WorldWideScience

Sample records for somatic embryos induced

  1. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-01-01

    Full Text Available Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germination and that makes its natural propagation difficult. The aim of this study was to establish a protocol of regeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculated on WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein or glutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D (22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed casein or glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture medium containing NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction (8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein and the development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promoted in WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containing hydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. During the maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages. The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histological studies.

  2. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812343Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germinationand that makes its natural propagation difficult. The aim of this study was to establish a protocol ofregeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculatedon WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein orglutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D(22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed caseinor glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture mediumcontaining NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction(8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein andthe development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promotedin WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containinghydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. Duringthe maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages.The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histologicalstudies.

  3. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  4. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.

    Science.gov (United States)

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L

    2013-01-01

    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.

  5. Genetic transformation of olive somatic embryos through ...

    African Journals Online (AJOL)

    Administrator

    2011-06-20

    Jun 20, 2011 ... 2Department of Biochemistry, National Center of Genetic Engineering and Biotechnology, Tehran, Iran. Accepted 9 March, 2011. Transformed olive plants were regenerated from inoculated somatic embryos with Agrobacterium tumefacience strain GV3101, which carries the plasmid pBI-P5CS containing ...

  6. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    Science.gov (United States)

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  7. The Use of Light Microscopy for Detection of Somatic Embryos

    African Journals Online (AJOL)

    usuario

    2014-02-05

    Feb 5, 2014 ... 2,4-D. After four weeks of culture of explants on the callus induction medium, globular structures were obtained. At the end of 20 days in maturation medium, somatic embryos were observed. Histological analysis showed somatic embryos with caulinar and root apex, protodermal tissue, and the vascular ...

  8. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  9. Regulation of somatic embryo development in Norway spruce (Picea abies). A molecular approach to the characterization of specific developmental stages

    Energy Technology Data Exchange (ETDEWEB)

    Sabala, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1998-12-31

    Embryo development is a complex process involving a set of strictly regulated events. The regulation of these events is poorly understood especially during the early stages of embryo development. Somatic embryos go through the same developmental stages as zygotic embryos making them an ideal model system for studying the regulation of embryo development. We have used embryogenic cultures of Picea abies to study some aspects of the regulation of embryo development in gymnosperms. The bottle neck during somatic embryogenesis is the switch from the proliferation stage to the maturation stage. This switch is initiated by giving somatic embryos a maturation treatment i.e. the embryos are treated with abscisic acid (ABA). Somatic embryos which respond to ABA by forming mature somatic embryos were stimulated to secret a 70 kDa protein, AF70. The af70 gene was isolated and characterised. The expression of the af70 gene was constitutive in embryos but was highly ABA-induced in seedlings. Moreover, expression of this gene was stimulated during cold acclimation of Picea abies seedlings. A full length Picea abies cDNA clone Pa18, encoding a protein with the characteristics of plant lipid transfer proteins (LTPs), was isolated and characterised. The Pa18 gene is constitutively expressed in embryogenic cultures of Picea abies representing different stages of development as well as in nonembryogenic callus and seedlings. In situ hybridization showed that Pa18 gene is expressed in all embryonic cells of proliferating somatic embryos but the expression of the gene in mature somatic and zygotic embryos is restricted to the outer cell layer. Southern blot analysis at different stringencies was consistent with a single gene. An alteration in expression of Pa18 causes disturbance in the formation of the proper outer cell layer in the maturing somatic embryos. In addition to its influence on embryo development the Pa18 gene product also inhibits growth of Agrobacterium tumefaciens 195

  10. Selection of Norway spruce somatic embryos by computer vision

    Science.gov (United States)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  11. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann

    2015-08-01

    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  12. Targeted heavy-ion microbeam irradiation of the embryo but not yolk in the diapause-terminated egg of the silkworm, bombyx mori, induces the somatic mutation

    International Nuclear Information System (INIS)

    Furusawa, Toshiharu; Fukamoto, Kana; Sakashita, Tetsuya; Funayama, Tomoo; Kobayashi, Yasuhiko; Kakizaki, Takehiko; Wada, Seiichi; Hamada, Nobuyuki; Suzuki, Hiromi; Ishioka, Noriaki; Nagaoka, Shunji

    2009-01-01

    Using heavy-ion microbeam, we report target irradiation of selected compartments within the diapause-terminated egg and its mutational consequences in the silkworm, Bombyx mori. On one hand, carbon-ion exposure of embryo to 0.5-6 Gy increased the somatic mutation frequency, suggesting targeted radiation effects. On the other, such increases were not observed when yolk was targeted, suggesting a lack of nontargeted bystander effect. (author)

  13. Efficient somatic embryo production of Limau madu ( Citrus ...

    African Journals Online (AJOL)

    Effects of N6-benzylaminopurine (BAP) concentration, initial cell density and carbon sources and concentrations for producing cell suspension and somatic embryos of Limau madu (Citrus suhuiensis Hort. ex Tanaka) were investigated using cell suspension culture. Cells were first inoculated into Murashige and Skoog (MS) ...

  14. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Science.gov (United States)

    Cao, Zubing; Hong, Renyun; Ding, Biao; Zuo, Xiaoyuan; Li, Hui; Ding, Jianping; Li, Yunsheng; Huang, Weiping; Zhang, Yunhai

    2017-01-01

    The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.

  15. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  16. Induction of somatic embryogenesis in soybean: physicochemical factors influencing the development of somatic embryos

    Directory of Open Access Journals (Sweden)

    Bonacin Gisele Aparecida

    2000-01-01

    Full Text Available The embryogenic capability of five soybean cultivars (Renascença, IAS-5, IAC-17, BR-16 and FT-Cometa was studied at different auxin concentrations (8, 10 and 12 mg/l naphthalene acetic acid, NAA, at different pHs (5.8 and 7.0 and at low (8-12 muEm-2 s-1 and high (27-33 mEm-2 s-1 light intensities. The experimental design was completely randomized with four replications. Immature cotyledons 4-6 mm in length were placed in the six induction mediums evaluated and submitted to two light intensities. Twenty immature cotyledons per cultivar were placed on each Petri dish, which was considered to be one replication. The number of somatic embryos per treatment per replication was counted. The results showed genotype influence on somatic embryogenic capability of each cultivar, with the most embryogenic cultivars being BR-16, FT-Cometa and IAS-5. Auxin concentration and pH value also influenced somatic embryo production, with 10 mg/l NAA being the best auxin concentration and 7.0 the best pH value. The interactions cultivar x auxin, auxin x pH and pH x light were significant, while other double interactions were not. All triple and quadruple interactions were significant, except cultivar x pH x light. No significant differences in somatic embryo production were observed in medium with different pHs or when the Petri dishes containing immature cotyledons were exposed to the two light intensities evaluated. However, a higher number of somatic embryos was produced when the medium pH was adjusted to 7.0.

  17. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata

    Science.gov (United States)

    Rakesh Minocha; Dale R. Smith; Cathie Reeves; Kevin D. Steele; Subhash C. Minocha

    1999-01-01

    Changes in the cellular content of three polyamines (putrescine, spermidine and spermine) were compared at different stages of development in zygotic and somatic embryos of Pinus radiata D. Don. During embryo development, both the zygotic and the somatic embryos showed a steady increase in spermidine content, with either a small decrease or no...

  18. In vitro testing of defense reactions in zygotic and somatic embryos of Abies numidica

    Directory of Open Access Journals (Sweden)

    Jiří Hřib

    2011-01-01

    Full Text Available Defense of desiccated cotyledonary somatic embryos and mature zygotic embryos of Abies numidica was tested in vitro by dual cultures with tester, fungus Phaeolus schweinitzii. Both types of embryos expressed defense reactions manifested by inhibited growth of fungal tester towards the embryos. Mycelial growth was described by logistic sigmoid growth model with a single asymptote. Mutual comparisons of mycelial growth in presence of zygotic and somatic embryos showed significant differences in parameters of mycelium growth curves towards the embryos. Larger defense reactions were observed in zygotic embryos relative to somatic embryos and unlimited control cultivations without embryo. The possible role of auxin in the defense response of plant embryos is discussed.

  19. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  20. Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification.

    Science.gov (United States)

    Adu-Gyamfi, Raphael; Wetten, Andy

    2012-01-01

    Losses of cultivated cocoa (Theobroma cacao L.) due to diseases and continued depletion of forests that harbour the wild progenitors of the crop make ex situ conservation of cocoa germplasm of paramount importance. In order to enhance security of in situ germplasm collections, 2-3 mm floral-derived secondary somatic embryos were cryopreserved by vitrification. This work demonstrates the most uncomplicated clonal cocoa cryopreservation. Optimal post-cryostorage survival (74.5 percent) was achieved by 5 d preculture of SSEs on 0.5 M sucrose medium followed by 60 min dehydration in cold PVS2. To minimise free radical related cryo-injury, cation sources were removed from the embryo development solution and/or the recovery medium, the former treatment resulting in a significant benefit. After optimisation with cocoa genotype AMAZ 15, the same protocol was effective across all five additional cocoa genotypes tested. For the multiplication of clones, embryos regenerated following cryopreservation were used as explant sources, and vitrification was found to maintain their embryogenic potential.

  1. Maturation and germination of somatic embryos of Sorghum bicolor (L. Moench cultivar 'CIAP 132R-05'

    Directory of Open Access Journals (Sweden)

    Silvio de J Martínez

    2017-03-01

    Full Text Available In sorghum [Sorghum bicolor (L. Moench], developed protocols for plant regeneration via somatic embryogenesis do not include maturation stage. The present work was carried out with the aim of achieving the maturation and germination of sorghum somatic embryos in cultivar 'CIAP 132R-05'. It were studied four concentrations of sucrose (30, 50, 70 and 90 g l-1, two of abscisic acid (0.25 and 0.5 μM and a control without this growth regulator. Germination initiation (days and number of somatic embryos with complete germination were evaluated in three periods (1 - 7, 8 - 14 and 15 - 21 days of culture. In addition, the effect of 6-BAP (8.9, 17.8 and 26.6 μM on somatic embryo germination was determined. The germination start time (days and after 21 days the number of somatic embryos with complete germination and plants with malformations were determined. The addition of 70 g l-1 sucrose in the culture medium without abscisic acid increased the germination of the somatic embryos to 37.2 plants per embryo group (0.5 g of fresh mass. The highest number of somatic embryos germinated was obtained with 17.78 μM 6-BAP in the germination culture medium. It was demonstrated the need of a maturation stage in the sorghum somatic embryogenesis to increase the germination percentage.   Keywords: somatic embryogenesis, sorghum, sucrose, 6-BAP

  2. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L..

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-04-01

    Full Text Available Cocoa (Theobroma cacao L. like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D with kinetin (kin. Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.

  3. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    Science.gov (United States)

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (Ptip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  4. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    Science.gov (United States)

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  5. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...

  6. Water relations in culture media influence maturation of avocado somatic embryos.

    Science.gov (United States)

    Márquez-Martín, Belén; Sesmero, Rafael; Quesada, Miguel A; Pliego-Alfaro, Fernando; Sánchez-Romero, Carolina

    2011-11-15

    Application of transformation and other biotechnological tools in avocado (Persea americana Mill.) is hampered by difficulties in obtaining mature somatic embryos capable of germination at an acceptable rate. In this work, we evaluated the effect of different compounds affecting medium water relations on maturation of avocado somatic embryos. Culture media were characterized with respect to gel strength, water potential and osmotic potential. Improved production of mature somatic embryos was achieved with gelling agent concentrations higher than those considered standard. The osmotic agents such as sorbitol and PEG did not have positive effects on embryo maturation. The number of w-o mature somatic embryos per culture was positively correlated with medium gel strength. Gel strength was significantly affected by gelling agent type as well as by gelling agent and PEG concentration. Medium water potential was influenced by sorbitol concentration; incorporation of PEG to a culture medium did not affect medium water potential. The highest maturation results were achieved on a medium gelled with 10 gl(-1) agar. Moreover, these somatic embryos had improved germination rates. These results corroborate the role of water restriction as a key factor controlling maturation of somatic embryos. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  8. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue; Pang, Daxin; Ouyang, Hongsheng

    2011-01-01

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  9. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  10. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  11. Effect of irradiation and colchicine on callus and somatic embryo formation in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Dzimega, D. A.

    2012-06-01

    A study was conducted to assess the mutagenic effect of gamma radiation on sprouting and height in four local cassava accessions. The four cassava accessions were assessed for their callus induction and somatic embryo formation ability from leaf lobes from gamma irradiated stakes as well as colchicine treated leaf lobes on different concentrations of plant growth regulators, incorporated into Murashige and skoog, (1962) (MS) basal medium. The cassava accessions were irradiated at 0, 32, 35, 45 and 50 Gy and planted in pots filled with loamy soil. The height of the shoots was measured with rule after sprouting. The leaf lobes were collected from the shoots and cultured on MS medium supplemented with 8 mg/l 2, 4-D and 16 mg/l Picloram. Another set of leaf lobes were treated with 0.0, 0.05, 0.1, 0.2, 0.25 g/l colchicine for one hour and thereafter culture on MS medium supplemented with 8 mg/l 2,4-D and 16 mg/l Picloram as described above. Callus induction from leaf lobes in 45 and 50 Gy were significantly (p≤0.05) affected by the irradiation. On the other hand, Callus induction from leaf lobes in 0.1-0.25 g/l colchicine were significantly (p≤0.05) affected by the mutagenic treatment whereas callus induced from leaf lobes in 0.05 g/l colchicine was not significantly (p≤0.05) affected. Callus induced on 8 mg/l 2, 4-D and 16 mg/l picloram gave the best response in Ankrah and all control tested while Tomfa recorded the least. Colchicine at a concentration of 0.05 g/l and radiation dose of 32 Gy treatments gave the best response of callusing. Callus induction decreased with increasing colchicine concentration and gamma irradiation. Callus derived from irradiated and colchicine leaf lobes appeared soft but friable and tiny, compact, respectively, predominately with creamy to brown colouration. Calli obtained were sub-cultures on embryo regeneration medium consisting of MS supplemented with 0.01mg/1 NAA and o.1 mg/1 BAP. There was no plantlet regeneration. Instead

  12. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L..

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-03-01

    Full Text Available Cocoa (Theobroma cacao L. like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D with kinetin (kin. Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although  the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.Kata kunci: Theobroma cacao L., polifenol, embrio somatik, kalus, flavonoid, katekin, in vitro recalcitance

  13. Effect of the inoculation density in Coffea arabica L. cv. `Caturra rojo' somatic embryos germination in RITA® Temporary Immersion System

    Directory of Open Access Journals (Sweden)

    Raúl Barbon

    2014-04-01

    Full Text Available The development of somatic embryogenesis of coffee (Coffea spp. in liquid culture medium is a viable alternative for the propagation of these species. The use of liquid culture medium and temporary immersion systems could increase the germination of somatic embryos and improve the quality of plants. The objective of this work was to determine the effect of inoculation density on germination of somatic embryos of Coffea arabica L. cv. `Caturra rojo' in temporary immersion systems RITA®. It were used as inoculum densities 40, 50, 60, 70 and 80 somatic embryos per RITA®. After 90 days of culture the number of somatic embryos germinated, hyperhydricity symptoms, number of true leaves, length and root development was quantified. With inoculum density of 70 somatic embryos per RITA®, it was obtained a highest germination percentage (60% with good leaf development and length of the plants. Key words: hyperhydricity, liquid culture medium, partial germination, total germination, somatic embryogenesis

  14. Somatic embryogenesis and embryo culture coupled with gamma irradiation for generating avocado (Persea americana Miller) mutants in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Avenido, R. A. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños (Philippines); Crop Science Cluster, College of Agriculture, University of the Philippines Los Baños (Philippines); Galvez, H. F.; Dimaculangan, J. G.; Welgas, J. N.; Frankie, R. B.; Damasco, O. P. [Crop Science Cluster, College of Agriculture, University of the Philippines Los Baños (Philippines)

    2009-05-15

    Plant regeneration through somatic embryogenesis from immature zygotic embryos and embryo cultures from mature fruits were achieved in select avocado accession ‘Semil’ and other seedling trees in the Philippines. Embryogenic cultures were induced from immature zygotic embryos of eight (8) avocado genotypes using either SE1 medium (MS + 30 g/l sucrose + 5 mg/l 2, 4-D + 0.5 mg/l BAP) or SE2 medium (MS + 30 g/l sucrose + 0.1 mg/l picloram). Embryogenic cultures of 2 genotypes namely ‘Semil’ and ‘Mainit’ developed into somatic embryos after repeated subcultures in SE2, SE3 (MS + 30 g/l sucrose + 0.1 mg/l TDZ + 0.5 mg/l GA{sub 3}) and SE4 (MS + 30 g/l sucrose + 2 mg/l BAP + 1 mg/l IBA) media. Plant/shoot regeneration from ‘Semil’ somatic embryos was recorded in 3 trials at 16.3, 23.0 and 20.7%, and was affected by culture age, light treatment and media used. R4 regeneration medium (B5 macro salts + MS minor salts and vitamins + 60 g/l sucrose + 400 g/l glu + 2 mg/l BAP + 4.5 g/l Phytagel was found to be the best. Gamma irradiation (10 to 30 Gy) of embryogenic cultures of ‘Semil’ resulted in reduced proliferation and formation of cotyledonary stage somatic embryos. However, shoot regeneration from somatic embryos from gamma-irradiated cultures was comparable or even higher (17.8 to 26.9%) as compared to the control (18.3%). Over 200 somatic embryo-derived putative variant/mutant lines from tissue culture and gamma irradiation experiments are being maintained as shoot cultures. Due to slow growth and other related problems, micrografting and in vitro rooting were used to rescue and ensure the greenhouse establishment of putative mutant shoots, and fast-track mutant confirmation by genetic analysis. Preliminary genetic analyses by SSR revealed that (a) the 3 asexually propagated ‘Semil’ mother trees are genetically similar, and (b) mutations marked by the generation of a new allele (band) at the SSR locus was evident among the somatic embryo

  15. In vitropropagation in Temporary Immersion System of sugarcane plants variety `RB 872552' derived from somatic embryos

    Directory of Open Access Journals (Sweden)

    Marina Medeiros de Araújo Silva

    2015-07-01

    Full Text Available In this study, we used a temporary immersion system (TIS to multiply sugarcane (Saccharum spp. plants obtained by somatic embryogenesis (SE. SE was induced from immature leaf segments that were grown in culture medium supplemented with 2,4-D and BAP. Embryo formation occurred in 81% of the inoculated explants and 254 plants were regenerated. Ninety plants were transferred to TIS and cultured in medium supplemented with BAP. After three subcultures, 60 000 plantlets were obtained and transferred to rooting media. After 30 days of acclimatization period plantlets were well developed and exhibited a 96% survival. The results demonstrate the feasibility of the combined use of two important techniques of in vitro culture (SE and shoot multiplication in TIS to sugarcane in vitro propagation. Key words: acclimatization, 6-benzylaminopurine, Saccharum spp.

  16. Histology of somatic embryos of eurycoma longifolia (simaroubaceae): relevance in agrobacterium rhizogenes-mediated transformation

    International Nuclear Information System (INIS)

    Balakrishnan, B.; Rabiah, S.S.; Keng, C.L.

    2014-01-01

    Histological analysis conducted on somatic embryos of Eurycoma longifolia shows the developmental structures that are remarkably similar to seeds found in the wild. The primary components of a growing somatic embryo are its shoot and root apical meristems indicated by dense layers of rapidly growing cells. The increased understanding of In vitro culture systems and anatomical changes provide information into cellular processes that govern genetic transformation of E. longifolia with Agrobacterium rhizogenes. The presence of meristematic regions on cultured somatic embryos suggests that they are suitable for genetic transformation as genetic elements could be transported to these regions where growth and differentiation are centered. This allows the successful integration and expression of transferred DNA in the host organism, leading the way for an efficient A. rhizogenes-mediated transformation protocol. (author)

  17. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek

    2016-01-01

    in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early......One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  18. Development of somatic embryos for genetic transformation in Curcuma longa L. and Curcuma mangga Valeton & Zijp

    Directory of Open Access Journals (Sweden)

    Vachiraporn Pikulthong

    2016-07-01

    Full Text Available Buds from rhizomes of Curcuma longa L. variety ‘Chumphon’ and Curcuma mangga Valeton & Zijp variety ‘Phetchaburi’ were cultured on Murashige and Skoog (MS medium supplemented with 2.0 mg/L N6-benzyladenine (BA for multiple shoot induction. Their shoots were cultured on MS medium supplemented with various concentrations of one of two plant growth regulators or a combination of both—2,4-dichlorophenoxyacetic acid (2,4-D and naphthaleneacetic acid (NAA. Interestingly, the medium containing both auxins (5 mg/L 2,4-D and 5 mg/L NAA was best for somatic embryo induction after culturing for 4 weeks. Somatic embryo formation reached 87.50% for Curcuma longa and 95.83% for Curcuma mangga with a high quality of loose, friable and yellowish characters. The best conditions for the formation of shootlets occurred after transferring the somatic embryo to MS medium supplemented with 3.0 mg/L BA, 0.5 mg/L NAA and 3% maltose. The shootlets were rooted by transferring to MS medium containing 3.0 mg/L NAA. This is the first report of a complete in vitro regeneration system from somatic embryos of C. longa and C. mangga which was further used for gene manipulation in these plants. Diketide CoA synthase (DCS and curcumin synthase (CURS genes, which are the two genes involved in curcuminoid biosynthesis in turmeric, were cloned and transferred to these two species using Agrobacterium-mediated transformation. The presence of both target and marker genes, hpt, in the transformed somatic embryos was confirmed by polymerase chain reaction assay. After culturing, the transformed somatic embryos could survive for 4 weeks.

  19. Influences of somatic donor cell sex on and embryo development following somatic cell nuclear transfer in pigs

    Directory of Open Access Journals (Sweden)

    Jae-Gyu Yoo

    2017-04-01

    Full Text Available Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8 was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT groups (31.4±8.3 to 33.4±11.1. After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05 between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

  20. High frequency induction of somatic embryos and plantlet ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... plant, Hygrophila spinosa through direct somatic embryogenesis from nodal explants excised from 4 week old ... medicinal purposes further curbs propagation via seed. Plant tissue ... buted a great deal of information for the genetic, morpho- ..... analysis of peroxidase in cultured lettuce (Lactuca sativa L.).

  1. Influence of plant growth regulators on somatic embryos induction ...

    African Journals Online (AJOL)

    TANOH

    2013-04-17

    Theobroma cacao L.) using Thidiazuron. In vitro Cell Dev. Biol. 34:293-299. Michaux-Ferrière N, Carron MP (1989). Histology of early somatic embryogenesis in Hevea brasiliensis. The importance of timing of subculturing. Plant Cell Tiss ...

  2. Comparing carbohydrate status during norway spruce seed development and somatic embryo formation

    NARCIS (Netherlands)

    Gösslová, M.; Svobodová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D.

    2001-01-01

    The carbohydrate status of developing seeds of Picea abies was examined in order to provide a frame of reference for the evaluation of changes in carbohydrate content in maturing somatic embryos of the same species. Samples were taken at weekly intervals from 12 May 1998 (estimated time of

  3. Syntheses of nucleic acid and protein in somatic embryos of Fritillaria ussuriensis maxim in different development stages

    International Nuclear Information System (INIS)

    Wang Shuyu; Tang Wei; Wang Hui

    1993-09-01

    After developing a procedure for somatic embryogenesis in Fritillaria ussuriensis, dynamics on the syntheses of DNA, RNA, and protein during globular, heart-shaped, torpedo-shaped, cotyledonary, and mature somatic embryo stages was demonstrated by both autoradiography and scintillation counting. The rates of syntheses of DNA, RNA, and protein gradually increase between the globular and cotyledonary somatic embryos stages. DNA, RNA, and protein synthesis rates are in peak at the cotyledonary later stage, precotyledonary stage, and cotyledonary stage, respectively. It appears that more DNA, RNA, and protein are synthesized in the cotyledonary somatic embryo stage than in other stages. All these results indicate that an increased syntheses of DNA, RNA, and protein is associated with the differentiation of embryogenic cells and organogenesis in somatic embryos

  4. Histologia da embriogênese somática induzida em embriões de sementes maduras de Urochloa brizantha apomítica Histology of somatic embryogenesis induced in embryos of mature seeds of the apomictic Urochloa brizantha

    Directory of Open Access Journals (Sweden)

    Sandra Janeth Lenis-Manzano

    2010-05-01

    Full Text Available O objetivo deste trabalho foi descrever o processo de embriogênese somática em Urochloa brizantha cv. Marandu (Syn. Brachiaria brizantha cv. Marandu e fornecer subsídios para o aprimoramento dos métodos de cultura de tecidos e transformação genética. Calos embriogênicos foram obtidos por indução em embriões isolados de sementes maduras, e cultivados in vitro, em meio de cultura que continha ácido 2,4-diclorofenoxiacético, 6-benzilaminopurina e caseína hidrolisada. Plântulas foram regeneradas a partir dos calos embriogênicos, na presença de ácido naftalenoacético e cinetina. Esse processo foi descrito morfologicamente por observações em microscopia de luz de secções seriadas semifinas de tecidos fixados, ao longo do processo de regeneração, em FAA [formaldeído (40%: ácido acético glacial: etanol (50%, a 5:5:90 v/v/v]. Os embriões das sementes de U. brizantha cv. Marandu não têm epiblasto e são classificados como do tipo panicoide. Nas condições estabelecidas de cultura in vitro, calos embriogênicos e embriões somáticos de U. brizantha cv. Marandu, desenvolvem-se a partir de células meristemáticas do escutelo.The objective of this work was to describe the process of somatic embryogenesis in Urochloa brizantha cv. Marandu (Syn. Brachiaria brizantha cv. Marandu and to provide support for the improvement of tissue culture and genetic transformation methods. Embryogenic calli were obtained by induction in embryos isolated from mature seeds, and cultivated in vitro in culture medium containing 2,4-dichlorophenoxyacetic acid, 6-benzylaminopurine and hydrolyzed casein. Plantlets were regenerated from the embryogenic calli in the presence of naphthaleneacetic acid and kinetin. This process was described by morphological observations of serial semithin sections of tissues fixed along the regeneration process in FAA (40% formaldehyde: acetic acid: 50% ethanol, at 5:5:90 v/v/v, using light microscopy. Seed embryos of U

  5. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.

  6. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    Science.gov (United States)

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  7. Influence of Growth Regulators on Callogenesis and Somatic Embryo Development in Date Palm (Phoenix dactylifera L. Sahelian Cultivars

    Directory of Open Access Journals (Sweden)

    Djibril Sané

    2012-01-01

    Full Text Available This study provides a physiological analysis of somatic embryogenesis in four elite cultivars of date palms: Ahmar, Amsekhsi, Tijib, and Amaside, from the initial callogenesis to establishment and proliferation of embryogenic suspension cultures. Somatic embryos development and in vitro plants rooting were also studied. For each step, auxins and cytokinins concentrations were optimised. The primary callogenesis from leaf explants of seedlings appeared highly dependent on genotype. Ahmar (80% and Amsekhsi (76% appeared highly callogenic, whereas Tijib (10% and Amaside (2% produced low amounts of calluses. 2,4-Dichlorophenoxyacetic acid appeared favorable to the induction of primary callogenesis and its effect was enhanced by the addition of benzyl adenine or adenine sulfate. Secondary friable calli obtained from chopped granular calli were used to initiate embryogenic cell suspensions in media supplied with 2,4-dichlorophenoxyacetic acid. Suspension cultures showed a growth rate of fourfold after four subcultures in presence of 2,4-dichlorophenoxyacetic acid 2 mg/L. Our results showed that a seven-day transitory treatment with benzyl adenine 0,5 mg/L was necessary to optimize embryos development. Naphthalene acetic acid induced the development of primary orthogravitropic roots during embryos germination. The comparison with cytofluorometry of nuclear DNA amounts showed no significant difference in ploidy level between regenerated plants and seedlings.

  8. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.

    Directory of Open Access Journals (Sweden)

    Ryutaro Hirasawa

    Full Text Available The great majority of embryos generated by somatic cell nuclear transfer (SCNT display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts. The embryos retrieved from the uteri were separated into embryonic (epiblast and extraembryonic (extraembryonic ectoderm and ectoplacental cone tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs (>2-fold vs. controls than did the extraembryonic tissues (P<1.0 × 10(-26. In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1-5% per embryos transferred in our laboratory, because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.

  9. MORPHOLOGICAL CHANGES DURING THE DEVELOPMENT OF SOMATIC EMBRYOS OF SAGO (Metroxylon sagu Rottb.

    Directory of Open Access Journals (Sweden)

    Pauline D. Kasi

    2016-10-01

    Full Text Available Development of somatic embryos of sago (Metroxylon sagu Rottb. on agar-solidified medium are highly varied producing heterogeneous seedlings. Understanding of this phenomenon may help in improving the cultural procedures and conditions of sagosomatic embryogenesis to obtain uniform seedlings in a large scale. This experiment was conducted at the laboratory for plant cell culture and micropropagation, Indonesian Biotechnology Research Institute for Estate Crops from January to March 2006 to examine morphological changes i.e. color and development stages of sago during their somatic embryo development on an agar-solidified medium. Twenty single globular somatic embryos of sago with specific color (yellowish, greenish, and reddish were cultured in a Petri dish supplemented with a solid medium. The medium was a micronutrients-modified MS (MMS with half strength of macronutrients containing 0.01 mg l-1 ABA, 2 mg l-1 kinetin, 20 g l-1 sucrose, 0.5 g l-1 activated charcoal, and 2 g l-1 gelrite. Parameter observed was the percentage of embryo’s number based on color and developmental stage. The result showed that at the end of 6-week culture passage, most originally greenish (80.8% and reddish (95.8% embryos remained unchanged in their colors, whereas almost half of the originally yellowish embryos turned to greenish and only 30%remained yellowish. At the same time, single globular embryos have changed gradually into the next developmental stages, although not all of the embryos were germinated. The initial color of embryo affected the rate of the developmental stage changes. Yellowish and greenish globular embryos developed more rapidly into cotyledon or germinant stages at 58% and 55% respectively, in 6 weeks than the reddish ones (41%. Therefore, the yellowish and greenish embryos are the best sources of material for in vitro mass propagation and synthetic seed production of sago.

  10. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao.

    Science.gov (United States)

    Niemenak, Nicolas; Kaiser, Edward; Maximova, Siela N; Laremore, Tatiana; Guiltinan, Mark J

    2015-05-15

    Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Efficiency of porcine somatic cell nuclear transfer – a retrospective study of factors related to embryo recipient and embryos transferred

    Directory of Open Access Journals (Sweden)

    Yongye Huang

    2013-10-01

    The successful generation of pigs via somatic cell nuclear transfer depends on reducing risk factors in several aspects. To provide an overview of some influencing factors related to embryo transfer, the follow-up data related to cloned pig production collected in our laboratory was examined. (i Spring showed a higher full-term pregnancy rate compared with winter (33.6% vs 18.6%, P = 0.006. Furthermore, a regression equation can be drawn between full-term pregnancy numbers and pregnancy numbers in different months (y = 0.692x−3.326. (ii There were no significant differences detected in the number of transferred embryos between surrogate sows exhibiting full-term development compared to those that did not. (iii Non-ovulating surrogate sows presented a higher percentage of full-term pregnancies compared with ovulating sows (32.0% vs 17.5%, P = 0.004; respectively. (iv Abortion was most likely to take place between Day 27 to Day 34. (v Based on Life Table Survival Analysis, delivery in normally fertilized and surrogate sows is expected to be completed before Day 117 or Day 125, respectively. Additionally, the length of pregnancy in surrogate sows was negatively correlated with the average litter size, which was not found for normally fertilized sows. In conclusion, performing embryo transfer in appropriate seasons, improving the quality of embryos transferred, optimizing the timing of embryo transfer, limiting the occurrence of abortion, combined with ameliorating the management of delivery, is expected to result in the harvest of a great number of surviving cloned piglets.

  12. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  13. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  14. Effect of CO2 on somatic embryos development Coffea arabica L. cv. ‘Caturra rojo’ and Clematis tangutica K.

    Directory of Open Access Journals (Sweden)

    Raúl Barbon

    2016-07-01

    Full Text Available Studies to optimize somatic embryogenesis have traditionally focused on the components of the culture medium but little other in vitro environment factors have been analyzed such as the composition of the gaseous atmosphere. The objective of this work was to determine the influence of CO2 on the development of the somatic embryo during the transition from the globular to the torpedo stage. The research was carried out on two model species for somatic embryogenesis that they are developed in different climatic zones: Coffea arabica L. cv. ‘Caturra rojo’ and Clematis tangutica K. Three CO2 concentrations (2.5, 5.0 and 10.0% combined with 21% O2 and two controls (passive exchange and forced ventilation were used. The effect of CO2 on the differentiation of somatic embryos from globular to torpedo stage in coffee and clematis was demonstrated, since in the treatments with passive exchange, where there was accumulation of CO2, the differentiation of somatic embryos was superior to treatments with forced ventilation. With 5.0% CO2 the process of differentiation of the embryos in the globular stage was stimulated, because in the treatment with this concentration of CO2 for coffee and clematis the highest proportion of embryos in torpedo stages and low levels of malformation were obtained.   Keywords: carbon dioxide, differentiation, in vitro environment, somatic embryogenesis

  15. Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    International Nuclear Information System (INIS)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-01-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with [ 3 H]GA 4 (of high specific activity, 4.81 x 10 19 becquerel per millimole) for 48 hours at 26 0 C. Chilling had little effect on the total amount of free [ 3 H]GA-like metabolites formed during incubation at 26 0 C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble [ 3 H] metabolites formed at 26 0 C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA 12 aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with [ 3 H]GA 4 treatment at 26 0 C, reduced the uptake of [ 3 H] GA 4 but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26 0 C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs)

  16. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  17. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  18. Progress towards initiation of somatic embryogenesis from differentiated tissues of radiata pine (Pinus radiata D. Don) using cotyledonary embryos

    DEFF Research Database (Denmark)

    Find, Jens Iver; Hargreaves, Cathy L.; Reeves, Catherine B.

    2014-01-01

    of dissected embryos and a modified Litvay medium, Glitz, was best. This combination gave the highest rate of initiation, and it was possible to initiate somatic embryogenesis (SE) from differentiated cells in the epicotyledonary region of postcotyledonary zygotic embryos from the two tested families...... with an average initiation rate of approximately 24% and 7% from stage five and six embryos, respectively. This is different from established initiation protocols of embryogenic cultures in radiata pine, which has traditionally been based on embryo rescue and continued proliferation of immature zygotic embryos....... A further implication of initiation of SE from excised post-cotyledonary embryos was that the period of initiation of embryogenic cultures was extended from 4 to 12 wk....

  19. PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Jin, Long; Zhu, Hai-Ying; Guo, Qing; Li, Xiao-Chen; Zhang, Yu-Chen; Zhang, Guang-Lei; Xing, Xiao-Xu; Xuan, Mei-Fu; Luo, Qi-Rong; Yin, Xi-Jun; Kang, Jin-Dan

    2016-09-01

    To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12. Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed. PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.

  20. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida

    2011-01-01

    Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-c...... in sequence-specific interactions between the ooplasm and chromatin of another genus. In conclusion, the results demonstrate a possible reason why the intergeneric SCNT embryos never reached the full term....

  1. In Vitro Selection of Peanut Somatic Embryos on Medium Containing Culture Filtrate of Sclerotium rolfsii and Plantlet Regeneration

    Directory of Open Access Journals (Sweden)

    YUSNITA

    2005-06-01

    Full Text Available Attempts to identify somaclonal variants of peanut with resistance to Sclerotium stem rot disease due to infection of S. rolfsii were conducted. The objectives of this study were to develop in vitro selection method using culture filtrates of S. rolfsii, identify culture filtrate-insensitive somatic embryo (SE of peanut after in vitro selection and regenerate peanut R0 lines originated from culture filtrate-insensitive SE. To achieve these objectives, peanut embryogenic tissues were cultured on selective medium containing various concentrations of S. rolfsii culture filtrates and sublethal concentration of the filtrates. Medium containing sublethal level of S. rolfsii culture filtrates was used to identify culture filtrate-insensitive SE of peanut. Subsequently, the selected SEs were germinated, plantlets were regenerated and preliminary tested against S. rolfsii. Results of the experiments showed that addition of S. rolfsii culture filtrates into medium for inducing peanut somatic embryos drastically reduced their growth and proliferation. S. rolfsii culture filtrates at 10% concentration has significantly reduced the number of proliferated SE per explant. However, sublethal level was achieved at 30% of culture filtrates concentration. Responses of five peanut cultivars against 30% of culture filtrates were similar, indicating they were similar in their susceptibility against S. rolfsii. A number of culture filtrate-insensitive SE were identified after culturing 1500 clumps of embryogenic tissue of peanut cv. Kelinci for three consecutive passages on medium containing 30% of culture filtrates. Germination of selected SE and regeneration of plantlet from culture filtrate-insensitive SE resulted in 50 peanut R0 lines. These lines have been grown in the plastic house and produced normal seeds for further evaluation. Results of S. rolfsii inoculation indicated the existence of chimera for insensitivity against S. rolfsii.

  2. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  3. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  4. The anti-actin drugs latrunculin and cytochalasin affect the maturation of spruce somatic embryos in different ways

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Vágner, Martin

    2014-01-01

    Roč. 221, MAY 2014 (2014), s. 90-99 ISSN 0168-9452 R&D Projects: GA MŠk 7AMB12FR017 Institutional support: RVO:61389030 Keywords : Somatic embryo genesis * Cytoskeleton * Actin Subject RIV: GK - Forestry Impact factor: 3.607, year: 2014

  5. Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium

    Science.gov (United States)

    Smith, D. L.; Krikorian, A. D.

    1989-01-01

    Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and

  6. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope.

    Science.gov (United States)

    Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav

    2018-05-18

    Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Somatic embryo-like structures of strawberry regenerated in vitro on media supplemented with 2,4-D and BAP.

    Science.gov (United States)

    Omar, Genesia F; Mohamed, Fouad H; Haensch, Klaus-Thomas; Sarg, Sawsan H; Morsey, Mohamed M

    2013-09-01

    Somatic embryo-like structures (SELS) were produced in vitro from leaf disk and petiole explants of two cultivars of strawberry (Fragaria x ananassa Duch) on Murashige and Skoog medium with different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and sucrose to check the embryonic nature of these structures histologically. A large number of SELS could be regenerated in both cultivars on media with 2-4 mg L(-1) 2,4-D in combination with 0.5 -1 mg L(-1) BAP and 50 g x L(-1) sucrose. Histological examination of SELS revealed the absence of a root pole. Therefore these structures cannot be strictly classified as somatic embryos. The SELS formed under the tested culture conditions represent malformed shoot-like and leaf-like structures. The importance of these results for the propagation of strawberries via somatic embryogenesis is discussed.

  8. Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation.

    Science.gov (United States)

    Álvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-01-01

    Pinus pinaster is one of the most economically important conifers in the world. Somatic embryogenesis is a powerful tool in breeding programmes because it allows the generation of a great number of different clonal lines from seeds of superior genotypes. Unfortunately, embryogenic competence decreases with the age of cultures. Therefore, it is necessary to have a cryopreservation protocol that ensures a continuous supply of juvenile mass while allowing good maturation and conversion rates into vigorously growing plants. In this work we studied the influence of several cryopreservation parameters, such as cryoprotectant solution and pre-cooling temperature, on embryogenic culture regrowth and embryo maturation. Recovery of rewarmed samples after cryopreservation in a -150 degree C freezer depended on the cooling temperature reached prior to plunging the tubes into liquid nitrogen. As a result, we present an optimised cryopreservation protocol that ensures high recovery and embryo maturation rates. The protocol presented is a simple and fast alternative and enabled successful cryopreservation and recovery of 100 percent of the lines tested. Cryopreserved lines presented the same maturation rates as non-cryopreserved controls.

