WorldWideScience

Sample records for solvingthe synchronization problem

  1. Public channel cryptography: chaos synchronization and Hilbert's tenth problem.

    Science.gov (United States)

    Kanter, Ido; Kopelowitz, Evi; Kinzel, Wolfgang

    2008-08-22

    The synchronization process of two mutually delayed coupled deterministic chaotic maps is demonstrated both analytically and numerically. The synchronization is preserved when the mutually transmitted signals are concealed by two commutative private filters, a convolution of the truncated time-delayed output signals or some powers of the delayed output signals. The task of a passive attacker is mapped onto Hilbert's tenth problem, solving a set of nonlinear Diophantine equations, which was proven to be in the class of NP-complete problems [problems that are both NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP problem can be translated into this problem)]. This bridge between nonlinear dynamics and NP-complete problems opens a horizon for new types of secure public-channel protocols.

  2. Synchronization

    Indian Academy of Sciences (India)

    Synchronization, in simple terms, is the adjustment of rhythrns of two mutually interacting systems, such as a pair of coupled oscillators. Synchronization was discov- ered in the seventeenth century by Christiaan Huygens who observed it when working with clocks (see Box 1). He saw that two clocks (pendulums) suspended ...

  3. Complexity of Problems Concerning Carefully Synchronizing Words for PFA and Directing Words for NFA

    Science.gov (United States)

    Martyugin, P. V.

    We show that the problem of checking careful synchronizability of partial finite automata and the problem of finding the shortest carefully synchronizing word are PSPACE-complete. We show that the problem of checking D 1, D 2 and D 3-directability of nondeterministic finite automata and the problem of finding the shortest D 1, D 2 and D 3-directing word are PSPACE-complete. The restrictions of these problems to 2-letter automata remain PSPACE-complete.

  4. Examining the Effect of Problem Type in a Synchronous Computer-Supported Collaborative Learning (CSCL) Environment

    Science.gov (United States)

    Kapur, Manu; Kinzer, Charles K.

    2007-01-01

    This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…

  5. Cyclic delivery-scheduling problem with synchronization of vehicles\\' arrivals at logistic centers

    Directory of Open Access Journals (Sweden)

    Katarzyna Zofia Gdowska

    2015-12-01

    Full Text Available Background: In this paper a cyclic delivery-scheduling problem with vehicles serving fixed routes is presented. Each vehicle is assigned to one route to which some manufacturers' warehouses and logistics centers belong. A vehicle is to be loaded at a manufacturer's warehouse, then to deliver goods to a logistics center and may be also loaded there with other goods and to transport them to the next node along the route. One logistic center belongs to several routes, so the goods delivered by one vehicle may continue their journey by another truck. For every route the frequency of the vehicle is fixed and known. The objective here is to obtain such synchronization of vehicles arrivals in logistics centers, so that it is possible to organize their arrivals in repeatable blocks. Methods: In the paper the cyclic delivery-scheduling problem with vehicles serving fixed routes is formulated as a MIP model. Due to the fixed routes and desirable synchronization of vehicles arrivals in shared points this problem seems to be similar to the public transit network timetabling problem. Because of that the model presented here was based on a model dedicated to the public transit network timetabling problem, where optimization criterion was to maximize synchronization of vehicles' arrivals at the shared nodes. Results: Mixed integer programming model was employed for solving several cases of cyclic delivery-scheduling problem with vehicles serving fixed routes. Computational experiments are reported and obtained results are presented. Conclusions: The mixed integer programming model for the cyclic delivery-scheduling problem with synchronization of vehicles arrivals at logistic centers presented in this paper can be utilized for generating schedules for a group of vehicles serving fixed long routes. It may result in reducing total operational cost related to this group of vehicles as well as in reducing the goods travel time from the place of origin to their

  6. Multimedia Synchronization and UNIX-or-If Multimedia Support is the Problem, Is UNIX the Solution?

    NARCIS (Netherlands)

    D.C.A. Bulterman (Dick); G. van Rossum (Guido); D.T. Winter (Dik)

    1991-01-01

    htmlabstractThis paper considers the role of UNIX in supporting multimedia applications. In particular, we consider the ability of the UNIX operating system (in general) and the UNIX I/O system (in particular) to support the synchronization of a number of high-bandwidth data sets that must be

  7. Solving Problems in Software Applications through Data Synchronization in Case of Absence of the Network

    OpenAIRE

    Isak Shabani; Betim Cico; Agni Dika

    2012-01-01

    In this paper, we have presented an algorithm for data synchronization based on Web Services (WS), which allows software applications to work well on both configurations Online and "Offline", in the absence of the network. For this purpose is in use Electronic Student Management System (ESMS) at University of Prishtina (UP) with the appropriate module. Since the use of ESMS, because of a uncertain supply of electricity, disconnecting the network and for other reasons which are not under the c...

  8. Cluster Synchronization Algorithms

    NARCIS (Netherlands)

    Xia, Weiguo; Cao, Ming

    2010-01-01

    This paper presents two approaches to achieving cluster synchronization in dynamical multi-agent systems. In contrast to the widely studied synchronization behavior, where all the coupled agents converge to the same value asymptotically, in the cluster synchronization problem studied in this paper,

  9. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  10. On synchronal algorithm for fixed point and variational inequality problems in hilbert spaces.

    Science.gov (United States)

    Bulama, L M; Kılıçman, A

    2016-01-01

    The aim of this article is to expand and generalize some approximation methods proposed by Tian and Di (J Fixed Point Appl, 2011. doi:10.1186/1687-1812-21) to the class of [Formula: see text]-total asymptotically strict pseudocontraction to solve the fixed point problem as well as variational inequality problem in the frame work of Hilbert space. Further, the results presented in this paper extend, improve and also generalize several known results in the literature .

  11. Co-Regulation and Knowledge Construction in an Online Synchronous Problem Based Learning Setting

    Science.gov (United States)

    Lee, Lila; Lajoie, Susanne P.; Poitras, Eric G.; Nkangu, Miriam; Doleck, Tenzin

    2017-01-01

    Learning to monitor and regulate one's learning in an academic setting is a task that all students must engage in. Learning in "group" situations requires both self- and co-regulation. This research examines a case study of a small group of medical student interactions during an on-line problem based learning activity (PBL) where…

  12. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  13. Synchronization of

    National Research Council Canada - National Science Library

    Schrader, Jared M; Shapiro, Lucy

    2015-01-01

    .... Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle...

  14. Kick synchronization versus diffusive synchronization

    OpenAIRE

    Mauroy, Alexandre; Sacré, Pierre; Sepulchre, Rodolphe

    2012-01-01

    The paper provides an introductory discussion about two fundamental models of oscillator synchronization: the (continuous-time) diffusive model, that dominates the mathematical literature on synchronization, and the (hybrid) kick model, that accounts for most popular examples of synchronization, but for which only few theoretical results exist. The paper stresses fundamental differences between the two models, such as the different contraction measures underlying the analysis, as well as impo...

  15. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  16. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  17. Synchronization of sound sources.

    Science.gov (United States)

    Abel, Markus; Ahnert, Karsten; Bergweiler, Steffen

    2009-09-11

    Sound generation and interaction are highly complex, nonlinear, and self-organized. Nearly 150 years ago Rayleigh raised the following problem: two nearby organ pipes of different fundamental frequencies sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by modern synchronization theory M. Abel et al. [J. Acoust. Soc. Am. 119, 2467 (2006)10.1121/1.2170441]. For a detailed investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals force the pipe to synchronization, thus yielding three decades of synchronization-the largest range ever measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a reconstruction method which yields a perfect quantitative match of experiment and theory.

  18. Synchronizing Fireflies

    Science.gov (United States)

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  19. Regulation and controlled synchronization for complex dynamical systems

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Nijmeijer, Henk; Willems, R.M.A.

    2000-01-01

    In this paper we investigate the problem of controlled synchronization as a regulator problem. In controlled synchronization one is given autonomous transmitter dynamics and controlled receiver dynamics. The question is to find a (output) feedback controller that achieves matching between

  20. Self-synchronization and controlled synchronization

    OpenAIRE

    Nijmeijer, H Henk; Blekhman, I; Fradkov, AL Alexander; Pogromsky, AY Sasha

    1997-01-01

    An attempt is made to give a general formalism for synchronization in dynamical systems encompassing most of the known definitions and applications. The proposed set-up describes synchronization of interconnected systems with respect to a set of functionals and captures peculiarities of both self-synchronization and controlled synchronization. Various illustrative examples are given

  1. Principles of synchronous digital hierarchy

    CERN Document Server

    Jain, Rajesh Kumar

    2012-01-01

    The book presents the current standards of digital multiplexing, called synchronous digital hierarchy, including analog multiplexing technologies. It is aimed at telecommunication professionals who want to develop an understanding of digital multiplexing and synchronous digital hierarchy in particular and the functioning of practical telecommunication systems in general. The text includes all relevant fundamentals and provides a handy reference for problem solving or defining operations and maintenance strategies. The author covers digital conversion and TDM principles, line coding and digital

  2. Synchronization and anti-synchronization of chaotic systems: A differential and algebraic approach

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Rafael [Departamento de Control Automatico, Cinvestav-IPN A. P. 14-740, Av. IPN 2508, 07360 Mexico, D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx; Pasaye, Jose Juan Rincon [Departamento de Control Automatico, Cinvestav-IPN A. P. 14-740, Av. IPN 2508, 07360 Mexico, D.F. (Mexico)], E-mail: jrincon@ctrl.cinvestav.mx

    2009-10-30

    Chaotic systems synchronization and anti-synchronization problems are tackled by means of differential and algebraic techniques for nonlinear systems. An algebraic observer is proposed for systems satisfying an algebraic observability condition. This observer can be used as a slave system whose states are synchronized with the master (chaotic) system. This approach has the advantages of being independent of the chaotic nature of the master system, it uses a reduced set of measurable signal from the master system and it also solves the anti-synchronization problem as a straightforward extension of the synchronization one. A Colpitts oscillator is given to illustrate the effectiveness of the suggested approach.

  3. Synchronization of Sound Sources

    Science.gov (United States)

    Abel, Markus; Ahnert, Karsten; Bergweiler, Steffen

    2009-09-01

    Sound generation and interaction are highly complex, nonlinear, and self-organized. Nearly 150 years ago Rayleigh raised the following problem: two nearby organ pipes of different fundamental frequencies sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by modern synchronization theory M. Abel et al. [J. Acoust. Soc. Am. 119, 2467 (2006)JASMAN0001-496610.1121/1.2170441]. For a detailed investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals force the pipe to synchronization, thus yielding three decades of synchronization—the largest range ever measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a reconstruction method which yields a perfect quantitative match of experiment and theory.

  4. Simple synchronization protocols for heterogeneous networks : beyond passivity

    NARCIS (Netherlands)

    Proskurnikov, A.V.; Mazo Espinosa, M.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Synchronization among autonomous agents via local interactions is one of the benchmark problems in multi-agent control. Whereas synchronization algorithms for identical agents have been thoroughly studied, synchronization of heterogeneous networks still remains a challenging problem. The existing

  5. Controlled synchronization of mechanical systems with a unilateral constraint

    NARCIS (Netherlands)

    Baumann, Michael; Biemond, J. J Benjamin; Leine, Remco I.; van de Wouw, N.; Teel, Andrew

    2016-01-01

    This paper addresses the controlled synchronization problem of mechanical systems subjected to a geometric unilateral constraint as well as the design of a switching coupling law to obtain synchronization. To define the synchronization problem, we propose a distance function induced by the

  6. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  7. Phase synchronization in railway timetables

    Science.gov (United States)

    Fretter, C.; Krumov, L.; Weihe, K.; Müller-Hannemann, M.; Hütt, M.-T.

    2010-09-01

    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern.

  8. Synchronized sweep algorithms for scalable scheduling constraints

    OpenAIRE

    Letort, Arnaud; Carlsson, Mats; Beldiceanu, Nicolas

    2013-01-01

    This report introduces a family of synchronized sweep based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over ...

  9. On self-synchronization and controlled synchronization

    NARCIS (Netherlands)

    Blekhman, I.I.; Fradkov, A.L.; Nijmeijer, Henk; Pogromsky, A.Yu.

    1997-01-01

    An attempt is made to give a general formalism for synchronization in dynamical systems encompassing most of the known definitions and applications. The proposed set-up describes synchronization of interconnected systems with respect to a set of functionals and captures peculiarities of both

  10. Self-synchronization and controlled synchronization

    NARCIS (Netherlands)

    Nijmeijer, Henk; Blekhman, I.I.; Fradkov, A.L.; Pogromsky, A.Y.

    1997-01-01

    An attempt is made to give a general formalism for synchronization in dynamical systems encompassing most of the known definitions and applications. The proposed set-up describes synchronization of interconnected systems with respect to a set of functionals and captures peculiarities of both

  11. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  12. An approach to chaotic synchronization

    OpenAIRE

    Hramov, Alexander E.; Koronovskii, Alexey A.

    2005-01-01

    This paper deals with the chaotic oscillator synchronization. A new approach to the synchronization of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization and generalized synchronization are the particular cases of the synchronized behavior called as "time-scale synchronization". The quan...

  13. Synchronization in Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anton Pljonkin

    2017-10-01

    Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.

  14. Adaptive Script H∞ Chaos Anti-synchronization

    Science.gov (United States)

    Choon, Ahn Ki

    2010-03-01

    A new adaptive Script H∞ anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an Script H∞ norm constraint. As an application of the proposed AHAS method, the Script H∞ anti-synchronization problem for Genesio-Tesi chaotic systems is investigated.

  15. On chaos synchronization and secure communication.

    Science.gov (United States)

    Kinzel, W; Englert, A; Kanter, I

    2010-01-28

    Chaos synchronization, in particular isochronal synchronization of two chaotic trajectories to each other, may be used to build a means of secure communication over a public channel. In this paper, we give an overview of coupling schemes of Bernoulli units deduced from chaotic laser systems, different ways to transmit information by chaos synchronization and the advantage of bidirectional over unidirectional coupling with respect to secure communication. We present the protocol for using dynamical private commutative filters for tap-proof transmission of information that maps the task of a passive attacker to the class of non-deterministic polynomial time-complete problems. This journal is © 2010 The Royal Society

  16. Experimental Synchronization by Means of Observers

    Directory of Open Access Journals (Sweden)

    R. Martínez-Guerra

    2014-02-01

    Full Text Available In this paper we deal with the experimental synchronization of the Colpitts oscillator in a real-time implementation. Our approach is based on observer design theory in a master-slave configuration thus, a chaos synchronization problem can be posed as an observer design procedure, where the coupling signal is viewed as a measurable output and a slave system is regarded as an observer. A polynomial observer is used for synchronizing the Colpitts oscillator employing linear matrix inequalities. Finally, a comparison with a reduced order observer and a high gain observer is given to assess the performance of the proposed observer.

  17. Collapse of Synchronization in a Memristive Network

    Science.gov (United States)

    Lü, Mi; Wang, Chun-Ni; Tang, Jun; Ma, Jun

    2015-12-01

    For an oscillating circuit or coupled circuits, damage in electric devices such as inductor, resistance, memristor even capacitor can cause breakdown or collapse of the circuits. These damage could be associated with external attack or aging in electric devices, and then the bifurcation parameters could be deformed from normal values. Resonators or signal generators are often synchronized to produce powerful signal series and this problem could be investigated by using synchronization in network. Complete synchronization could be induced by linear coupling in a two-dimensional network of identical oscillators when the coupling intensity is beyond certain threshold. The collective behavior and synchronization state are much dependent on the bifurcation parameters. Any slight fluctuation in parameter and breakdown in bifurcation parameter can cause transition of synchronization even collapse of synchronization in the network. In this paper, a two-dimensional network composed of the resonators coupled with memristors under nearest-neighbor connection is designed, and the network can reach complete synchronization by carefully selecting coupling intensity. The network keeps synchronization after certain transient period, then a bifurcation parameter in a resonator is switched from the previous value and the adjacent resonators (oscillators) are affected in random. It is found that the synchronization area could be invaded greatly in a diffusive way. The damage area size is much dependent on the selection of diffusive period of damage and deformation degree in the parameter. Indeed, the synchronization area could keep intact at largest size under intermediate deformation degree and coupling intensity. Supported by the National Natural Science of China under Grant Nos. 11265008 and 11365014

  18. Polynomial Time Decidability of Weighted Synchronization under Partial Observability

    DEFF Research Database (Denmark)

    Kretínsky, Jan; Larsen, Kim Guldstrand; Laursen, Simon

    2015-01-01

    We consider weighted automata with both positive and negative integer weights on edges and study the problem of synchronization using adaptive strategies that may only observe whether the current weight-level is negative or nonnegative. We show that the synchronization problem is decidable...

  19. A note on synchronization between two different chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju H. [Robust Control and Nonlinear Dynamics Laboratory, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749 (Korea, Republic of)], E-mail: jessie@ynu.ac.kr

    2009-05-15

    In this paper, a new control method based on the Lyapunov method and linear matrix inequality framework is proposed to design a stabilizing controller for synchronizing two different chaotic systems. The feedback controller is consisted of two parts: linear dynamic control law and nonlinear control one. By this control law, the exponential stability for synchronization between two different chaotic systems is guaranteed. As applications of proposed method, synchronization problem between Genesio-Tesi system and Chen system has been investigated, and then the similar approach is applied to the synchronization problem between Roessler system and Lorenz system.

  20. {H}∞ Lag Synchronization for Chaotic Systems

    Science.gov (United States)

    Ahn, Choon Ki

    In this paper, we propose a new {H}∞ lag synchronization scheme for a general class of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, the {H}∞ lag synchronization controller is presented to not only guarantee exponential lag synchronization but also reduce the effect of external disturbance to an {H}∞ norm constraint. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. As an application of the proposed method, the {H}∞ lag synchronization problem for Genesio-Tesi system is investigated.

  1. PENGEMBANGAN DESAIN STARTING BLOCK KOLAM RENANG DENGAN MENGGUNAKAN THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ

    Directory of Open Access Journals (Sweden)

    Denny Nurkertamanda

    2012-02-01

    Full Text Available Swimmingpool starting block is one of swimming equiptment that must be used in swimming sport competition.It used not only by senior athlete but also the beginner. In addition, it used not only in one swimmingpool butalso another pool which has different height of watersurface and swimmingpoll wallside.Now, the condition of starting block only fit with some of athlete. The other athlete had difficulties when use it.Because of that, design improvement need to be done for starting block to be adaptable for all athlete in anyage and adaptable for the condition of watersurface.Adaptability fitur improvement for starting block makes fitur stabilition of product composition getting worse,and those things is unwanted. So that Theory of Inventive Problem Solving (TRIZ method is needed to solvethe problem technical contradiction so the ideal final output can be reached.Adaptable starting block design can be reached after solve the technical contradiction happened when solvingthe problems used TRIZ. Reducing the parameters which had disadvantages for the ideal final product suchas: weight of the moving object, quantity of the material used, dangerous factor of the object, and dangerousfactors from environtment.

  2. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  3. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach

    2004-01-01

    synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  4. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  5. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  6. Synchronization of Time-Continuous Chaotic Oscillators

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik

    2003-01-01

    Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...... in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between...... the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled Rossler oscillators...

  7. Synchronization of spin torque nano-oscillators

    Science.gov (United States)

    Turtle, James; Buono, Pietro-Luciano; Palacios, Antonio; Dabrowski, Christine; In, Visarath; Longhini, Patrick

    2017-04-01

    Synchronization of spin torque nano-oscillators (STNOs) has been a subject of extensive research as various groups try to harness the collective power of STNOs to produce a strong enough microwave signal at the nanoscale. Achieving synchronization has proven to be, however, rather difficult for even small arrays while in larger ones the task of synchronization has eluded theorists and experimentalists altogether. In this work we solve the synchronization problem, analytically and computationally, for networks of STNOs connected in series. The procedure is valid for networks of arbitrary size and it is readily extendable to other network topologies. These results should help guide future experiments and, eventually, lead to the design and fabrication of a nanoscale microwave signal generator.

  8. Physiological Synchronization in a Vigilance Dual Task.

    Science.gov (United States)

    Guastello, Stephen J

    2016-01-01

    The synchronization of autonomic arousal levels and other physio-logical responses between people is a potentially important component of work team performance, client-therapist relationships, and other types of human interaction. This study addressed several problems: What statistical models are viable for identifying synchronization for loosely coupled human systems? How is the level of synchronization related to psychosocial variables such as empathy, subjective ratings of workload, and actual performance? Participants were 70 undergraduates who worked in pairs on a vigilance dual task in which they watched a virtual reality security camera, rang a bell when they saw the target intruder, and completed a jig-saw puzzle. Event rates either increased or decreased during the 90 min work period. The average R2 values for each person were .66, .66, .62, and .53 for the linear autoregressive model, linear autoregressive model with a synchronization component, the nonlinear autoregressive model, and the nonlinear autoregressive model with a synchronization component, respectively. All models were more accurate at a lag of 20 sec compared to 50 sec or customized lag lengths. Although the linear models were more accurate overall, the nonlinear synchronization parameters were more often related to psychological variables and performance. In particular, greater synchronization was observed with the nonlinear model when the target event rate increased, compared to when it decreased, which was expected from the general theory of synchronization. Nonlinear models were also more effective for uncovering inhibitory or dampening relationships between the co-workers as well as mutually excitatory relationships. Future research should explore the comparative model results for tasks that induce higher levels of synchronization and involve different types of internal group coordination.

  9. On the internal model principle in formation control and in output synchronization of nonlinear systems

    NARCIS (Netherlands)

    Persis, Claudio De; Jayawardhana, Bayu

    2012-01-01

    The role of internal model principle is investigated in this paper in the context of collective synchronization and formation control problems. In the collective synchronization problem for nonlinear systems, we propose distributed control laws for passive systems which synchronize to the solution

  10. The Synchronic Fallacy

    DEFF Research Database (Denmark)

    Hansen, Erik W.

    of definitions. Historical linguistics ('change') is not dependent on an arbitrary synchronic theory. The two language universals polysemy and synonymy are reinterpreted and defined in accordance with the advanced definitions. Louis Hjelmslev's glossematic theory is the general horizon of the argument......The scientifc - methodological and cognitive - fallacies of modern synchronic linguistics are demonstrated. Modern synchronic linguists have reified change and since no such linguist has ever seen - sensed - a change, it is suggested to abandon the word change and replace it with existence...

  11. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  12. Distributed Initial Synchronization for 5G small cells

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Tirkkonen, Olav

    2014-01-01

    Time synchronization in a large network of small cells enables efficient interference management as well as advanced transmission techniques which can boost the network throughput. In this paper, we focus on the distributed initial synchronization problem and propose different solutions aiming...

  13. On adaptive modified projective synchronization of a supply chain ...

    Indian Academy of Sciences (India)

    In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the ...

  14. Leadership Styles in Synchronous and Asynchronous Virtual Learning Environments

    Science.gov (United States)

    Ruggieri, Stefano; Boca, Stefano; Garro, Maria

    2013-01-01

    A comparison of the effects of transactional and transformational leadership in synchronous and a synchronous online teamwork was conducted. In the study, groups of four participants interacted in online text chat and online text forum in problem solving tasks. The groups were lead by a confederate who acted as a transactional or a…

  15. Partial synchronization of different chaotic oscillators using robust PID feedback

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco, 02200 Mexico, D.F. (Mexico)]. E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)]. E-mail: rguerra@ctrl.cinvestav.mx

    2007-07-15

    This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology.

  16. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    Science.gov (United States)

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  17. Atypical neural synchronization to speech envelope modulations in dyslexia.

    Science.gov (United States)

    De Vos, Astrid; Vanvooren, Sophie; Vanderauwera, Jolijn; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    A fundamental deficit in the synchronization of neural oscillations to temporal information in speech could underlie phonological processing problems in dyslexia. In this study, the hypothesis of a neural synchronization impairment is investigated more specifically as a function of different neural oscillatory bands and temporal information rates in speech. Auditory steady-state responses to 4, 10, 20 and 40Hz modulations were recorded in normal reading and dyslexic adolescents to measure neural synchronization of theta, alpha, beta and low-gamma oscillations to syllabic and phonemic rate information. In comparison to normal readers, dyslexic readers showed reduced non-synchronized theta activity, reduced synchronized alpha activity and enhanced synchronized beta activity. Positive correlations between alpha synchronization and phonological skills were found in normal readers, but were absent in dyslexic readers. In contrast, dyslexic readers exhibited positive correlations between beta synchronization and phonological skills. Together, these results suggest that auditory neural synchronization of alpha and beta oscillations is atypical in dyslexia, indicating deviant neural processing of both syllabic and phonemic rate information. Impaired synchronization of alpha oscillations in particular demonstrated to be the most prominent neural anomaly possibly hampering speech and phonological processing in dyslexic readers. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Synchronization of Harb-Zohdy Chaotic System via Back-Stepping Design

    Directory of Open Access Journals (Sweden)

    M. R. Shamsyeh Zahedi∗

    2015-12-01

    Full Text Available This paper is concerned with the problem of synchronization of the Harb-Zohdy chaotic system using the back-stepping. Based on the stability theory, the control for the synchronization of chaotic systems Harb-Zohdy is considered without unknown parameters. Next, an adaptive back-stepping control law is derived to generate an error signal between the drive and response systems Harb-Zohdy with an uncertain parameter asymptotically synchronized. Finally, this method is extended to synchronize the system with two unknown parameters. Note that the method presented here needs only one controller to realize the synchronization. Numerical simulations indicate the effectiveness of the proposed chaos synchronization scheme

  19. Dual Synchronization of Fractional-Order Chaotic Systems via a Linear Controller

    OpenAIRE

    Jian Xiao; Zhen-zhen Ma; Ye-hong Yang

    2013-01-01

    The problem of the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory.

  20. Dual synchronization of fractional-order chaotic systems via a linear controller.

    Science.gov (United States)

    Xiao, Jian; Ma, Zhen-zhen; Yang, Ye-Hong

    2013-01-01

    The problem of the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory.

  1. Robust Synchronization Models for Presentation System Using SMIL-Driven Approach

    Science.gov (United States)

    Asnawi, Rustam; Ahmad, Wan Fatimah Wan; Rambli, Dayang Rohaya Awang

    2013-01-01

    Current common Presentation System (PS) models are slide based oriented and lack synchronization analysis either with temporal or spatial constraints. Such models, in fact, tend to lead to synchronization problems, particularly on parallel synchronization with spatial constraints between multimedia element presentations. However, parallel…

  2. Synchronous states of slowly rotating pendula

    Energy Technology Data Exchange (ETDEWEB)

    Kapitaniak, Marcin [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, Scotland (United Kingdom); Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Kapitaniak, Tomasz, E-mail: tomasz.kapitaniak@p.lodz.pl [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2014-08-01

    Coupled systems that contain rotating elements are typical in physical, biological and engineering applications and for years have been the subject of intensive studies. One problem of scientific interest, which among others occurs in such systems is the phenomenon of synchronization of different rotating parts. Despite different initial conditions, after a sufficiently long transient, the rotating parts move in the same way — complete synchronization, or a permanent constant shift is established between their displacements, i.e., the angles of rotation — phase synchronization. Synchronization occurs due to dependence of the periods of rotating elements motion and the displacement of the base on which these elements are mounted. We review the studies on the synchronization of rotating pendula and compare them with the results obtained for oscillating pendula. As an example we consider the dynamics of the system consisting of n pendula mounted on the movable beam. The pendula are excited by the external torques which are inversely proportional to the angular velocities of the pendula. As the result of such excitation each pendulum rotates around its axis of rotation. It has been assumed that all pendula rotate in the same direction or in the opposite directions. We consider the case of slowly rotating pendula and estimate the influence of the gravity on their motion. We classify the synchronous states of the identical pendula and observe how the parameters mismatch can influence them. We give evidence that synchronous states are robust as they exist in the wide range of system parameters and can be observed in a simple experiment.

