrimination threshold values were normal in patients with upper limb tremor and abnormal only in patients with isolated head tremor. Temporal discrimination threshold values were also abnormal in patients with isolated voice tremor. Somatosensory temporal discrimination processing is normal in patients with familial as well as in patients with sporadic essential tremor involving the upper limbs. By contrast, somatosensory temporal discrimination is altered in patients with isolated head tremor and voice tremor. This study with somatosensory temporal discrimination suggests that isolated head and voice tremors might possibly be considered as separate clinical entities from essential tremor. © 2015 International Parkinson and Movement Disorder Society.

  13. Distinct vestibular effects on early and late somatosensory cortical processing in humans

    NARCIS (Netherlands)

    Pfeiffer, C.; van Elk, M.; Bernasconi, F.; Blanke, O.

    2016-01-01

    In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such

  14. Somatosensory evoked potentials and dynamic postural assessment in adolescent idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Dalia Mohamed Ezz El Mikkawy

    2016-01-01

    Conclusion The study demonstrates abnormal somatosensory and postural function in patients with AIS, and a significant inter-relationship between the scoliotic angle, the somatosensory system, and posture. Thus, optimum assessment and treatment of neurological pathway and balance are important in these patients.

  15. Comparison of auditory deficits associated with neglect and auditory cortex lesions.

    Science.gov (United States)

    Gutschalk, Alexander; Brandt, Tobias; Bartsch, Andreas; Jansen, Claudia

    2012-04-01

    In contrast to lesions of the visual and somatosensory cortex, lesions of the auditory cortex are not associated with self-evident contralesional deficits. Only when two or more stimuli are presented simultaneously to the left and right, contralesional extinction has been observed after unilateral lesions of the auditory cortex. Because auditory extinction is also considered a sign of neglect, clinical separation of auditory neglect from deficits caused by lesions of the auditory cortex is challenging. Here, we directly compared a number of tests previously used for either auditory-cortex lesions or neglect in 29 controls and 27 patients suffering from unilateral auditory-cortex lesions, neglect, or both. The results showed that a dichotic-speech test revealed similar amounts of extinction for both auditory cortex lesions and neglect. Similar results were obtained for words lateralized by inter-aural time differences. Consistent extinction after auditory cortex lesions was also observed in a dichotic detection task. Neglect patients showed more general problems with target detection but no consistent extinction in the dichotic detection task. In contrast, auditory lateralization perception was biased toward the right in neglect but showed considerably less disruption by auditory cortex lesions. Lateralization of auditory-evoked magnetic fields in auditory cortex was highly correlated with extinction in the dichotic target-detection task. Moreover, activity in the right primary auditory cortex was somewhat reduced in neglect patients. The results confirm that auditory extinction is observed with lesions of the auditory cortex and auditory neglect. A distinction can nevertheless be made with dichotic target-detection tasks, auditory-lateralization perception, and magnetoencephalography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Somatosensory evoked potentials in children with severe head trauma.

    Science.gov (United States)

    Schalamon, Johannes; Singer, Georg; Kurschel, Senta; Höllwarth, Michael E

    2005-07-01

    We evaluated the predictive value of somatosensory evoked potentials (SEP) in a series of children with severe traumatic brain injury (TBI). The prospective clinical investigation was performed in a Level I paediatric trauma centre. We included 26 consecutive comatose paediatric patients aged from 1 month to 17 years (median age 11 years) following severe TBI (initial Glasgow Coma Score (GCS) 8 or below). Besides SEP recordings, the intracranial pressure and the results of an initial cranial CT scan were filed. The Glasgow Outcome Scale (GOS) was used to assess outcome at discharge. Thirteen children had normal SEP measurements, three patients had abnormal SEP recordings and a cortical response was bilaterally absent in ten children. Out of 26 children, 10 died whereas two remained in a persistent vegetative state. Only one child suffered from significant neurological deficits (GOS 3) at discharge. Seven patients survived with a GOS of 4 and six children survived without neurological impairment (GOS 5). Normal SEP indicated a favourable outcome in most children but did not rule out the occurrence of death, while absence of SEP was related to unfavourable outcome in all cases. Measurement of somatosensory evoked potentials provides valuable data for determining the prognosis at early coma stages. Our data show that an unfavourable outcome can be predicted with higher precision than a favourable outcome.

  17. Focal dystonia in musicians: Linking motor symptoms to somatosensory dysfunction

    Directory of Open Access Journals (Sweden)

    Juergen eKonczak

    2013-06-01

    Full Text Available Musician’s dystonia (MD is a neurological motor disorder characterized by involuntary contractions of those muscles involved in the play of a musical instrument. It is task-specific and initially only impairs the voluntary control of highly practiced musical motor skills. MD can lead to a severe decrement in a musician’s ability to perform. While the etiology and the neurological pathomechanism of the disease remain unknown, it is known that MD like others forms of focal dystonia is associated with somatosensory deficits, specifically a decreased precision of tactile and proprioceptive perception. The sensory component of the disease becomes also evident by the patients’ use sensory tricks such as touching dystonic muscles to alleviate motor symptoms. The central premise of this paper is that the motor symptoms of MD have a somatosensory origin and are not fully explained as a problem of motor execution. We outline how altered proprioceptive feedback ultimately leads to a loss of voluntary motor control and propose two scenarios that explain why sensory tricks are effective. Sensory tricks are effective, because the sensorimotor system either recruits neural resources normally involved in tactile-proprioceptive (sensory integration, or utilizes a fully functioning motor efference copy mechanism to align experienced with expected sensory feedback. We argue that an enhanced understanding of how a primary sensory deficit interacts with mechanisms of sensorimotor integration in musician’s dystonia provides helpful insights for the design of more effective behavioral therapies.

  18. The structure of somatosensory information for human postural control

    Science.gov (United States)

    Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.

    1998-01-01

    The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.

  19. Neural circuit remodeling and structural plasticity in the cortex during chronic pain.

    Science.gov (United States)

    Kim, Woojin; Kim, Sun Kwang

    2016-01-01

    Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

  20. Early Hearing-Impairment Results in Crossmodal Reorganization of Ferret Core Auditory Cortex

    Directory of Open Access Journals (Sweden)

    M. Alex Meredith

    2012-01-01

    Full Text Available Numerous investigations of cortical crossmodal plasticity, most often in congenital or early-deaf subjects, have indicated that secondary auditory cortical areas reorganize to exhibit visual responsiveness while the core auditory regions are largely spared. However, a recent study of adult-deafened ferrets demonstrated that core auditory cortex was reorganized by the somatosensory modality. Because adult animals have matured beyond their critical period of sensory development and plasticity, it was not known if adult-deafening and early-deafening would generate the same crossmodal results. The present study used young, ototoxically-lesioned ferrets (n=3 that, after maturation (avg. = 173 days old, showed significant hearing deficits (avg. threshold = 72 dB SPL. Recordings from single-units (n=132 in core auditory cortex showed that 72% were activated by somatosensory stimulation (compared to 1% in hearing controls. In addition, tracer injection into early hearing-impaired core auditory cortex labeled essentially the same auditory cortical and thalamic projection sources as seen for injections in the hearing controls, indicating that the functional reorganization was not the result of new or latent projections to the cortex. These data, along with similar observations from adult-deafened and adult hearing-impaired animals, support the recently proposed brainstem theory for crossmodal plasticity induced by hearing loss.

  1. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    Ken Bell, RAL

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. See also the document CMS-PHO-OREACH-2006-019. The first two pictures show the two supermodules in their final position. Fig. 3: the "enfourneur" in position on the HB Cradle. Fig. 4: supermodule n. 5 and extension rails being lifted to the enforneur. Figs. 5-6: supermodule approaching the enforneur. Fig. 7: rotating the Enfourneur to the correct phi direction Figs. 8-9: aligning the extension rails with the rails inside HB and view from inside HB, once the rails are aligned. Figs. 10-12: insertion of supermodule n. 5. Fig. ...