  9. Interactions in the Agrobacterium-soybean system and capability of some Brazilian soybean cultivars to produce somatic embryos

    Directory of Open Access Journals (Sweden)

    Mauro Antonio Orlando Di

    2000-01-01

    Full Text Available Twenty-five Brazilian soybean cultivars were studied for susceptibility to four strains of Agrobacterium tumefaciens (C58, Ach5, Bo542 and A281 and for their ability to produce somatic embryos. Twelve plants of each cultivar were inoculated in a greenhouse at 4-6 weeks of age, using 12 inoculation sites per plant. The number of galls formed on plants were counted 8-10 weeks after inoculation. To study ability to produce somatic embryos, immature cotyledons, 4-6 mm in length, were plated onto N10 medium for induction of somatic embryogenesis, using four Petri dishes with 20 cotyledons for each cultivar. The embryogenic tissues were transferred onto new N10 medium six times at 15-day intervals and the number of somatic embryos per cultivar determined. Significant interaction between soybean cultivars and A. tumefaciens strains was observed; the most virulent strain was A281. The opine type apparently had no effect on strain virulence, and the most embryogenic cultivars were IAS-5, Cristalina, FT-Cometa, IAC-7 and OC-3.

  10. Development of Somatic Embryo Maturation and Growing Techniques of Norway Spruce Emblings towards Large-Scale Field Testing

    Directory of Open Access Journals (Sweden)

    Mikko Tikkinen

    2018-06-01

    Full Text Available The possibility to utilize non-additive genetic gain in planting stock has increased the interest towards vegetative propagation. In Finland, the increased planting of Norway spruce combined with fluctuant seed yields has resulted in shortages of improved regeneration material. Somatic embryogenesis is an attractive method to rapidly facilitate breeding results, not in the least, because juvenile propagation material can be cryostored for decades. Further development of technology for the somatic embryogenesis of Norway spruce is essential, as the high cost of somatic embryo plants (emblings limits deployment. We examined the effects of maturation media varying in abscisic acid (20, 30 or 60 µM and polyethylene glycol 4000 (PEG concentrations, as well as the effect of cryopreservation cycles on embryo production, and the effects of two growing techniques on embling survival and growth. Embryo production and nursery performance of 712 genotypes from 12 full-sib families were evaluated. Most embryos per gram of fresh embryogenic mass (296 ± 31 were obtained by using 30 µM abscisic acid without PEG in the maturation media. Transplanting the emblings into nursery after one-week in vitro germination resulted in 77% survival and the tallest emblings after the first growing season. Genotypes with good production properties were found in all families.

  11. Hemoglobin promotes somatic embryogenesis in peanut cultures.

    Science.gov (United States)

    Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C

    2004-02-01

    Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).

  12. Gamma ray induced somatic mutations in rose

    International Nuclear Information System (INIS)

    Datta, S.K.

    1989-01-01

    Budwood of 32 rose cultivars (Rosa spp.) was exposed to 3-4 krad of gamma rays and eyes were grafted on Rosa indica var. odorata root stock. Radiosensitivity with respect to sprouting, survival and plant height, and mutation frequency varied with the cultivar and dose of gamma rays. Somatic mutations in flower colour/shape were detected as chimera in 21 cultivars. The size of the mutant sector varied from a narrow streak on a petal to a whole flower and from a portion of a branch to an entire branch. 14 mutants were detected in M 1 V 1 , four in M 1 V 2 and three in M 1 V 3 . Maximum number of mutations was detected following 3 krad treatment. Eyes from mutant branches were grafted again on root stock and non-chimeric mutants were aimed at by vegetative propagation. Mutants from 11 cultivars only could be isolated in pure form. Isolation of non-chimeric mutants sometimes is difficult due to weak growth of a mutant branch. In such a case, all normal looking branches are removed to force a better growth of the mutant branch. It is advisable to maintain irradiated plants at least for four years with drastic pruning in each year. Nine mutants viz. 'Sharada', 'Sukumari', 'Tangerine Contempo', 'Yellow Contempo', 'Pink Contempo', 'Striped Contempo', 'Twinkle', 'Curio' and 'Light Pink Prize' have already been released as new cultivars for commercialization [ref. MBNL No. 23 and 31] and others are being multiplied and assessed. The mutation spectrum appears to be wider for the cultivars 'Contempo' and 'Imperator'. Pigment composition of the original variety is relevant for the kind of flower colour mutations that can be induced

  13. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...... transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development....

  14. DDT-induced feminization of gull embryos

    International Nuclear Information System (INIS)

    Fry, D.M.; Toone, C.K.

    1981-01-01

    Injection of DDT [1, 1, 1-trichloro-2,2-bis(p-chlorophenyl)ethane] into gull eggs at concentrations comparable to those found in contaminated seabird eggs in 1970 induces abnormal development of ovarian tissue and oviducts in male embryos. Developmental feminization of males is associated with inability to breed as adults and may explain the highly skewed sex ratio and reduced number of male gulls breeding on Santa Barbara Island in southern California

  15. Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret).

    Science.gov (United States)

    Fraga, Hugo Pacheco de Freitas; Agapito-Tenfen, Sarah Zanon; Caprestano, Clarissa Alves; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2013-09-01

    Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    Directory of Open Access Journals (Sweden)

    Kwanyuen Prachuab

    2009-11-01

    Full Text Available Abstract Background In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin. Results When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl-L-cysteine (AEC and the acetolactate synthase (ALS inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed. Conclusion Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate (Roundup®, AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean

  17. Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment

    Directory of Open Access Journals (Sweden)

    Yali Liu

    2016-11-01

    Full Text Available Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H2 treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA libraries to identify global transcriptome changes at different time points during H2 treatment of larch pro-embryogenic masses (PEMs. A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H2 during somatic embryogenesis.

  18. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi

    2011-02-01

    Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.

  19. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  20. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  1. Morphological characterization of pre- and peri-implantation in vitro cultured, somatic cell nuclear transfer and in vivo derived ovine embryos

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille Yde; Peura, T.T.; Hartwich, K.M.

    2005-01-01

    The processes of cellular differentiation were studied in somatic cell nuvlear transfer (SCNT), in vitro cultured (IVC) and in vivo developed (in vivo) ovine embryos on days 7, 9, 11, 13, 17 and 19. SCNT embryos were constructed from in vitro matured oocytes and granulosa cells, and IVC embryos...... were produced by in vitro culture of in vivo fertilized zygotes. Most SCNT and IVC embryos were transferred to recipients on day 6 while some remained in culture for day 7 processing. In vivo embryos were collected as zygotes, transferred to intermediate recipients and retransferred to final recipients...

  2. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  3. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping

    2014-08-01

    Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, pvitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, pVitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.

  4. Germination of somatic embryos of Psidium guajava L. cv. Cuban Red Dwarf EEA 18-40 in temporary immersion systems

    Directory of Open Access Journals (Sweden)

    Jorge Vilchez Perozo

    2001-04-01

    Full Text Available Somatic embryo germination of Psidium guajava L. cv. Cuban Red Dwarf EEA 18-40 in temporary immersion systems (TIS, in which somatic embryos were cultured in the heart-torpedo stage in MS mediun at mayor half strength salt and suplemented with: 0.25 mg.l-1 of 6-bencilaminopurine (6-BAP, 10 mg.l-1 of Biobras-6 (analogous of brasinoesteriode and 20 g.l-1 of sucrose. As control was used solid cultivation medium (2.5 g.l-1 Gellan gum, Spectrum® of same composition to the one used in the TIS. The variables germination percentage and fresh weight were evaluated statistically. After ten weeks of cultivation the largest values in germination percentage (91.04% and fresh weight (1.22 g were obtained in the TIS, being statistically different to those obtained in solid medium (9.79% and 1.03 g, respectively. Key words: in vitro plant, guayaba, regeneration, RITA®,somatic embryogenesis

  5. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure.

    Science.gov (United States)

    Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan

    2016-08-25

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.

  6. Expression profile of genes as indicators of developmental competence and quality of in vitro fertilization and somatic cell nuclear transfer bovine embryos.

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cánepa

    Full Text Available Reproductive biotechnologies such as in vitro fertilization (IVF and somatic cell nuclear transfer (SCNT enable improved reproductive efficiency of animals. However, the birth rate of in vitro-derived embryos still lags behind that of their in vivo counterparts. Thus, it is critical to develop an accurate evaluation and prediction system of embryo competence, both for commercial purposes and for scientific research. Previous works have demonstrated that in vitro culture systems induce alterations in the relative abundance (RA of diverse transcripts and thus compromise embryo quality. The aim of this work was to analyze the RA of a set of genes involved in cellular stress (heat shock protein 70-kDa, HSP70, endoplasmic reticulum (ER stress (immunoglobulin heavy chain binding protein, Bip; proteasome subunit β5, PSMB5 and apoptosis (BCL-2 associated X protein, Bax; cysteine aspartate protease-3, Caspase-3 in bovine blastocysts produced by IVF or SCNT and compare it with that of their in vivo counterparts. Poly (A + mRNA was isolated from three pools of 10 blastocysts per treatment and analyzed by real-time RT-PCR. The RA of three of the stress indicators analyzed (Bax, PSMB5 and Bip was significantly increased in SCNT embryos as compared with that of in vivo-derived blastocysts. No significant differences were found in the RA of HSP70 and Caspase-3 gene transcripts. This study could potentially complement morphological analyses in the development of an effective and accurate technique for the diagnosis of embryo quality, ultimately aiding to improve the efficiency of assisted reproductive techniques (ART.

  7. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  8. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Teyssier, Caroline; Trontin, Jean-François; Eliášová, Kateřina; Pešek, Bedřich; Beaufour, Martine; Morabito, Domenico; Boizot, Nathalie; Le Metté, Claire; Belal-Bessai, Leila; Reymond, Isabelle; Harvengt, Luc; Cadene, Martine; Corbineau, Françoise; Vágner, Martin; Label, Philippe; Lelu-Walter, Marie-Anne

    2014-09-01

    Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets. © 2014 Scandinavian Plant Physiology Society.

  9. Somatic Embryogenesis Induction and Plant Regeneration in Strawberry Tree (Arbutus unedo L.).

    Science.gov (United States)

    Martins, João F; Correia, Sandra I; Canhoto, Jorge M

    2016-01-01

    Somatic embryogenesis is a powerful tool both for cloning and studies of genetic transformation and embryo development. Most protocols for somatic embryogenesis induction start from zygotic embryos or embryonic-derived tissues which do not allow the propagation of elite trees. In the present study, a reliable protocol for somatic embryogenesis induction from adult trees of strawberry tree is described. Leaves from in vitro proliferating shoots were used to induce somatic embryo formation on a medium containing an auxin and a cytokinin. Somatic embryos germinated in a plant growth regulator-free medium.

  10. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  11. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs.

    Science.gov (United States)

    You, Jinyoung; Lee, Joohyeong; Kim, Jinyoung; Park, Junhong; Lee, Eunsong

    2010-02-01

    The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos. (c) 2009 Wiley-Liss, Inc.

  12. Influence of the in vitro environment on the germination of somatic embryos of Coffea arabica L. cv. 'Caturra rojo' and Clematis tangutica K.

    Directory of Open Access Journals (Sweden)

    Raúl Barbon

    2017-07-01

    Full Text Available The in vitro environment is a factor that in recent years has begun to investigate, because gases such as oxygen, carbon dioxide and ethylene play an important role in the morphogenesis of somatic embryos and their development in plants. The objective of this work was to determine the effect of the CO2 on the germination of coffee somatic embryos (Coffea arabica L. cv. 'Caturra rojo' and clematis (Clematis tangutica K.. Three gas mixtures composed of CO2 concentrations (2.5, 5.0 and 10.0% combined with 21% O2 and two controls (passive exchange and forced ventilation were used. A positive effect of CO2 on the germination of somatic embryos in the torpedo stage in coffee and clematis was obtained, because in the treatments with passive exchange, where there was CO2 accumulation, germination of the somatic embryos was superior to the treatments with Forced ventilation. With 2.5% and 5.0% CO2, the germination process is stimulated while with 10.0% CO2 there is an inhibition of germination with the appearance of malformations and hyperhydricity.   Keywords: gaseous atmosphere, carbon dioxide, somatic embryogenesis, secondary embryogenesis, hyperhydricity

  13. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.).

    Science.gov (United States)

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.

  14. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  15. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos.

    Science.gov (United States)

    Li, Shui-gen; Li, Wan-feng; Han, Su-ying; Yang, Wen-hua; Qi, Li-wang

    2013-06-15

    Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  17. Hormetic effect induced by depleted uranium in zebrafish embryos

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    Highlights: • Studied hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio). • Hormesis observed at 24 hpf for exposures to 10 μg/l of depleted U (DU). • Hormesis not observed before 30 hpf for exposures to 100 μg/l of DU. • Hormetic effect induced in zebrafish embryos in a dose-and time-dependent manner. - Abstract: The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4 h post fertilization (hpf), and were then exposed to 10 or 100 μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  18. Hormetic effect induced by depleted uranium in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.P. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Cheng, S.H., E-mail: bhcheng@cityu.edu.hk [Department of Biomedical Sciences, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong)

    2016-06-15

    Highlights: • Studied hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio). • Hormesis observed at 24 hpf for exposures to 10 μg/l of depleted U (DU). • Hormesis not observed before 30 hpf for exposures to 100 μg/l of DU. • Hormetic effect induced in zebrafish embryos in a dose-and time-dependent manner. - Abstract: The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4 h post fertilization (hpf), and were then exposed to 10 or 100 μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  19. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  20. Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Vágner, Martin; Martincová, Olga; Cvikrová, Milena

    2015-01-01

    Roč. 75, č. 2 (2015), s. 405-414 ISSN 0167-6903 R&D Projects: GA MŠk(CZ) LD13050 Institutional support: RVO:61389030 Keywords : Exogenous putrescine * Somatic embryogenesis * Picea abies Subject RIV: ED - Physiology Impact factor: 2.333, year: 2015

  1. Histological and biochemical response of Norway spruce somatic embryos to UV-B irradiation

    Czech Academy of Sciences Publication Activity Database

    Eliášová, Kateřina; Vondráková, Zuzana; Malbeck, Jiří; Trávníčková, Alena; Pešek, Bedřich; Vágner, Martin; Cvikrová, Milena

    2017-01-01

    Roč. 31, č. 4 (2017), s. 1279-1293 ISSN 0931-1890 R&D Projects: GA MŠk(CZ) LD13050; GA MŠk(CZ) LD13051 Institutional support: RVO:61389030 Keywords : Oxidative stress * Phenolic acids * Phenylpropanoids * Picea abies (L.) Karst * Polyamines * Somatic embryogenesis Subject RIV: ED - Physiology OBOR OECD: Forestry Impact factor: 1.842, year: 2016

  2. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    Czech Academy of Sciences Publication Activity Database

    Petřek, J.; Zítka, O.; Adam, V.; Bartušek, Karel; Anjum, N. A.; Pereira, E.; Havel, L.; Kizek, R.

    2015-01-01

    Roč. 10, č. 12 (2015), e0144093:1-16 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : somatic embryogenesis * biochemical parameters Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.057, year: 2015

  3. Somatic embryogenesis of Carica Papaya

    International Nuclear Information System (INIS)

    Alvina Lindsay Mijen; Rusli Ibrahim

    2006-01-01

    This paper describes the somatic embryogenesis of Carica papaya. Culture medium used was1/2 strength MS basal medium supplemented with 6% sucrose, 0.27 % agar, glutamine and various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D). After 8 weeks in culture, the best concentration of 2,4-D to induce somatic embryo is at 45.2 μM. (Author)

  4. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  5. Embryogenic calli induced in interspecific (Elaeis guineensis x E. oleifera hybrid zygotic embryos

    Directory of Open Access Journals (Sweden)

    Paula Cristina da Silva Angelo

    2009-01-01

    Full Text Available The hybridization between oil palm (Elaeis guineensis and caiaué (E. oleifera plants is directed to obtainprogenies presenting high yields like oil palm but with reduced shoot height and resistance to lethal yellowing like caiaué.Cloning F1, BC1 and BC2 progenies can make the replication of selection trials easier. The objective of this work was to inducesomatic embryogenesis in interspecific zygotic embryos collected 100 days after pollination. Three progenies were cultivatedin an induction medium developed for Tenera (E. guineensis tp. dura x pisifera embryos. The number of embryos bearing calliand germinating was recorded and submitted to the Z test. Calli were weighted and submitted to histological analysis.Progenies differed in the number of embryos presenting plumules and calli simultaneously. By the ninth month, the apices ofincompletely developed somatic embryos were observed protruding from the surfaces of nodular calli. Highly embryogenicand friable secondary calli producing globular somatic embryos were not observed.

  6. Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos.

    Science.gov (United States)

    Samiec, M; Skrzyszowska, M

    2018-03-01

    The efficiency of somatic cell cloning in mammals remains disappointingly low. Incomplete and aberrant reprogramming of epigenetic memory of somatic cell nuclei in preimplantation nuclear- transferred (NT) embryos is one of the most important factors that limit the cloning effectiveness. The extent of epigenetic genome-wide alterations, involving histone or DNA methylation and histone deacetylation, that are mediated by histone-lysine methyltransferases (HMTs) or DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be modulated/reversed via exogenous inhibitors of these enzymes throughout in vitro culture of nuclear donor cells, nuclear recipient oocytes and/or cloned embryos. The use of the artificial modifiers of epigenomically-conditioned gene expression leads to inhibition of both chromatin condensation and transcriptional silencing the genomic DNA of somatic cells that provide a source of nuclear donors for reconstruction of enucleated oocytes and generation of cloned embryos. The onset of chromatin decondensation and gene transcriptional activity is evoked both through specific/selective inactivating HMTs by BIX-01294 and through non-specific/non-selective blocking the activity of either DNMTs by 5-aza-2'-deoxycytidine, zebularine, S-adenosylhomocysteine or HDACs by trichostatin A, valproic acid, scriptaid, oxamflatin, sodium butyrate, m-carboxycinnamic acid bishydroxamide, panobinostat, abexinostat, quisinostat, dacinostat, belinostat and psammaplin A. Epigenomic modulation of nuclear donor cells, nuclear recipient cells and/or cloned embryos may facilitate and accelerate the reprogrammability for gene expression of donor cell nuclei that have been transplanted into a host ooplasm and subsequently underwent dedifferentiating and re-establishing the epigenetically dependent status of their transcriptional activity during pre- and postimplantation development of NT embryos. Nevertheless, a comprehensive additional work is necessary to determine

  7. Perkembangan Praimplantasi Embrio Mencit dengan Materi Genetik yang Berasal dari Parental, Maternal, dan Inti Sel Somatik (PRE-IMPLANTATION DEVELOPMENT OF MOUSE EMBRYO WITH GENETIC MATERIAL DERIVED FROM PARENTAL, MATERNAL AND SOMATIC CELL NUCLEUS

    Directory of Open Access Journals (Sweden)

    Harry Murti

    2014-05-01

    Full Text Available Cloned embryo and parthenogenetic embryo are a potential source of stem cells for regenerativemedicine. Stem cells derived from those embryos are expected to overcome the ethical issues to the use offertilization embryos for therapeutic purposes. The pre-implantation development is a critical step fordeveloping embryos reach the blastocyst stage. The objectives in vivo of this research are to produce mousecloned embryo, parthenogenetic embryo, and fertilized embryo and to study stages of  in vitro pre-implantation development culture. In vivo fertilized embryos, mouse oocytes, and cumulus cells were usedin this study. Treatment was performed on female mice superovulated with PMSG and hCG injections.Two-cell stage of in vivo fertilized embryos were collected on the second day post hCG injection. Clonedembryos were produced through Somatic Cell Nuclear Transfer (SCNT, which included enucleation, nucleartransfer and artificial activation. Parthenogenetic embryos were produced with artificial activationtechnique. The result of the research indicated that SCNT application was able to produce cloned embryos which could develop to blastocyst stage (3,2%. In addition, artificial activation of oocytes could produceparthenogenetic embryos which were able to develop up to the blastocyst stage (8,6%. In conclusion,efficiency level of parthenogenetic embryos that is able to reach the blastocyst stage was higher than in thecloned embryos. Fertilized embryos shows a better development and more efficient compared to in vitrocloned embryos and parthenogenetic embryos cultures.

  8. Influence of the genotype and density of inoculation on the differentiation of somatic embryos of Coffea arabica L. cv. Red Caturra and Coffea canephora cv. Robusta

    Directory of Open Access Journals (Sweden)

    Raúl Barbón

    2003-07-01

    Full Text Available The conditions were established for the differentiation of somatic embryos from cell suspensions in the genotype Caturra rojo (Coffea arabica and Robusta (Coffea canephora. Cell suspensions with high embryogenic potentials and stable coefficients of multiplication were used. While studying the density of inoculation, for the phase of differentiation for both varieties, differences appeared in the embryogenic capacity among them, being reached a whole of 556 500 ES.l-1 for the variety Caturra rojo and 298 670 SE.l-1 for the variety Robusta. The biggest number of embryos in torpedo state, were obtained with a density of inoculation of 0.5 gFW.l-1 for the variety Caturra rojo and 5.0 gMF.l-1 for the variety Robusta. Key Words: cell suspensions, embryogenic potential, somatic Embryogenesis, embryogenic cells

  9. Effects of in ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings.

    Science.gov (United States)

    Zhai, W; Bennett, L W; Gerard, P D; Pulikanti, R; Peebles, E D

    2011-12-01

    Effects of the in ovo injection of commercial diluent supplemented with dextrin or with dextrin in combination with various other carbohydrates on the somatic characteristics and liver nutrient profiles of Ross × Ross 708 broiler embryos and chicks were investigated. Results include information concerning the gluconeogenic energy status of the liver before and after hatch. Eggs containing live embryos were injected in the amnion on d 18 of incubation using an automated multiple-egg injector for the delivery of the following carbohydrates dissolved in 0.4 mL of commercial diluent: 1) 6.25% glucose and 18.75% dextrin; 2) 6.25% sucrose and 18.75% dextrin; 3) 6.25% maltose and 18.75% dextrin; and 4) 25% dextrin. Also, a noninjected control and a 0.4-mL diluent-injected control were included. Body weight relative to set egg weight on d 19 of incubation (E19) was increased by the injection of all carbohydrate solutions, and on the day of hatch was increased by the injection of diluent, sucrose and dextrin, and maltose and dextrin solutions. Hatchability of the fertilized eggs, residual yolk sac weight, and liver weight were not affected by any injection treatment; however, as compared with the 0.4 mL diluent-injected group, all of the supplementary carbohydrates, except for the glucose and dextrin combination group, increased liver glycogen and glucose concentrations on E19. Furthermore, all carbohydrates, except for the 25% dextrin treatment, decreased liver fat concentration on E19. From E19 to the day of hatch, liver glycogen concentrations dropped dramatically from an average of 3.2 to 0.6%. Despite treatment differences observed on E19 for liver glycogen, glucose, and fat concentrations, these differences were lost by the day of hatch. Nevertheless, liver glycogen and glucose concentrations were positively correlated on the day of hatch. In conclusion, the in ovo injection of various supplemental carbohydrates dissolved in 0.4 mL of commercial diluent altered the

  10. Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree.

    Science.gov (United States)

    Maximova, Siela N; Florez, Sergio; Shen, Xiangling; Niemenak, Nicolas; Zhang, Yufan; Curtis, Wayne; Guiltinan, Mark J

    2014-07-16

    Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene

  11. Multi-instrumental Investigation of Affecting of Early Somatic Embryos of Spruce by Cadmium(II) and Lead(II) Ions

    Czech Academy of Sciences Publication Activity Database

    Šupálková, V.; Petřek, J.; Baloun, J.; Adam, V.; Bartušek, Karel; Trnková, L.; Beklová, M.; Diopan, V.; Havel, L.; Kizek, R.

    2007-01-01

    Roč. 7, 5 (2007), s. 743-759 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GA102/07/0389 Institutional research plan: CEZ:AV0Z20650511 Keywords : early somatic embryos of spruces * glutathione * heavy metals * plant cells * esterase activity * fluorescence detection Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.573, year: 2007

  12. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z.

    2006-01-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  13. Survival and ultrastructural features of peach palm (Bactris gasipaes, Kunth) somatic embryos submitted to cryopreservation through vitrification.

    Science.gov (United States)

    Heringer, Angelo Schuabb; Steinmacher, Douglas André; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Guerra, Miguel Pedro

    2013-10-01

    Bactris gasipaes (Arecaceae), also known as peach palm, was domesticated by Amazonian Indians and is cultivated for its fruit and heart-of-palm, a vegetable grown in the tree's inner core. Currently, the conservation of this species relies on in situ conditions and field gene banks. Complementary conservation strategies, such as those based on in vitro techniques, are indicated in such cases. To establish an appropriate cryopreservation protocol, this study aimed to evaluate the ultrastructural features of B. gasipaes embryogenic cultures submitted to vitrification and subsequent cryogenic temperatures. Accordingly, somatic embryo clusters were submitted to Plant Vitrification Solution 3 (PVS3). In general, cells submitted to PVS3 had viable cell characteristics associated with apparently many mitochondria, prominent nucleus, and preserved cell walls. Cells not incubated in PVS3 did not survive after the cryogenic process in liquid nitrogen. The best incubation time for the vitrification technique was 240 min, resulting in a survival rate of 37 %. In these cases, several features were indicative of quite active cell metabolism, including intact nuclei and preserved cell walls, an apparently many of mitochondria and lipid bodies, and the presence of many starch granules and condensed chromatin. Moreover, ultrastructure analysis revealed that overall cellular structures had been preserved after cryogenic treatment, thus validating the use of vitrification in conjunction with cryopreservation of peach palm elite genotypes, as well as wild genotypes, which carry a rich pool of genes that must be conserved.

  14. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    Science.gov (United States)

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In-vitro morphogenesis of corn (Zea mays L.) : I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips.

    Science.gov (United States)

    Zhong, H; Srinivasan, C; Sticklen, M B

    1992-07-01

    In-vitro methods have been developed to regenerate clumps of multiple shoots and somatic embryos at high frequency from shoot tips of aseptically-grown seedlings as well as from shoot apices of precociously-germinated immature zygotic embryos of corn (Zea mays L.). About 500 shoots were produced from a shoot tip after eight weeks of culture (primary culture and one subculture of four weeks) in darkness on Murashige and Skoog basal medium (MS) supplemented with 500 mg/L casein hydrolysate (CH) and 9 μM N(6)-benzyladenine (BA). In this medium, shoots formed in shoot tips as tightly packed "multiple shoot clumps" (MSC), which were composed of some axillary shoots and many adventitious shoots. When the shoot tips were cultured on MS medium containing 500 mg/L CH, 9 μM BA and 2.25 μM 2,4-dichlorophenoxyacetic acid (2,4-D), most of the shoots in the clumps were adventitious in origin. Similar shoot tips cultured on MS medium containing 500 mg/L CH, 4.5 μM BA and 2.25 μM 2,4-D regenerated many somatic embryos within eight weeks of culture. Somatic embryos were produced either directly from the shoot apical meristems or from calli derived from the shoots apices. Both the MSC and the embryos produced normal shoots on MS medium containing 2.25 μM BA and 1.8 μM indole-3-butyric acid (IBA). These shoots were rooted on MS medium containing 3.6 μM IBA, and fertile corn plants were grown in the greenhouse. The sweet-corn genotype, Honey N Pearl, was used for the experiments described above, but shoot-tip cultures from all of 19 other corn genotypes tested also formed MSC on MS medium containing 500 mg/L CH and 9 μM BA.

  16. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos.

    Science.gov (United States)

    Arias, María E; Ross, Pablo J; Felmer, Ricardo N

    2013-01-01

    Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (Pculture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  17. The prevalence of embryonic remnants following the recovery of post-hatching bovine embryos produced in vitro or by somatic cell nuclear transfer.

    Science.gov (United States)

    Alexopoulos, Natalie I; French, Andrew J

    2009-08-01

    The reliable collection of peri-implantation embryos in the bovine has important ramifications to post-transfer consequences, particularly in the elucidation of mechanisms associated with post-hatching embryo development and to perturbations in developmental growth following transfer. This study analyzed both in vitro produced (IVP) and somatic cell nuclear transfer (SCNT) embryo-like structures (ELS) recovered at Day (D) 14 and D21. The recovered ELS were subsequently processed for histological examination. At D14 and D21, many of the embryos recovered in the IVP group conformed to the appropriate stage of development. However, a significant number of anomalies were present in the SCNT groups when examined in more detail. Histological examination revealed that irrespective of whether these embryos had undergone trophoblast expansion to an ovoid, tubular or filamentous morphology, many had a degenerated hypoblast layer and a large proportion did not possess an epiblast and therefore could not differentiate into any of the three germ layers as would be expected at the neural groove or somite stage. The prevalence of this developmental pattern was random and did not correlate with treatment (IVP or SCNT) or with types of structures recovered. The rapid embryo elongation period also coincides with the time of greatest embryonic loss and these observations could have important implications for assessing the recovery of embryos post-transfer where incorrect morphological assessment could lead to false implantation and pregnancy determination rates. The implementation of additional methodology is required to adequately characterize the quality of IVP and SCNT-derived embryos collected post-transfer.

  18. Improvement of some ornamental plants by induced somatic mutations at National Botanical Research Institute

    International Nuclear Information System (INIS)

    Gupta, M.N.

    1980-01-01

    Research work on improvement of some ornamental plants by induced somatic mutations has been in progress at the National Botanical Research Institute, Lucknow, since 1964. The methods of treatments with gamma rays, detection, isolation and multiplication of induced somatic mutations have been given for Bougainvillea, Chrysanthemum, perennial Portulaca, rose and tuberose. During the last 15 years, a total of 38 new cultivars of different ornamentals evolved by gamna induced somatic mutations have been released. They include Bougainvillea 1; Chrysanthemum 28; perennial portulaca 6; rose 1 and tuberose 2. Descriptions of the original cultivars and their gamma induced mutants are given along with other pertinent details. (author)

  19. Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings

    International Nuclear Information System (INIS)

    Jiang, Qixiao; Lust, Robert M.; Strynar, Mark J.; Dagnino, Sonia; DeWitt, Jamie C.

    2012-01-01

    Highlights: ► PFOA exposure thinned right ventricular wall thickness in D19 chicken embryo hearts. ► PFOA exposure induced left ventricle hypertrophy in hearts of hatchling chickens. ► PFOA exposure induced altered cardiac function in hatchling chickens. -- Abstract: Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPARα). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that developmental PFOA exposure may not affect cardiac energetics. In summary, structural and functional characteristics of the heart appear to be developmental targets of PFOA, possibly at the level of cardiomyocytes. Additional studies will

  20. Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br.

    Science.gov (United States)

    Wang, Y-H; Bhalla, P L

    2004-01-01

    Somatic embryogenesis from leaf explants of Scaevola aemula R. Br. was achieved. Somatic embryos were induced from explants cultured on MS medium supplemented with 0.2 mg/ 2,4-dichlorophenoxyacetic acid and 0.2-0.5 mg/l 6-benzylaminopurine (BAP). Various developmental stages of somatic embryos were found on this medium-from globular embryos to germinated embryos. The transfer of globular embryos to MS medium containing 0.5 mg/l BAP resulted in a high frequency of shoot regeneration. Leaf explants cultured on MS medium containing different combinations of BAP and alpha-naphthaleneacetic acid formed adventitious shoots and roots. Histological examination confirmed the process of somatic embryogenesis. Induction of somatic embryogenesis in Scaevola provides a system for studying embryogenesis in Australian native plants and will facilitate the improvement of these plants using genetic transformation techniques.

  1. Morpho-anatomical characterization of embryogenic calluses from immature zygotic embryo of peach palm during somatic embryogenesis =

    Directory of Open Access Journals (Sweden)

    Simone de Alencar Maciel

    2010-04-01

    Full Text Available The objective of this study was to morpho-anatomically characterizenodular embryogenic calluses from zygotic embryos of peach palm during the induction of somatic embryogenesis. Immature zygotic embryos were pre-treated in MS medium added to Picloram and 2,4-D (25 μM and BAP (0, 5, 10 μM. After three months, primary calluses were transferred to MS induction medium added to Picloram and 2,4-D (450 μM. After six months, the embryogenic calluses were then histologically analyzed and cultivated in the maturation medium. The competent tissues of the zygotic embryos differentiated embryogenic calluses under action of both Picloram and 2,4-D auxins (450 μM, where the presence of multi-granular structures were observed. Histological observations showed that in the nodular embryogenic calluses, the outlying parenchymal cells exhibit cellular characteristics of high mitotic activity. Differentiation of tracheal elements exists in embryogenic calluses connecting the callus to the explant. The evaluated cytokinin/auxin interaction influences the development of embryogenic calluses and globular structures.O objetivo deste trabalho foi caracterizar morfoanatomicamente calos nodulares embriogênicos originados de embriões zigóticos de pupunheira durante a indução da embriogênese somática. Embriões zigóticos imaturos de pupunha foram inicialmente pré-tratados em meio de cultura MS, solidificado com 2,5 g L-1 de phytagel® e suplementado com Picloram e 2,4-D na concentração de 25 μM e BAP (0, 5, 10 μM. Após três meses, os calos primários foram transferidos para meio de indução, com Picloram e 2,4-D (450 μM. Após seis meses, os calosnodulares embriogênicos formados foram então analisados histologicamente e repicados para o meio de maturação para a progressão das estruturas multigranulares embriogênicas. Verificou-seque os tecidos competentes dos embriões zigóticos imaturos diferenciaram nódulos embriogênicos pela ação de ambas

  2. Persecution-induced reduction in earning capacity of Holocaust victims: influence of psychiatric and somatic aspects.

    Science.gov (United States)

    Müller, Helge; Seifert, Frank; Asemann, Rita; Schütz, Patricia; Maler, Juan-Manuel; Sperling, Wolfgang

    2011-01-01

    The incidence of mental and somatic sequelae is very high in the group of persons damaged by the Holocaust. Based on the sociomedical criteria prevailing in Germany, the assessment of persecution-induced reduction in earning capacity of Holocaust victims (vMdE) is mainly orientated towards direct Holocaust-induced somatic and mental sequelae but must also take into account the interaction of direct Holocaust-induced damage with subsequently acquired physical, mental, and psychosocial factors. The current medical evaluation is focused on the question whether persecution-induced symptoms are exacerbated by endogenous factors like mental or somatic diseases and/or exogenous factors like life events. In that case the grade of vMdE could be increased. Based on the synopsis of 56 Holocaust victims, we ascertained in this study that newly acquired somatic diseases and psychic morbidities contribute to an increase in persecution-induced mental complaints. Copyright © 2011 S. Karger AG, Basel.

  3. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    Science.gov (United States)

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic

  4. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce

    Directory of Open Access Journals (Sweden)

    Igor A. Yakovlev

    2017-09-01

    Full Text Available Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs and other small non-coding RNAs (sRNAs play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C. We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be

  5. Effect of light quality on somatic embryogenesis of quince leaves

    International Nuclear Information System (INIS)

    D'Onofrio, C.; Morini, S.; Bellocchi, G.

    1998-01-01

    The effect of light quality on somatic embryogenesis in quince BA 29 was investigated. 2,4-D induced leaves were exposed for 25 days to the following light quality treatments: dark, far-red, far-red+blue, far-red+red, blue, white, red+blue, red. After a further 20 days of white light exposure, somatic embryo production was recorded. Somatic embryogenesis was highest in cultures subjected to red light treatment, and decreased progressively with the transition to red+blue and to white. Overall, embryogenic competence showed a correlation with photoequilibrium. Phytochrome appeared to be inductive although this effect was adversely influenced by the blue absorbing photoreceptor, in particular at low photoequilibrium. Independently of light treatments applied, somatic embryos frequently showed severe morphological abnormalities. Conversion of somatic embryos to plantlets was not observed. (author)

  6. Clonación y micropropagación de curuba (Passiflora mollissima Bailey a partir de embriones somáticos provenientes de hojas | Cloning and micropropagation of banana passionfruit (Passiflora mollissima Bailey from leaf somatic embryos

    Directory of Open Access Journals (Sweden)

    María Del Pilar Acosta-Zambrano

    2017-11-01

    Full Text Available The banana passionfruit (Passiflora mollissima Bailey is a fruit from the Andean region and is used as raw material for the preparation of various food products. Tests were carried out for its in vitro multiplication using somatic embryos obtained from its leaves. A disinfection using sodium hypochlorite for 5 minutes and Murashige and Skoog (MS growth medium protocols with 1 mg/L of gibberellins was designed in order to induce germination. Vitro explants were selected for the multiplication in the MS medium supplemented with 2 mg/L of benzyl aminopurine and 1 mg/L of naphthenic acid. The stronger leaves were selected and inoculated in the MS medium and Woody Plant (WPM. The formation of embryos was observed since the third week. The formed plants were inoculated in a WPM medium with 1 mg/L of benzyl aminopurine. A 2-ip WPM 1 mg/L medium was used for the rooting period. Finally, they were acclimatized in peat with earth or pearlite, and then planted in pots with earth for further studies. Seed disinfection using sodium hypochlorite presented 20% contamination and 80% of plants germination, proving to be the best disinfectant (p < 0.05. From this last procedure, somatic embryos of leaves in a 2-ip WPM with 1 mg/L were obtained. The ideal acclimatization occurred in the medium with peat and earth, in which case the survival level obtained was 100% by comparison with earth and pearlite, in which no plant growth was observed. Micropropagation represents an economic and effective technique in the breeding of pathogen-free plants.

  7. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  8. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT embryos

    Directory of Open Access Journals (Sweden)

    María E Arias

    2013-01-01

    Full Text Available Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively. No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01 in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28% compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively. Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA. Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  9. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  10. In vitro somatic embryogenesis and plant regeneration of cassava.

    Science.gov (United States)

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  11. Somatic embryogenesis in ferns: a new experimental system.

    Science.gov (United States)

    Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J

    2015-05-01

    Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.

  12. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Liu, Jun; Wang, Yongsheng; Su, Jianmin; Wang, Lijun; Li, Ruizhe; Li, Qian; Wu, Yongyan; Hua, Song; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-04-01

    Previous studies have shown that the time interval between fusion and activation (FA interval) play an important role in nuclear remodeling and in vitro development of somatic cell nuclear transfer (SCNT) embryos. However, the effects of FA interval on the epigenetic reprogramming and in vivo developmental competence of SCNT embryos remain unknown. In the present study, the effects of different FA intervals (0 h, 2 h, and 4 h) on the epigenetic reprogramming and developmental competence of bovine SCNT embryos were assessed. The results demonstrated that H3 lysine 9 (H3K9ac) levels decreased rapidly after fusion in all three groups. H3K9ac was practically undetectable 2 h after fusion in the 2-h and 4-h FA interval groups. However, H3K9ac was still evidently detectable in the 0-h FA interval group. The H3K9ac levels increased 10 h after fusion in all three groups, but were higher in the 2-h and 4-h FA interval groups than that in the 0-h FA interval group. The methylation levels of the satellite I region in day-7 blastocysts derived from the 2-h or 4-h FA interval groups was similar to that of in vitro fertilization blastocysts and is significantly lower than that of the 0-h FA interval group. SCNT embryos derived from 2-h FA interval group showed higher developmental competence than those from the 0-h and 4-h FA interval groups in terms of cleavage rate, blastocyst formation rate, apoptosis index, and pregnancy and calving rates. Hence, the FA interval is an important factor influencing the epigenetic reprogramming and developmental competence of bovine SCNT embryos.

  13. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method.