  3. Analysis of synchronous machines

    CERN Document Server

    Lipo, TA

    2012-01-01

    Analysis of Synchronous Machines, Second Edition is a thoroughly modern treatment of an old subject. Courses generally teach about synchronous machines by introducing the steady-state per phase equivalent circuit without a clear, thorough presentation of the source of this circuit representation, which is a crucial aspect. Taking a different approach, this book provides a deeper understanding of complex electromechanical drives. Focusing on the terminal rather than on the internal characteristics of machines, the book begins with the general concept of winding functions, describing the placeme

  4. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  5. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays

    Directory of Open Access Journals (Sweden)

    Weiyuan Ma

    2014-12-01

    Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.

  6. Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations.

    Science.gov (United States)

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2016-01-01

    As people age, speech perception problems become highly prevalent, especially in noisy situations. In addition to peripheral hearing and cognition, temporal processing plays a key role in speech perception. Temporal processing of speech features is mediated by synchronized activity of neural oscillations in the central auditory system. Previous studies indicate that both the degree and hemispheric lateralization of synchronized neural activity relate to speech perception performance. Based on these results, we hypothesize that impaired speech perception in older persons may, in part, originate from deviances in neural synchronization. In this study, auditory steady-state responses that reflect synchronized activity of theta, beta, low and high gamma oscillations (i.e., 4, 20, 40, and 80 Hz ASSR, respectively) were recorded in young, middle-aged, and older persons. As all participants had normal audiometric thresholds and were screened for (mild) cognitive impairment, differences in synchronized neural activity across the three age groups were likely to be attributed to age. Our data yield novel findings regarding theta and high gamma oscillations in the aging auditory system. At an older age, synchronized activity of theta oscillations is increased, whereas high gamma synchronization is decreased. In contrast to young persons who exhibit a right hemispheric dominance for processing of high gamma range modulations, older adults show a symmetrical processing pattern. These age-related changes in neural synchronization may very well underlie the speech perception problems in aging persons.

  7. Order release in synchronous manufacturing

    NARCIS (Netherlands)

    Riezebos, J.

    2010-01-01

    Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production situations that operate without lines. Benefits such as short and constant throughput times and predictable capacity loading can be acquired through an appropriate design of the synchronous

  8. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...

  9. Synchronization of respiration

    NARCIS (Netherlands)

    Garssen, B.

    In order to study synchronization of respiration, three different videofragments were presented to 21 normal subjects. Each fragment showed a ‘therapeutic interview’ specially performed for this purpose, with a ‘patient’ breathing in a particular way. The respiration of model 1 was deep, slow and

  10. Synchronization of networks

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and ...

  11. Synchronization of Two Self-Synchronous Vibrating Machines on an Isolation Frame

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2011-01-01

    Full Text Available This paper investigates synchronization of two self-synchronous vibrating machines on an isolation rigid frame. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the disturbance parameters for the angular velocities of the four unbalanced rotors. Then the stability problem of synchronization for the four unbalanced rotors is converted into the stability problems of two generalized systems. One is the generalized system of the angular velocity disturbance parameters for the four unbalanced rotors, and the other is the generalized system of three phase disturbance parameters. The condition of implementing synchronization is that the torque of frequency capture between each pair of the unbalanced rotors on a vibrating machine is greater than the absolute values of the output electromagnetic torque difference between each pair of motors, and that the torque of frequency capture between the two vibrating machines is greater than the absolute value of the output electromagnetic torque difference between the two pairs of motors on the two vibrating machines. The stability condition of synchronization of the two vibrating machines is that the inertia coupling matrix is definite positive, and that all the eigenvalues for the generalized system of three phase disturbance parameters have negative real parts. Computer simulations are carried out to verify the results of the theoretical investigation.

  12. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods......Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... as well as their major characteristics is given. New solutions to optimize the synchronization methods when running on distorted grid conditions are discussed. Simulation and experimental results are used to evaluate the behavior of the synchronization methods under different kind of grid disturbances...

  13. Role of Network Topology in the Synchronization of Power Systems

    CERN Document Server

    Lozano, Sergi; Díaz-Guilera, Albert; 10.1140/epjb/e2012-30209-9

    2012-01-01

    We study synchronization dynamics in networks of coupled oscillators with bimodal distribution of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dynamics among generators and loads working in a power network. We derive the minimum coupling strength required to ensure global frequency synchronization. This threshold value can be efficiently found by solving a binary optimization problem, even for large networks. In order to validate our procedure, we compare its results with numerical simulations on a realistic network describing the European interconnected high-voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to test the stability of frequency synchronization to link removals. As the threshold value changes only in very few cases when aplied to the European realistic network, we conclude that network is resilient in this regard. Since the threshold calculation depends on the local connectivity, it can also b...

  14. Lag Synchronization of Memristor-Based Coupled Neural Networks via ω-Measure.

    Science.gov (United States)

    Li, Ning; Cao, Jinde

    2016-03-01

    This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω-measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.

  15. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  16. Optimixing Synchronous Systems.

    Science.gov (United States)

    1982-03-01

    Flavio Rose of MIT. Several hosts. A natural extension to the model of synchronous systems is the inclusion of multiple, independent hosts. The...but just use the Retiming Lemma to improve its clock period as much as possible. With Flavio Rose, we have obtained the following results...than 10 ). Acknowledgment Thanks to Jon Bcntlcy, Dan Hocy, and Flavio Rose for comments and suggestions. Thanks also to S. Rao Kosaraju for

  17. Pinning Synchronization of Linear Complex Coupling Synchronous Generators Network of Hydroelectric Generating Set

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2014-01-01

    Full Text Available A novel linear complex system for hydroturbine-generator sets in multimachine power systems is suggested in this paper and synchronization of the power-grid networks is studied. The advanced graph theory and stability theory are combined to solve the problem. Here we derive a sufficient condition under which the synchronous state of power-grid networks is stable in disturbance attenuation. Finally, numerical simulations are provided to illustrate the effectiveness of the results by the IEEE 39 bus system.

  18. An informed synchronization scheme for audio data hiding

    Science.gov (United States)

    LoboGuerrero, Alejandro; Bas, Patrick; Lienard, Joel

    2004-06-01

    This paper deals with the problem of synchronization in the particular case of audio data hiding. In this kind of application the goal is to increase the information of an audio data set by inserting an imperceptible message. An innovating synchronization scheme that uses informed coding theory is proposed. The goal is to realize a complementary approach from two different techniques in order to obtain an enhanced synchronization system. To that end, the analysis of the classical spread spectrum synchronization is done and this classical scheme is improved by the use of side information. Informed coding theory is presented and revisited taking into account the problem of synchronization to enable the selection of signal realizations called Feature Time Points (FTP) which are correlated with a code. Such considerations yield to the definition of informed synchronization. The proposed scheme and the definition of FTP are after presented taking into account the robustness criterion. Finally, results and comparison with classical spread spectrum synchronization schemes are presented.

  19. Analysis of Synchronization of Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Zheng, Li; Larsen, Lars Finn Sloth; Izadi-Zamanabadi, Roozbeh

    2018-01-01

    Hybrid control has in the recent years drawn considerable attention in academia as it poses a large number of theoretical and computational challenges. The interested scientific community has proposed various methods to address some of the problems related to modeling and control of hybrid system...... for the development of new ideas and a comparison of methods. Based on the model of this coupled hybrid system, we analyze the synchronization of the controllers in terms of the theories about topological space and Section Mapping....

  20. Distributed Synchronization Control to Trajectory Tracking of Multiple Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yassine Bouteraa

    2011-01-01

    while tracking a common desired trajectory. Based on the well-known consensus algorithm, the control strategy consists in synchronizing the joint position and the velocity of each robot in the network with respect to neighboring robots' joints and velocities. Modeled by an undirected graph, the cooperative robot network requires just local neighbor-to-neighbor information exchange between manipulators. So, it does not assume the existence of an explicit leader in the team. Based above all on combination of Lyapunov direct method and cross-coupling strategy, the proposed decentralized control law is extended to an adaptive synchronization control taking into account parameter uncertainties. To address the time delay problems in the network communication channels, the suggested synchronization control law robustly synchronizes robots to track a given trajectory. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem. A real-time software simulator is developed to visualize the robot manipulators coordination.

  1. Linear Feedback Synchronization Used in the Three-Dimensional Duffing System

    Directory of Open Access Journals (Sweden)

    Jian-qun Han

    2015-01-01

    Full Text Available It has been realized that synchronization using linear feedback control method is efficient compared to nonlinear feedback control method due to the less computational complexity and the synchronization error. For the problem of feedback synchronization of Duffing chaotic system, in the paper, we firstly established three-dimensional Duffing system by method of variable decomposition and, then, studied the synchronization of Duffing chaotic system and designed the control law based on linear feedback control and Lyapunov stability theory. It is proved theoretically that the two identical integer order chaotic systems are synchronized analytically and numerically.

  2. Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.

    Science.gov (United States)

    Liu, Xiwei; Chen, Tianping

    2018-01-01

    In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

  3. Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations

    OpenAIRE

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2016-01-01

    As people age, speech perception problems become highly prevalent, especially in noisy situations. In addition to peripheral hearing and cognition, temporal processing plays a key role in speech perception. Temporal processing of speech features is mediated by synchronized activity of neural oscillations in the central auditory system. Previous studies indicate that both the degree and hemispheric lateralization of synchronized neural activity relate to speech perception performance. Based on...

  4. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  5. Fault-tolerant Agreement in Synchronous Message-passing Systems

    CERN Document Server

    Raynal, Michel

    2010-01-01

    The present book focuses on the way to cope with the uncertainty created by process failures (crash, omission failures and Byzantine behavior) in synchronous message-passing systems (i.e., systems whose progress is governed by the passage of time). To that end, the book considers fundamental problems that distributed synchronous processes have to solve. These fundamental problems concern agreement among processes (if processes are unable to agree in one way or another in presence of failures, no non-trivial problem can be solved). They are consensus, interactive consistency, k-set agreement an

  6. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  7. Synchronization of fractional-order linear complex networks with directed coupling topology

    Science.gov (United States)

    Fang, Qingxiang; Peng, Jigen

    2018-01-01

    The synchronization of fractional-order complex networks with general linear dynamics under directed connected topology is investigated. The synchronization problem is converted to an equivalent simultaneous stability problem of corresponding independent subsystems by use of a pseudo-state transformation technique and real Jordan canonical form of matrix. Sufficient conditions in terms of linear matrix inequalities for synchronization are established according to stability theory of fractional-order differential equations. In a certain range of fractional order, the effects of the fractional order on synchronization is clearly revealed. Conclusions obtained in this paper generalize the existing results. Three numerical examples are provided to illustrate the validity of proposed conclusions.

  8. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  9. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...

  10. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety of t...

  11. Benefits of Synchronous Online Courses

    Science.gov (United States)

    Moser, Scott; Smith, Phil

    2015-01-01

    Most online courses are offered as "asynchronous" courses and have no real-time contact with students. The Synchronous online alternative provides normal scheduled class time and allows students to login to a virtual online classroom with the instructor. We provide an overview of two different platforms for hosting synchronous classes…

  12. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... Synchronization Data Aggregation Algorithm (BESDA) using spanning tree mechanism (SPT). It uses static sink and mobile nodes in the network. BESDA considers the synchronization of a local clock of node with global clock of the network. In the initial stage algorithm established the hierarchical structure...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...

  13. Synchronization of chaotic oscillations in doped fiber ring lasers

    CERN Document Server

    Lewis, C T; Kennel, M B; Buhl, M; Illing, L; Lewis, Clifford Tureman; Abarbanel, Henry D I; Kennel, Matthew B; Buhl, Michael; Illing, Lucas

    1999-01-01

    We investigate synchronization and subsequently communication using chaotic rare-earth-doped fiber ring lasers, represented by a physically realistic model. The lasers are coupled by transmitting a fraction c of the circulating electric field in the transmitter and injecting it into the optical cavity of the receiver. We then analyze a coupling strategy which relies on modulation of the intensity of the light alone. This avoids problems associated with the polarization and phase of the laser light. We study synchronization as a function of the coupling strength and see excellent convergence, even with small coupling constants. We prove that in an open-loop configuration (c=1) synchronization is guaranteed due to the particular structure of our equations and of the injection method we use for these coupled laser systems. We also analyze the generalized synchronization of these model lasers when there is parameter mismatch between the transmitter and the receiver. We then address communicating information betwe...

  14. Time Synchronization and Distribution Mechanisms for Space Networks

    Science.gov (United States)

    Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.

    2011-01-01

    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.

  15. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.

    Science.gov (United States)

    Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima

    2016-06-01

    The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results.

  16. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators.

    Science.gov (United States)

    Lörch, Niels; Nigg, Simon E; Nunnenkamp, Andreas; Tiwari, Rakesh P; Bruder, Christoph

    2017-06-16

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  17. Robust Synchronization of Fractional-Order Hyperchaotic Systems Subjected to Input Nonlinearity and Unmatched External Perturbations

    Directory of Open Access Journals (Sweden)

    Teh-Lu Liao

    2014-01-01

    Full Text Available This paper investigates the robust synchronization problem for a class of fractional-order hyperchaotic systems subjected to unmatched uncertainties and input nonlinearity. Based on the sliding mode control (SMC technique, this approach only uses a single controller to achieve chaos synchronization, which reduces the cost and complexity for synchronization control implementation. As expected, the error states can be driven to zero or into predictable bounds for matched and unmatched perturbations, respectively, even with input nonlinearity.

  18. Synchronization of Fractional-Order Chaotic Systems with Gaussian Fluctuation by Sliding Mode Control

    OpenAIRE

    Yong Xu; Hua Wang

    2013-01-01

    This paper is devoted to the problem of synchronization between fractional-order chaotic systems with Gaussian fluctuation by the method of fractional-order sliding mode control. A fractional integral (FI) sliding surface is proposed for synchronizing the uncertain fractional-order system, and then the sliding mode control technique is carried out to realize the synchronization of the given systems. One theorem about sliding mode controller is presented to prove the proposed controller can ma...

  19. Dual Synchronization of Fractional-Order Chaotic Systems via a Linear Controller

    Science.gov (United States)

    Xiao, Jian; Ma, Zhen-zhen; Yang, Ye-hong

    2013-01-01

    The problem of the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory. PMID:24163612

  20. Synchronization of glycolytic oscillations in a yeast cell population

    DEFF Research Database (Denmark)

    Dano, S.; Hynne, F.; De Monte, Silvia

    2001-01-01

    The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation...... the extracellular medium, thus reducing the complexity of the problem without sacrificing the biochemical realism. The parameters of the model can be derived by a systematic expansion from any full-scale model of the yeast cell kinetics with a supercritical Hopf bifurcation. Some parameter values can also...

  1. Nutritional recommendations for synchronized swimming.

    Science.gov (United States)

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

  2. Emergent hybrid synchronization in coupled chaotic systems.

    Science.gov (United States)

    Padmanaban, E; Boccaletti, Stefano; Dana, S K

    2015-02-01

    We evidence an interesting kind of hybrid synchronization in coupled chaotic systems where complete synchronization is restricted to only a subset of variables of two systems while other subset of variables may be in a phase synchronized state or desynchronized. Such hybrid synchronization is a generic emergent feature of coupled systems when a controller based coupling, designed by the Lyapunov function stability, is first engineered to induce complete synchronization in the identical case, and then a large parameter mismatch is introduced. We distinguish between two different hybrid synchronization regimes that emerge with parameter perturbation. The first, called hard hybrid synchronization, occurs when the coupled systems display global phase synchronization, while the second, called soft hybrid synchronization, corresponds to a situation where, instead, the global synchronization feature no longer exists. We verify the existence of both classes of hybrid synchronization in numerical examples of the Rössler system, a Lorenz-like system, and also in electronic experiment.

  3. Synchronization analysis of choir singing

    Science.gov (United States)

    Tokuda, Isao; Kuwahara, Akihiro

    Synchronization plays an essential role in choir singing. Fundamental frequencies of the singing voices should satisfy a rational frequency relationship to produce harmony. The present study attempts to clarify basic properties of synchronization that may influence the chorus quality. As the key features of synchronization, frequency mismatch and timing mismatch were considered. Combining the synthesis technique of choir singing, which can precisely control the detailed frequency structure of the singing voice, with psychoacoustic experiment, criterions were obtained to roughly discriminate good choruses from bad ones. To examine the reliability of the psychoacoustic experiment, acoustic analysis of the singing voices in real chorus was further carried out.

  4. Capture and playback synchronization in video conferencing

    Science.gov (United States)

    Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song

    1995-03-01

    Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.

  5. A Novel Method of Clock Synchronization in Distributed Systems

    Science.gov (United States)

    Li, Gun; Niu, Meng-jie; Chai, Yang-shun; Chen, Xin; Ren, Yan-qiu

    2017-04-01

    Time synchronization plays an important role in the spacecraft formation flight and constellation autonomous navigation, etc. For the application of clock synchronization in a network system, it is not always true that all the observed nodes in the network are interconnected, therefore, it is difficult to achieve the high-precision time synchronization of a network system in the condition that a certain node can only obtain the measurement information of clock from a single neighboring node, but cannot obtain it from other nodes. Aiming at this problem, a novel method of high-precision time synchronization in a network system is proposed. In this paper, each clock is regarded as a node in the network system, and based on the definition of different topological structures of a distributed system, the three control algorithms of time synchronization under the following three cases are designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. And the validity of the designed clock synchronization protocol is proved by both stability analysis and numerical simulation.

  6. Modeling for write synchronization in bit patterned media recording

    Science.gov (United States)

    Lin, Maria Yu; Chan, Kheong Sann; Chua, Melissa; Zhang, Songhua; Kui, Cai; Elidrissi, Moulay Rachid

    2012-04-01

    Bit patterned media recording (BPMR) is a contender for next generation technology after conventional granular magnetic recording (CGMR) can no longer sustain the continued areal density growth. BPMR has several technological hurdles that need to be overcome, among them is solving the problem of write synchronization. With CGMR, grains are randomly distributed and occur almost all over the media. In contrast, BPMR has grains patterned into a regular lattice on the media with an approximate 50% duty cycle. Hence only about a quarter of the area is filled with magnetic material. During writing, the clock must be synchronized to the islands or the written in error rate becomes unacceptably large and the system fails. Maintaining synchronization during writing is a challenge as the system is not able to read and write simultaneously. Hence reading must occur periodically between the writing frequently enough to re-synchronize the writing clock to the islands. In this work, we study the requirements on the lengths of the synchronization and data sectors in a BPMR system using an advanced model for BPMR, and taking into consideration different spindle motor speed variations, which is the main cause of the mis-synchronization.

  7. Enhancing Time Synchronization Support in Wireless Sensor Networks.

    Science.gov (United States)

    Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison

    2017-12-20

    With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization

  8. Incoherence-Mediated Remote Synchronization

    Science.gov (United States)

    Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi

    2017-04-01

    In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.

  9. Grid Synchronization for Distributed Generations

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2017-01-01

    interface of the different DGs is dependent on the prime energy resources, and it can be a synchronous/asynchronous generator, and a power electronic converter to control the power. However, power electronic interfaced DGs and DSs are going to be more dominant in the future power systems. All type...... of interfaces needs to be synchronized with the grid or microgird, and hence, a precise synchronization algorithm—mostly based on phase-locked loop—is required to estimate the phase angle and frequency of the voltage at the coupling point. Unlike synchronous generators, in power electronic interfaced DGs......Distributed generators (DGs) like photovoltaic arrays, wind turbines, and fuel cell modules, as well as distributed storage (DS) units introduce some advantages to the power systems and make it more reliable, flexible, and controllable in comparison with the conventional power systems. Grid...

  10. VOLTAGE REGULATORS OF SYNCHRONOUS GENERATORS

    OpenAIRE

    Grigorash O. V.; Korzenkov P. G.; Popuchieva M. A.

    2015-01-01

    Synchronous generators are the primary source of electrical power autonomous electrosupply systems, including backup systems. They are also used in a structure of rotating electricity converters and are widely used in renewable energy as part of wind power plants of small, mini and micro hydroelectric plants. Increasing the speed and the accuracy of the system of the voltage regulation of synchronous generators is possible due to the development of combined systems containing more stabilizers...

  11. Synchronous Photodiode-Signal Sampler

    Science.gov (United States)

    Primus, Howard K.

    1988-01-01

    Synchronous sampling circuit increases signal-to-noise ratio of measurements of chopped signal of known phase and frequency in presence of low-frequency or dc background noise. Used with linear array of photoelectric sensors for locating edge of metal plate. Multiplexing circuit cycles through 16 light-emitting-diode/photodiode pairs, under computer control. Synchronized with multiplexer so edge detector makes one background-subtracted signal measurement per emitter/detector pair in turn.

  12. On the Impulsive Synchronization Control for a Class of Chaotic Systems

    OpenAIRE

    Bo Wang; Peng Shi; Xiucheng Dong

    2014-01-01

    The problem on chaos synchronization for a class of chaotic system is addressed. Based on impulsive control theory and by constructing a novel Lyapunov functional, new impulsive synchronization strategies are presented and possess more practical application value. Finally some typical numerical simulation examples are included to demonstrate the effectiveness of the theoretical results.

  13. Further Results on Functional Projective Synchronization of Genesio-Tesi Chaotic System

    Science.gov (United States)

    Park, Ju H.

    This letter considers the functional projective synchronization problem for Genesio-Tesi chaotic systems. Based on our earlier work, a new control scheme, which consists of a linear dynamic controller and a nonlinear static feedback controller, is applied to achieve the synchronization. A numerical simulation is presented to show the usefulness of the proposed control scheme.

  14. $\\mathcal{H}_{\\infty}$ almost output synchronization for heterogeneous networks without exchange of controller states

    NARCIS (Netherlands)

    Zhang, Meirong; Saberi, Ali; Grip, H°avard Fjær; Stoorvogel, Antonie Arij

    2015-01-01

    We consider the H∞ almost output synchronization and regulated output synchronization problem for heterogeneous directed networks with external disturbances where agents are introspective (i.e., agents have access to a part of their own states). A decentralized protocol is designed for each agent,

  15. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  16. Multiswitching combination–combination synchronization of chaotic ...

    Indian Academy of Sciences (India)

    In this paper, a novel synchronization scheme is investigated for a class of chaotic systems. Themultiswitching synchronization scheme is extended to the combination–combination synchronization scheme such that the combination of state variables of two drive systems synchronize with different combination of state ...

  17. THE STUDY OF THE AUTONOMOUS SYNCHRONOUS GENERATOR MODES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2017-01-01

    Full Text Available The importance of the problem of the static stability of the stationary mode of the power system for its operation is extremely high. The investigation of the static stability of the power system is a subject of a number of works, but the problems of static stability of the stationary points of an autonomous synchronous generator are given little attention. The article considers transient and resonant (stationary modes of the generator under active-inductive and active-capacitive loads. Mathematical model of transients in a natural form and in the coordinate system d, q are plotted. It is discovered that the mathematical model of the transition process of an autonomous synchronous generator is identical to the mathematical model of the transition process of the synchronous machine under three-phase short circuit. Electromagnetic transients of an autonomous synchronous generator are described by a system of linear autonomous differential equations with constant coefficients. However, the equivalent circuit of a generator contains dependent sources. We investigated the stability of stationary motion of an autonomous synchronous generator at a given angular velocity of rotation of the rotor. The condition for the existence and stability of stationary points of an autonomous synchronous generator is derived. The condition for the existence of stationary points of such a generator does not depend on the active load resistance and stator windings, and inductance of the rotor. The determining of stationary points of the generator is reduced to finding roots of a polynomial of the fourth degree. The graphs of electromagnetic torque dependencies on the angular velocity of rotation of the rotor (mechanical characteristics are plotted. The equivalent circuits, corresponding to the equations of the transition process of an autonomous synchronous generator, are featured as well.

  18. Code Synchronization Algorithm Based on Segment Correlation in Spread Spectrum Communication

    Directory of Open Access Journals (Sweden)

    Aohan Li

    2015-10-01

    Full Text Available Spread Spectrum (SPSP Communication is the theoretical basis of Direct Sequence Spread Spectrum (DSSS transceiver technology. Spreading code, modulation, demodulation, carrier synchronization and code synchronization in SPSP communications are the core parts of DSSS transceivers. This paper focuses on the code synchronization problem in SPSP communications. A novel code synchronization algorithm based on segment correlation is proposed. The proposed algorithm can effectively deal with the informational misjudgment caused by the unreasonable data acquisition times. This misjudgment may lead to an inability of DSSS receivers to restore transmitted signals. Simulation results show the feasibility of a DSSS transceiver design based on the proposed code synchronization algorithm. Finally, the communication functions of the DSSS transceiver based on the proposed code synchronization algorithm are implemented on Field Programmable Gate Array (FPGA.

  19. Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays.

    Science.gov (United States)

    Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed

    2018-02-01

    This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.

  20. Evaluation of global synchronization for iterative algebra algorithms on many-core

    KAUST Repository

    ul Hasan Khan, Ayaz

    2015-06-01

    © 2015 IEEE. Massively parallel computing is applied extensively in various scientific and engineering domains. With the growing interest in many-core architectures and due to the lack of explicit support for inter-block synchronization specifically in GPUs, synchronization becomes necessary to minimize inter-block communication time. In this paper, we have proposed two new inter-block synchronization techniques: 1) Relaxed Synchronization, and 2) Block-Query Synchronization. These schemes are used in implementing numerical iterative solvers where computation/communication overlapping is one used optimization to enhance application performance. We have evaluated and analyzed the performance of the proposed synchronization techniques using Jacobi Iterative Solver in comparison to the state of the art inter-block lock-free synchronization techniques. We have achieved about 1-8% performance improvement in terms of execution time over lock-free synchronization depending on the problem size and the number of thread blocks. We have also evaluated the proposed algorithm on GPU and MIC architectures and obtained about 8-26% performance improvement over the barrier synchronization available in OpenMP programming environment depending on the problem size and number of cores used.

  1. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  2. State Synchronization Approaches in Web-based Applications

    Directory of Open Access Journals (Sweden)

    Grocevs Aleksejs

    2014-12-01

    Full Text Available The main objective of the article is to provide insight into technologies and approaches available to maintain consistent state on both client and server sides. The article describes basic RIA application state persistence difficulties and offers approaches to overcoming such problems using asynchronous data transmission synchronization channels and other user-available browser abilities.