  2. Intraoral somatosensory abnormalities in patients with atypical odontalgia – a controlled multicenter quantitative sensory testing study

    Science.gov (United States)

    Baad-Hansen, Lene; Pigg, Maria; Ivanovic, Susanne El’Masry; Faris, Hanan; List, Thomas; Drangsholt, Mark; Svensson, Peter

    2013-01-01

    Intraoral somatosensory sensitivity in patients with atypical odontalgia (AO) has not been investigated systematically according to the most recent guidelines. The aims of this study were to: 1. Examine intraoral somatosensory disturbances in AO patients using healthy subjects as reference and 2. Evaluate the percent agreement between intraoral quantitative sensory testing (QST) and qualitative sensory testing (QualST). Forty-seven AO patients and 69 healthy controls were included at Universities of Washington, Malmö and Aarhus. In AO patients, intraoral somatosensory testing was performed on the painful site, the corresponding contralateral site and at thenar. In healthy subjects, intraoral somatosensory testing was performed bilaterally on the upper premolar gingiva and at thenar. Thirteen QST and 3 QualST parameters were evaluated at each site, z-scores were computed for AO patients based on the healthy reference material and LossGain scores were created. 87.3% of AO patients had QST abnormalities compared with controls. The most frequent somatosensory abnormalities in AO patients were somatosensory gain with regard to painful mechanical and cold stimuli and somatosensory loss with regard to cold detection and mechanical detection. The most frequent LossGain code was L0G2 (no somatosensory loss with gain of mechanical somatosensory function)(31.9% of AO patients). Percent agreement between corresponding QST and QualST measures of thermal and mechanical sensitivity ranged between 55.6 and 70.4% in AO patients and between 71.1 and 92.1% in controls. In conclusion, intraoral somatosensory abnormalities were commonly detected in AO patients and agreement between quantitative and qualitative sensory testing was good to excellent. PMID:23725780

  3. Intraoral somatosensory abnormalities in patients with atypical odontalgia--a controlled multicenter quantitative sensory testing study.

    Science.gov (United States)

    Baad-Hansen, Lene; Pigg, Maria; Ivanovic, Susanne Eímasry; Faris, Hanan; List, Thomas; Drangsholt, Mark; Svensson, Peter

    2013-08-01

    Intraoral somatosensory sensitivity in patients with atypical odontalgia (AO) has not been investigated systematically according to the most recent guidelines. The aims of this study were to examine intraoral somatosensory disturbances in AO patients using healthy subjects as reference, and to evaluate the percent agreement between intraoral quantitative sensory testing (QST) and qualitative sensory testing (QualST). Forty-seven AO patients and 69 healthy control subjects were included at Universities of Washington, Malmö, and Aarhus. In AO patients, intraoral somatosensory testing was performed on the painful site, the corresponding contralateral site, and at thenar. In healthy subjects, intraoral somatosensory testing was performed bilaterally on the upper premolar gingiva and at thenar. Thirteen QST and 3 QualST parameters were evaluated at each site, z-scores were computed for AO patients based on the healthy reference material, and LossGain scores were created. Compared with control subjects, 87.3% of AO patients had QST abnormalities. The most frequent somatosensory abnormalities in AO patients were somatosensory gain with regard to painful mechanical and cold stimuli and somatosensory loss with regard to cold detection and mechanical detection. The most frequent LossGain code was L0G2 (no somatosensory loss with gain of mechanical somatosensory function) (31.9% of AO patients). Percent agreement between corresponding QST and QualST measures of thermal and mechanical sensitivity ranged between 55.6% and 70.4% in AO patients and between 71.1% and 92.1% in control subjects. In conclusion, intraoral somatosensory abnormalities were commonly detected in AO patients, and agreement between quantitative and qualitative sensory testing was good to excellent. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Brain Activity Changes in Somatosensory and Emotion-Related Areas With Medial Patellofemoral Ligament Deficiency.

    Science.gov (United States)

    Kadowaki, Masaru; Tadenuma, Taku; Kumahashi, Nobuyuki; Uchio, Yuji

    2017-11-01

    thalamus (0.02% versus 0.27% for the MPFL versus control, respectively; p < 0.001), and ipsilateral cerebellum (0.82% versus 1.25% for the MPFL versus control, respectively; p < 0.001) in the MPFL deficiency group than in the control group. In contrast, the MPFL deficiency group showed more activity in several areas, including the contralateral primary motor area (1.06% versus 0.6% for the MPFL versus control, respectively; p < 0.001), supplementary motor area (0.89% versus 0.52% for the MPFL versus control, respectively; p < 0.001), prefrontal cortex (1.09% versus 1.09% for the MPFL versus control, respectively; p < 0.001), inferior parietal lobule (0.89% versus 0.62% for the MPFL versus control, respectively; p < 0.001), anterior cingulate cortex (0.84% versus 0.08% for the MPFL versus control, respectively; p < 0.001), visual cortex (0.86% versus 0.14% for the MPFL versus control, respectively; p < 0.001), vermis (1.18% versus 0.37% for the MPFL versus control, respectively; p < 0.001), and ipsilateral prefrontal cortex (1.1% versus 0.75% for the MPFL versus control, respectively; p < 0.001) than did the control group. Less activity in the contralateral somatosensory cortical areas suggested that MPFL deficiency may lead to diminished somatic sensation against lateral shift of the patella. In contrast, increased activity in the anterior cingulate cortex, prefrontal cortex, and inferior parietal lobule may indicate anxiety or fear resulting from patellar instability, which is recognized as an aversion similar to that toward chronic pain. This study suggests that specific brain-area activity is increased in patients with MPFL deficiency relative to that in controls. Further longitudinal research to assess brain activity and proprioception between patients pre- and postreconstructive knee surgery may reveal more regarding how patella instability is related to brain function. We hope that based on such research, a neural approach to improve patella-instability-related brain

  5. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders

    Science.gov (United States)

    Terada, S.; Kobayashi, H.; Sengoku, H.; Kato, Y.; Hara, K.; Honma, F.; Ikegami, Y.; Iwata, Y.; Kohriki, T.; Kondo, T.; Nakano, I.; Takashima, R.; Tanaka, R.; Ujiie, N.; Unno, Y.; Yasuda, S.

    2005-04-01

    More than 2000 silicon modules need to be placed and fastened on the ATLAS SCT barrel tracker. A semi-automatic pick-and-place work robot was designed and developed to cope with the module placement for the SCT barrel assembly. We found that this robot could place modules to a mechanical precision of better than 25 μm.

  6. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders

    CERN Document Server

    Terada, S; Honma, F; Ikegami, Y; Iwata, Y; Kato, Y; Kobayashi, H; Kohriki, T; Kondo, T; Nakano, I; Sengoku, H; Takashima, R; Tanaka, R; Ujiie, N; Unno, Y; Yasuda, S

    2005-01-01

    More than 2000 silicon modules need to be placed and fastened on the ATLAS SCT barrel tracker. A semi-automatic pick-and-place work robot was designed and developed to cope with the module placement for the SCT barrel assembly. We found that this robot could place modules to a mechanical precision of better than 25 mum.

  7. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Conveyor for moving and draining block or barrel... and Grading Service 1 Equipment and Utensils § 58.425 Conveyor for moving and draining block or barrel cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be easily...

  8. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.

    Science.gov (United States)

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.

  9. Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study.

    Science.gov (United States)

    Wasaka, T; Kida, T; Nakata, H; Akatsuka, K; Kakigi, R

    2007-10-26

    We studied sensori-motor interaction in the primary (SI) and secondary somatosensory cortex (SII) using magnetoencephalography. Since SII in both hemispheres was activated following unilateral stimulation, we analyzed SIIc (contralateral to stimulation) as well as SIIi (ipsilateral to stimulation). Four tasks were performed in human subjects in which a voluntary thumb movement of the left or right hand was combined with electrical stimulation applied to the index finger of the left or right hand: L(M)-L(S) (movement of the left thumb triggered stimulation to the left finger), L(M)-R(S) (movement of the left thumb triggered electrical stimulation to the right finger), R(M)-R(S) (movement of the right thumb triggered electrical stimulation to the right finger), and R(M)-L(S) (movement of the right thumb triggered electrical stimulation to the left finger). Stimulation to the index finger only (S condition) was also recorded. In SI, the amplitude of N20m and P35m was significantly attenuated in the R(M)-R(S) and L(M)-L(S) tasks compared with the S condition, but that for other tasks showed no change, corresponding to a conventional gating phenomenon. In SII, the R(M)-L(S) task significantly enhanced the amplitude of SIIc but reduced that of SIIi compared with the S condition. The L(M)-L(S) and R(M)-R(S) tasks caused a significant enhancement only in SIIi. The L(M)-R(S) task enhanced the amplitude only in SIIc. The laterality index showed that SII modulation with voluntary movement was more dominant in the hemisphere ipsilateral to movement but was not affected by the side of stimulation. These results provided the characteristics of activities in somatosensory cortices, a simple inhibition in SI but complicated changes in SII depending on the side of movement and stimulation, which may indicate the higher cognitive processing in SII.