    Science.gov (United States)

    Prado, María Jesús; Largo, Asier; Domínguez, Cristina; González, María Victoria; Rey, Manuel; Centeno, María Luz

    2014-06-15

    The levels of abscisic acid (ABA), its conjugate ABA-GE, and IAA were determined in embryogenic calli of Vitis vinifera L. (cv. Mencía) cultured in DM1 differentiation medium, to relate them to the maturation process of somatic embryos. To achieve this goal, we developed an analytical method that included two steps of solid-phase extraction, chromatographic separation by HPLC, ABA-GE hydrolysis, and sensitive ELISA quantification. Because the ABA immunoassay was based on new polyclonal antibodies raised against a C4'-ABA conjugate, the assay was characterized (detection limit, midrange, measure range, and cross-reaction) and validated by a comparison of the ABA data obtained with this ELISA procedure and with a physicochemical method (LC-ESI-MS/MS). Radioactive-labeled internal standards were initially added to callus extracts to correct the losses of plant hormones, and thus assure the accuracy of the measurements. The endogenous concentration of ABA in the embryogenic callus cultured in DM1 medium was doubled at the fifth week of culture, concurring with the maturation process of somatic embryos, as indicated by the accumulation of carbohydrates observed through histological analysis. The ABA-GE content was higher than ABA, decreasing at 21 days of culture in DM1 medium but increasing thereafter. The data suggest the involvement of the synthesis and conjugation of ABA in the final stages of development in grapevine somatic embryos from embryogenic callus. IAA levels were low, suggesting that auxin plays no significant role during the maturation of somatic embryos. In addition, the lower ABA levels in calli cultured in DM differentiation medium with PGRs, a medium presenting high precocious germination and deficiencies in somatic embryo development indicate that an increase in ABA content during the development of somatic embryos in grapevine is necessary for their correct maturation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Plant regeneration from immature embryos of Kenyan maize inbred ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... their respective single cross hybrids were evaluated for their ability form callus, somatic embryos and .... Callus was induced from embryos excised from ears at. 10, 15, 18, 21 and ..... Plant Cell Tissue Organ Cult., 18: 143-151.

  15. Somatic mutations in leafs of tobacco seedlings induced by ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, J. K.; Song, H. S.; Lee, Y. I.

    2001-01-01

    Somatic mutations induced by the combined treatment of pesticide and ionizing radiation were analyzed in the leaves of tobacco seedlings. The pesticide (1,5 and 10 ppm of parathion) was sprayed directly onto the seedlings. The seedlings, with or without pretreatment of pesticide, were irradiated with 0.1 ∼10 Gy of gamma ray. The difference in the somatic mutation frequencies were not significant among groups treated with different concentration of pesticide. The somatic mutations in tobacco seedlings irradiated with gamma-ray showed a clear dose-response relationship in a range of 0.1 to 10 Gy. However, the combined treatment of pesticide and radiation did not cause any synergistic enhancement in the mutation frequencies. The highest efficiency in the induction of somatic mutations could be obtained by irradiating the seedlings with 5 Gy, 12 hours after 1 ppm of pesticide treatment, or 24 hours after 5 ppm of pesticide treatment

  16. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Hřib, Jiří; Havel, L.; Hudec, Jiří; Runštuk, Jiří

    2016-01-01

    Roč. 84, May 2016 (2016), s. 67-71 ISSN 0968-4328 R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : ESEM * Cryo-SEM * bright field/dark field microscopy * extracellular matrix * Picea abies * somatic embryogenesis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.980, year: 2016

  17. Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine days 14 and 21 embryos

    DEFF Research Database (Denmark)

    Alexopoulos, Natalie I.; Maddox-Hyttel, Poul; Tveden-Nyborg, Pernille Yde

    2008-01-01

    , immunohistochemistry, and transmission electron microscopy to establish in vivo developmental milestones. Following morphological examination, samples were characterized for the presence of epiblast (POU5F1), mesoderm (VIM), and neuroectoderm (TUBB3). On D14, only 25, 15, and 7% of IVP, SUZI, and HMC embryos were...

  18. Somatic embryogenesis from zygotic embryos of Euterpe oleracea Mart. Embriogênese somática em embriões zigóticos de Euterpe oleracea Mart.

    Directory of Open Access Journals (Sweden)

    Ana da Silva Ledo

    2002-12-01

    Full Text Available The aim of this work was to study the morphogenetic responses of zygotic embryos of açai palm (Euterpe oleracea Mart. submitted to several conditions of in vitro culture. Several research experiments were conducted, in laboratory, using vegetable material collected from açai palm plants at Embrapa Amazon Oriental, Belém-PA, Brazil. It was possible to verify the expression of a direct, repetitive and no-synchronized model of somatic embryogenesis in mature zygotic embryos cultivated in primary MS medium supplemented with 2,4-D (339.36 muM and transferred to a secondary MS medium in the presence of NAA (0.537 muM and 2iP (12.30 muM. The conversion of somatic embryos into seedlings was reached after 210 days with the transfer of the cultures to a third medium with sucrose and mineral salts concentrations reduced to a half, without growth regulators.O objetivo do presente trabalho foi estudar as diferentes respostas morfogenéticas de embriões zigóticos de açaizeiro (Euterpe oleracea Mart. submetidos a várias condições de cultura in vitro. Os experimentos foram conduzidos em laboratório, com material vegetal coletado de plantas de açaí da Embrapa Amazônia Oriental, Belém-PA, Brasil. Foi possível verificar a expressão de um modelo de embriogênese somática direto, repetitivo e assincronizado em embriões zigóticos maduros cultivados em meio primário MS, suplementado com 339,36 miM de 2,4-diclorofenoxiacético (2,4-D, e transferidos para meio secundário MS na presença de 0,537 miM de ácido 1-naftalenoacético (ANA e 12,30 miM de 2-isopenteniladenina (2iP. A conversão de embriões somáticos em plântulas foi alcançada aos 210 dias da inoculação com a transferência das culturas para um terceiro meio com a concentração de sais e sacarose reduzida pela metade e ausência de reguladores de crescimento.

  19. Triazole-induced gene expression changes in the zebrafish embryo

    NARCIS (Netherlands)

    Hermsen, S.A.B.; Pronk, T.; van den Brandhof, E.J.; van der Ven, L.T.; Piersma, A.H.|info:eu-repo/dai/nl/071276947

    2012-01-01

    The zebrafish embryo is considered to provide a promising alternative test model for developmental toxicity testing. Most systems use morphological assessment of the embryos, however, microarray analyses may increase sensitivity and predictability of the test by detecting more subtle and detailed

  20. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  1. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    Science.gov (United States)

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  2. The effect of gamma irradiation and ethyl methan sulfonate on somatic embryo formation of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; Ika Mariska; Lestari, E.G.; Sri Hutami; Rossa Yunita

    2014-01-01

    Soybean is a source of protein and vegetable oil. Global climate change affect the productivity of soybean, so that new cultivars that have superior characteristic can be produced. In vitro techniques through somaclonal variation and mutation is one alternative for obtaining new varieties when genetic material as the material selection is not available. Mutation induction can be performed on embryogenic cell populations using gamma irradiation or chemical compounds, such as Ethyl Methane Sulfonate (EMS). Both of these methods have been widely used to increase the genetic diversity of plants and have produced new clones with superior characteristic. The main component that must be controlled in the implementation of these technologies is somatic cells regeneration after mutation treatment in order to get in vitro shoots. Regeneration methods which are successfully applied to certain varieties, often is not successfully for other varieties of the same species. Some factors that influence it, are such as explants source, genotype, medium composition, genotype, medium composition, etc. Somaclonal variation and mutation treatment can cause cell damage that is sometimes necessary need modifications of the regeneration method that has been produced before. The aim of the experiment was to get cell population and planlet mutation with gamma irradiation and Ethyl Methan Sulfonate (EMS). Young embryozygotic was used as explant came from young pod that was harvested at 12-20 days after fertilization of Willis, Burangrang and Baluran varieties and accession No B 3592. Embryogenic callus induction was done by using MS media with vitamin B5 added with 20 mg/l of 2,4-D and 3% sucrose. The callus were irradiated by gamma rays 400 rad or dilute in EMS solution with 0.1%, 0.3% and 0.5% concentration for 1, 2, and 3 hours. After mutation treatment, the callus were sub culture for seed somatic induction. The results showed that callus formation was influenced by plant genotype. All

  3. Partridge embryo pathology in relation to gentamicin-induced lesions

    Directory of Open Access Journals (Sweden)

    Hadi Tavakkoli

    2016-10-01

    Full Text Available Objective: To determine the macroscopic and microscopic lesions of various dosages of gentamicin in the partridge embryo. Methods: Fertile chukar partridge eggs were allocated into four groups. Group 1: salineinjected group whose individuals were administered by sterile physiological saline solution of 0.2 mL/egg inserted into yolk sac. Groups 2, 3 and 4 whose individuals were similarly administered by gentamicin sulfate at a dosage of 80 mg/kg egg-weight once, twice and three times, respectively. Results: Results showed that the embryos were congested and stunted in the gentamicininjected groups. Defects in feet, wings and feather development were accompanied by microscopic lesions in brain, meninges, heart, lungs, liver and kidneys. Histopathological lesions were noticed as edema, undeveloped tissues, necrosis and degeneration in the affected organs. Conclusions: Based on acquired results, it is concluded that gentamicin at above-described dosages causes toxicopathological effects to the partridge embryo in a dose dependent manner.

  4. Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo

    International Nuclear Information System (INIS)

    Choi, V.W.Y.; Wong, M.Y.P.; Cheng, S.H.; Yu, K.N.

    2012-01-01

    In the present work, the influence of a low concentration of exogenous carbon monoxide (CO) liberated from tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE was assessed through the number of apoptotic signals revealed on embryos at 25 h post fertilization (hpf). A significant attenuation of apoptosis on the bystander embryos induced by RIBE in a CO concentration dependent manner was observed. - Highlights: ► RIBE between zebrafish embryos in vivo was assessed by the level of apoptosis. ► CO from 10 and 20 μM CORM-3 entirely suppressed the RIBE. ► CO from 5 μM CORM-3 significantly attenuated the level of apoptosis. ► Inactive CORM-3 did not lead to suppression of RIBE. ► Suppression of RIBE by CO depended on the concentration of CORM-3.

  5. Cardiac hypertrophy in chick embryos induced by hypothermia

    International Nuclear Information System (INIS)

    Boehm, C.; Johnson, T.R.; Caston, J.D.; Przybylski, R.J.

    1987-01-01

    A decrease in incubation temperature from 38 to 32 0 C elicits a decrease in chicken embryo size and weight with concomitant heart enlargement if done after day 10 of incubation. When assayed at day 18 of incubation with the hypothermia started on day 11 or 14, evidence is presented that the heart enlargement is an hypertrophy with no detectable hyperplasia. Supporting data are presented for various physical parameters showing increases in heart wet and dry weight, volume, area, wall thickness, and cell size. There was little difference in DNA content and nuclear [ 3 H]thymidine labeling index between hearts of control and hypothermic embryos. Hearts of hypothermic embryos showed a slight increase in water content and considerable increases in RNA, protein, and glycogen content per unit DNA. The average size of polysomes isolated from hypothermic hearts was larger than that of polysomes isolated from controls. Microscopic studies showed no obvious increase in amount of capillary beds, connective tissue, and myocardial cells. Annulate lamellae were found only in myocardial cells of hypothermic embryos in sparse amounts and low frequency but always associated with large deposits of glycogen

  6. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  7. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    Science.gov (United States)

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  8. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  9. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

    Science.gov (United States)

    Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger

    2010-04-01

    In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.

  10. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  11. Apoptosis induced by glufosinate ammonium in the neuroepithelium of developing mouse embryos in culture.

    Science.gov (United States)

    Watanabe, T

    1997-01-24

    Glufosinate ammonium structurally resembles glutamate and blocks glutamine synthetase. Glufosinate was recently found to be dysmorphogenic in mammals in vitro. The present study examined the cell death induced specifically by glufosinate in the neuroepithelium of mouse embryos. Electron micrograph revealed characteristic chromatin condensation and segregation, extracellular apoptotic bodies, and cell fragments phagocytosed in macrophages in the neuroepithelium of the brain vesicle and neural tube. Moreover neuroepithelial cells undergoing DNA fragmentation were histochemically identified. DNA gel electrophoresis of the neuroepithelial layer revealed a DNA ladder. These observations demonstrate that glufosinate specifically induced apoptosis in the neuroepithelium of embryos.

  12. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    International Nuclear Information System (INIS)

    Li Yongliang; Qin Guangyong; Huo Yuping; Tian Shuangqi; Tang Jihua

    2009-01-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism. (ion beam bioengineering)

  13. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    Science.gov (United States)

    Li, Yongliang; Tang, Jihua; Qin, Guangyong; Huo, Yuping; Tian, Shuangqi

    2009-08-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.

  14. Ethanol vapour induced dilated cardiomyopathy in chick embryos

    International Nuclear Information System (INIS)

    Kamran, K.; Khan, M.Y.; Minhas, L.A.

    2013-01-01

    Objective: To study the effects of ethanol vapour inhalation on the heart chambers of chick embryo. Methods: The case-control study was conducted at the College of Physicians and Surgeons Pakistan regional centre in Islamabad from January to October 2007. Both experimental and control groups were divided into three sub-groups each, based on the day of the sacrifice. Each group was dissected on day 7, day 10 and day 22 or hatching whichever was earlier. The experimental sub-groups sacrificed on day 7, day 10 and on hatching, were exposed to ethanol vapours till day 6, 9 and 9 of incubation respectively. The diameter of all 4 chambers was measured in experimental hearts and compared with age-matched controls. SPSS 10 was used for statistical analysis. Results: Ethanol vapour exposure caused widening of all heart chambers in the experimental chick embryos sacrificed on day 7 and day 10 compared to the controls. The chambers of newly hatched chick hearts showed dilatation in all the chambers except the left ventricle. Conclusion: Ethanol vapour exposure during development affects the heart, resulting in the widening of all heart chambers. The exposure is as dangerous as drinking alcohol. Alcohol vapour exposure during development leads to progressive dilatation in different heart chambers, producing dilated cardiomyopathy. (author)

  15. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    Science.gov (United States)

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  16. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma.

    Science.gov (United States)

    He, Biao; Fang, Penghua; Guo, Lili; Shi, Mingyi; Zhu, Yan; Xu, Bo; Bo, Ping; Zhang, Zhenwen

    2017-04-01

    Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A.

    1997-01-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  18. Encapsulated Somatic Embryos and Zygotic Embryos for Obtaining Artificial Seeds of Rauli-Beech (Nothofagus alpina (Poepp. & Endl. Oerst. Encapsulado de Embriones Somáticos y Embriones Cigóticos para Obtención de Semillas Artificiales de Raulí (Nothofagus alpina (Poepp. & Endl. Oerst.

    Directory of Open Access Journals (Sweden)

    Priscila Cartes R

    2009-03-01

    Full Text Available Somatic and zygotic embryos from mature seeds of rauli-beech, Nothofagus alpina (Poepp. & Endl. Oerst., were encapsulated in different artificial endosperms in order to generate a cover that fulfills the function of nourishment and protection of the embryos, facilitating their later germination. The content of sodium alginate varied by 4%, 3%, and 2%, as did the immersion time in calcium chloride (CaCl2, which acts as complexing agent. The artificial endosperm components of the Murashige and Skoog medium (MS were added, supplemented with 0.5 mg L-1 indolacetic acid (IAA, 0.5 mg L-1 naphthaleneacetic acid (NAA, 2 mg L-1 6-benzylaminopurine (BAP and 30 g L-1 sucrose. The germinative behaviors of encapsulated somatic and zygotic embryos were evaluated after 4 wk. Comparing the percentages of germination reached by encapsulated somatic and zygotic embryos it was observed that they had similar germinative behavior according to the type of encapsulation applied. However, zygotic embryos substantially exceeded the germination levels reached by somatic embryos, 100% vs. 45% respectively.Embriones somáticos y cigóticos provenientes de semillas maduras de raulí, Nothofagus alpina (Poepp. & Endl. Oerst., se encapsularon en diferentes endospermas sintéticos con el fin de generar una cubierta que cumpla la función de nutrir y proteger al embrión para facilitar su posterior germinación. Se varió el contenido de alginato de sodio al 4%, 3% y 2% y el tiempo de inmersión en cloruro de calcio (CaCl2, el que actúa como agente acomplejante. Además, a la matriz artificial se adicionaron componentes del medio Murashige y Skoog (MS suplementado con: 0,5 mg L-1 de indolacetic acid (IAA, 0,5 mg L-1 de ácido naftalenacético (NAA, 2 mg L-1 de 6-bencilaminopurina (BAP y 30 gL-1 de sacarosa. Al cabo de 4 semanas el porcentaje de germinación de los embriones somáticos y cigóticos encapsulados tuvieron similar comportamiento germinativo según el tipo de

  19. Placebo-induced somatic sensations: a multi-modal study of three different placebo interventions.

    Directory of Open Access Journals (Sweden)

    Florian Beissner

    Full Text Available Somatic sensations induced by placebos are a frequent phenomenon whose etiology and clinical relevance remains unknown. In this study, we have evaluated the quantitative, qualitative, spatial, and temporal characteristics of placebo-induced somatic sensations in response to three different placebo interventions: (1 placebo irritant solution, (2 placebo laser stimulation, and (3 imagined laser stimulation. The quality and intensity of evoked sensations were assessed using the McGill pain questionnaire and visual analogue scales (VAS, while subjects' sensation drawings processed by a geographic information system (GIS were used to measure their spatial characteristics. We found that all three interventions are capable of producing robust sensations most frequently described as "tingling" and "warm" that can reach consider-able spatial extent (≤ 205 mm² and intensity (≤ 80/100 VAS. Sensations from placebo stimulation were often referred to areas remote from the stimulation site and exhibit considerable similarity with referred pain. Interestingly, there was considerable similarity of qualitative features as well as spatial patterns across subjects and placebos. However, placebo laser stimulation elicited significantly stronger and more widespread sensations than placebo irritant solution. Finally, novelty seeking, a character trait assessed by the Temperament and Character Inventory and associated with basal dopaminergic activity, was less pronounced in subjects susceptible to report placebo-induced sensations. Our study has shown that placebo-induced sensations are frequent and can reach considerable intensity and extent. As multiple somatosensory subsystems are involved despite the lack of peripheral stimulus, we propose a central etiology for this phenomenon.

  20. Direct somatic embryogenesis in Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Raúl Collado

    2006-04-01

    Full Text Available Swietenia macrophylla King is difficult to be propagated by tissue culture and there is not an efficient system via organogenesis, due to problems of microbial contamination, phenolic oxidation and death of tissue in the phase of in vitro establishment of explants. In order to establish a protocol for obtaining somatic embryos, zygotic embryos were used as initial plant material. Three combinations of 2,4-D with kinetin were studied, to obtain the formation of somatic embryos. After six weeks of culture, the number of explants with high and low somatic embryogenesis frequency were determined. So that the somatic embryos in globular stage reach the final stages of torpedo and cotyledonal, these were placed in three treatments with 6-BAP (0.2, 0.4 y 0.6 mg.l-1. The number of somatic embryos that reached the torpedo and cotyledonal stages were evaluated after 30 days of culture. Results demonstrated that direct somatic embryogenesis from immature zygotic embryos is obtained in the culture medium composed by MS salts with 4.0 mg.l-1 of 2,4-D and 1.0 mg.l-1 of kinetin. Higher percentage of somatic embryos in cotiledonal stage (91.7 %, was obtained with 0.4 mg.l-1 of 6-BAP. Key word: forestry, growth regulator, mahogany, somatic embryo, tissue culture

  1. Radiation- and drug-induced DNA repair in mammalian oocytes and embryos

    International Nuclear Information System (INIS)

    Pedersen, R.A.; Brandriff, B.

    1979-01-01

    A review of studies showing ultraviolet- or drug-induced unscheduled DNA synthesis in mammalian oocytes and embryos suggests that the female gamete has an excision repair capacity from the earliest stages of oocyte growth. The oocyte's demonstrable excision repair capacity decreases at the time of meiotic maturation for unknown reasons, but the fully mature oocyte maintans a repair capacity, in contrast to the mature sperm, and contributes this to the zygote. Early embryo cells maintain relatively constant levels of excision repair until late fetal stages, when they lose their capacity for excision repair. These apparent changes in excision repair capacity do not have a simple relationship to known differences in radiation sensitivity of germ cells and embryos

  2. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Cheng, S.H.; Yu, K.N.

    2017-01-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  3. Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure

    International Nuclear Information System (INIS)

    Boyd, Windy A.; Crocker, Tracey L.; Rodriguez, Ana M.; Leung, Maxwell C.K.; Wade Lehmann, D.; Freedman, Jonathan H.; Van Houten, Ben; Meyer, Joel N.

    2010-01-01

    We performed experiments to characterize the inducibility of nucleotide excision repair (NER) in Caenorhabditis elegans, and to examine global gene expression in NER-deficient and -proficient strains as well as germline vs. somatic tissues, with and without genotoxic stress. We also carried out experiments to elucidate the importance of NER in the adult life of C. elegans under genotoxin-stressed and control conditions. Adult lifespan was not detectably different between wild-type and NER-deficient xpa-1 nematodes under control conditions. However, exposure to 6 J/m 2 /day of ultraviolet C radiation (UVC) decreased lifespan in xpa-1 nematodes more than a dose of 100 J/m 2 /day in wild-type. Similar differential sensitivities were observed for adult size and feeding. Remarkably, global gene expression was nearly identical in young adult wild-type and xpa-1 nematodes, both in control conditions and 3 h after exposure to 50 J/m 2 UVC. Neither NER genes nor repair activity were detectably inducible in young adults that lacked germ cells and developing embryos (glp-1 strain). However, expression levels of dozens of NER and other DNA damage response genes were much (5-30-fold) lower in adults lacking germ cells and developing embryos, suggesting that somatic and post-mitotic cells have a much lower DNA repair ability. Finally, we describe a refinement of our DNA damage assay that allows damage measurement in single nematodes.

  4. Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Windy A. [Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (United States); Crocker, Tracey L. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Rodriguez, Ana M. [Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (United States); Leung, Maxwell C.K. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Wade Lehmann, D. [Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (United States); Freedman, Jonathan H. [Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (United States); Van Houten, Ben [Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (United States); Meyer, Joel N., E-mail: joel.meyer@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States)

    2010-01-05

    We performed experiments to characterize the inducibility of nucleotide excision repair (NER) in Caenorhabditis elegans, and to examine global gene expression in NER-deficient and -proficient strains as well as germline vs. somatic tissues, with and without genotoxic stress. We also carried out experiments to elucidate the importance of NER in the adult life of C. elegans under genotoxin-stressed and control conditions. Adult lifespan was not detectably different between wild-type and NER-deficient xpa-1 nematodes under control conditions. However, exposure to 6 J/m{sup 2}/day of ultraviolet C radiation (UVC) decreased lifespan in xpa-1 nematodes more than a dose of 100 J/m{sup 2}/day in wild-type. Similar differential sensitivities were observed for adult size and feeding. Remarkably, global gene expression was nearly identical in young adult wild-type and xpa-1 nematodes, both in control conditions and 3 h after exposure to 50 J/m{sup 2} UVC. Neither NER genes nor repair activity were detectably inducible in young adults that lacked germ cells and developing embryos (glp-1 strain). However, expression levels of dozens of NER and other DNA damage response genes were much (5-30-fold) lower in adults lacking germ cells and developing embryos, suggesting that somatic and post-mitotic cells have a much lower DNA repair ability. Finally, we describe a refinement of our DNA damage assay that allows damage measurement in single nematodes.

  5. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  6. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  7. Development of direct somatic embryogenesis and regeneration on citrus sinesis

    International Nuclear Information System (INIS)

    Chong Saw Peng; Alvina Lindsay Mijen; Rusli Ibrahim

    2004-01-01

    The plant regeneration processes in Citrus sinensis involves direct somatic embryogenesis. Culture medium used was MS basal supplemented with 50 mg/L sucrose, 0.27% agar and 0.1% vitamin at pH 5.8. Sucrose is the major carbon source for the induction of somatic embryo and also the maturation and germination of somatic embryo. (Author)

  8. Gamma rays induced variability in mature embryos of avocado (Persea americana Mill)

    International Nuclear Information System (INIS)

    Fuentes, J.L.; Ramirez, I. M; Santiago, L.; Valdes, Y.; Guerra, M; Prieto, E.; Rodriguez, N.; Velazquez, B.

    2001-01-01

    Induced mutation and biotechnology techniques are current approaches used in plant breeding. At present work, the induced mutation and embryo zygotic culture techniques were used in order to characterize the radiosensitivity of avocado commercial varieties, Hass and California. The induced diversity in plant material was also evaluated in morphological seedling descriptors as: height seedling, diameter seedling neck, leaves number, length of principal root and secondary root number. The obtained results showed high susceptibility of both varieties to gamma rays. California was the higher sensitivity variety. Percentage of entire shoot induction showed clear dependence of radiation dose in both varieties. Thus dose range for mutagenesis was determined. In general, variation of morphological seedling descriptors not was clearly agreed to increase of radiation dose. In addition, the results suggested that variation in morphological seedling descriptors also could be depending of genotypes. The useful of mature embryo culture of avocado for improvement of breeding approaches in this crop, was discussed

  9. Effect of induced peritoneal endometriosis on oocyte and embryo quality in a mouse model.

    Science.gov (United States)

    Cohen, J; Ziyyat, A; Naoura, I; Chabbert-Buffet, N; Aractingi, S; Darai, E; Lefevre, B

    2015-02-01

    To assess the impact of peritoneal endometriosis on oocyte and embryo quality in a mouse model. Peritoneal endometriosis was surgically induced in 33 B6CBA/F1 female mice (endometriosis group, N = 17) and sham-operated were used as control (sham group, N = 16). Mice were superovulated 4 weeks after surgery and mated or not, to collect E0.5-embryos or MII-oocytes. Evaluation of oocyte and zygote quality was done by immunofluorescence under spinning disk confocal microscopy. Endometriosis-like lesions were observed in all mice of endometriosis group. In both groups, a similar mean number of MII oocytes per mouse was observed in non-mated mice (30.2 vs 32.6), with a lower proportion of normal oocytes in the endometriosis group (61 vs 83 %, p endometriosis group (21 vs 35.5, p = 0.02) without difference in embryo quality. Our results support that induced peritoneal endometriosis in a mouse model is associated with a decrease in oocyte quality and embryo number. This experimental model allows further studies to understand mechanisms of endometriosis-associated infertility.

  10. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    Directory of Open Access Journals (Sweden)

    Rui-Rong Tan

    2015-08-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg on embryo development day (EDD 1. Proanthocyanidins (1 and 10 nmol/egg were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.

  11. Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Choi, V.W.Y.; Wong, M.Y.P. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: appetery@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-07-15

    In the present work, the influence of a low concentration of exogenous carbon monoxide (CO) liberated from tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE was assessed through the number of apoptotic signals revealed on embryos at 25 h post fertilization (hpf). A significant attenuation of apoptosis on the bystander embryos induced by RIBE in a CO concentration dependent manner was observed. - Highlights: Black-Right-Pointing-Pointer RIBE between zebrafish embryos in vivo was assessed by the level of apoptosis. Black-Right-Pointing-Pointer CO from 10 and 20 {mu}M CORM-3 entirely suppressed the RIBE. Black-Right-Pointing-Pointer CO from 5 {mu}M CORM-3 significantly attenuated the level of apoptosis. Black-Right-Pointing-Pointer Inactive CORM-3 did not lead to suppression of RIBE. Black-Right-Pointing-Pointer Suppression of RIBE by CO depended on the concentration of CORM-3.

  12. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    Science.gov (United States)

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spontaneous and induced loss of chromosomes in slow-growing somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia

    NARCIS (Netherlands)

    Tempelaar, MJ; Drenth - Diephuis, L.J.; SAAT, TAWM; Jacobsen, E.

    Rate and extent of spontaneous and induced chromosome loss have been determined at the callus level of somatic hybrids of mutants of Solanum tuberosum and Nicotiana plumbaginifolia. AEC (amino ethyl cystein) resistance in potato and Nitrate-Reductase deficiency in N. plumbaginifolia have been used

  14. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos.

    Science.gov (United States)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-11-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.

  15. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    International Nuclear Information System (INIS)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-01-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  16. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong [University of South China, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, Hengyang, Hunan Province (China)

    2016-11-15

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  17. Handmade Cloned Buffalo (Bubalus bubalis) Embryos Produced from Somatic Cells Isolated from Milk and Ear Skin Differ in Their Developmental Competence, Epigenetic Status, and Gene Expression.

    Science.gov (United States)

    Jyotsana, Basanti; Sahare, Amol A; Raja, Anuj K; Singh, Karn P; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat

    2015-10-01

    We compared the cloning efficiency of buffalo embryos produced by handmade cloning (HMC) using ear skin- and milk-derived donor cells. The blastocyst rate was lower (p  milk-derived blastocysts and that of NANOG was (p  milk-derived > skin-derived blastocysts. The expression level of all these genes, except NANOG, was lower (p < 0.05) in milk- than in skin-derived or IVF blastocysts. In conclusion, milk-derived cells can be used for producing HMC embryos of quality similar to that of skin-derived embryos, although with a lower blastocyst rate.

  18. Dose-response relationship of cadmium or radiation-induced embryotoxicity in mouse whole embryo culture

    International Nuclear Information System (INIS)

    Nakashima, Kiyohito; Kawamata, Akitoshi; Matsuoka, Masato; Wakisaka, Takashi; Fujiki, Yoshishige

    1988-01-01

    Mouse embryos of B6C3F 1 strain were exposed in vitro to 1.2 to 2.2 μM cadmium chloride (Cd) or to 100 to 320 R x-rays, and the effects of the exposure on development were examined after 39 h of culture. Development of embryos was assessed from lethality, formation of the neural tube defect, diameter and protein of yolk sac, crown-rump and head lengths, embryonic protein, and number of somites. Incidence of the neural tube defect increased from 3.4 to 100% by 1.2 to 2.0 μM Cd, while embryo deaths increased from 13.8 to 93.3% by 2.0 to 2.2 μM Cd. Embryonic protein was significantly reduced at the teratogenic range, but the number of somites was only affected by 1.6 to 2.0 μM Cd. X-irradiation at 100 to 320 R induced the neural tube defect in 2.9 to 72.7% of the embryos. An embryolethal effect was observed only at the 320 R dose. Crown-rump and head lengths and embryonic protein were significantly affected at the teratogenic range, but the diameter and protein of yolk sac and number of somites were hardly affected. Cadmium- or radiation-induced response data of both teratogenicity and endpoints indicating inhibition of embryonic development were acceptably fitted to a linear log-probit regression. These regressions suggest that as an estimation of interference in development of embryos, embryonic protein and head length are sensitive endpoints while the number of somites is an insensitive criterion. (author)

  19. Heart malformation induced by ionizing irradiation in rat embryo

    International Nuclear Information System (INIS)

    Higo, Hiromi; Satow, Yukio; Lee, Juing-Yi; Higo, Ken-ichi

    1986-01-01

    Proteins were extracted from morphologically abnormal heart induced by gamma-irradiation, and fractionated into the soluble and the insoluble (''muscle structural proteins'') fractions. Protein compositions of these fractions were examined by O'Farrell's two-dimensional polyacrylamide gel electrophoresis, and also by non-equilibrium pH gradient electrophoresis. The protein patterns thus obtained were then compared with those of the normal heart. Among about 450 major protein species observed, no significant difference was detected between normal and abnormal hearts as to the intensity and the location of the protein spots. Several minor protein species were found varying among the samples examined, but their relevance to the heart malformation are not clear at present. (author)

  20. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  1. Spontaneous and light-induced photon emission from intact brains of chick embryos

    Institute of Scientific and Technical Information of China (English)

    张锦珠; 于文斗; 孙彤

    1997-01-01

    Photon emission (PE) and light-induced photon emission(LPE) of intact brains isolated from chick embryos have been measured by using the single photon counting device. Experimental results showed that the intensi-ty level of photon emission was detected to be higher from intact brain than from the medium in which the brain was immerged during measuring, and the emission intensity was related to the developmental stages, the healthy situation of the measured embryos, and the freshness of isolated brains as well. After white light illumination, a short-life de-layed emission from intact brains was observed, and its relaxation behavior followed a hyperbolic rather than an expo-nential law. According to the hypothesis of biophoton emission originating from a delocalized coherent electromagnetic field and Frohlich’s idea of coherent long-range interactions in biological systems, discussions were made on the signifi-cance of photon emission in studying cell communication, biological regulation, living system’

  2. Direct evidence that radiation induced micronuclei of early embryos require a mitosis for expression

    International Nuclear Information System (INIS)

    Mueller, W.U.; Schlusen, I.; Streffer, C.

    1991-01-01

    The naturally synchronous development of early mouse embryos was exploited to address the question, whether micronuclei require a mitosis for expression or whether they can be expressed in the same cell cycle, in which exposure to X-rays or caffeine took place. Experiments with 2-cell and with 4-cell embryos showed that micronulcei are expressed only if a mitosis is completed. There was no indication, even after doses up to 20 Gy, that micronuclei can be expressed before the mitosis was reached, which followed exposure. Furthermore, no nuclear fragmentation pointing to apoptosis could be detected in the cycle, in which cells were exposed. The same results were obtained when caffeine (5 mM) was used as micronucleus inducing agent. (orig.)

  3. Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation

    DEFF Research Database (Denmark)

    Hargreaves, Cathy; Find, Jens; Reeves, Cathie

    2009-01-01

    The principal aim of this investigation was to improve somatic embryogenesis initiation and to enhance representation of families and genotypes within those families of Pinus radiata D. Don. A total of 19 open-pollinated seed families, many with unrelated and weakly related parents, were tested...

  4. Protocols for Callus and Somatic Embryo Initiation for Hibiscus sabdariffa L. (Malvaceae): Influence of Explant Type, Sugar, and Plant Growth Regulators

    Science.gov (United States)

    A significant work on callus induction and somatic embryogenesis was realized for Hibiscus sabdariffa. Two genotypes (Hibiscus sabdariffa and Hibiscus sabdariffa var. altissima) two sugars (sucrose and glucose) and three concentrations (1 %, 2%, 3%) of each sugar, 3 explant types (root, hypocotyl, c...

  5. The impact of UV-B irradiation applied at different phases of somatic embryo development in Norway spruce on polyamine metabolism

    Czech Academy of Sciences Publication Activity Database

    Cvikrová, Milena; Vondráková, Zuzana; Eliášová, Kateřina; Pešek, Bedřich; Trávníčková, Alena; Vágner, Martin

    2016-01-01

    Roč. 30, č. 1 (2016), s. 113-124 ISSN 0931-1890 R&D Projects: GA MŠk(CZ) LD13051; GA MŠk(CZ) LD13050 Institutional support: RVO:61389030 Keywords : Picea abies * Putrescine * Somatic embryogenesis Subject RIV: EF - Botanics Impact factor: 1.842, year: 2016

  6. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo

    Directory of Open Access Journals (Sweden)

    Shi-Jie Zhang

    2016-02-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg was injected into the air sac of chick embryos on embryo development day (EDD 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation.

  7. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo.

    Science.gov (United States)

    Zhang, Shi-Jie; Li, Yi-Fang; Tan, Rui-Rong; Tsoi, Bun; Huang, Wen-Shan; Huang, Yi-Hua; Tang, Xiao-Long; Hu, Dan; Yao, Nan; Yang, Xuesong; Kurihara, Hiroshi; Wang, Qi; He, Rong-Rong

    2016-02-01

    Gestational diabetes mellitus (GDM) is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg) was injected into the air sac of chick embryos on embryo development day (EDD) 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation. © 2016. Published by The Company of Biologists Ltd.

  8. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    E.Y. Kong

    2016-08-01

    Full Text Available The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio, as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP. The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf revealed through acridine orange (AO staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies.

  9. Effect of Bacterial Endotoxins on Superovulated Mouse Embryos In Vivo: Is CSF-1 Involved in Endotoxin-Induced Pregnancy Loss?

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Jaiswal

    2006-01-01

    Full Text Available Mammalian embryonic development is regulated by several cytokines and growth factors from embryonic or maternal origins. Since CSF-1 plays important role in embryonic development and implantation, we investigated its role in gram-negative bacterial LPS-induced implantation failure. The effect of LPS on normal (nonsuperovulated and superovulated in vivo-produced embryos was assessed by signs of morphological degeneration. A significantly similar number of morphologically degenerated embryos recovered from both nonsuperovulated and superovulated LPS treated animals on day 2.5 of pregnancy onwards were morphologically and developmentally abnormal as compared to their respective controls (P < .001. Normal CSF-1 expression level and pattern were also altered through the preimplantation period in the mouse embryos and uterine horns after LPS treatment. This deviation from the normal pattern and level of CSF-1 expression in the preimplantation embryos and uterine tissues suggest a role for CSF-1 in LPS-induced implantation failure.

  10. Cadmium induces the expression of specific stress proteins in sea urchin embryos

    International Nuclear Information System (INIS)

    Roccheri, Maria Carmela; Agnello, Maria; Bonaventura, Rosa; Matranga, Valeria

    2004-01-01

    Marine organisms are highly sensitive to many environmental stresses, and consequently, the analysis of their bio-molecular responses to different stress agents is very important for the understanding of putative repair mechanisms. Sea urchin embryos represent a simple though significant model system to test how specific stress can simultaneously affect development and protein expression. Here, we used Paracentrotus lividus sea urchin embryos to study the effects of time-dependent continuous exposure to subacute/sublethal cadmium concentrations. We found that, between 15 and 24 h of exposure, the synthesis of a specific set of stress proteins (90, 72-70, 56, 28, and 25 kDa) was induced, with an increase in the rate of synthesis of 72-70 kDa (hsps), 56 kDa (hsp), and 25 kDa, which was dependent on the lengths of treatment. Recovery experiments in which cadmium was removed showed that while stress proteins continued to be synthesized, embryo development was resumed only after short lengths of exposure

  11. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Yu, K N; Cheng, S H

    2013-01-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  12. A new oxidative stress model, 2,2-azobis(2-amidinopropane dihydrochloride induces cardiovascular damages in chicken embryo.

    Directory of Open Access Journals (Sweden)

    Rong-Rong He

    Full Text Available It is now well established that the developing embryo is very sensitive to oxidative stress, which is a contributing factor to pregnancy-related disorders. However, little is known about the effects of reactive oxygen species (ROS on the embryonic cardiovascular system due to a lack of appropriate ROS control method in the placenta. In this study, a small molecule called 2,2-azobis(2-amidinopropane dihydrochloride (AAPH, a free radicals generator, was used to study the effects of oxidative stress on the cardiovascular system during chick embryo development. When nine-day-old (stage HH 35 chick embryos were treated with different concentrations of AAPH inside the air chamber, it was established that the LD50 value for AAPH was 10 µmol/egg. At this concentration, AAPH was found to significantly reduce the density of blood vessel plexus that was developed in the chorioallantoic membrane (CAM of HH 35 chick embryos. Impacts of AAPH on younger embryos were also examined and discovered that it inhibited the development of vascular plexus on yolk sac in HH 18 embryos. AAPH also dramatically repressed the development of blood islands in HH 3+ embryos. These results implied that AAPH-induced oxidative stress could impair the whole developmental processes associated with vasculogenesis and angiogenesis. Furthermore, we observed heart enlargement in the HH 40 embryo following AAPH treatment, where the left ventricle and interventricular septum were found to be thickened in a dose-dependent manner due to myocardiac cell hypertrophy. In conclusion, oxidative stress, induced by AAPH, could lead to damage of the cardiovascular system in the developing chick embryo. The current study also provided a new developmental model, as an alternative for animal and cell models, for testing small molecules and drugs that have anti-oxidative activities.