  3. Towards generalized synchronization of strictly different chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Femat, R. [Matematicas Aplicadas y Sistemas Computacionales, IPICYT, Apdo. Postal 3-90, 78291 Tangamanga, San Luis Potosi S.L.P. (Mexico)]. E-mail: rfemat@ipicyt.edu.mx; Kocarev, L. [Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0402 (United States)]. E-mail: lkocarev@ucsd.edu; Gerven, L. van [Department of Mechanical Engineering, Technische Universiteit Eindhoven (Netherlands); Monsivais-Perez, M.E. [Matematicas Aplicadas y Sistemas Computacionales, IPICYT, Camino a la Presa San Jose 2055, 78216 Lomas 4a Sec., San Luis Potosi S.L.P. (Mexico)

    2005-07-11

    This contribution addresses the problem of the generalized synchronization (GS) in different chaotic systems, and departs from chaotic systems in a triangular from, which can be derived from Lie derivatives. A state-feedback (full knowledge of both master and slave systems) scheme is designed, which achieves GS. The work includes illustrative examples; moreover an experimental setup is used to corroborate the obtained results.

  4. On the estimation of phase synchronization, spurious synchronization and filtering.

    Science.gov (United States)

    Rios Herrera, Wady A; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F

    2016-12-01

    Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

  5. PID control for chaotic synchronization using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw

    2009-01-30

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  6. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  7. Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde

    2017-05-01

    This paper is concerned with the issues of synchronization and anti-synchronization for fractional chaotic financial system with market confidence by taking advantage of active control approach. Some sufficient conditions are derived to guarantee the synchronization and anti-synchronization for the proposed fractional system. Moreover, the relationship between the order and synchronization(anti-synchronization) is demonstrated numerically. It reveals that synchronization(anti-synchronization) is faster as the order increases. Finally, two illustrative examples are exploited to verify the efficiency of the obtained theoretical results.

  8. On robust synchronization of heterogeneous linear multi-agent systems with static couplings

    NARCIS (Netherlands)

    Seyboth, Georg S.; Dimarogonas, Dimos V.; Johansson, Karl Henrik; Frasca, Paolo; Allgöwer, Frank

    This paper addresses cooperative control problems in heterogeneous groups of linear dynamical agents that are coupled by diffusive links. We study networks with parameter uncertainties, resulting in heterogeneous agent dynamics, and we analyze the robustness of their output synchronization. The

  9. How to suppress undesired synchronization

    Science.gov (United States)

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2012-09-01

    Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of the Internet and a neuronal network.

  10. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  11. Synchronization of a Class of Switched Neural Networks with Time-Varying Delays via Nonlinear Feedback Control.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    2016-10-01

    This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.

  12. State observer for synchronous motors

    Science.gov (United States)

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  13. Facilitated synchronization of complex networks through a discontinuous coupling strategy

    Science.gov (United States)

    Chen, L.; Qiu, C.; Huang, H. B.; Qi, G. X.; Wang, H. J.

    2010-08-01

    Synchronization stability in complex networks is a topic of theoretical interest and practical importance. Increasing effort has been devoted to the enhancement of synchronizability of networks, or more specifically, the design of synchronizable networks. However, most previous attempts turn the coupling weight/gradient or change the topological interactions, which sometimes is not manageable. In this paper, by adopting a simple kind of discontinuous coupling strategy: the uniform on-off coupling scheme, with on-off period being comparable to the timescale of node dynamics, the problem is solved within the framework of the master stability function. The results show that, this strategy can greatly increase the stable region of synchronization, which means the size of synchronizable networks can be much larger than the traditional case, without any changes of their connections. Furthermore, the synchronization speed can be accelerated considerably, which is even higher than the previous optimal case. The mechanism of the facilitation is revealed and shows that the continuous coupling in fact is one of the worst choices for synchronization in the view of discontinuous coupling strategy. The coupling cost required for synchronization is also examined, which is approximately the same as the continuous coupling.

  14. Research on bit synchronization based on GNSS

    Science.gov (United States)

    Yu, Huanran; Liu, Yi-jun

    2017-05-01

    The signals transmitted by GPS satellites are divided into three components: carrier, pseudocode and data code. The processes of signal acquisition are acquisition, tracking, bit synchronization, frame synchronization, navigation message extraction, observation extraction and position speed calculation, among which bit synchronization is of greatest importance. The accuracy of bit synchronization and the shortening of bit synchronization time can help us to use satellite to realize positioning and acquire the information transmitted by satellite signals more accurately. Even under the condition of weak signal, how to improve bit synchronization performance is what we need to research. We adopt a method of polymorphic energy accumulation minima so as to find the bit synchronization point, as well as complete the computer simulation to conclude that under the condition of extremely weak signal power, this method still has superior synchronization performance, which can achieve high bit edge detection rate and the optimal bit error rate.

  15. Blended synchronous learning environment: Student perspectives

    National Research Council Canada - National Science Library

    Sheri Conklina; Beth Oyarzun; Daisyane Barreto

    2017-01-01

    .... Blended synchronous learning environment (BSLE) can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection...

  16. Synchronizing Web Documents with Style

    NARCIS (Netherlands)

    R.L. Guimarães (Rodrigo); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); A.J. Jansen (Jack)

    2014-01-01

    htmlabstractIn this paper we report on our efforts to define a set of document extensions to Cascading Style Sheets (CSS) that allow for structured timing and synchronization of elements within a Web page. Our work considers the scenario in which the temporal structure can be decoupled from the

  17. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...

  18. Synchronized whistlers recorded at Varanasi

    Indian Academy of Sciences (India)

    physics pp. 1273–1277. Synchronized whistlers recorded at Varanasi. RAJESH SINGH, ASHOK K SINGH and R P SINGH. Physics Department, Atmospheric Research Laboratory, Banaras Hindu University,. Varanasi 221 005 ... An attempt has been made to explain the dynamic spectra using lightning discharge generated.

  19. Sports Medicine Meets Synchronized Swimming.

    Science.gov (United States)

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  20. Memory formation by neuronal synchronization.

    NARCIS (Netherlands)

    Axmacher, N.; Mormann, F.; Fernandez, G.; Elger, C.E.; Fell, J.

    2006-01-01

    Cognitive functions not only depend on the localization of neural activity, but also on the precise temporal pattern of activity in neural assemblies. Synchronization of action potential discharges provides a link between large-scale EEG recordings and cellular plasticity mechanisms. Here, we focus

  1. Learning through synchronous electronic discussion

    NARCIS (Netherlands)

    Kanselaar, G.; Veerman, A.L.; Andriessen, J.E.B.

    2000-01-01

    This article reports a study examining university student pairs carrying out an electronic discussion task in a synchronous computer mediated communication (CMC) system (NetMeeting). The purpose of the assignment was to raise students' awareness concerning conceptions that characterise effective

  2. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  3. Analysis, synchronization and FPGA implementation

    Indian Academy of Sciences (India)

    Karthikeyan Rajagopal

    2017-12-02

    Dec 2, 2017 ... thus switch between chaotic and/or periodical systems can be triggered [36]. Time-delayed differential equations play important roles in some engineering applications [37–42]. Sta- bility analysis of delayed differential equations have been discussed in [38]. Synchronization of such time- delayed systems is ...

  4. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature...... junctional coupling, potassium signaling gives rise to considerable changes of the cellular response to external stimuli....

  5. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  6. Synchronization of impacting mechanical systems with a single constraint

    Science.gov (United States)

    Baumann, Michael; Biemond, J. J. Benjamin; Leine, Remco I.; van de Wouw, Nathan

    2018-01-01

    This paper addresses the synchronization problem of mechanical systems subjected to a single geometric unilateral constraint. The impacts of the individual systems, induced by the unilateral constraint, generally do not coincide even if the solutions are arbitrarily 'close' to each other. The mismatch in the impact time instants demands a careful choice of the distance function to allow for an intuitively correct comparison of the discontinuous solutions resulting from the impacts. We propose a distance function induced by the quotient metric, which is based on an equivalence relation using the impact map. The distance function obtained in this way is continuous in time when evaluated along jumping solutions. The property of maximal monotonicity, which is fulfilled by most commonly used impact laws, is used to significantly reduce the complexity of the distance function. Based on the simplified distance function, a Lyapunov function is constructed to investigate the synchronization problem for two identical one-dimensional mechanical systems. Sufficient conditions for the uncoupled individual systems are provided under which local synchronization is guaranteed. Furthermore, we present an interaction law which ensures global synchronization, also in the presence of grazing trajectories and accumulation points (Zeno behavior). The results are illustrated using numerical examples of a 1-DOF mechanical impact oscillator which serves as stepping stone in the direction of more general systems.

  7. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  8. Modified function projective synchronization of multistable systems ...

    African Journals Online (AJOL)

    The design of generalized form of control functions capable of engineering desired form of synchronization such as complete synchronization, antisynchronization, projective synchronization and function projective has very important applications in real life situations. Inspired by practical application of generalized form of ...

  9. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  10. Lag Synchronization of Coupled Multidelay Systems

    Directory of Open Access Journals (Sweden)

    Luo Qun

    2012-01-01

    Full Text Available Chaos synchronization is an active topic, and its possible applications have been studied extensively. In this paper we present an improved method for lag synchronization of chaotic systems with coupled multidelay. The Lyapunov theory is used to consider the sufficient condition for synchronization. The specific examples will demonstrate and verify the effectiveness of the proposed approach.

  11. Synchronized dial-a-ride transportation of disabled passengers at airports

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Clausen, Tommy; Pisinger, David

    2013-01-01

    The largest airports have a daily average throughput of more than 500 passengers with reduced mobility. The problem of transporting these passengers is in some cases a multi-modal transportation problem with synchronization constraints. A description of the problem together with a mathematical...

  12. Producing Newborn Synchronous Mammalian Cells

    Science.gov (United States)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  13. Solidarity, synchronization and collective action

    CERN Document Server

    Bruggeman, Jeroen

    2013-01-01

    For people to act collectively in actual situations -- in contrast to public goods experiments -- goal ambiguity, diversity of interests, and uncertain costs and benefits stand in their way. Under such conditions, people seem to have few reasons to cooperate, yet the Arab revolutions, as conspicuous examples, show that collective action can take place despite the odds. I use the Kuramoto model to show how people in a cohesive network topology can synchronize their salient traits (emotions, interests, or other), and that synchronization happens in a phase transition, when group solidarity passes a critical threshold. This yields more precise predictions of outbursts of collective action under adverse conditions, and casts a new light on different measures of social cohesion.

  14. Double Position Servo Synchronous Drive System Based on Cross-Coupling Integrated Feedforward Control for Broacher

    Science.gov (United States)

    Lu, Wenqi; Ji, Kehui; Dong, Hanqing; Zhang, Jianya; Wang, Quanwu; Guo, Liang

    2017-03-01

    Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross-coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedforward control and a load torque identification with feedforward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the worktable works with an unbalanced load. However, the system with proposed scheme shows good synchronous performance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8 μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on cross-coupled integrated feedforward compensation control, which can improve the synchronization precision.

  15. New Solutions for Synchronized Domineering

    Science.gov (United States)

    Bahri, Sahil; Kruskal, Clyde P.

    Cincotti and Iida invented the game of Synchronized Domineering, and analyzed a few special cases. We develop a more general technique of analysis, and obtain results for many more special cases. We obtain complete results for board sizes 3 ×n, 5 ×n, 7 ×n, and 9 ×n (for n large enough) and partial results for board sizes 2×n, 4 ×n, and 6 ×n.

  16. Digital-data receiver synchronization

    Science.gov (United States)

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  17. Parameter identification and synchronization of fractional-order chaotic systems

    Science.gov (United States)

    Yuan, Li-Guo; Yang, Qi-Gui

    2012-01-01

    The knowledge about parameters and order is very important for synchronization of fractional-order chaotic systems. In this article, identification of parameters and order of fractional-order chaotic systems is converted to an optimization problem. Particle swarm optimization algorithm is used to solve this optimization problem. Based on the above parameter identification, synchronization of the fractional-order Lorenz, Chen and a novel system (commensurate or incommensurate order) is derived using active control method. The new fractional-order chaotic system has four-scroll chaotic attractors. The existence and uniqueness of solutions for the new fractional-order system are also investigated theoretically. Simulation results signify the performance of the work.

  18. A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system

    Science.gov (United States)

    Si, Gang-Quan; Sun, Zhi-Yong; Zhang, Yan-Bin

    2011-08-01

    This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By introducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.

  19. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    Science.gov (United States)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  20. Synchronization of three homodromy coupled exciters in a non-resonant vibrating system of plane motion

    Science.gov (United States)

    Zhang, Xue-Liang; Wen, Bang-Chun; Zhao, Chun-Yu

    2012-10-01

    In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced dimensionless coupling equation of three exciters, which converted the problem of synchronization into that of the existence and stability of zero solutions for the average differential equations of the small parameters. Based on the dimensionless coupling torques and characteristics of the corresponding limited functions, the synchronization criterion for three exciters was derived as the absolute value of dimensionless residual torque difference between arbitrary two motors being less than the maximum of their dimensionless coupling torques. The stability criterion of its synchronous state lies in the double-condition that the inertia coupling matrix is positive definite and all its elements are positive as well. The synchronization determinants are the coefficients of synchronization ability, also called as the general dynamical symmetry coefficients. The double-equilibrium state of the vibrating system is manifested by numeric method, and the numeric and simulation results derived thereof indicate the indispensable and crucial role the structural parameters of the vibrating system play in the stability criterion of synchronous operation. Besides, by adjusting its structural parameters, the elliptical motion of the vibrating system successfully met the requirements in engineering applications.

  1. Synchronization of a Class of Fractional-Order Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Chai

    2013-08-01

    Full Text Available The synchronization problem is studied in this paper for a class of fractional-order chaotic neural networks. By using the Mittag-Leffler function, M-matrix and linear feedback control, a sufficient condition is developed ensuring the synchronization of such neural models with the Caputo fractional derivatives. The synchronization condition is easy to verify, implement and only relies on system structure. Furthermore, the theoretical results are applied to a typical fractional-order chaotic Hopfield neural network, and numerical simulation demonstrates the effectiveness and feasibility of the proposed method.

  2. Finite-time synchronization of fractional-order simplest two-component chaotic oscillators

    Science.gov (United States)

    Kengne, Romanic; Tchitnga, Robert; Mezatio, Anicet; Fomethe, Anaclet; Litak, Grzegorz

    2017-05-01

    The problem of finite-time synchronization of fractional-order simplest two-component chaotic oscillators operating at high frequency and application to digital cryptography is addressed. After the investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are given to illustrate and verify the analytic results.

  3. Adaptive Fuzzy Synchronization of Fractional-Order Chaotic (Hyperchaotic Systems with Input Saturation and Unknown Parameters

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2017-01-01

    Full Text Available We investigate the synchronization problem of fractional-order chaotic systems with input saturation and unknown external disturbance by means of adaptive fuzzy control. An adaptive controller, accompanied with fractional adaptation law, is established, fuzzy logic systems are used to approximate the unknown nonlinear functions, and the fractional Lyapunov stability theorem is used to analyze the stability. This control method can realize the synchronization of two fractional-order chaotic or hyperchaotic systems and the synchronization error tends to zero asymptotically. Finally, we show the effectiveness of the proposed method by two simulation examples.

  4. Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching.

    Science.gov (United States)

    Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E

    2017-01-01

    This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. On adaptive modified projective synchronization of a supply chain management system

    Science.gov (United States)

    Tirandaz, Hamed

    2017-12-01

    In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.

  6. Exponential cluster synchronization in directed community networks via adaptive nonperiodically intermittent pinning control

    Science.gov (United States)

    Zhou, Peipei; Cai, Shuiming; Jiang, Shengqin; Liu, Zengrong

    2018-02-01

    In this paper, the problem of exponential cluster synchronization for a class of directed community networks is investigated via adaptive nonperiodically intermittent pinning control. By constructing a novel piecewise continuous Lyapunov function, some sufficient conditions to guarantee globally exponential cluster synchronization are derived. It is noted that the derived cluster synchronization criteria rely on the control rates, but not the control widths or the control periods, which facilitates the choice of the control periods in practical applications. A numerical example is finally presented to show the effectiveness of the obtained theoretical results.

  7. Performance Analysis of CP-Based and CAZAC Training Sequence-Based Synchronization in OFDM System

    Directory of Open Access Journals (Sweden)

    R. Gaguk Pratama Yudha

    2016-12-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM is a popular wireless data transmission scheme. However, its synchronization is still being a major problem when it is applied in real hardware. Cyclic Prefix (CP based synchronization is one of the solutions in this problem, but CP has high crest factor. In the other hand, CAZAC sequence is another solution with lower crest factor but the higher complexity and also CAZAC has potential in security and channel estimation implementation. The performance between CP and CAZAC sequence based synchronization in OFDM system is analyzed in this paper. The real hardware, Universal Software Rado Peripheral (USRP, is used to prove the analysis. The CAZAC sequence has 10% performance increased in frequency offset than CP based synchronization.

  8. A Novel Time Synchronization Method for Dynamic Reconfigurable Bus

    Directory of Open Access Journals (Sweden)

    Zhang Weigong

    2016-01-01

    Full Text Available UM-BUS is a novel dynamically reconfigurable high-speed serial bus for embedded systems. It can achieve fault tolerance by detecting the channel status in real time and reconfigure dynamically at run-time. The bus supports direct interconnections between up to eight master nodes and multiple slave nodes. In order to solve the time synchronization problem among master nodes, this paper proposes a novel time synchronization method, which can meet the requirement of time precision in UM-BUS. In this proposed method, time is firstly broadcasted through time broadcast packets. Then, the transmission delay and time deviations via three handshakes during link self-checking and channel detection can be worked out referring to the IEEE 1588 protocol. Thereby, each node calibrates its own time according to the broadcasted time. The proposed method has been proved to meet the requirement of real-time time synchronization. The experimental results show that the synchronous precision can achieve a bias less than 20 ns.

  9. Determining the degree of synchronism for intermittent phase synchronization in human electroencephalography data

    Science.gov (United States)

    Koloskova, A. D.; Moskalenko, O. I.

    2017-05-01

    The phenomenon of intermittent phase synchronization during development of epileptic activity in human beings has been discovered based on EEG data. The presence of synchronous behavior phases has been detected both during spike-wave discharges and in the regions of background activity of the brain. The degree of synchronism in the intermittent phase-synchronization regime in both cases has been determined, and it has been established that spike-wave discharges are characterized by a higher degree of synchronism than exists in the regions of background activity of the brain. To determine the degree of synchronism, a modified method of evaluating zero conditional Lyapunov exponents from time series is proposed.

  10. Synchronization-based parameter estimation of fractional-order neural networks

    Science.gov (United States)

    Gu, Yajuan; Yu, Yongguang; Wang, Hu

    2017-10-01

    This paper focuses on the parameter estimation problem of fractional-order neural network. By combining the adaptive control and parameter update law, we generalize the synchronization-based identification method that has been reported in several literatures on identifying unknown parameters of integer-order systems. With this method, parameter identification and synchronization can be achieved simultaneously. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.

  11. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  12. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  13. Control for a synchronization-desynchronization switch

    Science.gov (United States)

    He, Zhiwei; Wang, Xingang; Zhang, Guo-Yong; Zhan, Meng

    2014-07-01

    How to freely enhance or suppress synchronization of networked dynamical systems is of great importance in many disciplines. A unified precise control method for a synchronization-desynchronization switch, called the pull-push control method, is suggested. Namely, synchronization can be achieved when the original systems are desynchronous by pulling (or protecting) one node or a certain subset of nodes, whereas desynchronization can be accomplished when the systems are already synchronous by pushing (or kicking) one node or a certain subset of nodes. With this method, the controlled nodes should be chosen by the generalized eigenvector centrality of the critical synchronization mode of the Laplacian matrix. Compared with existing control methods for synchronization, it displays high efficiency, flexibility, and precision as well.

  14. Stock Return Synchronicity and Analysts’ Forecast Properties

    Directory of Open Access Journals (Sweden)

    Joong-Seok Cho

    2016-12-01

    Full Text Available Using stock return synchronicity as a measure of a firm’s information environment, our research investigates how the firms’ stock return synchronicity affects analysts’ forecast properties for the accuracy and optimism of the analysts’ annual earnings forecasts. Stock return synchronicity represents the degree to which market and industry information explains firm-level stock return variations. A higher stock return synchronicity indicates the higher quality of a firm’s information environment, because a firm’s stock price reflects more market-level and industry-level information relative to firm-specific information. Our study shows that stock return synchronicity positively affects the forecast properties. Our finding shows that when stock return synchronicity is high, analysts’ annual earnings forecasts are more accurate and less optimistically biased.

  15. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    Energy Technology Data Exchange (ETDEWEB)

    Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo [Department of Physics, Bar-Ilan University, Ramat Gan (Israel); Moskalenko, Olga I.; Kurkin, Semen A. [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054 (Russian Federation); Zhang, Xiyun [Department of Physics, East China Normal University, Shanghai 200062 (China); Boccaletti, Stefano [CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy); The Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv (Israel)

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  16. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  17. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  18. Synchronization Techniques for Chaotic Communication Systems

    CERN Document Server

    Jovic, Branislav

    2011-01-01

    Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today's books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack

  19. Coupled lasers: phase versus chaos synchronization.

    Science.gov (United States)

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  20. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...

  1. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  2. Public-channel cryptography using chaos synchronization.

    Science.gov (United States)

    Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2005-07-01

    We present a key-exchange protocol that comprises two parties with chaotic dynamics that are mutually coupled and undergo a synchronization process, at the end of which they can use their identical dynamical state as an encryption key. The transferred coupling- signals are based nonlinearly on time-delayed states of the parties, and therefore they conceal the parties' current state and can be transferred over a public channel. Synchronization time is linear in the number of synchronized digits alpha, while the probability for an attacker to synchronize with the parties drops exponentially with alpha. To achieve security with finite alpha we use a network.

  3. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  4. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...... mechanism. It provides network-wide time synchronization for sensor network. In the initial stage algorithm established the hierarchical structure in the network and then perform the pair - wise synchronization. SDA aggregate data with a global time scale throughout the network. The aggregated packets...

  5. Price synchronization in retailing: some empirical evidence

    Directory of Open Access Journals (Sweden)

    Marcelo Resende

    2014-06-01

    Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.

  6. Numerical Integration and Synchronization for the 3-Dimensional Metriplectic Volterra System

    Directory of Open Access Journals (Sweden)

    Gheorghe Ivan

    2011-01-01

    Full Text Available The main purpose of this paper is to study the metriplectic system associated to 3-dimensional Volterra model. For this system we investigate the stability problem and numerical integration via Kahan's integrator. Finally, the synchronization problem for two coupled metriplectic Volterra systems is discussed.

  7. Virtual Classroom: Strategi Pembelajaran Berbasis Synchronous E-Learning

    OpenAIRE

    Suranto, Beni

    2009-01-01

    Synchronous learning adalah interaksi yang berorientasi pada pembelajaran dan difasilitasi denganintruksi-intruksi secara langsung, real-time dan biasanya terjadwal. Synchronous learning berbeda dengankuliah biasa, demo atau penawaran suatu produk, dan aktivitas-aktivitas penyampaian informasi yang lainnya.Synchronous e-Learning adalah Synchronous learning yang dilaksanakan dengan memanfaatkan perangkatelektronik, khususnya komputer dan Internet. Synchronous e-Learning dapat dilaksanakan deng...

  8. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.

    Science.gov (United States)

    Taylor, Dane; Skardal, Per Sebastian; Sun, Jie

    2016-01-01

    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications-for which proper functionality depends sensitively on the extent of synchronization-there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system's ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments.

  9. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Cooperative Control of Heterogeneous Uncertain Dynamical Networks: An Adaptive Explicit Synchronization Framework.

    Science.gov (United States)

    Wang, Bohui; Wang, Jingcheng; Zhang, Langwen; Zhang, Bin; Li, Xiaocheng

    2017-06-01

    This paper proposes an adaptive explicit synchronization framework to address the cooperative control for heterogeneous uncertain dynamical networks under switching communication topologies. The main contribution is to develop an adaptive explicit synchronization algorithm, in which the synchronization state can be completely tracked by each agent in real time rather than only be measured after the synchronization process of all agents is over. By introducing appropriate assumptions, a class of adaptive explicit synchronization protocols is designed by using a combination of the virtual leader's states, the neighboring agents' relative information, distributed feedback gain, and distributed average weighted parameters. It is proved in the sense of Lyapunov that, if the dwell time is larger than a positive threshold, the cooperative control problem for the closed-loop heterogeneous uncertain dynamical networks under switching of strongly-connected communication topologies can be solved by the proposed adaptive explicit synchronization algorithm. Furthermore, by assuming that the topology is frequently strongly-connected, it shows that intermittent adaptive explicit synchronization can be achieved with well-designed control parameters. Two examples are presented to demonstrate the effectiveness of the proposed theory.

  11. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    Directory of Open Access Journals (Sweden)

    A. H. Al-Mohammed

    2014-01-01

    Full Text Available This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs, when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research.

  12. Control of partial synchronization in chaotic oscillators

    Indian Academy of Sciences (India)

    2015-02-07

    Feb 7, 2015 ... Abstract. A design of coupling is proposed to control partial synchronization in two chaotic oscil- lators in a driver–response mode. A control of synchrony between one response variables is made possible (a transition from a complete synchronization to antisynchronization via amplitude death and vice ...

  13. Have business cycles become more synchronized?

    NARCIS (Netherlands)

    De Haan, J; Inklaar, R; Sleijpen, O

    Will further integration make business cycles in EMU countries more similar? This article answers the question by analysing to what extent business cycles in US and German states have become more synchronized and by examining whether synchronization in OECD countries is affected by trade intensity

  14. Inflation Targeting and Business Cycle Synchronization

    OpenAIRE

    Flood, Robert P; Rose, Andrew K

    2009-01-01

    Inflation targeting seems to have a small but positive effect on the synchronization of business cycles; countries that target inflation seem to have cycles that move slightly more closely with foreign cycles. Thus the advent of inflation targeting does not explain the decoupling of global business cycles, for two reasons. Indeed business cycles have not in fact become less synchronized across countries.

  15. Modified function projective combination synchronization of ...

    Indian Academy of Sciences (India)

    2017-02-08

    Feb 8, 2017 ... tography, secure communications [6,7], etc. Many ap- proaches have been proposed for the synchronization ... more secure communication. Hyperchaotic systems characterized by more than one positive ... We define the modified function projective synchronization error system e(t) as e(t) = z − f(t)y. (5).

  16. A clock synchronization skeleton based on RTAI

    NARCIS (Netherlands)

    Huang, Y.; Visser, P.M.; Broenink, Johannes F.

    2006-01-01

    This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock

  17. Projective synchronization of chaotic systems with bidirectional ...

    Indian Academy of Sciences (India)

    This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by ...

  18. Development of Network Synchronization Predicts Language Abilities.

    Science.gov (United States)

    Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W

    2016-01-01

    Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.

  19. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  20. Development of a synchronous subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study ...

  1. Standardization of Inter-Destination Media Synchronization

    OpenAIRE

    Stokking, H.M.; Brandenburg, R.; Boronat, F.; Montagud, M.

    2012-01-01

    Inter-Destination Media Synchronization (IDMS) is a process in which various receivers of the same content are synchronized in their playout. Standardization of an IDMS solution helps to enable interoperability between receivers manufactured by different companies. This paper describes the efforts by ETSI TISPAN and by the IETF AVTCORE working group on standardization of IDMS.

  2. Standardization of Inter-Destination Media Synchronization

    NARCIS (Netherlands)

    Stokking, H.M.; Brandenburg, R. van; Boronat, F.; Montagud, M.

    2012-01-01

    Inter-Destination Media Synchronization (IDMS) is a process in which various receivers of the same content are synchronized in their playout. Standardization of an IDMS solution helps to enable interoperability between receivers manufactured by different companies. This paper describes the efforts

  3. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...