  10. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    CERN Document Server

    Aubert, Bernard; Alexa, C; Astesan, F; Augé, E; Aulchenko, V M; Ballansat, J; Barreiro, F; Barrillon, P; Battistoni, G; Bazan, A; Beaugiraud, B; Beck-Hansen, J; Belhorma, B; Belorgey, J; Belymam, A; Ben-Mansour, A; Benchekroun, D; Benchouk, C; Bernard, R; Bertoli, W; Boniface, J; Bonivento, W; Bourdarios, C; Bremer, J; Breton, D; Bán, J; Camard, A; Canton, B; Carminati, L; Cartiglia, N; Cavalli, D; Chalifour, M; Chekhtman, A; Chen, H; Cherkaoui, R; Chevalley, J L; Chollet, F; Citterio, M; Clark, A; Cleland, W; Clément, C; Colas, Jacques; Collot, J; Costa, G; Cros, P; Cunitz, H; de Saintignon, P; Del Peso, J; Delebecque, P; Delmastro, M; Di Ciaccio, Lucia; Dinkespiler, B; Djama, F; Dodd, J; Driouichi, C; Dumont-Dayot, N; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Egdemir, J; El-Kacimi, M; El-Mouahhidi, Y; Engelmann, R; Ernwein, J; Falleau, I; Fanti, M; Farrell, J; Fassnacht, P; Ferrari, A; Fichet, S; Fournier, D; Gallin-Martel, M L; Gara, A; García, G; Gaumer, O; Ghazlane, H; Ghez, P; Gianotti, F; Girard, C; Gordon, H; Gouanère, M; Guilhem, G; Hackenburg, B; Hakimi, M; Hassani, S; Henry-Coüannier, F; Hervás, L; Hinz, L; Hoffman, A; Hoffman, J; Hostachy, J Y; Hoummada, A; Hubaut, F; Idrissi, A; Imbault, D; Jacquier, Y; Jérémie, A; Jevaud, M; Jézéquel, S; Kambara, H; Karst, P; Kazanin, V; Kierstead, J A; Kolachev, G M; Kordas, K; de La Taille, C; Labarga, L; Lacour, D; Lafaye, R; Laforge, B; Lanni, F; Le Coroller, A; Le Dortz, O; Le Maner, C; Le Van-Suu, A; Le Flour, T; Leite, M; Leltchouk, M; Lesueur, J; Lissauer, D; Lund-Jensen, B; Lundqvist, J M; Ma, H; Macé, G; Makowiecki, D S; Malychev, V; Mandelli, L; Mansoulié, B; Marin, C P; Martin, D; Martin, L; Martin, O; Martin, P; Maslennikov, A L; Massol, N; Mazzanti, M; McCarthy, R; McDonald, J; Megner, L; Merkel, B; Mirea, A; Moneta, L; Monnier, E; Moynot, M; Muraz, J F; Nagy, E; Negroni, S; Neukermans, L; Nicod, D; Nikolic-Audit, I; Noppe, J M; Ohlsson-Malek, F; Olivier, C; Orsini, F; Pailler, P; Parrour, G; Parsons, J A; Pearce, M; Perini, L; Perrodo, P; Perrot, G; Pétroff, P; Poggioli, Luc; Pospelov, G E; Pralavorio, Pascal; Prast, J; Przysiezniak, H; Puzo, P; Radeka, V; Rahm, David Charles; Rajagopalan, S; Raymond, M; Renardy, J F; Repetti, B; Rescia, S; Resconi, S; Riccadona, X; Richer, J P; Rijssenbeek, M; Rodier, S; Rossel, F; Rousseau, D; Rydström, S; Saboumazrag, S; Sauvage, D; Sauvage, G; Schilly, P; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seman, M; Serin, L; Shousharo, A; Simion, S; Sippach, W; Snopkov, R; Steffens, J; Stroynowski, R; Stumer, I; Taguet, J P; Takai, H; Talyshev, A A; Tartarelli, F; Teiger, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tocut, V; Tóth, J; Veillet, J J; Vossebeld, Joost Herman; Vuillemin, V; Wielers, M; Willis, W J; Wingerter-Seez, I; Ye, J; Yip, K; Zerwas, D; Zitoun, R; Zolnierowski, Y

    2003-01-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11+-0.07. An energy resolution of better than 9.5% GeV^1/2/sqrt{E} (sampling term) has been obtained with electron beams of up to 245GeV. The uniformity of the response to electrons in an area of Delta_eta x Delta_phi = 1.2 x 0.075 has been measured to be better than 0.8%.

  11. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Science.gov (United States)

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti.

  12. Manufacturing aspects of the ATLAS barrel toroid double pancakes

    CERN Document Server

    Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R

    2002-01-01

    In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...

  13. Elastic Surface Model For Beta-Barrels: Geometric, Computational, And Statistical Analysis.

    Science.gov (United States)

    Toda, Magdalena; Zhang, Fangyuan; Athukorallage, Bhagya

    2018-01-01

    Over the past 2 decades, many different geometric models were created for beta barrels, including, but not limited to: cylinders, 1-sheeted hyperboloids, twisted hyperboloids, catenoids, and so forth. We are proponents of an elastic surface model for beta-barrels, which includes the minimal surface model as a particular case, but is a lot more comprehensive. Beta barrel models are obtained as numerical solutions of a boundary value problem, using the COMSOL Multiphysics Modeling Software. We have compared them against the best fitting statistical models, with positive results. The geometry of each individual beta barrel, as a rotational elastic surface, is determined by the ratio between the exterior diameter and the height. Through our COMSOL computational modeling, we created a rather large variety of generalized Willmore surfaces that may represent models for beta barrels. The catenoid is just a particular solution among all these shapes. © 2017 Wiley Periodicals, Inc.

  14. Comparison between Malolactic Fermentation Container and Barrel Toasting Effects on Phenolic, Volatile, and Sensory Profiles of Red Wines.

    Science.gov (United States)

    González-Centeno, María Reyes; Chira, Kleopatra; Teissedre, Pierre-Louis

    2017-04-26

    Ellagitannin and anthocyanin profiles, woody volatile composition, and sensory properties of wines in which malolactic fermentation (MLF) took place in barrels or stainless steel tanks, have been compared after 12 months of barrel aging. Three different barrel toastings were evaluated. Barrel-fermented wines generally presented 1.2-fold higher total phenolics, whereas tank-fermented wines exhibited 1.1- and 1.2-fold greater total proanthocyanidin and anthocyanin contents, respectively. Concerning ellagitannin composition, the barrel toasting effect seemed to be more important than differences due to MLF container. Certain woody and fruity volatiles varied significantly (p wines were preferred in the mouth, whereas olfactory preference depended on barrel toasting. This is the first study that evaluates the impact of oak wood during MLF on ellagitannin wine composition, as well as the barrel toasting effect on wine attributes during aging when MLF occurred whether in barrels or in tanks.

  15. Tunable somatosensory stimulation for selective sleep restriction studies in rodents.

    Science.gov (United States)

    Huffman, Dillon M; Staggs, Kendra E; Yaghouby, Farid; Agarwal, Anuj; O'Hara, Bruce F; Donohue, Kevin D; Blalock, Eric M; Sunderam, Sridhar

    2016-08-01

    Many methods for sleep restriction in rodents have emerged, but most are intrusive, lack fine control, and induce stress. Therefore, a versatile, non-intrusive means of sleep restriction that can alter sleep in a controlled manner could be of great value in sleep research. In previous work, we proposed a novel system for closed-loop somatosensory stimulation based on mechanical vibration and applied it to the task of restricting Rapid Eye Movement (REM) sleep in mice [1]. While this system was effective, it was a crude prototype and did not allow precise control over the amplitude and frequency of stimulation applied to the animal. This paper details the progression of this system from a binary, "all-or-none" version to one that allows dynamic control over perturbation to accomplish graded, state-dependent sleep restriction. Its preliminary use is described in two applications: deep sleep restriction in rats, and REM sleep restriction in mice.