  13. A quantitative system for discriminating induced pluripotent stem cells, embryonic stem cells and somatic cells.

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells (SCs and embryonic stem cells (ESCs provide promising resources for regenerative medicine and medical research, leading to a daily identification of new cell lines. However, an efficient system to discriminate the different types of cell lines is lacking. Here, we develop a quantitative system to discriminate the three cell types, iPSCs, ESCs, and SCs. The system consists of DNA-methylation biomarkers and mathematical models, including an artificial neural network and support vector machines. All biomarkers were unbiasedly selected by calculating an eigengene score derived from analysis of genome-wide DNA methylations. With 30 biomarkers, or even with as few as 3 top biomarkers, this system can discriminate SCs from pluripotent cells (PCs, including ESCs and iPSCs with almost 100% accuracy. With approximately 100 biomarkers, the system can distinguish ESCs from iPSCs with an accuracy of 95%. This robust system performs precisely with raw data without normalization as well as with converted data in which the continuous methylation levels are accounted. Strikingly, this system can even accurately predict new samples generated from different microarray platforms and the next-generation sequencing. The subtypes of cells, such as female and male iPSCs and fetal and adult SCs, can also be discriminated with this method. Thus, this novel quantitative system works as an accurate framework for discriminating the three cell types, iPSCs, ESCs, and SCs. This strategy also supports the notion that DNA-methylation generally varies among the three cell types.

  14. Somatic Embryogenesis in Yam (Dioscorea rotundata

    Directory of Open Access Journals (Sweden)

    Isidro Elías Suárez Padrón

    2011-12-01

    Full Text Available Embryogenic yam (Dioscorea rotundata cultures were induced from petioles of leaves of in vitro grown plants on medium supplemented with different 2.4-D concentrations. Cultures were maintained either on semisolid or in liquid MS medium supplemented with 4.52 µM 2.4-D. The effect of sucrose concentration on somatic embryo development was also evaluated and the effects of different BAP concentrations on somatic embryo conversion were determined. Treatments were distributed using a complete randomized design. The highest rate of induction occurred with 4.52 µM 2.4-D. Sucrose at 131.46 mM significantly enhanced somatic embryo development. The conversion rate was not affected by BAP.Cultivos embriogénicos de ñame (Dioscorea rotundata fueron inducidos a partir de explantes consistentes de hojas con peciolos, aisladas de plantas establecidas en condiciones in vitro, en presencia de diferentes concentraciones de 2,4-D. Los cultivos inducidos fueron mantenidos en medio MS líquido o semisólido suplido con 4,52 µM 2,4-D. El efecto de las concentraciones de sacarosa sobre el desarrollo de embriones somáticos y el efecto de varias concentraciones de BAP sobre la tasa de conversión de embriones somáticos en plantas también fueron evaluados. Todos los tratamientos fueron distribuidos usando un diseño completamente al azar. El mayor porcentaje de inducción de tejidos embriogénicos ocurrió con 4,52 µM de 2,4-D. La adición de 131,46 mM de sacarosa incrementó significativamente el desarrollo de embriones somáticos. La tasa de conversión de embriones somáticos en plantas no fue afectada por las concentraciones de BAP.

  15. Ethanol exposure affects cell movement during gastrulation and induces split axes in zebrafish embryos.

    Science.gov (United States)

    Zhang, Ying; Shao, Ming; Wang, Lifeng; Liu, Zhongzhen; Gao, Ming; Liu, Chao; Zhang, Hongwei

    2010-06-01

    To explore the toxic effects of ethanol on axis formation during embryogenesis, zebrafish embryos at different developmental stages were treated with 3% ethanol for 3h. The effects of ethanol exposure appeared to be stage-dependent. The dome stage embryo was most sensible to form posterior split axes upon ethanol exposure. Morphological and histological observations and whole-mount in situ hybridization results showed that ethanol exposure at this stage caused a general gastrulation delay, and induced double notochords, double neural tubes and two sets of somites in the posterior trunk. Mechanistically, no ectopic organizer was found by examining the expression patterns of dorsoventral markers including goosecoid, chordin and eve1 at the onset of gastrulation. However, radial intercalation, epiboly and convergence extension were inhibited by ethanol exposure as revealed by cell labeling, phenotypic observation and the expression patterns of axial or paraxial markers. Further investigation showed that the cell aggregation might be affected by ethanol exposure, as indicated by the much more scattered expression pattern of chordin, eve1 and wnt11 at the early gastrula stage, and the discontinuous gsc positive cells during migration. These results imply that ethanol might affect cell movement before and during gastrulation and as a consequence, induces a split axes phenotype. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. ULTRASTRUCTURAL MODIFICATIONS INDUCED BY DIRECT ACTION OF CU2+ UPON EARLY CHICK EMBRYO

    Directory of Open Access Journals (Sweden)

    Delia Checiu

    2003-01-01

    Full Text Available Teratological testing of sulphonate phtalocyanine (an alimentary blue dye synthetized by the Center of Chemisty, Timisoara, shown a strong malformative effect of this compound upon early chick embryo (48 hours of incubation, (Sandor, Checiu, Prelipceanu, 1985. Dye administration on day 2 of incubation (44-48 hours revealed a high rate of embryo mortality and abnormal modification of caudal segment or even a total absence of caudal tail bud. Living embryos until day 7 of incubation showed a normal development of the anterior body part (head and trunk in contrast with posterior body part which presented an abnormal position of posterior limbs, tail and trunk aplasia. The dye with the some name produced in Germany did not show (in the some experimental conditions a malformative effect. The only difference between the two dyes was the presence of Cu2+ in our compound. It is well known that chemicals and physics factors (X rayes, insuline, hypoxy, D-Actinomycine, sucrose, etc. are noxious, inducing malformations of caudal segment (tail bud, urogenital and anorectal abnormalities associated with cardiac, facial and SNC malformations (Landauer 1953, Shepard 1973. Abnormalities of esophagus, urogenital and anorectal region associated with those of caudal axial skeleton and posterior limb buds are involved in caudal dysplasia syndrome (Duhamel 1961 cited by Roux and Martinet 1962. This syndrome is frequent (1:1000 in children of diabetic mothers (Warkany 1971. Experimental works on mice suggested implication of genetic factors in pathogenesis of this syndrome (Frye et all.1964 cited by Warkany 1971. Previous investigations (Checiu et all. 1966 revealed a caudal malformative syndrome in chick embryos induced by Cu2+. It is well known capacity of some heavy metal ions to affect the formation and desintegration reaction of free radicals. The aim of this paper is to present a morphological study of caudal malformative syndrome (Checiu et all. 1999 and an

  17. Somatic mutation and recombination induced by fast neutrons in the wing spot test of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Guzman R, J.; Varela, A.; Policroniades, R.; Delfin, A.; Graf, U.

    1994-01-01

    In the last decades, a large number of studies have been undertaken to evaluate the biological effects of gamma and X rays in Drosophila melanogaster. The majority of these investigations were performed on female and male germ cells. However, comparatively little is known in relation to the biological effects of fast neutrons, and especially in relation to their effects in somatic cells. (Author)

  18. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    Science.gov (United States)

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg 2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl 2 ) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg 2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg 2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl 2 exposure (especially in the 16μg/L Hg 2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl 2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl 2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Optimization of somatic embryogenesis induction in Iranian melon ...

    African Journals Online (AJOL)

    Jane

    2011-07-11

    Jul 11, 2011 ... embryo induction and the combination of 0.1 mg/l BA and 5 mg/l 2,4-D had significant effect on somatic ... such as genotype, growth regulator, explant and culture ... different stages of somatic embryos development. (globular ...

  20. Induction of somatic embryogenesis by polyethylene glycol and ...

    African Journals Online (AJOL)

    VIJI

    2012-06-05

    Jun 5, 2012 ... supplemented with 2,4-D (2 µM), abscisic acid (3 µM) and glutamine (0.03 mM). The somatic embryos ... essential amino acids of seed proteins, shortened vegetative ... or somatic embryo maturation in diverse plants such as.

  1. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis.

    Science.gov (United States)

    Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan

    2009-10-01

    Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.

  2. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers.

    Science.gov (United States)

    Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2014-12-21

    Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.

  3. Micropropagation of Codiaeum variegatum (L.) Blume and regeneration induction via adventitious buds and somatic embryogenesis.

    Science.gov (United States)

    Radice, Silvia

    2010-01-01

    Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.

  4. Sulphur depletion altered somatic embryogenesis in Theobroma ...

    African Journals Online (AJOL)

    Somatic embryogenesis is a useful tool for Theobroma cacao improvement and propagation. Depending on culture medium composition, different morphogenetic structures (including somatic embryo) occur in response to alteration of genes expression patterns and biochemical changes. The effect of SO42- ion deficiency ...

  5. Optimization of somatic embryogenesis procedure for commercial ...

    African Journals Online (AJOL)

    The first objective of this study was to assess and optimize somatic embryo production in a genetically diverse range of cacao genotypes. The primary and secondary somatic embryogenesis response of eight promising cacao clones and a positive control was evaluated using modified versions of standard protocols.

  6. Superovulation Induced Changes of Lipid Metabolism in Ovaries and Embryos and Its Probable Mechanism.

    Directory of Open Access Journals (Sweden)

    Li-Ya Wang

    Full Text Available This research was intended to investigate the fetal origins of changed birth weight of the offspring born through assisted reproductive technology (ART. The association between hormone and lipid metabolism or body weight has been generally accepted, and as the basic and specific treatment in ART procedure, gonadotropin stimulation might have potential effects on intrauterine lipid metabolism. In our studies, the mice were superovulated with two doses of gonadotropin. The cholesterol metabolism in ovaries and the triglyceride metabolism in embryos were analyzed. The results showed gonadotropin probably accelerated luteinization and induced a longer time follicle development and ovulation, which resulted in histological and morphological alteration of ovary, and increased the cholesterol content and the expressions of steroidogenesis-related genes. In embryos, gonadotropin increased lipid accumulation and decreased fatty acid synthesis in a dose-dependent manner. Moreover, the changes of fatty acid composition were also shown in superovulation groups. Our studies firstly provided the evidence that the superovulation might affect the maternal and fetal lipid metabolism. These variations of lipid metabolism in our results may be associated with birth weight of ART infants.

  7. Body-weight and chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Marco, A. de; Belloni, M.P.

    1976-01-01

    Body-weight has been shown to influence the final expression of genetic damage by X-rays in Drosophila melanogaster. If larvae of Drosophila were raised up to the third instar in media containing different amounts of the same nutrient and in different conditions of crowding a positive correlation was observed between body-weight and frequency of chromosome aberrations induced by a given dose of X-rays in the somatic cells of their nerve ganglia. This effect, present in both sexes, is most plausibly attributed to a different capacity of big and small larvae for repairing radiation damage. (orig.) [de

  8. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development

    International Nuclear Information System (INIS)

    Cruces, M.P.; Morales R, P.

    1997-01-01

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr 3 /TM3, Ser stocks were used. (Author)

  9. The structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo NAD(+) content in OPI-induced teratogenesis in chickens.

    Science.gov (United States)

    Seifert, Josef

    2016-05-01

    The objective of this study was to determine the structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo nicotinamide adenine dinucleotide (NAD(+)) content in OPI-induced teratogenesis and compare them with those needed for OPI inhibition of yolk sac membrane kynurenine formamidase (KFase), the proposed primary target for OPI teratogens in chicken embryos. The comparative molecular field analysis (COMFA) of three-dimensional quantitative structure-activity relationship (3D QSAR) revealed the electrostatic and steric fields as good predictors of OPI structural requirements to reduce NAD(+) content in chicken embryos. The dominant electrostatic interactions were localized at nitrogen-1, nitrogen-3, nitrogen of 2-amino substituent of the pyrimidinyl of pyrimidinyl phosphorothioates, and at the oxygen of crotonamide carbonyl in crotonamide phosphates. Bulkiness of the substituents at carbon-6 of the pyrimidinyls and/or N-substituents of crotonamides was the steric structural component that contributed to superiority of those OPI for reducing embryonic NAD(+) levels. Both electrostatic and steric requirements are similar to those defined in our previous study for OPI inhibition of chicken embryo yolk sac membrane KFase. The findings of this study provide another piece of evidence for the cause-and-effect relationship between yolk sac membrane KFase inhibition and reduced embryo NAD(+) content in NAD-associated OPI-induced teratogenesis in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Polyphenols distributions and reserve substances analysis in cacao somatic embryogenesis

    OpenAIRE

    Adriana María Gallego Rúa; Ana María Henao Ramírez; Aura Inés Urrea Trujillo; Lucía Atehortúa Garcés

    2016-01-01

    ABSTRACTIn order to understand the causes of lack of regeneration in cacao somatic embryos, two cacao varieties with different responses to regeneration potential were described based on their capacity to store different compounds. It is well known that seed reserves play a central role in the regenerative capability of somatic embryos; thus, we followed histochemical changes and reserve fluctuations of proteins, polysaccharides and polyphenols during somatic embryogenesis (SE) in the two cac...

  11. POLYPHENOLS DISTRIBUTION AND RESERVE SUBSTANCES ANALYSIS IN CACAO SOMATIC EMBRYOGENESIS

    OpenAIRE

    GALLEGO RÚA, Adriana María; HENAO RAMÍREZ, Ana María; URREA TRUJILLO, Aura Inés; ATEHORTÚA GARCÉS, Lucía

    2016-01-01

    In order to understand the causes of lack of regeneration in cacao somatic embryos, two cacao varieties with different responses to regeneration potential were described based on their capacity to store different compounds. It is well known that seed reserves play a central role in the regenerative capability of somatic embryos; thus, we followed histochemical changes and reserve fluctuations of proteins, polysaccharides and polyphenols during somatic embryogenesis (SE) in the two cacao varie...

  12. Embryonic eggshell thickness erosion: A literature survey re-assessing embryo-induced eggshell thinning in birds

    International Nuclear Information System (INIS)

    Orłowski, Grzegorz; Hałupka, Lucyna

    2015-01-01

    Although eggshell thinning has been described mainly in the context of environmental pollution, it can also be the effect of reproductive changes induced by a developing embryo. On the basis of a literature survey of 25 bird species (26 published papers) we reviewed data on embryo-induced eggshell thinning (EET) in three groups of birds: precocials, semi-precocials and altricials. The average EET at the equator of the eggs was 6.4% (median = 4.7%). Our review did not confirm a general prediction of elevated EET at the egg equator in precocial species: altricial birds exhibited the highest EET (average = 12.0%), followed by precocials (7.6%) and semi-precocials (4.2%). We make certain critical recommendations based on the results of this study. Studies aiming to assess variation in eggshell thickness should examine intrinsic factors affecting shell properties of avian eggs, like thickness, which are the result of anatomical or reproductive changes. - Highlights: • We reviewed literature data on embryo-induced eggshell thinning (EET) in birds. • The average EET at the equator of the eggs of 25 bird species was 6.4%. • Altricial birds exhibited the highest EET, followed by precocials and semi-precocials. • All studies on variation in eggshell thickness should take EET into consideration. - Our study emphasizes the need to consider embryo-induced eggshell thinning in studies aiming to assess variation in eggshell thickness

  13. Genetic stability evaluation of quercus suber l. somatic embryogenesis by rapd analysis

    International Nuclear Information System (INIS)

    Fernandes, P.; Costa, A.; Rocha, A.C.C.; Santos, C.

    2011-01-01

    A reliable protocol for adult Quercus suber L. somatic embryogenesis (SE) was developed recently. To evaluate the potential use of this protocol in cork oak forest breeding programs, it is essential to guarantee somatic embryos/emblings genetic stability. Random Amplification of Polymorphic DNA (RAPD) is currently used to assess somaclonal variation providing information on genetic variability of the micropropagation process. In this work, SE was induced from adult trees by growing leaf explants on MS medium supplemented with 2,4-D and zeatin. Embling conversion took place on MS medium without growth regulators. DNA from donor tree, somatic embryos and emblings was used to assess genetic variability by RAPD fingerprinting. Fourteen primers produced 165 genetic loci with high quality and reproducibility. Despite somatic embryos originated some poor quality PCR-profiles, replicable and excellent fingerprints were obtained for both donor plant and embling. Results presented no differences among regenerated emblings and donor plant. Hence, the SE protocol used did not induce, up to moment, any genetic variability, confirming data previously obtained with other molecular/genetic techniques, supporting that this protocol may be used to provide true-to-type plants from important forestry species. (author)

  14. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore 'Elsa'.

    Science.gov (United States)

    Shen, Hui-Ju; Chen, Jen-Tsung; Chung, Hsiao-Hang; Chang, Wei-Chin

    2018-01-22

    Tolumnia genus (equitant Oncidium) is a group of small orchids with vivid flower color. Thousands of hybrids have been registered on Royal Horticulture Society and showed great potential for ornamental plant market. The aim of this study is to establish an efficient method for in vitro propagation. Leaf explants taken from in vitro-grown plants were used to induce direct somatic embryogenesis on a modified 1/2 MS medium supplemented with five kinds of cytokinins, 2iP, BA, kinetin, TDZ and zeatin at 0.3, 1 and 3 mg l -1 in darkness. TDZ at 3 mg l -1 gave the highest percentage of explants with somatic globular embryos after 90 days of culture. It was found that 2,4-D and light regime highly retarded direct somatic embryogenesis and showed 95-100% of explant browning. Histological observations revealed that the leaf cells divided into meristematic cells firstly, followed by somatic proembryos, and then somatic globular embryos. Eventually, somatic embryos developed a bipolar structure with the shoot apical meristem and the root meristem. Scanning electron microscopy observations showed that the direct somatic embryogenesis from leaf explants was asynchronously. The somatic embryos were found on the leaf tip, the adaxial surface and also the mesophyll through a cleft, and it reflected the heterogeneity of the explant. The 90-day-old globular embryos were detached from the parent explants and transferred onto a hormone-free 1/2 MS medium in light condition for about 1 month to obtain 1-cm-height plantlets. After another 3 months for growth, the plantlets were potted with Sphagnum moss and were acclimatized in a shaded greenhouse. After 1 month of culture, the survival rate was 100%. In this report, a protocol for efficient regenerating a Tolumnia orchid, Louise Elmore 'Elsa', was established via direct somatic embryogenesis and might reveal an alternative approach for mass propagation of Tolumnia genus in orchid industry.

  15. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    Buul, P.P.W. van

    1976-01-01

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  16. p53-dependent manner of persistent activation of the radiation-induced reversion in the pink-eyed unstable mouse embryo

    International Nuclear Information System (INIS)

    Shiraishi, K.; Yonezawa, M.; Niwa, O.

    2003-01-01

    Full text: We previously reported that radiation has an ability to induce genomic instability which causes delayed and untargeted mutation. These mutations aren't accounted for by the usual relationship between DNA damages and repair. However, the mechanisms of a long-term memory of DNA damage and the persistence of up-regulated recombination activity have yet to be elucidated. The mouse pink-eyed unstable (pun) mutation is due to an intragenic duplication of the pink-eyed dilution locus and frequently reverts black to the wild type in germ cells as well as somatic cells. The frequency of reversion was estimated by counting cluster of pigment cells in retinal pigment epithelium. Twice increase of the reversion was observed in F1 mice born to 6Gy irradiated male at spermatozoa stage, but not at other spermatogenesis stages( -tid, -cyte, -gonia ). Trans-genarational effect in F2 mice also didn't observe. Therefore, this phenomenon only occurs under the restricted germ cell stage. Additionally, the reversion frequency of p53 deficient F1 mouse born to irradiated sperm was less than irradiated wild mouse. 5aza-dc chemical agent, which is DNA methylation emzyme inhibitor, also suppressed pun allele recombination in mouse embryo. These data indicate that p53 contributes delayed and untargeted mutation, perhaps, by regulation of DNA metylation status

  17. Designing experimental setup and procedures for studying alpha-particle-induced adaptive response in zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Choi, V.W.Y.; Lam, R.K.K.; Chong, E.Y.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2010-03-15

    The present work was devoted to designing the experimental setup and the associated procedures for alpha-particle-induced adaptive response in zebrafish embryos in vivo. Thin PADC films with a thickness of 16 mum were fabricated and employed as support substrates for holding dechorionated zebrafish embryos for alpha-particle irradiation from the bottom through the films. Embryos were collected within 15 min when the light photoperiod began, which were then incubated and dechorionated at 4 h post fertilization (hpf). They were then irradiated at 5 hpf by alpha particles using a planar {sup 241}Am source with an activity of 0.1151 muCi for 24 s (priming dose), and subsequently at 10 hpf using the same source for 240 s (challenging dose). The levels of apoptosis in irradiated zebrafish embryos at 24 hpf were quantified through staining with the vital dye acridine orange, followed by counting the stained cells under a florescent microscope. The results revealed the presence of the adaptive response in zebrafish embryos in vivo, and demonstrated the feasibility of the adopted experimental setup and procedures.

  18. Dysregulated LIF-STAT3 pathway is responsible for impaired embryo implantation in a Streptozotocin-induced diabetic mouse model

    Directory of Open Access Journals (Sweden)

    Tong-Song Wang

    2015-07-01

    Full Text Available The prevalence of diabetes is increasing worldwide with the trend of patients being young and creating a significant burden on health systems, including reproductive problems, but the effects of diabetes on embryo implantation are still poorly understood. Our study was to examine effects of diabetes on mouse embryo implantation, providing experimental basis for treating diabetes and its complications. Streptozotocin (STZ was applied to induce type 1 diabetes from day 2 of pregnancy or pseudopregnancy in mice. Embryo transfer was used to analyze effects of uterine environment on embryo implantation. Our results revealed that the implantation rate is significantly reduced in diabetic mice compared to controls, and the change of uterine environment is the main reason leading to the decreased implantation rate. Compared to control, the levels of LIF and p-STAT3 are significantly decreased in diabetic mice on day 4 of pregnancy, and serum estrogen level is significantly higher. Estrogen stimulates LIF expression under physiological level, but the excessive estrogen inhibits LIF expression. LIF, progesterone or insulin supplement can rescue embryo implantation in diabetic mice. Our data indicated that the dysregulated LIF-STAT3 pathway caused by the high level of estrogen results in the impaired implantation in diabetic mice, which can be rescued by LIF, progesterone or insulin supplement.

  19. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos.

    Science.gov (United States)

    Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume

    2018-03-01

    Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such

  20. Replication of somatic micronuclei in bovine enucleated oocytes

    Directory of Open Access Journals (Sweden)

    Canel Natalia

    2012-11-01

    Full Text Available Abstract Background Microcell-mediated chromosome transfer (MMCT was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+] or not [Micronucleus- injected (−] to a transgene (50 ng/μl pCX-EGFP during 5 min. Enucleated oocytes [Enucleated (+] and parthenogenetic [Parthenogenetic (+] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−, Parthenogenetic (− and in vitro fertilized (IVF embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05. Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had

  1. Embryo malposition as a potential mechanism for mercury-induced hatching failure in bird eggs

    Science.gov (United States)

    Herring, G.; Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    We examined the prevalence of embryo malpositions and deformities in relation to total mercury (THg) and selenium (Se) concentrations in American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri) eggs in San Francisco Bay (CA, USA) during 2005 to 2007. Overall, 11% of embryos were malpositioned in eggs ???18 d of age (n=282) and 2% of embryos were deformed in eggs ???13 d of age (n=470). Considering only those eggs that failed to hatch (n=62), malpositions occurred in 24% of eggs ???18 d of age and deformities occurred in 7% of eggs ???13 d of age. The probability of an embryo being malpositioned increased with egg THg concentrations in Forster's terns, but not in avocets or stilts. The probability of embryo deformity was not related to egg THg concentrations in any species. Using a reduced dataset with both Se and THg concentrations measured in eggs (n=87), we found no interaction between Se and THg on the probability of an embryo being malpositioned or deformed. Results of the present study indicate that embryo malpositions were prevalent in waterbird eggs that failed to hatch and the likelihood of an embryo being malpositioned increased with egg THg concentrations in Forster's terns. We hypothesize that malpositioning of avian embryos may be one reason for mercury-related hatching failure that occurs late in incubation, but further research is needed to elucidate this potential mechanism. ?? 2010 SETAC.

  2. Analysis of relation between the mutation frequencies and somatic recombination induced by neutrons and the age of D. Melanogaster larvae

    International Nuclear Information System (INIS)

    Guzman R, J.; Zambrano A, F.; Paredes G, L.; Delfin L, A.; Quiroz R, C.

    1998-01-01

    Neutrons are subatomic particles with neutral electric charge, equal zero, which are emitted during the fissile material fission in nuclear reactors. It is known a little about biological effects induced by neutrons. There is a world interest in the use of reactors and accelerators for patients radiotherapy using neutrons with the purpose to destroy malignant cells of deep tumours where traditional methods have not given satisfactory results. There for it is required to do wide studies of biological effects of neutrons as well as their dosimetry. It was used the Smart test (Somatic Mutation and Recombination Test) of D. Melanogaster for quantifying the mutation induction and somatic recombination induced by neutrons of the National Institute of Nuclear Research reactor, at power of 300 and 1000 k W, with equivalent doses calculated 95.14 and 190.2 Sv for 300 k W and of 25.64 and 51.29 Sv for 1000 k W, using larvae with 72 or 96 hours aged. It was observed a linear relation between equivalent dose and genetic effects frequency, these last were greater when the reactor power was 1000 k W than those 300 k W. It was observed too that the damage was greater in 96 hours larvae than those 72 hours. The stain size presented an inverse relation with respect to larvae age. It is concluded that the Smart system is sensitive to neutrons effect and it responds of a directly proportional form to radiation dose, as well as to dose rate. It is noted more the effect when are used larvas in pre pupa stage where the irradiation target (imagal cells) is greater. The Smart is sensitive to damage induced by neutrons , thus can be used to studying its direct biological effects or by the use of chemical modulators. (Author)

  3. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    Science.gov (United States)

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression.

  4. Induction of somatic mutations by low-dose X-rays: the challenge in recognizing radiation-induced events.

    Science.gov (United States)

    Nagashima, Haruki; Shiraishi, Kumiko; Ohkawa, Saori; Sakamoto, Yuki; Komatsu, Kenshi; Matsuura, Shinya; Tachibana, Akira; Tauchi, Hiroshi

    2017-10-19

    It is difficult to distinguish radiation-induced events from spontaneous events during induction of stochastic effects, especially in the case of low-dose or low-dose-rate exposures. By using a hypersensitive system for detecting somatic mutations at the HPRT1 locus, we investigated the frequency and spectrum of mutations induced by low-dose X-rays. The mutant frequencies induced by doses of >0.15 Gy were statistically significant when compared with the spontaneous frequency, and a clear dose dependency was also observed for mutant frequencies at doses of >0.15 Gy. In contrast, mutant frequencies at doses of 0.2 Gy. Our observations suggest that there could be a critical dose for mutation induction at between 0.1 Gy and 0.2 Gy, where mutagenic events are induced by multiple DNA double-strand breaks (DSBs). These observations also suggest that low-dose radiation delivered at doses of <0.1 Gy may not result in DSB-induced mutations but may enhance spontaneous mutagenesis events. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Somatic embryogenesis in cassava: A tool for mutation breeding

    International Nuclear Information System (INIS)

    Lee, K.S.; Duren, M. Van; Morpurgo, R.

    1997-01-01

    Cassava is an important food and livestock feed crop. The effect of gamma radiation on somatic embryogenesis and plant regeneration in cassava clones of African origin was investigated. Explants from young leaves of cassava were cultured on MS medium, supplemented with 18.1 mM 2,4-D and 2 mM CuSO4, solidified with 0.3% Phytagel. Compact and friable calli were observed after 10-15 days of explant culture in dark, which produced somatic embryos in all but one clone. The somatic embryos showed morphological aberrations, such as fused cotyledons, lack of meristematic tip, epicotyl elongation, and had low germination rate; desiccation of embryos increased germination. Histological study showed that the somatic embryos were of multicellular origin. Leaf explants were irradiated with doses between 4 to 38 Gy of gamma rays, and cultured on somatic embryo induction medium. In addition, somatic embryos were irradiated with gamma ray doses from 10 to 18 Gy, and analyzed for germination. LD 50 for embryogenic response of leaf-explants was at around 20 Gy, while that for somatic embryo germination was ca. 10 Gy. (author). 7 refs, 2 tabs

  6. Somatic embryogenesis in cassava: A tool for mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K S; Duren, M Van; Morpurgo, R [Agriculture and Biotechnology Laboratory, International Atomic Energy Agency, Seibersdorf (Austria)

    1997-07-01

    Cassava is an important food and livestock feed crop. The effect of gamma radiation on somatic embryogenesis and plant regeneration in cassava clones of African origin was investigated. Explants from young leaves of cassava were cultured on MS medium, supplemented with 18.1 mM 2,4-D and 2 mM CuSO4, solidified with 0.3% Phytagel. Compact and friable calli were observed after 10-15 days of explant culture in dark, which produced somatic embryos in all but one clone. The somatic embryos showed morphological aberrations, such as fused cotyledons, lack of meristematic tip, epicotyl elongation, and had low germination rate; desiccation of embryos increased germination. Histological study showed that the somatic embryos were of multicellular origin. Leaf explants were irradiated with doses between 4 to 38 Gy of gamma rays, and cultured on somatic embryo induction medium. In addition, somatic embryos were irradiated with gamma ray doses from 10 to 18 Gy, and analyzed for germination. LD{sub 50} for embryogenic response of leaf-explants was at around 20 Gy, while that for somatic embryo germination was ca. 10 Gy. (author). 7 refs, 2 tabs.

  7. Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour

    Directory of Open Access Journals (Sweden)

    Rekik Imen

    2015-01-01

    Full Text Available A somatic embryogenesis receptor kinase like (SERKL cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus.

  8. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  9. X-radiation-induced transformation in a C3H mouse embryo-derived cell line

    International Nuclear Information System (INIS)

    Terzaghi, M.; Little, J.B.

    1976-01-01

    Reproducible x-ray-induced oncogenic transformation has been demonstrated in an established cell line of mouse embryo fibroblasts. Cells derived from transformed foci formed malignant tumors when injected into syngeneic hosts. An exponential increase in the number of transformants per viable cell occurred with doses of up to 400 rads of x-radiation. The transformation frequency in exponentially growing cultures remained constant at 2.3 x 10 -3 following doses of 400 to 1500 rads. There was little change in survival following x-ray doses up to 300 rads. Doses greater than 300 rads were associated with an exponential decline in survival; the D 0 for the survival curve was 175 rads. Transformation frequency varied with changes in the number of viable cells seeded per dish. There was about a 10-fold decline in the transformation frequency when the number of cells was increased from 400 to 1000 viable cells/100-mm Petri dish. Below this density range there was little change in transformation frequency. The presence of lethally preirradiated cells was not associated with an enhancement of transformation in irradiated cells or with the induction of transformation in unirradiated cell cultures. Amphotericin B (Fungizone) inhibited the appearance of transformants when added to the culture medium within 2 to 3 weeks after initiation of the experiment

  10. Embriogênese somática e regeneração de plantas a partir de embrião maduro de aveia Somatic embryogenesis and plant regeneration derived from mature embryos of oat

    Directory of Open Access Journals (Sweden)

    Caren Regina Cavichioli Lamb

    2002-02-01

    Full Text Available Calo embriogênico tem sido o tecido-alvo mais utilizado para transformação genética de cereais. O objetivo deste trabalho foi investigar o estabelecimento de calos embriogênicos e a regeneração de plantas in vitro a partir de embriões maduros de genótipos de aveia (Avena sativa L.. Embriões maduros foram retirados das sementes e colocados em meio MS (Murashige & Skoog, contendo 30,0 g L-1 de sacarose e 2,0 mg L-1 de ácido 2,4-diclorofenoxiacético (2,4-D. Após o período de indução de calos, agregados embriogênicos foram isolados e subcultivados a cada 21 dias para meio fresco. Os calos embriogênicos foram então transferidos para meio de indução de parte aérea, e, na seqüência, as partes aéreas foram transferidas para meio de indução de raízes. Houve diferenças entre genótipos quanto à capacidade de embriogênese somática e regeneração de plantas in vitro a partir de embrião maduro. Este explante permitiu a indução de calos embriogênicos, que se multiplicaram, e que regeneraram in vitro um grande número de plantas de genótipos como UFRGS 7 e UFRGS 19, o que o faz passível de ser utilizado na transformação genética da aveia.Embryogenic callus has been the most used target tissue for cereal genetic transformation. Therefore, the objective of this study was to investigate the establishment of embryogenic calli and the in vitro plant regeneration from mature embryos of oat genotypes (Avena sativa L.. Mature embryos were taken out of the seeds and placed on a culture medium MS (Murashige & Skoog, containing 30,0 mg L-1 of sucrose and 2,0 mg L-1 of 2,4-dichlorophenoxyacetic acid (2,4-D. From the induction period, embryogenic aggregates were isolated and subcultivated each 21 days into a fresh medium. After this period, embryogenic calli were transferred to a medium for shoot regeneration. Subsequently, the shoot was transferred to a medium for root induction. There was variability among genotypes for somatic

  11. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos

    OpenAIRE

    Guo, Jitong; Wu, Baojiang; Li, Shuyu; Bao, Siqin; Zhao, Lixia; Hu, Shuxiang; Sun, Wei; Su, Jie; Dai, Yanfeng; Li, Xihe

    2014-01-01

    Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cel...

  12. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia.

    Directory of Open Access Journals (Sweden)

    Jessica K Leet

    Full Text Available Using transgenic zebrafish (fli1:egfp that stably express enhanced green fluorescent protein (eGFP within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05-50 µM using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO--an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors--flumioxazin--resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1 screening chemicals for cardiovascular toxicity and (2 prioritizing chemicals for future hypothesis

  13. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    NARCIS (Netherlands)

    Tintu, Andrei; Rouwet, Ellen; Verlohren, Stefan; Brinkmann, Joep; Ahmad, Shakil; Crispi, Fatima; van Bilsen, Marc; Carmeliet, Peter; Staff, Anne Cathrine; Tjwa, Marc; Cetin, Irene; Gratacos, Eduard; Hernandez-Andrade, Edgar; Hofstra, Leo; Jacobs, Michael; Lamers, Wouter H.; Morano, Ingo; Safak, Erdal; Ahmed, Asif; le Noble, Ferdinand

    2009-01-01

    BACKGROUND: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos.

  14. Acute toxicity and gene responses induced by endosulfan in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Young-Sun Moon

    2016-10-01

    Full Text Available Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L−1, whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L−1 of endosulfan. Comparative gene expression using real-time quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.

  15. Effects of embryo-derived exosomes on the development of bovine cloned embryos.

    Directory of Open Access Journals (Sweden)

    Pengxiang Qu

    Full Text Available The developmental competence of in vitro cultured (IVC embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE, as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development, but also following growth to term (in vivo development. Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.

  16. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    Science.gov (United States)

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  18. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum

    International Nuclear Information System (INIS)

    Trigiano, R.N.; Scott, M.C.; Caetano-Anolles, G.

    1998-01-01

    The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars 'Dark Charm', 'Salmon Charm', 'Coral Charm' and 'Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of 'Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing approximately 37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars

  19. Endogenous Quantification of Abscisic Acid and Indole-3-Acetic Acid in Somatic and Zigotic Embryos of Nothofagus alpina (Poepp. & Endl. Oerst Cuantificación Endógena de Ácido Abscísico y Ácido Indol-3 Acético en Embriones Somáticos y Cigóticos de Nothofagus alpina (Poepp. & Endl. Oerst

    Directory of Open Access Journals (Sweden)

    Pricila Cartes Riquelme

    2011-12-01

    Full Text Available Abscisic acid (ABA and indole-3-acetic acid (IAA participate in the propagation of plants by somatic embryogenesis, causing polar structural differentiation of the embryo. The goal of the assay was to compare endogenous levels of ABA and IAA between somatic embryos (SE and zygotic embryos (ZE of Nothofagus alpina (Poepp. & Endl. Oerst. In this study, a somatic embryo maturation assay involving the addition of varying concentrations of exogenous ABA was performed on cotyledonary-stage of N. alpina. Furthermore, the endogenous levels of ABA and IAA were quantified in the immature ZE, the mature ZE, and the embryonic axis of a mature embryo of N. alpina. The current study utilized high performance liquid chromatography (HPLC for quantification. The maturation treatments performed did not present significant differences in the endogenous ABA levels in SE. However, significant differences did exist in levels of ABA and IAA between SE submitted to the different maturation treatments and mature ZE of N. alpina. The application of exogenous ABA to the culture medium increased endogenous ABA levels, therefore, increasing the number of germinated somatic embryos. Thus, the plant conversion process was also successfully completed in somatic embryos of N. alpina.El ácido abscísico (ABA y el ácido indol 3 acético (IAA participan en el proceso de propagación de plantas mediante embriogénesis somática, ya que permiten la diferenciación de la estructura polar del embrión, órganos y regiones meristemáticas de éste. En este estudio se llevó a cabo un ensayo de maduración de embriones somáticos en estado cotiledonar con la adición de diferentes concentraciones de ABA exógeno, además se determinaron niveles endógenos entre ZE inmaduro, ZE maduro, y eje embrionario aislado desde el embrión maduro para luego comparar niveles endógenos de ABA e IAA en embriones somáticos (SE y cigóticos (ZE de raulí, Nothofagus alpina (Poepp. & Endl. Oerst. La

  20. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  1. Correlation between mixed-function oxidase enzyme induction and aflatoxin B1-induced unscheduled DNA synthesis in the chick embryo, in vivo

    International Nuclear Information System (INIS)

    Hamilton, J.W.; Bloom, S.E.

    1984-01-01

    The unscheduled DNA synthesis (UDS) technique has been adapted for use in the chick embryo, in vivo, to determine the relationship between induction of the mixed-function oxidase (MFO) enzyme system and genetic damage from an indirect-acting mutagen-carcinogen. Embryos were injected at 6 days of incubation (DI) with either phenobarbital (PB), a specific inducer of P-450-associated enzyme activities, or 3,4,3',4'-tetrachlorobiphenyl (TCB), a specific inducer of P 1 -450-associated enzyme activities. Aflatoxin B 1 (AFB1) was injected 24 hr later (7 DI), followed by a 5-hr continuous 3 H-thymidine exposure. The livers were removed, prepared for autoradiography, and hepatocytes were scored for an increase in grains/nucleus, indicative of UDS. Aflatoxin B 1 caused a dose-related increase in UDS in all control and induction groups. Phenobarbital-induced embryos had an increased UDS response while TCB-induced embryos had a decreased UDS response, relative to noninduced embryos, for each dosage of AFB1. This suggests that the genotoxicity of an indirect-acting mutagen-carcinogen can be either increased or decreased, in vivo, depending on the inducer used. The chick embryo provides an excellent system for studying the effect of MFO induction on the genotoxicity of promutagen-carcinogens in a developing system

  2. Comparison of somatic mutation frequencies at HGPRT locus induced by radiation and chemical pollutant from energy system

    International Nuclear Information System (INIS)

    Xu Honglan; Cao Yi; Duan Zhikai; Wu Qiqing; Chen Ying; Zhang Shuxian

    1998-12-01

    The somatic induction frequencies of mutation at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus induced by 60 Co γ-rays and Benzo-a-pyrene (B(a)P), which are representative of hazardous emission and pollutant from nuclear energy cycle and fossil-fuelled energy cycle respectively, were detected by using forward mutation assay and cloning technique in both V 79 Chinese hamster cells and human peripheral blood T-lymphocytes. Resistant mutants were selected with 6-thioguanine (6-TG). Dose-response curves and mathematical expressions were obtained for mutation frequencies and survival following γ-ray and B(a)P(+S 9 ) treatments. The dose ranges for the two mutagens were compared when they induced the same mutation frequencies. In V 79 /HGPRT assay system, when the mutation frequencies were 5∼35 mutants/10 6 cells the response of γ-rays in the dose range from 0.93∼4.96 Gy at dose rate of 1.16 Gy/min is nearly equivalent to that in the B(a)P dose range from 0.52∼4.27 μg/ml. By using cloning technique in T-lymphocytes, when the mutation frequencies were 1∼14 mutants/10 5 cells the response of γ-rays in the dose range from 0.05∼4.77 Gy at dose rate of 1.03 Gy/min is nearly equivalent to that in the B(a)P dose range from 0.15∼7.36 μg/ml. When the survival fraction is 37%, the mutation frequency induced by B(a)P is higher than that induced by 60 Co γ-rays

  3. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences.