  4. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    Abstract. We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two inter- esting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some ...

  5. Examining Interactivity in Synchronous Virtual Classrooms

    Science.gov (United States)

    Martin, Florence; Parker, Michele A.; Deale, Deborah F.

    2012-01-01

    Interaction is crucial to student satisfaction in online courses. Adding synchronous components (virtual classroom technologies) to online courses can facilitate interaction. In this study, interaction within a synchronous virtual classroom was investigated by surveying 21 graduate students in an instructional technology program in the…

  6. Projective synchronization of chaotic systems with bidirectional ...

    Indian Academy of Sciences (India)

    a coupled chaotic system composed of identical chaotic oscillators was first reported by. Fujisaka and Yamada [1,2] and later by Pecora and Carroll [3]. Synchronization is a uni- versal phenomenon in a variety of natural and engineering systems [4]. Over the past two decades, chaos synchronization has received much ...

  7. Electrotonic vascular signal conduction and nephron synchronization

    DEFF Research Database (Denmark)

    Marsh, D.J.; Toma, I.; Sosnovtseva, Olga

    2009-01-01

    frequencies of both pair members to converge to a common value. The myogenic oscillations also synchronized, and the synchronization between the TGF and the myogenic oscillations showed an increased stability against parameter perturbations. Electronic vascular signal propagation is a plausible mechanism...

  8. Complexity in synchronized and non-synchronized states: A comparative analysis and application

    Science.gov (United States)

    Palit, Sanjay K.; Fataf, Nur Aisyah Abdul; Md Said, Mohd Rushdan; Mukherjee, Sayan; Banerjee, Santo

    2017-07-01

    This analysis shows the dynamics of a hyperchaotic system changes from its original state to a synchronized state with nonlinear controller. The decreasing complexity of the coupled systems also quantifies the loss of information from its original state to the synchronized state. We proposed and modified a chaos synchronization based secure communication scheme to implement in case of non synchronization. The scheme is designed and illustrated using examples and simulations. Security analysis of the proposed scheme is also investigated. This analysis gives a new direction on chaos based cryptography in case of the coupled systems completely in non synchronized state.

  9. Synchronization of Fractional-Order Chaotic Systems with Gaussian Fluctuation by Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2013-01-01

    Full Text Available Chaotic systems are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems with Gaussian fluctuation. A fractional integral (FI sliding surface is proposed for synchronizing the uncertain fractional-order system, and then the sliding mode control technique is carried out to realize the synchronization of the given systems. One theorem about sliding mode controller is presented to prove that the proposed controller can make the system achieve synchronization. As a case study, the presented method is applied to the fractional-order Chen-Lü system, and simulation results show that the proposed control approach is capable to go against Gaussian noise well.

  10. Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach.

    Science.gov (United States)

    Hung, Yung-Ching; Hwang, Chi-Chuan; Liao, Teh-Lu; Yan, Jun-Juh

    2006-09-01

    In this paper we investigate the synchronization problem of drive-response chaotic systems with a scalar coupling signal. By using the scalar transmitted signal from the drive chaotic system, an observer-based response chaotic system with dead-zone nonlinear input is designed. An output feedback control technique is derived to achieve generalized projective synchronization between the drive system and the response system. Furthermore, an adaptive control law is established that guarantees generalized projective synchronization without the knowledge of system nonlinearity, and/or system parameters as well as that of parameters in dead-zone input nonlinearity. Two illustrative examples are given to demonstrate the effectiveness of the proposed synchronization scheme.

  11. Parameter estimation based synchronization for an epidemic model with application to tuberculosis in Cameroon

    Science.gov (United States)

    Bowong, Samuel; Kurths, Jurgen

    2010-10-01

    We propose a method based on synchronization to identify the parameters and to estimate the underlying variables for an epidemic model from real data. We suggest an adaptive synchronization method based on observer approach with an effective guidance parameter to update rule design only from real data. In order, to validate the identifiability and estimation results, numerical simulations of a tuberculosis (TB) model using real data of the region of Center in Cameroon are performed to estimate the parameters and variables. This study shows that some tools of synchronization of nonlinear systems can help to deal with the parameter and state estimation problem in the field of epidemiology. We exploit the close link between mathematical modelling, structural identifiability analysis, synchronization, and parameter estimation to obtain biological insights into the system modelled.

  12. Parameter estimation based synchronization for an epidemic model with application to tuberculosis in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Bowong, Samuel, E-mail: sbowong@gmail.co [Laboratory of Applied Mathematics, Department of Mathematics and Computer Science, Faculty of Science, University of Douala, P.O. Box 24157 Douala (Cameroon); Postdam Institute for Climate Impact Research (PIK), Telegraphenberg A 31, 14412 Potsdam (Germany); Kurths, Jurgen [Postdam Institute for Climate Impact Research (PIK), Telegraphenberg A 31, 14412 Potsdam (Germany); Department of Physics, Humboldt Universitat zu Berlin, 12489 Berlin (Germany)

    2010-10-04

    We propose a method based on synchronization to identify the parameters and to estimate the underlying variables for an epidemic model from real data. We suggest an adaptive synchronization method based on observer approach with an effective guidance parameter to update rule design only from real data. In order, to validate the identifiability and estimation results, numerical simulations of a tuberculosis (TB) model using real data of the region of Center in Cameroon are performed to estimate the parameters and variables. This study shows that some tools of synchronization of nonlinear systems can help to deal with the parameter and state estimation problem in the field of epidemiology. We exploit the close link between mathematical modelling, structural identifiability analysis, synchronization, and parameter estimation to obtain biological insights into the system modelled.

  13. H ∞ Cluster Synchronization for a Class of Neutral Complex Dynamical Networks with Markovian Switching

    Science.gov (United States)

    2014-01-01

    H ∞ cluster synchronization problem for a class of neutral complex dynamical networks (NCDNs) with Markovian switching is investigated in this paper. Both the retarded and neutral delays are considered to be interval mode dependent and time varying. The concept of H ∞ cluster synchronization is proposed to quantify the attenuation level of synchronization error dynamics against the exogenous disturbance of the NCDNs. Based on a novel Lyapunov functional, by employing some integral inequalities and the nature of convex combination, mode delay-range-dependent H ∞ cluster synchronization criteria are derived in the form of linear matrix inequalities which depend not only on the disturbance attenuation but also on the initial values of the NCDNs. Finally, numerical examples are given to demonstrate the feasibility and effectiveness of the proposed theoretical results. PMID:24892088

  14. Interdependencies of Neural Impulse Pattern and Synchronization

    Science.gov (United States)

    Braun, Hans; Postnova, Svetlana; Schneider, Horst

    2008-03-01

    Neuronal synchronization plays a crucial role in many physiological functions such as information binding and wake-sleep transitions as well as in pathophysiological processes like Parkinson's disease and epileptic seizures. The occurrence of synchronized activity is often associated with significant alterations of the neuronal impulse pattern, mostly with a transition from tonic firing to burst discharges. We have used Hodgkin-Huxley type simulations to study how alterations of individual neurons' dynamics influence the synchronization in electrotonic coupled networks. The individual neurons have been tuned from tonic firing to bursting with chaotic dynamics in between. Our results demonstrate that these transitions have significant impact on the neurons' synchronization. Vice versa, the synchronization state can essentially modify the impulse pattern. The most remarkably effects appear when the individual neurons operate in a periodically tonic firing regime close to the transition to chaos.

  15. Synchronization of noisy systems by stochastic signals

    Energy Technology Data Exchange (ETDEWEB)

    Neiman, A.; Schimansky-Geier, L.; Moss, F. [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, L. [Institute of Physics, Humboldt University at Berlin, Invalidenstrasse 110, D-10115 Berlin (Germany); Shulgin, B.; Collins, J.J. [Center for BioDynamics and Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States)

    1999-07-01

    We study, in terms of synchronization, the {ital nonlinear response} of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level{emdash}this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. {copyright} {ital 1999} {ital The American Physical Society}

  16. Synchronization Dynamics in a Designed Open System

    Science.gov (United States)

    Yokoshi, Nobuhiko; Odagiri, Kazuki; Ishikawa, Akira; Ishihara, Hajime

    2017-05-01

    We theoretically propose a unifying expression for synchronization dynamics between two-level constituents. Although synchronization phenomena require some substantial mediators, the distinct repercussions of their propagation delays remain obscure, especially in open systems. Our scheme directly incorporates the details of the constituents and mediators in an arbitrary environment. As one example, we demonstrate the synchronization dynamics of optical emitters on a dielectric microsphere. We reveal that the whispering gallery modes (WGMs) bridge the well-separated emitters and accelerate the synchronized fluorescence, known as superfluorescence. The emitters are found to overcome the significant and nonuniform retardation, and to build up their pronounced coherence by the WGMs, striking a balance between the roles of resonator and intermediary. Our work directly illustrates the dynamical aspects of many-body synchronizations and contributes to the exploration of research paradigms that consider designed open systems.

  17. Corticospinal beta-band synchronization entails rhythmic gain modulation

    NARCIS (Netherlands)

    Elswijk, G.A.F. van; Maij, F.; Schoffelen, J.M.; Overeem, S.; Stegeman, D.F.; Fries, P.

    2010-01-01

    Rhythmic synchronization of neurons in the beta or gamma band occurs almost ubiquitously, and this synchronization has been linked to numerous nervous system functions. Many respective studies make the implicit assumption that neuronal synchronization affects neuronal interactions. Indeed, when

  18. Corticospinal Beta-Band Synchronization Entails Rhythmic Gain Modulation

    NARCIS (Netherlands)

    Elswijk, G.A.F. van; Maij, F.; Schoffelen, J.M.; Overeem, S.; Stegeman, D.F.; Fries, P.

    2010-01-01

    Rhythmic synchronization of neurons in the beta or gamma band occurs almost ubiquitously, and this synchronization has been linked to numerous nervous system functions. Many respective studies make the implicit assumption that neuronal synchronization affects neuronal interactions. Indeed, when

  19. Synchronization of world economic activity

    Science.gov (United States)

    Groth, Andreas; Ghil, Michael

    2017-12-01

    Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era.

  20. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  1. Synchronization of nonautonomous dynamical systems

    Directory of Open Access Journals (Sweden)

    Peter E. Kloeden

    2003-04-01

    Full Text Available The synchronization of two nonautonomous dynamical systems is considered, where the systems are described in terms of a skew-product formalism, i. e., in which an inputed autonomous driving system governs the evolution of the vector field of a differential equation with the passage of time. It is shown that the coupled trajectories converge to each other as time increases for sufficiently large coupling coefficient and also that the component sets of the pullback attractor of the coupled system converges upper semi continuously as the coupling parameter increases to the diagonal of the product of the corresponding component sets of the pullback attractor of a system generated by the average of the vector fields of the original uncoupled systems.

  2. Periodic and aperiodic synchronization in skilled action

    Directory of Open Access Journals (Sweden)

    Fred eCummins

    2011-12-01

    Full Text Available Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.

  3. PET/MR Synchronization by Detection of Switching Gradients

    Science.gov (United States)

    Weissler, Bjoern; Gebhardt, Pierre; Lerche, Christoph W.; Soultanidis, Georgios M.; Wehner, Jakob; Heberling, Dirk; Schulz, Volkmar

    2015-06-01

    The full potential of simultaneous Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) acquisition, such as dynamic studies or motion compensation, can only be explored if the data of both modalities is temporally synchronized. As such hybrid imaging systems are commonly realized as custom-made PET inserts for commercially available MRI scanner, a synchronization solution has to be implemented (depending on the vendor of the MRI system). In contrast, we demonstrate a simple method for temporal synchronization, which does not require a connection to the MRI. It uses the normally undesired effect of induced voltages on the PET electronics from switching MRI gradients. The electronic circuit needs very few components and the gradient pick-up coils are made from PCB traces and vias on the PET detector boards. Neither programming the MRI nor any physical connection to the MR scanner is needed, thus avoiding electromagnetic compatibility problems. This method works inherently with most MRI sequences and is a vendor- independent solution. A characterization of the sensors in an MRI scanner showed that the MRI gradients are detected with a precision of 120 μs (with the current implementation). Using different trigger thresholds, it is possible to trigger selectively on certain MRI sequences, depending on their gradient slew rate settings. Timings and pulse diagrams of MRI sequences can be recognized from the generated data. The method was successfully used for temporal alignment between PET and MRI in an MRI-based PET-motion-compensation application.

  4. Bus Based Synchronization Method for CHIPPER Based NoC

    Directory of Open Access Journals (Sweden)

    D. Muralidharan

    2016-01-01

    Full Text Available Network on Chip (NoC reduces the communication delay of System on Chip (SoC. The main limitation of NoC is power consumption and area overhead. Bufferless NoC reduces the area complexity and power consumption by eliminating buffers in the traditional routers. The bufferless NoC design should include live lock freeness since they use hot potato routing. This increases the complexity of bufferless NoC design. Among the available propositions to reduce this complexity, CHIPPER based bufferless NoC is considered as one of the best options. Live lock freeness is provided in CHIPPER through golden epoch and golden packet. All routers follow some synchronization method to identify a golden packet. Clock based method is intuitively followed for synchronization in CHIPPER based NoCs. It is shown in this work that the worst-case latency of packets is unbearably high when the above synchronization is followed. To alleviate this problem, broadcast bus NoC (BBus NoC approach is proposed in this work. The proposed method decreases the worst-case latency of packets by increasing the golden epoch rate of CHIPPER.

  5. Simulating climate with a synchronization-based supermodel

    Science.gov (United States)

    Selten, Frank M.; Schevenhoven, Francine J.; Duane, Gregory S.

    2017-12-01

    The SPEEDO global climate model (an atmosphere model coupled to a land and an ocean/sea-ice model with about 250.000 degrees of freedom) is used to investigate the merits of a new multi-model ensemble approach to the climate prediction problem in a perfect model setting. Two imperfect models are generated by perturbing parameters. Connection terms are introduced that synchronize the two models on a common solution, referred to as the supermodel solution. A synchronization-based learning algorithm is applied to the supermodel through the introduction of an update rule for the connection coefficients. Connection coefficients cease updating when synchronization errors between the supermodel and solutions of the "true" equations vanish. These final connection coefficients define the supermodel. Different supermodel solutions, but with equivalent performance, are found depending on the initial values of the connection coefficients during learning. The supermodels have a climatology and a climate response to a CO2 increase in the atmosphere that is closer to the truth as compared to the imperfect models and the standard multi-model ensemble average, showing the potential of the supermodel approach to improve climate predictions.

  6. Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics

    Science.gov (United States)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.

    2010-05-01

    We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.

  7. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...... to selectively purify target cells of desired phase from an asynchronous mixture based on cell cycle-dependent fluctuations in size. We show that ultrasonic separation allows for gentle, scalable, and label-free synchronization with high G1 phase synchrony (84%) and throughput (3 × 106 cells/h per microchannel)....

  8. A Shared Scratchpad Memory with Synchronization Support

    DEFF Research Database (Denmark)

    Hansen, Henrik Enggaard; Maroun, Emad Jacob; Kristensen, Andreas Toftegaard

    2017-01-01

    propose a shared scratchpad memory as a time-predictable communication and synchronization structure, instead of the level 2 cache. The shared on-chip memory is accessed via a time division multiplexing arbiter, isolating the execution time of load and store instructions between processing cores....... Furthermore, the arbiter supports an extended time slot where an atomic load and store instruction can be executed to implement synchronization primitives. In the evaluation we show that a shared scratchpad memory is an efficient communication structure for a small number of processors; in our setup, 9 cores....... Furthermore, we evaluate the efficiency of the synchronization support for implementation of classic locks....

  9. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...

  10. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  11. Fuzzy adaptive synchronization of uncertain chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hun [Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul 120-749 (Korea, Republic of)]. E-mail: jhkim@yeics.yonsei.ac.kr; Park, Chang-Woo [Precision Machinery Research Center, Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-dong, Wonmi-gu, Puchon-si, Kyunggi-do 420-140 (Korea, Republic of); Kim, Euntai [Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul 120-749 (Korea, Republic of); Park, Mignon [Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul 120-749 (Korea, Republic of)

    2005-01-17

    This Letter presents an adaptive approach for synchronization of Takagi-Sugeno (T-S) fuzzy chaotic systems. Since the parameters of chaotic system are assumed unknown, the adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. The control law to be designed consists of two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.

  12. Synchronization and comparison of Lifelog audio recordings

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    2008-01-01

    We investigate concurrent ‘Lifelog’ audio recordings to locate segments from the same environment. We compare two techniques earlier proposed for pattern recognition in extended audio recordings, namely cross-correlation and a fingerprinting technique. If successful, such alignment can be used...... as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....

  13. Synchronous distance interactive classroom conferencing.

    Science.gov (United States)

    Oz, Halit Hami

    2005-01-01

    New medical schools have been opened in the eastern and southeastern regions of the country. They are also in great need of basic medical science teachers. However, due to security reasons over the past two decades, teachers from the established universities do not desire to travel to these medical schools for lectures. The objective of this study was to develop a synchronous classroom conferencing system to teach basic science courses between two general purpose technology enhanced classrooms of two different universities--Istanbul University (IU) and Istanbul and Harran University (HU), Urfa--located 1,500 miles apart in Turkey. I videostreamed the instructor, content from document camera, Power Point presentations at IU, and the students at both places, IU and HU. In addition, I synchronously broadcast two whiteboards by attaching two mimio devices to the two blackboards in the IU classroom to capture and convert everything written or drawn on them into broadcasting over the intranet. This technique is called "boardcasting," which allows users to stream ink and audio together over the Internet or intranet live. A total of 260 students at IU and 150 students at HU were involved. Off-campus HU students also have asynchronous access to the stored lecture video materials at any time. Midterm and final examinations were administered simultaneously using the same questions at both sites in two universities under the observation of the teaching faculty using the very same system. This system permitted interaction between the students in the class at IU and remote-campus students at HU and the instructor in real time. The instructors at IU were able to maintain a significant level of spontaneity in using their multimedia materials and electronic whiteboards. The mean midterm and final exam scores of students at both universities were similar. The system developed in this study can be used by the medical faculty at the main teaching hospitals to deliver their lectures in

  14. The family void: treatment and theoretical aspects of the synchronous family paradigm.

    Science.gov (United States)

    Constantine, L L; Israel, J T

    1985-12-01

    The synchronous paradigm is a model of families whose members remain uninvolved and disconnected from each other yet somehow maintain relatively unvarying or even rigid patterns of behavior. In the synchronous paradigm, calm agreement and harmonious unity of action are valued above all. The concept of synchronous operation was first formulated by Constantine to solve certain theoretical problems growing out of the work of Kantor and Lehr. The theory has been elaborated upon through linkages established with other clinical and theoretical models of family dysfunction. Clinical experience in treating synchronous families has now contributed more detailed and practical understanding. Clinically, disabled synchronous families may present as bland, boring, or even death-like. They may have considerable difficulty accommodating to necessary developmental changes or to the demands of life crises, employing a variety of strategies to maintain the appearance of synchrony at the expense of adaptation. Their ability to ignore change and to absorb interventions can tax the abilities of even the most creative and energetic therapist. On the other hand, the quiet efficiency of the family and the social sensitivity of its members can be strong assets. Awareness of their strengths and special vulnerabilities can help the family therapist work more effectively with synchronous families.

  15. Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

    Science.gov (United States)

    Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong

    2017-09-01

    In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council

  16. Global Synchronization Measurement of Multivariate Neural Signals with Massively Parallel Nonlinear Interdependence Analysis.

    Science.gov (United States)

    Chen, Dan; Li, Xiaoli; Cui, Dong; Wang, Lizhe; Lu, Dongchuan

    2014-01-01

    The estimation of synchronization amongst multiple brain regions is a critical issue in understanding brain functions. There is a lack of an appropriate approach which is capable of 1) measuring the direction and strength of synchronization of activities of multiple brain regions, and 2) adapting to the quickly increasing sizes and scales of neural signals. Nonlinear Interdependence (NLI) analysis is an effective method for measuring synchronization direction and strength of bivariate neural signal. However, the method currently does not directly apply in handling multivariate signal. Its application in practice has also long been largely hampered by the ultra-high complexity of NLI algorithms. Aiming at these problems, this study 1) extends the conventional NLI to quantify the global synchronization of multivariate neural signals, and 2) develops a parallelized NLI method with general-purpose computing on the graphics processing unit (GPGPU), namely, G-NLI. The approach performs synchronization measurement in a massively parallel manner. The G-NLI has improved the runtime performance by more than 1000 times comparing to the original sequential NLI. Meanwhile, the G-NLI was employed to analyze 10-channel local field potential (LFP) recordings from a patient suffering from temporal lobe epilepsy. The results demonstrate that the proposed G-NLI method can support real-time global synchronization measurement and it could be successful in localization of epileptic focus.

  17. Synchronization Model for Pulsating Variables

    Science.gov (United States)

    Takahashi, S.; Morikawa, M.

    2013-12-01

    A simple model is proposed, which describes the variety of stellar pulsations. In this model, a star is described as an integration of independent elements which interact with each other. This interaction, which may be gravitational or hydrodynamic, promotes the synchronization of elements to yield a coherent mean field pulsation provided some conditions are satisfied. In the case of opacity driven pulsations, the whole star is described as a coupling of many heat engines. In the case of stochastic oscillation, the whole star is described as a coupling of convection cells, interacting through their flow patterns. Convection cells are described by the Lorentz model. In both models, interactions of elements lead to various pulsations, from irregular to regular. The coupled Lorenz model also describes a light curve which shows a semi-regular variability and also shows a low-frequency enhancement proportional to 1/f in its power spectrum. This is in agreement with observations (Kiss et al. 2006). This new modeling method of ‘coupled elements’ may provide a powerful description for a variety of stellar pulsations.

  18. Temporal Ventriloquism in Sensorimotor Synchronization

    Science.gov (United States)

    Parker, Melody Kay

    Perception of time is multisensory and therefore requires integration of the auditory and visual systems. Temporal ventriloquism is a phenomenon in which discrepant temporal aspects of multisensory stimuli are resolved through auditory dominance. Numerous prior experiments have demonstrated temporal ventriloquism using simple flash and click stimuli. The experiment presented herein employed a sensorimotor synchronization task to examine the effect of visual stimulus type across a range of stimulus onset asynchronies (SOA). This study compared sensorimotor response to three visual stimuli: a flash, a baton swinging, and a mallet striking a block. The results of the experiment indicated that the influence of SOA was greatly dependent on stimulus type. In contrast with the transient flash stimulus, the oscillatory visual stimuli provided more spatiotemporal information. This could explain the significantly reduced effect of temporal ventriloquism observed in response to the baton and mallet relative to the flash. Multisensory integration did not absolutely bias the auditory system; predictive visual dynamics proved useful in the unified perception of temporal occurrence.

  19. Estimation of Synchronous Machine Parameters

    Directory of Open Access Journals (Sweden)

    Oddvar Hallingstad

    1980-01-01

    Full Text Available The present paper gives a short description of an interactive estimation program based on the maximum likelihood (ML method. The program may also perform identifiability analysis by calculating sensitivity functions and the Hessian matrix. For the short circuit test the ML method is able to estimate the q-axis subtransient reactance x''q, which is not possible by means of the conventional graphical method (another set of measurements has to be used. By means of the synchronization and close test, the ML program can estimate the inertial constant (M, the d-axis transient open circuit time constant (T'do, the d-axis subtransient o.c.t.c (T''do and the q-axis subtransient o.c.t.c (T''qo. In particular, T''qo is difficult to estimate by any of the methods at present in use. Parameter identifiability is thoroughly examined both analytically and by numerical methods. Measurements from a small laboratory machine are used.

  20. Chaotic Synchronization of Fractional-Order Spatiotemporal Coupled Lorenz System

    Science.gov (United States)

    Wang, Xing-Yuan; Zhang, Hao

    2012-10-01

    By utilizing the fractional calculus techniques and spatiotemporal chaos theory, this paper brings Lorenz system to fractional-order spatiotemporal coupled differential equation for the first time, and proposes the fractional-order spatiotemporal coupled Lorenz system. Based on that, we study the problem of chaotic synchronization of fractional-order spatiotemporal coupled Lorenz systems, design the linear controller and nonlinear controller by utilizing the Lyapunov stability theory and prove the correctness in theory. The numerical simulation results demonstrate the validity of controllers in high-dimension fractional-order spatiotemporal coupled Lorenz system.

  1. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    Science.gov (United States)

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2017-10-21

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Science.gov (United States)

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with

  3. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    Science.gov (United States)

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI

  4. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2012-10-01

    Full Text Available Abstract Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI. We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI-based design problem

  5. An adaptive synchronization protocol for parallel discrete event simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bisset, K.R.

    1998-12-01

    Simulation, especially discrete event simulation (DES), is used in a variety of disciplines where numerical methods are difficult or impossible to apply. One problem with this method is that a sufficiently detailed simulation may take hours or days to execute, and multiple runs may be needed in order to generate the desired results. Parallel discrete event simulation (PDES) has been explored for many years as a method to decrease the time taken to execute a simulation. Many protocols have been developed which work well for particular types of simulations, but perform poorly when used for other types of simulations. Often it is difficult to know a priori whether a particular protocol is appropriate for a given problem. In this work, an adaptive synchronization method (ASM) is developed which works well on an entire spectrum of problems. The ASM determines, using an artificial neural network (ANN), the likelihood that a particular event is safe to process.

  6. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  7. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    The supermarket refrigeration system typically has a distributed control structure, which neglects interactions between its subsystems. These interactions from time to time lead to a synchronization operation of the display-cases which causes an inferior control performance and increased energy...... consumption. The paper focuses on synchronization dynamics of the refrigeration system modeled as a piecewiseaffine switched system. Stability analysis is performed bygluing the subsystems and polyhedra together to form a single dynamical system defined on a coherent state space. Then, system behavior...... is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...

  8. Modified function projective combination synchronization of ...

    Indian Academy of Sciences (India)

    Combination hyperchaotic system; modified function projective combination synchronization; adaptive control; hyperchaotic Lorenz system; hyperchaotic Lu system ... A self-combination system is constructed from hyperchaotic Lorenz system by combining state variables of the Lorenz system with appropriate scaling factors.

  9. Planning for the Synergy of Synchronized Fires

    National Research Council Canada - National Science Library

    Harness, Christopher

    2002-01-01

    ...: strategic the longest and tactical almost immediately. By carefully synchronizing the three types of fires in time and space, a synergistic effect is created at the tactical level of warfare that can be exploited by the operational commander...

  10. Bifurcation and Synchronization of Two Coupled Generators

    Science.gov (United States)

    Martynyuk, A. À.; Nikitina, N. V.

    2017-03-01

    Coupled generators having the property of multistability (one generator with exponential inertial nonlinearity and Chou generator) are considered. New oscillation conditions occurring under synchronization are established using the characteristic equation for the system of variational equations

  11. Method for emulation of synchronous machine

    DEFF Research Database (Denmark)

    2011-01-01

    electronic converters for stabilizing the utility grid during transient conditions and for providing similar stability mechanisms that are inherently present in electric synchronous generators while maintaining the possibility for fast and decoupled following of set points for generated active and...