  16. Early somatosensory processing in individuals at risk for developing psychoses

    Directory of Open Access Journals (Sweden)

    Florence eHagenmuller

    2014-09-01

    Full Text Available Human cortical somatosensory evoked potentials (SEPs allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20 high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses.Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n=25, individuals with high-risk status (n= 59 and ultra-high-risk status for schizophrenia (n= 73 and a gender and age-matched control group (n=45. Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups.Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load.These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia.

  17. Early somatosensory processing in individuals at risk for developing psychoses.

    Science.gov (United States)

    Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram

    2014-01-01

    Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia.

  18. Tailored Double-Barrel Bypass Surgery Using an Occipital Artery Graft for Unstable Intracranial Vascular Occlusive Disease.

    Science.gov (United States)

    Chung, Yeongu; Lee, Sung Ho; Ryu, Jiwook; Kim, Johnho; Chung, Sang Bong; Choi, Seok Keun

    2017-05-01

    This report describes the need for a tailored approach for intracranial vascular occlusive disease and introduces the usefulness of the OA as a donor artery for interposition graft. A 65-year-old male patient suffered from repeated transient ischemic attack (TIA). Imaging studies revealed complete occlusion of the proximal left side of the internal carotid artery (ICA) and multiple infarction in the watershed zone. We planned superficial temporal artery-middle cerebral artery (STA-MCA) bypass to restore cerebral blood flow and to prevent the progression of infarction. However, the parietal branch of the STA was too small in diameter and not suitable as a single donor for the bypass in order to supply sufficient blood flow. Moreover, the frontal branch of the STA had collateral channels through the periorbital anastomosis into the cerebral cortex that could result in infarction during clamping for anastomosis. We determined that tailored treatment planning was necessary for successful revascularization under these conditions. Thus, we performed a bypass between the parietal branch of the STA and a cortical branch of the MCA as an "insurance bypass." Then we performed another bypass between the frontal branch of the STA and a cortical branch of the MCA using an ipsilateral occipital artery (OA) interposition graft. The patient had no perioperative complications, and postoperative imaging confirmed the restoration of cerebral blood flow. When end-to-side anastomosis in single-branch bypass is not appropriate for cerebral revascularization, a tailored double-barrel "insurance bypass" with an OA interposed graft could be a good alternative treatment modality. In addition, an OA interposition graft is a useful option for double-barrel bypass surgery in such cases of intracranial vascular occlusive disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Environmental enrichment causes a global potentiation of neuronal responses across stimulus complexity and lamina of sensory cortex

    Directory of Open Access Journals (Sweden)

    Dasuni Sathsara Alwis

    2013-08-01

    Full Text Available Enriched social and physical housing produces many molecular, anatomical, electrophysiological and behaviour benefits even in adult animals. Much less is known of its effects on cortical electrophysiology, especially in how sensory cortex encodes the altered environment, and extant studies have generally been restricted to neurons in input laminae in sensory cortex. To extend the understanding of how an enriched environment alters the way in which cortex views the world, we investigated enrichment-induced changes in neuronal encoding of sensory stimuli across all laminae of the rat barrel cortex receiving input from the face whisker tactile system. Animals were housed in Enriched (n=13 or Isolated housing (n=13 conditions for 8 weeks before extracellular recordings were obtained from barrel cortex in response to simple whisker deflections and whisker motions modelling movements seen in awake animals undertaking a variety of different tasks. Enrichment resulted in increases in neuronal responses to all stimuli, ranging from those modelling exploratory behaviour through to discrimination behaviours. These increases were seen throughout the cortex from supragranular layers through to input Layer 4 and for some stimuli, in infragranular Layer 5. The observed enrichment-induced effect is consistent with the postulate that enrichment causes shift in cortical excitatory/inhibitory balance, and we demonstrate this is greatest in supragranular layers. However we also report that the effects are non-selective for stimulus parameters across a range of stimuli except for one modelling the likely use of whiskers by the rats in the enriched housing.

  20. Dynamics of inner ear pressure release, measured with a double-barreled micropipette in the guinea pig

    NARCIS (Netherlands)

    Wit, HP; Thalen, EO; Albers, FWJ

    The inner ear, fluid pressure was measured in scala media of the guinea pig through one barrel of a double-barreled micropipette after a sudden volume increase or decrease, caused by injection or withdrawal of artificial endolymph through the other barrel. During injection or withdrawal, the inner

  1. Characterising reward outcome signals in sensory cortex.

    Science.gov (United States)

    FitzGerald, Thomas H B; Friston, Karl J; Dolan, Raymond J

    2013-12-01

    Reward outcome signalling in the sensory cortex is held as important for linking stimuli to their consequences and for modulating perceptual learning in response to incentives. Evidence for reward outcome signalling has been found in sensory regions including the visual, auditory and somatosensory cortices across a range of different paradigms, but it is unknown whether the population of neurons signalling rewarding outcomes are the same as those processing predictive stimuli. We addressed this question using a multivariate analysis of high-resolution functional magnetic resonance imaging (fMRI), in a task where subjects were engaged in instrumental learning with visual predictive cues and auditory signalled reward feedback. We found evidence that outcome signals in sensory regions localise to the same areas involved in stimulus processing. These outcome signals are non-specific and we show that the neuronal populations involved in stimulus representation are not their exclusive target, in keeping with theoretical models of value learning. Thus, our results reveal one likely mechanism through which rewarding outcomes are linked to predictive sensory stimuli, a link that may be key for both reward and perceptual learning. © 2013.

  2. Topographic representation of the human body in the occipitotemporal cortex.

    Science.gov (United States)

    Orlov, Tanya; Makin, Tamar R; Zohary, Ehud

    2010-11-04

    Large-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants. Using converging methods, the preference for specific body parts was demonstrated to be robust and did not merely reflect shape differences between the categories. Finally, execution of (unseen) movements with different body parts resulted in a limited topographic representation of the limbs and trunk, which partially overlapped with the visual body part map. This motor-driven activation in the OTC could not be explained solely by visual or motor imagery of the body parts. This suggests that visual and motor-related information converge within the OTC in a body part specific manner. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Alpha stimulation of the human parietal cortex attunes tactile perception to external space.

    Science.gov (United States)

    Ruzzoli, Manuela; Soto-Faraco, Salvador

    2014-02-03

    An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Modified areal cartography in auditory cortex following early- and late-onset deafness.

    Science.gov (United States)

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2014-07-01

    Cross-modal plasticity following peripheral sensory loss enables deprived cortex to provide enhanced abilities in remaining sensory systems. These functional adaptations have been demonstrated in cat auditory cortex following early-onset deafness in electrophysiological and psychophysical studies. However, little information is available concerning any accompanying structural compensations. To examine the influence of sound experience on areal cartography, auditory cytoarchitecture was examined in hearing cats, early-deaf cats, and cats with late-onset deafness. Cats were deafened shortly after hearing onset or in adulthood. Cerebral cytoarchitecture was revealed immunohistochemically using SMI-32, a monoclonal antibody used to distinguish auditory areas in many species. Auditory areas were delineated in coronal sections and their volumes measured. Staining profiles observed in hearing cats were conserved in early- and late-deaf cats. In all deaf cats, dorsal auditory areas were the most mutable. Early-deaf cats showed further modifications, with significant expansions in second auditory cortex and ventral auditory field. Borders between dorsal auditory areas and adjacent visual and somatosensory areas were shifted ventrally, suggesting expanded visual and somatosensory cortical representation. Overall, this study shows the influence of acoustic experience in cortical development, and suggests that the age of auditory deprivation may significantly affect auditory areal cartography. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient

    NARCIS (Netherlands)

    van de Wassenberg, Wilma J. G.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in

  6. Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans

    NARCIS (Netherlands)

    Veldman, M. P.; Zijdewind, I.; Solnik, S.; Maffiuletti, N. A.; Berghuis, K. M. M.; Javet, M.; Negyesi, J.; Hortobagyi, T.