    Directory of Open Access Journals (Sweden)

    Andrei Tintu

    Full Text Available Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos.Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20 and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF and its scavenger soluble VEGF receptor-1 (sFlt-1 to investigate the potential role of this hypoxia-regulated cytokine.Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF(165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype.Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.

  4. Studies on Somatic Embryogenesis in Sweetpotato

    Science.gov (United States)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  5. Does dietary fat intake influence oocyte competence and embryo quality by inducing oxidative stress in follicular fluid?

    Science.gov (United States)

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein; Saboor Yaraghi, Ali Akbar; Ahmadi, Mehdi

    2013-12-01

    Fat-rich diet may alter oocyte development and maturation and embryonic development by inducing oxidative stress (OS) in follicular environment. To investigate the relationship between fat intake and oxidative stress with oocyte competence and embryo quality. In observational study follicular fluid was collected from 236 women undergoing assisted reproduction program. Malon-di-aldehyde (MDA) levels and total antioxidant capacity (TAC) levels of follicular fluid were assessed as oxidative stress biomarkers. In assisted reproduction treatment cycle fat consumption and its component were assessed. A percentage of metaphase ΙΙ stage oocytes, fertilization rate were considered as markers of oocyte competence and non-fragmented embryo rate, mean of blastomer and good cleavage (embryos with more than 5 cells on 3 days post insemination) rate were considered as markers of embryo quality. The MDA level in follicular fluid was positively related to polyunsaturated fatty acids intake level (p=0.02) and negatively associated with good cleavage rate (p=0.045). Also good cleavage rate (p=0.005) and mean of blastomer (p=0.006) was negatively associated with polyunsaturated fatty acids intake levels. The percentage of metaphase ΙΙ stage oocyte was positively related to the TAC levels in follicular fluid (p=0.046). The relationship between the OS biomarkers in FF and the fertilization rate was not significant. These findings revealed that fat rich diet may induce the OS in oocyte environment and negatively influence embryonic development. This effect can partially be accounted by polyunsaturated fatty acids uptake while oocyte maturation is related to TAC and oocytes with low total antioxidant capacity have lower chance for fertilization and further development.

  6. Does dietary fat intake influence oocyte competence and embryo quality by inducing oxidative stress in follicular fluid?

    Science.gov (United States)

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein; Saboor Yaraghi, Ali Akbar; Ahmadi, Mehdi

    2013-01-01

    Background: Fat-rich diet may alter oocyte development and maturation and embryonic development by inducing oxidative stress (OS) in follicular environment. Objective: To investigate the relationship between fat intake and oxidative stress with oocyte competence and embryo quality. Materials and Methods: In observational study follicular fluid was collected from 236 women undergoing assisted reproduction program. Malon-di-aldehyde (MDA) levels and total antioxidant capacity (TAC) levels of follicular fluid were assessed as oxidative stress biomarkers. In assisted reproduction treatment cycle fat consumption and its component were assessed. A percentage of metaphase ΙΙ stage oocytes, fertilization rate were considered as markers of oocyte competence and non-fragmented embryo rate, mean of blastomer and good cleavage (embryos with more than 5 cells on 3 days post insemination) rate were considered as markers of embryo quality. Results: The MDA level in follicular fluid was positively related to polyunsaturated fatty acids intake level (p=0.02) and negatively associated with good cleavage rate (p=0.045). Also good cleavage rate (p=0.005) and mean of blastomer (p=0.006) was negatively associated with polyunsaturated fatty acids intake levels. The percentage of metaphase ΙΙ stage oocyte was positively related to the TAC levels in follicular fluid (p=0.046). The relationship between the OS biomarkers in FF and the fertilization rate was not significant. Conclusion: These findings revealed that fat rich diet may induce the OS in oocyte environment and negatively influence embryonic development. This effect can partially be accounted by polyunsaturated fatty acids uptake while oocyte maturation is related to TAC and oocytes with low total antioxidant capacity have lower chance for fertilization and further development. PMID:24639727

  7. Nitrato de amônio e nitrato de potássio no desenvolvimento in vitro de embriões somáticos de pupunheiras Ammonium nitrate and potassium nitrate on in vitro peach palm somatic embryos development

    Directory of Open Access Journals (Sweden)

    Thaís Lobo dos Santos

    2010-07-01

    Full Text Available A pupunheira tem se mostrado boa alternativa à exploração extrativista de espécies como juçara e açaí. Porém, quando produzida via sementes apresenta plantio heterogêneo, o que torna a micropropagação ótima alternativa para seu cultivo em larga escala. O experimento objetivou avaliar a influência da interação entre nitrato de amônio e nitrato de potássio no enraizamento de microplantas obtidas a partir do desenvolvimento in vitro de embriões somáticos de pupunheiras, visando otimizar seu protocolo de micropropagação. Os embriões foram inoculados em meio MS com diferentes concentrações de NH4NO3 e KNO3. Aos 120 e 240 dias de cultivo, foram avaliados parâmetros morfofisiológicos do desenvolvimento radicular. Aos 120 dias, nas concentrações mais baixas de nitrogênio, houve estímulo ao crescimento das raízes e a maior ramificação radicular ocorreu com baixas concentrações de NH4NO3 e altas de KNO3. Aos 240 dias, notou-se redução do crescimento radicular e raízes finas prevalecentes. Conclui-se que até 120 dias as microplantas devem ser mantidas em meio com concentrações menores de NH4NO3 e maiores de KNO3 que as empregadas no meio MS, voltando para as concentrações usuais após esse período.Pejibaye is a good alternative for the extractive exploration of species such as juçara and açaí. However, when it is produced by seeds its planting is heterogeneous, which makes micropropagation a good alternative for cultivation in large scale. This study aimed to evaluate the influence of the interaction between ammonium nitrate and potassium nitrate on peach palm somatic embryos rooting in vitro cultivated, for optimization of the micropropagation protocol. The embryos were inoculated in MS medium with different concentrations of NH4NO3 and KNO3. Morphophisyologic parameters of root development were measured at 120 and 240 days of cultivation. At 120 days, at lower nitrogen concentrations, roots were stimulated

  8. DIRECT AND INDIRECT SOMATIC EMBRYOGENESIS ON ARABICA COFFEE (Coffea arabica

    Directory of Open Access Journals (Sweden)

    Meynarti Sari Dewi Ibrahim

    2013-10-01

    Full Text Available Propagation of Coffea arabica L. through direct and indirect somatic embryogenesis technique is promising for producing large number of coffee seedlings. The objectives of the research were to evaluate methods for direct and indirect somatic embryo-genesis induction of C. arabica var. Kartika. The explants were the youngest fully expanded leaves of arabica coffee. The evalu-ated medium was modified Murashige and Skoog (MS medium supplemented with a combination of 2.26 µM 2,4-D + 4.54 or 9.08 µM thidiazuron; 4.52 µM 2,4-D + 4.54 or 9.08 µM thidiazuron; or 9.04 µM 2,4-D + 9.08 µM thidiazuron. Both calli (100 mg and pre-embryos developed from the edge of leaf explants were subcultured into regeneration medium (half strength MS with modified vitamin, supplemented with kinetine 9.30 µM and adenine sulfate 40 mg L-1. The results showed coffee leaf explant cultured on medium containing 2.26 µM 2,4-D + 4.54 or 9.08 µM thidiazuron to induce direct somatic embriogenesis from explant, while that of 4.52 or 9.04 µM 2,4-D + 9.08 µM thidiazuron to induced indirect somatic embrio-genesis. The medium for calli induction from coffee by explants was medium supplemented with 4.52 or 9.04 µM 2,4-D in combination with 9.08 µM thidiazuron. On the other hand, the best medium for activation of induction of somatic embryos was MS medium supplemented with 9.04 µM 2,4-D + 9.08 µM thidiazuron. Based on this results, the first step for developing micropropagation for coffee has been resolved. The subsequent studies will be directed to evaluate agronomic performance of the derived planting materials.

  9. Analysis of potential radiation-induced genetic and somatic effects to man from milling of uranium

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1984-01-01

    Potential mortality from natural causes and from radiation exposure conditions typical of those in the vicinity of uranium mills in the western USA was calculated. The exposure conditions were those assumed to exist in the vicinity of a hypothetical model mill. Dose rates to organs at risk were calculated as a function of time using the Uranium Dispersion and Dosimetry Code (Momeni et al. 1979). The changes in population size, birth rates, and radiation-induced and natural mortalities were calculated using the PRIM code (Momeni 1983). The population of the region within a radius of 80 km from the model mill is projected to increase from 57 428 to 75 638.6 during the 85 years of this analysis. Within the same period, the average birth rates for five-year periods increase from 5067.8 to 7436.1. The cumulative deaths within the five-year periods increase from 724 and 3501.8 from spontaneously induced neoplasms and all causes, respectively, to 1538.2 and 6718.2. In comparison to natural causes, radiation-induced mortality is negligible. The highest rate of death from radiation in any five-year period is only 0.2, compared with 1538.2 deaths attributable to spontaneous incidence. The total radiation-induced genetic disorders were much less than unity for the 85-year period of analysis, in contrast with the 10.7% natural incidence of these disorders

  10. Numerical Chromosome Errors in Day 7 Somatic Nuclear Transfer Bovine Blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J.; VIUFF, Dorte; Tan, Shijian

    2002-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...

  11. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  12. Fishery-induced selection for slow somatic growth in European eel.

    Directory of Open Access Journals (Sweden)

    Daniele Bevacqua

    Full Text Available Both theoretical and experimental studies have shown that fishing mortality can induce adaptive responses in body growth rates of fishes in the opposite direction of natural selection. We compared body growth rates in European eel (Anguilla anguilla from three Mediterranean stocks subject to different fishing pressure. Results are consistent with the hypotheses that i fast-growing individuals are more likely to survive until sexual maturity than slow-growing ones under natural conditions (no fishing and ii fishing can select for slow-growing individuals by removing fast-growing ones. Although the possibility of human-induced evolution seems remote for a panmictic species like such as the European eel, further research is desirable to assess the implications of the intensive exploitation on this critically endangered fish.

  13. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S.

    2005-01-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  14. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Adam Burton

    2013-11-01

    Full Text Available Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.

  15. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Thompson, Jennifer; Doi, Takashi; Power, Eoin; Balasubramanian, Ishwarya; Puri, Prem; Bannigan, John

    2010-01-01

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  16. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings.

    Science.gov (United States)

    Sisunandar; Rival, Alain; Turquay, Patricia; Samosir, Yohannes; Adkins, Steve W

    2010-07-01

    The present study aimed at exploring the fidelity of coconut (Cocos nucifera L.) plants recovered from cryopreservation. Zygotic embryos from various different cultivars were cryopreserved following four successive steps, namely: rapid dehydration, rapid freezing, rapid thawing and in vitro recovery followed by acclimatization. At the end of the acclimatization period, the seedlings were compared to counterparts of the same age, which were produced from non-cryopreserved embryos. Both series were submitted to morphological, cytological and molecular comparisons. No significant differences in terms of growth rates could be measured. In addition, no morphological variation could be detected through the measurement of shoot elongation rates, production of opened leaves, and the number and total length of primary roots. Karyotype analysis revealed the same chromosome number (2n = 32) in all studied cultivars independently of cryopreservation. No significant differences could be observed between control and cryopreserved material concerning the type of chromosomes, the length of the long and short arms, the arm length ratio and the centromeric index. However, idiogram analysis did show a greater number of black banding on chromosomes isolated from cryopreserved material. Genetic and epigenetic fidelity was assessed through microsatellite (SSR) analysis and global DNA methylation rates; no significant differences would be observed between genomic DNAs isolated from seedlings originating from cryopreserved embryos and respective controls. In conclusion, our results suggest that the method of cryopreservation under study did not induce gross morphological, genetic or epigenetic changes, thus suggesting that it is an appropriate method to efficiently preserve coconut germplasm.

  17. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects.

    Science.gov (United States)

    Hu, Lingling; Zhu, Jingmin; Rotchell, Jeanette M; Wu, Lijiao; Gao, Jinjuan; Shi, Huahong

    2015-03-01

    The frog embryo teratogenesis assay-Xenopus (FETAX) is an established method for the evaluation of the developmental toxicities of chemicals. To develop an enhanced FETAX that is appropriate for common environmental contaminants, we exposed Xenopus tropicalis embryos to eight compounds, including tributyltin, triphenyltin, CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic acid and 9-cis-retinoic acid. Multiple malformations were induced in embryos particularly following exposure to tributyltin, triphenyltin and pyraclostrobin at environmentally relevant concentrations. Based on the range of observed malformations, we proposed a phenotypic assessment method with 20 phenotypes and a 0-5 scoring system. This derived index exhibited concentration-dependent relationships for all of the chemicals tested. Furthermore, the phenotype profiles were characteristic of the different tested chemicals. Our results indicate that malformation phenotypes can be quantitatively integrated with the primary endpoints in conventional FETAX assessments to allow for increased sensitivity and measurement of quantitative effects and to provide indicative mechanistic information for each tested chemical. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Eiji; Furusawa, Toshiharu [Kyoto Inst. of Tech. (Japan). Faculty of Textile Science; Nagaoka, Shunji [Fujita Health Univ., Toyoake, Aichi (Japan). School of Health Sciences] [and others

    2002-12-01

    In order to investigate whether eggs of the black-striped strain (P{sup S}) of the silkworm, Bombyx mori, represent an appropriate model for estimating the biological effect of cosmic radiation, radiosensitivity of the eggs against X-rays and heavy ion particles was examined as ground-based experiments. The exposure of diapause eggs to X-rays or heavy ion particles resulted in somatic mutations appearing as a white spot on the black integument during larval stage. Irradiation of non-diapause eggs with X-rays demonstrated a significant difference in frequency of the mutation between fractionated and single administration doses, but no difference was observed in diapause eggs. Incidence of the mutation as induced by carbon ion beams for 15-day old eggs was higher for eggs that had been kept at 15 deg C than those kept at 25 deg C. Neon beam irradiation of diapause eggs displayed dose- and linear energy transfer (LET)-dependent effects, causing a maximal rate of the mutation at 150 keV/{mu}m. These results confirm that B. mori eggs represent valid models for estimating the biological effects of cosmic radiation. (author)

  19. Efficient somatic embryogenesis and molecular marker based analysis as effective tools for conservation of red-listed plant Commiphora wightii

    Directory of Open Access Journals (Sweden)

    ASHOK KUMAR PARMAR

    2014-08-01

    Full Text Available A refined and high efficiency protocol for in vitro regeneration of Commiphora wightii, a red-listed medicinal plant of medicinal importance, has been developed through optimized somatic embryogenesis pathway. Cultures from immature fruits were induced and proliferated on B5 medium supplemented with 2.26 µM 2,4-D. Embryogenic calli were obtained and then maintained for extended periods by alternately subculturing on modified MS medium supplemented with 1.11 µM BAP, 0.57 µM IBA and with 0.5% activated charcoal or without PGR every 3-4 weeks. Cyclic embryogenesis was obtained. Late torpedo and early cotyledonary stages somatic embryos were regularly harvested from PGR-free modified MS medium. It was found that percent moisture available in culture containers play a critical role in maturation and subsequent germination of somatic embryos of C. wighti. Maximum germination of more than 80% was achieved through media recycling. Somatic embryo derived plants (emblings were acclimatized. After 5 months, acclimatized plants were out-planted in experimental field. These morphologically normal plants have been surviving for over 3 years. Molecular polymorphism was clearly evident when these plants were tested using RAPD primers, making the plants suitable for use in its species restoration program.

  20. Changes in Sperm Motility and Capacitation Induce Chromosomal Aberration of the Bovine Embryo following Intracytoplasmic Sperm Injection.

    Directory of Open Access Journals (Sweden)

    Yoku Kato

    Full Text Available Intracytoplasmic sperm injection (ICSI has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.

  1. [Comparative study of effect of infrared, submillimeter, and millimeter electromagnetic radiation on wing somatic mutations in Drosophila melanogaster induced by gamma-irradiation].

    Science.gov (United States)

    Fedorov, V I; Pogodin, A S; Dubatolova, T D; Varlamov, A V; Leont'ev, K V; Khamoian, A G

    2001-01-01

    It was shown that the number of spontaneous and gamma-radiation-induced somatic mutations in wing cells of fruit flies (third instar larvae) exposed to laser irradiation of submillimeter range (lambda = 81.5 microns) was significantly lower than in control. Laser irradiation did not affect the number of recombinations. Exposure to laser radiation in the infrared range and electromagnetic waves of the millimeter range (lambda = 3.8 mm) enhanced the effect of gamma-irradiation.

  2. Plant regeneration of Michelia champaca L., through somatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... as a basic material for perfume, cosmetic, and medicine. The development of an ... Plant regeneration systems of M. champaca through somatic ... The embryogenic cells proliferated and formed somatic embryos (30%) after four to six .... by using MS excel program and Duncan's new multiple range test.

  3. Somatic embryogenesis and plant regeneration from leaf explants of ...

    African Journals Online (AJOL)

    An attempt was made to study the somatic embryogenesis and plant regeneration from the in vitro leaf explants of Rumex vesicarius L. a renowned medicinal plant, which belongs to polygonaceae family. Effective in vitro regeneration of R. vesicarius was achieved via young leaf derived somatic embryo cultures.

  4. Protective effect of Rhus coriaria fruit extracts against hydrogen peroxide-induced oxidative stress in muscle progenitors and zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Fadia Najjar

    2017-12-01

    Full Text Available Background and Purpose Oxidative stress is involved in normal and pathological functioning of skeletal muscle. Protection of myoblasts from oxidative stress may improve muscle contraction and delay aging. Here we studied the effect of R. coriaria sumac fruit extract on human myoblasts and zebrafish embryos in conditions of hydrogen peroxide-induced oxidative stress. Study Design and Methods Crude ethanolic 70% extract (CE and its fractions was obtained from sumac fruits. The composition of sumac ethyl acetate EtOAc fraction was studied by 1H NMR. The viability of human myoblasts treated with CE and the EtOAc fraction was determined by trypan blue exclusion test. Oxidative stress, cell cycle and adhesion were analyzed by flow cytometry and microscopy. Gene expression was analyzed by qPCR. Results The EtOAc fraction (IC50 2.57 µg/mL had the highest antioxidant activity and exhibited the best protective effect against hydrogen peroxide-induced oxidative stress. It also restored cell adhesion. This effect was mediated by superoxide dismutase 2 and catalase. Pre-treatment of zebrafish embryos with low concentrations of the EtOAc fraction protected them from hydrogen peroxide-induced death in vivo. 1H NMR analysis revealed the presence of gallic acid in this fraction. Conclusion Rhus coriaria extracts inhibited or slowed down the progress of skeletal muscle atrophy by decreasing oxidative stress via superoxide dismutase 2 and catalase-dependent mechanisms.

  5. Induced chromosomal aberrations in somatic cells of Nigella sativa L. by mitomycin C.

    Science.gov (United States)

    Kumar, P; Nizam, J

    1978-01-01

    A cytological study was carried out on root tips of Nigella sativa L. by treatment with Mitomycin C at 0.001% for six time intervals (10, 15, 20, 30, 40, and 50 min). The chromosomal abnormalities were increasingly proportionate to the increase in time of treatment. The seedlings treated with a 0.001% concentration of Mitomycin C for 10 min. did not show any significant effect. At other time intervals, the effect was observed to be quite significant. Beyond 40 min. treatment almost all the cells would become sticky. Thirty minutes' treatment showed significant effect, inducing various types of chromosomal aberrations in the anaphase, such as bridges and fragments of 34.13% and 48.07%, respectively.

  6. Studies for Somatic Embryogenesis in Sweet Potato

    Science.gov (United States)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  7. Somatic Embryogenesis in Juniperus Procera using Juniperus ...

    African Journals Online (AJOL)

    The aim for this particular research was initially an adaptation of optimum half strength lithium chloride-sodium propionate (LP) medium protocol for growth and proliferation of embryogenic ... Additional study on the effect of seed extraction to the growing embryogenic culture showed no effect on mature somatic embryos.

  8. Electron microscope study of the genesis of strain-induced martensite embryos

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1984-01-01

    Previous work of Olson and Cohen and Murr, et al., is used to describe the genesis of martensite embryos which form at the intersection of microscopic shear bands in deformed type 304 stainless steel. It is shown that the intersection volume included within intersecting shear bands contains irregular and smaller dispersed volume segments forming α' martensite (bcc). These correspond to the satisfaction of specific intersections of stacking faults or partial dislocations on approximately every second (111)/sub fcc/ plane in one direction, and every third (111)/sub fcc/ plane in the other (conjugate) direction. The requisite stacking fault or partial dislocation arrangements are produced in an irregular fashion resulting in α' martensite embryos nucleating in an incomplete and irregular fashion within the intersection volume. 9 references, 2 figures

  9. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions

    International Nuclear Information System (INIS)

    Teraoka, Hiroki; Urakawa, Satsuki; Nanba, Satomi; Nagai, Yuhki; Wu Dong; Imagawa, Tomohiro; Tanguay, Robert L.; Svoboda, Kurt; Handley-Goldstone, Heather M.; Stegeman, John J.; Hiraga, Takeo

    2006-01-01

    Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 μg/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation or mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC 5 values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, α-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism

  10. Novel technologies using radiation and somatic embryogenesis for Kenaf improvement

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Siti Mariam Mohd Nahar; Siti Hajar Mohd Nahar; Abdul Rahim Harun; Azhar Mohamad; Sobri Hussein

    2010-01-01

    Full text: Kenaf (Hibiscus cannabinus L.) is a plant in the Malvaceae family, similar to roselle (Hibiscus sabdariffa), cotton (Gossypium hirsutum L.) and okra (Abelmoschus esculentus), holds a promising potential in the Malaysian bio composite industry. Its long fibres are suitable in the process of making a number of products such as pulp and paper, fibre and particle boards, as well as fibre reinforced plastic components and chemical absorbent. Most varieties of kenaf are photo period sensitive and vegetative growth increases until the daylight period becomes less than 12 h 30 min. flowering is then initiated and the vegetative growth rate declines. At present, most of the varieties planted by the farmers produced very low yield, between 3-5 tons/ha. The aim of this research proposal is to study the potential of using nuclear technique with the use radiation in combination with biotechnology to induce genetic variability in kenaf using somatic embryogenesis. Since mutation is a single cell event, irradiation of cell cultures such as somatic embryos will induce high rate of mutation for selection of desired traits. One of the main objectives of the project was to establish an efficient and productive regeneration system for intact plants from somatic embryos obtained from the original mother plant varieties: G4, V36 dan G393. Once regeneration protocol has been optimized, somatic embryos were irradiated using both acute (high dose rate) and chronic (lower dose rate) gamma irradiation with effective doses (2-3 doses). It takes between 4-5 months to reach maximum height of 4-6 meters from seed propagated plants before they can be harvested. With the use of in vitro mutagenesis, screening and selection of new mutant lines with traits of interest can be achieved within a short period of time (3-5 years). Field evaluations were carried out in collaboration with National Kenaf and Tobacco Board (NKTB) and Kelantan Biotech Corporation Sdn. Bhd. targeted for desired

  11. A threshold in the dose-response relationship for X-ray induced somatic mutation frequency in drosophila melanogaster

    International Nuclear Information System (INIS)

    Koana, Takao; Sakai, Kazuo; Okada, M.O.

    2004-01-01

    The dose-response relationship of ionizing radiation and its stochastic effects has been thought to be linear without any thresholds for a long time. The basic data for this model was obtained from mutational assays using germ cells of male fruit fly Drosophila melanogaster. However, cancer-causing activity should be examined more appropriately in somatic cells than in germ cells. In this paper, we examined the dose-response relationship of X-ray irradiation and somatic mutation in drosophila, and found a threshold at approximately 1 Gy in the DNA repair proficient flies. In the repair deficient siblings, the threshold was smaller and the inclination of the dose-response curve was five times steeper. These results suggest that the dose-response relationship between X-ray irradiation and somatic mutation has a threshold, and that the DNA repair function contributes to its formation. (author)

  12. Somatic embryogenesis for efficient micropropagation of guava (Psidium guajava L.).

    Science.gov (United States)

    Akhtar, Nasim

    2013-01-01

    Guava (Psidium guajava L.) is well known for edible fruit, environment friendly pharmaceutical and commercial products for both national and international market. The conventional propagation and in vitro organogenesis do not meet the demand for the good quality planting materials. Somatic embryogenesis for efficient micropropagation of guava (P. guajava L.) has been developed to fill up the gap. Somatic embryogenesis and plantlets regeneration are achieved from 10-week post-anthesis zygotic embryo explants by 8-day inductive treatment with different concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) on MS agar medium containing 5% sucrose. Subsequent development and maturation of somatic embryos occur after 8 days on MS basal medium supplemented with 5% sucrose without plant growth regulator. The process of somatic embryogenesis shows the highest relative efficiency in 8-day treatment of zygotic embryo explants with 1.0 mg L(-1) 2,4-D. High efficiency germination of somatic embryos and plantlet regeneration takes place on half strength semisolid MS medium amended with 3% sucrose within 2 weeks of subculture. Somatic plantlets are grown for additional 2 weeks by subculturing in MS liquid growth medium containing 3% sucrose. Well-grown plantlets from liquid medium have survived very well following 2-4 week hardening process. The protocol of somatic embryogenesis is optimized for high efficiency micropropagation of guava species.

  13. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    Science.gov (United States)

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  14. Preimplantation maternal stress impairs embryo development by inducing oviductal apoptosis with activation of the Fas system.

    Science.gov (United States)

    Zheng, Liang-Liang; Tan, Xiu-Wen; Cui, Xiang-Zhong; Yuan, Hong-Jie; Li, Hong; Jiao, Guang-Zhong; Ji, Chang-Li; Tan, Jing-He

    2016-11-01

    What are the mechanisms by which the preimplantation restraint stress (PIRS) impairs embryo development and pregnancy outcome? PIRS impairs embryo development by triggering apoptosis in mouse oviducts and embryos,and this involves activation of the Fas system. Although it is known that the early stages of pregnancy are more vulnerable than later stages to prenatalstress, studies on the effect of preimplantation stress on embryo developmentare limited. Furthermore, the mechanisms by which psychological stress impairs embryo development are largely unknown. These issues are worth exploring using the mouse PIRS models because restraint of mice is an efficient experimental procedure developed for studies of psychogenic stress. Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in FasL in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female and male mice were used 8-10 weeks and 10-12 weeks after birth, respectively. Female mice showing vaginal plugs were paired by weight and randomly assigned to restraint treatments or as controls. For restraint treatment, an individual mouse was put in a micro-cage with food and water available. Control mice remained in their cages with food and water during the time treated females were stressed. Female mice were exposed to PIRS for 48 h starting from 16:00 on the day of vaginal plug detection. At the end of PIRS, levels of glucorticoids (GC), corticotropin-releasing hormone (CRH)and redox potential were measured in serum, while levels of GC, GC receptor (GR), CRH, CRH receptor (CRHR), Fas and Fas ligand (FasL) protein, mRNAs for brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), oxidative stress (OS) and apoptosis were examined in oviducts. Preimplantation development and levels of GR, Fas, redox potential and apoptosis were observed in embryos recovered at different times after the initiation of PIRS. The gld mice

  15. [Conception rate and embryo development in guinea pigs with synchronized estrus induced by progesterone implant].

    Science.gov (United States)

    Ueda, H; Kosaka, T; Takahashi, K W

    1994-01-01

    Observations were made on the timing of mating and the pre-implantation development of fertilized eggs in guinea pigs synchronized by long-term progesterone treatment. Females received a subcutaneous implant of progesterone-filled silastic tubing for 14 days. Copulation was observed from the evening of day 4 to the morning of day 6 in 53 of 54 females (98%). Most of them (47/53, 89%) copulated on day 5 after removal of the tubing. Designating the day of copulation (day 5 after removal of the tubing) as day 0 of gestation, embryos collected from the genital tract were at the 4-cell, 8-cell, morula, and blastocyst stages on days 1, 3, 4 and 5 of gestation, respectively. Eggs were recovered at high incidence (85-100%) from days 1 to 5 of gestation. On day 6 gestation, no eggs were recovered from the genital tract, suggesting that implantation had occurred. The mean litter size (+/- S. D.) was 4.0 +/- 0.8 pups, which were born normally after a mean gestation period of 67 +/- 1 days in 7 synchronized females. Since the female guinea pigs synchronized by the long-term progesterone treatment had normal reproductive ability similar to that of cyclic females, this technique would make it possible to obtain animals at a scheduled time even in smaller-sized colonies. In addition, observations on the pre-implantation development of embryos in females with synchronized estrus might be a useful aid in the field of reproductive research.

  16. InP/ZnS QDs exposure induces developmental toxicity in rare minnow (Gobiocypris rarus) embryos.

    Science.gov (United States)

    Chen, Yao; Yang, Yang; Ou, Fang; Liu, Li; Liu, Xiao-Hong; Wang, Zhi-Jian; Jin, Li

    2018-04-05

    We investigated the in vivo toxicity of InP/ZnS quantum dots (QDs) in Chinese rare minnow (Gobiocypris rarus) embryos. The 72 h post-fertilization (hpf) LC 50 (median lethal concentration) was 1678.007 nmol/L. Rare minnows exposed to InP/ZnS QDs exhibited decreased spontaneous movement, decreased survival and hatchability rates, and an increased malformation rate. Pericardial edema, spinal curvature, bent tails and vitelline cysts were observed. Embryonic Wnt8a and Mstn mRNA levels were significantly up-regulated after InP/ZnS QDs treatment at 48 hpf (200 nmol/L) (p InP/ZnS QDs treatments did not significantly change the Olive tail moments (p > 0.05). Thus, InP/ZnS QDs caused teratogenic effects and death during the development of Chinese rare minnow embryos, but InP/ZnS QDs did not cause significant genetic toxicity during Chinese rare minnow development. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Peptone and tomato extract induced early stage of embryo development of Dendrobium phalaenopsis Orchid

    Directory of Open Access Journals (Sweden)

    Nintya Setiari

    2017-04-01

    Full Text Available Germination and growth of orchid seeds can be accelerated by the addition of organic supplement and plant extract in culture medium. The objective of this study was to determine the effect of peptone and tomato extract on early stage of embryo development of Dendrobium phalaenopsis orchids. Orchid seeds were sown on NP and VW medium with addition of 10% of CW (NPCW and VWCW.  Five weeks after seed germination, about 58.03% seed germination was observed on VWCW medium, and only 37.45% seed germination on NPCW. Tomato extract and peptone were added in VWCW, resulting VWCWTP medium. After 4-8 weeks on VWCWTP, 94.42% seeds was germinated into plantlet, but only 67.30% germinated seeds on VWCW. To get optimal growth and development of  D.  phalaenopsis orchids embryos in the in vitro condition, supplement of 100 ml.L-1 coconut water, 100 mg.L-1 tomato extract and 2 mg.L-1 peptone into VW basic medium is required.

  18. Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1983-01-01

    The deformation of type 304 stainless steel produces a preponderance of strain-induced /chi/ (b.c.c.) martensite, which nucleates as stable embryos at micro-shear band or twin-fault intersections as proposed by Olson and Cohen. The two intersecting micro-shear bands must have a specific defect (fault-displacement) structure, and for stable martensite embryos to form requires a minimal micro-shear band thickness ranging from 50-70 A. The critical nature of nucleation is influenced by the local temperature and strain. The structure, geometry, and morphology of strain-induced martensite embryos is essentially invariant regardless of the strain rate, strain state or temperature. Larger volume fractions of martensite evolve at large strains (greater than or equal to 20%) as a result of embryo coalescence to produce a blocky-type morphology. Martensite embryos and coalesced volume elements of /chi/ are frequently characterized by an irregular non-homogeneous distribution of smaller b.c.c. regimes which result from the irregular satisfaction of the necessary and specific fault-displacement requirements within a larger intersection volume

  19. Somatic symptom disorder

    Science.gov (United States)

    ... related disorders; Somatization disorder; Somatiform disorders; Briquet syndrome; Illness anxiety disorder References American Psychiatric Association. Somatic symptom disorder. Diagnostic and Statistical Manual of Mental Disorders . ...

  20. Somatic Embryogenesis in Parana Pine (Araucaria angustifolia (Bert. O. Kuntze

    Directory of Open Access Journals (Sweden)

    Santos André Luis Wendt dos

    2002-01-01

    Full Text Available Embryogenic cultures of Araucaria angustifolia were induced from dominant and non-dominant zygotic embryos excised from immature seeds proceeding from three different genotypes and five harvest dates. Zygotic embryos were inoculated in inductive culture medium LP and BM supplemented with or without plant growth regulators 2,4-D (5 µM, BA (2 µM and Kin (2 µM. The genotype of the mother tree and the developmental explant stage affected the induction frequency. In the maintenance phase, embryogenic cultures were maintained at continuous repetitive cell cycles every 20 days in semi-solid or liquid medium. In the maturation phase the culture medium was supplemented with different types and levels of growth regulators, osmotic agents, carbohydrates and derived. Embryogenic cultures inoculated in culture medium supplemented with PEG 3350 (6 and 9%, maltose (6 and 9%, plus BA and Kin (1 µM each resulted in the progression of somatic embryos to globular and torpedo developmental stages.

  1. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s

    International Nuclear Information System (INIS)

    Geraci, Fabiana; Pinsino, Annalisa; Turturici, Guiseppina; Savona, Rosalia; Giudice, Giovanni; Sconzo, Gabriella

    2004-01-01

    Treatment with heavy metals, such as nickel, lead or cadmium, elicits different cellular stress responses according to the metal used and the length of treatment. In Paracentrotus lividus embryos the inducible forms of HSP70 (HSP70/72) are different in molecular mass from the constitutively expressed HSP75, and they can be used as markers of cellular stress. Even a short treatment with each metal induces the synthesis of HSP70/72 which remain stable for at least 20 h and differ little in their isoelectric points. Continuous treatment from fertilization with nickel or lead produces late irregular pluteus embryos, with peak HSP70/72 synthesis at blastula followed by the arrest of synthesis by pluteus. On the contrary, the same treatment with cadmium induces continuous HSP70/72 synthesis and produces irregular gastrula embryos which then degenerate. Moreover, a long treatment induces over control embryos a slight increase in the amount of constitutive HSP75 during development while lead treatment depresses constitutive HSP75 at early stages and doubles its quantity at late stages

  2. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-01-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group)

  3. A comparative study on the frequencies of radiation-induced chromosome aberrations in the somatic and germ cells in mouse and monkey

    International Nuclear Information System (INIS)

    Sobels, F.H.

    1976-06-01

    Two systems were mainly used for studying the relationship between radiation induced chromosome aberration frequencies in somatic and germ cells. The first consists of reciprocal translocation induced in bone-marrow cells of mice compared to reciprocal translocation induced spermatogonia (scored in descending spermatocytes) of the same mice. Dose-response curves for induced aberrations in both cell types (0-100-200-300-400-500 and 600 R X-rays) and dose rate effects indicated that (130-1.92-0.0287 R/min) of a 400 R γ-ray exposure of the two cell types mitotically dividing germ cells respond to radiation similarly to mitotic dividing germ cells. Clonal proliferation or selective elimination of aberration-carrying cells, and other post-irradiation factors can, however, cause great differences in absolute aberration frequencies. A similar study was attempted, using the rhesus monkey as a second system. Its bone-marrow cells were proved unsuitable for induced reciprocal translocations. Stimulated peripheral blood lymphocytes were studied instead. Following 100, 200 and 300 R of X-rays, the frequencies of induced dicentric chromosomes were compared to those of induced reciprocal translocations in spermatogonia. Human peripheral blood was studied similarly. It was concluded that: (a) The absolute frequencies of chromosome aberrations in somatic and germ cells of the rhesus monkey are low compared to most other mammalian species. (b) The ratio between dicentric frequencies and reciprocal translocation frequencies at 100 R and 200 R differed significantly from 4:1 reported for mouse and Chinese hamster and 2:1 for marmoset and man. (c) Although the numbers of 'effective chromosome arms' in man and rhesus monkey are similar (81 vs 83), the rhesus monkey showed at all doses a lower rate of induction of dicentrics in blood lymphocytes than man, reaching statistical significance at the 300 R level

  4. Nucleolar remodeling in nuclear transfer embryos

    DEFF Research Database (Denmark)

    Laurincik, Jozef; Maddox-Hyttel, Poul

    2007-01-01

    Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate the devel......Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate...... nucleoli are not apparent until the 5th cell cycle, whereas in somatic cell nuclear transfer embryos the functional nucleoli emerge already during the 3rd cell cycle. Intergeneric reconstructed embryos produced by the fusion of bovine differentiated somatic cell to a nonactivated ovine cytoplast fail...

  5. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  6. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    Science.gov (United States)

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  7. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-01-01

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  8. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  9. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition During Oogenesis in Chicken Embryos.

    Science.gov (United States)

    Hou, Fuyin; Xiao, Min; Li, Jian; Cook, Devin W; Zeng, Weidong; Zhang, Caiqiao; Mi, Yuling

    2016-04-01

    Cadmium (Cd) is an environmental endocrine disruptor that has toxic effects on the female reproductive system. Here the ameliorative effect of grape seed proanthocyanidin extract (GSPE) on Cd-induced meiosis inhibition during oogenesis was explored. As compared with controls, chicken embryos exposed to Cd (3 µg/egg) displayed a changed oocyte morphology, decreased number of meiotic germ cells, and decreased expression of the meiotic marker protein γH2AX. Real time RT-PCR also revealed a significant down-regulation in the mRNA expressions of various meiosis-specific markers (Stra8, Spo11, Scp3, and Dmc1) together with those of Raldh2, a retinoic acid (RA) synthetase, and of the receptors (RARα and RARβ). In addition, exposure to Cd increased the production of H2 O2 and malondialdehyde in the ovaries and caused a corresponding reduction in glutathione and superoxide dismutase. Simultaneous supplementation of GSPE (150 µg/egg) markedly alleviated the aforementioned Cd-induced embryotoxic effects by upregulating meiosis-related proteins and gene expressions and restoring the antioxidative level. Collectively, the findings provided novel insights into the underlying mechanism of Cd-induced meiosis inhibition and indicated that GSPE might potentially ameliorate related reproductive disorders. © 2016 Wiley Periodicals, Inc.

  11. Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells

    International Nuclear Information System (INIS)

    Roy, K.; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    1999-01-01

    We studied X-ray-induced delayed cell death, delayed giant cell formation and delayed chromosome aberrations in normal human embryo cells to explore the relationship between initial radiation damage and delayed effect appeared at 14 to 55 population doubling numbers (PDNs) after X-irradiation. The delayed effect was induced in the progeny of X-ray survivors in a dose-dependent manner and recovered with increasing PDNs after X-irradiation. Delayed plating for 24 h post-irradiation reduced both acute and delayed lethal damage, suggesting that potentially lethal damage repair (PLDR) can be effective for relieving the delayed cell death. The chromosome analysis revealed that most of the dicentrics (more than 90%) observed in the progeny of X-ray survivors were not accompanied with fragments, in contrast with those observed in the first mitosis after X-irradiation. The present results indicate that the potentiality of genetic instability is determined during the repair process of initial radiation damage and suggest that the mechanism for formation of delayed chromosome aberrations by radiation might be different from that of direct radiation-induced chromosome aberrations. (author)

  12. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development.

    Science.gov (United States)

    Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C

    2017-10-01

    The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.