  12. Disrupted Neural Synchronization in Toddlers with Autism

    National Research Council Canada - National Science Library

    Dinstein, Ilan; Pierce, Karen; Eyler, Lisa; Solso, Stephanie; Malach, Rafael; Behrmann, Marlene; Courchesne, Eric

    2011-01-01

    .... Here, we show that disrupted synchronization is evident in the spontaneous cortical activity of naturally sleeping toddlers with autism, but not in toddlers with language delay or typical development...

  13. Pitch synchronous transform warping in voice conversion

    OpenAIRE

    Vích, R. (Robert); Vondra, M. (Martin)

    2012-01-01

    In this paper a new voice conversion algorithm is presented, which transforms the utterance of a source speaker into the utterance of a target speaker. The voice conversion approach is based on pitch synchronous speech analysis, Discrete Cosine Transform (DCT), nonlinear spectral warping with spectrum interpolation and pitch synchronous speech synthesis with overlapping using the speech production model. The DCT speech model contains also information about the phase properties of the modeled ...

  14. On the Large Synchronous Machine Parameters Calculatioin

    Directory of Open Access Journals (Sweden)

    Ioan Adrian Viorel

    2004-01-01

    Full Text Available The large synchronous generators were intensively studied, but not so many papers are entirely dedicated to the analythical calculation of the generator´s parameters. Therefore any contribution should be welcomed if it offers an improvement in the existing procedures or formulae. The paper is dealing with the large synchronous generator smagnetizing and leakage inductances calculation. A coherent algorithm is presented and the calculated parameters for a generator are given.

  15. Chaos synchronization of a fractional nonautonomous system

    Directory of Open Access Journals (Sweden)

    Hammouch Zakia

    2014-01-01

    Full Text Available In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methods

  16. Nonlinear State Observer Design for Projective Synchronization of Fractional-Order Permanent Magnet Synchronous Motor

    Science.gov (United States)

    Liu, Ling; Liang, Deliang; Liu, Chongxin; Zhang, Qun

    2012-12-01

    In this paper, a nonlinear state observer control strategy is developed for projective self-synchronization of the fractional-order chaotic attractors of a permanent magnet synchronous motor (PMSM) system. The mathematical model of PMSM system in a smooth fractional-order form is derived by using the fractional derivative theory. A state observer control design can achieve the full-state projective synchronization of the fractional-order PMSM (FO-PMSM) system without the limitation of partial-linearity. Global stability and asymptotic synchronization between the outputs of drive system and response system can be obtained. Simulation results are provided to demonstrate the effectiveness of the approach.

  17. On synchronization of clocks in general space-times

    Directory of Open Access Journals (Sweden)

    M. R. H Khajehpour

    2005-09-01

    Full Text Available   Einstein and transport synchronizations of infinitesimally spaced and distant clocks are considered in a general Riemannian space-time. It is shown that infinitesimally spaced clocks can always be synchronized. In general one can not find observers for whom distant clock are Einstein synchronized but transport synchronized observers do always exit. Whenever both procedures are possible, they are equivalent.

  18. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  19. Frame Synchronization Without Attached Sync Markers

    Science.gov (United States)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  20. Queue-length synchronization in communication networks.

    Science.gov (United States)

    Mukherjee, Satyam; Gupte, Neelima

    2009-05-01

    We study the synchronization in the context of network traffic on a 2-d communication network with local clustering and geographic separations. The network consists of nodes and randomly distributed hubs where the top five hubs ranked according to their coefficient of betweenness centrality (CBC) are connected by random assortative and gradient mechanisms. For multiple message traffic, messages can trap at the high CBC hubs, and congestion can build up on the network with long queues at the congested hubs. The queue lengths are seen to synchronize in the congested phase. Both complete and phase synchronization are seen, between pairs of hubs. In the decongested phase, the pairs start clearing and synchronization is lost. A cascading master-slave relation is seen between the hubs, with the slower hubs (which are slow to decongest) driving the faster ones. These are usually the hubs of high CBC. Similar results are seen for traffic of constant density. Total synchronization between the hubs of high CBC is also seen in the congested regime. Similar behavior is seen for traffic on a network constructed using the Waxman random topology generator. We also demonstrate the existence of phase synchronization in real internet traffic data.

  1. A Flexible Terminal Approach to Sampled-Data Exponentially Synchronization of Markovian Neural Networks With Time-Varying Delayed Signals.

    Science.gov (United States)

    Cheng, Jun; Park, Ju H; Karimi, Hamid Reza; Shen, Hao

    2017-08-02

    This paper investigates the problem of sampled-data (SD) exponentially synchronization for a class of Markovian neural networks with time-varying delayed signals. Based on the tunable parameter and convex combination computational method, a new approach named flexible terminal approach is proposed to reduce the conservatism of delay-dependent synchronization criteria. The SD subject to stochastic sampling period is introduced to exhibit the general phenomena of reality. Novel exponential synchronization criterion are derived by utilizing uniform Lyapunov-Krasovskii functional and suitable integral inequality. Finally, numerical examples are provided to show the usefulness and advantages of the proposed design procedure.

  2. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.

    Science.gov (United States)

    Li, Xiaofan; Fang, Jian-An; Li, Huiyuan

    2017-09-01

    This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantum synchronization in an optomechanical system based on Lyapunov control.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  4. Nonlinear Chemical Dynamics and Synchronization

    Science.gov (United States)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  5. Nonlinear Control and Synchronization with Time Delays of Multiagent Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yassine Bouteraa

    2011-01-01

    Full Text Available We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem.

  6. Learning Opportunities in Synchronous Computer-Mediated Communication and Face-to-Face Interaction

    Science.gov (United States)

    Kim, Hye Yeong

    2014-01-01

    This study investigated how synchronous computer-mediated communication (SCMC) and face-to-face (F2F) oral interaction influence the way in which learners collaborate in language learning and how they solve their communicative problems. The findings suggest that output modality may affect how learners produce language, attend to linguistic forms,…

  7. Analysis of synchronous and induction generators used at hydroelectric power plant

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  8. Self-synchronization in networked teams : Initializing and monitoring interteam collaborations.

    NARCIS (Netherlands)

    Bezooijen, B.J.A. van; Essens, P.J.M.D.

    2008-01-01

    Networked teams do not only have to make decisions that are in line with the overall goal, but face additional problems because teams have to synchronize decisions and actions with other teams in the network, Experiments have demonstrated that training teams for collaborating with other teams

  9. Finite-Time Chaos Suppression of Permanent Magnet Synchronous Motor Systems

    Directory of Open Access Journals (Sweden)

    Yi-You Hou

    2014-04-01

    Full Text Available This paper considers the problem of the chaos suppression for the Permanent Magnet Synchronous Motor (PMSM system via the finite-time control. Based on Lyapunov stability theory and the finite-time controller are developed such that the chaos behaviors of PMSM system can be suppressed. The effectiveness and accuracy of the proposed methods are shown in numerical simulations.

  10. Output synchronization for heterogeneous networks of introspective right-invertible agents

    NARCIS (Netherlands)

    Yang, Tao; Saberi, Ali; Stoorvogel, Antonie Arij; Grip, H°avard Fjær

    2014-01-01

    In this paper, we consider the output synchronization problem for heterogeneous networks of right-invertible linear agents. We assume that all the agents are introspective, meaning that they have access to their own local measurements. Under this assumption, we then propose a decentralized control

  11. Does interpersonal movement synchronization differ from synchronization with a moving object?

    NARCIS (Netherlands)

    Ouwehand, P.W.; Peper, C.E.

    2015-01-01

    We examined whether movement synchronization is different during coordination with another person than during coordination with a moving object. In addition, the influence of belief in the other person's agency was assessed. Participants synchronized their lower-arm movements with a

  12. Global Phase Synchronization for a Class of Dynamical Complex Networks with Time-Varying Coupling Delays

    Directory of Open Access Journals (Sweden)

    Li XinBin

    2010-01-01

    Full Text Available Global phase synchronization for a class of dynamical complex networks composed of multiinput multioutput pendulum-like systems with time-varying coupling delays is investigated. The problem of the global phase synchronization for the complex networks is equivalent to the problem of the asymptotical stability for the corresponding error dynamical networks. For reducing the conservation, no linearization technique is involved, but by Kronecker product, the problem of the asymptotical stability of the high dimensional error dynamical networks is reduced to the same problem of a class of low dimensional error systems. The delay-dependent criteria guaranteeing global asymptotical stability for the error dynamical complex networks in terms of Liner Matrix Inequalities (LMIs are derived based on free-weighting matrices technique and Lyapunov function. According to the convex characterization, a simple criterion is proposed. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  13. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pinning synchronization of two general complex networks with periodically intermittent control

    Directory of Open Access Journals (Sweden)

    Meng Fanyu

    2015-12-01

    Full Text Available In this paper, the method of periodically pinning intermittent control is introduced to solve the problem of outer synchronization between two complex networks. Based on the Lyapunov stability theory, differential inequality method and adaptive technique, some simple synchronous criteria have been derived analytically. At last, both the theoretical and numerical analysis illustrate the effectiveness of the proposed control methodology. This method not only reduces the conservatism of control gain but also saves the cost of production.These advantages make this method having a large application scope in the real production process.

  15. Robust Synchronization Controller Design for a Class of Uncertain Fractional Order Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2016-01-01

    Full Text Available Synchronization problem for a class of uncertain fractional order chaotic systems is studied. Some fundamental lemmas are given to show the boundedness of a complicated infinite series which is produced by differentiating a quadratic Lyapunov function with fractional order. By using the fractional order extension of the Lyapunov stability criterion and the proposed lemma, stability of the closed-loop system is analyzed, and two sufficient conditions, which can enable the synchronization error to converge to zero asymptotically, are driven. Finally, an illustrative example is presented to confirm the proposed theoretical results.

  16. Projective Exponential Synchronization for a Class of Complex PDDE Networks with Multiple Time Delays

    Directory of Open Access Journals (Sweden)

    Chengdong Yang

    2015-10-01

    Full Text Available This paper addresses the problem of projective exponential synchronization for a class of complex spatiotemporal networks with multiple time delays satisfying the homogeneous Neumann boundary conditions, where the network is modeled by coupled partial differential-difference equations (PDDEs. A distributed proportional-spatial derivative (P-sD controller is designed by employing Lyapunov’s direct method and Kronecker product. The controller ensures the projective exponential synchronization of the PDDE network. The main result of this paper is presented in terms of standard linear matrix inequality (LMI. A numerical example is provided to show the effectiveness of the proposed design method.

  17. An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Ines P. [Nonlinear Dynamics and Chaos Group, Departamento de Matematicas y Fisica Aplicadas y Ciencias de la Naturaleza, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)]. E-mail: ines.perez@urjc.es; Miguez, Joaquin [Departamento de Teoria de la Senal y Comunicaciones, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid (Spain)]. E-mail: jmiguez@ieee.org

    2006-03-06

    We address the problem of estimating the unknown parameters of a primary chaotic system that produces an observed time series. These observations are used to drive a secondary system in a way that ensures synchronization when the two systems have identical parameters. We propose a new method to adaptively adjust the parameters in the secondary system until synchronization is achieved. It is based on the gradient-descent optimization of a suitably defined cost function and can be systematically applied to arbitrary systems. We illustrate its application by estimating the complete parameter vector of a Lorenz system.

  18. Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-02-01

    This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.

  19. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...... potential HTS savings, which could be achieved using multiple power supplies for the excitation of the machine. Using the TO approach combined with two excitation currents, an additional HTS saving of 9.1% can be achieved....

  20. Time telling devices used in Danish health care are not synchronized

    DEFF Research Database (Denmark)

    Brabrand, Mikkel; Hosbond, Susanne; Petersen, Dan Brun

    2012-01-01

    Many patients begin their encounter with the health-care services in an ambulance. In some critical patients, it is pivotal that the timing of treatment and events is registered correctly. When patients are transferred from one health care provider to another, there is a risk that the time tellin...... devices used are not synchronized. It has never been examined if this is a problem in Denmark. We performed the present study to examine if time telling devices used in the pre-hospital setting were synchronized with devices used in emergency departments....

  1. Exponential Synchronization of Stochastic Complex Dynamical Networks with Impulsive Perturbations and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Wuneng Zhou

    2014-01-01

    Full Text Available This paper investigates the exponential synchronization problem of stochastic complex dynamical networks with impulsive perturbation and Markovian switching. The complex dynamical networks consist of κ modes, and the networks switch from one mode to another according to a Markovian chain with known transition probability. Based on the Lyapunov function method and stochastic analysis, by employing M-matrix approach, some sufficient conditions are presented to ensure the exponential synchronization of stochastic complex dynamical networks with impulsive perturbation and Markovian switching, and the upper bound of impulsive gain is evaluated. At the end of this paper, two numerical examples are included to show the effectiveness of our results.

  2. Blending Online Asynchronous and Synchronous Learning

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2014-04-01

    Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.

  3. Superluminal Velocities in the Synchronized Space-Time

    Directory of Open Access Journals (Sweden)

    Medvedev S. Yu.

    2014-07-01

    Full Text Available Within the framework of the non-gravitational generalization of the special relativity, a problem of possible superluminal motion of particles and signals is considered. It has been proven that for the particles with non-zero mass the existence of anisotropic light barrier with the shape dependent on the reference frame velocity results from the Tangherlini transformations. The maximal possible excess of neutrino velocity over the absolute velocity of light related to the Earth (using th e clock with instantaneous synchronization has been estimated. The illusoriness of t he acausality problem has been illustrated and conclusion is made on the lack of the upper limit of velocities of signals of informational nature.

  4. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor

    OpenAIRE

    Jian-wei Yang; Man-feng Dou; Zhi-yong Dai

    2015-01-01

    Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs), such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC...

  5. Robust outer synchronization between two complex networks with fractional order dynamics.

    Science.gov (United States)

    Asheghan, Mohammad Mostafa; Míguez, Joaquín; Hamidi-Beheshti, Mohammad T; Tavazoei, Mohammad Saleh

    2011-09-01

    Synchronization between two coupled complex networks with fractional-order dynamics, hereafter referred to as outer synchronization, is investigated in this work. In particular, we consider two systems consisting of interconnected nodes. The state variables of each node evolve with time according to a set of (possibly nonlinear and chaotic) fractional-order differential equations. One of the networks plays the role of a master system and drives the second network by way of an open-plus-closed-loop (OPCL) scheme. Starting from a simple analysis of the synchronization error and a basic lemma on the eigenvalues of matrices resulting from Kronecker products, we establish various sets of conditions for outer synchronization, i.e., for ensuring that the errors between the state variables of the master and response systems can asymptotically vanish with time. Then, we address the problem of robust outer synchronization, i.e., how to guarantee that the states of the nodes converge to common values when the parameters of the master and response networks are not identical, but present some perturbations. Assuming that these perturbations are bounded, we also find conditions for outer synchronization, this time given in terms of sets of linear matrix inequalities (LMIs). Most of the analytical results in this paper are valid both for fractional-order and integer-order dynamics. The assumptions on the inner (coupling) structure of the networks are mild, involving, at most, symmetry and diffusivity. The analytical results are complemented with numerical examples. In particular, we show examples of generalized and robust outer synchronization for networks whose nodes are governed by fractional-order Lorenz dynamics.

  6. Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition.

    Directory of Open Access Journals (Sweden)

    Hendrik B Tiedemann

    2014-10-01

    Full Text Available While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM. The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its 'birth' to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.

  7. Transient Synchronization in Complex Neuronal Networks

    CERN Document Server

    Costa, Luciano da Fontoura

    2008-01-01

    Transient synchronization in complex neuronal networks as a consequence of activation-conserved dynamics induced by having sources placed at specific neurons is investigated. The basic integrate-and-fire neuron is adopted, and the dynamics is estimated computationally so as to obtain the activation at each node along each instant of time. The dynamics is implemented so as to conserve the total activation entering the system, which is a distinctive feature of the current work. The synchronization of the activation of the network is then quantified along time in terms of its normalized instantaneous entropy. The potential of such concepts and measurements is explored with respect to 6 theoretical models, as well as for the neuronal network of \\emph{C. elegans}. A series of interesting results are obtained and discussed, including the fact that all models led to a transient period of synchronization, whose specific features depend heavily on the topological features of the networks.

  8. Capacitive coupling synchronizes autonomous microfluidic oscillators.

    Science.gov (United States)

    Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi

    2018-01-31

    Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Synchronized rotation in swarms of magnetotactic bacteria

    Science.gov (United States)

    Belovs, M.; Livanovičs, R.; CÄ`bers, A.

    2017-10-01

    Self-organizing behavior has been widely reported in both natural and artificial systems, typically distinguishing between temporal organization (synchronization) and spatial organization (swarming). Swarming has been experimentally observed in systems of magnetotactic bacteria under the action of external magnetic fields. Here we present a model of ensembles of magnetotactic bacteria in which hydrodynamic interactions lead to temporal synchronization in addition to the swarming. After a period of stabilization during which the bacteria form a quasiregular hexagonal lattice structure, the entire swarm begins to rotate in a direction opposite to the direction of the rotation of the magnetic field. We thus illustrate an emergent mechanism of macroscopic motion arising from the synchronized microscopic rotations of hydrodynamically interacting bacteria, reminiscent of the recently proposed concept of swarmalators.

  10. The transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-01-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system......, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and describe how the formation of multi-layered resonance cycles in the synchronization domain is related...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...

  11. Experiments with synchronized sCMOS cameras

    Science.gov (United States)

    Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar

    2016-07-01

    Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.

  12. Adaptive elimination of synchronization in coupled oscillator

    Science.gov (United States)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  13. Designing Learning Resources in Synchronous Learning Environments

    DEFF Research Database (Denmark)

    Christiansen, Rene B

    2015-01-01

    Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design...... and create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings...

  14. Synchronous gastric neuroendocrine carcinoma and hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Henriksen, Birthe Merete; Hansen, Carsten Palnæs

    2009-01-01

    UNLABELLED: Gastric neuroendocrine carcinomas (NECs) are rare tumours that are divided into four subtypes depending on tumour characteristics. Patients with NECs are known to have an increased risk of synchronous and metachronous cancers mainly located in the gastrointestinal tract. A case...... of synchronous gastric NEC and hepatocellular carcinoma in a patient with several other precancerous lesions is presented. The patient had anaemia, and a gastric tumour and two duodenal polyps were identified on upper endoscopy. A CT scan of the abdomen revealed several lesions in the liver. The lesions were...... invisible on B-mode sonography and real-time sonography fused with CT was used to identify and biopsy one of the lesions. Histology showed hepatocellular carcinoma. A literature search showed that only one case of a hepatocellular carcinoma synchronous with a gastric NEC has been reported previously. TRIAL...

  15. Fuzzy Approximation-Based Global Pinning Synchronization Control of Uncertain Complex Dynamical Networks.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-04-01

    This paper is concerned with the global pinning synchronization problem of uncertain complex dynamical networks with communication constraints. First, an adaptive fuzzy controller is designed within a given compact set. In addition, a robust controller is introduced outside the compact set to pull back the system states. Then, a new pinning control scheme is given such that the global synchronization can be ensured. Moreover, via the Lyapunov theory and graph theory, the synchronization errors are proved to be asymptotically convergent. Especially, in an uncertainty-free environment, the proposed control scheme includes two easy-to-implement pinning control strategies as special cases, which improve the existing results from the view point of reducing the number of feedback controllers. Finally, two simulation examples are provided to validate the theoretical results.

  16. Synchronization in the Genesio Tesi and Coullet systems using the backstepping approach

    Science.gov (United States)

    Hu, J.-B.; Han, Y.; Zhao, L.-D.

    2008-02-01

    In this paper, the backstepping approach is proposed for synchronization in a pair of topologically inequivalent systems, the Genesio Tesi and Coullet systems. Firstly, the control problem for the chaos synchronization in the pair systems without unknown parameter is considered. Then an adaptive backstepping control law is designed to make the error signals between drive Genesio Tesi system and response Coullet system with three unknown parameters synchronized. The stability analysis in this article is proved according to a well-known Lyapunov stability theorem. These methods are applicable to a large class of topologically inequivalent systems where only a few algebraic inequalities are involved. Numerical simulation results are presented to show the effectiveness of the proposed scheme.

  17. Enterprise Architecture as a Way of Synchronizing Enterprise Resource Planning Systems and Business Processes

    DEFF Research Database (Denmark)

    Johansson, Björn; Holst, Philip; Henningsson, Stefan

    2009-01-01

    A major question for contemporary organizations is how to support business processes with ICT. One way to do so is by the adoption of a standardized software package such as enterprise resource planning (ERP) systems. However, this demands that either the system is adjusted to existing business...... processes or that the business processes are adjusted to the system’s inherited processes, often described as an alignment problem. This paper suggests that instead of alignment, organization-technology synchronization would be better, since an organization’s business processes as well as the technology...... used is continuously evolving. The question is then how synchronization could be achieved and if any tools exists that could support this. Our suggestion is that enterprise architecture (EA) could be seen as a tool to increase organizationtechnology synchronization. We investigated a role based...

  18. Hybrid Stability Checking Method for Synchronization of Chaotic Fractional-Order Systems

    Directory of Open Access Journals (Sweden)

    Seng-Kin Lao

    2014-01-01

    Full Text Available A hybrid stability checking method is proposed to verify the establishment of synchronization between two hyperchaotic systems. During the design stage of a synchronization scheme for chaotic fractional-order systems, a problem is sometimes encountered. In order to ensure the stability of the error signal between two fractional-order systems, the arguments of all eigenvalues of the Jacobian matrix of the erroneous system should be within a region defined in Matignon’s theorem. Sometimes, the arguments depend on the state variables of the driving system, which makes it difficult to prove the stability. We propose a new and efficient hybrid method to verify the stability in this situation. The passivity-based control scheme for synchronization of two hyperchaotic fractional-order Chen-Lee systems is provided as an example. Theoretical analysis of the proposed method is validated by numerical simulation in time domain and examined in frequency domain via electronic circuits.

  19. Fixed-Time Synchronization for Hybrid Coupled Dynamical Networks with Multilinks and Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Baolin Qiu

    2017-01-01

    Full Text Available This paper concerns the problem of fixed/finite-time synchronization of hybrid coupled dynamical networks. The considered dynamical networks with multilinks contain only one transmittal time-varying delay for each subnetwork, which makes us get hold of more interesting and practical points. Two kinds of delay-dependent feedback controllers with multilinks as well as appropriate Lyapunov functions are defined to achieve the goal of fixed-time synchronization and finite-time synchronization for the networks. Some novel and effective criteria of hybrid coupled networks are derived based on fixed-time and finite-time stability analysis. Finally, two numerical simulation examples are given to show the effectiveness of the results proposed in our paper.

  20. Analysis of ECT Synchronization Performance Based on Different Interpolation Methods

    Directory of Open Access Journals (Sweden)

    Yang Zhixin

    2014-01-01

    Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.

  1. Synchronization of polarization chaos from a free-running VCSEL.

    Science.gov (United States)

    Virte, Martin; Sciamanna, Marc; Panajotov, Krassimir

    2016-10-01

    We theoretically demonstrate the possibility to synchronize polarization chaos generated by a free-running vertical-cavity surface-emitting laser (VCSEL). We highlight two distinct synchronization regimes: 1) a high-quality synchronization regime where all polarization modes and total intensity are synchronized, which shows good robustness against parameter mismatch, and 2) a "slow time-scale" synchronization where the slower part of the dynamics-that is, the random-like hopping between the two scrolls of the chaotic attractor-synchronizes while the faster oscillations remain unsynchronized.

  2. Compound Synchronization of Four Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Junwei Sun

    2015-01-01

    Full Text Available The chaotic complex system is designed from the start of the chaotic real system. Dynamical properties of a chaotic complex system in complex space are investigated. In this paper, a compound synchronization scheme is achieved for four chaotic complex systems. According to Lyapunov stability theory and the adaptive control method, four chaotic complex systems are considered and the corresponding controllers are designed to realize the compound synchronization scheme. Four novel design chaotic complex systems are given as an example to verify the validity and feasibility of the proposed control scheme.

  3. Dangerous situations in a synchronized flow model

    Science.gov (United States)

    Jiang, Rui; Wu, Qing-Song

    2007-04-01

    This paper studies the dangerous situation (DS) in a synchronized flow model. The DS on the two branches of the fundamental diagram are investigated, respectively. It is shown that different relationship between DS probability and the density exists in the synchronized flow and in the jams. Moreover, we prove that there is no DS caused by non-stopped car although the model itself is a non-exclusion process. We classify the DS into four sub-types and study the probability of these four sub-types. The simulation result is consistent with the real traffic.

  4. Controlled Limiter in the Synchronous Detection Circuit

    Directory of Open Access Journals (Sweden)

    Yauheni Bialetski

    2017-07-01

    Full Text Available This variant of construction of the electrical circuit is aimed at reducing the effects of impulse noise. The measuring channels of the primary transducers are subject to interference of various types. In the case of a small ratio between a useful signal and noise level, synchronous detection is used. Impulse noise leaves a big mark even after using synchronous detection. To improve the performance of such measuring devices, it is proposed to use a controlled amplitude limiter at the input. Comparative analysis of solutions with controlled limiters is carried out in the article and conditions for its optimal operation are determined.

  5. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  6. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...

  7. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed...

  8. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  9. Characteristics of silent countingin synchronized swimmers

    Directory of Open Access Journals (Sweden)

    Sergey V. Leonov

    2012-01-01

    Full Text Available This article describes the temporal characteristics of silent counting as used duringa competition by the Russian youth team of synchronized swimmers. Theathletes listened to the music that accompanied their performance at the competition.Diff erent indices of silent counting were defi ned, such as the beginningand cessation of diff erent periods of counting, counting frequency, the stabilityof the temporal structure of silent counting, the degree of synchronization of silentcounting at diff erent moments during the sports program. We studied therelationship of these characteristics of counting with expert estimates of the athletes’sense of tempo, coordination of movements, and choreographic abilities.

  10. Network response synchronization enhanced by synaptic plasticity

    Science.gov (United States)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  11. A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  12. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    Science.gov (United States)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  13. Spontaneous Synchronization in Two Mutually Coupled Memristor-Based Chua’s Circuits: Numerical Investigations

    Directory of Open Access Journals (Sweden)

    Eleonora Bilotta

    2014-01-01

    Full Text Available Chaotic dynamics of numerous memristor-based circuits is widely reported in literature. Recently, some works have appeared which study the problem of synchronization control of these systems in a master-slave configuration. In the present paper, the spontaneous dynamic behavior of two chaotic memristor-based Chua’s circuits, mutually interacting through a coupling resistance, was studied via computer simulations in order to study possible self-organized synchronization phenomena. The used memristor is a flux controlled memristor with a cubic nonlinearity, and it can be regarded as a time-varying memductance. The memristor, in effect, retains memory of its past dynamic and any difference in the initial conditions of the two circuits results in different values of the corresponding memductances. In this sense, due to the memory effect of the memristor, even if coupled circuits have the same parameters they do not constitute two completely identical chaotic oscillators. As is known, for nonidentical chaotic systems, in addition to complete synchronizations (CS other weaker forms of synchronization which provide correlations between the signals of the two systems can also occur. Depending on initial conditions and coupling strength, both chaotic and nonchaotic synchronization are observed for the system considered in this work.

  14. Robust Synchronization of Delayed Chaotic FitzHugh-Nagumo Neurons under External Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Muhammad Rehan

    2012-01-01

    Full Text Available Synchronization of chaotic neurons under external electrical stimulation (EES is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.