    2015-01-01

    Purpose Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes. Methods

  7. Validity of the French form of the somatosensory amplification scale in a non-clinical sample

    Directory of Open Access Journals (Sweden)

    Morgiane Bridou

    2013-03-01

    Full Text Available The SomatoSensory Amplification Scale (SSAS is a 10-item self-report instrument designed to assess the tendency to detect somatic and visceral sensations and experience them as unusually intense, toxic and alarming. This study examines the psychometric properties of a French version of the SSAS in a non-clinical population and, more specifically, explores its construct, convergent and discriminant validities. The SSAS was completed by 375 university students, together with measures of somatization propensity (SCL-90-R somatization subscale and trait anxiety (STAI Y form. The results of principal component and confirmatory factor analyses suggest that the French version of the SSAS evaluates essentially a single, robust factor (Somatosensory amplification and two kinds of somatic sensitivity (Exteroceptive sensitivity and Interoceptive sensitivity. Somatosensory amplification correlated with somatization tendency and anxiety propensity. These results encourage further investigations in French of the determinants and consequences of somatosensory amplification, and its use as a therapeutic strategy.

  8. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans

    NARCIS (Netherlands)

    Veldman, M. P.; Maffiuletti, N. A.; Hallett, M.; Zijdewind, I.; Hortobagyi, T.

    2014-01-01

    This analytic review reports how prolonged periods of somatosensory electric stimulation (SES) with repetitive transcutaneous nerve stimulation can have 'direct' and 'crossed' effects on brain activation, corticospinal excitability, and motor performance. A review of 26 studies involving 315 healthy

  9. Somatosensory amplification mediates sex differences in psychological distress among cardioverter-defibrillator patients

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Baumert, Jens; Kolb, Christof

    2010-01-01

    The present study examined whether female patients with an implantable cardioverter defibrillator (ICD) report more psychological distress than male patients, and whether somatosensory amplification mediates this relationship. Design: Consecutive ICD patients (N = 241; 33% women) participating in...

  10. Spatiotemporal profiles of dental pulp nociception in rat cerebral cortex: an optical imaging study.

    Science.gov (United States)

    Nakamura, Hiroko; Kato, Risako; Shirakawa, Tetsuo; Koshikawa, Noriaki; Kobayashi, Masayuki

    2015-06-01

    Somatosensation is topographically organized in the primary (S1) and secondary somatosensory cortex (S2), which contributes to identify the region receiving sensory inputs. However, it is still unknown how somatosensory inputs from the oral region, especially nociceptive inputs from the teeth, are processed in the somatosensory cortex. We performed in vivo optical imaging and identified the precise cortical regions responding to electrical stimulation of the maxillary and mandibular dental pulp in rats. Electrical stimulation of the mandibular incisor pulp evoked neural excitation in two areas: the most rostroventral part of S1, and the ventral part of S2 caudal to the middle cerebral artery. Maxillary incisor pulp stimulation initially evoked responses only in the ventral part of S2, although later maximum responses were also observed in S1 similar to mandibular incisor stimulation responses. The maxillary and mandibular molar pulp-responding regions were located in the most ventral S2, a part of which was histologically classified as the insular oral region (IOR). In terms of the initial responses, maxillary incisor and molar stimulation induced excitation in the S2/IOR rostral to the mandibular dental pulp-responding region. Contrary to the spatially segregated initial responses, the maximum excitatory areas responding to both incisors and molars in the mandible and maxilla overlapped in S1 and the S2/IOR. Multielectrode extracellular recording supported the characteristic localization of S2/IOR neurons responding to mandibular and maxillary molar pulp stimulation. The discrete and overlapped spatial profiles of initial and maximum responses, respectively, may characterize nociceptive information processing of dental pain in the cortex. © 2015 Wiley Periodicals, Inc.

  11. A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs

    Science.gov (United States)

    2008-02-12

    interface for neuroprosthetic limbs. PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs. PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs. PI: Douglas J. Weber, Ph.D. University of Pittsburgh

  12. Geometry optimization of a barrel silicon pixelated tracker

    Science.gov (United States)

    Liu, Qing-Yuan; Wang, Meng; Winter, Marc

    2017-08-01

    We have studied optimization of the design of a barrel-shaped pixelated tracker for given spatial boundaries. The optimization includes choice of number of layers and layer spacing. Focusing on tracking performance only, momentum resolution is chosen as the figure of merit. The layer spacing is studied based on Gluckstern’s method and a numerical geometry scan of all possible tracker layouts. A formula to give the optimal geometry for curvature measurement is derived in the case of negligible multiple scattering to deal with trajectories of very high momentum particles. The result is validated by a numerical scan method, which could also be implemented with any track fitting algorithm involving material effects, to search for the optimal layer spacing and to determine the total number of layers for the momentum range of interest under the same magnetic field. The geometry optimization of an inner silicon pixel tracker proposed for BESIII is also studied by using a numerical scan and these results are compared with Geant4-based simulations. Supported by National Natural Science Foundation of China (U1232202)

  13. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Document Server

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  14. Lens barrel design of the NIRST IR Camera

    Science.gov (United States)

    Côté, Patrice; Leclerc, Mélanie; Châteauneuf, François; Marraco, Hugo

    2009-08-01

    The use of uncooled microbolometer detectors for space infrared (IR) imaging application requires high optical throughput, which leads to very fast optical design (~f/1). This directly translates into stringent requirements for components, assembly and alignment. The Institut National d'Optique (INO) in Quebec City, Canada, designed such a system for the NIRST IR Camera. The instrument is part of the Aquarius/SAC-D satellite, a cooperative mission conducted jointly by NASA and the Comisión Nacional de Actividades Espaciales (CONAE) of Argentina. Due to the tight volume and mass allocation, the NIRST camera module is an all refractive design. Since the Camera is made of two lens barrels co-registered to cover the same ground area at different wavelength bands, it also adds coregistration alignment constraints. This paper presents the optomechanical solutions and alignment scheme that enabled the successful design and flight qualification. Trade-off study between thermally induced stress and structural stiffness of the lens RTV bond is discussed. Special attention is given to lens subcell alignment integrity under random vibration encountered during launch. Detailed Finite Element Analysis (FEA) is used to check early design assumptions. Test results of the final vibration campaign are also presented.

  15. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  16. Double barreled wet colostomy: initial experience and literature review.

    Science.gov (United States)

    Salgado-Cruz, Luis; Espin-Basany, Eloy; Vallribera-Valls, Francesc; Sanchez-Garcia, Jose; Jimenez-Gomez, Luis Miguel; Marti-Gallostra, Marc; Garza-Maldonado, Ana

    2014-01-01

    Pelvic exenteration and multivisceral resection in colorectal have been described as a curative and palliative intervention. Urinary tract reconstruction in a pelvic exenteration is achieved in most cases with an ileal conduit of Bricker, although different urinary reservoirs have been described. A retrospective and observational study of six patients who underwent a pelvic exenteration and urinary tract reconstruction with a double barreled wet colostomy (DBWC) was done, describing the preoperative diagnosis, the indication for the pelvic exenteration, the complications associated with the procedure, and the followup in a period of 5 years. A literature review of the case series reported of the technique was performed. Six patients had a urinary tract reconstruction with the DBWC technique, 5 male patients and one female patient. Age range was from 20 to 77 years, with a medium age 53.6 years. The most frequent complication presented was a pelvic abscess in 3 patients (42.85%); all complications could be resolved with a conservative treatment. In the group of our patients with pelvic exenteration and urinary tract reconstruction with a DBWC, it is a safe procedure and well tolerated by the patients, and most of the complications can be resolved with conservative treatment.

  17. Open heavy flavour reconstruction in the ALICE central barrel

    CERN Document Server

    Prino, Francesco

    2008-01-01

    The ALICE experiment will be able to detect open charm and beauty hadrons in proton-proton and heavy ion collisions in the new energy regime of the CERN Large Hadron Collider (LHC). Heavy flavours are a powerful tool to investigate the medium created in high energy nucleus--nucleus interactions because they are produced in the hard scatterings occurring at early times and, thanks to their long lifetime on the collision timescale, they probe all the stages of the system evolution. The detectors of the ALICE central barrel ($-0.9 < \\eta < 0.9$) will allow to track charged particles down to low transverse momentum ($\\approx$ 100 MeV/$c$) and will provide hadron and electron identification as well as an accurate measurement of the positions of primary and secondary vertices. It will therefore be possible to measure the production of open heavy flavours in the central rapidity region down to low transverse momentum, exploiting the semi-electronic and the hadronic decay channels. Here we present a general ove...