  13. In vitro multiplication and somatic embryogenesis of Perezia pinnatifida (Asteraceae medicinal Andean plant

    Directory of Open Access Journals (Sweden)

    Percy Olivera-Gonzales

    2017-10-01

    Full Text Available This work inform on in vitro propagation of the "valeriana" Perezia pinnatifida (Humb. & Bonpl. Wedd. Shoot multiplication and indirect somatic embryogenesis methodologies were performed. The basal culture medium for all stages was Murashige and Skoog, middle of salts supplemented with 2.0% sucrose, 0.3% phytagel and pH 5.67; the treatments were prepared with or without phytohormones. The hormonal supplements for the shoot multiplication were: BAP 1.0 mg.L-1 + ANA 0.01 mg.L-1, and BAP 1.0 mg.L-1; for embryogenic callus induction were: ANA or 2,4-D (1.0 mg.L-1 and 2.0 mg.L-1; and for the embryo germination were: BAP (0.5 and 1.0 mg.L-1 or BAP 0.5mg.L-1 + ANA 0.05mg.L-1. BAP 1.0 mg.L-1 produced the higher number buds. For somatic embryogenesis, ANA 1.0 mg.L-1 induced a greater area of embryogenic callus, and BAP 0.5 mg.L-1 allowed major germination of the somatic embryos.

  14. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    International Nuclear Information System (INIS)

    Teraoka, Hiroki; Kubota, Akira; Dong, Wu; Kawai, Yusuke; Yamazaki, Koji; Mori, Chisato; Harada, Yoshiteru; Peterson, Richard E.; Hiraga, Takeo

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo

  15. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  16. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  17. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster; Mutacion y recombinacion somaticas inducidas con neutrones termicos de reactor en Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  18. Somatic embryogenesis and plant regeneration of Capsicum baccatum L.

    Directory of Open Access Journals (Sweden)

    Peddaboina Venkataiah

    2016-06-01

    Full Text Available A plant regeneration protocol via somatic embryogenesis was achieved in cotyledon and leaf explants of Capsicum baccatum, when cultured on MS medium supplemented with various concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D, 0.5–5.0 mg l−1 in combination with Kinetin (Kn, 0.5 mg l−1 and 3% sucrose. Various stages were observed during the development of somatic embryos, including globular, heart, and torpedo-stages. Torpedo stage embryos were separated from the explants and subcultured on medium supplemented with various concentrations of different plant growth regulators for maturation. Maximum percentage (55% of somatic embryo germination and plantlet formation was found at 1.0 mg l−1 BA. Finally, about 68% of plantlets were successfully established under field conditions. The regenerated plants were morphologically normal, fertile and able to set viable seeds.

  19. Detection of γ-ray-induced DNA damages in malformed dominant lethal embryos of the Japanese medaka (Oryzias latipes) using AP-PCR fingerprinting

    International Nuclear Information System (INIS)

    Kubota, Yoshiko; Shimada, Atsuko; Shima, Akihiro

    1992-01-01

    Adult male fish of the medaka HNI strain exposed to 9.5 Gy or 19 Gy (0.95 Gy/min) of γ-rays were mated with non-irradiated female fish of the Hd-rR strain. Genomic DNA was prepared from malformed individual embryos which were expected to be dominant lethal and used for AP-PCR fingerprinting. By the use of a part of the T3 promoter sequence (20 mer), which is not found in the medaka genome as an arbitrary primer, polymorphisms were found in genomic fingerprints which could distinguish the parental strains. On the other hand, fingerprints of F1 hybrids were found to be the sum of those of their parents. Based on these findings, the fingerprints of genomic DNA of each severely malformed embryo were analyzed, because it was expected that radiation-induced genomic damages resulting in severe malformation and eventually in dominant lethals should be detected as changes in paternal fingerprints of F1 hybrids. Indeed, changes were found in genomic DNA as loss of some paternal bands in fingerprints of malformed embryos. One of 10 malformed embryos obtained from 9.5 Gy γ-irradiated males had lost 5 bands. These results indicated a possibility that quantitative as well as qualitative estimation of γ-ray-induced DNA damages can be made by this method which does not require the functional selection based on a specific target gene. (author). 16 refs., 3 figs., 1 tab

  20. Mouse one-cell embryos undergoing a radiation-induced G2 arrest may re-enter S-phase in the absence of cytokinesis

    International Nuclear Information System (INIS)

    Jacquet, P.; Buset, J.; Vankerkom, J.; Baatout, S.; De Saint-Georges, L.; Schoonjans, W.; Desaintes, C.

    2002-01-01

    PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3σ pathway. (author)

  1. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    Science.gov (United States)

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Morphological and skeletal abnormalities induced by α/β arteether on developing chick embryo

    Directory of Open Access Journals (Sweden)

    Vishram Singh

    2018-01-01

    Full Text Available Introduction: Malaria continues to be one of the India's leading public health problem.α/β artether is one of the most common antimalarial drug used worldwide to treat chloroquine resistant malaria and malaria falciparum. The present study was designed to assess the teratogenic effects of α/β artether on developing chick embryo. Material and Methods: The study was performed on 300 fertilized eggs of white leg horn chicken.The eggs were divided in to five experimental groups A, B, C, D, E having 30 eggs each and five control groups a,b,c,d,e one each for every experimental group respectively having 30 eggs each. On 5th day of incubation eggs from experimental groups A, B, C, D and E were exposed to α/β artether with dose of 0.00039 mg, 0.000585 mg, 0.00078 mg, 0.00097 mg and 0.00117 mg whereas the control groups were treated with same amount of normal saline. Results: The results showed growth retardation and some significant morphological abnormalities like scanty feathers, subcutaneous hemorrhage and skeletal abnormalities like poor ossification of the bones, kyphosis and lordosis. Discussion: The drug is toxic specially when used in higher dose and for a long period. At present there is no alternative drug available for the treatment of chloroquine resistant malaria and malaria falciparum except α/β artether. Therefore α/β artether and other artemisinins should be used only after establishment of proper diagnosis in recommended dose only not in higher dose and not for a long duration.

  3. Effects of sphingosine-1-phosphate on gene expression of two cell mouse embryos induced by C2-Ceramide

    Directory of Open Access Journals (Sweden)

    Xujing Geng

    2014-06-01

    Conclusions: This study provides a map of genes in the pre-implantation two cell mouse embryo. Further investigation based on these data will provide a better understanding of the effects of S1P on the pre-implantation embryos in other mammalian species, especially human.

  4. Mechanistic dissection of plant embryo initiation

    NARCIS (Netherlands)

    Radoeva, T.M.

    2016-01-01

    Land plants can reproduce sexually by developing an embryo from a fertilized egg cell, the zygote. After fertilization, the zygote undergoes several rounds of controlled cell divisions to generate a mature embryo. However, embryo formation can also be induced in a variety of other cell types in

  5. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration.

    Science.gov (United States)

    Xiao, Yanqing; Chen, Yanli; Ding, Yanpeng; Wu, Jie; Wang, Peng; Yu, Ya; Wei, Xi; Wang, Ye; Zhang, Chaojun; Li, Fuguang; Ge, Xiaoyang

    2018-05-01

    The WUSCHEL (WUS) gene encodes a plant-specific homeodomain-containing transcriptional regulator, which plays important roles during embryogenesis, as well as in the formation of shoot and flower meristems. Here, we isolated two homologues of Arabidopsis thaliana WUS (AtWUS), GhWUS1a_At and GhWUS1b_At, from upland cotton (Gossypium hirsutum). Domain analysis suggested that the two putative GhWUS proteins contained a highly conserved DNA-binding HOX domain and a WUS-box. Expression profile analysis showed that GhWUSs were predominantly expressed during the embryoid stage. Ectopic expression of GhWUSs in Arabidopsis could induce somatic embryo and shoot formation from seedling root tips. Furthermore, in the absence of exogenous hormone, overexpression of GhWUSs in Arabidopsis could promote shoot regeneration from excised roots, and in the presence of exogenous auxin, excised roots expressing GhWUS could be induced to produce somatic embryo. In addition, expression of the chimeric GhWUS repressor in cotton callus inhibited embryogenic callus formation. Our results show that GhWUS is an important regulator of somatic embryogenesis and shoot regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Asymmetric distribution of hypoxia-inducible factor α regulates dorsoventral axis establishment in the early sea urchin embryo.

    Science.gov (United States)

    Chang, Wei-Lun; Chang, Yi-Cheng; Lin, Kuan-Ting; Li, Han-Ru; Pai, Chih-Yu; Chen, Jen-Hao; Su, Yi-Hsien

    2017-08-15

    Hypoxia signaling is an ancient pathway by which animals can respond to low oxygen. Malfunction of this pathway disturbs hypoxic acclimation and can result in various diseases, including cancers. The role of hypoxia signaling in early embryogenesis remains unclear. Here, we show that in the blastula of the sea urchin Strongylocentrotus purpuratus , hypoxia-inducible factor α (HIFα), the downstream transcription factor of the hypoxia pathway, is localized and transcriptionally active on the future dorsal side. This asymmetric distribution is attributable to its oxygen-sensing ability. Manipulations of the HIFα level entrained the dorsoventral axis, as the side with the higher level of HIFα tends to develop into the dorsal side. Gene expression analyses revealed that HIFα restricts the expression of nodal to the ventral side and activates several genes encoding transcription factors on the dorsal side. We also observed that intrinsic hypoxic signals in the early embryos formed a gradient, which was disrupted under hypoxic conditions. Our results reveal an unprecedented role of the hypoxia pathway in animal development. © 2017. Published by The Company of Biologists Ltd.

  7. Misoprostol-induced radioprotection of Syrian hamster embryo cells in utero from cell death and oncogenic transformation

    International Nuclear Information System (INIS)

    Miller, R.C.; LaNasa, P.; Hanson, W.R.

    1994-01-01

    Misoprostol, a PGE analog, is an effective radioprotector of murine intestine and hematopoietic and hair cell renewal systems. The radioprotective nature of misoprostol was extended to examine its ability to influence clonogenic cell survival and induction of oncogenic transformation in Syrian hamster embryo cells exposed to X rays in utero and assayed in vitro. Hamsters in their 12th day of pregnancy were injected subcutaneously with misoprostal, and 2 h later the pregnant hamsters were exposed to graded doses of X rays. Immediately after irradiation, hamsters were euthanized and embryonic tissue was explanted into culture dishes containing complete growth medium. After a 2-week incubation period, clongenic cell survival and morphologically transformed foci were determined. Survival of misoprostol-treated SHE cells was increased and yielded a dose reduction factor of 1.5 compared to SHE cells treated with X rays alone. In contrast, radiation-induced oncogenic transformation of misoprostol-treated cells was reduced by a factor of 20 compared to cells treated with X rays alone. These studies suggest that misoprostol not only protects normal tissues in vivo from acute radiation injury, but also protects cells, to a large extent, from injury leading to transforming events. 26 refs., 6 figs., 2 tabs

  8. Numerical chromosome errors in day 7 somatic nuclear blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J; Viuff, Dorthe; Tan, Shijian J

    2003-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...... families, consisting of 112 blastocysts reconstructed from five different primary granulosa cell cultures, were examined. Overall, the mean chromosome complement within embryos was 86.9 +/- 3.7% (mean +/- SEM) diploid, 2.6 +/- 0.5% triploid, 10.0 +/- 3.1% tetraploid, and 0.5 +/- 0.2% pentaploid or greater......; the vast majority (>75%) of the abnormal nuclei were tetraploid. Completely diploid and mixoploid embryos represented 22.1 +/- 4.5% and 73.7 +/- 5.5%, respectively, of all clones. Six totally polyploid blastocysts, containing or=5N chromosome complements, respectively) between two clone families were...

  9. Cortisol and somatization.

    Science.gov (United States)

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  10. A Somatic HIF2α Mutation-Induced Multiple and Recurrent Pheochromocytoma/Paraganglioma with Polycythemia: Clinical Study with Literature Review.

    Science.gov (United States)

    Liu, Qiuli; Wang, Yan; Tong, Dali; Liu, Gaolei; Yuan, Wenqiang; Zhang, Jun; Ye, Jin; Zhang, Yao; Yuan, Gang; Feng, Qingxing; Zhang, Dianzheng; Jiang, Jun

    2017-03-01

    A syndrome known as pheochromocytomas (PCC)/paragangliomas (PGL) and polycythemia resulted from gain-of-function mutation of hypoxia-inducible factor 2α (HIF2α) has been reported recently. However, clinical features of this syndrome vary from patient to patient. In our study, we described the clinical features of the patient within 15-year follow-up with a literature review. The patient presented with "red face" since childhood and was diagnosed with polycythemia and pheochromocytoma in 2000, and then, tumor was removed at his age of 27 (year 2000). However, 13 years later (2013), he was diagnosed with multiple paragangliomas. Moreover, 2 years later (2015), another two paragangaliomas were also confirmed. Genetic analysis of hereditary PCC/PGL-related genes was conducted. A somatic heterozygous missense mutation of HIF2α (c.1589C>T) was identified at exon 12, which is responsible for the elevated levels of HIF2α and erythropoietin (EPO) and subsequent development of paragangaliomas. However, this mutation was only found in the tumors from three different areas, not in the blood. So far, 13 cases of PCC/PGL with polycythemia have been reported. Among them, somatic mutations of HIF2α at exon 12 are responsible for 12 cases, and only 1 case was caused by germline mutation of HIF2α at exon 9. The HIF2α mutation-induced polycythemia with PCC/PGL is a rare syndrome with no treatment for cure. Comprehensive therapies for this disease include removal of the tumors and intermittent phlebotomies; administration of medications to control blood pressure and to prevent complications or death resulted from high concentration of red blood cell (RBC). Genetic test is strongly recommended for patients with early onset of polycythemia and multiple/recurrent PCC/PGL.

  11. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Angelo Schuabb Heringer

    Full Text Available The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E and non-embryogenic (NE callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1 of activated charcoal (AC. Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project, including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  12. Management of somatic symptoms

    DEFF Research Database (Denmark)

    Schröder, Andreas; Dimsdale, Joel

    2014-01-01

    on the recognition and effective management of patients with excessive and disabling somatic symptoms. The clinical presentation of somatic symptoms is categorized into three groups of patients: those with multiple somatic symptoms, those with health anxiety, and those with conversion disorder. The chapter provides...

  13. Somatic cell cloning in Buffalo (Bubalus bubalis): effects of interspecies cytoplasmic recipients and activation procedures.

    Science.gov (United States)

    Kitiyanant, Y; Saikhun, J; Chaisalee, B; White, K L; Pavasuthipaisit, K

    2001-01-01

    Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.

  14. Use of PRIM code to analyze potential radiation-induced genetic and somatic effects to man from Jackpile-Paguate mines

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1983-01-01

    Potential radiation-induced effects from inhalation and ingestion of land external exposure to radioactive materials at the Jackpile-Paguate uranium mine complex near Paguate, New Mexico, were analyzed. The Uranium Dispersion and Dosimetry (UDAD) computer code developed at Argonne National Laboratory was used to calculate the dose rates and the time-integrated doses to tissues at risk as a function of age and time for the population within 80 km of the mines. The ANL computer code Potential Radiation-Induced Biological Effects on Man (PRIM) then was used to calculate the potential radiation-induced somatic and genetic effects among the same population on the basis of absolute and relative risk models as a function of duration of exposure and age at time of exposure. The analyses were based on the recommendations in BEIR II and WASH-1400 and the lifetable method. The death rates were calculated for radiation exposure from the mines and for naturally induced effects for 19 age cohorts, 20 time intervals, and for each sex. The results indicated that under present conditions of the radiation environment at the mines, the number of potential fatal radiation-induced neoplasms that could occur among the regional population over the next 85 years would be 95 using the absolute risk model, and 243 using the relative risk model. Over the same period, there would be less than two radiation-induced genetic effects (dominant and multifactorials). After decommissioning f the mine site, these risks would decrease to less than 1 and less than 3 potential radiation-induced deaths under the relative and absolute risk models, respectively, and 0.001 genetic disorders. Because of various sources of error, the uncertainty in these predicted risks could be a factor of five

  15. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    Science.gov (United States)

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  16. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Hitomi Suzuki

    Full Text Available BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.

  17. Correlation between induced embryo toxicity and absorption dose of enriched uranium in testes

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Lun Mingyue

    1996-01-01

    Doses of enriched uranium in testes inducing dominant lethality and skeletal abnormalities in offsprings are estimated. When intra-testicular injection dose is 0.4∼60 μg enriched uranium; from intake to insemination, testes could receive 9.14 x 10 -5 ∼1.38 x 10 -2 Gy radiation dose. Experimental results show that with the increase in the absorption dose, the number of living fetuses in a litter decreases, dominant lethality and skeletal abnormalities rise. It should be noted that relationship between the injected dose (I in μg) and the incidence of dominant skeletal abnormalities (S in %) in the offsprings can be represented by equation: S = 28.84 + 0.84I

  18. Correlation between induced embryo toxicity and absorption dose of enriched uranium in testes

    Energy Technology Data Exchange (ETDEWEB)

    Shoupeng, Zhu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1996-08-01

    Doses of enriched uranium in testes inducing dominant lethality and skeletal abnormalities in offsprings are estimated. When intra-testicular injection dose is 0.4{approx}60 {mu}g enriched uranium; from intake to insemination, testes could receive 9.14 x 10{sup -5}{approx}1.38 x 10{sup -2} Gy radiation dose. Experimental results show that with the increase in the absorption dose, the number of living fetuses in a litter decreases, dominant lethality and skeletal abnormalities rise. It should be noted that relationship between the injected dose (I in {mu}g) and the incidence of dominant skeletal abnormalities (S in %) in the offsprings can be represented by equation: S = 28.84 + 0.84I.

  19. Association of ultraviolet-induced retrovirus expression with anchorage-independent survival in rat embryo cells

    International Nuclear Information System (INIS)

    Suk, W.A.

    1985-01-01

    The authors have shown in the AI assay that the nontransforming retrovirus increases the differential in enhanced survival response in infected cultures. To more fully understand this aspect of the system, they examined the effect of UV irradiation on infected and uninfected FRE cells. In this communication the authors report that UV irradiation induces AI survival in infected and uninfected cells;in uninfected cells there is a concomitant induction of endogenous retrovirus expression. The AI survival of both cell lines was determined using a previously described procedure. Anchorage-dependent media control and solvent control cells, when suspended in medium above an agar base layer, showed a rapid decline in cell survival;however, cells that had been treated with carcinogen did not undergo the destructive process that took place in control cells, indicating specificity

  20. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  1. Recent advancements in cloning by somatic cell nuclear transfer

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  2. The effects of green tea extract on teratogenicity induced by low frequency electromagnetic field on bone marrow Balb/C mice embryo

    Directory of Open Access Journals (Sweden)

    Baharara Javad

    2014-01-01

    Full Text Available Introduction: Electromagnetic fields produce free radicals which might be teratogen. Camellia sinensis is rich in natural antioxidants and antioxidants can neutralize free radicals effects. In present research the effect of C. sinensis extract in reduction of teratogenicity induced by electromagnetic field with 50 gauss intensity was studied on bone marrow of Balb/C mice fetuses. Methods: In this experimental study, 24 Balb/C pregnant mice were randomly divided into four groups: control, sham exposed (off position, experimental 1 (electromagnetic field with 50-gauss intensity and experimental 2 (treatment by C. sinensis extract + electromagnetic field with 50-gauss intensity. After treatment period, the bone marrow aspirates of Balb/C mice embryos were prepared and studied by Giemsa. The quantitative data were analyzed by Kruskal-Wallis and Kolmogorov- Smirnov using SPSS16 software at the level of p<0.05. Results: The mean number of promyelocytes, myelocytes, erythrocytes, necrotic and apoptotic cells in experimental group1 compared with sham exposed embryos showed significant increase but the mean number of eosinophils in experimental group 1 compared with sham exposed embryos showed significant decrease. The mean number of promyelocyte and erythrocyte in experimental group 2 compared with experimental group 1 showed significant decrease. The mean of necrotic and apoptotic cells, in experimental group 2 compared with experimental group 1 showed significant increase. Conclusion: Usage of C. sinensis can decrease the damage due to teratogenicity induced by low frequency electromagnetic field in some cells.

  3. The insecticide buprofezin induces morphological transformation and kinetochore-positive micronuclei in cultured Syrian hamster embryo cells in the absence of detectable DNA damage.

    Science.gov (United States)

    Herrera, L A; Ostrosky-Wegman, P; Schiffmann, D; Chen, Q Y; Ziegler-Skylakakis, K; Andrae, U

    1993-11-01

    The insecticide buprofezin was examined for its genotoxicity in cultured Syrian hamster embryo cells in order to better understand the mechanisms underlying the genotoxicity of the compound in mammalian cells. Exposure to buprofezin concentrations of 12.5-100 microM did not significantly affect the colony-forming ability of the cells, but did result in increased frequencies of morphologically transformed colonies. Treatment with buprofezin did not cause a detectable induction of DNA repair synthesis, an indicator of DNA damage, but significantly increased the frequency of micronuclei. Immunostaining of the cells with antikinetochore antibody (CREST antibody) showed that essentially all of the buprofezin-induced micronuclei were kinetochore-positive. The results suggest that morphological transformation of Syrian hamster embryo cells by buprofezin results from an interaction of the compound or a metabolite of it with the mitotic apparatus rather than from DNA damage.

  4. Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.).

    Science.gov (United States)

    Mihaljević, Snježana; Radić, Sandra; Bauer, Nataša; Garić, Rade; Mihaljević, Branka; Horvat, Gordana; Leljak-Levanić, Dunja; Jelaska, Sibila

    2011-11-01

    Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1mM ammonium (NH(4)(+)) as the sole source of nitrogen. Growth of NH(4)(+)-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH(4)(+) medium with 25mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH(4)(+) induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH(4)(+) as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20mM) or Gln (10mM) in combination with NH(4)(+) (1mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  6. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos.

    Science.gov (United States)

    Schaumburg, Laura G; Siroski, Pablo A; Poletta, Gisela L; Mudry, Marta D

    2016-06-01

    Environmental contaminants produce multiple adverse consequences at individual, population and ecosystem levels. High volumes of agrochemicals applied to great variety of crops, together with agricultural expansion, generate great concerns due to the impact for the environment and large risk implicated for wildlife. The lack of data on these threats is striking. The tegu lizard (Salvator merianae) is one of the species that live in environments under contaminant effects. Several characteristics allow proposing this species as a potential sentinel organism for the monitoring of pesticides in their habitat. The present study is the first report about genotoxicity in tegu lizard neonates after embryonic exposure to Roundup® (glyphosate 66.2%). The micronucleus test (MN), nuclear abnormalities (NAs) assay and comet assay (CA) were used as biomarkers of genotoxic effects induced in erythrocytes by topical exposure of the eggs to the glyphosate commercial formulation Roundup® (RU), in laboratory controlled conditions. A total of 96 eggs were distributed in six groups exposed to RU (50, 100, 200, 400, 800, 1600μg/egg), one positive control (PC; 200μg cyclophosphamide/egg) and one negative control (NC; distilled water). No teratogenic effects were observed in any of the exposed or control neonates. A significant increase in DNA damage was observed in all concentrations higher than 100μg/egg with respect to NC (p0.05). Our results provide new information about the undesirable effects of the glyphosate-based herbicide formulations RU on this lizard species that inhabits areas permanently exposed to several pesticide formulations. We consider of utmost necessity a strict regulation of the agrochemical application conditions in those environments near to places where wild populations of terrestrial and aquatic species live, in order to minimize the adverse effects on ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In vivo somatic mutation systems in the mouse

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    In an effort to meet the need for a fast and cheap in vivo prescreen for inherited mammalian point mutations, a somatic forward-mutation method, originally developed in an x-ray experiment, has more recently been tested in work with chemical mutagens. The method makes use of coat-color mutations because the gene product is usually locally expressed, mosaics can be detected with minimal effort, and opportunities for making comparison with induction of germinal point mutations are greatest.--Following treatment of embryos that are heterozygous at specific coat-color loci, various induced genetic changes can result in expression of the recessive (RS) in clones derived from mutant melanocyte precursor cells. However, other events, such as decrease in the number of precursor cells, or disturbed differentiation, can also result in spots, which with careful classification can usually be distinguished from RS's on the basis of their location and color. When this is done, the relative RS frequencies for a series of compounds at least roughly parallel the relative spermatogonial mutation rates. The fact that easily measurable (though low) RS rates are obtained with compounds that have yielded negative results in spermatogonial tests is not surprising in view of the fact that RS's can be caused by several mechanisms besides point mutation.--In spite of the parallelism observed in one laboratory, the usefulness of the in vivo somatic mutation method as a prescreen could come to be doubted because of major discrepancies between results of similar experiments at different laboratories. However, It appears probable that at least some of these discrepancies are due to failure to discriminate between spots that probably resulted from melanocyte insufficiency and spots that resulted from expression of the recessive.--Reverse somatic mutation systems can potentially avoid some of the pitfalls of forward mutation systems. Such system are still in developmental stages

  8. Monitoring Genetic Stability in Quercus serrata Thunb. Somatic Embryogenesis Using RAPD Markers

    OpenAIRE

    Ramesh C., Thakur; Susumu, Goto; Katsuaki, Ishii; S. Mohan, Jain; Forestry and Forest Products Research Institute; Fukuoka Prefecture Forest Research and Extension Center; Forestry and Forest Products Research Institute; University of Helsinki

    1999-01-01

    Genetic stability of propagules regenerated via somatic embryogenesis is of paramount importance for its application to clonal forestry. Random amplified polymorphic DNA (RAPD) markers were used to determine the genetic stability in somatic embryogenesis of Quercus serrata Thunb. (Japanese white oak). Forty samples from an embryogenic line, consisting of regenerated plantlets, somatic embryos, and embryogenic calli, were examined using 54 decanucleotide primers. A total of 6520 clear reproduc...

  9. Neural network classification of sweet potato embryos

    Science.gov (United States)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  10. PECTIMORF and BIOBRAS-16 utilization in the potato somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Jaime R. Hidrobo Luna

    2002-01-01

    Full Text Available With the application of PECTIMORF and BIOBRAS-16, somatic embryos were obtained in potato (Solanum tuberosum, L c.v. Desirèe, of 40 days old callus obtained from stem micropropagated plants. These were used as possible substitutes for crop regulators used in culture media for the induction of somatic embryos. The culture media was composed for 10ml.l-1 of Murashige and Skoog salt, 0.1mg.l-1 ANA, 0.1mg.l-1 kinetin, 0.5mg.l-1 thiamine, 2.5mg.l-1 cistein, 100mg.l-1 mioinositol, 20g.l-1 sucrose and 2.0g.l-1 agar. Four culture medias were tested in distinct combinations that contained different concentration of PECTIMOR and BIOBRAS-16 as substitute of auxins and cytokinins. After 90 days, the results obtained showed the possibility of substituting the auxins (0.5mg.l-1 ANA and the cytokinins (0.5mg.l-1 kinetin in the culture media, because the application of PECTIMORF at 3.2mg.l-1 and BIOBRAS-16 at 1.0mg.l-1, gave friable callus, high fresh weight (more than 1.4g and a brownish color at the end of the process, moment in which the somatic embryos of different phases, appeared at the surface of the callus. Keywords: brasinoesteroids, callus, oligopectate, somatic embryo

  11. Regeneration of Algerian germplasm by stigma/style somatic ...

    African Journals Online (AJOL)

    ... days in most of the cultured genotypes. Formed embryos were cultured in a single tube before in vivo acclimatization. After sanitary assays, regenerated plants were shown to be free from the agents detected in the mother trees. Key words: Algeria, citrus germplasm, plant regeneration, sanitation, somatic embryogenesis.

  12. Embryotoxicity induced by alkylating agents. Some methodological aspects of DNA alkylation studies in murine embryos using ethylmethanesulfonate.

    Science.gov (United States)

    Platzek, T; Bochert, G; Rahm, U; Neubert, D

    1987-05-01

    Synthesis and spectroscopic analysis of some alkylated DNA purine bases are described. HPLC separation methods are developed for the determination of DNA alkylation rates in mammalian embryonic tissues. Following treatment of pregnant mice with the ethylating agent ethylmethanesulfonate (EMS), an appreciable amount of alkylation (ethylation and methylation) was found in the nuclear DNA of the embryos during organogenesis. The results are discussed in context of our thesis that a certain amount of DNA alkylation in the embryos is correlated to the teratogenic potential of alkylating agents.

  13. Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation.

    Science.gov (United States)

    Igarashi, Hideki; Takahashi, Toshifumi; Abe, Hiroyuki; Nakano, Hiroshi; Nakajima, Osamu; Nagase, Satoru

    2016-10-01

    Does in vivo aging of mouse oocytes affect mitochondrial function? Mitochondrial function was impaired in post-ovulatory in vivo-aged mouse oocytes and microinjection of somatic cell mitochondria did not rescue poor fertilization and embryonic development rates. The mechanisms underlying the decline in oocyte quality associated with oocyte aging remain unknown, although studies have suggested that the decline is regulated by mitochondrial dysfunction. However, only a limited number of studies have provided direct evidence implicating mitochondrial dysfunction in oocyte quality during the aging of oocytes. We used post-ovulatory, in vivo-aged mouse oocytes as a model for studying low-quality oocytes in oocyte aging. Superovulated oocytes released from the oviduct at 14 h and 20-24 h post-hCG injection were designated as 'fresh' and 'aged' oocytes, respectively. Membrane potentials and oxygen consumption in single oocytes were evaluated as measures of mitochondrial function in fresh and aged oocytes. Mitochondrial transcriptional factor A (TFAM) expression levels were examined by western blotting, and colocalization of mitochondria and TFAM was analyzed by measuring immunofluorescence in fresh and aged oocytes. IVF and blastocyst formation rates were calculated after oocyte microinjection with mitochondria derived from liver cells. The average mitochondrial membrane potential in fresh oocytes was significantly higher than that in aged oocytes (P transfer of cytosolic factors or cellular organelles, such as the endoplasmic reticulum or mitochondria, from specific cell types. This study was supported by Grants-in-Aid for General Science Research to Toshifumi Takahashi (No. 25462550) and Hideki Igarashi (No. 26462474). The funding source played no role in study design in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The authors have no conflict of interest to disclose.

  14. Direct and Indirect Somatic Embryogenesis from Petiole and Leaf Explants of Purple Fan Flower (Scaevola aemula R. Br. cv. 'Purple Fanfare')

    OpenAIRE

    Shyama Ranjani Weerakoon

    2010-01-01

    Direct and indirect somatic embryogenesis (SE) from petiole and leaf explants of Scaevola aemula R. Br. cv. 'Purple Fanfare' was achieved. High frequency of somatic embryos was obtained directly from petiole and leaf explants using an inductive plant growth regulator signal thidiazuron (TDZ). Petiole explants were more responsive to SE than leaves. Plants derived from somatic embryos of petiole explants germinated more readily into plants. SE occurred more efficiently in ...

  15. Plant regeneration from protoplasts ofVicia narbonensis via somatic embryogenesis and shoot organogenesis.

    Science.gov (United States)

    Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T

    1996-11-01

    Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.

  16. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rong [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Song, Jing’e [School/Hospital of stomatology, Lanzhou University, Lanzhou 730000 (China); Si, Jing [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Zhang, Hong, E-mail: zhangh@impcas.ac.cn [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Liu, Bin [School/Hospital of stomatology, Lanzhou University, Lanzhou 730000 (China); Gan, Lu; Zhou, Xin [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); and others

    2016-11-15

    Highlights: • CORM-3 pretreatment could significantly inhibit the X-ray irradiation-induced developmental toxicity and apoptosis with ROS generation. • CORM-3 pretreatment showed little effect on carbon-ion irradiation-induced developmental toxicity and apoptosis without ROS generation. • CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. • CORM-3 could suppress apoptosis and DNA damage by inhibiting the activation of P53 and the mitochondrial apoptotic pathway. - Abstract: The inhibitory effects of carbon monoxide (CO), generated by Ru(CO){sub 3}Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5 h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1 h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA

  17. Dysfunction in gap junction intercellular communication induces aberrant behavior of the inner cell mass and frequent collapses of expanded blastocysts in mouse embryos.

    Science.gov (United States)

    Togashi, Kazue; Kumagai, Jin; Sato, Emiko; Shirasawa, Hiromitsu; Shimoda, Yuki; Makino, Kenichi; Sato, Wataru; Kumazawa, Yukiyo; Omori, Yasufumi; Terada, Yukihiro

    2015-06-01

    We investigated the role of gap junctions (GJs) in embryological differentiation, and observed the morphological behavior of the inner cell mass (ICM) by time-lapse movie observation (TLM) with gap junction inhibitors (GJis). ICR mouse embryos were exposed to two types of GJis in CZB medium: oleamide (0 to 50 μM) and 1-heptanol (0 to 10 mM). We compared the rate of blastocyst formation at embryonic day 4.5 (E4.5) with E5.5. We also observed and evaluated the times from the second cleavage to each embryonic developing stage by TLM. We investigated embryonic distribution of DNA, Nanog protein, and Connexin 43 protein with immunofluorescent staining. In the comparison of E4.5 with E5.5, inhibition of gap junction intercellular communication (GJIC) delayed embryonic blastocyst formation. The times from the second cleavage to blastocyst formation were significantly extended in the GJi-treated embryos (control vs with oleamide, 2224 ± 179 min vs 2354 ± 278 min, p = 0.013). Morphological differences were traced in control versus GJi-treated embryos until the hatching stage. Oleamide induced frequent severe collapses of expanded blastocysts (77.4 % versus 26.3 %, p = 0.0001) and aberrant ICM divisions connected to sticky strands (74.3 % versus 5.3 %, p = 0.0001). Immunofluorescent staining indicated Nanog-positive cells were distributed in each divided ICM. GJIC plays an important role in blastocyst formation, collapses of expanded blastocysts, and the ICM construction in mouse embryos.

  18. Estrogen-induced transcription factor EGR1 regulates c-Kit transcription in the mouse uterus to maintain uterine receptivity for embryo implantation.

    Science.gov (United States)

    Park, Mira; Kim, Hye-Ryun; Kim, Yeon Sun; Yang, Seung Chel; Yoon, Jung Ah; Lyu, Sang Woo; Lim, Hyunjung Jade; Hong, Seok-Ho; Song, Haengseok

    2018-07-15

    Early growth response 1 (Egr1) is a key transcription factor that mediates the action of estrogen (E 2 ) to establish uterine receptivity for embryo implantation. However, few direct target genes of EGR1 have been identified in the uterus. Here, we demonstrated that E 2 induced EGR1-regulated transcription of c-Kit, which plays a crucial role in cell fate decisions. Spatiotemporal expression of c-Kit followed that of EGR1 in uteri of ovariectomized mice at various time points after E 2 treatment. E 2 activated ERK1/2 and p38 to induce EGR1, which then activated c-Kit expression in the uterus. EGR1 transfection produced rapid and transient induction of c-KIT in a time- and dose-dependent manner. Furthermore, luciferase assays to measure c-Kit promoter activity confirmed that a functional EGR1 binding site(s) (EBS) was located within -1 kb of the c-Kit promoter. Site-directed mutagenesis and chromatin immunoprecipitation-PCR for three putative EBS within -1 kb demonstrated that the EBS at -818/-805 was critical for EGR1-dependent c-Kit transcription. c-Kit expression was significantly increased in the uterus on day 4 and administration of Masitinib, a c-Kit inhibitor, effectively interfered with embryo implantation. Collectively, our results showed that estrogen induces transcription factor EGR1 to regulate c-Kit transcription for uterine receptivity for embryo implantation in the mouse uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reduction of transgenerational radiation induced genetic damages observed as numerical chromosomal abnormalities in preimplantation embryos by vitamin E

    International Nuclear Information System (INIS)

    Salimi, M.; Mozdarani, H.

    2008-01-01

    To study the effects of parental gamma irradiation (4 Gy) of NMRI (Naval Medical Research Institute) mice on the numerical chromosome abnormalities in subsequent preimplantation embryos in the presence of vitamin E (200 IU/kg), super-ovulated irradiated females were mated with irradiated males at weekly intervals in successive 6 weekly periods. About 68 h post coitus, 8-cell embryos were fixed on slides using standard methods in order to screen for abnormalities in chromosome number. In embryos generated by irradiated mice, the frequency of aneuploids dramatically increased compared to control unirradiated groups (p < 0.001), while no significant difference were observed within irradiated groups mated at weekly interval. Administration of vitamin E significantly decreased chromosomal aberrations in all groups (p < 0.05). Data indicate that gamma irradiation affects spermatogenesis and oogenesis and causes DNA alterations that may lead to chromosome abnormalities in subsequent embryos. Vitamin E effectively reduced the frequency of abnormalities. The way vitamin E reduces genotoxic effects of radiation might be via radical scavenging or antioxidative mechanism. (authors)

  20. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    Science.gov (United States)

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the

  1. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1.

    Science.gov (United States)

    Kanehiro, Yuichi; Todo, Kagefumi; Negishi, Misaki; Fukuoka, Junji; Gan, Wenjian; Hikasa, Takuya; Kaga, Yoshiaki; Takemoto, Masayuki; Magari, Masaki; Li, Xialu; Manley, James L; Ohmori, Hitoshi; Kanayama, Naoki

    2012-01-24

    Somatic hypermutation (SHM) of Ig variable region (IgV) genes requires both IgV transcription and the enzyme activation-induced cytidine deaminase (AID). Identification of a cofactor responsible for the fact that IgV genes are much more sensitive to AID-induced mutagenesis than other genes is a key question in immunology. Here, we describe an essential role for a splice isoform of the prototypical serine/arginine-rich (SR) protein SRSF1, termed SRSF1-3, in AID-induced SHM in a DT40 chicken B-cell line. Unexpectedly, we found that SHM does not occur in a DT40 line lacking SRSF1-3 (DT40-ASF), although it is readily detectable in parental DT40 cells. Strikingly, overexpression of AID in DT40-ASF cells led to a large increase in nonspecific (off-target) mutations. In contrast, introduction of SRSF1-3, but not SRSF1, into these cells specifically restored SHM without increasing off-target mutations. Furthermore, we found that SRSF1-3 binds preferentially to the IgV gene and inhibits processing of the Ig transcript, providing a mechanism by which SRSF1-3 makes the IgV gene available for AID-dependent SHM. SRSF1 not only acts as an essential splicing factor but also regulates diverse aspects of mRNA metabolism and maintains genome stability. Our findings, thus, define an unexpected and important role for SRSF1, particularly for its splice variant, in enabling AID to function specifically on its natural substrate during SHM.

  2. Synergistic effects of methyl methanesulfonate and X rays in inducing somatic mutations in the stamen hairs of Tradescantia clones, KU 27 and BNL 4430

    International Nuclear Information System (INIS)

    Ichikawa, Sadao; Yamaguchi, Akihiko; Okumura, Mikiko

    1993-01-01

    Young influorescences of Tradescantia clones KU 27 and BNL 4430, the both of which are blue/pink heterozygotes and have been demonstrated to be highly sensitive to alkylating agents, were exposed either to aqueous solutions of methyl methanesulfonate (MMS) for 16 hr alone (at 0.005 to 0.02% for KU 27 and at 0.005% for BNL 4430) or to acute 150 kVp X rays alone (161 to 531 mGy for Ku 27 and 501 to 976 mGy for BNL 4430), or in combinations (134 to 448 mGy for KU 27 and 458 to 865 mGy for BNL 4430 after the 0.005% MMS treatment). The induced somatic pink mutation frequencies per hair-cell division were studied and compared, and clone BNL 4430 was found to be nearly two times more sensitive to MMS than clone KU 27, while the X-ray-induced mutation frequencies in the latter was about 1.5 times higher than those in the former. The lower sensitivity to MMS of clone KU 27 (as compared with BNL 4430) was nevertheless about 5.6 times higher as compared with the responses of clone BNL 02 to MMS reported earlier, proving the high sensitivities of the two clones used in the present study. Clear synergistic effects of MMS and X rays were observed in the both clones, indicating that the mechanisms of inducing mutations are common at least in part between MMS and X rays. (author)

  3. Somatic mosaicism containing double mutations in PTCH1 revealed by generation of induced pluripotent stem cells from nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki

    2017-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Management of somatic pain induced by treatment of head and neck cancer: Postoperative pain. Guidelines of the French Oto-Rhino-Laryngology--Head and Neck Surgery Society (SFORL).