  15. Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control

    Science.gov (United States)

    Pan, Lin; Zhou, Wuneng; Fang, Jian'an; Li, Dequan

    2010-12-01

    This paper discusses the synchronization and anti-synchronization of new uncertain fractional-order unified chaotic systems (UFOUCS). Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of new UFOUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UFOUCS. Numerical simulations of new UFOUCS show that the controller can make fractional-order unified chaotic systems (FOUCS) achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.

  16. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  17. Comparison between variable and fixed dwell-time PN acquisition algorithms. [for synchronization in pseudonoise spread spectrum systems

    Science.gov (United States)

    Braun, W. R.

    1981-01-01

    Pseudo noise (PN) spread spectrum systems require a very accurate alignment between the PN code epochs at the transmitter and receiver. This synchronism is typically established through a two-step algorithm, including a coarse synchronization procedure and a fine synchronization procedure. A standard approach for the coarse synchronization is a sequential search over all code phases. The measurement of the power in the filtered signal is used to either accept or reject the code phase under test as the phase of the received PN code. This acquisition strategy, called a single dwell-time system, has been analyzed by Holmes and Chen (1977). A synopsis of the field of sequential analysis as it applies to the PN acquisition problem is provided. From this, the implementation of the variable dwell time algorithm as a sequential probability ratio test is developed. The performance of this algorithm is compared to the optimum detection algorithm and to the fixed dwell-time system.

  18. A Fast and Simple Online Synchronous Context Free Grammar Extractor

    Directory of Open Access Journals (Sweden)

    Paul Baltescu

    2014-09-01

    Full Text Available Hierarchical phrase-based machine translation systems rely on the synchronous context free grammar formalism to learn and use translation rules containing gaps. The grammars learned by such systems become unmanageably large even for medium sized parallel corpora. The traditional approach of preprocessing the training data and loading all possible translation rules into memory does not scale well for hierarchical phrase-based systems. Online grammar extractors address this problem by constructing memory efficient data structures on top of the source sideof the parallel data (often based on suffix arrays, which are usedto efficiently match phrases in the corpus and to extract translation rules on the fly during decoding. This paper describes an open source implementation of an online synchronous context free grammar extractor. Our approach builds on the work of Lopez (2008a and introduces a new technique for extending the lists of phrase matches for phrases containing gaps that reduces the extraction time by a factor of 4. Our extractor is available as part of the cdec toolkit1 (Dyer et al., 2010.

  19. Order sequencing and capacity balancing in synchronous manufacturing

    NARCIS (Netherlands)

    Riezebos, J.

    2011-01-01

    Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production situations that operate without lines. Benefits such as short and constant throughput times and predictable capacity loading can be acquired through an appropriate design of the synchronous

  20. Analysis of synchronization in a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Leth, John-Josef; Rasmussen, Jakob Gulddahl

    2014-01-01

    increases both the energy consumption and the wear of components. Besides this practical importance, from the theoretical point of view, synchronization, likewise stability, Zeno phenomenon, and chaos, is an interesting dynamical phenomenon. The study of synchronization in the supermarket refrigeration...

  1. Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems

    Science.gov (United States)

    Chen, Liping; Chai, Yi; Wu, Ranchao

    2011-05-01

    In this Letter, a new lag projective synchronization for fractional-order chaotic (hyperchaotic) systems is proposed, which includes complete synchronization, anti-synchronization, lag synchronization, generalized projective synchronization. It is shown that the slave system synchronizes the past state of the driver up to a scaling factor. A suitable controller for achieving the lag projective synchronization is designed based on the stability theory of linear fractional-order systems and the pole placement technique. Two examples are given to illustrate effectiveness of the scheme, in which the lag projective synchronizations between fractional-order chaotic Rössler system and fractional-order chaotic Lü system, between fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system, respectively, are successfully achieved. Corresponding numerical simulations are also given to verify the analytical results.

  2. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NARCIS (Netherlands)

    Quaranta, G.; Aubin, M.E.; Tam, D.S.W.

    2015-01-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic

  3. Synchronic tutoring of a virtual community

    NARCIS (Netherlands)

    Simons, P.R.J.; Ligorio, M.B.; Talamo, A.

    2002-01-01

    The role of tutors has changed over time, depending on models of learning and on the technology available. This article discusses the evolution of the tutor role and presents a new model concerning the tutoring functions in a synchronous virtual community. The definition of a virtual community

  4. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    coupled double-well Duffing oscillators (DDOs) and showed that synchronization was characterized by boundary crisis of the chaotic attractors. In our previous work [23,25], only numerical results were presented. In this paper, we extend our results to parametrically excited systems and in particular obtain sufficient crite-.

  5. Permanent magnet synchronous motor dynamic modeling with ...

    African Journals Online (AJOL)

    This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous Motor (SPMSM) with the aid of MATLAB – Simulink environment. The proposed model would be used in many applications such as automotive, mechatronics, green energy applications, and machine drives. The modeling ...

  6. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    this feature can be used for achieving fast communication. It is obvious that the complete ... hances security in communication and chaotic encryptation schemes. It is believed that the chaotic systems with ... For the hybrid synchronization, we define the state errors between the response system that is to be controlled and the ...

  7. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    Up to now, many network models on synchronization have been put forward, such as, the small-world network, directed network, neural network etc. Previous efforts were mainly to study the outer relationship between the nodes. But, the inner interaction is always overlooked. Afterwards, the coloured network model has ...

  8. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...

  9. Synchronization of indirectly coupled Lorenz oscillators: An ...

    Indian Academy of Sciences (India)

    [7], the magnetoencephalographic activity of Parkinsonian patients [8], electrosensitive cells of paddlefish [9] etc. In the context of the coupling strength and the nature of the coupling, different types of synchronizations studied in literature are: complete or iden- tical [10], in-phase [11], anti-phase [12], lag [13], generalized ...

  10. Chaos in nonlinear oscillations controlling and synchronization

    CERN Document Server

    Lakshamanan, M

    1996-01-01

    This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.

  11. Synchronous Retrograde and Micturating Cysto Urethrography A ...

    African Journals Online (AJOL)

    Even the standard method of doing the conventional Urethrography using penile clamp cannot be done in our centre because this is not also available. This led us to this study to help us maximize results by improvising on the available technique. Objective: To demonstrate a local modification of method for synchronous/ ...

  12. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  13. Compatibility of Motion Facilitates Visuomotor Synchronization

    Science.gov (United States)

    Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.

    2010-01-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…

  14. Design of multistable systems via partial synchronization

    Indian Academy of Sciences (India)

    Mohammad Ali Khan

    2017-07-05

    . The mechanisms behind .... controllers. We define synchronization error between systems (3) and (4) as ei = yi − xi,i = 1,2,...,n. Now, we obtain the error dynamical system as follows: ˙e1 = g1(y1, y2, y3,..., yn). − f1(x1, x2, x3,..., ...

  15. Synchronization in multicell systems exhibiting dynamic plasticity

    Indian Academy of Sciences (India)

    Using two perturbation analyses, we also show that this emergent synchronized dynamical state is fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory phenotypes in these model cells may get suppressed to exhibit collective dynamics of a single type in a multicell system, but ...

  16. Asynchronous versus Synchronous Learning in Pharmacy Education

    Science.gov (United States)

    Motycka, Carol A.; St. Onge, Erin L.; Williams, Jennifer

    2013-01-01

    Objective: To better understand the technology being used today in pharmacy education through a review of the current methodologies being employed at various institutions. Also, to discuss the benefits and difficulties of asynchronous and synchronous methodologies, which are being utilized at both traditional and distance education campuses.…

  17. Synchronous charge-constrained electroquasistatic generator

    Science.gov (United States)

    Melcher, J. R.

    1969-01-01

    Electroquasistatic generator depends on electroquasistatic interactions to provide synchronous operation. The generator employs a moving insulating belt, with an ac electric potential source to establish positively and negatively charged regions on the belt. The field effect of the charges on the belt creates an ac output voltage.

  18. Synchronization: A Case in Biological Studies

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Postnov, D.E.; Janson, N.B.

    2012-01-01

    Synchronization is one of the most significant manifestations of self-organization in coupled non-linear dissipative systems. Due ti coupling, two initially uncoordinated systems start to oscillate in unison. This phenomenon is common between all self-oscillatory systems irrespectively of their o...

  19. Synchronous Control of Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Oleschuk, Valentin; Blaabjerg, Frede; Bose, Bimal K.

    2002-01-01

    for each module and the composed voltage at the output of the converter. Multilevel output voltage of the converter has quarter-wave symmetry during the whole range including the zone of overmodulation. Both continuous and discontinuous versions of synchronous PWM, based on vector approach...

  20. Synchronous Computer-Mediated Communication and Interaction

    Science.gov (United States)

    Ziegler, Nicole

    2016-01-01

    The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…

  1. Online Moderation of Synchronous E-Argumentation

    Science.gov (United States)

    Asterhan, Christa S. C.; Schwarz, Baruch B.

    2010-01-01

    In this paper, we present findings on moderation of synchronous, small-group argumentation in blended, co-located learning environments. Drawing on findings from the literature on human facilitation of dialogue in face-to-face settings, we first elaborate on the potential promise of this new practice. However, little is known about what…

  2. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  3. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  4. Control of partial synchronization in chaotic oscillators

    Indian Academy of Sciences (India)

    2015-02-07

    Feb 7, 2015 ... A design of coupling is proposed to control partial synchronization in two chaotic oscillators in a driver–response mode. ... Department of Mathematics, University of Technology and Management, Shillong 793 003, India; Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata ...

  5. SYNCHRONIZATION OF OVULATION IN BEEF HERDS ...

    African Journals Online (AJOL)

    irnately 68 hrs after the last progesterone injection). Table 2 gves thc percentags of cows or heifon trctted thrt responded to synchronization during thc first hcet pcriod. As expected, the dry cows dl rcsponded to treatment but only TOeo of the lactating cows exhibitcd sigru of hcet during the first synctrronized oestrus period.

  6. Synchronicity and the meaning-making psyche.

    Science.gov (United States)

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. © 2011, The Society of Analytical Psychology.

  7. Schedule-extended synchronous dataflow graphs

    NARCIS (Netherlands)

    Damavandpeyma, M.; Stuijk, S.; Basten, T.; Geilen, M.; Corporaal, H.

    2013-01-01

    Synchronous dataflow graphs (SDFGs) are used extensively to model streaming applications. An SDFG can be extended with scheduling decisions, allowing SDFG analysis to obtain properties, such as throughput or buffer sizes for the scheduled graphs. Analysis times depend strongly on the size of the

  8. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for the emergence, namely non-diffusive coupling and time delays. In this way ... Max Planck Institute for Mathematics in the Sciences, Inselstr.

  9. Design of multistable systems via partial synchronization

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 2. Design of multistable systems via partial synchronization. MOHAMMAD ALI KHAN ... In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to ...

  10. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    prominent examples one can mention the EEG/MEG measurements of the brain or the dynamics of financial markets, among many others. Synchronized ..... [14] Y Kuramoto, Chemical oscillations, waves, and turbulence (Springer, Berlin, 1984). [15] M G Earl and S H Strogatz, Phys. Rev. E67, 036204 (2003). [16] G C Sethia ...

  11. Synchronization Phenomena in Nephron-Nephron Interaction

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N.-H.; Yip, K.-P.; Sosnovtseva, Olga

    2001-01-01

    Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular...

  12. Scientific computing on bulk synchronous parallel architectures

    NARCIS (Netherlands)

    Bisseling, R.H.; McColl, W.F.

    1993-01-01

    Bulk synchronous parallel architectures oer the prospect of achieving both scalable parallel performance and architecture independent parallel software. They provide a robust model on which to base the future development of general purpose parallel computing systems. In this paper, we theoretically

  13. Effects of synchronous coaching in teacher training

    NARCIS (Netherlands)

    Hooreman, Ralph W.; Kommers, Petrus A.M.; Jochems, Wim M.G.

    2008-01-01

    Historically, the nature of coaching the teachers is asynchronously: a reflective discussion with the supervisory coach is the follow-up after a lesson has been taught. We expect that synchronous (immediate) coaching may complement and to a certain extent supplant the asynchronous feedback.

  14. Synchronous bilateral breast cancer in a male

    Science.gov (United States)

    Rubio Hernández, María Caridad; Díaz Prado, Yenia Ivet; Pérez, Suanly Rodríguez; Díaz, Ronald Rodríguez; Aleaga, Zaili Gutiérrez

    2013-01-01

    Male breast cancer, which represents only 1% of all breast cancers, is occasionally associated with a family history of breast cancer. Sporadic male breast cancers presenting with another primary breast cancer are extremely rare. In this article, we report on a 70-year-old male patient with bilateral multifocal and synchronous breast cancer and without a family history of breast cancer. PMID:24319497

  15. Analytical treatment for synchronizing chaos through unidirectional ...

    Indian Academy of Sciences (India)

    ... nonlinear electronic circuit. Also, we introduce a scheme to obtain various logic gate structures, using synchronization of chaotic systems. By a small change in the response parameter of unidirectionally coupled nonlinear systems, one is able to construct various logic behaviours by both numerical and analytical methods.

  16. Thalamocortical synchronization and cognition: implications for schizophrenia?

    Science.gov (United States)

    Uhlhaas, Peter J; Roux, Frederic; Singer, Wolf

    2013-03-20

    Cognitive deficits are a core dysfunction in schizophrenia. In this issue of Neuron, Parnaudeau et al. (2013) investigated synchronization in thalamocortical pathways in an animal model to address the disconnection between brain regions as a mechanism for working memory impairments in the disorder. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A universal projective synchronization of general autonomous ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 6. A universal projective synchronization of general autonomous chaotic system ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015.

  18. Synchronized pseudorandom systems and their application to speech communication.

    Science.gov (United States)

    Zhang, Yu; Tao, Chao; Du, Gonghuan; Jiang, Jack J

    2005-01-01

    An approach to the synchronization of pseudorandom systems is proposed and applied to secure speech communication. The encoding signal produced by the pseudorandom synchronization scheme passes the random test, and shows much more complex dynamics, better random properties, and greater sensitivity to parameter mismatches than that produced by the active-passive decomposition scheme. Also, two coupled pseudorandom systems can be exactly synchronized despite their different initial states or seeds. Pseudorandom encoding and synchronization may yield great security in communication.

  19. Synchronization of different fractional order chaotic systems using active control

    Science.gov (United States)

    Bhalekar, Sachin; Daftardar-Gejji, Varsha

    2010-11-01

    Synchronization of fractional order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this article we utilize active control technique to synchronize different fractional order chaotic dynamical systems. Further we investigate the interrelationship between the (fractional) order and synchronization in different chaotic dynamical systems. It is observed that synchronization is faster as the order tends to one.

  20. Synchronization in driven versus autonomous coupled chaotic maps

    OpenAIRE

    Pineda, M.; Cosenza, M. G.

    2005-01-01

    The phenomenon of synchronization occurring in a locally coupled map lattice subject to an external drive is compared to the synchronization process in an autonomous coupled map system with similar local couplings plus a global interaction. It is shown that chaotic synchronized states in both systems are equivalent, but the collective states arising after the chaotic synchronized state becomes unstable can be different in these two systems. It is found that the external drive induces chaotic ...

  1. Synchronization and Lag Synchronization of Hyperchaotic Memristor-Based Chua’s Circuits

    Directory of Open Access Journals (Sweden)

    Junjian Huang

    2014-01-01

    Full Text Available A memristor-based five-dimensional (5D hyperchaotic Chua’s circuit is proposed. Based on the Lyapunov stability theorem, the controllers are designed to realize the synchronization and lag synchronization between the hyperchaotic memristor-based Chua’s circuits under different initial values, respectively. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.

  2. Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together

    Science.gov (United States)

    Zhang, Yuanzhao; Motter, Adilson E.

    2018-01-01

    An outstanding problem in the study of networks of heterogeneous dynamical units concerns the development of rigorous methods to probe the stability of synchronous states when the differences between the units are not small. Here, we address this problem by presenting a generalization of the master stability formalism that can be applied to heterogeneous oscillators with large mismatches. Our approach is based on the simultaneous block diagonalization of the matrix terms in the variational equation, and it leads to dimension reduction that simplifies the original equation significantly. This new formalism allows the systematic investigation of scenarios in which the oscillators need to be nonidentical in order to reach an identical state, where all oscillators are completely synchronized. In the case of networks of identically coupled oscillators, this corresponds to breaking the symmetry of the system as a means to preserve the symmetry of the dynamical state— a recently discovered effect termed asymmetry-induced synchronization (AISync). Our framework enables us to identify communication delay as a new and potentially common mechanism giving rise to AISync, which we demonstrate using networks of delay-coupled Stuart–Landau oscillators. The results also have potential implications for control, as they reveal oscillator heterogeneity as an attribute that may be manipulated to enhance the stability of synchronous states.

  3. A difference phase-shift keying signal synchronizer

    Science.gov (United States)

    Makogon, V. P.; Kramar, VA

    2017-01-01

    The paper deals with a simultaneous implementation of the frame and bit synchronizations in the different phase-shift keying signal telecommunication networks. The synchronizer device model allowing synchronizing to the detection phase, taking into account the delivery of signals difference encoding, is presented.

  4. Synchronization of Coupled Nonidentical Fractional-Order Hyperchaotic Systems

    Directory of Open Access Journals (Sweden)

    Zhouchao Wei

    2011-01-01

    Full Text Available Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.

  5. 2006 Israeli-Hezbollah War: a Fight of Operational Synchronization

    Science.gov (United States)

    2016-05-13

    of Operational Synchronization 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT... synchronized efforts of conventional and irregular forces employing nation-state capabilities and denied Israel its objectives. The Israeli Defense Force...IDF) failed to achieve its objectives during the 2006 war with Hezbollah due to ineffective operational synchronization relative to its adversary

  6. A practical clock synchronization algorithm for UWB positioning systems

    NARCIS (Netherlands)

    Xie, Y.; Janssen, G.J.M.; van der Veen, A.J.; Dong, Min; Zheng, Thomas Fang

    2016-01-01

    A clock synchronization scheme is crucial for obtaining accuracy in time-based positioning systems. Existing clock synchronization schemes are mostly based on a simplified linear clock model, which unfortunately have a poor long-term synchronization accuracy. Assuming a two-way time transfer

  7. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    Science.gov (United States)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  8. Synchronization in driven chaotic systems: Diagnostics and bifurcations

    DEFF Research Database (Denmark)

    Vadivasova, T.E.; Balanov, A.G.; Sosnovtseva, O.V.

    1999-01-01

    We investigate generic aspects of chaos synchronization in an externally forced Rössler system. By comparing different diagnostic methods, we show the existence of a well-defined cut-off of synchronization associated with the transition from weak to fully developed chaos. Two types of chaotic...... behavior, differing by the number of vanishing Lyapunov exponents, are observed outside the synchronization regime....

  9. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    Keywords. Hybrid synchronization; complex network; information source; chaotic system. PACS Nos 05.45.−a; 05.45.Gg; 05.45.Xt. 1. Introduction. In the past several decades, synchronization has attracted increasing attention in the field of complex network. The chaotic synchronization on a complex network has been inves-.

  10. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    Science.gov (United States)

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ear Problems

    Science.gov (United States)

    ... Women Hair Loss Hand/Wrist/Arm Problems Headaches Hearing Problems Hip Problems Knee Problems Leg Problems Lower Back ... have ear pain or redness but is having problems hearing?YesNo Back to Questions Step 3 Possible Causes ...

  12. Talent Development in STEM Disciplines: Sparking Innovators

    Science.gov (United States)

    Roberts, Julia Link

    2010-01-01

    What role can specialized schools with focus on mathematics, science, and technology have in sparking innovation? Such specialized schools can be and in some cases currently are leaders in promoting high-level content knowledge, creative and critical thinking, and problem solving--the basic ingredients of innovation. In this article, the author…

  13. An Improved Adaptive Tracking Controller of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available This paper proposes a new adaptive fuzzy neural control to suppress chaos and also to achieve the speed tracking control in a permanent magnet synchronous motor (PMSM drive system with unknown parameters and uncertainties. The control scheme consists of fuzzy neural and compensatory controllers. The fuzzy neural controller with online parameter tuning is used to estimate the unknown nonlinear models and construct linearization feedback control law, while the compensatory controller is employed to attenuate the estimation error effects of the fuzzy neural network and ensure the robustness of the controlled system. Moreover, due to improvement in controller design, the singularity problem is surely avoided. Finally, numerical simulations are carried out to demonstrate that the proposed control scheme can successfully remove chaotic oscillations and allow the speed to follow the desired trajectory in a chaotic PMSM despite the existence of unknown models and uncertainties.

  14. The optical synchronization and link board project, oSLB

    CERN Document Server

    Da Silva, J C; Parracho, P

    2013-01-01

    The calorimeter trigger synchronization of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses a synchronization method implemented in the synchronization and link board (SLB). These boards allow the synchronization of electromagnetic and hadronic trigger primitives at the LHC frequency (40.08 MHz) and its transmission to the Regional Calorimeter Trigger. The upgrade of the Calorimeter Trigger system dictates the use of input optical links at a rate of 4.8 Gb/s. In this paper we present the design options and technological choices for the optical part of new optical Synchronization and Link Boards (oSLB).

  15. Role of multistability in the transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga

    1999-01-01

    In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition...... to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...

  16. Loss of lag synchronization in coupled chaotic systems

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Balanov, A G; Vadivasova, T E

    1999-01-01

    Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting, nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study transitions to and between different forms of synchronization...... for the attractors defined as "in-phase" and "out-of-phase" and investigate the processes by which lag synchronization is lost in two coupled Rössler systems. With a small frequency mismatch between the two systems, these processes are related to the occurrence of a peculiar form of basin structure as more and more...... periodic orbits embedded into the synchronized chaotic state become unstable in a transverse direction....

  17. Finite-time synchronization of inertial neural networks

    Directory of Open Access Journals (Sweden)

    Na Cui

    2017-10-01

    Full Text Available In this paper, the finite-time synchronization of inertial neural networks is investigated. First, to realize synchronization of the master–slave system, continuous and discontinuous controllers are designed, respectively. By constructing Lyapunov function and using inequalities, some effective criteria are provided to realize synchronization in finite time. Furthermore, in order to achieve synchronization with a fast speed, a new switching controller is presented, and the upper bounds of the settling time of synchronization are estimated. Finally, several numerical simulations are presented to demonstrate the validity of the theoretical results and the effectiveness of the proposed method.

  18. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    Science.gov (United States)

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  19. Properties and relative measure for quantifying quantum synchronization.

    Science.gov (United States)

    Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan

    2017-07-01

    Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.

  20. System and method for time synchronization in a wireless network

    Science.gov (United States)

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  1. Relativity, GPS, and the Validity of Common View Synchronization

    CERN Document Server

    Michelsen, Eric L

    2012-01-01

    We show here that Common View Synchronization is valid to synchronize distant clocks. We describe the relativistic physics, noting that a prerequisite for synchronization is the existence of a space-time with a stationary metric. The analysis shows that there are no Special Relativistic effects that need be included in the synchronization method, beyond those in a standard GPS clock. In particular, synchronizing a ground clock to the GPS satellite does not make that clock keep time in the reference frame of the satellite. Symmetries are very helpful in analyzing the behavior. We briefly describe some practical considerations in synchronizing distant earth clocks, such as antenna cabling and variations in receiver electronics, and how Common View Synchronization accommodates them.

  2. Prescribed performance synchronization for fractional-order chaotic systems

    Science.gov (United States)

    Liu, Heng; Li, Sheng-Gang; Sun, Ye-Guo; Wang, Hong-Xing

    2015-09-01

    In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error, are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243 and 61403157), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201504002), and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2015A256).

  3. Impact of a leader on cluster synchronization.

    Science.gov (United States)

    Jalan, Sarika; Singh, Aradhana; Acharyya, Suman; Kurths, Jürgen

    2015-02-01

    We study the mechanisms of frequency-synchronized cluster formation in coupled nonidentical oscillators and investigate the impact of presence of a leader on the cluster synchronization. We find that the introduction of a leader, a node having large parameter mismatch, induces a profound change in the cluster pattern as well as in the mechanism of the cluster formation. The emergence of a leader generates a transition from the driven to the mixed cluster state. The frequency mismatch turns out to be responsible for this transition. Additionally, for a chaotic evolution, the driven mechanism stands as a primary mechanism for the cluster formation, whereas for a periodic evolution the self-organization mechanism becomes equally responsible.

  4. Synchronization of Integrated Systems on a Chip

    Directory of Open Access Journals (Sweden)

    González-Díaz O.

    2012-04-01

    Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.

  5. Synchronization behind the formation of Orbital Systems

    Science.gov (United States)

    Ruda, Jennifer; Abrams, Daniel

    2018-01-01

    This paper aims to gain a greater understanding of why planetary and galactic orbital systems form as either synchronous or asynchronous systems. We simulate the orbiting particles and their movements. We believe that it is possible Kuramoto's model for synchronization can be used to explain the behavior of the particles orbiting about the larger mass object. We believe that the difference between synchrony and asynchrony will be a function of parameters for the system. We examine the effect the parameters have on the order parameter, defined by the Kuramoto model. We additionally examine the simplest system, one with two orbiting particles. We see that there are equilibrium points, indicating the possibility of both synchrony and asynchrony, depending on the system parameters. Our results merit further investigation into the equilibrium of the system with a large number of particles.

  6. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  7. Another look at synchronized neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny, E-mail: akhmedov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Mirizzi, Alessandro, E-mail: alessandro.mirizzi@ba.infn.it [Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola 173, 70126 Bari (Italy)

    2016-07-15

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena – synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  8. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other,electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical...... with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings...... of the rotor. Finally, heating losses are computed as a response to the electric load. The model is used to evaluate the transient response of the generator. © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of the Guest Editors....

  9. Anticipatory synchronization via low-dimensional filters

    Science.gov (United States)

    Pyragiene, T.; Pyragas, K.

    2017-06-01

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems.

  10. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  11. Rotational synchronization of two noncontact nanoparticles

    Science.gov (United States)

    Ameri, Vahid; Eghbali-Arani, Mohammad

    2017-12-01

    Proposing a system of two rotatable nanoparticles (NPs) in the presence of electromagnetic vacuum fluctuations, using the framework of canonical quantization, the electromagnetic and matter fields have been quantized. The non-contact frictional torque, affecting the rotation of NPs due to the presence of electromagnetic vacuum fluctuations and also by the matter field fluctuations have been derived. Considering the distance between NPs less than 100 nm in the near-field, we observe the rotations are phase locked. It has been shown that the electromagnetic vacuum fluctuations play the role of noises to break down the synchronization. Also surprisingly, we find the frictional torque between NPs in the near-field is much bigger than the popular contact friction between them where it causes a robust synchronization in the near-field.

  12. Social argumentation in online synchronous communication

    Science.gov (United States)

    Angiono, Ivan

    In education, argumentation has an increasing importance because it can be used to foster learning in various fields including philosophy, history, sciences, and mathematics. Argumentation is also at the heart of scientific inquiry. Many educational technology researchers have been interested in finding out how technologies can be employed to improve students' learning of argumentation. Therefore, many computer-based tools or argumentation systems have been developed to assist students in their acquisition of argumentation skills. While the argumentation systems incorporating online debating tools present a good resource in formal settings, there is limited research revealing what argumentative skills students are portraying in informal online settings without the presence of a moderator. This dissertation investigates the nature of argumentative practices in a massively multiplayer online game where the system successfully incorporates the authentic use of online synchronous communication tools and the patterns that emerge from the interplay between a number of contextual variables including synchronicity, interest, authenticity, and topical knowledge.