  18. Barrel Toroid fully charged to nominal field, and it works!

    CERN Document Server

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  19. Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Baillon, Paul; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Bialas, Wojciech; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton, David; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Del Re, Daniele; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl, James; Gras, Philippe; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel De Montechenault, G; Hansen, Magnus; Heath, Helen F; Hill, Jack; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, M A; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman, Harvey B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Y; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; Triantis, F A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Jia-Wen; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2007-01-01

    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.

  20. Double Barreled Wet Colostomy: Initial Experience and Literature Review

    Directory of Open Access Journals (Sweden)

    Luis Salgado-Cruz

    2014-01-01

    Full Text Available Background. Pelvic exenteration and multivisceral resection in colorectal have been described as a curative and palliative intervention. Urinary tract reconstruction in a pelvic exenteration is achieved in most cases with an ileal conduit of Bricker, although different urinary reservoirs have been described. Methods. A retrospective and observational study of six patients who underwent a pelvic exenteration and urinary tract reconstruction with a double barreled wet colostomy (DBWC was done, describing the preoperative diagnosis, the indication for the pelvic exenteration, the complications associated with the procedure, and the followup in a period of 5 years. A literature review of the case series reported of the technique was performed. Results. Six patients had a urinary tract reconstruction with the DBWC technique, 5 male patients and one female patient. Age range was from 20 to 77 years, with a medium age 53.6 years. The most frequent complication presented was a pelvic abscess in 3 patients (42.85%; all complications could be resolved with a conservative treatment. Conclusion. In the group of our patients with pelvic exenteration and urinary tract reconstruction with a DBWC, it is a safe procedure and well tolerated by the patients, and most of the complications can be resolved with conservative treatment.

  1. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  2. Somatosensory assessment and conditioned pain modulation in temporomandibular disorders pain patients.

    Science.gov (United States)

    Kothari, Simple Futarmal; Baad-Hansen, Lene; Oono, Yuka; Svensson, Peter

    2015-12-01

    The pathophysiology and underlying pain mechanisms of temporomandibular disorders (TMD) are poorly understood. The aims were to assess somatosensory function at the temporomandibular joints (TMJs) and to examine whether conditioned pain modulation (CPM) differs between TMD pain patients (n = 34) and healthy controls (n = 34). Quantitative sensory testing was used to assess the somatosensory function. Z-scores were calculated for patients based on reference data. Conditioned pain modulation was tested by comparing pressure pain thresholds (PPTs) before, during, and after the application of painful and nonpainful cold stimuli. Pressure pain thresholds were measured at the most painful TMJ and thenar muscle (control). Data were analyzed with analyses of variance. Most (85.3%) of the patients exhibited at least 1 or more somatosensory abnormalities at the most painful TMJ with somatosensory gain with regard to PPT and punctate mechanical pain stimuli, and somatosensory loss with regard to mechanical detection and vibration detection stimuli as the most frequent abnormalities. There was a significant CPM effect (increased PPT) at both test sites during painful cold application in healthy controls and patients (P painful cold application between groups (P = 0.227). In conclusion, somatosensory abnormalities were commonly detected in TMD pain patients and CPM effects were similar in TMD pain patients and healthy controls.

  3. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    Science.gov (United States)

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  4. Carbon fiber plates production for the CMS tracker outer barrel detector

    Energy Technology Data Exchange (ETDEWEB)

    Lanfranco, Giobatta; /Fermilab

    2001-03-01

    The production methods together with the achieved flatness and thickness of the composite support structures of the CMS tracker outer barrel (TOB) detector are presented. Possible areas of improvement in the process and in the materials used are also suggested.

  5. External barrel temperature of a small bore olympic rifle and shooting precision.

    Science.gov (United States)

    Gladyszewska, B; Baranowski, P; Mazurek, W; Wozniak, J; Gladyszewski, G

    2013-03-01

    Investigations on changes in a rifle's barrel temperature during shooting in a rhythm typical for practitioners of Olympic shooting sports are presented. Walther KK300 (cal. 5.6 mm), a typical rifle often used in Olympic competitions, R50 RWS ammunition and a high speed thermographic camera were used in the study. Altair version 5 software was used to process thermal images and a stationary wavelet transform was applied to denoise signals for all the studied points. It was found that the temperature of the rifle barrel does not exceed 0.3°C after one shot whereas the total temperature increase does not exceed 5°C after taking 40 shots and does not affect the position of the hitting point on a target. In fact, contrary to popular belief, the so-called "warming shots" are not done for barrel heating but for cleaning of remnants in the barrel.

  6. Installation of the eighth and final coil of the ATLAS barrel toroid magnet

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    In the underground cavern where the ATLAS detector is being constructed, the last of eight 25-m long toroid magnet coils has been put into place, to complete a huge magnetic barrel that forms a major part of the detector.

  7. Dynamics and Stability of Stepped Gun-Barrels with Moving Bullets

    Directory of Open Access Journals (Sweden)

    Mohammad Tawfik

    2008-01-01

    reintroduced using simple eigenvalue analysis of a finite element model. The eigenvalues of the beam change with the mass, speed, and position of the projectile, thus, the eigenvalues are evaluated for the system with different speeds and masses at different positions until the lowest eigenvalue reaches zero indicating the instability occurrence. Then a map for the stability region may be obtained for different boundary conditions. Then the dynamics of the beam will be investigated using the Newmark algorithm at different values of speed and mass ratios. Finally, the effect of using stepped barrels on the stability and the dynamics is going to be investigated. It is concluded that the technique used to predict the stability boundaries is simple, accurate, and reliable, the mass of the barrel on the dynamics of the problem cannot be ignored, and that using the stepped barrels, with small increase in the diameter, enhances the stability and the dynamics of the barrel.

  8. First half-barrel of the CMS hadron calorimeter successfully asembled

    CERN Multimedia

    2001-01-01

    The first half barrel of the CMS hadron calorimeter has been assembled in the CMS construction hall in Cessy (neighbouring France), called SX5, in October 2001. The picture sequence shows the insertion of the last (the keystone) wedge. It is lifted up to the top of the structure and carefully inserted into the half barrel. Photos 6 and 7 show the HB- in SX5.

  9. Energy calibration of the barrel calorimeter of the CMD-3 detector

    Science.gov (United States)

    Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Bondar, A. E.; Grebenuk, A. A.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Mikhailov, K. Yu.; Logashenko, I. B.; Razuvaev, G. P.; Ruban, A. A.; Shebalin, V. E.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2017-04-01

    The VEPP-2000 e+e- collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  10. A New Measure for Monitoring Intraoperative Somatosensory Evoked Potentials

    Science.gov (United States)

    Jin, Seung-Hyun; Kim, Jeong Eun; Choi, Young Doo

    2014-01-01

    Objective To propose a new measure for effective monitoring of intraoperative somatosensory evoked potentials (SEP) and to validate the feasibility of this measure for evoked potentials (EP) and single trials with a retrospective data analysis study. Methods The proposed new measure (hereafter, a slope-measure) was defined as the relative slope of the amplitude and latency at each EP peak compared to the baseline value, which is sensitive to the change in the amplitude and latency simultaneously. We used the slope-measure for EP and single trials and compared the significant change detection time with that of the conventional peak-to-peak method. When applied to single trials, each single trial signal was processed with optimal filters before using the slope-measure. In this retrospective data analysis, 7 patients who underwent cerebral aneurysm clipping surgery for unruptured aneurysm middle cerebral artery (MCA) bifurcation were included. Results We found that this simple slope-measure has a detection time that is as early or earlier than that of the conventional method; furthermore, using the slope-measure in optimally filtered single trials provides warning signs earlier than that of the conventional method during MCA clipping surgery. Conclusion Our results have confirmed the feasibility of the slope-measure for intraoperative SEP monitoring. This is a novel study that provides a useful measure for either EP or single trials in intraoperative SEP monitoring. PMID:25628803

  11. Studying somatosensory function in Parkinson’s disease using Magnetoencephalography

    DEFF Research Database (Denmark)

    Sridharan, Kousik Sarathy; Johnsen, Erik Lisbjerg; Beniczky, Sándor

    Background Deep  brain stimulation  (DBS)  of subthalamic  nucleus  (STN) significantly alleviates cardinal  motor  symptoms and improves quality of life in Parkinson’s disease (PD)(1).Specifically,  PD  patients have  problems  with sensory  processing,  sensorimotor integration  and  kinesthetic...... processing in PD patients(5). References [1]Just H, Ostergaard K. Health-related quality of life in patientswith advanced Parkinson’s disease treated with deep brain stimulation of thesubthalamic nuclei. Mov. Disord. [Internet]. 2002 May [cited 2013 Nov8];17(3):539–45. [2]Abbruzzese G, Berardelli A...... awareness. Somatosensory  evoked fields  (SEF) is  an effective tool to study  thesensory perception  and  cortical processing(2). Methods SixPD patients were recruited from the population of STN DBS treated patients atAarhus University Hospital . A clinical interview  including  mini -mental...