    Science.gov (United States)

    Espitalier, F; Testelin, S; Blanchard, D; Binczak, M; Bollet, M; Calmels, P; Couturaud, C; Dreyer, C; Navez, M; Perrichon, C; Morinière, S; Albert, S

    2014-09-01

    To present the guidelines of the French Oto-Rhino-Laryngology--Head and Neck Surgery Society (SFORL) concerning the management of somatic pain induced by the treatment of head and neck cancer, and in particular the management of early and late post-surgical pain. A multidisciplinary work group conducted a review of the scientific literature on the study topic. An editorial group subsequently read the resulting guidelines before validation. It is recommended to prevent onset of pain caused by malpositioning on the operating table, as well as pain related to postoperative care. During surgery, it is recommended to spare nerve and muscle structures as far as possible to limit painful sequelae. Management of early postoperative pain upon tumor resection and flap harvesting sites requires patient-controlled analgesia by morphine pump. Physical therapy is recommended after flap harvesting to minimize painful sequelae. Preventive and curative measures should be undertaken for appropriate management of post-surgical pain in the treatment of head and neck cancers. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Somatic Embryogenesis in Peach-Palm (Bactris gasipaes) Using Different Explant Sources.

    Science.gov (United States)

    Steinmacher, Douglas A; Heringer, Angelo Schuabb; Jiménez, Víctor M; Quoirin, Marguerite G G; Guerra, Miguel P

    2016-01-01

    Peach palm (Bactris gasipaes Kunth) is a member of the family Arecaceae and is a multipurpose but underutilized species. Nowadays, fruit production for subsistence and local markets, and heart-of-palm production for local, national, and international markets are the most important uses of this plant. Conventional breeding programs in peach palm are long-term efforts due to the prolonged generation time, large plant size, difficulties with controlled pollination and other factors. Although it is a caespitose palm, its propagation is currently based on seeds, as off-shoots are difficult to root. Hence, tissue culture techniques are considered to be the most likely strategy for efficient clonal plantlet regeneration of this species. Among various techniques, somatic embryogenesis offers the advantages of potential automated large-scale production and putative genetic stability of the regenerated plantlets. The induction of somatic embryogenesis in peach palm can be achieved by using different explant sources including zygotic embryos, immature inflorescences and thin cell layers from the young leaves and shoot meristems. The choice of a particular explant depends on whether clonal propagation is desired or not, as well as on the plant conditions and availability of explants. Protocols to induce and express somatic embryogenesis from different peach palm explants, up to acclimatization of plantlets, are described in this chapter.

  6. Expression and Function of Cell Wall-Bound Cationic Peroxidase in Asparagus Somatic Embryogenesis

    Science.gov (United States)

    Takeda, Hiroyuki; Kotake, Toshihisa; Nakagawa, Naoki; Sakurai, Naoki; Nevins, Donald J.

    2003-01-01

    Cultured asparagus (Asparagus officinalis L. cv Y6) cells induced to regenerate into whole plants through somatic embryogenesis secreted a 38-kD protein into cell walls. The full-length cDNA sequence of this protein (Asparagus officinalis peroxidase 1 [AoPOX1]) determined by reverse transcriptase-polymerase chain reaction showed similarity with plant peroxidases. AoPOX1 transcripts were particularly abundant during early somatic embryogenesis. To evaluate the in vivo function of AoPOX1 protein, purified recombinant AoPOX1 protein was reacted with a series of phenolic substrates. The AoPOX1 protein was effective in the metabolism of feruloyl (o-methoxyphenol)-substituted substrates, including coniferyl alcohol. The reaction product of coniferyl alcohol was fractionated and subjected to gas chromatography-mass spectrometry analysis and 1H-nuclear magnetic resonance analysis, indicating that the oxidation product of coniferyl alcohol in the presence of AoPOX1 was dehydrodiconiferyl alcohol. The concentration of dehydrodiconiferyl alcohol in the cultured medium of the somatic embryos was in the range of 10−8 m. Functions of the AoPOX1 protein in the cell differentiation are discussed. PMID:12692335

  7. Somatic embryogenesis on Musa AAAB, cv. FHIA-18, using liquids culture mediums

    Directory of Open Access Journals (Sweden)

    Luis A. Barranco

    2002-04-01

    Full Text Available Homogenous cell suspensions were iniciated from somatic embryos in the globular stage and the greatest volume of cell biomass on multiplying the suspensions at a density of 3.0% PCV. From the fifteenth day in culture medium for the formation of embryos, structures consisting of proembryos and somatic embryos in the globular stage started to form. With respect to the densities studied, the best results were obtained with 100 mgFW, where 1 871 SE.l-1 formed with a weight of 248 mgFW.l-1 after 30 days. With an initial density of 0.6 gFW in the culture medium for secondary multiplication, an increase of 42.9-fold the initial amount of fresh weight was obtained; after 60 days of culture 15 985 SE.l-1 were obtained. The greatest percentage of maturation was obtained with 400 mgFW with 70% of mature somatic embryos. The positive effect of Biobras-6 (brassinosteroid analogous was confirmed, with a concentration of 0.01 mg.l-1 the best germination percentages were obtained in liquid and semisolid culture medium. Embryo germination in temporaly inmersion (RITA was achieved with an inoculum density of 0.5 gFW for system with 85% germination. One thousand plants obtained from somatic embryos were taken to ex vitro environment, along with plants derived from conventional micropropagation (shoot tips to carry out studies on the possible presence of somaclonal variation. During the first cycle of production, the plants derived from the two methods in vitro culture showed differences with respect to the plants derived from corms in height, diameter and number of suckers. In the second production cycle, the plants from somatic embryos showed similar characteristics to the plants derived from shoot tip and corms with respect to the morphological parameters evaluated, with only 0.2% of the plants with phenotypic changes. Key Words: Banana, cellular density, germination, somaclonal variability, somatic embryo

  8. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Wang, Ziyu; Wang, Feng

    2016-02-01

    Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.

  9. Radioprotective effect of ascorbic acid on cytological changes induced by exposing fertile eggs to different doses of gamma rays in chicken embryos

    International Nuclear Information System (INIS)

    El-wardany, A.E.M.; Hassanien, M.M.; El-fiky, A.

    2003-01-01

    Acute radiation syndrome that develops after exposure to ionizing radiation is mainly caused by the impairment of cell division which is of vital importance for all biological systems. DNA is susceptible to damage by reactive oxygen species (ROS) which are produced via exposure to ionizing radiation and expressed by cellular alterations and chromosomal damage. The present study showed that the irradiated group of chick embryo revealed linearity of damaging effect with increasing dose level from 50 rad to 150 rad. The antioxidant ascorbic acid (vitamin C) could acts as a first defense against DNA oxidative stress. The present work clarified the extent to which the natural compound ascorbic acid could antagonist the incorporated radionuclide impact induced by radiation and effect genomic stability of embryonic cells. The obtained data revealed that injection of ascorbic acid(100 mug/ egg) prior to radiation exposure induced significant reduction (P<0.05) in the frequency of total aberrant

  10. THE EFFECT OF PICLORAM AND LIGHT ON SOMATIC EMBRYOGENESIS REGENERATION OF PINEAPPLE

    Directory of Open Access Journals (Sweden)

    Ika Roostika

    2012-10-01

    Full Text Available Smooth Cayenne is the largest pineapple type cultivated in Indonesia, but its vegetative planting materials for mass propagation are limited. Somatic embryogenesis is a potential method to be applied. The aim of this study was to investigate the somatic embryogenesis regeneration under the effect of picloram and light. Callus formation was induced by picloram (21, 41 and 62 μM added with 9 μM thidiazuron. The calli were transferred onto MS or Bac medium  enriched with N-organic compounds with or without addition of 21 μM picloram under dark or light condition. The compact calli were subcultured onto MS medium supplemented with 4.65 μM kinetin, while the friable calli were  transferred onto BIG medium (modified MS + 1.1 μM benzyl adenine + 0.9 μM indole butyric acid + 0.09 μM giberelic acid or B medium (MS + 0.018 mM benzyl adenine. The results showed that the events of somatic embryogenesis were started from cell polarization, asymmetrical division, proembryo formation as  embryogenic tissues and friable embryogenic tissues, and embryo development. The best treatment for callus induction was 21 μM picloram. The addition of 21 μM picloram on N-organic enriched medium and the use of light condition  proliferated embryogenic calli. The N-organic enriched Bac medium and light condition yielded the highest number of mature somatic embryos (17 embryos perexplant in 2 months. The B medium was better than BIG medium to develop  somatic embryos from friable embryogenic tissues. The somatic embryogenesis method presented is potential for pineapple mass propagation and artificial seedproduction.Abstrak Bahasa IndonesiaSmooth Cayenne merupakan kultivar nenas yang banyak dibudidayakan di  Indonesia, namun ketersediaan benih untuk perbanyakan massal masih terbatas. Embriogenesis somatikadalah metode yang potensial untuk produksi bibit secara massal. Tujuan penelitian adalah untuk mempelajari pengaruh pikloram dan pencahayaan terhadap regenerasi

  11. Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levels.

    Science.gov (United States)

    Liang, Xuefang; Souders, Christopher L; Zhang, Jiliang; Martyniuk, Christopher J

    2017-12-01

    Tributyltin (TBT) is an organotin compound that is the active ingredient of many biocides and antifouling agents. In addition to its well established role as an endocrine disruptor, TBT is also associated with adverse effects on the nervous system and behavior. In this study, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations of TBT (0.01, 0.1, 1 nM) to determine how low levels affected development and behavior. Fish exposed to 1 nM TBT hatched earlier when compared to controls. Following a 96-h exposure, total swimming distance, velocity, and activity of zebrafish larvae were reduced compared to controls. To identify putative mechanisms for these altered endpoints, we assessed embryo bioenergetics and gene expression. We reasoned that the accelerated hatch time could be related to ATP production and energy, thus embryos were exposed to TBT for 24 and 48-h exposure prior to hatch. There were no differences among groups for endpoints related to bioenergetics (i.e. basal, ATP-dependent, and maximal respiration). To address mechanisms related to changes in behavioral activity, we measured transcripts associated with muscle function (myf6, myoD, and myoG) and dopamine signaling (th, dat, dopamine receptors) as dopamine regulates behavior. No transcript was altered in expression by TBT in larvae, suggesting that other mechanisms exist that may explain changes in higher level endpoints. These results suggest that endpoints related to the whole animal (i.e. timing of hatch and locomotor behavior) are more sensitive to environmentally-relevant concentrations of TBT compared to the molecular and metabolic endpoints examined here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Somatization in Parkinson's Disease

    DEFF Research Database (Denmark)

    Carrozzino, Danilo; Bech, Per; Patierno, Chiara

    2017-01-01

    The current systematic review study is aimed at critically analyzing from a clinimetric viewpoint the clinical consequence of somatization in Parkinson's Disease (PD). By focusing on the International Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we...... consequence of such psychiatric symptom should be further evaluated by replacing the clinically inadequate diagnostic label of psychogenic parkinsonism with the psychosomatic concept of persistent somatization as conceived by the Diagnostic Criteria for Psychosomatic Research (DCPR)....

  13. Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex.

    Science.gov (United States)

    Kadokura, Satoshi; Sugimoto, Kaoru; Tarr, Paul; Suzuki, Takamasa; Matsunaga, Sachihiro

    2018-04-28

    Somatic embryogenesis is one of the best examples of the remarkable developmental plasticity of plants, in which committed somatic cells can dedifferentiate and acquire the ability to form an embryo and regenerate an entire plant. In Arabidopsis thaliana, the shoot apices of young seedlings have been reported as an alternative tissue source for somatic embryos (SEs) besides the widely studied zygotic embryos taken from siliques. Although SE induction from shoots demonstrates the plasticity of plants more clearly than the embryo-to-embryo induction system, the underlying developmental and molecular mechanisms involved are unknown. Here we characterized SE formation from shoot apex explants by establishing a system for time-lapse observation of explants during SE induction. We also established a method to distinguish SE-forming and non-SE-forming explants prior to anatomical SE formation, enabling us to identify distinct transcriptome profiles of these two explants at SE initiation. We show that embryonic fate commitment takes place at day 3 of SE induction and the SE arises directly, not through callus formation, from the base of leaf primordia just beside the shoot apical meristem (SAM), where auxin accumulates and shoot-root polarity is formed. The expression domain of a couple of key developmental genes for the SAM transiently expands at this stage. Our data demonstrate that SE-forming and non-SE-forming explants share mostly the same transcripts except for a limited number of embryonic genes and root genes that might trigger the SE-initiation program. Thus, SE-forming explants possess a mixed identity (SAM, root and embryo) at the time of SE specification. Copyright © 2018. Published by Elsevier Inc.

  14. Congenital malformations induced by ionizing radiation in mouse embryos: investigating molecular changes. Doctoral Thesis Prepared at SCK-CEN and Defended in 2006

    International Nuclear Information System (INIS)

    Derradji, H.

    2007-01-01

    Irradiation of the mammalian embryo during development results in diverse effects depending on the dose and the specific gestational phase at irradiation. In this work cellular and molecular changes associated with X-irradiation of embryos were therefore investigated at both early and late gestational stages at the moment of radiation exposure. Our goal was to find biological markers indicative of teratogenic effects of radiation, and provide a holistic model of the impact of irradiation during early and late development. In the first part of this doctoral thesis, we investigated telomere length in the irradiated and non-irradiated embryos bearing different p53 genotypes and malformation status as telomere shortening was associated with neural tube defects in mTR-/- embryos. Moreover, the loss of telomere function has been shown to elicit DNA damage checkpoints and p53-dependent apoptosis in vitro. We conclude that telomere shortening is associated with the malformation status as well with the p53 genotype. These data assign telomere length as a potential predictor of a malformed phenotype, a feature that is modulated according to the p53 genotype and the developmental stage at the moment of irradiation. In the second part of this work, we focused on a specific malformation phenotype, namely: forelimb defect. To identify potential genes involved in the radiation-induced forelimb teratogenesis, we investigated differential gene expression between irradiated and non-irradiated fetuses using RT-q-PCR. The results indicate that forelimb defects observed in p53 wild type fetuses irradiated at the organogenesis period was due to excessive cellular death as shown by the high expression of the pro-apoptotic factors caspase-3 and Bax. This suggestion was supported by the positive TUNEL assay performed on forelimb tissue sections of malformed irradiated fetuses. Moreover, overexpression in malformed fetuses of MKK3 and MKK7, both members of the stress-activated MAP kinase

  15. In vitro manipulation techniques of porcine embryos

    DEFF Research Database (Denmark)

    Liu, Ying; Li, Juan; Løvendahl, Peter

    2015-01-01

    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial...... insemination. Therefore, a review of the overall efficiency for the developmental competence of embryos produced by these in vitro methods would be useful in order to obtain a more thorough overview of this growing area with respect to its development and present status. In this review a meta-analysis was used...... to analyse data collected from all published articles with a focus on zygotes and embryos for transfer, pregnancy, full-term development and piglets born. It was generally concluded that an increasing level of in vitro manipulation of porcine embryos decreased the overall efficiency for production of piglets...

  16. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    Science.gov (United States)

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa).

    Science.gov (United States)

    Feng, Bi-Hong; Wu, Bei; Zhang, Chun-Rong; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2012-01-15

    Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  18. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  19. Some Ethical Concerns About Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Zheng, Yue Liang

    2016-10-01

    Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.

  20. Effect of Fenugreek seed Extract (Trigonella Foenum-graecum on testicular tissue in the embryos of Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M beyzaei

    2015-12-01

    Full Text Available Background and aim: Diabetes mellitus is associated with some of the metabolic dysfunctions represented with chronic hyperglycemia.  This disease can disrupt the function of testicular tissue and decline male sexual ability. Some of the medicinal herbs such as fenugreeks have protective effects on tissues via hypoglycemic and anti-oxidative properties. In the present paper,  the effects of fenugreek seed extract was evaluated on testicular tissue of 20 day-old embryos from diabetic rats. Methods: In the present experimental study, sixty normal female rats were divided into three normal groups: non-diabetic control, glibenclamide and fenugreek groups and three diabetic groups: diabetic control, glibenclamide treatment and fenugreek treatment groups. Single injection of streptozotocin was used for induction of diabetes in these female rats. After detection of pregnancy, 1000 mg/kg fenugreek seed extract was fed to non-diabetic and diabetic fenugreek groups and 5 mg/kg glibenclamide was fed to non-diabetic and diabetic glibenclamide groups. Non-diabetic and diabetic control group was fed with distilled water as the same volume as the fenugreek extract. After 20 days, their embryos were pulled out and fixed at 10% formalin. After tissue processing, five micron sections were stained with Hematoxylin- eosin and evaluated for morphometric changes of testicular tissue. Data were evaluated with One-Way ANOVA test and Duncan post-hoc test. Results: The mean diameter of seminiferous tubules and testis capsule thickness indicated no significant differences between fenugreek treatment and diabetic control groups (P> 0.05. Mean body weight of male embryos was significantly lower in fenugreek treatment group in comparison with the diabetic control group (P&le 0.05. The leydig, sertoli and spermatogonial cells number was significantly higher in fenugreek treatment group in compression with diabetic control group                      (P

  1. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  2. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas.

    Science.gov (United States)

    Mai, Huong; Morin, Bénédicte; Pardon, Patrick; Gonzalez, Patrice; Budzinski, Hélène; Cachot, Jérôme

    2013-08-01

    Irgarol and diuron are the most representative "organic booster biocides" that replace organotin compounds in antifouling paints, and metolachlor is one of the most extensively used chloroacetamide herbicides in agriculture. The toxicity of S-metolachlor, irgarol and diuron was evaluated in Pacific oyster (Crassostrea gigas) gametes or embryos exposed to concentrations of pesticides ranging from 0.1× to 1000×, with 1× corresponding to environmental concentrations of the three studied pesticides in Arcachon Bay (France). Exposures were performed on (1) spermatozoa alone (2) oocytes alone and (3) both spermatozoa and oocytes, and adverse effects on fertilization success and offspring development were recorded. The results showed that the fertilizing capacity of spermatozoa was significantly affected after gamete exposure to pesticide concentrations as low as 1× of irgarol and diuron and 10× of metolachlor. The offspring obtained from pesticide-exposed spermatozoa displayed a dose-dependent increase in developmental abnormalities. In contrast, treating oocytes with pesticide concentrations up to 10× did not alter fertilization rate and offspring quality. However, a significant decline in fertilization success and increase in abnormal D-larvae prevalence were observed at higher concentrations 10× (0.1 μg L(-1)) for S-metolachlor and 100× for irgarol (1.0 μg L(-1)) and diuron (4.0 μg L(-1)). Irgarol, diuron and S-metolachlor also induced a dose-dependent increase in abnormal D-larvae prevalence when freshly fertilized embryos were treated with pesticide concentrations as low as concentration of 1× (0.01 μg L(-1) for irgarol or S-metolachlor, and 0.04 μg L(-1) for diuron). The two bioassays on C. gigas spermatozoa and embryos displayed similar sensitivities to the studied pesticides while oocytes were less sensitive. Diuron, irgarol and S-metolachlor induced spermiotoxicity and embryotoxicity at environmentally relevant concentrations and therefore might be

  3. [TSA improve transgenic porcine cloned embryo development and transgene expression].

    Science.gov (United States)

    Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua

    2011-07-01

    Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.

  4. Hypochondriasis and somatization.

    Science.gov (United States)

    Kellner, R

    1987-11-20

    Between 60% and 80% of healthy individuals experience somatic symptoms in any one week. About 10% to 20% of a random sample of people worry intermittently about illness. A substantial proportion of patients present physicians with somatic complaints for which no organic cause can be found. Patients who are hypochondriacal do not understand the benign nature of functional somatic symptoms and interpret these as evidence of disease. Hypochondriacal concerns range from common short-lived worries to persistent and distressing fears or convictions of having a disease. Hypochondriasis can be secondary to other psychiatric disorders (eg, melancholia or panic disorder), and hypochondriacal attitudes remit when the primary disorder is successfully treated. Patients with primary hypochondriasis are also anxious or depressed, but the fear of disease, or the false belief of having a disease, persists and is the most important feature of their psychopathology. There are substantial differences among hypochondriacal patients in their personalities and psychopathologies. Psychotherapy as well as psychotropic drugs are effective in the treatment of functional somatic symptoms. There are no adequate controlled studies on the value of psychotherapy in hypochondriasis; the recommended guidelines are based on uncontrolled studies of hypochondriasis and on controlled studies of the psychotherapy in similar disorders. The prognosis of functional somatic symptoms as well as that of hypochondriasis is good in a substantial proportion of patients.

  5. Somatic embryogenesis in plantain cultivar 'FHIA - 25' (AAB from meristem tips

    Directory of Open Access Journals (Sweden)

    Dayana Rodríguez González

    2015-07-01

    Full Text Available Plantain cultivar 'FHIA – 25' (AAB shows high yielding qualities and high resistance to Black Sigatoka disease, but its sugar content in the fruit is low, so a regeneration method at cell level is necessary, such as somatic embryogenesis supported by biotechnological tools to improve fruit quality. This work was performed with the aim of establishing a plant regeneration method via somatic embryogenesis using initial explants of shoot apices from axillary buds in liquid culture medium. Homogenous embryogenic cell suspensions were obtained from mentioned explants. The highest cellular multiplication rates were achieved at 3,0% density. The incubation of somatic embryos during 30 days in the maturation culture medium permitted to increase germination. During the acclimatization stage, plants regenerated from somatic embryos, as well as plants from organogenesis, showed a high survival percentage (98 and 97 respectively, without somaclonal variation.

  6. Efficient somatic embryo production of Limau madu (Citrus ...

    African Journals Online (AJOL)

    fbn

    (Citrus suhuiensis Hort. ex Tanaka) in liquid culture. Dita Agisimanto1*, Normah Mohd Noor1,2, Rusli Ibrahim3 and Azhar Mohamad3. 1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600. Bangi, Selangor, Malaysia. 2Institute of Systems Biology ...

  7. Somatic Embryogenesis and Plant Regeneration in Eggplant ...

    African Journals Online (AJOL)

    DR SIDHU

    2013-02-20

    Feb 20, 2013 ... Two as well as three way interactions of three eggplant genotypes, media compositions and explants. (hypocotyl, cotyledon and leaf) showed significant differences for plant regeneration. Among three explants, hypocotyl induced highest percent callusing, but cotyledon showed best results for somatic.

  8. Theory about the Embryo Cryo-Treatment.

    Science.gov (United States)

    Vladimirov, Iavor K; Tacheva, Desislava; Diez, Antonio

    2017-04-01

    To create hypothesis, which can give a logical explanation related to the benefits of freezing/thawing embryos. Cryopreservation is not only a technology used for storing embryos, but also a method of embryo treatment that can potentially improve the success rate in infertile couples. From the analysis of multiple results in assisted reproductive technology, which have no satisfactory explanation to date, we found evidence to support a 'therapeutic' effect of the freezing/thawing of embryos on the process of recovery of the embryo and its subsequent implantation. Freezing/thawing is a way to activate the endogenous survival and repair responses in preimplantation embryos. Several molecular mechanisms can explain the higher success rate of ET using thawed embryos compared to fresh ET in women of advanced reproductive age, the higher miscarriage rate in cases of thawed blastocyst ET compared to thawed ET at early cleavage embryo, and the higher perinatal parameters of born children after thawed ET. Embryo thawing induces a stress. Controlled stress is not necessarily detrimental, because it generates a phenomenon that is counteracted by several known biological responses aimed to repair mitochondrial damage of membrane and protein misfolding. The term for favorable biological responses to low exposures to stress is called hormesis. This thesis will summarize the role of cryopreservation in the activation of a hormetic response, preserving the mitochondrial function, improving survival, and having an impact on the process of implantation, miscarriage, and the development of pregnancy.

  9. Expression of neuronal antigens and related ventral and dorsal proteins in the normal spinal cord and a surgically induced open neural tube defect of the spine in chick embryos: an immunohistochemical study.

    Science.gov (United States)

    Lee, Do-Hun; Phi, Ji Hoon; Chung, You-Nam; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu; Kim, Dong Won; Park, Moon-Sik; Wang, Kyu-Chang

    2010-05-01

    The aims of this study were to elucidate the processes of neuronal differentiation and ventrodorsal patterning in the spinal cord of the chick embryo from embryonic day (E) 3 to E17 and to study the effect of a prenatal spinal open neural tube defect (ONTD) on these processes. Expression patterns of neuronal antigens (neuronal nuclear antigen, neurofilament-associated protein (NAP), and synaptophysin) and related ventral markers [sonic hedgehog, paired box gene (PAX)6, and islet-1], and dorsal markers (bone morphogenetic protein, Notch homolog 1, and PAX7) were investigated in the normal spinal cord and in a surgically induced spinal ONTD in chick embryos. Four normal and ONTD chick embryos were used for each antigen group. There were no differences in the expression of neuronal and ventrodorsal markers between the control and ONTD groups. NAP and synaptophysin were useful for identifying dorsal structures in the distorted anatomy of the ONTD chicks.

  10. In vitro regeneration of some Iranian alfalfa (Medicago sativa L. genotypes via somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Majid Shokrpour

    2014-12-01

    Full Text Available An effective in vitro regeneration system is one of the prerequisites for genetic manipulation of alfalfa (Medicago sativa L. varieties and genotypes. In this research, somatic embryogenesis of four alfalfa genotypes, 6-18 (synthetic, 4-14 (Kara Yonje- Karakozlu, 3-27 (Kara Yonje Maraghe and y-6 (Regen-SY, were investigated using leaf and petiole explants. Formation of callus and somatic embryogenesis was significantly influenced by the explant type and interaction of genotype and culture medium. Petiole explants of genotype 4-14 produced the highest yield of callus (0.406 gr fresh weight of callus. Percentage of somatic embryogenesis and the number of embryos per callus in petiole explants of genotype 4-14 was higher than those of other genotypes and explants. In genotype 6-18, the highest percentage of somatic embryogenesis was achieved on MS medium containing 5 mg/L 2,4-D and 2 mg/L kinetin. There was no significant differences between genotypes and explants in terms of embryo conversion to plantlet, and on average, 58% of somatic embryos converted to plantlet on MS medium. The petiole explants of genotype 6-18 did not exhibit somatic embryogenesis response in medium containing low ratio of 2,4-D:Kinetin (5 mg/L 2,4-D and 2 mg/L kinetin. While, these explants showed somatic embryogenesis in higher ratio of 2,4-D:Kinetin (5:1. The plantlet conversion efficiency of somatic embryos produced through this study was relatively higher and therefore, the method presented in this study could be used in alfalfa genetic manipulation and molecular studies.

  11. Embryo yolk sac membrane kynurenine formamidase of l-tryptophan to NAD+ pathway as a primary target for organophosphorus insecticides (OPI) in OPI-induced NAD-associated avian teratogenesis.

    Science.gov (United States)

    Seifert, Josef

    2017-10-01

    The objective of this study was to provide in ovo evidence for the proposed role of kynurenine formamidase of l-tryptophan to NAD + pathway in embryo yolk sac membranes as a primary target for organophosphorus insecticide (OPI) teratogens in OPI-induced NAD-associated avian teratogenesis. Slices prepared from yolk sac membranes or embryo livers of chicken eggs treated with the OPI dicrotophos and/or methyl parathion were incubated with l-tryptophan. Yolk sac membrane slices metabolized l-tryptophan in the pathway to NAD + before that function was established in livers. OPI interfered in ovo with the second step of l-tryptophan to NAD + biosynthesis by inhibiting kynurenine formamidase. Its inhibition due to the teratogen dicrotophos occurred in yolk sac membranes during the period of embryo highest susceptibility to OPI teratogens in contrast to delayed and lower inhibition caused by the nonteratogen methyl parathion. Both OPI affected liver kynurenine formamidase in a similar manner. The onsets of liver enzyme inhibition, however, were delayed by about two days and occurred at the time of the reduced embryo susceptibility to teratogens. The early disruption of l-tryptophan metabolism and higher inhibition of kynurenine formamidase in yolk sac membranes may be the factors that determine action of OPI as teratogens in chicken embryos. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    Science.gov (United States)

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'.

  13. The Role of Peroxisome Proliferator-Activated Receptors in the Development and Physiology of Gametes and Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    Jaou-Chen Huang

    2008-01-01

    Full Text Available In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPARγ ligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products, capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs, in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.

  14. Histology study of the somatic embryogenesis in Agave fourcroydes Lem.

    Directory of Open Access Journals (Sweden)

    Silvia Alemán García

    2002-01-01

    Full Text Available A histological study of the structures embryogenic formed from meristem of Agave fourcroydes, with the objective of observing the behavior of the somatic embryogenesis from the induction until the formation of the embryo was carried out. The meristem cultivated in vitro was subculture in modified MS medium the induction. The samples to be included intheresinJB–4weretakenperiodically.Thehistologicalscutsof5-10µmwerecarriedoutwithrotatorymicrotome and strained in 2% toluidine blue. The sections were observed and photographed in light microscopy Axioplan Zeiis with increases of 20X. The results show to the 60 days of culture the presence of cells meristematic pre-embrygenic. Embryos in different phases of formation globular and scutellum were observed in all the mass of the callus in the following subculture. Key words: Agavaceae, in vitro culture, embryo, histology

  15. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-01-01

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos

  16. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    International Nuclear Information System (INIS)

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections

  17. SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    2012-08-29

    Aug 29, 2012 ... An in vitro embryo rescue culture technique has been developed for F1 hybridsof Eragrostis tef with ... straw over straw of other cereals, and its quality ..... bread wheat. Maximum calli were induced in 4.5. µM 2,4-D (Sears and Deckard, 1982). From a total of 635 cultured pollinated florets of F1 hybrids, 21 ...

  18. Anatomy of somatic embryogenesis in Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Juliana A. Fernando

    2001-09-01

    Full Text Available Mature zygotic embryos of Carica papaya L. ‘Sunrise Solo’ were used as explants for embryogenesis induction. The explants were inoculated on Murashige and Skoog culture medium supplemented with 2 mg.L-1 2,4-dichlorophenoxyacetic acid and incubated in darkness at 25+2°C. Histological analysis of callogenesis and somatic embryogenesis indicated occurrence of direct and indirect somatic embryogenesis development. Direct somatic embryo formation was observed from hypocotyledonary epidermic cells only from explant 18 days after inoculation. Somatic embryos formed indirectly were originated from embryogenic superficial cells of pre-embryonic complexes located on peripherical and on internal cell layers of callus 49 days after inoculation. Diverse morphological differences including disformed embryos were observed among the somatic embryos.Embriões zigóticos maduros de Carica papaya L. ‘Sunrise Solo’ foram utilizados como explantes para indução da embriogênese. Estes explantes foram inoculados em meio de cultura de Murashige & Skoog suplementado com 2,0 mg.L-1 de 2,4 ácido diclorofenoxiacético (2,4-D e mantidos no escuro em câmara de crescimento à temperatura de 21°C por período de tempo variável. Através da análise histológica foi possível verificar que os primeiros embriões somáticos formaram-se diretamente a partir de células únicas da epiderme hipocotiledonar do explante após o 18º dia de cultura. Porém, os demais embriões somáticos originaram-se indiretamente a partir de células superficiais de complexos pré-embriônicos presentes nas camadas periféricas e internas do calo após o 49º dia de cultura. Foram detectadas algumas diferenças morfológicas entre os embriões somáticos obtidos.

  19. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    Science.gov (United States)

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  20. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    Science.gov (United States)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  1. Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam.).

    Science.gov (United States)

    Cavalcante Alves, J M; Sihachakr, D; Allot, M; Tizroutine, S; Mussio, I; Servaes, A; Ducreux, G

    1994-05-01

    The potential of somatic embryogenesis was evaluated for 10 cultivars of sweet potato through extensive embryogenic response and isozyme analysis. Embryogenic callus was induced by incubating lateral buds on Murashige and Skoog medium containing 10 μM 2,4-dichlorophenoxyacetic acid for 6-8 weeks. The frequency of embryogenic response was low, and varied with genotypes, ranging from 0 to 17%. Embryo to plantlet formation could be enhanced by the use of the combination of 2,4-dichlorophenoxyacetic acid with kinetin, both used at 0.01 μM. Embryogenic callus with its potential of plantlet formation has constantly been maintained for over two years. However, after several subcultures, 0.5 to 12% of embryogenic callus reverted irreversibly into friable fast-growing non-embryogenic callus whose ability to regenerate shoots was then definitively lost. The isozymes of esterase, peroxidase, glutamate oxaloacetate transaminase and acid phosphatase investigated in this study were found appropriate to distinguish compact embryogenic from friable non-embryogenic callus in sweet potato. In fact, the callus reversion was associated with a loss of bands or a decline in isozyme activity. On the contrary, very small changes in isozyme activity or no specific changes at all were observed during the differentiation of embryogenic callus into globular embryos.

  2. Somatic and genetic effects

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on somatic and genetic effects of the 7th international congress of radiation research. They cover the following main topics: haematopoietic and immune systems, mechanisms of late effects in various tissues, endogenous and exogenous factors in radiation carcinogenesis, teratogenic effects, genetic effects, in vitro transformation, tumour induction in different tissues, carcinogenesis in incorporated tissues, cancer epidemology and risk assessment. refs.; figs.; tabs

  3. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  4. Cytogenetic and genetic studies of radiation-induced chromosome damage in mouse oocytes. Part 1. Numerical and structural chromosome anomalies in metaphase II oocytes, pre- and post-implantation embryos

    International Nuclear Information System (INIS)

    Tease, Charles; Fisher, Graham

    1996-01-01

    The incidences of X-ray induced numerical and structural chromosome anomalies were screened in a range of developmental stages from metaphase II oocytes through to post-implantation embryos. Following 1 Gy of acute X-rays to immediately preovulatory stage oocytes, the rate of hyperploidy (chromosome gain) was found to be elevated over levels in unirradiated controls, at metaphase II, in 1-cell and 3.5 day pre-implantation embryos but not in 8.5 day post-implantation foetuses. In the latter, however, the frequency of mosaicism was significantly increased. A similar response of an increase in mosaicism but not in hyperploidy in 8.5 day post-implantation embryos was also found after irradiation of dictyate stage oocytes with 4 Gy of acute X-rays. Significantly elevated frequencies of structural chromosome anomalies were present in metaphase II oocytes and pre-implantation embryonic stages, but could not be detected in block-stained chromosome preparations from 8.5 day post-implantation foetuses. However, analysis of chromosome preparations after G-banding showed that almost 14% of 14.5 day foetuses carried a chromosome rearrangement after 1 Gy of X-rays to immediately preovulatory stage oocytes. Overall, our data indicate that the presence of radiation-induced chromosome gains are incompatible with embryonic survival but that a proportion of embryos with structural chromosome damage develop past mid-gestation. These latter embryos are therefore potentially capable of contributing to the genetic burden of the next generation

  5. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  6. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  7. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    Directory of Open Access Journals (Sweden)

    Yukari Terashita

    Full Text Available Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA, an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2 could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  8. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts.

    Science.gov (United States)

    Kucab, Jill E; Zwart, Edwin P; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H; Phillips, David H; Arlt, Volker M

    2016-03-01

    3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:CT:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:CT:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers' lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Role of melatonin in embryo fetal development

    OpenAIRE

    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  10. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA

    Directory of Open Access Journals (Sweden)

    Menzel Diedrik

    2011-02-01

    Full Text Available Abstract Background Hydroxyproline rich glycoproteins (HRGPs are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis, and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs, mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs, proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM. This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP

  11. Somatic embryogenesis of East Kalimantan local upland rice varieties

    Science.gov (United States)

    Nurhasanah; Ramitha; Supriyanto, B.; Sunaryo, W.

    2018-04-01

    Somatic embryogenesis is the formation, growth and development of embryos from somatic cells. Somatic embryo induction is one of the in vitro plant propagation techniques that is very important for plant developmental purposes. Four local upland rice varieties of East Kalimantan, Mayas Pancing, Gedagai, Siam and Serai, were used in this study. A total of 200 explants (mature rice grains) for each varieties were inoculated on MS solid medium supplemented with 1 mg L-1 2,4 Dichlorophenoxy acetic acid (2,4-D) and 0.5 mg L-1 6-Benzylaminopurine (BAP). The results showed that response of each variety differed to embryosomatic induction, indicated by callus induction rate and callus quality, in terms of callus color and structure. The fastest callus formation was sobserved in Gedagai variety (8 days) while Mayas Pancing (13 days) was the latest one. The rate of callus induction varied from 60 to 98.5 %, and Serai variety has the highest callus induction rate. The highest friable callus structure was found in Siam variety (89.1%) and the lowest was in Gedagai (62.5%). Callus color was dominated by the yellowish-white (transparent) on all varieties tested. Most of the callus was potential as embryogenic callus characterized from the nodular and globular of friable callus structure and its yellowish-white color.

  12. The role of chromatin modifications in somatic embryogenesis in plants

    Directory of Open Access Journals (Sweden)

    Clelia eDe-la-Peña

    2015-08-01

    Full Text Available Somatic embryogenesis (SE is a powerful tool for plant genetic improvement, when used in combination with agricultural traditional techniques, and it is being used to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene, gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate the change in the genetic program of the somatic cells, as well as the transition among embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the role of epigenetic regulation of SE. In addition, we include a survey of novel approaches to the study of SE, and new opportunities to focus SE studies.

  13. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  14. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development; Evaluacion de la recombinacion en celulas somaticas inducida por radiacion en diferentes etapas del desarrollo larvario de Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Cruces, M P; Morales R, P [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr{sup 3}/TM3, Ser stocks were used. (Author)

  15. Management of somatic pain induced by head-and-neck cancer treatment: definition and assessment. Guidelines of the French Oto-Rhino-Laryngology- Head and Neck Surgery Society (SFORL).

    Science.gov (United States)

    Binczak, M; Navez, M; Perrichon, C; Blanchard, D; Bollet, M; Calmels, P; Couturaud, C; Dreyer, C; Espitalier, F; Testelin, S; Albert, S; Morinière, S

    2014-09-01

    The authors present the guidelines of the French Oto-Rhino-Laryngology- Head and Neck Surgery Society (Société Française d'Oto-rhino-Laryngologie et de Chirurgie de la Face et du Cou [SFORL]) for the management of somatic pain induced by head-and-neck cancer treatment, and in particular the instruments needed for the definition and initial assessment of the various types of pain. A multidisciplinary work group was entrusted with a review of the scientific literature on the above topic. Guidelines were drawn up, based on the articles retrieved and the group members' individual experience. They were then read over by an editorial group independent of the work group. The final version was established in a coordination meeting. The guidelines were graded as A, B, C or expert opinion, by decreasing level of evidence. The priority is to eliminate tumoral recurrence when pain reappears or changes following head-and-neck cancer treatment. Neuropathic pain screening instruments and pain assessment scales should be used to assess pain intensity and treatment efficacy. Functional rehabilitation sessions should be prescribed to reduce musculoskeletal pain and prevent ankylosis and postural disorder. Psychotherapy and mind-body therapy, when available, should be provided in case of chronic pain. In case of recalcitrant complex pain, referral should be made to a multidisciplinary pain structure. The management of somatic pain induced by head-and-neck cancer treatment above all requires identifying and assessing the intensity of the various types of pain involved, their functional impact and their emotional component. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Influence of embryo handling and transfer method on pig cloning efficiency.