  13. Electro-hydrodynamic synchronization of piezoelectric flags

    CERN Document Server

    Xia, Yifan; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  14. Switching full-wave synchronous detector

    Energy Technology Data Exchange (ETDEWEB)

    Pimonov, A.A.; Solovetskii, Y.I.

    1985-12-01

    This paper describes a switching full-wave synchronous detector implemented by integrated circuits of series 140 and 176. The frequency and input-signal ranges are 20 Hz to 10kHz and 0.1-3.0 V. At a frequency of 1 kHz, the phase shift is controlled within 0.6-180 degrees and the nonlinearity of the transfer characteristic is 0.5%.

  15. Synchronized acoustic refrigerator and heat engine (SARAH)

    OpenAIRE

    Banerjee, Aayan; Nayak, Gaurav

    2011-01-01

    In light of the present global energy scenario, it is imperative to seek novel and efficient energy solutions to redress the situation. Solar energy, wind energy, geothermal energy, ocean thermoclines and waste heat recovery are the major players in the sustainable energy field. In this paper we propose a Synchronized Acoustic Refrigerator And Heat Engine (SARAH), a Thermoacoustic (TA) device capable of harnessing these untapped sources in a cost-effective and efficient way on both small and ...

  16. Primitives for Contract-based Synchronization

    Directory of Open Access Journals (Sweden)

    Massimo Bartoletti

    2010-10-01

    Full Text Available We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.

  17. Reversible thyristor converters of brushless synchronous compensators

    Directory of Open Access Journals (Sweden)

    А.М.Galynovskiy

    2013-12-01

    Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.

  18. Pulse detection by gated synchronous demodulation

    OpenAIRE

    Efthymiou, Spyros; Ozanyan, Krikor B.

    2013-01-01

    Synchronous demodulation (SD) is the signal recovery method of choice when the input envelope signal is modulated by either a pure sine wave or a square wave. SD is less efficient for pulsed periodic signals with a low duty factor. For the latter signals, we introduce data processing that applies gating on a part of the signal period to achieve optimum conditions for recovering the pulse amplitude by quadrature SD. The proposed method is evaluated for signal-to-noise performance against Boxca...

  19. An Efficient Synchronization Method for Wireless Networks

    Science.gov (United States)

    2013-06-01

    group-wise synchronization which is more e cient than rsync, is possible. This paper describes Dandelion , an algorithm that builds on the ideas of the...which is more efficient than rsync, is possible. This paper describes Dandelion , an algorithm that builds on the ideas of the rsync algorithm to...methods analyzed in this paper are compared using this metric. To meet this goal, this paper defines an epidemic-like algorithm called Dandelion that is

  20. Synchronous Occurrence of Colon and Appendiceal Adenocarcinoma

    OpenAIRE

    Goryń Tomasz; Meszka Monika; Pawlak Jacek

    2014-01-01

    The study presented two cases of synchronous occurrence of colon and appendiceal adenocarcinoma. Both patients required surgical intervention, due to acute peritonitis during the course of acute appendicitis. In case of one patient we performed abdominal CT confirming the presence of sigmoid cancer. The patient was subjected to appendectomy and Hartmann’s operation. The second patient underwent an appendectomy, and colonoscopy performed two months later revealed the presence of rectal adenoca...

  1. A universal projective synchronization of general autonomous ...

    Indian Academy of Sciences (India)

    [β1, β2, ..., βn]T is the scaling factor vector, ei = xi − βi xi . From eqs (1) and (2), the corresponding error dynamical system is as follows: ˙e = ˙X − βTI ˙X = AX + B − βTI(A X + B + U). (4). To enable systems (1) and (2) to achieve the generalized projective synchronization, in the course of evolution, eq. (3) must be convergent.

  2. Synchronization of Hybrid Microgrids with Communication Latency

    Directory of Open Access Journals (Sweden)

    Jingang Lai

    2015-01-01

    Full Text Available A distributed cooperative control scheme is proposed in order to implement a distributed secondary control for hybrid lossy microgrids. The designed distributed control is able to synchronize the frequency of inverse-based distributed generators (DGs and minisynchronous generators (MSGs/SGs to the desired state with a virtual leader DG/SG (reference value in a distribution switching network under the existence of time-varying communication delays. The secondary control stage selects suitable frequencies of each DG/SG such that they can be synchronized at the desired set point. Using the proposed algorithm, each DG/SG only needs to communicate with its neighboring DGs/SGs intermittently even if the communication networks are local, the topology is time-varying, and the communication delays may exist. Therefore, the failure of a single DG/SG will not produce the failing down of the whole system. Sufficient conditions on the requirements for the network connectivity and the delays boundedness which guarantees the stability and synchronization of the controlled hybrid lossy microgrid power systems are presented. The feasibility of the proposed control methodology is verified by the simulation of a given lossy microgrid test system.

  3. Interplay of degree correlations and cluster synchronization

    Science.gov (United States)

    Jalan, Sarika; Kumar, Anil; Zaikin, Alexey; Kurths, Jürgen

    2016-12-01

    We study the evolution of coupled chaotic dynamics on networks and investigate the role of degree-degree correlation in the networks' cluster synchronizability. We find that an increase in the disassortativity can lead to an increase or a decrease in the cluster synchronizability depending on the degree distribution and average connectivity of the network. Networks with heterogeneous degree distribution exhibit significant changes in cluster synchronizability as well as in the phenomena behind cluster synchronization as compared to those of homogeneous networks. Interestingly, cluster synchronizability of a network may be very different from global synchronizability due to the presence of the driven phenomenon behind the cluster formation. Furthermore, we show how degeneracy at the zero eigenvalues provides an understanding of the occurrence of the driven phenomenon behind the synchronization in disassortative networks. The results demonstrate the importance of degree-degree correlations in determining cluster synchronization behavior of complex networks and hence have potential applications in understanding and predicting dynamical behavior of complex systems ranging from brain to social systems.

  4. Do weak global stresses synchronize earthquakes?

    Science.gov (United States)

    Bendick, R.; Bilham, R.

    2017-08-01

    Insofar as slip in an earthquake is related to the strain accumulated near a fault since a previous earthquake, and this process repeats many times, the earthquake cycle approximates an autonomous oscillator. Its asymmetric slow accumulation of strain and rapid release is quite unlike the harmonic motion of a pendulum and need not be time predictable, but still resembles a class of repeating systems known as integrate-and-fire oscillators, whose behavior has been shown to demonstrate a remarkable ability to synchronize to either external or self-organized forcing. Given sufficient time and even very weak physical coupling, the phases of sets of such oscillators, with similar though not necessarily identical period, approach each other. Topological and time series analyses presented here demonstrate that earthquakes worldwide show evidence of such synchronization. Though numerous studies demonstrate that the composite temporal distribution of major earthquakes in the instrumental record is indistinguishable from random, the additional consideration of event renewal interval serves to identify earthquake groupings suggestive of synchronization that are absent in synthetic catalogs. We envisage the weak forces responsible for clustering originate from lithospheric strain induced by seismicity itself, by finite strains over teleseismic distances, or by other sources of lithospheric loading such as Earth's variable rotation. For example, quasi-periodic maxima in rotational deceleration are accompanied by increased global seismicity at multidecadal intervals.

  5. Anticipatory synchronization via low-dimensional filters

    Energy Technology Data Exchange (ETDEWEB)

    Pyragiene, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.

    2017-06-15

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  6. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    Directory of Open Access Journals (Sweden)

    Mozerov M

    2010-01-01

    Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  7. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A new reduced-order observer design for the synchronization of Lorenz systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, R. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico)] e-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, J.C. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico); Gonzalez-Galan, R. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico); Aguilar-Lopez, R. [Departamento de Energia, UAM-Azcapotzalco, 02200 (Mexico)

    2006-04-01

    In this paper we tackle the synchronization of Lorenz system problem using a new proportional reduced-order observer design in the algebraic and differential setting. We prove the asymptotic stability of the resulting error system and by means of algebraic manipulations we obtain the estimates of the current states (master system), the construction of a proportional reduced-order observer is the main ingredient in our approach. Finally, we present a simulation to illustrate the effectiveness of the suggested approach.

  9. CCM-R: Secure Counter Synchronization for IoT Wireless Link

    DEFF Research Database (Denmark)

    Roy, Upal; Yin, Jiachen; Andersen, Birger

    2016-01-01

    In this paper we propose and evaluate a new version of the CCM mode of operation, CCM-R, which isan extended and alternate version of the original CBC-MAC with Counter Mode(CCM) that was created to address the problem of counter synchronization. While CCM is considered secure when used/implemente...... it suitable for low-power wireless IoT devices....

  10. Unified synchronization criteria in an array of coupled neural networks with hybrid impulses.

    Science.gov (United States)

    Wang, Nan; Li, Xuechen; Lu, Jianquan; Alsaadi, Fuad E

    2018-02-07

    This paper investigates the problem of globally exponential synchronization of coupled neural networks with hybrid impulses. Two new concepts on average impulsive interval and average impulsive gain are proposed to deal with the difficulties coming from hybrid impulses. By employing the Lyapunov method combined with some mathematical analysis, some efficient unified criteria are obtained to guarantee the globally exponential synchronization of impulsive networks. Our method and criteria are proved to be effective for impulsively coupled neural networks simultaneously with synchronizing impulses and desynchronizing impulses, and we do not need to discuss these two kinds of impulses separately. Moreover, by using our average impulsive interval method, we can obtain an interesting and valuable result for the case of average impulsive interval T a =∞. For some sparse impulsive sequences with T a =∞, the impulses can happen for infinite number of times, but they do not have essential influence on the synchronization property of networks. Finally, numerical examples including scale-free networks are exploited to illustrate our theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    Science.gov (United States)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  12. Validity testing of third-order nonlinear models for synchronous generators

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, M.A. [Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de La Laguna Torreon, Coah. (Mexico); Escarela-Perez, R. [Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, Av. San Pablo 180, Col. Reynosa, C.P. 02200 (Mexico); Espinosa-Perez, G. [Division de Estudios Posgrado de la Facultad de Ingenieria Universidad Nacional Autonoma de Mexico (Mexico); Alvarez-Ramirez, J. [Universidad Autonoma Metropolitana -Iztapalapa, Division de Ciencias Basicas e Ingenieria (Mexico)

    2009-06-15

    Third-order nonlinear models are commonly used in control theory for the analysis of the stability of both open-loop and closed-loop synchronous machines. However, the ability of these models to describe the electrical machine dynamics has not been tested experimentally. This work focuses on this issue by addressing the parameters identification problem for third-order models for synchronous generators. For a third-order model describing the dynamics of power angle {delta}, rotor speed {omega} and quadrature axis transient EMF E{sub q}{sup '}, it is shown that the parameters cannot be identified because of the effects of the unknown initial condition of E{sub q}{sup '}. To avoid this situation, a model that incorporates the measured electrical power dynamics is considered, showing that state measurements guarantee the identification of the model parameters. Data obtained from a 7 kVA lab-scale synchronous generator and from a 150 MVA finite-element simulation were used to show that, at least for the worked examples, the estimated parameters display only moderate variations over the operating region. This suggests that third-order models can suffice to describe the main dynamical features of synchronous generators, and that third-order models can be used to design and tune power system stabilizers and voltage regulators. (author)

  13. A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Abdul Malik Khan

    2010-10-01

    Full Text Available In Distributed Interactive Applications (DIA such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.

  14. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Influence of paroxysmal activity on background synchronization in epileptic recordings.

    Science.gov (United States)

    Pastor, Jesús; Sola, Rafael G; Ortega, Guillermo J

    2014-02-15

    The presence of spikes and sharp waves in recordings of epileptic patients contaminates background signal synchronization. When estimating functional connectivity between extended cortical areas, the influence of epileptic spikes in specific areas should be considered; however, this step is sometimes overlooked. We present a simple method for quantifying the influence of epileptic activity on background signal synchronization. Standard synchronization measures were calculated for both pure correlated Gaussian signals and correlated Gaussian signals with different levels of epileptic spikes in order to determine the influence of epileptic activity on synchronization estimates. Synchronization from invasive epileptic recordings (e.g., depth electrodes) displays a much higher bias due to epileptic activity than superficial electrodes. Moreover, statistical methods such as mutual information are more affected by spike presence than phase synchronization methods. The influence of spikes is far greater at low values of background synchronization. The information provided by this procedure makes it possible to differentiate true background synchronization from spike synchronization. Thus, our procedure serves as a guide for analyzing synchronization and functional connectivity calculations in epileptic recordings. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    Science.gov (United States)

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  17. Performance Improvement of a Prefiltered Synchronous-Reference-Frame PLL By Using a PID-Type Loop Filter

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; Frejeido, Francisco

    2014-01-01

    Control Parameters design of a three-phase synchronous reference frame phase locked loop (SRF-PLL) with a pre-filtering stage (acting as the sequence separator) is not a trivial task. The conventional way to deal with this problem is to neglect the interaction between the SRF-PLL and pre...

  18. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    The problem of asynchronous direct-sequence code division multiple access (DS-CDMA) detection over the ultra-wideband (UWB) multipath channel is considered. A joint synchronization, channel-estimation and multi-user detection scheme based on the adaptive linear minimum mean-square error (LMMSE...

  19. Differences in Electronic Exchanges in Synchronous and Asynchronous Computer-Mediated Communication: The Effect of Culture as a Mediating Variable

    Science.gov (United States)

    Angeli, Charoula; Schwartz, Neil H.

    2016-01-01

    Two hundred and eighty undergraduates from universities in two countries were asked to read didactic material, and then think and write about potential solutions to an ill-defined problem. The writing was conducted within a synchronous or asynchronous computer-mediated communication (CMC) environment. Asynchronous CMC took the form of email…

  20. Semi-global regulation of output synchronization for heterogeneous networks of non-introspective, invertible agents subject to actuator saturation

    NARCIS (Netherlands)

    Yang, Tao; Stoorvogel, Antonie Arij; Grip, H°avard Fjær; Saberi, Ali

    2014-01-01

    In this paper, we consider the semi-global regulation of output synchronization problem for heterogeneous networks of invertible linear agents subject to actuator saturation. That is, we regulate the output of each agent according to an a priori specified reference model. The network communication

  1. Computation emerges from adaptive synchronization of networking neurons.

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    Full Text Available The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.

  2. Synchronization transition in gap-junction-coupled leech neurons

    Science.gov (United States)

    Wang, Qingyun; Duan, Zhisheng; Feng, Zhaosheng; Chen, Guanrong; Lu, Qishao

    2008-07-01

    Real neurons can exhibit various types of firings including tonic spiking, bursting as well as silent state, which are frequently observed in neuronal electrophysiological experiments. More interestingly, it is found that neurons can demonstrate the co-existing mode of stable tonic spiking and bursting, which depends on initial conditions. In this paper, synchronization in gap-junction-coupled neurons with co-existing attractors of spiking and bursting firings is investigated as the coupling strength gets increased. Synchronization transitions can be identified by means of the bifurcation diagram and the correlation coefficient. It is illustrated that the coupled neurons can exhibit different types of synchronization transitions between spiking and bursting when the coupling strength increases. In the course of synchronization transitions, an intermittent synchronization can be observed. These results may be instructive to understand synchronization transitions in neuronal systems.

  3. Self-similarity in explosive synchronization of complex networks

    Science.gov (United States)

    Koronovskii, Alexey A.; Kurovskaya, Maria K.; Moskalenko, Olga I.; Hramov, Alexander; Boccaletti, Stefano

    2017-12-01

    We report that explosive synchronization of networked oscillators (a process through which the transition to coherence occurs without intermediate stages but is rather characterized by a sudden and abrupt jump from the network's asynchronous to synchronous motion) is related to self-similarity of synchronous clusters of different size. Self-similarity is revealed by destructing the network synchronous state during the backward transition and observed with the decrease of the coupling strength between the nodes of the network. As illustrative examples, networks of Kuramoto oscillators with different topologies of links have been considered. For each one of such topologies, the destruction of the synchronous state goes step by step with self-similar configurations of interacting oscillators. At the critical point, the invariance of the phase distribution in the synchronized cluster with respect to the cluster size is reported.

  4. Synchronicity, Instant Messaging and Performance among Financial Traders

    CERN Document Server

    Saavedra, Serguei; Uzzi, Brian; 10.1073/pnas.1018462108

    2011-01-01

    Successful animal systems often manage risk through synchronous behavior that spontaneously arises without leadership. In critical human systems facing risk, such as financial markets or military operations, our understanding of the benefits associated to synchronicity is nascent but promising. Building on previous work illuminating commonalities between ecological and human systems, we compare the activity patterns of individual financial traders with the simultaneous activity of other traders---an individual and spontaneous characteristic we call synchronous trading. Additionally, we examine the association of synchronous trading with individual performance and communication patterns. Analyzing empirical data on day traders' second-to-second trading and instant messaging, we find that the higher the traders' synchronous trading, the less likely they lose money at the end of the day. We also find that the daily instant messaging patterns of traders are closely associated with their level of synchronous tradi...

  5. Leader emergence through interpersonal neural synchronization.

    Science.gov (United States)

    Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming

    2015-04-07

    The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.

  6. Leader emergence through interpersonal neural synchronization

    Science.gov (United States)

    Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming

    2015-01-01

    The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader–follower (LF) pairs was higher than that for the follower–follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders’ communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time. PMID:25831535

  7. Flow-synchronous field motion refrigeration

    Science.gov (United States)

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  8. Polyrhythmic synchronization in bursting networking motifs.

    Science.gov (United States)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors. (c) 2008 American Institute of Physics.

  9. Microwave Generation in Synchronized Semiconductor Superlattices

    Science.gov (United States)

    Gaifullin, M. B.; Alexeeva, N. V.; Hramov, A. E.; Makarov, V. V.; Maksimenko, V. A.; Koronovskii, A. A.; Greenaway, M. T.; Fromhold, T. M.; Patanè, A.; Mellor, C. J.; Kusmartsev, F. V.; Balanov, A. G.

    2017-04-01

    We study high-frequency generation in a system of electromagnetically coupled semiconductor superlattices fabricated on the same doped substrate. Applying a bias voltage to a single superlattice generates high-frequency current oscillations. We demonstrate that within a certain range of the applied voltage, the current oscillations within the superlattices can be self-synchronized, which leads to a dramatic rise in the generated microwave power. These results, which are in good agreement with our numerical model, open a promising practical route towards the design of high-power miniature microwave generators.

  10. Prognosis of synchronous bilateral breast cancer

    DEFF Research Database (Denmark)

    Holm, Marianne; Tjønneland, Anne; Balslev, Eva

    2014-01-01

    Currently, no consistent evidence-based guidelines for the management of synchronous bilateral breast cancer (SBBC) exist and it is uncertain how presenting with SBBC affects patients' prognosis. We conducted a review of studies analyzing the association between SBBC and prognosis. The studies...... that reported adjusted effect measures were included in meta-analyses of effect of bilaterality on breast cancer mortality. From 57 initially identified records 17 studies from 11 different countries including 8,050 SBBC patients were included. The quality of the studies varied but was generally low with small...

  11. Atmospheric dynamics of tidally synchronized extrasolar planets.

    Science.gov (United States)

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  12. Prosody and synchronization in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Orsucci Franco

    2013-12-01

    Full Text Available We introduce our methodological study with a short review of the main literature on embodied language, including some recent studies in neuroscience. We investigated this component of natural language using Recurrence Quantification Analysis (RQA. RQA is a relatively new statistical methodology, particularly effective in complex systems. RQA provided a reliable quantitative description of recurrences in text sequences at the orthographic level. In order to provide examples of the potential impact of this methodology, we used RQA to measure structural coupling and synchronization in natural and clinical verbal interactions. Results show the efficacy of this methodology and possible implications.

  13. String-Functional Semantics for Formal Verification of Synchronous Circuits

    Science.gov (United States)

    1988-06-01

    June 1i988 Report No. STAN-CS-88-1210 0 String -Functional Semantics for Formal Verification of Synchronous Circuits 00 by 0 Alexandre Bronstein and...rele~wef Ditribution Uzxliuxted Oa WUN4 P. String-Functional Semantics for Formal Verification of Synchronous Circuits Alexandre Bronstein & Carolyn...Arlington, VA 22209 1 T iTL.E (include Security Classification) String-Functional Semantics for Formal Verification of Synchronous Circuits 𔃼 PERSONA

  14. Analysis and design of virtual synchronous machine based STATCOM controller

    OpenAIRE

    Chi, Li; Burgos, R.; Cvetkovic, I.; Boroyevich, D.; Mili, L.; Rodríguez Cortés, Pedro

    2014-01-01

    this paper extends the virtual synchronous machine (VSM) concept, recently proposed as alternative means to synchronize grid-connected inverters, by developing a VSM-based STATCOM controller operating as synchronous condenser. To this end, a mathematical model is derived and used to analyze the inherent dynamics of the VSM-based STATCOM controller, which are then used to formulate design guidelines that further detach the proposed method from the perceived physical constraints introduced by t...

  15. Is whole-culture synchronization biology's 'perpetual-motion machine'?

    Science.gov (United States)

    Cooper, Stephen

    2004-06-01

    Whole-culture or batch synchronization cannot, in theory, produce a synchronized culture because it violates a fundamental law that proposes that no batch treatment can alter the cell-age order of a culture. In analogy with the history of perpetual-motion machines, it is suggested that the study of these whole-culture 'synchronization' methods might lead to an understanding of general biological principles even though these methods cannot be used to study the normal cell cycle.

  16. Synchronization of Cross-Well Chaos in Coupled Duffing Oscillators

    Science.gov (United States)

    Vincent, U. E.; Njah, A. N.; Akinlade, O.; Solarin, A. R. T.

    Numerical simulations have been used to investigate the synchronization behavior of a unidirectionally coupled pair of double-well duffing oscillators (DDOs). The DDOs were simulated in their structurally stable chaotic zone and their state variables were found to completely synchronized. The essential feature of the transition to the synchronous state is shown to correspond to a boundary crisis in which the cross-well chaotic attractor is destroyed.

  17. Directional Networking in GPS Denied Environments - Time Synchronization

    Science.gov (United States)

    2016-03-14

    Directional Networking in GPS Denied Environments—Time Synchronization Derya Cansever and Gilbert Green Army CERDEC Aberdeen Proving Ground MA...when GPS is not available. We show that the Fast RTSR algorithm allows the entire network to achieve time synchronization with convergence time of...RF-based measurements to synchronize time and measure node range.  Satellite Doppler: Using Doppler measurements from multiple satellites along

  18. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior

    Science.gov (United States)

    Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco

    2015-02-01

    We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.

  19. Fractional-order Systems and Synchronous Generator Voltage Regulator

    Directory of Open Access Journals (Sweden)

    Wojciech Lubośny

    2015-03-01

    Full Text Available Modern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using a system of fractional differential equations in the voltage regulator of an synchronous generator with a static excitation system.

  20. Synchronization of chaotic fractional-order systems via linear control

    OpenAIRE

    Odibat, Zaid,; Corson, Nathalie; Aziz-Alaoui, Moulay; Bertelle, Cyrille

    2010-01-01

    International audience; The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchronization of two identical systems via a suitable linear controller applied to the response system. Based on the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these systems are given. Control laws are derived ...

  1. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    Science.gov (United States)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-04

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  2. Problems in problem analysis

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2014-01-01

    The majority of literature on engineering design methods is focused on the processes of fulfilling the design goals as efficiently as possible. This paper will focus on - and discuss - the processes of determining the design goals: the specifications. The purpose is to draw attention to the inher...... to the inherent problems, dilemmas and possibilities in these processes bearing in mind that that the most important decisions in a design project are taken in the beginning of the project....

  3. Synchronous Switching of Non-Line-Start Permanent Magnet Synchronous Machines between Inverter to Grid Drives

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2016-01-01

    Non-Line-Start Permanent Magnet Synchronous Machines (NLSPMSMs) have no damping windings in the rotor and hence cannot start themselves directly to the grid. For ap-plications where a constant speed drive is preferred, NLSPMSMs are required to be driven by the grid. Therefore, inverter aided soft...

  4. Balance Problems

    Science.gov (United States)

    ... it could be a sign of a balance problem. Balance problems can make you feel unsteady. You may also ... injuries, such as a hip fracture. Some balance problems are due to problems in the inner ear. ...

  5. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    Science.gov (United States)

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

    Science.gov (United States)

    Malekpour, Mahyar R.

    2014-01-01

    In this report we present a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. Our solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. We also present a mechanical verification of a proposed protocol. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period. We believe that our proposed solution solves the general case of the clock synchronization problem.

  7. Time synchronization of consumer cameras on Micro Aerial Vehicles

    Science.gov (United States)

    Rehak, M.; Skaloud, J.

    2017-01-01

    This article discusses the problem of time registration between navigation and imaging components on Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. Therefore, accurate aerial control plays a major role in efficient reconstruction of the terrain and artifact-free ortophoto generation. A key prerequisite is correct time stamping of images in global time frame as the sensor exterior orientation changes rapidly and its determination by navigation sensors influence the mapping accuracy on the ground. A majority of MAVs is equipped with consumer-grade, non-metric cameras for which the precise time registration with navigation components is not trivial to realize and its performance not easy to assess. In this paper, we study the problematic of synchronization by implementing and evaluating spatio-temporal observation models of aerial control to estimate residual delay of the imaging sensor. Such modeling is possible through inclusion of additional velocity and angular rate observations into the adjustment. This moves the optimization problem from 3D to 4D. The benefit of this approach is verified on real mapping projects using a custom build MAV and an off-the-shelf camera.

  8. Popular song and lyrics synchronization and its application to music information retrieval

    Science.gov (United States)

    Chen, Kai; Gao, Sheng; Zhu, Yongwei; Sun, Qibin

    2006-01-01

    An automatic synchronization system of the popular song and its lyrics is presented in the paper. The system includes two main components: a) automatically detecting vocal/non-vocal in the audio signal and b) automatically aligning the acoustic signal of the song with its lyric using speech recognition techniques and positioning the boundaries of the lyrics in its acoustic realization at the multiple levels simultaneously (e.g. the word / syllable level and phrase level). The GMM models and a set of HMM-based acoustic model units are carefully designed and trained for the detection and alignment. To eliminate the severe mismatch due to the diversity of musical signal and sparse training data available, the unsupervised adaptation technique such as maximum likelihood linear regression (MLLR) is exploited for tailoring the models to the real environment, which improves robustness of the synchronization system. To further reduce the effect of the missed non-vocal music on alignment, a novel grammar net is build to direct the alignment. As we know, this is the first automatic synchronization system only based on the low-level acoustic feature such as MFCC. We evaluate the system on a Chinese song dataset collecting from 3 popular singers. We obtain 76.1% for the boundary accuracy at the syllable level (BAS) and 81.5% for the boundary accuracy at the phrase level (BAP) using fully automatic vocal/non-vocal detection and alignment. The synchronization system has many applications such as multi-modality (audio and textual) content-based popular song browsing and retrieval. Through the study, we would like to open up the discussion of some challenging problems when developing a robust synchronization system for largescale database.