  12. Quantitative methods for somatosensory evaluation in atypical odontalgia.

    Science.gov (United States)

    Porporatti, André Luís; Costa, Yuri Martins; Stuginski-Barbosa, Juliana; Bonjardim, Leonardo Rigoldi; Conti, Paulo César Rodrigues; Svensson, Peter

    2015-01-01

    A systematic review was conducted to identify reliable somatosensory evaluation methods for atypical odontalgia (AO) patients. The computerized search included the main databases (MEDLINE, EMBASE, and Cochrane Library). The studies included used the following quantitative sensory testing (QST) methods: mechanical detection threshold (MDT), mechanical pain threshold (MPT) (pinprick), pressure pain threshold (PPT), dynamic mechanical allodynia with a cotton swab (DMA1) or a brush (DMA2), warm detection threshold (WDT), cold detection threshold (CDT), heat pain threshold (HPT), cold pain detection (CPT), and/or wind-up ratio (WUR). The publications meeting the inclusion criteria revealed that only mechanical allodynia tests (DMA1, DMA2, and WUR) were significantly higher and pain threshold tests to heat stimulation (HPT) were significantly lower in the affected side, compared with the contralateral side, in AO patients; however, for MDT, MPT, PPT, CDT, and WDT, the results were not significant. These data support the presence of central sensitization features, such as allodynia and temporal summation. In contrast, considerable inconsistencies between studies were found when AO patients were compared with healthy subjects. In clinical settings, the most reliable evaluation method for AO in patients with persistent idiopathic facial pain would be intraindividual assessments using HPT or mechanical allodynia tests.

  13. Quantitative methods for somatosensory evaluation in atypical odontalgia

    Directory of Open Access Journals (Sweden)

    André Luís PORPORATTI

    2015-01-01

    Full Text Available A systematic review was conducted to identify reliable somatosensory evaluation methods for atypical odontalgia (AO patients. The computerized search included the main databases (MEDLINE, EMBASE, and Cochrane Library. The studies included used the following quantitative sensory testing (QST methods: mechanical detection threshold (MDT, mechanical pain threshold (MPT (pinprick, pressure pain threshold (PPT, dynamic mechanical allodynia with a cotton swab (DMA1 or a brush (DMA2, warm detection threshold (WDT, cold detection threshold (CDT, heat pain threshold (HPT, cold pain detection (CPT, and/or wind-up ratio (WUR. The publications meeting the inclusion criteria revealed that only mechanical allodynia tests (DMA1, DMA2, and WUR were significantly higher and pain threshold tests to heat stimulation (HPT were significantly lower in the affected side, compared with the contralateral side, in AO patients; however, for MDT, MPT, PPT, CDT, and WDT, the results were not significant. These data support the presence of central sensitization features, such as allodynia and temporal summation. In contrast, considerable inconsistencies between studies were found when AO patients were compared with healthy subjects. In clinical settings, the most reliable evaluation method for AO in patients with persistent idiopathic facial pain would be intraindividual assessments using HPT or mechanical allodynia tests.

  14. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading.

    Directory of Open Access Journals (Sweden)

    Erwan Dupont

    Full Text Available Sensorimotor restriction by a 14-day period of hindlimb unloading (HU in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2 is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV. By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059 through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.

  15. Short barrel DHS plates for the treatment of intertrochanteric hip fractures in Indian population

    Directory of Open Access Journals (Sweden)

    Agrawala Sanjay

    2006-01-01

    Full Text Available Background : The dynamic hip screw has appeared to be a reliable answer for intertrochanteric fractures. Intertrochanteric fractures are composed of different anatomic patterns that vary in their degree of stability. However insufficient impaction allowed by the implant may have an adverse effect on fracture healing. Methods : One hundred and four patients were divided in two groups and followed up for one year, mean age was 78.2 years. The ninety patients in group I were fixed with short barrel plate and screws of 75mm or less while fourteen patients in group II were treated with standard barrel plate and screws of 80mm or more. Results : In patients treated with short barrel DHS four out of 90 fractures in group 1 did not heal while in group 2 one out of fourteen did not heal due to failure of standard barrel plate to accommodate the collapse of the fracture fragments. We observed a healing rate of 100% at 3 months. Conclusion : The DHS is reliable for intertrochanteric fractures. However the results of our study support the use of short barrel plates rather than standard barrel plates in Indian population with shorter femoral head and neck length to allow sufficient slide when using dynamic screws of 75 mm or less.

  16. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels.

    Science.gov (United States)

    Ye, Dong-Qing; Zheng, Xiao-Tian; Xu, Xiao-Qing; Wang, Yun-He; Duan, Chang-Qing; Liu, Yan-Lin

    2016-07-01

    The evolution of volatile sulfur compounds (VSCs) in Cabernet Sauvignon wines from seven regions of China during maturation in oak barrels was investigated. The barrels were made of different wood grains (fine and medium) and toasting levels (light and medium). Twelve VSCs were quantified by GC/FPD, with dimethyl sulfide (DMS) and methionol exceeding their sensory thresholds. Most VSCs tended to decline during the aging, while DMS was found to increase. After one year aging, the levels of DMS, 2-methyltetrahy-drothiophen-3-one and sulfur-containing esters were lower in the wines aged in oak barrels than in stainless steel tanks. The wood grain and toasting level of oak barrels significantly influenced the concentration of S-methyl thioacetate and 2-methyltetrahy-drothiophen-3-one. This study reported the evolution of VSCs in wines during oak barrel aging for the first time and evaluated the influence of barrel types, which would provide wine-makers with references in making proposals about wine aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Research on vibration characteristics of gun barrel based on contact model

    Science.gov (United States)

    Zhao, Yang; Zhou, Qizheng; Yue, Pengfei

    2017-04-01

    In order to study vibration characteristics of the gun barrel under the action of moving projectile, the gun barrel is simplified to cross sectional cantilever beam such as Euler. Considering contact conditions of inertia effect and projectile with the gun barrel, the equation of lateral vibration of the gun barrel is established under the projectile-gun coupling effect; the modal analysis method is used to give the analytic solutions of equation series. The effect of the motion parameters the projectile on the vibration of gun barrel is discussed, and characteristics of vibration of gun barrel are further studied under two conditions of repeating and projectile with mass eccentricity. The research results show that reasonable control of the acceleration of the projectile in the gun bore, and reduction of projectile mass eccentricity can help reduce the muzzle vibration at the gun firing. The research results can provide reference for overall design of the gun, and the modeling and analysis method used in the paper can be promoted for the solution of vibration of other related projects under the moving excitation.

  18. Analysis of barrel support saddles and forces between modules during assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, V. J.; High Energy Physics

    2003-04-23

    As the Barrel Tile Calorimeter is constructed, the support saddles and the modules will be subjected to different forces, stresses, and deflections than when completely assembled. The purpose of this analysis is to examine the forces, stresses, and deflections acting on the support saddles and modules at various stages of assembly. The nominal weight of a barrel module is 20 tons. CERN Document number ATL-LB-EA-0001 'Summary of the Structural Analysis of the Barrel Support Saddles' describes in detail the structural analysis of the saddles and the completed barrel assembly. These calculations followed Eurocode 3. This paper examined several load cases which occur during the assembly of the Barrel. The following are the main conclusions: (1) The assembly is not stable until 18 modules are in place, and only then can the support cradle be removed; (2) The forces between modules are nominal and are far less that the forces in the completed cylinder with 64 modules in place and the cryostat load applied; (3) All of the stresses in the connections between modules are within acceptable limits; and (4) The interface between the cryostat supports and the cryostat move approximately 1.0 mm in the X and Y directions when the load of the cryostat is transferred to the Barrel.