    Science.gov (United States)

    Shi, Junsong; Zhou, Rong; Luo, Lvhua; Mai, Ranbiao; Zeng, Haiyu; He, Xiaoyan; Liu, Dewu; Zeng, Fang; Cai, Gengyuan; Ji, Hongmei; Tang, Fei; Wang, Qinglai; Wu, Zhenfang; Li, Zicong

    2015-03-01

    The somatic cell nuclear transfer (SCNT) technique could be used to produce genetically superior or genetically engineered cloned pigs that have wide application in agriculture and bioscience research. However, the efficiency of porcine SCNT currently is very low. Embryo transfer (ET) is a key step for the success of SCNT. In this study, the effects of several ET-related factors, including cloned embryo culture time, recipient's ovulation status, co-transferred helper embryos and ET position, on the success rate of pig cloning were investigated. The results indicated that transfer of cloned embryos cultured for a longer time (22-24h vs. 4-6h) into pre-ovulatory sows decreased recipient's pregnancy rate and farrowing rate, and use of pre-ovulatory and post-ovulatory sows as recipients for SCNT embryos cultured for 22-24h resulted in a similar porcine SCNT efficiency. Use of insemination-produced in vivo fertilized, parthenogenetically activated and in vitro fertilized embryos as helper embryos to establish and/or maintain pregnancy of SCNT embryos recipients could not improve the success rate of porcine SCNT. Transfer of cloned embryos into double oviducts of surrogates significantly increased pregnancy rate as well as farrowing rate of recipients, and the developmental rate of transferred cloned embryos, as compared to unilateral oviduct transfer. This study provided useful information for optimization of the embryo handling and transfer protocol, which will help to improve the ability to generate cloned pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Biological effects induced by the inner-target reaction of accelerated 7Li+3 ions with wheat embryo

    International Nuclear Information System (INIS)

    Yang Juncheng; Pan Wei; Zheng Qicheng; Liu Luxiang; Wang Jing; Zhao Linshu; Yu Weixiang; Zhao Wenrong; Bai Xixiang

    2004-01-01

    Using the mechanism of the nuclear reaction of accelerated 7 Li +3 ions with the inner target in mutant material i.e 1 H( 7 Li, 7 Be)n, the biological effects were studied. The wheat seeds were irradiated with the doses ranged from 1.416 x 10 10 ions/cm 2 to 1.416 x 10 12 ions/cm 2 . It was found that the cell membrane ruptured, the plasmolysis occurred, the nucleus shape changed. The serious changes of the chloroplast were as follows: the membrane protuberance, the grand disorder, the membrane disappearance, crista of mitochondrion rupture etc. by checking of the sub-microstructure of leaf cell. The single micronucleus and multi-micronucleus were observed at the interphase. The chromosome aberrational cells including chromosome fragment, lagging chromosome, chromosome bridge and circular chromosome were found during the mitosis. RAPD analysis of seedling genomic DNA variation in M 2 generation of three mutants showed their DNA sequences had changed. The result confirmed that the implantation of 7 Li +3 ions could induce genetic mutation in wheat

  18. Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos.

    Science.gov (United States)

    Chen, Kun; Tsutsumi, Yuki; Yoshitake, Shuhei; Qiu, Xuchun; Xu, Hai; Hashiguchi, Yasuyuki; Honda, Masato; Tashiro, Kosuke; Nakayama, Kei; Hano, Takeshi; Suzuki, Nobuo; Hayakawa, Kazuichi; Shimasaki, Yohei; Oshima, Yuji

    2017-01-01

    Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    Science.gov (United States)

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  20. Comparison of Different Methods for Separation of Haploid Embryo Induced through Irradiated Pollen and Their Economic Analysis in Melon (Cucumis melo var. inodorus

    Directory of Open Access Journals (Sweden)

    Gökhan Baktemur

    2013-01-01

    Full Text Available Irradiated pollen technique is the most successful haploidization technique within Cucurbitaceae. After harvesting of fruits pollinated with irradiated pollen, classical method called as “inspecting the seeds one by one” is used to find haploid embryos in the seeds. In this study, different methods were used to extract the embryos more easily, quickly, economically, and effectively. “Inspecting the seeds one by one” was used as control treatment. Other four methods tested were “sowing seeds direct nutrient media,” “inspecting seeds in the light source,” “floating seeds on liquid media,” and “floating seeds on liquid media after surface sterilization.” Y2 and Y3 melon genotypes selected from the third backcross population of Yuva were used as plant material. Results of this study show that there is no statistically significant difference among methods “inspecting the seeds one by one,” “sowing seeds direct CP nutrient media,” and “inspecting seeds in the light source,” although the average number of embryos per fruit is slightly different. No embryo production was obtained from liquid culture because of infection. When considered together with labor costs and time required for embryo rescue, the best methods were “sowing seeds directly in the CP nutrient media“ and ”inspecting seeds in the light source.”

  1. Ophiobolin A from Bipolaris oryzae Perturbs Motility and Membrane Integrities of Porcine Sperm and Induces Cell Death on Mammalian Somatic Cell Lines

    Directory of Open Access Journals (Sweden)

    Ottó Bencsik

    2014-09-01

    Full Text Available Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.

  2. IN VITRO REGENERATION OF THREE CHRYSANTHEMUM (Dendrathema grandiflora VARIETIES “VIA” ORGANOGENESIS AND SOMATIC EMBRYOGENESIS

    Directory of Open Access Journals (Sweden)

    Elizabeth Hodson de Jaramillo

    2008-09-01

    Full Text Available Chrysanthemum (Dendrathema grandiflora has a high demand in the Colombian and international cut flower markets.Since commercial production of this ornamental species is strongly affected by fungal diseases such as chrysanthemumwhite rust (Puccinia horiana, high doses of fungicides are being used posing increased environmental and commercialcosts. Assessment of in vitro regeneration systems from leaf discs was a first step in developing a plant genetic transformationprotocol to obtain fungi-resistant plants. Leaf discs of White Albatross, Yellow Albatross, and Escapade varieties wereestablished in vitro on MS medium supplemented with NAA (0 - 4.83 μM and BAP (0 - 13.32 μM alone and incombination. Leaf discs were also cultured on MumB medium containing 2,4-D (0 - 4.52 μM for 7, 14, and 21 days priorto their transferral to a 2,4-D free MumB medium. Regenerated shoots were individualized, rooted, and hardened. Resultsshow that MS with 4.83 μM NAA + 4.44 μM BAP and 4.83 μM NAA + 13.32 μM BAP induce organogenesis, and MumBwith 2.26 μM 2,4-D induces somatic embryogenesis on all three varieties, with exposition periods to 2,4-D of 14 days forWhite Albatross and 21 days for Yellow Albatross and Escapade. Shoot development from somatic embryos was observedin the three varieties when cultured on a 2,4-D free MumB medium. Spontaneous rooting was recorded in 85% of the shootsthus facilitating hardening and successful transfer to soil.

  3. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees.

    Science.gov (United States)

    Park, So-Young; Klimaszewska, Krystyna; Park, Ji-Young; Mansfield, Shawn D

    2010-11-01

    Of the various alternatives for cloning elite conifers, somatic embryogenesis (SE) appears to be the best option. In recent years, significant areas of lodgepole pine (Pinus contorta) forest have been devastated by the mountain pine beetle (MPB) in Western Canada. In an attempt to establish an SE propagation system for MPB-resistant lodgepole pine, several families displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed explants. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various treatments. Genotype had an important influence on embryogenic culture initiation, and this effect was consistent over time. These lines were identified by microscopic observation and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature embryos. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an early dominance stage via nodule-type callus in 1 of 10 genotypes. As part of the study, putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in cultures of both shoot bud explants and ZEs. On the basis of these analyses, we postulate that PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in embryonal mass (EM)-like tissues. The findings from this study, based on molecular assessment, suggest that the cell lines derived from bud cultures were truly EM. Moreover, these experimental observations suggest that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus.

  4. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    Science.gov (United States)

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  5. Somatic embryogenesis in banana and plantain (Musa spp. from male immature flowers

    Directory of Open Access Journals (Sweden)

    Rafael Gómez-Kosky

    2001-01-01

    Full Text Available In the development of this work, aspects related to the achievement of somatic embryos and regeneration of plants in some cultivars of Musa sp. group AAA, ABB and AABB were studied. Different experiments were carried out to determine the optimum culture conditions; the solidifying agent resulted to be phytagel (SIGMA Co., at a concentration of 2.0 g.l-1, were 68.6% of the explants formed yellow nodular calli. With, respect to the incubation conditions, darkness had a better influence achieving 73.8% of the explants forming yellow nodular calli. The best dosage of 2,4-D could have been determined for the induction of the yellow nodular calli in each one of the cultivars studied: Grande Naine (AAA, Parecido al Rey (AAA and FHIA-03 (AABB 4.0 mg.l-1 and for Bluggoe (ABB 2.0 mg.l-1. Studying the ranges of the hands, it was found that for all the cultivars, the ranges from 5-9 formed more callus with somatic embryogenesis of high frequency than the ranges from 10-14. Once the somatic embryos were transferred to the germination culture medium, a rate of 48.0% was obtained for Grande Naine and 39.0% for Parecido al Rey. Key words: banana, callus, male flowers, somatic embryo

  6. [Changes in polyamine levels in Citrus sinensis Osb. cv. Valencia callus during somatic embryogenesis].

    Science.gov (United States)

    Liu, Hua-Ying; Xiao, Lang-Tao; Lu, Xu-Dong; Hu, Jia-Jin; Wu, Shun; He, Chang-Zheng; Deng, Xiu-Xin

    2005-06-01

    Somatic embryogenetic capability and changes in polyamine level and their relationship were analyzed using the long-term (8 years) subcultured calli of Citrus sinensis Osb. cv. Valencia as materials. The results showed that endogenous polyamine contents in embryogenic calli were higher than those in non-embryogenic calli, and the embryogenetic capability was positively correlated to the levels of endogenous polyamines. When the calli were transferred to a differentiation medium, the putrescine content rapidly increased and reached a peak, then fell gradually. Applying exogenous putrescine raised the embryogenesis frequency and endogenous putrescine level. It indicated that increase in putrescine content at early stage of differentiation promoted embryogenesis. With the development of somatic embryo, spermidine content reached its the highest level at globular embryo stage, spermine content rose and reached a peak at a later stage of globular embryo development. Furthermore, changes of the putrescine, spermidine and spermine contents during somatic embryogenesis were similar in Valencia calli which had different ploidy levels, but their contents decreased following the increasing of ploidy level. Changes in arginine decarboxylase activity were positively correlated to the polyamine levels, which suggest that the later is a key factor in regulating the polyamine levels during somatic embryogenesis in citrus plants.

  7. Osteoporosis and Somatization of Anxiety

    Directory of Open Access Journals (Sweden)

    Maria Papanikou

    2013-12-01

    Full Text Available Chronic stress can now be physiologically traced as a significant player in the creation of osteoporotic bones. The present pilot study involved 100 women (N = 42 have been diagnosed with osteopenia, N = 21 have been diagnosed with osteoporosis, N = 37 had a non-osteoporotic condition who participated in the Hellenic Society of Osteoporosis Association Support. Correlations between somatic symptoms of anxiety and osteoporosis, and among medications and somatization in women were explored. Assessments were based on a self-report demographic questionnaire and on the Short Anxiety Screening Test (SAST administered for detection of anxiety disorder and somatization. Statistical analysis detected non-significant differences regarding the correlation between anxiety symptomatology or somatization due to osteoporosis and osteopenia diagnosis. The same pattern is observed among women’s age group, the occupational and marital status. Hypothesis that the osteoporosis and osteopenia group would manifest significant relationships with the age group and medicines was confirmed, as well as between somatization and medicines that women with osteoporosis and osteopenia undertake. The results suggest that women are not prone to manifest anxiety or somatization in relation to the osteoporosis condition. However, the majority of women with osteoporosis and osteopenia consume more than two medicines other than those for osteoporosis. This quantity and combination they undertake appear to contribute and deteriorate their anxiety/somatization symptomatology. Further research based on a larger sample would give more definite results.

  8. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    Science.gov (United States)

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  9. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  10. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  11. Somatic Embryogenesis in Coffee: The Evolution of Biotechnology and the Integration of Omics Technologies Offer Great Opportunities.

    Science.gov (United States)

    Campos, Nádia A; Panis, Bart; Carpentier, Sebastien C

    2017-01-01

    One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve.

  12. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  13. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  14. Somatic Embryogenesis in Olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris).

    Science.gov (United States)

    Rugini, Eddo; Silvestri, Cristian

    2016-01-01

    Protocols for olive somatic embryogenesis from zygotic embryos and mature tissues have been described for both Olea europaea sub. europaea var. sativa and var. sylvestris. Immature zygotic embryos (no more than 75 days old), used after fruit collection or stored at 12-14 °C for 2-3 months, are the best responsive explants and very slightly genotype dependent, and one single protocol can be effective for a wide range of genotypes. On the contrary, protocols for mature zygotic embryos and for mature tissue of cultivars are often genotype specific, so that they may require many adjustments according to genotypes. The use of thidiazuron and cefotaxime seems to be an important trigger for induction phase particularly for tissues derived from cultivars. Up to now, however, the application of this technique for large-scale propagation is hampered also by the low rate of embryo germination; it proves nonetheless very useful for genetic improvement.

  15. HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death

    International Nuclear Information System (INIS)

    Wang, Yingying; Hai, Tang; Liu, Zichuan; Zhou, Shuya; Lv, Zhuo; Ding, Chenhui; Liu, Lei; Niu, Yuyu; Zhao, Xiaoyang; Tong, Man; Wang, Liu; Jouneau, Alice; Zhang, Xun; Ji, Weizhi; Zhou, Qi

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.

  16. Synergistic effect of embryo vaccination with Eimeria profilin and Clostridium perfringens NetB proteins on inducing protective immunity against necrotic enteritis in broiler chickens

    Science.gov (United States)

    The effects of embryo vaccination with Eimeria profilin plus Clostridium perfringens NetB toxin proteins in combination with the Montanide IMS-OVO adjuvant on the chicken immune response to necrotic enteritis were investigated using an E. maxima/C. perfringens co-infection model. Eighteen-day-old br...

  17. Embryo-maternal communication

    DEFF Research Database (Denmark)

    Østrup, Esben; Hyttel, Poul; Østrup, Olga

    2011-01-01

    Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms dire...... directing the placentation. An increasing knowledge of the embryo-maternal communication might not only help to improve the fertility of our farm animals but also our understanding of human health and reproduction.......Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms...

  18. Cryopreservation of preimplantation embryos of cattle, sheep, and goats.

    Science.gov (United States)

    Youngs, Curtis R

    2011-08-05

    Preimplantation embryos from cattle, sheep, and goats may be cryopreserved for short- or long-term storage. Preimplantation embryos consist predominantly of water, and the avoidance of intracellular ice crystal formation during the cryopreservation process is of paramount importance to maintain embryo viability. Embryos are placed into a hypertonic solution (1.4 - 1.5 M) of a cryoprotective agent (CPA) such as ethylene glycol (EG) or glycerol (GLYC) to create an osmotic gradient that facilitates cellular dehydration. After embryos reach osmotic equilibrium in the CPA solution, they are individually loaded in the hypertonic CPA solution into 0.25 ml plastic straws for freezing. Embryos are placed into a controlled rate freezer at a temperature of -6°C. Ice crystal formation is induced in the CPA solution surrounding the embryo, and crystallization causes an increase in the concentration of CPA outside of the embryo, causing further cellular dehydration. Embryos are cooled at a rate of 0.5°C/min, enabling further dehydration, to a temperature of -34°C before being plunged into liquid nitrogen (-196°C). Cryopreserved embryos must be thawed prior to transfer to a recipient (surrogate) female. Straws containing the embryos are removed from the liquid nitrogen dewar, held in room temperature air for 3 to 5 sec, and placed into a 37°C water bath for 25 to 30 sec. Embryos cryopreserved in GLYC are placed into a 1 M solution of sucrose for 10 min for removal of the CPA before transfer to a recipient (surrogate) female. Embryos cryopreserved in EG, however, may be directly transferred to the uterus of a recipient.

  19. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Directory of Open Access Journals (Sweden)

    Dawei Yu

    Full Text Available Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α (without secretory signal sequence gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT. Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9% became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS, which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  20. Somatically acquired structural genetic differences

    DEFF Research Database (Denmark)

    Magaard Koldby, Kristina; Nygaard, Marianne; Christensen, Kaare

    2016-01-01

    Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested t...... with age.European Journal of Human Genetics advance online publication, 20 April 2016; doi:10.1038/ejhg.2016.34....

  1. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    Science.gov (United States)

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  2. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine.

    Science.gov (United States)

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj; Tiwari, Siddharth

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.

  3. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  5. Stem cells from residual IVF-embryos - Continuation of life justifies isolation.

    NARCIS (Netherlands)

    Bongaerts, G.P.A.; Severijnen, R.S.V.M.

    2007-01-01

    Embryonic stem cells are undifferentiated pluripotent cells that can indefinitely grow in vitro. They are derived from the inner mass of early embryos. Because of their ability to differentiate into all three embryonic germ layers, and finally into specialized somatic cell types, human embryonic

  6. Antiangiogenic Effect Of The Chloroform Extract Of Tinospora crispa (L. Miers Stem In The Chick Embryo Chorioallantoic Membrane (CAM Induced By bFGF

    Directory of Open Access Journals (Sweden)

    Asih Triastuti

    2012-02-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Cancer is one of the most complex disease involving molecular process cause it is hard to be cured. There are many natural compounds which have been used empirically in the society in order to treat cancer. One of them is a kind of herbal medicine called ‘Brotowali’ (Tinospora crispa (L. Miers. The objective of this research was  to know antiangiogenic effect of the chloroform extract of  brotowali stem using CAM method induced by bFGF. In this research, the inhibition test is done by the CAM at 9 day chick embryo divided  into  seven groups of treatment. Group I is  as the paper disc controller, group II as the bFGF controller, group III as  bFGF +  DMSO 0,8% solvent controller, group IV, V, VI and VII, as the group that conduct the angiogenesis inhibition test. The last four group were given 10 ng of bFGF each and the chloroform extract of brotowali stem with the doses of 15 μg/ml, 60 μg/ml, 240 μg/ml and 960 μg/ml. After having been incubated for 3 days (egg at 12 day, CAM were carefully observed  macroscopically and microscopically. The result showed that  the chloroform extract of brotowali stem can  inhibit the angiogenesis in CAM induced by bFGF. It show that the angiogenesis inhibition for the dose of the

  7. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    Science.gov (United States)

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  8. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster

    Science.gov (United States)

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  9. [Effect of TSA and VPA treatment on long-tailed macaque (Macaca fascicularis)-pig interspecies somatic cell nuclear transfer].

    Science.gov (United States)

    Qin, Zu-Xing; Huang, Gao-Bo; Luo, Jun; Ning, Shu-Fang; Lu, Sheng-Sheng; Lu, Ke-Huan

    2012-03-01

    Long-tailed macaque-pig interspecies somatic cell nuclear transfer (iSCNT) is beneficial to yield embryonic stem cells from iSCNT embryos with similar genetic background as human, which can be used as materials for medical and basic research. The primary objective of this study was to investigate the effects of concentrations and treatment duration of two histone deacetylase inhibitors-Trichostatin A (TSA) and Valproic acid (VPA) and two different embryo culture media (PZM-3 and HECM-10) on the in vitro development of iSCNT embryos. The results suggested that when PZM-3 was used as the embryo culture medium, the blastocyst rate of 10 nmol/L TSA treatment for 48 h was significantly higher than the control group (22.78% vs 9.86%, PTSA treatment could enhance the in vitro developmental potential of long-tailed macaque-pig iSCNT embryos.

  10. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus

    2007-01-01

    The present study was designed to examine the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on development of porcine cloned embryos. Our results showed that treatment of cloned embryos derived from sow oocytes with 50 nM TSA for up to 24 h after the onset of activation cou...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  11. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    Science.gov (United States)

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.

  12. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope.

    Science.gov (United States)

    Vlašínová, Helena; Neděla, Vilem; Đorđević, Biljana; Havel, Ladislav

    2017-07-01

    Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low-0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.

  13. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    Science.gov (United States)

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  14. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  15. In vivo and in vitro development of Tibetan antelope (Pantholops hodgsonii interspecific cloned embryos

    Directory of Open Access Journals (Sweden)

    Guanghua SU,Lei CHENG,Yu GAO,Kun LIU,Zhuying WEI,Chunling BAI,Fengxia YIN,Li GAO,Guangpeng LI,Shorgan BOU

    2014-02-01

    Full Text Available The Tibetan antelope is endemic to the Tibetan Plateau, China, and is now considered an endangered species. As a possible rescue strategy, the development of embryos constructed by interspecies somatic cell nuclear transfer (iSCNT was examined. Tibetan antelope fibroblast cells were transferred into enucleated bovine, ovine and caprine oocytes. These cloned embryos were then cultured in vitro or in the oviducts of intermediate animals. Less than 0.5% of the reconstructed antelope-bovine embryos cultured in vitro developed to the blastocyst stage. However, when the cloned antelope-bovine embryos were transferred to caprine oviducts, about 1.6% of the embryos developed to the blastocyst stage. In contrast, only 0.7% of the antelope-ovine embryos developed to the morula stage and none developed to blastocysts in ovine oviducts. The treatment of donor cells and bovine oocytes with trichostatin A did not improve the embryo development even when cultured in the oviducts of ovine and caprine. When the antelope-bovine embryos, constructed from oocytes treated with roscovitine or trichostatin A, were cultured in rabbit oviducts 2.3% and 14.3% developed to blastocysts, respectively. It is concluded that although some success was achieved with the protocols used, interspecies cloning of Tibetan antelope presents difficulties still to be overcome. The mechanisms resulting in the low embryo development need investigation and progress might require a deeper understanding of cellular reprogramming.

  16. Time to take human embryo culture seriously.

    Science.gov (United States)

    Sunde, Arne; Brison, Daniel; Dumoulin, John; Harper, Joyce; Lundin, Kersti; Magli, M Cristina; Van den Abbeel, Etienne; Veiga, Anna

    2016-10-01

    Is it important that end-users know the composition of human embryo culture media? We argue that there is as strong case for full transparency concerning the composition of embryo culture media intended for human use. Published data suggest that the composition of embryo culture media may influence the phenotype of the offspring. A review of the literature was carried out. Data concerning the potential effects on embryo development of culture media were assessed and recommendations for users made. The safety of ART procedures, especially with respect to the health of the offspring, is of major importance. There are reports from the literature indicating a possible effect of culture conditions, including culture media, on embryo and fetal development. Since the introduction of commercially available culture media, there has been a rapid development of different formulations, often not fully documented, disclosed or justified. There is now evidence that the environment the early embryo is exposed to can cause reprogramming of embryonic growth leading to alterations in fetal growth trajectory, birthweight, childhood growth and long-term disease including Type II diabetes and cardiovascular problems. The mechanism for this is likely to be epigenetic changes during the preimplantation period of development. In the present paper the ESHRE working group on culture media summarizes the present knowledge of potential effects on embryo development related to culture media, and makes recommendations. There is still a need for large prospective randomized trials to further elucidate the link between the composition of embryo culture media used and the phenotype of the offspring. We do not presently know if the phenotypic changes induced by in vitro embryo culture represent a problem for long-term health of the offspring. Published data indicate that there is a strong case for demanding full transparency concerning the compositions of and the scientific rationale behind the

  17. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter's transformation

    NARCIS (Netherlands)

    Smit, Laura A.; van Maldegem, Febe; Langerak, Anton W.; van der Schoot, C. Ellen; de Wit, Mireille J.; Bea, Silvia; Campo, Elias; Bende, Richard J.; van Noesel, Carel J. M.

    2006-01-01

    BACKGROUND AND OBJECTIVES: Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and

  18. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  19. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  20. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  1. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  2. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Science.gov (United States)

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  3. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  4. Field evaluation of regenerated plants by somatic embryogenesis from shoots apexes of axillary buds in ´Navolean’ (Musa spp., AAB.

    Directory of Open Access Journals (Sweden)

    Jorge López

    2005-04-01

    Full Text Available The use of shoots apexes from axilary buds for callus induction with embryogenic structures in plantain ‘Navolean’ (Group AAB permitted to develop a plant regeneration method through out somatic embryogenesis. In order to know the phenotypic variants that may be produced with the previously mentioned method , 1000 plants were planted in field conditions in comparison to those coming from somatic embryos obtained from multibuds as initial explants and organogenesis-derived plants (shoot tipsand conventionally derived plants (corms, during two growing cycles. The main morphological characters and yield components were evaluated. The total frequency of somaclonal variation during the first growing cycle in plants coming from somatic embryos obtained from shoots apexes from axilary buds as initial explants were 1.1%, and 8,6% in regenerated plants from somatic embryos obtained from multi-buds as initial explants. Later, in this same growing cycle, plants regenerated from somatic embryos (both sources showed a similar performance between them and they were significantly superior in all evaluated variants in comparison to corm-derived plants. In the second growing cycle, significant differences were not observed in yield components of suckers from evaluated plants, in spite of the propagation method used. With regard to somaclonal variation, the best performance was obtained with shoots apexes from axilary buds as explants. Finally, the feasibility of using the new method was shown. Key words: embryogenic cell suspensions, somaclonal variation

  5. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    Science.gov (United States)

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  6. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  7. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  8. Structural alterations in embryos and alevins of the Atlantic salmon, Salmo salar 1. , induced by continuous or short-term exposure to acidic levels of pH

    Energy Technology Data Exchange (ETDEWEB)

    Daye, P.G.; Garside, E.T.

    1980-01-01

    Embryos of the Atlantic Salmon, salmo salar l., were incubated continuously from fertilization, at pH 6.8 (control), 5.0, 4.5, 4.3, 4.0, and 3.7, at 5-6 degrees C. The subsequent alvins in these environments were maintained at these levels for 40 days after hatching. Generally, lethal and sublethal injuries were separable only as to degree and distribution. Sublethal alterations occurred in the integument, gill blood, and blood vascular structures of all live alevins incubated at pH 5.0 and lower. At pH 4.5 and lower, injuries also occurred in brain, optic retina, kidney, and spleen. Some tissue regeneration occurred in the embryonal rudimentary integument at pH 4.5 and lower. Regeneration also occurred but to a lesser degree in pseudobranch, kidney, spleen, and erythrocytes. Injury of the integument was the apparent cause of death in prehatching embryos since it is the major site of respiration and ion exchange. As gills expand in posthatching alevins, they assume these functions and destruction of branchial epithelium then becomes the prime cause of death. The nature of cell injury and consequent dysgenesis at tissue and organ levels are not ascribable uniquely to acidic stress. Some injuries are similar to those caused variously by heavy metals, detergents, halogenated organic compounds, some petroleum fractions, and chronic and acute high temperature in postalevin stages of several species of fish.

  9. In vitro embryo culture of rarely endangered musella lasiocarpa (musaceae) with embryo dormancy

    International Nuclear Information System (INIS)

    Anjun, T.

    2014-01-01

    Musella lasiocarpa (Musaceae) is an ornamental annually producing many viable seeds, but seldom recruited by seeds in the wild. One mature Musella seed has a small mushroom-shaped embryo without discernible organ differentiation. Therefore, freshly-harvested mature seeds are dormant. When the seeds gradually finished differentiation during warm stratification at 23 degree C, they germinated to 82%. Besides, extracted embryos from fresh seeds did not germinate on the basal medium of Murshige and Skoog medium (MS) supplemented with 3% sucrose and 0.8% agar, but they were induced to form calli and root by media. The optimum medium for inducing calli was MS + 1.0 mg/L 6-BA + 0.05 mg/L NAA + 100 mg/L Vc with the highest proliferation coefficient (7.3) in 35 days. Moreover, the embryos from the 6-month warm stratified seeds could proliferate on the suitable medium. The optimal medium for rooting was MS + 0.5 mg/L 2, 4-D + Vitamin C 100 mg/L. The results confirmed that both the embryo developmental stage and appropriate combination of chemicals significantly affected seed germination and In vitro embryo culture of this species. (author)

  10. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  11. impact on embryo quality

    Directory of Open Access Journals (Sweden)

    Marijan Tandara

    2013-05-01

    Conclusions: In men with poorer semen quality, evaluated by standard semen parameters, a higher proportion of sperm with damaged DNA can also be expected. Higher sperm DNA damage, established by Halosperm test, also had an impact on embryo quality in this group of patients.

  12. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    International Nuclear Information System (INIS)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin; Sun, Xiaofang

    2009-01-01

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  13. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China); Sun, Xiaofang, E-mail: xiaofangsun@hotmail.com [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China)

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  14. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    Science.gov (United States)

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  15. Somatic symptom profiles in the general population

    DEFF Research Database (Denmark)

    Eliasen, Marie; Jørgensen, Torben; Schröder, Andreas

    2017-01-01

    PURPOSE: The aim of this study was to identify and describe somatic symptom profiles in the general adult population in order to enable further epidemiological research within multiple somatic symptoms. METHODS: Information on 19 self-reported common somatic symptoms was achieved from a population...

  16. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-01-01

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  17. The HIST1 Locus Escapes Reprogramming in Cloned Bovine Embryos

    Directory of Open Access Journals (Sweden)

    Byungkuk Min

    2016-05-01

    Full Text Available Epigenetic reprogramming is necessary in somatic cell nuclear transfer (SCNT embryos in order to erase the differentiation-associated epigenetic marks of donor cells. However, such epigenetic memories often persist throughout the course of clonal development, thus decreasing cloning efficiency. Here, we explored reprogramming-refractory regions in bovine SCNT blastocyst transcriptomes. We observed that histone genes residing in the 1.5 Mb spanning the cow HIST1 cluster were coordinately downregulated in SCNT blastocysts. In contrast, both the nonhistone genes of this cluster, and histone genes elsewhere remained unaffected. This indicated that the downregulation was specific to HIST1 histone genes. We found that, after trichostatin A treatment, HIST1 histone genes were derepressed, and DNA methylation at their promoters was decreased to the level of in vitro fertilization embryos. Therefore, our results indicate that the reduced expression of HIST1 histone genes is a consequence of poor epigenetic reprogramming in SCNT blastocysts.

  18. Recurrent somatic embryogenesis in long-term cultures of Gentiana lutea L. as a source for synthetic seed production for medium-term preservation

    Directory of Open Access Journals (Sweden)

    Holobiuc Irina

    2012-01-01

    Full Text Available Our aim was to establish an efficient and reproducible system for producing synthetic seeds from recurrent somatic embryogenesis in long-term cultures of Gentiana lutea L. This species is a vulnerable medicinal plant, protected both at the national and international levels, and is included in different Red Lists and Books. In vitro culture, as an alternative to classical methods of preservation, allows for the cyclic multiplication of plant material and short-, medium- and long-term preservation of tissue collections. Biotechnological approaches allow for maintenance of the plant material in a confined space and protection against biotic and abiotic factors. Somatic embryogenesis (SE is the most efficient way to regenerate plants, ensuring material for preservation and fundamental research. In our experiment, recurrent somatic embryogenesis was developed in long-term cultures in the presence of sugar alcohols (mannitol, sorbitol and in the absence of growth factors. This process proceeded at a high rate, with adventive somatic embryos being generated in a continuous process, followed by maturation, germination and development into plants. To follow the somatic embryogenesis process, histological samples were made. We used these embryogenic cultures for synthetic seed production and medium-term conservation. The viability of somatic embryos after moderate osmotic stress treatment was tested using TTC. Our methodology relied on the induction of somatic embryogenesis in the presence of auxins in the first cycle of in vitro cultures, long-term high embryogenic culture maintenance in the presence of sugar alcohols and synthetic seed production.

  19. Micropropagation of Citrus spp. by organogenesis and somatic embryogenesis.

    Science.gov (United States)

    Chiancone, Benedetta; Germanà, Maria Antonietta

    2013-01-01

    Citrus spp., the largest fruit crops produced worldwide, are usually asexually propagated by cuttings or grafting onto seedling rootstocks. Most of Citrus genotypes are characterized by polyembryony due to the occurrence of adventive nucellar embryos, which lead to the production of true-to-type plants by seed germination. Tissue culture and micropropagation, in particular, are valuable alternatives to traditional propagation to obtain a high number of uniform and healthy plants in a short time and in a small space. Moreover, in vitro propagation provides a rapid system to multiply the progeny obtained by breeding programs, allows the use of monoembryonic and seedless genotypes as rootstocks, and it is very useful also for breeding and germplasm preservation.In this chapter, two protocols regarding organogenesis of a rootstock and somatic embryogenesis of a cultivar have been described.

  20. Anatomical Study of Somatic Embryogenesis in Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida Fernando

    2002-09-01

    Full Text Available A comparative anatomical analysis of somatic embryogenesis in two soybean (Glycine max (L. Merrill genotypes was carried out. The somatic embryos were originated from cotyledonary explants obtained from immature zygotic embryos. The medium used for somatic embryogenesis induction was Murashige and Skoog, 1962, salts and Gamborg et al., 1968, vitamins (MSB supplemented with 0.8 mg.L-1 of 2,4-D for genotype PI 123439 and 40 mg.L-1 of 2,4-D for ‘Williams 82’. Globular structures, constituted by meristematic cells, originated from subepidermal cell divisions of the cotyledonary mesophyll. In PI 123439, the globular structures presented tracheary differentiation among meristematic cells and they could follow distinct morphogenetic process depending on their location along the explant. For ‘Williams 82’ it was observed globular structures along the cotyledonary explant surface. They gave rise to somatic embryos. These embryos showed different morphologies and they were classified based on their shape and number of cotyledons. The ability of these morphological types to convert to plantlets was discussed.Realizou-se uma análise anatômica comparativa da embriogênese somática em dois genótipos de soja (Glycine max (L. Merrill. Os embriões somáticos foram obtidos a partir de explantes cotiledonares excisados de embriões zigóticos imaturos do genótipo PI 123439, adaptado às condições tropicais, e ‘Williams 82’. O meio utilizado para indução da embriogênese somática constituiu-se de sais de Murashige e Skoog,1962, e vitaminas de Gamborg et al., 1968 (MSB suplementado com 0,8 mg.L-1 de 2,4-D (PI 123439 e 40 mg.L-1 (‘Williams 82’. Estruturas globulares originaram-se a partir de divisões celulares nas camadas subepidérmicas do mesofilo cotiledonar e foram constituídas por células meristemáticas. No genótipo PI 123439, as estruturas globulares apresentaram diferenciação traqueal entre as células meristemáticas e

  1. Somatic polyploidization and characterization of induced polyploids ...

    African Journals Online (AJOL)

    Rukevwe S. Abraka

    2016-09-21

    Sep 21, 2016 ... 3International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria. 4Japan International .... Photos of stomata were taken using a digital camera (DP71, Olympus) attached to the ..... In. Marketing. Opportunities for ...

  2. [Somatization disorders of the urogenital tract].

    Science.gov (United States)

    Günthert, E A

    2002-11-01

    Diffuse symptoms in the urogenital region can frequently be explained by somatization disorders. Since they cannot be proven either by laboratory tests or with common technical diagnostic methods, somatization disorders should always be taken into consideration. Somatization disorders are to be considered functional disorders. Since somatization disorders due to muscular tension prevail in the urogenital region, the functional disturbance can be explained by the muscular tension. Subsequently, muscular tension causes the pathophysiological development of symptoms. As a rule they appear as myofascial pain or disorder. Muscular tension can have a psychic origin. The absence of urological findings is typical. Males and females between the ages of 16 and 75 can be affected by somatization disorders in the urogenital region. Somatization disorders due to muscular tension belong to the large group of symptoms due to tension. Diagnostic and therapeutic procedures as well as the pathophysiology of somatization disorders due to muscular tension are illustrated by two detailed case-reports.

  3. Immunoelectron microscopy in embryos.

    Science.gov (United States)

    Sierralta, W D

    2001-05-01

    Immunogold labeling of proteins in sections of embryos embedded in acrylate media provides an important analytical tool when the resolving power of the electron microscope is required to define sites of protein function. The protocol presented here was established to analyze the role and dynamics of the activated protein kinase C/Rack1 regulatory system in the patterning and outgrowth of limb bud mesenchyme. With minor changes, especially in the composition of the fixative solution, the protocol should be easily adaptable for the postembedding immunogold labeling of any other antigen in tissues of embryos of diverse species. Quantification of the labeling can be achieved by using electron microscope systems capable of supporting digital image analysis. Copyright 2001 Academic Press.

  4. Dimensions of somatization and hypochondriasis.

    Science.gov (United States)

    Ford, C V

    1995-05-01

    A significantly large group of patients who communicate their psychosocial distress in the form of physical symptoms are called somatizers. They tend to overuse medical services. The syndromes with which they present have indistinct boundaries, and there tends to be some fluidity of their symptomatic presentations. Underlying psychiatric disorders such as mood disorders, anxiety disorders (including obsessive compulsive disorder), and personality disorders are frequently present.

  5. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae).

    Science.gov (United States)

    Chen, J -T.; Chang, W -C.

    2000-12-07

    An efficient method was established for high frequency somatic embryogenesis and plant regeneration from callus cultures of a hybrid of sympodial orchid (Oncidium 'Gower Ramsey'). Compact and yellow-white embryogenic calli formed from root tips and cut ends of stem and leaf segments on 1/2 MS [11] basal medium supplemented with 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ, 0.1-3 mg/l), 2,4-dichlorophenoxyacetic acid (2,4-D, 3-10 mg/l) and peptone (1 g/l) for 4-7 weeks. Embryogenic callus was maintained by subculture on the same medium for callus induction and proliferated 2-4 times (fresh weight) in 1 month. Initiation of somatic embryogenesis and development up to the protocorm-like-bodies (PLBs) from callus cultures was achieved on hormone-free basal medium. Regenerants were recovered from somatic embryos (SEs) after transfer to the same medium and showed normal development. The optimized protocol required about 12-14 weeks from the initiation of callus to the plantlet formation. Generally, the frequency of embryo formation of root-derived callus was higher than stem- and leaf-derived calli. Combinations of naphthaleneacetic acid (NAA) and TDZ significantly promoted embryo formation from callus cultures. The high-frequency (93.8%) somatic embryogenesis and an average of 29.1 SEs per callus (3x3 mm(2)) was found in root-derived callus on a basal medium supplemented with 0.1 mg/l NAA and 3 mg/l TDZ. Almost all the SEs converted and the plantlets grew well with an almost 100% survival rate when potted in sphagnum moss and acclimatized in the greenhouse.

  6. Use of somatic cell banks in the conservation of wild felids.

    Science.gov (United States)

    Praxedes, Érika A; Borges, Alana A; Santos, Maria V O; Pereira, Alexsandra F

    2018-05-03

    The conservation of biological resources is an interesting strategy for the maintenance of biodiversity, especially for wild felids who are constantly threatened with extinction. For this purpose, cryopreservation techniques have been used for the long-term storage of gametes, embryos, gonadal tissues, and somatic cells and tissues. The establishment of these banks has been suggested as a practical approach to the preservation of species and, when done in tandem with assisted reproductive techniques, could provide the means for reproducing endangered species. Somatic cell banks have been shown remarkable for the conservation of genetic material of felids; by merely obtaining skin samples, it is possible to sample a large group of individuals without being limited by factors such as gender or age. Thus, techniques for somatic tissue recovery, cryopreservation, and in vitro culture of different wild felids have been developed, resulting in a viable method for the conservation of species. One of the most notable conservation programs for wild felines using somatic samples was the one carried out for the Iberian lynx, the most endangered feline in the world. Other wild felids have also been studied in other continents, such as the jaguar in South America. This review aims to present the technical progress achieved in the conservation of somatic cells and tissues in different wild felids, as well address the progress that has been achieved in a few species. © 2018 Wiley Periodicals, Inc.

  7. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from severa