  9. STUDY OF TRANSIENT AND STATIONARY OPERATION MODES OF SYNCHRONOUS SYSTEM CONSISTING IN TWO MACHINES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2017-01-01

    Full Text Available The solution of the problem of reliable functioning of an electric power system (EPS in steady-state and transient regimes, prevention of EPS transition into asynchronous regime, maintenance and restoration of stability of post-emergency processes is based on formation and realization of mathematical models of an EPS processes. During the functioning of electric power system in asynchronous regime, besides the main frequencies, the currents and voltages include harmonic components, the frequencies of which are multiple of the difference of main frequencies. At the two-frequency asynchronous regime the electric power system is being made equivalent in a form of a two-machine system, functioning for a generalized load. In the article mathematical models of transient process of a two-machine system in natural form and in d–q coordinate system are presented. The mathematical model of two-machine system is considered in case of two windings of excitement at the rotors. Also, in the article varieties of mathematical models of EPS transient regimes (trivial, simple, complete are presented. Transient process of a synchronous two-machine system is described by the complete model. The quality of transient processes of a synchronous machine depends on the number of rotor excitation windings. When there are two excitation windings on the rotor (dual system of excitation, the mathematical model of electromagnetic transient processes of a synchronous machine is represented in a complex form, i.e. in coordinate system d, q, the current of rotor being represented by a generalized vector. In asynchronous operation of a synchronous two-machine system with two excitation windings on the rotor the current and voltage systems include only harmonics of two frequencies. The mathematical model of synchronous steady-state process of a two-machine system is also provided, and the steady-state regimes with different structures of initial information are considered.

  10. BEACON SYNCHRONIZATION TECHNOLOGY FOR “BEIDOU” TERRESTRIAL IMPROVEMENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WEIJin-chen; TANGJi-qiang; SHENFeng

    2005-01-01

    Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the beacon synchronization of the improvement system with the “Beidou” one-way time transfer model is realized.The direct digital synthesis (DDS) is adopted to generate the pseudo-random code clock having high precision and stability. Meanwhile, the CPLD device is used to design the synchronization pulse picking-up module, the spread spectrum PN code generator and the spread spectrum modulator. Measurement results indicate that the beacon synchronization has the high precision and the stability.

  11. Systems and methods for self-synchronized digital sampling

    Science.gov (United States)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  12. De-synchronization of the Distributed Refrigeration System

    DEFF Research Database (Denmark)

    Chen, Liang; Wisniewski, Rafal

    2010-01-01

    The supermarket refrigeration system typically has a distributed control structure, which simple and flexible, however, neglects interactions between its subsystems. Practice shows that these interactions lead to a synchronous operation of the display cases. It causes excessive wear...... on the compressors and increased energy consumption. The paper focuses on the synchronization analysis and de-synchronization control. The supermarket refrigeration system is modeled as a piecewise-affine switched system. The system behavior is decomposed such that synchronization analysis can be completed by using...... performance and can deal with the large scale refrigeration system with different system parameters in the display cases....

  13. Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks

    DEFF Research Database (Denmark)

    Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio

    2015-01-01

    Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant...... reductions in the data connectivity interruption time at each handover, no need for random access in the target cell, and reduced overall handover execution time. Laboratory handover measurement results, using commercial LTE equipment, are presented and analyzed to justify the latency benefits...

  14. On the theoretical gap between synchronous and asynchronous MPC protocols

    DEFF Research Database (Denmark)

    Beerliová-Trubíniová, Zuzana; Hirt, Martin; Nielsen, Jesper Buus

    2010-01-01

    that in the cryptographic setting (with setup), the sole reason for it is the distribution of inputs: given an oracle for input distribution, cryptographically-secure asynchronous MPC is possible with the very same condition as synchronous MPC, namely t ..., we show that such an input-distribution oracle can be reduced to an oracle that allows each party to synchronously broadcast one single message. This means that when one single round of synchronous broadcast is available, then asynchronous MPC is possible at the same condition as synchronous MPC...

  15. Spontaneous Group Synchronization of Movements and Respiratory Rhythms

    Science.gov (United States)

    Vandoni, Matteo; Bernardi, Luciano

    2014-01-01

    We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms. PMID:25216280

  16. Combination-Combination Hyperchaos Synchronization of Complex Memristor Oscillator System

    Directory of Open Access Journals (Sweden)

    Zhang Jin-E

    2014-01-01

    Full Text Available The combination-combination synchronization scheme is based on combination of multidrive systems and combination of multiresponse systems. In this paper, we investigate combination-combination synchronization of hyperchaotic complex memristor oscillator system. Several sufficient conditions are provided to ascertain the combination of two drive hyperchaotic complex memristor oscillator systems to synchronize the combination of two response hyperchaotic complex memristor oscillator systems. These new conditions improve and extend the existing synchronization results for memristive systems. A numerical example is given to show the feasibility of theoretical results.

  17. Synchronization of EEG activity in patients with bipolar disorder

    Science.gov (United States)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  18. Synchronization of oscillations in resonance systems with distributed interaction

    Science.gov (United States)

    Vavriv, D. M.; Tretiakov, O. A.

    1984-09-01

    The region of existence of a synchronous regime in millimeter-wave resonance oscillators with distributed interaction (diffraction-radiation generators, orotrons, and resonance BWTs) is determined in the case when a weak external signal modulates the beam at the entrance to the interaction space. Explicit expressions are derived for the width of the synchronization band and the amplitude of forced oscillations, and the dependence of these expressions on the beam and resonator parameters is analyzed. The synchronous oscillation regime at high beam currents is considered, and the effect of accelerating voltage on the synchronization regime is assessed.

  19. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL... synchronizing mechanisms that recalibrate the overtravel devices and position indicators. ...

  20. Comparative study of synchronization methods of fractional order chaotic systems

    Science.gov (United States)

    Singh, Ajit K.; Yadav, Vijay K.; Das, S.

    2016-09-01

    In this article, the active control method and the backstepping method are used during the synchronization of fractional order chaotic systems. The salient feature of the article is the analysis of time of synchronization between fractional order Chen and Qi systems using both the methods. Numerical simulation and graphical results clearly exhibit that backstepping approach is better than active control method for synchronization of the considered pair of systems, as it takes less time to synchronize while using the first one compare to second one.

  1. Function projective lag synchronization of fractional-order chaotic systems

    Science.gov (United States)

    Wang, Sha; Yu, Yong-Guang; Wang, Hu; Ahmed, Rahmani

    2014-04-01

    Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.

  2. Synchronization in coupled nonidentical incommensurate fractional-order systems

    Science.gov (United States)

    Wang, Jun-Wei; Zhang, Yan-Bin

    2009-12-01

    Synchronization of fractional-order nonlinear systems has received considerable attention for many research activities in recent years. In this Letter, we consider the synchronization between two nonidentical fractional-order systems. Based on the open-plus-closed-loop control method, a general coupling applied to the response system is proposed for synchronizing two nonidentical incommensurate fractional-order systems. We also derive a local stability criterion for such synchronization behavior by utilizing the stability theory of linear incommensurate fractional-order differential equations. Feasibility of the proposed coupling scheme is illustrated through numerical simulations of a limit cycle system, a chaotic system and a hyperchaotic system.

  3. Synchronization in coupled nonidentical incommensurate fractional-order systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junwei, E-mail: wangjunweilj@yahoo.com.c [School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang Yanbin [School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2009-12-28

    Synchronization of fractional-order nonlinear systems has received considerable attention for many research activities in recent years. In this Letter, we consider the synchronization between two nonidentical fractional-order systems. Based on the open-plus-closed-loop control method, a general coupling applied to the response system is proposed for synchronizing two nonidentical incommensurate fractional-order systems. We also derive a local stability criterion for such synchronization behavior by utilizing the stability theory of linear incommensurate fractional-order differential equations. Feasibility of the proposed coupling scheme is illustrated through numerical simulations of a limit cycle system, a chaotic system and a hyperchaotic system.

  4. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  5. Time Optimal Synchronization Procedure and Associated Feedback Loops

    CERN Document Server

    Angoletta, Maria Elena; CERN. Geneva. ATS Department

    2016-01-01

    A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.

  6. Nutrition for synchronized swimming: a review.

    Science.gov (United States)

    Lundy, Bronwen

    2011-10-01

    Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.

  7. Synchronization and survival of connected bacterial populations

    Science.gov (United States)

    Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff

    Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.

  8. Estrus synchronization in sheep with synthetic progestagens.

    Science.gov (United States)

    Awel, Hayatu; Eshetu, Lisanework; Tadesse, Gebrehiwot; Birhanu, Alemselam; Khar, S K

    2009-10-01

    Sixteen female sheep of Degua breed were assigned to receive either the full dose of norgestomet ear implant and injectable solution containing norgestomet and estradiol valerate (n = 8) or half the dose (n = 8). The ear implants were removed in both groups on day 12. All ewes received an intramuscular administration of 500 IU PMSG at implant withdrawal. Synchronized ewes were individually hand mated twice at 48 and 60 hours after implant removal. One ewe in each group however refused mating on both occasions. Pregnancy diagnosis was conducted by bimanual external palpation 90 to 100 days post mating. The conception rates (3/7, 42.85%) and (5/7, 71.42%) were recorded in the two treatment groups, respectively. All eight ewes lambed between 145 to 153 days post mating. In group I ewes carried only singletons (prolificity rate 1.0) whereas in group II two ewes delivered twins, producing 7 lambs with prolificity rate of 1.4 (N.S). From this preliminary investigation it appears that the lower dose of norgestomet ear implants offers better option for estrus synchronization accompanied by higher fertility.

  9. Inside black holes with synchronized hair

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2016-09-01

    Full Text Available Recently, various examples of asymptotically flat, rotating black holes (BHs with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1 the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2 before an inner horizon is reached, the spacetime curvature grows (apparently without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.

  10. Inside black holes with synchronized hair

    Energy Technology Data Exchange (ETDEWEB)

    Brihaye, Yves, E-mail: yves.brihaye@umons.ac.be [Physique-Mathématique, Universite de Mons-Hainaut, Mons (Belgium); Herdeiro, Carlos; Radu, Eugen [Departamento de Física da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-09-10

    Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.

  11. Quantum synchronization in disordered superconducting metamaterials

    Science.gov (United States)

    Fistul, M. V.

    2017-01-01

    I report a theoretical study of collective coherent quantum-mechanical oscillations in disordered superconducting quantum metamaterials (SQMs), i.e. artificial arrays of interacting qubits (two-levels system). An unavoidable disorder in qubits parameters results in a substantial spread of qubits frequencies, and in the absence of electromagnetic interaction between qubits these individual quantum-mechanical oscillations of single qubits manifest themselves by a large number of small resonant dips in the frequency dependent transmission of electromagnetic waves, |S21(ω)|2. We show that even a weak electromagnetic interaction between adjacent qubits can overcome the disorder and establish completely or partially synchronized quantum-mechanical dynamic state in the disordered SQM. In such a state a large amount of qubits displays the collective quantum mechanical oscillations, and this collective behavior manifests itself by a few giant resonant dips in the |S21(ω)|2 dependence. The size of a system r0 showing the collective (synchronized) quantum-mechanical behavior is determined in the one-dimensional SQMs as r0 ≃ a [K/δΔ]2, where K, δΔ, a are the effective energy of nearest-neighbor interaction, the spread of qubits energy splitting, and the distance between qubits, accordingly. We show that this phenomenon is mapped to the Anderson localization of spinon-type excitations arising in the SQM.

  12. Online Dynamic Parameter Estimation of Synchronous Machines

    Science.gov (United States)

    West, Michael R.

    Traditionally, synchronous machine parameters are determined through an offline characterization procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the fundamental characteristics and behaviors of a given machine. These characteristics and behaviors can be used to develop and understand machine models that accurately reflect the machine's performance. To perform such tests, the machine is required to be removed from service. Characterizing a machine offline can result in economic losses due to down time, labor expenses, etc. Such losses may be mitigated by implementing online characterization procedures. Historically, different approaches have been taken to develop methods of calculating a machine's electrical characteristics, without removing the machine from service. Using a machine's input and response data combined with a numerical algorithm, a machine's characteristics can be determined. This thesis explores such characterization methods and strives to compare the IEEE 115 standard for offline characterization with the least squares approximation iterative approach implemented on a 20 h.p. synchronous machine. This least squares estimation method of online parameter estimation shows encouraging results for steady-state parameters, in comparison with steady-state parameters obtained through the IEEE 115 standard.

  13. Synchronous transmission circuit breaker development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, R D

    1976-08-01

    The need for the development of a synchronous transmission breaker is discussed and the basic preliminary specifications for such a circuit breaker are established and tabulated. The initial exploratory work designed to establish the preferred designs for a synchronous pulse generator, (or current zero predictor), for an operating mechanism and for a suitable interrupter are described in detail. The experimental results obtained with vacuum interrupters and with axial blast interrupters using pure SF/sub 6/, mixtures of SF/sub 6/ and N/sub 2/, and high pressure liquid SF/sub 6/ are reported. The results are then evaluated and the performances obtained with each interrupting media are compared arriving at the end to a choice of a preferred design. This preferred design, an interrupter that uses SF/sub 6/ in the liquid state at pressures of 13.8 megapascals (2000 psi), is completely described. The results obtained in a series of experiments designed to establish limits of performance for this interrupter are also discussed.

  14. [Conversion therapy for synchronous colorectal liver metastases].

    Science.gov (United States)

    Morohashi, Hajime; Yokoyama, Hiroshi; Akasaka, Harue; Sakamoto, Yoshiyuki; Koyama, Motoi; Murata, Akihiko; Hakamada, Kenichi

    2013-11-01

    Conversion therapy, a treatment strategy that facilitates the conversion of unresectable colorectal liver metastases (CRLM) to resectable CLRM after chemotherapy, has been reported to be effective. We assessed the applicability of treatment strategies for conversion therapy in 93 patients with synchronous CRLM encountered at our department. Of the 93 patients, 12 underwent conversion therapy and there was no significant difference in the clinicopathological factors of CRLM. The first-line regimen for 67% of the 12 patients who underwent conversion therapy was multidrug therapy with oxaliplatin and the number of courses administered ranged from 3 to 24. The 5-year survival rate of patients who underwent conversion therapy was 46%,and there was no significant difference when compared with the 5-year survival rate of patients who underwent hepatectomy for resectable CRLM. In order to improve the survival rate of patients with synchronous CRLM, it is important that more patients undergo conversion therapy with effective chemotherapy. Moreover, we believe that it is necessary to assess the appropriate balance in treatment between chemotherapy and hepatectomy in the future.

  15. Climate model studies of synchronously rotating planets.

    Science.gov (United States)

    Joshi, Manoj

    2003-01-01

    M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets.

  16. Limitations of FDG-PET and FDG-PET with computed tomography for detecting synchronous cancer in pharyngeal cancer.

    Science.gov (United States)

    Suzuki, Hidenori; Hasegawa, Yasuhisa; Terada, Akihiro; Ogawa, Tetsuya; Hyodo, Ikuo; Suzuki, Masahiro; Nakashima, Tsutomu; Tamaki, Tsuneo; Nishio, Masami

    2008-11-01

    To analyze the ability of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and the fusion of FDG-PET with computed tomography (FDG-PET/CT) to detect synchronous upper gastrointestinal tract (UGI) cancer in newly diagnosed pharyngeal squamous cell carcinoma (SCC). Synchronous UGI cancer is a significant problem in treating pharyngeal SCC, particularly for Japanese populations reported to be at high risk. Good results have been reported from the use of FDG-PET and FDG-PET/CT in staging head and neck SCC (HNSCC). An additional advantage is that both techniques are expected to prove useful in detecting synchronous cancer. Retrospective analysis of medical records. Aichi Cancer Center, Nagoya, Japan. Forty-three Japanese patients with pharyngeal SCC were assessed for the ability of FDG-PET and FDG-PET/CT to detect synchronous UGI cancer via a comparison with UGI Lugol chromoendoscopy. The patients had undergone 17 FDG-PET and 26 FDG-PET/CT scans before treatment. Sensitivity of FDG-PET and FDG-PET/CT to detect synchronous UGI cancer. Pathologically, 6 patients with esophageal SCC (14%) and 4 with stomach adenocarcinoma (9%) were diagnosed on the basis of suspect lesions detected by UGI Lugol chromoendoscopy. One patient was found to have stage T2 esophageal cancer by FDG-PET/CT, but no patients had UGI cancer. The sensitivity of detecting T1 UGI cancer by FDG-PET and FDG-PET/CT was 0%. The choice of diagnostic technique must be based on the site and histologic characteristics of the synchronous tumor. Although FDG-PET and FDG-PET/CT are still the preferred techniques for staging HNSCC, neither replaces Lugol chromoendoscopy for detecting synchronous UGI cancer in high-risk populations.

  17. Key solutions to geographical information synchronizing in GRID-GIS

    Science.gov (United States)

    Tan, Jian; Fan, XiangTao; Du, XiaoPing

    2008-10-01

    Geographical GRID system is of great importance at fields as public security, military action, emergency response etc. The homogenizing distributed geographic environment system requires same geographical information for operations in each node. The bottle neck is how to reliably and accurately synchronize the great volume geographical data. This paper solves the problem in three ways. First, Message server queue is constructed for stable message delivery. In this way, the message server always has its alternative in preparation for breakdowns, and the whole GRID always has single working message server. Then the message server queue can be constructed and effectively woks. This mode has the advantages of the other two modes that the message delivery is more reliable and less time-costing. Second, both push and pull modes are adopted to send messages in time. Push mode means the node which has altered its data is responsible for the delivery of the changed part, like "push" the data to the message server. While pull mode means the demand node or the message server is responsible to check the data status in other nodes and "pull" the new data from the source. In push mode, if the network between the sponsor node and the message server breakdown, the message could be missing or the sponsor could be halted, when the network resumed, the update action could not be invoked again. And in pull mode, the message server needs to check the data and collect update parts in the whole grid, it is a time-costing operation that could not be executed frequently. So the combination mode is adopted. In combination mode, not only each node has its own update trigger to invoke the delivery of the new data, but also the message server also can recurrently check the data status after an assigned interval according to the network situation and the computation ability, then the duly update can be guaranteed. Three, extended GML is developed to wrap the geographical data. GML defines a lot

  18. Time-Dependent Statistical Analysis of Wide-Area Time-Synchronized Data

    Directory of Open Access Journals (Sweden)

    A. R. Messina

    2010-01-01

    Full Text Available Characterization of spatial and temporal changes in the dynamic patterns of a nonstationary process is a problem of great theoretical and practical importance. On-line monitoring of large-scale power systems by means of time-synchronized Phasor Measurement Units (PMUs provides the opportunity to analyze and characterize inter-system oscillations. Wide-area measurement sets, however, are often relatively large, and may contain phenomena with differing temporal scales. Extracting from these measurements the relevant dynamics is a difficult problem. As the number of observations of real events continues to increase, statistical techniques are needed to help identify relevant temporal dynamics from noise or random effects in measured data. In this paper, a statistically based, data-driven framework that integrates the use of wavelet-based EOF analysis and a sliding window-based method is proposed to identify and extract, in near-real-time, dynamically independent spatiotemporal patterns from time synchronized data. The method deals with the information in space and time simultaneously, and allows direct tracking and characterization of the nonstationary time-frequency dynamics of oscillatory processes. The efficiency and accuracy of the developed procedures for extracting localized information of power system behavior from time-synchronized phasor measurements of a real event in Mexico is assessed.

  19. Centralized Data-Sampling Approach for Global Ot-α Synchronization of Fractional-Order Neural Networks with Time Delays

    Directory of Open Access Journals (Sweden)

    Jin-E Zhang

    2017-01-01

    Full Text Available In this paper, the global O(t-α synchronization problem is investigated for a class of fractional-order neural networks with time delays. Taking into account both better control performance and energy saving, we make the first attempt to introduce centralized data-sampling approach to characterize the O(t-α synchronization design strategy. A sufficient criterion is given under which the drive-response-based coupled neural networks can achieve global O(t-α synchronization. It is worth noting that, by using centralized data-sampling principle, fractional-order Lyapunov-like technique, and fractional-order Leibniz rule, the designed controller performs very well. Two numerical examples are presented to illustrate the efficiency of the proposed centralized data-sampling scheme.

  20. Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network

    Science.gov (United States)

    Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhao, Hui

    2016-09-01

    In this paper, we study the finite-time stability and synchronization problem of a class of memristor-based fractional-order Cohen-Grossberg neural network (MFCGNN) with the fractional order α ∈ (0,1 ]. We utilize the set-valued map and Filippov differential inclusion to treat MFCGNN because it has discontinuous right-hand sides. By using the definition of Caputo fractional-order derivative, the definitions of finite-time stability and synchronization, Gronwall's inequality and linear feedback controller, two new sufficient conditions are derived to ensure the finite-time stability of our proposed MFCGNN and achieve the finite-time synchronization of drive-response systems which are constituted by MFCGNNs. Finally, two numerical simulations are presented to verify the rightness of our proposed theorems.

  1. Pinning Synchronization for Complex Networks with Interval Coupling Delay by Variable Subintervals Method and Finsler’s Lemma

    Directory of Open Access Journals (Sweden)

    Dawei Gong

    2017-01-01

    Full Text Available The pinning synchronous problem for complex networks with interval delays is studied in this paper. First, by using an inequality which is introduced from Newton-Leibniz formula, a new synchronization criterion is derived. Second, combining Finsler’s Lemma with homogenous matrix, convergent linear matrix inequality (LMI relaxations for synchronization analysis are proposed with matrix-valued coefficients. Third, a new variable subintervals method is applied to expand the obtained results. Different from previous results, the interval delays are divided into some subdelays, which can introduce more free weighting matrices. Fourth, the results are shown as LMI, which can be easily analyzed or tested. Finally, the stability of the networks is proved via Lyapunov’s stability theorem, and the simulation of the trajectory claims the practicality of the proposed pinning control.

  2. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  3. Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters.

    Science.gov (United States)

    Hu, Jin; Zeng, Chunna

    2017-02-01

    The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays

    Directory of Open Access Journals (Sweden)

    Yu Miao

    2017-01-01

    Full Text Available This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods.

  5. Almost Sure Asymptotical Adaptive Synchronization for Neutral-Type Neural Networks with Stochastic Perturbation and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Wuneng Zhou

    2014-01-01

    Full Text Available The problem of almost sure (a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching. The synchronization condition is expressed as linear matrix inequality which can be easily solved by Matlab. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper.

  6. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  7. Detection of Nonverbal Synchronization through Phase Difference in Human Communication.

    Science.gov (United States)

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro

    2015-01-01

    Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These

  8. Detection of Nonverbal Synchronization through Phase Difference in Human Communication.

    Directory of Open Access Journals (Sweden)

    Jinhwan Kwon

    Full Text Available Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head

  9. Connectivity-Preserving Approach for Distributed Adaptive Synchronized Tracking of Networked Uncertain Nonholonomic Mobile Robots.

    Science.gov (United States)

    Yoo, Sung Jin; Park, Bong Seok

    2017-09-06

    This paper addresses a distributed connectivity-preserving synchronized tracking problem of multiple uncertain nonholonomic mobile robots with limited communication ranges. The information of the time-varying leader robot is assumed to be accessible to only a small fraction of follower robots. The main contribution of this paper is to introduce a new distributed nonlinear error surface for dealing with both the synchronized tracking and the preservation of the initial connectivity patterns among nonholonomic robots. Based on this nonlinear error surface, the recursive design methodology is presented to construct the approximation-based local adaptive tracking scheme at the robot dynamic level. Furthermore, a technical lemma is established to analyze the stability and the connectivity preservation of the total closed-loop control system in the Lyapunov sense. An example is provided to illustrate the effectiveness of the proposed methodology.

  10. Stability and synchronization of memristor-based fractional-order delayed neural networks.

    Science.gov (United States)

    Chen, Liping; Wu, Ranchao; Cao, Jinde; Liu, Jia-Bao

    2015-11-01

    Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov-Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    Science.gov (United States)

    Martínez, E.; Monasterio, P. R.; Marian, J.

    2011-02-01

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  12. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  13. A direct torque control scheme for permanent magnet synchronous motors based on space vector modulation

    Science.gov (United States)

    Su, Xiao-hui; Xu, Shu-Ping

    2013-03-01

    In order to solve the problem of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) related to the flux and the torque ripple and the uncertainty of switching frequency, A novel direct torque control system based on space vector modulation(SVM-DTC) for permanent magnet synchronous motor was proposed. In this method flux and torque are controlled through stator voltage components in stator flux linkage coordinate axes and space vector modulation is used to control inverters. Therefore, the errors of torque and flux linkage could be compensated accurately. The whole system has only one easily adjustable PI adjuster and needs no high for hardware and easy for realize. The simulation results verify the feasibility of this method, reduction of the flux and the torque ripple, and the good performance of DTC.

  14. Generalized synchronization-based multiparameter estimation in modulated time-delayed systems

    Science.gov (United States)

    Ghosh, Dibakar; Bhattacharyya, Bidyut K.

    2011-09-01

    We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.

  15. Dissipativity and Synchronization of Generalized BAM Neural Networks With Multivariate Discontinuous Activations.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong; Tang, Longkun

    2017-09-14

    This paper is concerned with the dissipativity and synchronization problems of a class of delayed bidirectional associative memory (BAM) neural networks in which neuron activations are modeled by discontinuous bivariate functions. First, the concept of the Filippov solution is extended to functional differential equations with discontinuous right-hand sides and mixed delays via functional differential inclusions. The global dissipativity of the Filippov solution to the considered BAM neural networks is proven using generalized Halanay inequalities and matrix measure approaches. Second, to realize global exponential complete synchronization of BAM neural networks with multivariate discontinuous activations, discontinuous state feedback controllers are designed using functional differential inclusions theory and nonsmooth analysis theory with generalized Lyapunov functional method. Finally, several numerical examples are provided to demonstrate the applicability and effectiveness of our proposed results.

  16. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinde Cao

    2013-01-01

    Full Text Available This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  17. The observer-based synchronization and parameter estimation of a ...

    Indian Academy of Sciences (India)

    Observer-based synchronization and parameter estimation of chaotic systems has been an interesting and important issue in theory and various fields of application. In this paper first we investigate the observer-based synchronization of a class of chaotic systems, and then discuss its parameter estimation via a single ...

  18. Synchronous rhabdomyosarcoma of the testis and kidney: A case ...

    African Journals Online (AJOL)

    ... obstructed left inguinoscrotal hernia and a right renal mass. The patient had surgery, and a diagnosis of synchronous rhabdomyosarcoma of the left testis, paratesticular tissue and right kidney was made by histology and immunohistochemistry. Keywords: Rhabdomyosarcoma; Synchronous tumour; Immunohistochemistry ...

  19. Synchronization of two different chaotic systems via nonlinear ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Int, J. Bifurcation and Chaos. 9:1465. Ho MC, Hung YC (2002). Synchronization of two different chaotic systems using generalized active network. Phys. Lett. A. 301:6424-8. Idowu BA, Vincent UE (2013). Synchronization and stabilization of chaotic dynamics in a quasi-1D. Bose-Einstein condensate. Journal of Chaos. 2013: ...

  20. Dynamical hysteresis and spatial synchronization in coupled non ...

    Indian Academy of Sciences (India)

    ... via mutual synchronization indices reveals that one attractor corresponds to spatially synchronized oscillators, while the other corresponds to desynchronized oscillators. Dynamical hysteresis may thus help to understand critical aspects of the dynamical behavior of complex biological systems, e.g. seizures in the epileptic ...