  19. Specialization in pyramidal cell structure in the sensory-motor cortex of the vervet monkey (Cercopethicus pygerythrus).

    Science.gov (United States)

    Elston, G N; Benavides-Piccione, R; Elston, A; Defelipe, J; Manger, P R

    2005-01-01

    Recent studies have revealed systematic differences in the pyramidal cell structure between functionally related cortical areas of primates. Trends for a parallel in pyramidal cell structure and functional complexity have been reported in visual, somatosensory, motor, cingulate and prefrontal cortex in the macaque monkey cortex. These specializations in structure have been interpreted as being fundamental in determining cellular and systems function, endowing circuits in these different cortical areas with different computational power. In the present study we extend our initial finding of systematic specialization of pyramidal cell structure in sensory-motor cortex in the macaque monkey [Cereb Cortex 12 (2002) 1071] to the vervet monkey. More specifically, we investigated pyramidal cell structure in somatosensory and motor areas 1/2, 5, 7, 4 and 6. Neurones in fixed, flat-mounted, cortical slices were injected intracellularly with Lucifer Yellow and processed for a light-stable 3,3'-diaminobenzidine reaction product. The size of, number of branches in, and spine density of the basal dendritic arbors varied systematically such that there was a trend for increasing complexity in arbor structure with progression through 1/2, 5 and 7. In addition, cells in area 6 were larger, more branched, and more spinous than those in area 4.

  20. Spike count, spike timing and temporal information in the cortex of awake, freely moving rats

    Science.gov (United States)

    Scaglione, Alessandro; Foffani, Guglielmo; Moxon, Karen A.

    2014-08-01

    Objective. Sensory processing of peripheral information is not stationary but is, in general, a dynamic process related to the behavioral state of the animal. Yet the link between the state of the behavior and the encoding properties of neurons is unclear. This report investigates the impact of the behavioral state on the encoding mechanisms used by cortical neurons for both detection and discrimination of somatosensory stimuli in awake, freely moving, rats. Approach. Neuronal activity was recorded from the primary somatosensory cortex of five rats under two different behavioral states (quiet versus whisking) while electrical stimulation of increasing stimulus strength was delivered to the mystacial pad. Information theoretical measures were then used to measure the contribution of different encoding mechanisms to the information carried by neurons in response to the whisker stimulation. Main results. We found that the behavioral state of the animal modulated the total amount of information conveyed by neurons and that the timing of individual spikes increased the information compared to the total count of spikes alone. However, the temporal information, i.e. information exclusively related to when the spikes occur, was not modulated by behavioral state. Significance. We conclude that information about somatosensory stimuli is modulated by the behavior of the animal and this modulation is mainly expressed in the spike count while the temporal information is more robust to changes in behavioral state.

  1. Pain from Dental Implant Placement, Inflammatory Pulpitis Pain, and Neuropathic Pain Present Different Somatosensory Profiles.

    Science.gov (United States)

    Porporatti, André Luís; Bonjardim, Leonardo Rigoldi; Stuginski-Barbosa, Juliana; Bonfante, Estevam Augusto; Costa, Yuri Martins; Rodrigues Conti, Paulo César

    2017-01-01

    To address the two following questions: (1) What kind of somatosensory abnormalities may be characterized in patients receiving dental implants (IMP), in ongoing inflammatory dental pulpitis (IP) patients, and in neuropathic pain (atypical odontalgia [AO]) patients? and (2) What sort of sensory and neural changes may result from dental implant placement surgery and pulpectomy? A total of 60 subjects were divided into three groups: the IMP (n = 20), IP (n = 20), and AO groups (n = 20). Quantitative sensory testing (QST) was performed preoperatively (baseline) for all three groups and postoperatively at 1 month and 3 months after dental implant placement or pulpectomy (in the IMP group and IP group, respectively). Statistical analyses were completed with one-way and two-way analysis of variance and z score transformations (α = 5%). The main findings of this study indicated that: (1) Elevations in mechanical detection threshold (MDT) and in current perception threshold (CPT) related to C-fiber activation, indicating a loss of function, were found at baseline in IP patients; (2) Somatosensory abnormalities such as allodynia, reduced MDT and mechanical pain threshold (MPT), and impaired pain modulation were found in AO patients; (3) No somatosensory alterations after implant placement were found in the IMP group; and (4) Somatosensory alterations in the form of reduction in the CPT related to C-fiber activation were reported 3 months after pulpectomy in the IP group. This study showed that somatosensory abnormalities were evident in AO and IP patients, and somatosensory alterations were seen in IP patients even 3 months after pulpectomy. However, no somatosensory alterations were seen after implant placement.

  2. Topography of synchronization of somatosensory evoked potentials elicited by stimulation of the sciatic nerve in rat

    Directory of Open Access Journals (Sweden)

    Xuefeng eQu

    2016-05-01

    Full Text Available Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the

  3. Assessment of the effect of etomidate on voltage-gated sodium channels and action potentials in rat primary sensory cortex pyramidal neurons.

    Science.gov (United States)

    Zhang, Yu; He, Jiong-ce; Liu, Xing-kui; Zhang, Yi; Wang, Yuan; Yu, Tian

    2014-08-05

    Although it is known that general anesthetics can suppress cortical neurons׳ activity, the underlying mechanisms are still poorly understood, especially the kinetic changes of voltage-gated Na(+) channels, which are mostly related to neuronal excitability. Some general anesthetics have been reported to affect the voltage-gated Na(+) channels in cell culture derived from humans and animals. However no one has ever investigated the effects of etomidate on voltage-gated Na(+) channels in pyramidal neurons using a brain slice. The present study uses a whole cell patch-clamp technique to investigate the changes of voltage-gated Na(+) channels on primary somatosensory cortex pyramidal neurons under the influence of etomidate. We found that etomidate dose-dependently inhibited Na(+) currents of primary somatosensory cortex pyramidal neurons, while shifted the steady-state inactivation curve towards the left and prolonged the recovery time from inactivation. Conversely, etomidate has no effects on the steady-state activation curve. We demonstrated the detailed suppression process of neural voltage-gated Na(+) channels by etomidate on slice condition. This may offer new insights into the mechanical explanation for the etomidate anesthesia. Finding the effects of anesthetics on primary somatosensory cortex also provides evidence to help elucidate the potential mechanism by which tactile information integrates during general anesthesia. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  5. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    Science.gov (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors

    OpenAIRE

    BorbÉly, S.; Jocsak, Gergely; Moldovan, Kinga; Sedlak, Lucie; Preininger, Eva; Boldizsar, Imre; Toth, Attila; Atlason, Palmi T; Molnar, Elek; Vilagi, Ildiko

    2016-01-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) t...

  7. Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition

    DEFF Research Database (Denmark)

    Schäfer, Katharina; Blankenburg, Felix; Kupers, Ron

    2012-01-01

    was accompanied by commensurate decreases in relative regional cerebral blood flow (rCBF). Conjunction analysis of the fMRI and PET data revealed a region in the ipsilateral postcentral gyrus showing overlap of negative BOLD signals and relative rCBF decreases. The current perception threshold (CPT......-increase for the finger is due to functional inhibition (Kastrup et al., 2008) than to changes in selective attention. In conclusion, our data provide evidence that stimulus-induced reductions in relative rCBF may underlie the negative BOLD signal, which in turn may reflect increments in functional inhibition....

  8. Functional dissection of abnormal signal processing performed by the somatosensory cortex of young Fmr1-KO mice.

    OpenAIRE

    Domanski, Aleksander Peter Frederick

    2014-01-01

    Every second throughout life, cortical circuitry efficiently compresses and interprets huge volumes of incoming sensory information. This high fidelity sensory processing guides normal brain development and is essential for animals’ successful interaction with the environment. Low-level sensory perceptual disturbance is nearly ubiquitous in Autism Spectrum Disorder (ASD), but despite the potential to offer crucial insight into the abnormal development of higher brain functio...

  9. Lying and the Subsequent Desire for Toothpaste: Activity in the Somatosensory Cortex Predicts Embodiment of the Moral-Purity Metaphor.

    Science.gov (United States)

    Denke, Claudia; Rotte, Michael; Heinze, Hans-Jochen; Schaefer, Michael

    2016-02-01

    It is well known from literature and religious ceremonies that there is a link between physical cleansing and moral transgressions. Only recently, psychological experiments explored th